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CHAPTER I 

INTRODUCTION 

Consider, if you will, the phenomenon of anhydrobiosis, the 

ability of some living organisms to survive loss of sufficient cellu

lar water to cause suspension of metabolic activity. Is it not 

remarkable that some times in their life cycle numerous species are 

able to tolerate loss of all but a minimum of their cellular 

water? Some familiar examples include fungal spores, resurrection 

plants, nematodes and other soil invertebrates, brine shrimp and water 

flea cysts, many blue-green algae, most lichens~· both the spores and 

vegetative thalli of many mosses and some liverworts, and the seeds 

of most higher plants. In some cases the potential to withstand loss 

of cellular water is restricted to a specific stage of the life cycle, 

while in other instances, organisms are able to suspend metabolic 

functions whenever environmental conditions demand. 

The strategies adopted by diverse organisms are under study in 

various laboratories around the world. Current interest is apparent 

in recent published symposia (Grossowicz et al., 1961; Crowe and 

Clegg, 1973; Clegg and Crowe, 1978). While a complete understanding 

of this phenomenon has not yet been reached, several common trends 

seem to be emerging from ongoing research. In most cases, elevation 

of the cytoplasmic levels of polyalcohols (such as di- and trisaccha

rides and glycerol) seem to be required for protection from desicca-

1 



tion damage. It is thought by some workers that the compounds may 

replace hydrogen-bonded water required to stabilize macromolecular 

and supramolecular structures. Essential components of the metabolic 

systems are retained during anhydrobiosis in these economical 

organisms although they are ametabolic due to lack of water. As water 

becomes available, simple enzymatic activity is initiated at about 

20% relative water content, and complex processes such as protein 

synthesis become active at approximately 30% relative water content. 

Additionally, membranes seem to be conserved during desiccation and 

this is essential to survival of the individual. 

My introduction to 11 anhydrobiosis 11 occurred when I worked on 

enzymes retained in desiccated Selaginella lepidophylla with Dr. Todd. 

We found no change in several enzyme levels using crude assays, and 

this discovery has left me with a permanent sense of wonder. Later, 

I decided to combine my love of microscopy and facination with 

anhydrobiotic organisms. Jim Steinle had worked on the relationship 

between protein synthesis and desiccation tolerance in excised green 

bean axes, and I decided to use this system. Initially, I decided 

to look at the ultrastructure of the embryo, since this tissue is able 

to survive extreme desiccation. This turned out to be a 

frustrating problem in terms of technique because conventional fix

ation procedures involve aqueous solutions! I tried several ideas 

with limited success, and then Dr. Todd relayed a procedure for 

"anhydrous" processing that he had heard about at the botanical 

congress in Moscow; The results were rather interesting although 

they were initially difficult to interpret. The results of this work 

are the subject of the second chapter of this thesis. 
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Interpretation of the dry bean work was still tentative when 

I attended a symposium entitled "Dry Biological Systems" during the 

AIBS meetings at Michigan State University 24-25 August 1977. It 

became apparent that retention of metabolic capacity and structural 

integrity of membranes during severe desiccation were prime character

istics of successful anhydrobiots. Discussions with other partici

pants reinforced the feeling that my dry beans retained an impressive 

amount of membrane. However, this did not correspond very well to 

the view given in the seed literature that cells in seeds were 

membrane-poor following the drying stage of seed maturation. It was 

this conflict that lead me to undertake the study of mitochondrial 

development presented in the third chapter. Some concluding remarks 

are contained in the final chapter. 
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CHAPTER II 

ULTRASTRUCTURE OF THE EMBRYONIC ROOT 

OF PHASEOLUS VULGARIS L. FOLLOWING 

AN ANHYDROUS FIXATION PROCEDURE 

Introduction 

The life cycle of higher plants is characterized by production 

of seeds that undergo a period of anydrobiosis prior to germination. 

Water content usually falls to 10-15% in mature seeds. The dry seed 

has little or no detectable metabolism and is able to withstand 

extreme environmental conditions, remaining viable for varying periods 

of time, depending upon the species and storage conditions. However, 

once environmental conditions become favorable, germination proceeds 

very rapidly accompanied by various metabolic activities. For 

instance, 02 uptake can often be detected within minutes of the start 

of imbibition. This is true of the seeds .of Phaseolus vulgaris (Opik, 

1966; Walton, 1966), P. mungo (Morohashi and Shimokoriyama, 1972), 

Lactuca sativa (Eldan and Mayer, 1972) and Hordeum vulgare 

(Abdul-Baki, 1969). Also, protein synthesis has been reported soon 

after water enters the tissue in P. vulgaris (Walton et al., 1969) 

and Raphanus sp. (Fujisawa, 1966). In addition, other metabolic 

events such as ATP formation in lettuce seed (Pradet et al., 1968) and 

synthesis of phospholipids in pea cotyledons (Harwood and Stumpf, 
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1970) have been detected during the early period of imbibition. Thus, 

desiccation results in suspension of metabolic activity, rather than 

destruction of the enzymes required to resume metabolic activity. On 

this basis, it is reasonable to suppose that cell membranes are also 

preserved during seed maturation and desiccation. This expectation is 

not entirely supported by early ultrastructural studies of seed 

tissues. Reduction in the extent of membranes, especially endoplasmic 

reticulum, golgi bodies and mitochondrial membranes, as well as 

reduced membrane stainability, have been reported in the final stages 

of seed development (Bain and Mercer, 1966a; Klein and Pollock, 1968; 

Opik, 1968) and irt mature, ungerminated seeds (Paulson and Srivastava, 

1968; Opik, 1972). Opik (1972) suggested that populations of 

organelles may not decline equally in all tissues during seed 

maturation. Reduced contrast and difficulties ~~ specimen preparation 

make comprehensive studies difficult, but the most detailed study of 

seed ultrastructure, that of Bechtel and Pomeranz (1978) on the 

ungerminated rice grain has confirmed this view. 

These studies all suffer because the tissue was prepared using 

aqueous fixatives that allo~ed hydration of the tissue and changes 

in spatial relationships between cellular structures. The assumption 

made in all these studies is that these changes were, in general, 

not significant. However, it is difficult to imagine that imbibition, 

which proceeds during fixation, does not substantially alter cell 

structures compared to their condition during anhydrobiosis. Perner 

(1965) attempted to overcome this difficulty using osmium vapors. 

Unfortunately, because of poor penetration of the osmium, this proved 

satisfactory only for superficial cells of the pea radicle. Yatsu 



(1965) failed in attempts to fix cotton cotyledon using osmium vapors. 

Freeze fracture of dry seeds (Buttrose, 1971, 1973) revealed that 

major alterations do occur in cell ultrastructure after even 8 s 

exp~sure to water. An alternative procedure using anhydrous organic 

solvents (dimethysulfoxide and chloroform) proposed by Hallam (1976) 

has been utilized in this study of the ultrastructure of dry P. 

vulgaris embryonic root. 

Methods and Materials 

6 

Embryonic axes were removed from dormant seeds of Phaseolus 

vulgaris L. cv. Burpee Stringless Greenpod. Sections of the distal 

portion of the radicle, including the root tip, were dissected and 

processed anhydrously through a procedure modified from that of Hallam 

(1976). The primary fixative solution was composed of approximately 

6% glutaraldehyde in dimethysulfoxide (DMSO). The glutaraldehyde 

was prepared by drying 2 ml 70% (EM grade, Polyscience, Inc.) over 

cone. H2so4 in darkness for 2-5 days. It was then dissolved in the 

DMSO. The fixative was used immediately, for 2-3 h in darkness. 

Next, the tissue was washed 40 min in 2 changes of DMSO, followed 

by 40 min in 2 changes of chloroform. Post fixation was in 2% Oso4 

in dry chloroform for 1 h in darkness. Following post fixation, the 

tissue was rinsed with 2 changes of chloroform in 20 min, 2 changes 

of absolute ethanol in 1 h and 3 changes of propylene oxide in 1 h. 

Infiltration of the tissue with the low viscosity, long pot-life formu

lation of Spurr's resin (Spurr, 1969) was carried out over 3-5 days. 

Initially, the tissue was passed through 25%, SO% and 75% resin diluted 

with propylene oxide, 45 min per step. Final infiltration with pure 



resin, 3 changes in 3-5 days, was followed by polymerization at 60 C. 

Throughout the procedure, care was taken to keep all solvents and 

reagents anhydrous. This was done by adding molecular sieves 

(activated, indicating, type 4A, Baker Chemical Co.) to all bottles, 

including epoxy resin components, and carrying out all steps in a 

desiccator over CaCl2 . 

General anatomical information was obtained from 0.5-0.75 ~ 

sections cut with glass knives and stained with azure B (bromide), 

pH=8 (Hoefert, 1968). For electron microscopy, thin sections were 

cut with a diamond knife and stained with 2% aqueous uranyl acetate 

and lead citrate (Venable and Coggshall, 1965). The sections were 

examined on a Phillips EM 200 microscope operating at 60 Kev. 

In order to compare tissue processed anhydrously with tissue 

processed in aqueous fixative solutions, sections of root tip were 

also fixed by placing dry tissue into a conventional fixative composed 

of 2% glutaraldehyde in 0.1 M s-collidine, pH=7.4 at room temperature 

for 2 h! The tissue was washed 3 times, 5 min each in buffer, post 

fixed in 1% Oso4 in buffer at room temperature for 1 h, and washed 

3 times for 5 min each in buffer. Dehydration in a graded ethanol 

series and transfer to propylene oxide was followed by infiltration 

with Spurr's resin and polymerization at 60 C. Only superficial cells 

of the tissue blocks were well fixed and embedded due to poor pene

tration of reagents. However, the superficial layers were suitable 

for electron microscopy, and silver sections were cut with glass 

knives, stained and observed as previously described. 

7 
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Results 

Examination of thick, transverse sections with the light micro

scope disclosed three differentiating regions of the embryonic root 

(Figure 1). The epidermis and cortex comprise the outer layer. These 

cells are generally parenchymatous with large lobed nuclei, abundant 

protein bodies and very dense cytoplasm. The cell walls are folded, 

due to the effect of water loss during seed maturation, and inter

cellular spaces are reduced in volume. The cell walls remain in close 

contact with the protoplasts. Provascular tissue forms a cylinder 

between the cortex and the pith. These cells appear very compressed, 

and contain lobed nuclei with distinct nucleoli and some small protein 

bodies, but are characterized by their dense, darkly staining cyto

plasm. The central section of the root is the pith, composed of 

parenchymatous cells similar to those of the cortex; 

The aspect of the tissue is unusual at first glance because the 

cells have become contorted and folded. This occurs as a consequence 

of water loss and decreased volume of the tissue during seed matur

ation. The cell walls are still thin and will expand during seed 

germination as the radicle emerges from the seed coat prior to further 

cell divisions. Also, the tissue prepared anhydrously stains more 

strongly than equivalent ungerminated tissue prepared in aqueous 

solutions. Tissue processed anhydrously exhibits metachromatic 

staining with azure B. The pith and cortex stain purple-blue, while 

the provascular cells and a few adjacent cells stain strongly purple

red. The reason for this differential staining is not known, but 

variation in pH influences the stain's metachromasticity (Hoefert, 

1968), and it reacts with DNA and RNA to give products with different 



cortex provascular ti ssue pith 

Figure 1. Light micrograph of tissue from the anhydrously prepared 
root of Phaseolus vulgaris. The cells are contorted 
due to loss of volume during seed maturation, and protein 
bodies are abundant within the cytoplasm. Nuclei are 
lobed with distinct nucleoli. Cross section stained with 
azure B (bromide). Magnification 100, bar represents 
1000 ll. 
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spectral characteristics (Flax and Himes, 1952). This reaction may 

also reflect the inability of the anhydrous technique to extract 

stainable compounds when compared to conventional aqueous fixatives. 

io 

As would be expected from light microscopy of the thick sectioned 

material, the aspect of the tissue at high magnification is of cells 

that have contracted and become dense through loss of water (Figure 2). 

Some cellular organelles, such as protein bodies and nuclei are easily 

recognized, other organelles, such as mitochondria and plastids have 

become modified during seed maturation, while golgi bodies cannot 

be identified. All of the recognizable structures within the cell 

are irregular in shape due to uneven shrinkage, and any space other

wise unoccupied in the ground cytoplasm is filled with ribosomes. 

The cell walls are generally contiguous with the cytoplasm, however, 

as lipid droplets are aggregated along the cell ~argins, this region 

tends to be poorly infiltrated, often becoming stretched and distorted 

in the electron beam. 

Following anhydrous preparation, the membranes do not appear 

as the classic tripartate image composed of two electron dense lines 

separated by a line of low electron density. Instead, they appear 

in negative contrast (see nuclear envelope 1n Figure 3), or as 

electron dense lines often associated with narrow electron translucent 

lines (Figures 4, 5, 6 and 7), or as pairs of electron translucent 

lines separated by an electron dense line of medium density approxi

mately equal to the surrounding matrix (see the internal membranes of 

mitochondria and plastids, Figures 6, 7, and 8). Due to distortion 

that occurs as the tissue becomes desiccated at the end of seed forma

tion, the organelles are literally crumpled and when sectioned their 
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Figure 2. General aspect of anhydrously prepared tissue from the dry 
seed of ~· vulgaris. The cell \oTalls are folded and the 
cytoplasmic space is occupied by tightly packed ribosomes, 
protein bodies and aggregations of proplastids and mito
chondria. Ribosome-membrane complexes outline some protein 
bodies (arrows). Magnification 16,600, bar represents 
1 j.lm. 



Figure 3. A nucleus with vacuolated nucleolus, condensed heterochro
matin and patches of electron dense and translucent 
granules. Magnification 29,500, bar represents 1 pm. 

Figure 4. Endoplasmic reticulum(?) in the cytoplasm (arrows), and a 
prolamellar body in a proplastid (inset a). Magnification 
59,000, bar represents 0.5 pm. 

Figure 5. Portion of a cell fixed in aqueous glutaraldehyde. Magnifi
cation 34,100, bar represents 1 pm. 

12 
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Figure 6. A cluster of proplastids with phytoferritin, faint membranes 
in the stroma and a few ribosomes. The outer membrane is 
clearly seen in negative contrast (arrows). Magnification 
51,000, bar represents 0.5 um. 

Figure 7. Small clusters of starch in proplastids. Magnification 
51,000, bar represents 0.5 urn. 

Figure 8. Mitochondria characterized by arrays of cristae membrane in 
negative contrast. These are clearly seen in the lower 
right corner and upper center (arrows). Magnification 
51,000, bar represents 0.5 urn. 
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membranes do not form continuous outlines. The presence of membranes 

1n negative contrast has also been noted by Perner (1965) in pea 

radicle and by Morris (1968) in brine shrimp cysts following anhydrous 

preparation for electron microscopy. A possible explanation is 

reserved for the discussion. 

The nucleus is the most easily recognizable cell structure. 

It is always irregular in outline, with arms extending into the sur-

rounding cytoplasmic space (Figure 3). The nuclear envelope appears 

crinkled as if an inelastic covering has been crumpled around a 

shrinking core. Heterochromatic regions are prominent adjacent to 

the nuclear envelope. The euchromatin is differentiated into regions 

of medium electron density and areas containing electron dense and 

electron transparent granules, both larger than the ribosomes in the 
.. 

adjacent cytoplasm (Figures 3 and 6). The nucleolus is relatively 

homogeneous and is the most electron dense region of the nucleus. 

Roughly spherical, it appears to have nucleolar vacuoles and small 

electron dense grains, especially near the margins. The nucleus is 

very similar to that reported in the dry seed of Lactuca sativa 

(Paulson and Srivastava, 1968). 

Protein bodies are dispersed throughout the cytoplasm. They 

are oval to circular, with somewhat irregular outlines (Figures 3 

and 6). The contents of the protein bodies stain as electron dense 

granules that are most numerous at the margin, and sometimes appear 

to be absent at the center of large protein bodies. In unstained 

thick sections, observed with light microscopy, the protein bodies 

closest to the edge of the tissue are stained most heavily and uni-

formly with Oso4 while those in cells removed from the margins of 
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the specimen are not stained so heavily or uniformly. Thus it appears 

that non-uniform staining is a result of failure on the part of the 

Oso4 to penetrate evenly and does not represent substructure within 

the protein body. The membrane surrounding the protein bodies is 

indistinct and separated from the stored protein by an electron trans-

parent corona. A similar observation was made in a freeze fracture 

study of wheat scutellum (Swift and Buttrose, 1972). The membrane sur-

rounding the protein bodies was indistinct in the dry tissue, but 

following short inbibition became distinct. Externally, the protein 

bodies are often surrounded by one or more layers of double membrane 

(Figure 3). If several layers are present, a single layer of ribo-

somes will lie between each of the membrane layers forming a ribosome-

membrane complex. In some sections, several layers of ribosome-

membrane may lie parallel to the surface of th~ protein body (Figure 

2), while in sections tangential to the surface, ribosomes can be 

seen lying along the surface of the protein body (Figure 2). Similar 

configurations of membranes and ribosomes have been reported in rice 

embryo (Opik, 1972; Bechtel and Pomeranz, 1978), rye embryo (Hallam et 

al., 1972) and~· vulgaris cotyledons (Opik, 1968) and it has been 

suggested by these authors that this may represent the arrangement 

in which protein for storage is synthesized prior to seed maturation. 

In addition to protein, cells of the embryonic axis also store lipid 

in droplets found at the cell periphery (Figure 2). The amount of 

stored lipid varies from one tissue to another. Cells of the cortex 

and pith regions store more lipid than provascular cells. Because 

DMSO is the first solvent used during fixation, most or all of the 

lipid is lost prior to Oso4 fixation, and the droplets appear as 
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electron transparent regions of varying size. In conventionally fixed 

cotyledonary tissue (Mollenhauer and Totten, 1971b) the droplets are 

bounded by a single membrane, but such membranes cannot be discerned 

in the anhydrously fixed material. Areas where lipids have been 

extensively extracted are unstable under the beam and this accounts 

for the failure to observe any membrane around the lipid droplets and 

may also explain the failure to observe a plasma membrane in this 

tissue. The plasma membrane has been observed in freeze-etch 

preparations of dry seed tissue (Buttrose, 1973) as well as 

conventionally fixed tissue (Opik, 1972). 

At low magnification, the cytoplasm can be differentiated into 

regions with abundant, closely spaced ribosomes and regions of lower 

electron density containing aggregated plastids and mitochondria 

(Figures 2, 6, 7 and 8). The plastids are characterized by the . 

presence of phytoferritin and occasional clusters of electron trans-

parent starch granules. The outer membrane often appears as a dark 

line, and the stroma contains scattered ribosomes and a few lamellae, 

as well as occasional clusters of tubular membranes. The latter may 

be prolamellar bodies. The outlines of the plastids are relatively 

clear, however this is not the case with the smaller mitochondria 

(Figure 8). The mitochondria can be distinguished by the lack of 

phytoferritin and starch grains, and the presence of membranes 1n 

parallel arrays in the matrix. In plastids, membranes in the stroma 

always occur singly, while in the mitochondria, they most often appear 
J 

as arrays of 2-3 sets of double membranes in parallel arrays, presumed 

to be cristae. Proplastids are frequently reported organelles in 

maturing, ungerminated and germinating seed tissues (Yoo, 1970; Opik, 
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1972; Bechtel and Pomeranz, 1978), however mitochondria are frequently 

reported to decline in number, size and complexity (Opik, 1974). 

The remainder of the cytoplasm is filled with ribosomes. Inter

spersed between the ribosomes, short segments of double membrane can 

be seen in favorable sections (Figure 4). The membranes are distorted 

due to compression and shrinkage occurring during seed maturation. 

Although no long elements are visible in thin sections, distortion 

during desiccation could easily make continuous membrane segments 

impossible to see. While a recognizable endoplasmic reticulum is 

not present in the cytoplasm, these short membrane segments, together 

with the concentric layers of membrane associated with protein bodies 

may represent the endoplasmic reticulum. This interpretation is 

supported by the presence of abundant endoplasmic reticulum in conven

tionally fixed cortical cells (Figure 5). Closely packed arrays of 

tubular membrane are occasionally seen in cross or longitudinal 

section. The origin of these structures is unknown, but similar 

arrays have been reported in cells of ungerminated rice (Opik, 1972; 

Bechtel and Pomeranz, 1978) and pea root (Yoo, 1970). Golgi bodies 

are not recognizable in the cortex parenchyma of embryonic bean root. 

They are present in provascular tissue of-rice (Bechtel and Pomeranz, 

1978) and by the third hour of imbibition in rye (Hallam et aL, 1972) 

and corresponding cells of P. vulgaris (Hamilton, unpublished). 

Discussion 

The most notable observation of this study is that membranes 

in this tissue do not conform to contemporary ideas about the appear

ance of membranes following preparation for electron microscopy. 



Sharp electron dense and electron transparent lines, sometimes singly, 

and sometimes adjacent to one another, are seen and often the impres-

sion is of membranes in negative contrast. This phenomenon has also 

been observed in other anhydrobiotic tissue prepared anhydrously. 

In Pisum sativum cotyledons (Perner, 1965) and Artemia salina cysts 

(Morris, 1968) fixed with Oso4 vapors, membranes appeared in negative 

contrast. In equivalent tissues, £· sativum cotyledons (Yoo, 1970) 

and A. salina cysts (Morris, 1968) prepared with aqueous fixatives, 

18 

membranes were normal in appearance although they did not stain darkly. 

Reduced stainability has also been observed in other tissues with 

initially low water contents prepared in aqueous fixatives. This 

observation suggests that there is some alteration in membrane organi-

zation in anhydrobiotic tissue that is not entirely reversed upon 

fixation in aqueous fixatives. In the present study, the nature of 

the fixation procedure suggests that the electron translucent portion 

of the membrane image represents a region composed of lipid. The 

primary fixative does not stabilize lipids, while the carrier, DMSO, 

has a high solvent capacity for lipids. In fact, lipid in marginal 

lipid droplets appears to be completely extracted. If lipids are 

removed, proteins are the only remaining component of the membrane 

and would be expected to stain by H-bond formation with osmate mole-

cules (Littman and Barnett, 1972) forming the dark lines of the 

membrane image. The irregular arrangement of light and dark lines, 

and the tendency of the dark lines to be discontinuous seems to 

indicate that membrane proteins, normally distributed randomly in 

space along the plane of the membrane have become aggregated forming 

patches of high protein density. The effect of such an alteration in 
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membrane structure upon the image seen with transmission electron 

microscopy is illustrated in Figure 9. Simon (1974, 1978) has 

recently advanced the idea that phase changes occur in membranes of 

organisms as they enter anhydrobiotic states. He further suggests 

that proteins will be displaced from their positions in the membrane. 

This idea can be used to explain the images of membranes seen 

following the anhydrous fixation used in this study. 

In hydrated systems, it is now accepted that membranes are 

composed of a phospholipid bilayer with associated membrane proteins. 

Maintenance of the bilayer is primarily due to interaction of polar 

head groups with ~ater (Tanford, 1973) and loss of water should alter 

lipid-lipid relationships. This expectation is supported by various 

sorts of biophysical data indicating that when water content of a 

membrane declines below zo%, alterations in membrane structure occur. 

High and low angle X-ray diffraction of isolated membranes at low 

water contents indicate that approximately 20% water represents 

essential water of hydration (Finean et al., 1966; Finean et al., 

1968). At lower water contents, new reflections are seen that 

indicate molecular rearrangements of the lipids. Levine and Wilkins 

(1971) suggest that at higher water contents the alkyl chains are 

highly disordered and mobile within the plane of the membrane, while 

at low water contents mobility of the alkyl chains is greatly reduced. 

This transition is probably analogous to that occurring as phospho

lipids undergo thermal transition between the liquid crystal and 

crystalline gel state at the transition temperature (Tt). Differen

tial scanning calorimetry of myelin (Ladbrooke et al., 1968) and phos

phatidycholine- water lamellar systems (Chapman et al., 1977) 
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the effect that they would have upon the image that is obtained by transmission electron 
microscopy. A and B represent the idealized distribution of proteins in the membrane before 
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indicate that as water content declines, an abrupt increase in Tt 

occurs at 20% water associated with disappearance of the ice-melting 

isotherm. This is interpreted to mean that at low water contents 

(< 20%) only bound water remains. IR spectroscopy (Levine and 

Wilkins, 1971) as well as X-ray diffraction (Levine et al., 1968) 

indicate that all remaining water is associated with the charged polar 

head groups and may serve as a sort of intermolecular bridge between 

them. 

While it is evident that decreasing water content can induce 

alterations in the properties of a phospholipid bilayer, the exact 

nature of these changes is a topic of debate. Two major proposals 

have been advanced. The possibility of forming hexagonal phases 

(specifically the hexagonal II type) was advanced by Luzzati and 

Husson (1962) based upon X-ray diffraction of lipid extracts from 

brain. Below 20% water, the original lamellar phase was replaced 

by a hexagonal one that probably contained water associated with 

reoriented polar head groups. Formation of long, tubular micells 

with polar groups in the center and lying in the plane of the membrane 

has been suggested (Finean et al., 1966). That such structures are 

possible is not questioned. However, the X-ray diffraction data of 

either synthetic or isolated natural membranes does not support this 

interpretation. Egg lecithin/cholesterol bilayers failed to give 

diffraction patterns characteristic of a hexagonal phase (Levine and 

Wilkins, 1971), and freeze fracture of similar preparations at low 

water content showed fracture faces to be of lamellar rather than 

hexagonal phases (Deamer et al., 1970). Alternatively, Finean (1969) 

proposes formation of multiple phase systems in which lamellar phases 
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are important. These are seen as domains of limited extent in which 

the conformation of the phospholipid molecules varies from those in 

adjacent domains. The exact nature of these domains is not specified 

but variation could be substantial. This proposal does not conflict 

with the· X-ray diffraction data indicating increased order within 

the lipid portion of biological and synthetic membranes at low water 

content. It is reasonable to suggest that such phase changes also 

occur when a tissue, such as a seed, undergoes desiccation. 

Phase transitions affect the ways that phospholipids interact 

with membrane associated proteins, and any factor that alters the 

characteristics of the lipid phase transition will also affect lipid

protein interactions (Gennis and Jonas, 1977). pH, cation 

composition, ionic strength, fatty acid and sterol composition, and 

protein content all affect lipid phase transitions. The basic effect 

of a phase transition upon lipid-protein associations can be 

visualized by freeze-etching. Thermally induced phase changes can be 

produced by cooling a membrane preparation to the Tt before quenching 

in liquid Freon 22 (-150 C). When inner mitochondrial membranes are 

prepared in this way prior to freeze fracture, intramembrane particles 

form dense aggregates within the plane of the membrane. Aggregation 

does not occur when similar specimens are quenched without pre

chilling (Hackenbrock et al., 1976). Aggregation is thought to result 

from exclusion of proteins from regions where lipids are undergoing 

transition from the liquid crystal to crystalline gel state. In 

erythrocyte ghosts, pH=5.5 results in aggregation of intramembrane 

particles that is reversible by either pH=7.5 or pH=9.5, and is 

inhibited if 0.15 M or 1.0 M NaCl is included in the buffer (Pinto da 



Silva, 1972). Thus microenvironmental conditions will influence 

lipid-lipid and lipid-protein interactions. 
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In the maturing seed, during desiccation, water content declines, 

and the concentration of various ions increases. These factors will 

influence the structure of membranes, and their interactions will 

be complex. Regardless of the exact nature of the phase transitions 

that certainly occur in membranes as living tissues enter the anhydro

biotic state, proteins will undergo lateral migration in the plane 

of the membrane in response to altered lipid-lipid and lipid-protein 

interactions. The result can be visualized as proteins being frozen 

out of their lipid milieu to form regions of high protein density, 

while the phospholipids are undergoing phase transition involving 

increased self-association. In other words, a patchwork is formed 

from regions of high protein or lipid density _(Figure 9). No 

assumption beyond the occurrence of the phase transition resulting 

in lateral displacement of membrane proteins is made. 

Summary 

The dry, embryonic root of Phaseolus vulgaris L. was prepared 

for electron microscopy by aru1ydrous techniques. The tissue appears 

shrunken, with folded cell walls and compactly arranged cellular 

components. Lipid droplets line the cell margins, plastids and mito

chondria are aggregated, and irregular ovoid protein bodies are 

numerous and may be sheathed in layers of ribosomes and associated 

membranes. The nucleus contains distinct marginal heterochromatin 

and nucleoli. The cytoplasm is packed with ribosomes. Cellular 

membranes appear in negative contrast as sharp electron dense and 
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electron transparent lines adjacent to one another. An explanation 

for this appearance is advanced based upon biophysical considerations 

of lipid-protein interaction and the effects of drying upon membranes. 



CHAPTER III 

DEVELOPMENT OF MITOCHONDRIA IN THE 

CORTEX OF EXCISED GERMINATING 

PHASEOLUS VULGARIS L. AXES 

Introduction 

Mitochondria are conserved as intact entities in dry, mature 

seeds. Perner (1965) observed them in osmium-vapor fixed pea 

radicles, and Sato and Asahi (1975) isolated mitochondrial membranes 

from dry pea seeds. The presence of mitochondria in dry seed tissue 

has also been established for numerous other seeds including rice 

(Opik, 1972; Bechtel and Pomeranz, 1978), lettuce (Paulson and 

Srivastava, 1968) and rye (Hallam et al., 1972). Mitochondria are of 

particular interest during early germination because further develop

ment of the seed is dependent upon rapid resumption of respiratory 

activity during the early stages of germination. Based upon their 

survey of the literature Mayer and Shain (1974) suggest that mitochon

dria are modified in some fashion during the final stages of seed 

maturation. If this is so, then it is of interest to follow develop

ment of mitochondrial structure and function during germination of 

seed tissues. 

Reduced numbers of cristae have been observed in numerous seed 

tissues including mature lettuce (Paulson and Srivastava, 1968) and 
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rice embryos (Opik, 1972), and bean cotyledons (Opik, 1968). These 

and similar observations have lead to the suggestion that during seed 

maturation mitochondrial membrane components become disorganized in 

some manner and must become reorganized in order to regain activity. 

Improved membrane definition and increased numbers of cristae are 

considered by most workers to be characteristic of mitochondria during 

germination of seed tissues. In addition, respiratory control (P/0 

ratio) improves during the early stages of germination, and specific 

activities of several respiratory enzymes increase in mitochondrial 

membranes (Sato and Asahi, 1975). These observations support the 

hypothesis that membr~ne reorganization occurs during early 

germination. 

Alternately, the number of mitochondria could decline during 

seed maturation, and rise during germination. Increasing numbers 

of mitochondria have been reported in peanut cotyledons (Breidenbach 

et al., 1966; Cherry, 1963) during the first days after germination, 

and in the early stages of germination in peanut embryos (Wilson and 

Bonner, 1971). Breidenbach et al. (1966) reported increased numbers 

of particles based on light microscopic examination of sucrose density 

gradient fractions, while Cherry (1963) and Wilson and Bonner (1971) 

base their reports on increased protein content of purified mito

chondrial fractions. Increasing numbers of mitochondria have also 

been reported based upon ultrastructural observations of germinating 

rye embryos (Hallam et al., 1972). However, an attempt to detect 

incorporation of 3H-thymidine into mitochondrial DNA has failed in pea 

seeds (Malhotra et al., 1973). 



Respiratory activity during early germination of Phaseolus 

vulgaris embryos is characteristic of many legume seeds. An initial 

period of rapidly increasing respiration and passive water uptake 
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is followed by a plateau period when respiratory rate and fresh weight 

show little increase. The plateau phase ends with a burst of res

piratory oxygen consumption and water uptake (Bewley and Black, 1978). 

This coincides with elongation of the radicle. Increasing respira

tion rate in the initial phase depends primarily upon rehydration of 

respiratory enzymes although temperature and oxygen dependent 

processes also seem to be required (Morohashi and Shimokoriyama, 

1977). The reason fo~ the lag phase is unclear, but it may represent 

time required for synthesis of necessary enzymes or for mitochondrial 

repair, development or synthesis (Mayer and Shain, 1974). The present 

study was undertaken to gather data regarding mitochondrial develop

ment during the early stages of germination in excised embryonic axes 

of P. vulgaris. 

Methods and Materials 

Embryonic axes were removed from dry green bean seed (Phaseolus 

vulgaris L., cv. Burpee Stringless Greenpod). In all experiments, 

groups of 4 embryos were selected and the dry weight determined. 

Imbibition was carried out in distilled H20 at 27 C in either small 

beakers (50 ml with 2 ml H20) or in 35 x 10 mm Falcon disposable petri 

plates (on filter paper with 2 ml H2o). Care was taken that H2o be 

adequate but not excessive as mild stress, either dehydration or 

anaerobiosis has immediate effects upon embryonic development. Fresh 

weights were determined after gently blotting imbibed axes with 



absorbent paper. Percent weight increase was determined as (fresh 

weight/dry weight- 1.00) x 100. 

The tissue was best preserved by a fixative composed of 3% 

glutaraldehyde, 1.5% para-formaldehyde and 1.5% acrolein in 0.1 M 

cacodylate (pi-1=7.2-7.4) suggested by Mollenhauer and Totten (1971a). 

The segment of tissue from 0.75 mm to 1.75 mm behind the root tip 
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was removed following immersion of the intact axis in fixative, and 

these segments were then placed in fresh fixative for 2 h at room 

temperature. Because seed tissue has a high protein content, the 

tissue was washed in water 3 x 5 min and post fixed 20-45 min in 2% 

unbuffered KMno4 at 0 C. The tissue was then rinsed many times with 

distilled water, dehydrated in ethanol and embedded in Spurr's resin 

(Spurr, 1969). Thick sections (0.5-0.75v) were cut with glass knives 

and stained with azure B (bromide) to select suitable areas for 

electron microscopy. Silver sections were cut with a diamond knife 

and stained with methanolic uranyl acetate and lead citrate (Venable 

and Coggshall, 1965). Photographs and observations were made using 

a Phillips 200 transmission electron microscope. 

For stereological analysis, 10 sets of 4 embryos each were grown 

as described above for 3, 6 and 16 h. Dry weight and fresh weight 

were measured. From each axis, a single tissue segment was processed 

for microscopy and embedded individually in a BEEM capsule. No 

attempt was made to orient the specimens thus minimizing the possible 

effect of anisotropy. For each age group, one tissue segment was 

chosen from each of four sets. Thick sections were taken from these 

blocks and areas selected in the cortex of the radicle for stereologi

cal sampling. Silver sections were cut using a diamond knife. Silver 
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sections were collected on 200 mesh copper grids and stained with 

uranyl acetate and lead citrate (Venable and Coggshall, 1965). To 

avoid shrinkage of the sections in the electron beam, sections were 

lightly coated with carbon. Using a single section of good quality, a 

series of micrographs was recorded by a systematic sampling procedure 

recommended by Weibel (1973). The negative film was Kodak electron 

image film, and magnification of the image was 4500. 

Volume fraction of mitochondria (V ) was determined by point 
m 

counting volumetry. Micrographs were printed on Kodabromide RC paper 

at magnification 12000. A square lattice (7 x 7 mm) of 910 points 

drawn on a transparent acetate.sheet was laid over the micrographs, 

and the number of points lying over mitochondria, P , and cytoplasm, 
m 

Pt (i.e., excluding cell wall, intercellular space, protein bodies 

and nucleus) was determined. For each individual measured 2500-3000 

points for ground cytoplasm were accumulated. V was determined using 
m 

V = P /Pt. Profile size was estimated using a series of standard m m 

circular outlines with diameters of 1, 2, .•• , 12 mm drawn on a trans-

parent acetate sheet. Estimation of mean caliper diameter of mito-

chondria (D ) and numerical particle density of mitochondria (N ) are m m 

described in Results. 

Measurements of oxygen uptake were made using a Clark type polaro-

graphic electrode and a YSI Model 53 oxygen monitor. Groups of four 

embryos were grown as described above. Following weighing, the groups 

of embryos were transferred to sample chambers containing 3, 4 or 

5 ml distilled water at 27 C, and oxygen consumption was measured 

for 2 to 4 min. Potassium cyanide (KCN; 1.0 mM) and salicylhydroxamic 

acid (SHAM; 1.0 mM) were used to estimate relative capacities for 



cyanide sensitive and insensitive respiration, respectively. 2,4-

dinitrophenol (DNP; 0.375 ruM), an uncoupler, was used to estimate 

capacity for total electron flux. Groups of embryos were treated 

with respiratory inhibitors at the indicated concentration for 10 

min prior to measurement of oxygen consumption, and equal concen

trations of inhibitors were present in the sample chambers. 

Results 
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Respiratory uptake of oxygen by excised embryonic axes was 

measured using a Clark electrode. Oxygen uptake can be divided into 

three phases. The initial period of rapidly increasing respiratory 

activity parallels imbibition very closely, and may reflect, at least 

in part, hydration of enzymes and membranes associated with mitochon

drial respiration (Figure 10). This phase lasti for approximately 

1.5 h under the conditions used in these experiments. This is 

followed by a lag phase lasting from 1.5 to about 6 h during which 

little increase in respiratory activity or fresh weight occur (Figure 

11). The lag phase is characteristic of many species but its bio

chemical basis is not well understood (Bewley and Black, 1978). The 

third phase is characterized by increasing oxygen consumption and 

fresh weight. Cell division has not begun, and no dividing cells can 

be seen before 24 h. 

Inhibitors of respiratory activity were applied exogenously to 

embryos at the end of their designated imbibition periods of 1.5, 

3, 6, 12, and 16 h. KCN (1.0 ruM) inhibited oxygen uptake by about 

60% through the first 6 h, but only 7% by 16 h (Figure 12). SHAM 

(1.0 ruM) had little effect on oxygen uptake at any time, but the 
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Figure 10. Respiratory activity and % increase ln fresh weight 
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from 8-11 groups of 4 embryos each. 
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combination of KCN and SHAM depressed uptake by approximately 80% 

during the first 6 h. At 12 h the effectiveness of the combination 

of the two inhibitors was declining, and at 16 h the rate of oxygen 

consumption was 50% of the untreated axes. The effect of DNP 

(0.375 mM) is to increase the rate of oxygen consumption during the 

first 6 h 20-30% above the controls, and the rate of DNP-stimulated 

uptake remained higher than the controls at 12 and 16 h. 

Respiration during the early germination of ~· vulgaris appears 

to be primarily CN -sensitive. Lack of significant CN -insensitive 

respiration during the early phases of germination has also been 

reported in pea coty l.edons (James and Spencer, 1979) and Cicer 

arietinum (Burguillo and Nicolas, 1977). This implies that a 

functional electron transport system is present in dry seeds although 

early deficiencies in cytochrome c (Wilson and Bonner, 1971) and cyto-

chrome a-a3 (Breidenbach et al., 1967) have been reported in peanut 

embryos, and pea cotyledons appear deficient in cytochrome a-a3 

(Kolloffel and Sluys, 1970; Solomos et al., 1972). The lncrease in 

oxygen uptake stimulated by the uncoupler DNP indicates that the 

capacity to transport electrons to oxygen is not the rate limiting 

step of respiration at this time. After 6 h imbibition, there is a 

pronounced increase in the ability of oxidases other than cytochrome 

a-a3 to transfer electrons to oxygen (Figure 12). Although eN-

insensitive respiration increases, it is difficult to estimate the 

true partitioning of electron flow. The data simply indicate that the 

potential activity of the alternate oxidase(s) has increased suffi-

ciently to accept a large proportion of the total electron flow 

through the system. The increase in oxygen consumpti6n that lS not 
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inhibited by KCN+SHAH could be due to a failure of the inhibitors 

to penetrate the tissue, but is more likely due to the increasing 

levels of other oxidases such as lipoxygenase (Parrish and Leopold, 

1978). It is doubtful that these nonrespiratory oxidases would 

account for a large proportion of the oxygen consumed in the control 

axes because the affinities of these enzymes for oxygen are much lower 

than that of cytochrome a-a3. 

The primary purpose of the respiration experiments was to 

determine appropriate times for the stereological analysis. We hoped 

to choose times that would represent undeveloped, developing and 

mature mitochondrial stages. Because it is near the end of the lag 

phase, 6 h was chosen. If reorganization of membrane components and 

increased amounts of inner membrane are required before respiratory 

activity can increase, it is logical to expect changes to begin before 

the end of the lag phase. Since we wished to avoid possible effects 

on mitochondrial structure as a result of cell division, and at the 

same time use the oldest tissue possible, 16 h was chosen as the last 

point. If either mitochondiral numbers or inner membrane area is 

increasing this change should be evident by this time. The early 

point was more difficult to chose. For the earliest point in the 

analysis, we wanted to see mitochondria before extensive changes could 

occur, and 2 h was chosen to avoid any initial difficulties associated 

with incomplete hydration of the tissue. However, preliminary 

attempts of fix root tissue following 2 h imbibition were very unsatis

factory, and we subsequently succeeded in fixing 3 h tissue, so this 

became the initial point in the stereological analysis. 



To evaluate the possibility that morphological alterations of 

mitochondrial structure may occur during early germination, a simple 

stereological analysis was performed. In order to obtain a random 

sample, ten groups consisting of four embryonic axes each were grown 

for 3, 6 and 16 h. A single segment of root was removed from each 

axis and processed for electron microscopy. One segment from each 

of four groups in each age class was selected for stereological 

analysis so that n = 4 for 3, 6, and 16 h. Volume fraction of mito-

chondria (V ) in the cytoplasm was determined for each individual. 
m 

Profile size distributions, mean caliper diameter of mitochondrial 

profiles (D ) and numerical density of mitochondria (N ) were esti-m . m 

mated by combining data from the four individuals that constituted 

the samples at 3, 6 and 16 h. This combination of parameters yields 

general information about the mitochondrial populations present in 

parenchyma cells of the root cortex during early germination. v ' m 

D and N are summarized in Table I. Profile size distributions are 
m m 

given in Figure 13. 
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Mitochondria occupy a sfuall proportion (about 6-7%) of the cyto-

plasmic volume of the root cortex cells. V does not appear to change 
m 

during the first 16 h of germination. The value of V at 6 h is 
m 

slightly higher than at 3 or 16 h, and this agrees with subjective 

observation. Alternatively, the increased V may be associated with 
m 

-random error associated with the small sample size (n = 4). However, 

based on calculations by Weibel (1969) it is estimated that the 

expected relative error in determination of the V for each individual 
m 

axis is 5-7%. Thus the data should be accurate enough to reveal 

changes in V . 
m 



TABLE I 

RESULTS OF STEREOLOGICAL ANALYSIS OF MITOCHONDRIAL DEVELOPMENT DURING EARLY 
GERMINATION OF EXCISED PHASIOLUS VULGARIS EMBRYONIC AXES 

Morphometric Parameter 

Volume Fraction 
V , X (n = 4) 

m Individual Values 

Mean Caliper Diameter ** 
~ (Weible and Gomez, 1970) 

m (Henning and Elias, 1971) 

Numerica 1 Densi ty>b'<>~ 
N (particles/cm3) 

m 

3 h 

0.060(+0.010)>'( 
0.0575 
0.0628 
0.0552 
0.0648 

7.29 

6934 

*Confidence intervals calculated at P = 0.10 

Inhibition Time 

6 h 

0.068(+0.026) 
0.0714 
0.0761 
0.0695 
0.0569 

7.39 
6.00+0.25 1n all cases 

7460 

**Numerical values based upon the standard diameters 1n mm used to determine profile s1ze 
distribution. 

16 h 

0.062(+0.010) 
0.0655 
0.0570 
0.0633 
0.0611 

6.81 

8758 

***Calculated using B calculated by methgd of Weibel and Gomez (1970). These values estimate 
particle number based on data from~ 3.5 x 10 ~ 2 cytopasmic area per germination time. 
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Size class distributions were determined using a standard set 

of circles to estimate each mitochondrial profile area. Thus, 

profiles of similar area are recorded in a single size class. Data 

from all profiles appearing in the micrographs used to determine V 
m 

were pooled resulting for a single size class distribution for each 

age group. Size class distributions are useful in approximating D 
m 

and N • In addition, the shape of the distribution provides informa
m 

tion about the population of particles being sampled. In this case 

a particle is synonymous with a mitochondrion, and a profile is a two 

dimensional segment of a mitochondrion. In this case, the distribu-

tions resemble gausian curves (Figure 13). This is strong evidence 

that the observed profiles do not represent a population of mitochon-

dria of uniform size. A uniform population of mitochondria would 

have generated a distribution strongly offset toward the largest size 

classes. Because of the ambiguities involved in determining D from m 

a non-uniform population of mitochondria, the method of Henning and 

Elias (1971) was applied. These authors have constructed several 

theoretical populations of spherical particles having different distri-

butions of particle diameter and calculated the theoretical size dis-

tribution of the profiles that would be generated from each 

population. To use this method, smooth curves are constructed to 

fit observed profile size distributions (Figure 13). The constructed 

curves are then compared with the theoretical curves. The shapes 

of the theoretical curves are characteristic of the particle diameter 

distributions, and the position of the peak in the distribution of 

profile sizes in relation to the center of the size class range is 

indicative of mean caliper diameter (D) for a given population of 
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particles. The observed mitochondrial profile distributions are 

characteristic of non-uniform populations whose D is near the center 

of the size class range. In the case of the distributions for 3, 

6 and 16 h, D appears to be very close to 6. Secondly, the steepness 
m 

of the slopes of the distributions indicates that the variance in 

particle diameter is rather small. D can also be estimated by the 

method of Giger and Riedwyl (1970, see Weibel, 1973). In this 

procedure, the profile size distribution is corrected for loss 9f 

small profiles that are hard to identify, and a mean value (d) calcu-

lated. 
- 4 The equation D =- d then gives an estimate of D. 

1T 
Using this 

method, D values at 3, 6 and 16 hare some\vhat higher (Table I). 
m 

Numerical density of particles is a difficult value to determine 

with any degree of accuracy. Because it was impractical to determine 

D directly, it was decided that the method of Weibel and Gomez (1962) 

would be used to estimate N . This involves two constant factors, 
m 

K (dependent upon distribution of particle size, K = 1.07 where the 

standard deviation of particle diameters is ; 25% of the mean) and 

B (a shape factor, 1.5 where length/diameter- 1.7). NA (number of 

profiles observed) and V were directly determined. The formal 
m 

K NA 
relationship is N = (-) · l/Z' Calculated values of N are given 

m B v m 

in Table I. These indicatemthat mitochondrial numbers are increasing 

However, several workers have reported that no replication of mito-

chondrial DNA occurs during this period of germination in pea cotyle

dons (Malhotra et al., 1973) based on 3H-thymidine incorporation. 

This indicates that the increase in N may not represent mitochondrial 
m 

biogenesis by mitochondrial division. Further the increase in N 
m 

may be artifactual because of inadequate understanding of mitochon-



drial shape. The accuracy of estimating both D and N 1s dependent 
m m 

upon the assumption that the shape of individual mitochondria in the 

population sampled is relatively uniform and can be approximated in 

geometric terms, and that each profile observed represents a single 

particle. This may or may not be the case in the present study. 

The morphometric data seem to indicate that the mitochondrial 

population remains stable during the first 16 h of germination. v 
m 

does not increase, D appears stable, and the size distribution of 
m 

profiles is indicative of very similar distributions of diameter 

throughout the period of the experiment. The increase in N at a 
m 
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time when mitochondrial division is not occurring indicates that some 

change in mitochondrial shape is occurring. 

During the process of determining V , it became apparent that the m 

spatial distribution of mitochondrial profiles d~es not fit expecta-

tions for a randomly dispersed population of particles. Relatively 

few mitochondria appeared to be separate from neighboring mito-

chondria, and most appeared in groups ranging from 2 - 6. Occasional 

groups of 7, 8 and 9 mitochondria were observed, and in two excep-

tional cases, 11 and 14 mitochondrial profiles were observed in close 

proximity to one another. We attempted to estimate the extent of 

spatial association in the following manner. The arbitrary decision 

was made that if the boundaries of two mitochondrial profiles 

approached one another at distances of < D =6.5 they would be con
m 

sidered to be "associated." Using this criterion, the number of 

individual profiles and profile associations was determined for the 

same set of micrographs used to determine V . Isolated profiles were 
m 

assigned an association number of 0, groups of two mitochondrial 
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profiles had an association number of 1, etc. The data from 3, 6 and 

16 h are very similar and so have been added together. For each 

association number, the total number of groups of that size was 

determined, and the number of mitochondrial profiles thus accounted 

for was calculated by multiplying (number of groups per association 

number) x (association number+ 1). Then the proportion of the total 

population of profiles was calculated and plotted in Figure 14. The 

most striking aspect of these data is that approximately 0.4 of the 

profiles appear individually, but approximately 0.5 of the total 

appear in groups with association numbers of 1-5. For small particles 

occupying only a small portion of the cytoplasmic volume, this 

certainly reflects non-random distribution in space. 

Hoare (1976) has discussed a similar phenomenon, "connectivity," 

in statistical terms based on mathematical models. Connectivity is 

defined as the approach of two particles within a containing volume, 

so that their center to center distance is 4 - 2r, and values are 

calculated in a fashion similar to that described previously for mito

chondrial profile association. In the case of mitochondrial profiles, 

a greater relative approach distance was used, but since we are 

dealing with two-dimensional space rather than three-dimensional 

space, this is probably not a serious error. In order to compare 

expected and observed levels of connectivity and association, respec

tively, the expected distribution of groups in three-dimensional space 

has been plotted with the observed data from two-dimensional space in 

Figure 14. This reveals that there are more profiles associated in 

relatively large groups than would be expected, even in three

dimensional space and fewer unassociated particles. Thus it appears 
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13 

Figure 14. Distribution of mitochondrial profiles within the different 
. association groups. The theoretical curve was derived 

from the expected values computed by Moore (1976) in his 
study of connectivity of discrete particles in three
dimensional space. 
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that at least a portion of the profiles observed represent mitochon

dria that are structurally related to one another in some way. It 

seems very likely that the simple condition of individual, discrete 

mitochondria whose shape is spheric to rod-like may not represent the 

shape of many of the mitochondria present in these cells. Rather, 

mitochondria may have a rather complex morphology at the beginning of 

germination perhaps forming branched, ameboid structures (Figures 15 

through 18). In the mitochondrial cluster seen in Figure 17 there are 

several "individual" profiles that appear to be connected. The entire 

cluster of profiles could easily represent a single plane passing 

through a large structure composed of elongated branches. Although no 

other large groups are seen in the other micrographs pairs of 

connected profiles can also be seen in Figures 15 and 16. In Vicia 

faba, Harris (1979) has reported dumbell shaped mitochondria during 

the late stages of protein deposition in maturing cotyledons. More 

complex mitochondria have been reported in yeast (Hoffman and Avers, 

1973) and in various green algal species (Gaffal and Kruetzer, 1977) 

during specific periods of the cell cycle. Although we have not 

attempted more complex analyses of mitochondrial structure in this 

system, it appears likely that the structural complexity observed in 

some single celled eukaryotes may also occur in some more highly 

differentiated tissues such as the root cortex cells of P. vulgaris 

embryos. 

The area of the inner mitochondrial membrane and especially the 

cristae membrane is a very important parameter in evaluation of mito

chondrial development. This parameter can be evaluated by calculating 

the membrane area as a function of the volume. However, it was felt 



Figures 15-18. Illustrations of mitochondrial ultrastructure in root 
cortex cells of embryonic f· vulgaris. Tissue was post 
fixed for 40-45 min with permanganate. Staining and 
section thickness are equivalent for each specimen. and 
all negatives were printed on grade 3 paper. Magnifi
cation 21,000. bar represents 1 ~m. 
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Figure 15. Root cortex cell imbibed 30 min at 4 C. Mitochondria are 
clustered, and at least one pair of profiles are connected 
(arrow). The tubular cristae are tightly appressed and 
all membranes are indistinct. 

Figure 16. Root cortex cell after 3 h germination. Cristae membranes 
are slightly dilated and more distinct than in Figure 15. 
Overall the contrast of other membranes is also higher. 
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Figure 17. Root cortex cell after 6 h germination. Complex mitochon
drial morphology is suggested by clusters of mitochondrial 
profiles such as this one. At the upper left (*) four 
profiles form a line. The central pair are clearly con
nected, while at the ends are two cap sections. Other 
interconnections are visible. At this time the mitochon
drial matrix appears to be more strongly stained than the 
cytoplasm. 

Figure 18. Root cortex cell after 16 h germination. Mitochondria have 
slightly dilated, distinct cristae and mitochondrial 
matrix that is no more densely staining than the ground 
cytoplasm. These mitochondria appear to be mature 
ultrastructurally. 
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that because of the tubular nature of the cristae and their small 

size in relation to section thickness, stereological estimation of 

membrane surface would be ambiguous. However, based upon the 

appearance of the mitochondria observed in the stereological analysis 

of V , it is apparent that there is no dramatic increase in the number 
m 

or length of the cristae (Figures 16, 17 and 18) between 3 and 16 h. 

Since membrane formation could occur before 3 h, excised axes were 

imbibed for 30 min in water at 4 C prior to fixation (Figure 15). 

Morohashi and Shimokoriyama (1977) report that this treatment prevents 

normal initiation of respiratory development. Further, it is unlikely 

that membranes could be reformed during such treatment. The mito-

chondria in these embryos are almost indistinguishable from those 

of 16 h embryos. The mitochondrial profiles seen at 16 h are 

generally circular to ovoid, and the outer membrane is closely 

appressed to the marginal portion of the inner membrane. The cristae 

are slightly dilated and appear to be randomly distributed within 

the mitochondrial matrix. When embryos are imbibed for 30 min in 

cold water, the mitochondria tend to be circular in shape with closely 

appressed marginal membranes, the cristae are numerous and do not 

appear to be dilated. At 30 min the membianes are very fuzzy, and 

lack the contrast seen in the mitochondria after 16 h. The mito-

chondria at 3 and 6 h have membranes that show increasing definition 

and contrast. 

Discussion 

That mitochondria are retained in dry, mature seed tissues is 

now accepted by most workers. However, their condition in dry seeds 
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and their development during early germination is still a matter of 

some controversy. For instance Opik (1974) feels that cristae are 

reduced in number but that all basic structural elements are retained. 

Mayer and Shain (1974) suggest that mitochondria in dry seeds are 

not normal, and that rapid changes occur during germination, perhaps 

including structural changes in mitochondrial membranes. Although 

various workers feel that either mitochondrial biogenesis or mito

chondrial repair occur during early germination, Bewley and Black 

(1978) suggest that no substantial evidence has been produced either 

way. Certainly the literature is voluminous and contradictory. 

One major point of discussion is whether the cristae membranes 

are retained or diminish in area during seed maturation. Ultra

structural observations are numerous and for convenience, we have 

arranged the reports of many workers into Table·rr according to 

species and tissue. This list is not complete, but is intended to 

serve as an overview of the literature. It is clear that broad 

generalizations are difficult on the basis of these observations. 

For instance, in ~· hypogaea cotyledons, Bagley et al. (1963) could 

not identify mitochondria in intact tissue although mitochondria could 

be isolated from the cotyledons (Cherry, 1963). Bain and Mercer 

(1966a) reported that mitochondria were lost in mature P. sativum 

cotyledons, while Solomos et al. (1972) observed mitochondria with 

a few cristae in dormant seeds. Two studies (Perner, 1965; Yoo, 1970) 

report that mitochondria in P. sativum embryos from dry seeds have 

nearly normal numbers of cristae. The present study establishes that 

abundant cristae are present in 30 m1n cold imbibed radicles of P. 

vulgaris, and Klein et al. (1971) report similar observations in the 



TABLE II 

SOME ULTRASTRUCTURAL AND ASSOCIATED PHYSIOLOGICAL OBSERVATIONS OF 
MITOCHONDRIAL STRUCTURE IN VARIOUS SEED TISSUES 

Species 
Tissue 

Archis hypogaea 
mature cotyledon 
isolated mitochondria 

Cucurbita maxima 
germinating cotyledon 

Glycine max 
mature cotyledon 

Gossypium hirstum 
mature cotyledon 

Hordeum vulgare 
scutellum 
aleurone cells 

aleurone cells 
aleurone cells 

Lactuca sativa 
embryonic ax~s 

Respiratory 
Lag Phase?* 

Yes 

No 

Yes 

Observation of 
Cristae or 

Mictochondria 

mitochondria not seen 
cristae scarce 

more cristae in veins 
than midveins, 3 days 

mitochondria not seen 

cristae appear normal 

cristae scarce 
initially few crist~e 

increasing with germination 
mitochondria indistinct 
cristae present, increasing 

with germination 

cristae scarce, increasing 
with germination 

Citation 

Bagley, et al., 1963 
Cherry, 1963 

Lott and Castel
franco, 1970 

Treffery et al., 
1967 

Yatsu, 1965 

Nieuwdorp, 1963 
Eb and Nieuwdorp, 

1967 
Paleg and Hyde, 1964 
Jones, 1969 

Paulson and 
Srivastava, 1968 



Species 
Tissues 

Medicago sativa 
radicle 
hypocotyl 
cotyledon 

Oriza sativa 
mature coleoptile 
mature coleoptile 
mature embryo 

Pisum sativum 
mature radicle 
mature radicle 

mature cotyledon 

mature cotyledon 

Phaseolus lunatus 
developing embryo 

mature and germinating embryo 

mature and germinating embryo 

TABLE II (Continued) 

Respiratory 
Lag Phase?>': 

No 

Yes 

Yes 

Observation of 
Cristae or 

Mitochondria 

few internal membranes 
mitochondria indistinct 
cristae scarce 

cristae scarce, indistinct 
cristae scarce, indistinct 
mitochondria indistinct 

cristae normal 
cristae normal, becoming 

more distinct during 
germination 

mitochondria not seen 

cristae scarce 

cristae not well resolved 

cristae reduced, increasing 
during germination 

cristae abundant, not
increasing at 16 h of 
germination 

Citation 

Singh, 1977 
Singh, 1977 
Singh, 1977 

Opik, 1972, 1973 
Ueda and Tsuji, 1971 
Bechtel and 

Pomeranz, 1978 

Perner, 1965 
Yoo, 1970 

Bain and Mercer, 
1966a 

Solomos et al., 1972 

Klein and Pollock, 
1968 

Klein and Ben-Shaul, 
1966 

Klein et al., 1971 

V1 
0 



Species 
Tissues 

Phaseolus vulgaris 
mature radicle 

mature cotyledon 
germinating cotyledon 

Secale cereale 
mature embryo 

Sinapsis alba 
mature cotyledon 

Triticum vulgare 
mature shoot apex 

scutellum 

Zea mays 
mature radicle 

TABLE II (Continued) 

Respiratory 
Lag Phase?* 

Yes 

No 

No 

No 

Observation of 
Cristae or 

Mitochondria 

abundant cristae, not 
increasing at 16 h 
germination 

cristae scarce 
cristae increasing during 

germination 

cristae scarce, increasing 
during germination 

mitochondria indistinct 

··'cristae scarce, increasing 
during germination 

cristae increase from 6 h 
to 24 h 

cristae scarce 

1<According to Bewley and Black (1978). 

Citation 

(Present Study) 

Opik, 1968 
Opik> 1965, 1966 

Hallam, 1972; 
Hallam et al., 1972 

Rest and Vaughan, 
1972 

Marianas and Fife 
1972 

Swift and O'Brien, 
1972 

Crevecoeur et al., 
1976 



embryonic axes of ~· lunatus. However, Opik (1968) reports that 

cristae are scarce in mature cotyledons of~· vulgaris (Opik, 1966). 

However, mitochondria in all tissues of another legume seed (Medicago 

sativa; Singh, 1977) appear to have little internal membrane. Thus, 

although embryonic axes of'legumes seem to retain cristae membranes, 

this is not always observed. Further, although cristae seem to be 

reduced in cotyledons, this is not observed in all species (i.e., 

Gossypuim hirsutum; Yatsu, 1965). Thus, it appears that the inner 

mitochondrial membrane is retained in dry seeds, but that the amount 

of membrane retained may vary. 

The possibility does exist that a general characteristic of 

respiratory development, the presence or absence of a lag phase, may 

be related to observed changes ln mitochondrial structure. Bewley 

and Black (1978) list a number of species as to'the presence or 

absence of a lag phase, and where it is applicable these data are 

included in Table II. In all cases, species reported to lack a lag 

phase also are reported to have poorly developed mitochondrial 

structure at the beginning of germination. Interestingly, this group 

of species is composed of grasses. In Hordeum vulgare aleurone 

(Jones, 1969; Eb and Nieuwdorp, 1967) and Triticum vulgare scutellum 

(Swift and O'Brien, 1972) cristae seem to increase as germination 

proceeds. Cristae also increase in the embryonic shoot apex of !· 

vulgare (Marianas and Fife, 1972) the embryonic radicle of Secale 

cereale (Hallam et al., 1972) and the coleoptile of Oriza sativa 
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(Ueda and Tsuji, 1971; Opik, 1973) during germination. Ueda and Tsuji 

(1971) have proposed that structural changes observed in anaerobically 

germinating rice coleoptiles may be the result of reorganization of 



membrane components retained during seed maturation. Initially, 

cristae membranes are very indistinct and few can be observed. 

However, flocculent patches of electron dense material can be seen 

in the matrix. At 12 h germination, cristae with fuzzy membranes 
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can be seen associated with the flocculent material, and by 24 h the 

flocculent material has disappeared from the mitochondrial matrix. 

Taken literally, this proposal indicates that structur.al reorganiza

tion of the inner mitochondrial membrane is associated with increasing 

respiratory activity. 

In seeds with a respiratory lag phase in early germination 

several workers report increasing mitochondrial structure during germi

nation of P. sativum cotyledons (Solomos et al., 1972) and P. vulgaris 

(Opik, 1966) cotyledons and Lactuca sativa embryo (Paulson and 

Srivstava, 1968). In fact comparison of the micrographs in these 

studies with the micrographs published in Ueda and Tsuji (1971), 

Marianas and Fife (1972) and Hallam et al. (1972) as well as other 

workers reveals a remarkable similarity between the results of many 

of these studies. There is a characteristic increase in contrast 

and definition of the inner membrane during germination. In many 

cases, the mitochondrial matrix is dense or contains irregular areas 

of electron dense material. In some cases, this electron dense 

material could easily obscure the small, tubular membranes of the 

cristae. As germination proceeds, the irregularly dense material 

seen in the matrix declines, the cristae become slightly dilated and 

their membranes are more distinct. Careful observation by these 

authors often fails to reveal major increases in cristae membranes 

in the published micrographs if the dark flocculent patches are taken 
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into account. This is, of course, a subjective observation. However, 

our experience with the embryonic axis of ~· vulgaris indicates that 

the procedure used to process such tissue can dramatically influence 

the amount of detail that is visible using transmission electron 

microscopy. 

Initially we fixed 2 h germinating axes using a conventional 

procedure similar to that used by Opik (1966, 1968). The results 

were very similar to hers. However, as mentioned previously, this 

was not considered adequate for the purpose of this study. Next we 

tried a mixed glutaraldehyde and osmium fixation, with less success. 

In this case, using 2 h germinated axes, it was difficult to see any 

cytoplasmic membranes because the cytoplasm and its abundant ribosomes 

were very densely stained; and the mitochondrial matrix was virtually 

without detail because it too was densely stained. At this point 

it appeared that few membranes were retained in the embryonic root. 

The nuclear membrane and plasma membrane were difficult to 

distinguish, and very little endoplasmic reticulum could be 

recognized. Use of permanganate for post fixation (Mollenhauer and 

Totten, 1971a) was the only type of treatment that would reduce the 

background staining enough to allow visualization of detail within 

the cytoplasm. The time allowed for the post fixation was also found 

to be critical. A time of 20-30 min was insufficient and little 

detail was visible in the sections, while 45 min of post fixation 

produced distinct membranes (Figures 15-18). It is interesting to 

note that when other workers used permanganate as a primary or post 

fixative, the clarity and amount of inner membrane that they observed 

tended to increase regardless of the tissue (Yatsu, 1965; Jones, 1969; 
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Klein et al., 1971). It is interesting to speculate about the 

possible appearance of other seed tissues if fixed using similar proce

dures. 

Not only does the contrast (signal/noise ratio) of mitochondrial 

membranes improve, their stainability also increases during germi

nation. In other words, they stain more readily with heavy metal 

ions implying that an increased number of ionic sites are available 

on the membrane. The most direct way to increase stainability of 

a membrane is to increase the protein content. 

Increased protein content of mitochondrial membranes has been 

reported by Sato and Asahi (1975) in P. sativum cotyledons during 

the early hours of germination. Initially they observed a hetero

genous population of mitochondria using sucrose density gradients, 

but within 6 h of imbibition denser fractions having high 

protein/lipid ratios were converted into a lighter population of mito

chondria. These mitochondria were enriched in higher molecular weight 

peptides and had somewhat improved respiratory activity. This initial 

development of mitochondrial membranes does not depend upon de novo 

protein synthesis (Nawa and Asahi, 1973). Incorporation of 14c

leucine into mitochondrial proteins of germinating ~· sativum 

cotyledons (Malhotra et al., 1973; Malhotra and Spencer, 1973) and 

3H-leucine into germinating~· lunatus axes (Klein et al., 1971) 

begins near the end of the lag phase. These proteins are primarily 

synthesized on cytoplasmic ribosomes, and treatment of the tissue with 

cyclohexamide prevents incorporation of labeled proteins and any 

increase in respiratory rate. This has been interpreted to mean that 

the end of the lag phase is dependent upon protein synthesis. 
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However, it is not clear whether respiratory activity could increase 

when protein synthesis, a primary sink for ATP and source of ADP, does 

not function. Regardless of the functional implications of the incor-

poration of protein into mitochondrial membrane, it is clear that 

stainability of these membranes should increase as germination 

progresses. This occurred in this study, and has been commonly 

reported by other workers. 

It is sometimes assumed, particularly on the basis of ultra-

structural observations, that development of mitochondrial structure 

is synonymous with increased inner mitochondrial membrane area. 

Studies reporting incorporation of proteins into these membranes tend 

to reinforce this idea. This is not always the case. In Chlorella 

there is temporal separation of inner mitochondrial membrane biosyn-

thesis (increasing surface area), synthesis of.mitochondrial membrane 

proteins and intercalation of these proteins 1nto the membrane (Forde 

et al., 1976). In synchronously dividing culture, the area of inner 

mitochondrial membrane increased steadily through the first half of 

the cell cycle. During this time, the ratio of enzyme activity of 

both succinate dehydrogenase and cytochrome oxidase to membrane area 
/ 

declined. In the second half of the cell cycle, the area of the inner 

membrane remained fairly stable while the activity of succinate dehy-

drogenase and cytochrome oxidase increased. Although they did not 

look at the problem in this way, Klein et al. ( 1971) observed that 

incorporation of protein into the mitochondrial membranes was not 

accompanied by an increase in membrane area. Although we have not 

measured protein content of mitochondrial membranes in P. vulgaris, 



a similar course of events probably takes place in this system as 

well. 

Several authors have observed changes in the buoyant density 
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of mitochondrial populations during early germination (Nawa and Asahi, 

1971; Sato and Asahi, 1975; Solomos et al., 1972; Solomos and Spencer, 

1973; Wilson and Bonner, 1971). Immature mitochondria are slightly 

denser than more mature mitochondria. This would be expected if the 

relative protein content of the membrane is increasing and suggests 

that proteins are being intercalated into pre-existing membrane area. 

This was predicted by Forde et al. (1976) on the basis of their 

studies. 

Thus, it appears that mitochondrial development proceeds by 

incorporation of proteins into probably pre-existing membranes. At 

least early in germination these proteins are present in the cell 

(and perhaps in the mitochondria) at the start of germination. Later; 

newly synthesized proteins are also incorporated into these membranes. 

In the present study and the study of Klein et al. (1971) neither 

the inner mitochondrial membrane nor mitochondrial number appeared 

to increase. This agrees well with the report that mitochondrial DNA 

is not replicated at this time in germination of f· sativum cotyledons 

(Malhotra et al., 1973). This further substantiates the general view 

that no net increase in mitochondria occurs at the beginning of 

germination. 

Summary 

The development of mitochondria 1n excised germinating embryos of 

Phaseolus vulgaris has been followed during early germination. Three 
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phases of oxygen consumption characterize early respiratory develop-

ment. These are an initial phase of rapid uptake of water and 

increasing oxygen consumption followed by a lag phase in respirat-

ion and increasing fresh weight. The lag phase terminates when elonga-

tion of the radicle begins and both respiration and fresh weight 

increase. Stereological analysis was performed at 3, 6 and 16 h to 

determine mitochondrial volume (V ), diameter (D ) and numerical m m 

density (N ). These parameters remain stable from 3 to 16 h of 
m 

germination indicating that mitochondrial division is not occurring. 

There is evidence that mitochondrial morphology is complex at this 

time, and clusters of mitochondrial profiles are often observed. The 

area of the inner mitochondrial membrane does not appear to increase 

during the period of germination studied, and cristae are numerous 

even after 30 min imbibition in cold water. The mechanism(s) by which 

mitochondrial development may occur are discussed. 



CHAPTER IV 

CONCLUSIONS 

Ching (1972, p. 121) has noted that "· .. preservation of mito

chondria in seeds through dehydration and extended periods of dry 

storage appears to be a sheer wonder of nature." It is certainly an 

important observation regarding the potential stability of biological 

membranes and the living systems of which they are a part. There is 

evidence that the composition (protein/lipid) of membranes may change. 

Whether this is a response to reduced cellular water or a protective 

mechanism useful in preserving basic bilayer integrity during stress 

is not certain. The retention of membranes in various anhydrobiotic 

systems is well documented (see Clegg and Crowe, 1978) and reflects 

the basic economics of life in an unstable and inhospitable environ

ment. It is rather awesome to realize that our existence as human 

beings lS utterly dependent upon the ability of seeds and other life 

forms to endure loss of substantial amounts of cellular water and 

suspension of metabolic activity. To achieve a more complete under

standing of this characteristic of seeds, such as Phaseolus vulgaris, 

and other anhydrobiots, is to move closer to a mystery as complex and 

important as the genetic code and regulation of cellular activity. 
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