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ABSTRACT 

 

Unsaturated soils are three-phase porous media consisting of a solid skeleton, 

pore water, and pore air. It is well known that the behavior of unsaturated soils is 

influenced heavily by the matric suction (pore air pressure minus pore water pressure). 

Soil water characteristic curves (SWCCs) describe the relationship between matric 

suction and water content in unsaturated soils. In terms of constitutive modeling of soils, 

the relationship between matric suction and water content can be termed the hydraulic 

behavior of soils. SWCCs show hysteretic behavior depending on wetting/drying history 

of the soil. Recently geotechnical engineers have begun to notice that SWCCs also 

depend on the stress-strain history (mechanical behavior) of a soil. The hydraulic 

behavior of unsaturated soils, on the other hand, influences the mechanical behavior 

through matric suction. All of these facts, especially the coupling effects between 

hydraulic and mechanical behavior, demonstrate a very complex behavior of unsaturated 

soils.  

 

Unsaturated soils are prevalent in many parts of the world and geotechnical 

engineers are often called to predict the behavior of these structures such as the rainfall 

induced failure of a compacted soil slope. In order to predict the behavior of unsaturated 

soil geotechnical engineering structures, a hysteretic SWCCs model is first proposed 

based on the bounding surface plasticity concept. The hysteresis in SWCCs is modeled 

using concepts that parallel the elastoplastic theory used to model stress-strain behavior 

 xv



of soils. Matric suction is used as the stress variable and volume fraction of water or 

volumetric water content is used as the strain variable in modeling the SWCCs. This 

hysteretic SWCCs model is incorporated into a simple isotropic constitutive model to 

verify the proposed concepts that account for the coupling effects between hydraulic and 

mechanical behavior of unsaturated soils. Then a comprehensive constitutive model for 

unsaturated soils is developed in the general stress space. The rate equations of the 

proposed unsaturated soil model are integrated using a fully implicit integration scheme. 

Two sets of laboratory tests, one for Minco silt and another for Toyoura sand are used to 

calibrate and validate the model performance. The model is shown to capture the 

influence of stress-strain history on the SWCCs and the influence of SWCCs on the 

stress-strain behavior of silts and sands and predict the laboratory tests reasonably well. 

 xvi



 

CHAPTER 1  

 

INTRODUCTION 

 

 

1.1      BACKGROUND 

 

Unsaturated soils are very common in the top layer of the Earth, where most 

engineering activities occur. Many geohazards like landslides are triggered by swelling 

and shrinking unsaturated soils. In order to reduce the damage caused by the geohazards 

or prevent them from happening, it is important and necessary to understand the stress-

strain behavior of unsaturated soils. The necessity to evaluate such geohazards motivated 

the current research. 

 

Unsaturated soils are multi-phase porous media. To keep the problem as simple as 

possible without losing generality, it is assumed that unsaturated soils are three-phase 

porous media composed of a solid skeleton, pore air and pore water. Generally speaking, 

pore water is not pure and some air and ions are dissolved in the water. In the current 

research, pore air and pore water are assumed to be homogeneous as idealized immiscible 

fluids. Also, the temperature-related effects are not considered and the stress-strain 

 1



behavior of unsaturated soils is assumed to be rate-independent. The microstructure of 

three-phase unsaturated soils is schematically shown in Fig. 1.1.  

 

 
Pore air Soil particles Pore water 

Fig. 1.1 Microstructure of unsaturated soils 

 

It is well accepted that the stress-strain behavior of both saturated and unsaturated 

soils is essentially elastoplastic, but unsaturated soils exhibit more complex behavior than 

saturated soils. Saturated soils are two-phase porous media composed of a solid skeleton 

and pore water, and the main difference between saturated and unsaturated soils is the 

existence of pore air in unsaturated soils. The complex engineering properties of 

unsaturated soils come from pore air and the interactions between pore air and pore water.  

 

Although great efforts have been devoted to modeling unsaturated soils by many 

researchers, e.g., Alonso et al. (1990), Wheeler et al. (2003), and Li (2007 a&b), 

constitutive modeling of unsaturated soils is still a very active field and many 

fundamental issues, such as the selection of stress-strain variables, are still being 

researched. The currently available constitutive models for unsaturated soils are not 
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complete in the sense that some of them do not account for the water content variation 

(e.g., Alonso et al., 1990; Matsuoka et al., 2002; Faris et al., 2006), some of them can not 

describe the hysteresis of SWCCs (Thu et al., 2007) and some of them provide no 

information on unsaturated soil behavior under cyclic loadings (Li, 2007b). Increasing 

amount of experimental evidences (e.g., Cui and Delage, 1996; Rampino et al., 2000; 

Geiser et al., 2006; Miller et al., 2008) show that suction history strongly influences the 

stress-strain behavior of unsaturated soils and the stress-strain history affects the suction-

water content relationship. In terms of constitutive modeling of soils, the suction-water 

content relationship (i.e., the SWCCs) can be termed the hydraulic behavior of soils. 

Although SWCCs play a major role in terms of fluid flow through unsaturated soils, the 

term hydraulic behavior refers to the relationship between water content and suction at a 

given point in the soil mass in this dissertation. The coupling effects between hydraulic 

and mechanical mechanisms have not been thoroughly investigated. The dearth of 

information on the interactions between SWCCs and stress-strain behavior forms a big 

gap between theoretical research and needs from engineering practice. The current 

research presents a comprehensive constitutive model to simulate the above-mentioned 

special features for unsaturated soils. 

 

Minco silt is an Oklahoma soil and the engineering properties of Minco silt have 

been experimentally investigated in the laboratory at the University of Oklahoma for the 

last number of years (Ananthanathan, 2002; Vinayagam, 2004; Tan, 2005) and also has 

been used in centrifuge model tests (Deshpande, 1997). This availability of test results 

makes Minco silt an ideal soil for investigating analysis procedures such as constitutive 
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models. Usually, it is time-consuming and very costly to run laboratory tests under 

complex loading conditions, e.g., drying and wetting suction loops. The current research 

presents a constitutive model for Minco silt, whose model parameters can be calibrated 

using relatively simple laboratory tests. This constitutive model can then be used to 

predict soil behavior under complex loading conditions. Furthermore, this constitutive 

model and a finite element computer code can also be used to predict initial boundary 

value problems such as a centrifuge model test or a geotechnical structure in the field. 

The constitutive model presented here is also appropriate for simulating the engineering 

properties of other unsaturated silts and sands.  

 

1.2 OBJECTIVES 

  

The main objective of the current research is to propose a comprehensive 

constitutive model for unsaturated silts and sands. The development of unsaturated soil 

constitutive model so far has focused on clays only. The stress-strain behavior of sands 

and silts are somewhat similar, but quite distinct from that of clays. The first key aspect 

of the proposed constitutive model is the choice of stress-strain variables derived based 

on the theory of mixtures with interfaces (Muraleetharan and Wei, 1999). Another key 

aspect is the description of SWCCs within the framework of elastoplasticity and fully 

coupling it with the deformation of the soil skeleton. The elastoplastic description of the 

SWCCs will allow the model to easily describe the observed hysteresis in the curves. 

Third, this constitutive model can easily simulate unsaturated sand/silt behavior under 

cyclic loadings within the framework of elastoplasticity theory. The coupling 
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mechanisms between the SWCCs and soil deformation will allow the model to describe 

phenomena such as shrinkage induced by reduction in water content, wetting-induced 

collapse and the influence of soil deformation on SWCCs. The model has smooth 

transitions between dry state, unsaturated state and saturated state. Finally, the model 

parameters are easily calibrated via common triaxial tests and some other simple tests. 

 

1.3     OUTLINE OF THE DISSERTATION 

 

Chapter 2 presents a comprehensive literature review on constitutive modeling of 

unsaturated soils. The emphasis is laid on the evolution of the selection of stress-strain 

variables. At the same time, the advantages and disadvantages of some representative 

sand/silt models are analyzed. This chapter also discusses some typical elastoplasticity 

frameworks for predicting stress-strain behavior of saturated sands/silts under cyclic 

loadings.  

 

Chapter 3 presents an extensive literature review on the available models for 

single SWCC and hysteretic SWCCs. After the literature review, this chapter discusses 

the physical mechanisms behind the hysteresis of SWCCs. Then a simple model based on 

the bounding surface plasticity concept (Dafalias and Popov, 1975&1976; Dafalias and 

Herrmann, 1986) is proposed to simulate the hysteresis in SWCCs. A wide range of 

SWCCs data covering clays, silts, sands and glass beads are used to check the 

performance of the model for SWCCs. The comparisons between test results and model 

predictions illustrate the satisfactory performance of the proposed model for SWCCs. 
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Chapter 4 presents a simple isotropic constitutive model for unsaturated soils. 

This isotropic model is proposed to check the validity of the idea on how to account for 

the coupling effects between hydraulic and mechanical mechanisms of unsaturated soils. 

This isotropic model fully incorporates the hysteretic SWCCs model proposed in Chapter 

3. The hardening laws are simple but sufficient to capture the overall behavior of 

unsaturated soils. Comparisons between test results and model predictions illustrate the 

reasonable performance of the coupled isotropic model. 

 

Based on the critical state two-surface plasticity model for sand introduced by 

Manzari and Dafalias (1997) and the modified SANISAND model (Taiebat and Dafalias, 

2008), Chapter 5 presents a comprehensive constitutive model for unsaturated silts and 

sands in the general stress space to fully investigate the coupling effects between 

hydraulic and mechanical mechanisms. Soil behavior under monotonic/cyclic loading 

conditions is extensively investigated. A fully implicit integration method is adopted to 

implement the proposed model on the single element level. Some available test results are 

compared with the model predictions to check the performance of the proposed 

unsaturated soil model. Because very limited test results are available, some hypothetical 

studies are also carried out to investigate the coupled unsaturated soil behavior. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

2.1 INTRODUCTION 

 

This chapter presents a thorough literature review on the constitutive modeling of 

unsaturated soils, ranging from the models based on the concept of effective stress to the 

models based on two stress variables. Among the two stress variables models, some use 

two independent stress variables, e.g., net stress and suction, while some others use 

dependent stress variables, which are actually (modified) suction and suction-related 

effective stress. The selection of dependent stress variables is always related to the 

thermodynamics or the mixture theory of porous media. The selection of stress-strain 

variables and the related models are extensively discussed in this chapter. Some 

important concepts for simulating cyclic loadings, e.g., the bounding surface plasticity 

concept (Dafalias and Popov, 1975&1976; Dafalias and Herrmann, 1986) and subloading 

surface concept (Hashiguchi, 1989) are also discussed. This is necessary for developing a 

constitutive model which can be used to predict soil behavior under cyclic loadings, 

including both external mechanical loadings and hydraulic drying/wetting loadings. Some 

important saturated soil models, including sand and clay models are also briefly reviewed. 
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The mechanical behavior of sands and silts are somewhat similar, but quite different from 

that of clays, 

 

2.2 EFFECTIVE STRESS MODELS 

 

Since the concept of effective stress for saturated soils was introduced by 

Terzaghi (1936), many researchers (e.g., Biot, 1941; Skempton, 1961; Suklje, 1969; Nur 

and Byerlee, 1971) have proposed different modified equations for effective stress for 

saturated porous media based on experimental observations or theoretical considerations. 

Among these definitions of effective stress of saturated soils or rocks, stress variables are 

total stress and pore water pressure, but the effect of pore water pressure on effective 

stress is accounted for in different ways. Generally speaking, the difference of effective 

stress comes from the weighting factor of pore water pressure, which involves the 

porosity, the compressibility or both. de Boer and Ehlers (1990), Lade and de Boer (1997) 

and Jardine et al. (2004) provided a comprehensive review on the historical development 

of the effective stress concept. The concept of effective stress is able to successfully 

predict shear strength characteristics and volume change process of saturated 

geomaterials (see Skempton and Bjerrum, 1957). Houlsby (1979) presented a different 

interpretation of the principle of effective stress in terms of continuum mechanics and 

stated that: “… the principle of effective stress can be seen as a principle of the 

independence of the mechanical work input to the soil skeleton and to the pore fluid …”. 

From available literature, very few people discussed the relationship between water 

content and effective stress in saturated soils and Henkel (1960) seems to be the only 
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exception. For normally consolidated clays, Henkel (1960) found that water content is 

uniquely related to effective stress, irrespective of drainage conditions or stress path. In 

this way, specific volume is defined as an internal variable controlling soil behavior and 

this important finding was later used in the critical state soil mechanics (Roscoe et al., 

1958). In summary, the concept of effective stress for saturated soils is well established 

and extensively accepted. It captures the stress-strain behavior of saturated soils well, 

although a unique effective stress may be not suitable for other geomaterials.  

 

 Due to the success in modeling saturated geomaterial behavior based on the 

concept of effective stress, it becomes natural to extend the concept of effective stress to 

unsaturated soils. In fact, two questions have to be clarified on the effective stress 

concept for unsaturated soils. First, can a single effective stress be used to describe the 

entire behavior, including both hydraulic and mechanical ones? If the answer to the first 

question is yes, then the second question is: how to define effective stress for unsaturated 

soils? The first question is actually related to the validity of the use of the effective stress 

concept in unsaturated soils. To answer both questions, the second question is discussed 

first and the first question will be automatically resolved. 

 

Croney et al. (1958), Bishop (1959), Jennings (1961), Coleman (1962) and Blight 

(1967) were among the first who tried to use a single effective stress to describe 

unsaturated soil behavior. Probably, Croney (1952) was the first one to appreciate the 

importance of suction in relation to unsaturated soil deformation. Most proposed effective 
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stress equations for unsaturated soils have similar form to Bishop’s equation (1959), 

which is given below in a modified form: 

 

( ) IIσσ ca sp χ+−=′  (2.1) 

 

where:  is effective stress tensor;  is total stress tensor; σ′ σ χ  is the Bishop’s parameter; 

 is matric suction, which is defined as the difference between pore air 

pressure  and pore water pressure ; I  is the second order unit tensor. The soil 

mechanics sign convention is used here. That is, compressive stresses are considered 

positive. 

wac pps −=

ap wp

 

Starting from microstructural analysis, Li (2003) also derived a Bishop-type but 

much more complicated effective stress for unsaturated soils. In the equation proposed by 

Li (2003), the coefficient in front of suction is a tensor instead of a scalar. Recently, using 

the double porosity concept, Khalili et al. (2005) suggested another Bishop-type effective 

stress, which was actually extended from the work done by Khalili and Khabbaz (1998), 

in which the Bishop parameter was defined as a function of suction. Starting from the 

conservation laws and mechanical energy for multi-phase porous media, Borja (2006) 

derived the effective stress for unsaturated soils that equals the difference between the 

total stress and mean neutral stress, which represents the relative contributions of intrinsic 

pore water and pore air pressures, weighted according to the degree of saturation. 

Interestingly, the effective stress derived by Borja (2006) has similar form to what Loret 

and Khalili (2000) calculated using the theory of mixtures. On the basis of the 
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consideration of enthalpy, Murray (2002) proposed an equation of state for unsaturated 

soils. Murray’s equation of state is actually another Bishop-type effective stress of 

unsaturated soils with a complicated coefficient. Although the effective stress equations 

are based on different theories or experimental observations, they have similar form and 

the main difference comes from the definition of the Bishop’s parameter χ . 

 

Although they agreed that the shear strength of unsaturated soils depends on the 

Bishop-type effective stress, Jennings and Burland (1962) were among the first to 

question the validity of Bishop-type effective stress in that it does not provide an 

adequate relationship between volume change, e.g. collapse and effective stress. Their 

findings were based on the consolidation tests on unsaturated soils. The samples they 

tested were supposed to expand upon flooding, because the effective stress should 

decrease when suction decreased, see Eq. (2.1). The samples, however, collapsed during 

flooding. The single Bishop-type effective stress failed to predict the collapse behavior. 

With the help of mixture theory, Bluhm and de Boer (1996) investigated the Terzaghi’s 

principle of effective stress and concluded that the principle of effective stress is valid 

only in a special case of a mixture of an incompressible porous solid filled with 

incompressible and inviscid fluids, where the effective stresses of the fluids have been 

neglected. Li (2003) concluded that it is impossible to define an effective stress for 

unsaturated soils purely on the basis of continuum stress variables or of any of the 

combinations that assign a scalar identity to suction effect. Li (2003) introduced a fabric 

anisotropic tensor to account for the significant shear effect induced by suction. The 
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practical applicability of the effective stress definition by Li (2003) is questionable, 

because the fabric of soils is difficult to measure along a given loading path. 

 

Although the difficulties in applying the Bishop-type effective stress have been 

extensively recognized by many people, e.g., Aichison and Donald (1956), Bishop and 

Donald (1961) and Fredlund and Morgenstern (1977), the efforts to find an “ultimate” 

effective stress for unsaturated soils have never been stopped. Recently, Khalili et al. 

(2004) provided some new evidence to prove that effective stress exists in unsaturated 

soils. Loret and Khalili (2002) introduced an effective stress elastoplastic model for 

unsaturated soils. Although the model performance on the behavior of solid skeleton 

looks reasonable, their model is incomplete in that no cyclic loading behavior can be 

simulated and the effect of soil deformation on the hydraulic behavior is not investigated. 

 

In fact, most of the above listed references just provide effective stress equations, 

instead of fully implementing them into real constitutive models to describe unsaturated 

soil behavior. Prior to the 1990s, the concept of effective stress for unsaturated soils was 

used with fully linear or nonlinear elasticity theory. The difficulties in implementing the 

effective stress concept to simulate soil behavior are unavoidable, because the soil 

behavior is essentially elastoplastic instead of purely elastic. Starting from the 1990s, 

many researchers tried to apply the effective stress for unsaturated soils in the framework 

of elastoplasticity theory and they achieved some valuable progress.  
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Kohgo et al. (1993 a&b) proposed a new definition of effective stress for 

unsaturated soils based on microscopic analysis of pore water states. Further, they 

separated suction effects into two parts: one is that effective stress increases with 

increasing suction and the other one is that increasing suction induces increases in both 

yield stress and stiffness of soil skeleton. The two suction effects were accounted for 

within the framework of the modified Cam Clay model (Schofield and Wroth, 1968) and 

shear strength characteristics and volume change behavior were simulated in a reasonable 

manner. Still, no coupling effects between external loading and suction were considered 

and no water content information was provided. The limitations of Kohgo’s model are 

actually the general problems that are very hard to solve using a single effective stress to 

simulate the complex behavior of unsaturated soils.  

 

Coussy and Dangla (2002) introduced a very special equation for effective stress 

of unsaturated soils as follows: 

 

( ) ( )
Ts

cra
r

nUssp
,

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

++−=′
ε
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( ) ( ) cs cr dssnfsnU
r
∫= 1 ,,  (2.3) 

 

where  is porosity; U  is the interface energy defined in Eq. (2.3);  is the strain tensor 

of soil skeleton;  is the degree of saturation; T is absolute temperature in ºF. 

n ε

rs
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 The first bracket in Eq. (2.2) is actually Bishop’s effective stress given in Eq. (2.1) 

with rs=χ . Eq. (2.3) states that the interface energy is directly related to the relationship 

between suction and degree of saturation, which actually represents the soil water 

characteristic curve. To determine the interface energy, the function  has to be 

specified. The effect of interface energy on soil skeleton stress is explicitly included in 

this definition. It seems that this single effective stress definition can predict hydraulic 

behavior, soil strength and soil deformation, but it is important to notice that the inclusion 

of interface energy is actually necessary information for describing hydraulic behavior. 

Of course, if different interface energies are given along same suction path, then the 

hysteresis of SWCCs will be captured. Although the explicit stress variables are different, 

this single effective stress definition is actually equivalent to the dependent stress 

variables, which will be introduced later. 

( csnf , )

 

Because of the difficulties in applying single effective stress to describe 

unsaturated soil behavior, many people (e.g., Bishop and Blight, 1963; Aitchison, 1967; 

Matyas and Radhakrishna, 1968; Barden et al., 1969) starting from the 1960s tried to use 

different combinations of stress variables to describe the stress-strain behavior of 

unsaturated soils. Their work and the progress they made will be reviewed next. 

 

2.3 MODELS BASED ON INDEPENDENT STRESS VARIABLES  

 

On the basis of the observations from the “null” tests, Fredlund and Morgenstern 

(1977) presented a theoretical stress analysis using continuum mechanics and concluded 
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that any two of the three normal stress variables, i.e., app − , wpp −  and , can 

be used as stress state variables for unsaturated soils. Note: 

wa pp −

p  is mean total stress;  

and  are pore air pressure and pore water pressure, respectively. The concept of two 

stress variables opens a new avenue to modeling unsaturated soil behavior. This 

eliminates the need to find a single effective stress, on which too much expectation is put 

to simulate both shear strength and volume change behavior simultaneously. The concept 

of two stress variables provides a good philosophy to decompose a complex problem into 

multiple simple sub-problems. Among the three possible combinations of stress variables, 

mean net stress  and suction 

ap

wp

app − wa pp −  are the most common combination.  

  

 Although some early unsaturated soil models are available in the literature, for 

example Coleman (1962) and Lloret and Alonso (1985), these models are basically 

developed within the framework of state surfaces (Matyas and Radhakrishna, 1968) or 

some other simple method instead of using theory of elastoplasticity and they can only be 

used to simulate some aspect(s) of simple soil behavior. These models are not an integral 

scheme for constitutive modeling. The situation was not changed until Alonso et al. 

(1990) introduced the so-called Barcelona Basic Model. In the Barcelona Basic Model, 

mean net stress, deviatoric stress and suction were selected to be the fundamental stress 

variables. The Barcelona Basic Model was developed within the framework of the Cam 

Clay model (Schofield and Wroth, 1968) and one of the remarkable contributions is their 

definition of the loading collapse (LC) curve, which describes how the preconsolidation 

stress changes as suction changes. In other words, the effect of suction on the yield stress 

is captured by the LC curve. The yield locus is enclosed by the LC curve and the 
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maximum past suction ever experienced by the soil.  With the LC curve, the Barcelona 

Basic Model can simulate many special mechanical behaviors, e.g. swelling or collapse 

induced by suction change. In the Barcelona Basic Model, change of stiffness and shear 

strength with suction can also be simulated. However, the Barcelona Basic Model 

provides no information on irreversible volume change and water content. The latter 

disadvantage was addressed by Wheeler et al. (2003). A thorough investigation on the 

Barcelona Basic Model was carried out by Wheeler et al. (2002). To improve the 

performance of the Barcelona Basic Model, Gens and Alonso (1992) and Alonso et al. 

(1999) introduced a neutral loading line to separate stress paths causing swelling from 

those causing compression. In this way, the modified Barcelona model can predict 

irreversible volume change, which is a great progress. The Barcelona Basic Model does 

not have the ability to simulate the irreversible change of water content during cyclic 

drying and wetting loops.  

 

 On the basis of suction-controlled triaxial tests on compacted Speswhite Kaolin 

conducted by Sivakumar (1993), Wheeler and Sivakumar (1995) proposed an 

elastoplastic critical state framework using mean net stress, deviatoric stress, suction and 

specific volume as state variables. With four state variables adopted in the model, an 

isotropic normal compression hyperline, a critical state hyperline and a state boundary 

hypersurface were defined. Although an associated flow rule was employed, the overall 

mechanical behavior of unsaturated soils under monotonic loading was well captured. 

But this model was too complicated in that many model parameters, e.g. the slope of the 

critical state line, were functions of suction. The difficulties in calibrating the model 
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parameters should not be underestimated. Realizing the model by Wheeler and 

Sivakumar (1995) provided no information on the variation of water content, Wheeler 

(1996) extended that model by introducing a second volumetric state variable, i.e., 

specific water volume. This model (Wheeler, 1996) is almost complete in the sense that it 

simulates both hydraulic and mechanical behavior of unsaturated soils, although no cyclic 

loading is considered. In addition, the selection of state variables is not justified by 

theoretical proof. 

 

 Cui and Delage (1996) performed a series of tests on Jossigny silt. They paid 

special attention to the effects of suction on the yielding behavior, which were accounted 

for using the LC concept presented by Alonso et al. (1990). Mean net stress and suction 

were selected to be the stress variables. An inclined elliptical form of the yield surface 

was adopted to capture the anisotropic stress state during  compaction. A non-

associated flow rule was adopted for better description of stress-strain behavior under 

monotonic loadings. Cui and Delage’s model (1996) includes the effects of suction on 

dilatancy of unsaturated soils.  Again, their work can only simulate monotonic stress-

strain behavior of unsaturated soils without providing any information on the hydraulic 

behavior. 

0K

  

  Starting from the Barcelona Basic Model, Thomas and He (1998) proposed an 

extended critical state elastoplastic constitutive model based on net stress and suction. 

Numerical analysis was carried out to provide variations of net stress, suction, specific 

volume and degree of saturation in unsaturated soils. To account for the degree of 
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saturation, a general form of state surface similar to Lloret and Alonso (1985) was 

introduced. Although the hydraulic behavior is incorporated in the modified model, the 

cyclic loading effects still can not be simulated. It seems that the elastoplastic model 

proposed by Muraleetharan and Nedunuri (1998) was the first one to account for the 

cyclic loading effects in unsaturated soils and their model was based on Wheeler’s work 

(1996) and the bounding surface plasticity concept (Dafalias and Herrmann, 1986). 

 

 In addition to the above discussed models, Rampino et al. (2000), Macari et al. 

(2003), Chiu and Ng (2003) and Thu et al. (2007) also proposed different comprehensive 

models for unsaturated soils. Although these models differ in details, the framework they 

share is very similar in that the critical state concept is applied and the loading collapse 

curve is also included. To account for the water content change, soil water characteristics 

are proposed and SWCCs are incorporated into the constitutive model via suction, which 

goes into the yield surface as an independent stress variable. Recently, Sheng et al. (2008) 

have introduced a new modeling approach for unsaturated soils using independent stress 

variables. It is shown that the wetting-induced collapse and plastic shrinkage during 

initial drying are both directly coming from the suction-related hardening effects. In their 

model, the hysteretic SWCCs are incorporated into stress-strain relationships and some 

important questions in unsaturated soil mechanics have been investigated. 

 

 Most of the independent two stress variables models for unsaturated soils belong 

to the Barcelona Basic Model family or its modified version. Some interesting findings 

need to be pointed out. First, based on the experimental results, the critical state seems to 
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exist in unsaturated soils, see Maâtouk et al. (1995), Wang et al. (2002) and Estabragh 

and Javadi (2008) for silty soils, Adams (1996) and Toll (1990) for sandy clays and 

Wheeler and Sivakumar (2000) for compacted Speswhite Kaolin. Toll and Ong (2003) 

presented a comprehensive experimental investigation on the critical state parameters and 

further discussion on these parameters can be found in Toll and Ong (2004). Tarantino 

(2007) introduced a generalized critical state framework for unsaturated soils and three 

critical state equations were used to predict the deviatoric stress, the degree of saturation 

and the void ratio. Second, although suction can be defined as an independent stress 

variable, it does not mean the inclusion of suction enables a constitutive model to 

simulate the hydraulic behavior. A relationship to describe suction and water content, i.e., 

SWCCs has to be proposed. In this way, it is possible to account for the coupling effects 

between mechanical and hydraulic behavior. Third, to simulate the soil behavior under 

cyclic loading, a proper plasticity driver or framework should be selected. Last but not 

least, experimental investigation on the coupling effects between mechanical and 

hydraulic behavior of unsaturated soils should be carried out systematically. All the 

models have to be based on the experimental results. Currently, few experiments on 

unsaturated soils are available to systematically investigate the coupling effects between 

mechanical and hydraulic behavior, especially under cyclic loadings for both external 

loadings and suction. Generally, the models based on the two independent stress variables 

can capture many of the features of unsaturated soils, such as wetting-induced collapse 

and dependence of yield surface on suction. As pointed out by Loret and Khalili (2002), 

these models fail to reproduce some special features of unsaturated soils as noticed by 
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Fleureau et al. (1993), such as the elastic response that follows the plastic behavior in 

isotropically compressed soils that are subject to increasing suction. 

 

 As mentioned earlier, the selection of independent stress variables is not based on 

solid theoretical justification. It is very interesting to notice that some models, e.g. 

Alonso et al. (1990) have suction as one of the stress variables, but no corresponding 

strain-like variable is included. Similarly, the stress-strain variables for mechanical 

behavior are selected without solid basis. Very few people question the validity of the 

selection of the stress-strain variables used in these constitutive models. Geiser et al. 

(2000) pointed out the selection of net stress and suction could fail to provide a 

straightforward transition between saturated and unsaturated states. A drawback to select 

the (mean) net stress and suction as stress variables was also addressed by Sheng et al. 

(2004). Their main concern was on the numerical implementation of constitutive models 

into existing finite element codes, most of which are based on the concept of effective 

stress. If net stress and suction are selected to be the stress variables, then extra coding 

work has to be done to make the transition smooth between saturated and unsaturated 

states. As mentioned by Nuth and Laloui (2008a), separating the mechanical stress, i.e., 

net stress completely from the hydraulic stress, i.e., suction prevents a direct accounting 

of the hydraulic hysteresis effects on the mechanical behavior. On the basis of the above 

discussion, it is obvious that the appropriate selection of stress-strain variables is 

important to simulate the unsaturated soil behavior. The more reasonable selection of 

stress-strain variables for modeling unsaturated soils will be discussed in the next section. 
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2.4 MODELS BASED ON DEPENDENT STRESS VARIABLES  

 

A good constitutive model has to be based on correct selection of stress-strain 

variables. Although the models reviewed in Section 2.3 provide reasonable simulations, 

the theoretical justification on the selection of stress-strain variables is not clear. Because 

the stress variables, e.g., net stress and suction, used for these models are easy to control 

in the laboratory, it is normal to treat them to be fundamental variables for constitutive 

modeling. Wheeler and Sivakumar (1995) provided a very brief discussion on the 

selection of stress-strain variables, but only Houlsby (1997) investigated this issue 

systematically. Houlsby (1997) derived the work input W  to an unsaturated granular 

material and the work conjugated stress-strain variables for unsaturated soils were 

defined as: 

 

εσ &L&L :′++−= rc snsW  (2.4) 

( )[ ] ( ) IIσIσσ craarwr ssppsps +−=−+−=′ 1  (2.5) 

 

where:  is porosity;  is suction;  is degree of saturation; ε  is strain tensor of the 

solid skeleton;  and  are effective stress and total stress tensors, respectively. 

n cs rs

σ′ σ

  

Observations on Eqs. (2.4) and (2.5) indicate that the degree of saturation is 

conjugated to the modified suction, i.e.  and the conjugated stress to the skeleton 

strain is the new effective stress. Comparing Eq. (2.5) with Eq. (2.1) and recalling the 

definition of suction, it is found that Houlsby’s new effective stress is nothing new but a 

cns
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special form of Bishop’s definition with rs=χ .  Eq. (2.5) also shows the contribution of 

suction to the new definition of effective stress. Any change in suction will introduce 

possible change in effective stress. In this sense, the constitutive models for unsaturated 

soils using suction and suction-dependent effective stress are classified as dependent 

stress variables models. Any change in suction will definitely change water content in 

unsaturated soils as well. 

 

Although Houlsby’s work concludes a similar result as Bishop’s effective stress 

definition, the contribution made by Houlsby can not be neglected or underestimated. It 

demonstrates a theoretical proof on the selection of stress-strain variables for modeling 

the mechanical and hydraulic behavior of unsaturated soils, although the stress-strain 

variables derived by Houlsby may not be the best choice. Interestingly, although derived 

on the basis of work input to the porous media, the effective stress given by Houlsby 

(1997) is consistent with thermodynamical consideration (Hassanizadeh and Gray, 1990; 

Hutter et al., 1999; Gray and Schrefler, 2001). However, the dynamic compatibility 

conditions on the interfaces are not enforced in Houlsby’s (1997) derivation. Other 

alternatives of effective stress for unsaturated soils are also available, e.g., Li and 

Zienkiewicz (1992). Without clear definition of stress-strain variables, the numerical 

implementation, e.g. the finite element method, of any constitutive model will be 

awkward.  

 

 The saturated soil model proposed by Pastor et al. (1990) was extended by Bolzon 

et al. (1996) to simulate unsaturated soil behavior. Suction and Bishop’s stress with χ  
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assumed to be degree of saturation were selected to be stress variables. The emphasis of 

their work was laid on the soil stiffness change induced by suction. Some important soil 

behavior, for example collapse on wetting was investigated. Santagiuliana and Schrefler 

(2006) modified Bolzon et al.’s (1996) model by adding a hydraulic constitutive 

relationship, which was proposed by Sheng et al. (2004) to account for the soil water 

characteristics. The added feature enables the original model (Bolzon et al., 1996) to take 

into account the irreversible deformation during cyclic drying and wetting loadings. 

Overall, the model proposed by Santagiuliana and Schrefler (2006) provides reasonable 

predictions on both mechanical and hydraulic behavior, but the simulation of dilation 

behavior needs improvements. To get better model prediction on dilation, good silt/sand 

base model should have been selected. Santagiuliana and Schrefler (2006) validated their 

model based on experimental results from Sion silt, while Bolzon et al.’s (1996) model 

was originally developed for clays.  

 

Gallipoli et al. (2003b) introduced an improved constitutive model to predict the 

degree of saturation incorporating dependence on suction and specific volume as well. In 

this way, the effects of soil deformation on the degree of saturation are fully considered, 

but no hydraulic hysteresis during wetting and drying is discussed. Later, to account for 

the magnitude of the interparticle bondings due to water menisci, Gallipoli et al. (2003a) 

introduced a new constitutive parameter ( )( )rc ssf −= 1ξ , which was related to suction 

 and degree of saturation . The parameter cs rs ξ  accounts for the contributions from the 

intensity of the stabilizing normal force from the interparticle contact by a single water 

meniscus and the number of water menisci. Through connecting the parameter ξ  to soil 
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deformation parameters, e.g., the void ratio, the effects of hydraulic behavior on 

mechanical behavior are considered. Although this elastoplastic soil model is very simple, 

the overall performance is good. The coupling effects in unsaturated soils are taken into 

account. Further discussion on this model can be found in Gallipoli et al. (2004). 

 

With the emphasis laid on the different roles of pore air pressure and pore water 

pressure, Wheeler et al. (2003) presented a comprehensive constitutive model for 

unsaturated soils, which captures the coupling effects between hydraulic hysteresis and 

the mechanical behavior. Based on experimental observations, the loading collapse curve, 

suction increase yield curve and suction decrease yield curve were assumed to be straight 

lines in the mean Bishop’s stress with rs=χ and modified suction space. The mean 

Bishop’s stress can be actually regarded as the mean effective stress. The three yield lines 

are related to each other. The movement of any yield line will introduce the 

corresponding changes on the other two. In this way, the coupling effects between 

hydraulic and mechanical behavior is fully considered. Although this model captures 

some basic behavior of unsaturated soils, the soil water characteristics are too simple and 

the model need to be modified for better predictions on the soil behavior under cyclic 

loadings. Later, Sun et al. (2007a&b) adopted similar simplified hysteretic SWCCs and 

yield suction curves to Wheeler et al. (2003) in the framework of the Barcelona Basic 

Model to investigate the unsaturated Pearl clay behavior. 

 

 On the basis of thermodynamical consideration, Li (2007a) systematically 

investigated some important concepts, e.g., critical state and SWCCs in unsaturated soils 
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and a demonstrative model for unsaturated soils was proposed. Since Li’s (2007a) work 

was based on Houlsby (1997) and Collins and Kelly (2002), the stress-strain variables 

were the same as given by Houlsby (1997). Both the effective stress increment and 

modified suction increment were functions of the strain increment and the degree of 

saturation increment. The coupling effects between hydraulic and mechanical behavior 

were proved using the thermodynamics laws. In addition, it was proven that the 

hysteresis of SWCCs at a given strain of solid skeleton was not in conflict of the 

fundamental laws (Wei and Dewoolkar, 2006). Also, if a unique SWCC was assumed, 

the critical state lines and the isotropic consolidation lines for the soil skeleton were 

proved to exist and they could be treated as state functions. Following his 

thermodynamics-based constitutive framework, Li (2007b) presented a basic model, in 

which the coupling effects were fully considered and the hysteresis of SWCCs was also 

addressed. His model was not used for predicting soil behavior under cyclic shearing or 

compression. The impact of volume change on SWCCs was not considered either. 

Overall, the constitutive framework set up by Li (2007a) provides a strong theoretical 

justification on the selection of the stress-strain variables, the existence of critical state 

and the coupling effects between hydraulic and mechanical behavior in unsaturated soils.  

 

In fact, Houlsby (1997) pointed out that any linear combination of the stress 

variables is possible for soil modeling, as long as the new stress-strain variables meet the 

work input definition. Eq. (2.6) illustrates such a treatment: 
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where:  is the specific water volume, which was also used by Wheeler and 

Sivakumar (1995);  is the specific volume and  is the void ratio; 

esv rw += 1

ev +=1 e vε  is the 

volumetric strain. 

 

 As noticed by Sheng et al. (2004), if dependent stress variables  and σcs ′  are 

adopted, then their conjugated strain variables  and  are independent; if independent 

stress variables  and (  are used, then their conjugated strain variables are 

dependent. It means the selection of stress-strain variables is not absolute and any linear 

algebraic operation on the work input equation can always provide some alternatives. 

More discussion on the selection of stress-strain variables for unsaturated soil modeling 

can be found in Lu and Likos (2006), Sheng et al. (2008) and Laloui and Nuth (2009). 

Generally speaking, the selection of stress-strain variables depends on many factors, for 

example the compressibility of soil skeleton and pore fluid, the consideration on the 

interfaces between pore fluids and the validity of the averaging process (Gray and 

Hassanizadeh, 1989).  

rs ε

cs )Iσ ap−

 

Based on the discussion by Wilmanski (1995) and Hassanizadeh and Gray (1990), 

the dynamic compatibility conditions on the interfaces have to be satisfied. Following the 

Laws of thermodynamics and enforcing the dynamic compatibility conditions on the 
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interfaces between different phases in multi-phase porous media, Muraleetharan and Wei 

(1999), Wei (2001), Wei and Muraleetharan (2002 a&b) obtained the energy dissipation 

inequality in unsaturated soils as:  

 

( )[ ] [ ] 0: ≥+−++−= γζ &&&& p
wc

p
assp nspnD χξεIt  (2.7) 

 

where:  is the volume fraction of solid component, i.e., the ratio between volume of 

solids and total volume of soil;  is the intrinsic Cauchy stress tensor of solid component, 

which is assumed positive in compression;  is the pore air pressure;  is the unit 

tensor 

sn

st

ap I

ijδ ;  is the plastic strain tensor of the solid component;  is the matric suction, 

which equals ( )  with  the pore water pressure;  is the irrecoverable 

volumetric water content or volume fraction of water ; ξ  and 

pε cs

wa pp − wp p
wn

ζ  are internal forces 

associated with  and χ γ , which account for the hardenings of solid skeleton and water 

phase, respectively.  

 

 From Eq. (2.7), the plastic deformation of the solid skeleton and the irrecoverable 

water content change posses similar energy dissipation forms, but the microscopic 

mechanisms behind the two plastic behavior are totally different. Plastic deformation of 

solid skeleton comes from the slipping and rolling of solid grains and driven by external 

forces. The irrecoverable moisture content change is controlled by the surface energy 

dissipation during changes in shape of the air-water menisci. More restrictively, the two 
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different mechanisms of energy dissipation can be decomposed and Eq. (2.7) can be 

rewritten as follows: 

 

( ) 0: ≥+−= χξεIt && p
asss pnD  (2.8) 

0≥+−= γζ && p
wcw nsD  (2.9) 

 

An important observation based on Eq. (2.8) is that the plastic deformation can be 

described using the following stress measure, because it is conjugated with the plastic 

strain rate  of the solid skeleton: pε&

  

( ) ( ) IIσItσ cwaass snppn +−=−=′  (2.10) 

 

where:  is the volume fraction of water.  wn

 

Although same notation is adopted here, σ′  in Eq. (2.10) is different from σ′  in 

Eq. (2.1). Here,  is referred to as the intergranular stress tensor, which plays the 

similar role to the effective stress as defined earlier in the sense the intergranular stress 

tensor governs the energy dissipation of soil skeleton. For fully saturated conditions, σ

σ′

′  

becomes the Terzaghi’s effective stress. Note that the proposed intergranular stress is 

equivalent to the Bishop’s effective stress when the Bishop parameter wχ  equals . In 

Eq. (2.9), the minus sign in front of  means the volume fraction of water decreases 

when suction increases or vice versa. In the intergranular stress tensor, it is not necessary 

wn

cs
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to a priori evaluate , since  is already described by the relationship between 

moisture content and suction, which is actually the soil water characteristic curves 

(SWCCs). The energy dissipation of SWCCs is given in Eq. (2.9). With the dissipation 

inequalities given in Eqs. (2.8) and (2.9), the evolution equations for  and  can be 

derived using the standard procedure from the theory of plasticity. One of the key 

deviations of Muraleetharan and Wei (1999) and Wei (2001) from other thermodynamics 

related works for unsaturated soils is their fundamental assumption that free energy 

densities of phases depend on the volume fractions of these phases. 

wn wn

pε& p
wn&

 

In the intergranular stress, volume fraction of water is actually a weighting factor 

of suction. The selection of volume fraction of water to be the weighting factor is more 

appropriate than degree of saturation or an empirical parameter χ , see Eq. (2.1).  Recall 

the volume fraction of water is equal to the product of degree of saturation and porosity, 

i.e., . In this sense, the inclusion of volume fraction of water in the 

intergranular stress accounts for effects from both the porosity and the degree of 

saturation. In the current research, the intergranular stress and suction are selected to be 

the stress variables and they are conjugated with the plastic strain rate  and the rate of 

the irreversible volume fraction of water , respectively.  

nsn rw ×=

pε&

p
wn&

 

To investigate the advantages introduced by the intergranular stress, the critical 

state concept is examined within two different frameworks as shown in Figs. 2.1. If 

suctions are different, the critical state line for Kaolin (Sivakumar, 1993) is different 

when the critical state is plotted in the mean net stress and deviatoric stress space. In 
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other words, the critical state is not unique and it is related to the suction in the mean net 

stress and deviatoric stress space. However, if the critical state is plotted in the mean 

intergranular stress, i.e., ( ) 3/332211 σσσ ′+′+′=′p  and deviatoric stress space, the critical 

state line becomes unique. The existence of a unique critical state line for unsaturated 

soils is one of the advantages of using the intergranular stress. 
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Fig. 2.1a Critical state lines for Kaolin in mean net stress vs. deviatoric stress plane 
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Fig. 2.1b Critical state line for Kaolin in mean intergranular stress vs. deviatoric stress 
plane 
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Fig. 2.2 Critical state line for Trois-Rivières silt in mean intergranular stress vs. 
deviatoric stress plane 
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Fig. 2.3 Critical state line for a silty sand in mean intergranular stress vs. deviatoric stress 
plane 

 

Similar procedure was carried out on different soils to justify the validity of the 

critical state concept in unsaturated soils. Maâtouk et al. (1995) reported some valuable 

test results measured under a wide range of suctions on Trois-Rivières silt. The critical 
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state of Trois-Rivières silt was plotted in Fig. 2.2 in the mean intergranular stress vs. 

deviatoric stress space. Rampino et al. (2000) reported the mechanical responses of a 

silty sand. Fig. 2.3 also illustrates the critical state of the silty sand in the mean 

intergranular stress vs. deviatoric stress space. As is shown in the above figures, the 

adoption of the intergranular stress ensures a unique critical state line for not only clays, 

but also silts and sands. The extension of the critical state concept from saturated soils to 

unsaturated soils is valid with the introduction of the intergranular stress. To calibrate the 

parameters for the critical state line for an unsaturated soil, any test on saturated soils 

should work, since both saturated and unsaturated soils have the same critical state line. 

 

2.5 ELASTOPLASTICITY THEORY ON CYCLIC LOADING 

 

One of the main objectives of the current research is to simulate unsaturated soil 

behavior under cyclic loading, including both cyclic suction and cyclic external loadings. 

Most of the models reviewed in the last sections are not appropriate to predict soil 

behavior under cyclic loadings. The main objective of this section is to review some 

representative theories for cyclic loadings.  

 

 By introducing the concept of ‘a field of hardening moduli’, Mrŏz (1967 & 1969) 

generalized the hardening rules to better simulate metal behavior for complex loading 

histories, such as cyclic loading. The work hardening model was termed as multi-surface 

plasticity model. By taking into account both isotropic hardening and kinematic 

hardening, Mrŏz et al. (1978) extended the implementation of multi-surface plasticity 
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model from metal to soils. To account for the isotropic hardening, the yield condition is 

assumed to depend on stress state and some internal variables of soil, such as irreversible 

void ratio. For cyclic loading processes, hysteretic phenomena are of essential importance. 

Due to the initial preconsolidation, kinematic hardening has to be taken into account. The 

original multi-surface plasticity model is composed of one yield surface, one bounding 

surface and a finite number of nesting surfaces. The hardening modulus on the yield 

surface depends on the relative configuration of the yield surface and bounding surface. 

The nesting surfaces can translate and expand or contract due to the internal variables, 

such as irreversible density change. Certain nesting surface becomes active when the 

current stress state reaches it and the corresponding hardening modulus will be calculated 

based on this nesting surface and certain translational rule. Since the nesting surfaces are 

different, the hardening moduli vary in a piecewise linear manner between nesting 

surfaces. By assuming an infinite number of nesting surfaces, continuous evolution of the 

hardening modulus can be achieved, see Mrŏz et al. (1978 & 1981). Based on the multi-

surface plasticity theory, a uniform formulation was proposed by Mrŏz and Pietruszczak 

(1983) for sands and Pietruszczak and Mrŏz (1983) for clays. Mrŏz et al. (1978 & 1979) 

also presented a simplified two-surface (i.e., the yield surface and bounding surface) 

model as a special version of multi-surface model to avoid tracing the evolution of all 

nesting surfaces. The hardening modulus depends on the distance between the current 

stress state and its associated point on the bounding surface. This simplified two-surface 

model is similar to the bounding surface plasticity model, which will be reviewed next. 
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The classical isotropic or kinematic hardening plasticity models are reasonably 

good for simple loading histories. For complex loading histories, such as cyclic loadings 

in plastic range, these models are incapable of simulating the hysteretic behavior, which 

is important to account for the damage accumulation or stabilization of hysteresis loops 

after a certain number of cyclic loadings. The bounding surface plasticity theory 

(Dafalias and Popov, 1975 & 1976; Krieg, 1975) is an attempt to generalize the 

conventional flow theory to account for the cyclic behavior of materials. The idea behind 

the bounding surface plasticity concept is very simple: for any current stress state inside 

the quasi-elastic domain, there is an associated point on the bounding surface by means 

of a certain mapping rule. The plastic modulus of current stress state depends on the 

distance between current stress state and its associated point on the bounding surface. A 

salient feature which differentiates the bounding surface concept from the multi-surface 

plasticity model is that the bounding surface plasticity theory allows plastic deformation 

to occur even for stress state inside the quasi-elastic domain. Dafalias and Herrmann 

(1982) stated that: the quasi-elastic domain is not a yield surface since the stress may 

move first elastically inwards and then introduce plastic loading before it reaches this 

surface again; the quasi-elastic domain is not a loading surface either, since no 

associated consistency condition is required.  The mathematical foundation and 

formulation of the bounding surface plasticity model can be found in Dafalias and 

Herrmann (1982) and Dafalias (1986). Dafalias and Herrmann (1986) and Anandarajah 

and Dafalias (1986) presented the applications of the bounding surface plasticity to 

isotropic and anisotropic cohesive soils, respectively. A time-dependent version of 

bounding surface model was introduced by Kaliakin et al. (1987). Because the concept 
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behind the bounding surface plasticity is reasonable and simple, many applications to 

model geomaterials and refinements to the bounding surface plasticity can be found in 

literature, such as Bardet (1986 & 1990), Wang et al. (1990), Kaliakin and Dafalias 

(1990), Crouch and Wolf (1994 a&b), Crouch et al. (1994), Ling et al. (2002) and 

Datcheva and Schanz (2003).  

 

Among these works, it is worth to mention the sand model proposed by Crouch et 

al. (1994). To define a reasonable loading surface, both radial and deviatoric mapping 

rules are used. A non-associated flow rule is incorporated into a sub-elliptic plastic 

potential surface. The critical-state line is also special because of its bi-linear kinked 

shape. An ‘effective’ normal consolidation line is used to link the loose state and dense 

state, instead of using different sets of model parameters to simulate sand behavior when 

their densities are different. Although this model is capable of simulating many special 

characteristics, such as plastic stiffening during cyclic loadings, this model is too 

complicated in the sense that too many model parameters need to be calibrated and the 

continuity condition between two mapping regions is sometimes violated. In addition, as 

stated by Mrŏz (1980), the translational rule proposed by Dafalias and Popov (1977) is 

nothing new but a limiting case of the multi-surface model formulation.  

 

 As noticed by Prevost (1982), although the multi-surface model provides great 

versatility and flexibility to describe material behavior, it suffers inherent storage 

inconvenience, because the theory requires that the field calculations, the positions, the 

sizes and plastic moduli of each yield surface be stored at each integration point in a 
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finite element implementation. Meanwhile, the bounding surface plasticity model 

requires a priori selection of the evolution laws.  

 

 While the multi-surface model and the bounding surface plasticity concept 

attracted many researchers’ attention, a similar model named subloading surface model 

was introduced by Hashiguchi and Ueno (1977). Hashiguchi (1978, 1980, 1985, 1989, 

1993 & 2000) published a series of papers on refining and implementing the subloading 

surface model. The subloading surface model is composed of two surfaces: an inner sub-

loading surface on which the current stress state lies and the outer yield surface. In the 

subloading surface model, the subloading surface passing through the current stress point 

and similar to the normal-yield surface is incorporated and the plastic modulus is 

assumed to depend on the measure of degree of approaching the yield surface, called the 

normal-yield ratio, which is the ratio of the size of the subloading surface to that of the 

yield surface. While Dafalias (1986) stated that no consistency condition is needed for 

stress point inside the bounding surface in the bounding surface model, the consistency 

condition for the subloading surface model is explicitly introduced and the plastic 

modulus is rationally derived based on the consistency condition for the subloading 

surface. The subloading surface model fulfills the continuity condition, the smoothness 

condition and the work rate-stiffness relaxation requirements. The Masing effect, which 

is required to simulate cyclic loading behavior, is also satisfied. To better simulate soil 

behavior, Hashiguchi and Chen (1998) formulated the evolution rule of rotational 

hardening to describe the inherent anisotropy of K0-consolidated soils. Although the 
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subloading surface model formulation is very complicated, the basic idea is very similar 

to those of the multi-surface model and the bounding surface model.  

 

Starting from the single surface isotropic hardening model (Kim and Lade, 1988; 

Lade and Kim, 1988 a&b), Lade and Inel (1997) and Inel and Lade (1997) added the 

rotational kinematic mechanisms to develop a constitutive model accounting for the soil 

behavior during cyclic loadings. Here both the yield surface and plastic potential surface 

involve a combination of isotropic and kinematic hardenings. Their model preserves the 

soil behavior of isotropic hardening under monotonic loadings and the added rotational 

kinematic hardening enables the model to simulate the soil behavior under cyclic 

loadings. Within the combined frameworks of kinematic hardening and bounding surface 

plasticity, Gajo and Muir Wood (1999) introduced a kinematic hardening model for sands. 

Similarly, Manzari and Dafalias (1997) developed a critical state two-surface plasticity 

model for sands and their work will be reviewed in detail in Chapter 5, since the current 

research is based on their work. 

 

Some other representative frameworks for simulating soil behavior under cyclic 

loadings include Desai (1974), Lade and Duncan (1975), Nova and Muir Wood (1979), 

Nova and Hueckel (1981), Zienkiewicz et al. (1985) and Pastor et al. (1985). At the same 

time, the experimental investigation on the soil behavior under cyclic loadings was 

progressing as well. The main contribution belonged to Tatsuoka and Ishihara (1974), 

Ishihara et al. (1975 & 1980), Hyodo et al. (1991 & 1994), Arumoli et al. (1992), 

Ishihara (1993), Verdugo and Ishihara (1996), Uchida and Stedman (2001) and so on.  
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 This section presented a thorough literature review on the constitutive modeling 

of saturated soil behavior under cyclic loadings. The plasticity driver and hardening laws 

are the main topics covered. The multi-surface plasticity model, the bounding surface 

plasticity model and the subloading surface model share many similar characteristics in 

that different surfaces are used to carry out different tasks. Different hardening laws are 

also proposed to simulate soil behavior under cyclic loadings. These important concepts 

will be adopted for unsaturated soil constitutive modeling in the current research.  

 

2.6 SUMMARY 

 

This chapter first reviewed the concept of effective stress in saturated soils. The 

extension of the concept of effective stress from saturated soils to unsaturated soils was 

then discussed. Although the idea to use a single effective stress to simulate unsaturated 

soil behavior is attractive, it is very difficult to recover all the complex coupling effects 

between mechanical and hydraulic behavior of unsaturated soils using a single effective 

stress. The historical development of constitutive models from stress-suction-strain to 

stress-suction-strain-water content was also briefly discussed. The inclusion of the soil 

water characteristics in unsaturated soil modeling will definitely improve the model 

performance. The models based on independent stress variables capture some special 

features of unsaturated soils, including the coupling effects, but the selection of stress-

strain variables is not based on theoretical justification. It seems reasonable to predict the 
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unsaturated soil behavior using the dependent stress variables within an appropriate 

elastoplasticity framework.  
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CHAPTER 3 

 

SOIL WATER CHARACTERISTIC CURVES 

 

 

3.1 INTRODUCTION 

 

Unsaturated soils are composed of three phases: soil skeleton (solid), pore water 

(liquid), and pore air (gas). The air-water interface plays a major role in the behavior of 

unsaturated soils. Sometimes, the air-water interface is treated as a fourth phase 

(Fredlund and Rahardjo, 1993). The distinctive property of the air-water interface is its 

ability to exert a tensile pull. From a macroscopic viewpoint, the pressure difference (i.e., 

pore air pressure minus pore water pressure) across the air-water interface is called the 

matric suction. In soil mechanics, the water content information is usually correlated to 

suction through the soil water characteristic curves (SWCCs). It is important to know that 

the SWCCs have a close relationship to many soil properties, such as shear strength, 

permeability, diffusion and adsorption. In practice, the SWCCs provide useful 

information for modern agriculture, geoenvironmental engineering, petroleum 

engineering and many other fields.  
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The relationship between water content and suction is not unique and exhibits 

hysteresis (e.g., Poulovassilis, 1970a; Topp, 1971a). Using the Laws of thermodynamics, 

Hassanizadeh and Gray (1993) investigated the thermodynamic basis of capillary 

pressure in porous media and they hypothesized that the hysteretic phenomenon in 

SWCCs is indeed the result of projecting a complex capillary function onto a single plane. 

Further suggestion was given by Hassanizadeh and Gray (1993) that a complete 

functional dependence of capillary pressure should include the specific area of the air-

water interface in addition to the water content. Following the hypothesis given by 

Hassanizadeh and Gray (1993), some researchers proposed theoretical models (e.g., 

Reeves and Celia, 1996; Held and Celia, 2001) or designed laboratory experiments (e.g., 

Cheng et al., 2004; Chen, 2006) to investigate the relationship between capillary pressure, 

water content and interfacial area. The results show that the relationship is not unique and 

the hypothesis by Hassanizadeh and Gray (1993) does not hold. It was suggested that 

some new internal variables may have to be introduced to establish a unique functional 

dependence of capillary pressure. Using the thermodynamic theory, Morrow (1970) even 

developed a detailed mechanism of immiscible displacement in porous media in terms of 

a quantized model. The theoretical investigation, including the above efforts, on the 

capillary hysteresis will make this problem more and more complicated and the complex 

situation can significantly impede the application of the hysteresis model in practice. In 

this chapter, the discussion on the capillary hysteresis, i.e. SWCCs is limited to the 

relationship between suction and water content for simplification. No more (internal) 

variables are considered. 
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A typical set of hysteretic SWCCs (Chen et al., 2007) for a fine sand (D50 = 0.14 

mm, SP) is shown in Fig. 3.1.  
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Fig. 3.1 Measured SWCCs for a fine Ottawa sand (after Chen et al., 2007) 

 

Generally speaking, to get a complete hysteretic loop of SWCCs in the laboratory 

is very time consuming. For example, obtaining the primary wetting and drying portions 

of the SWCCs for a sand using conventional methods based on ceramic capillary barriers 

can take as long as 2 to 4 months. These curves in Fig. 3.1 were obtained using an 

innovative automated parallel miniature pressure cell system (Chen et al., 2007). They 

made use of a novel experimental setup that can obtain the primary wetting and drying 

curves for a sand within 1.5 to 6.5 hours, and a complete set of SWCCs, including 

detailed scanning loops, within 13 to 19 hours. The primary drying curve, the primary 

wetting curve, the secondary drying curve, and selected scanning curves are presented. 
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The secondary drying curve is different from the primary drying curve due to air 

entrapment. For completeness, the particle size distribution curve of the fine Ottawa sand 

used by Chen et al. (2007) is given in Fig. 3.2: 
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Fig. 3.2 Particle size distribution curve for a fine Ottawa sand 

 

 After the general properties of SWCCs are discussed, it is very instructive to take 

a look at the physical explanation on the hysteresis of SWCCs. Because the free 

interfacial energy present between pore air and pore water, a discontinuity in pressure 

exists across the interface separating pore air and pore water. The pressure difference 

across the interface depends on the interface curvature. The so-called Young-Laplace 

equation, which is given below, comes directly from the force balance condition on the 
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interface. Fig. 3.3 illustrates the equilibrium state at a curved interface between pore air 

and pore water. 
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Fig. 3.3 Equilibrium at a curved interface between pore air and pore water in a tube 

 

 The equilibrium condition on the interface along the horizontal direction reads: 

 

0cos222 =−−=∑ θπγππ rrprpF wax  (3.1) 

r
pps wac

θγ cos2
=−=  (3.2) 

 

where:  and  are pore air pressure and pore water pressure, respectively; ap wp γ  is air-

water interfacial surface tension;  is suction or capillary pressure; cs θ  is contact angle 

and r  is pore radius. Suction is actually a measure of the tendency of a porous medium to 

suck in the pore water or to repel the pore air. At a given pore radius, when suction 

increases, the contact angle has to decrease to satisfy the balance condition. This means 

the pore water is pushed back by pore air and the water content decreases. For the same 

reason, water content increases when suction decreases. At a given suction in practice, 
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the contact angle may be different due to many factors. The mechanisms behind the 

hysteresis in SWCCs have been extensively investigated by many researchers (e.g. Bear, 

1972; Adamson, 1990; Lenhard et al., 1991; Lu and Likos, 2004). From a microscopic 

viewpoint, the main factors attributing to the hysteresis in SWCCs are nonwetting fluid 

(e.g., pore air) entrapment (e.g., Poulovassilis, 1970b), contact angle changes associated 

with wetting/drying paths, and irregular pore geometry. The hysteresis of SWCCs due to 

pore air entrapment is not our main concern and the effect of air entrapment on hysteresis 

of SWCCs is assumed to be neglected. The last two factors are illustrated in Fig. 3.4 as 

follows: 
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Fig. 3.4 Hysteresis in (a) contact angle and (b) pore geometry 

 

 Fig. 3.4(a) shows the effect of drying or wetting paths on contact angle. 1θ  is the 

advancing contact angle corresponding to the wetting phase as it moves over a new 

surface, which is similar to the wetting process. 2θ  is the receding contact angle 

corresponding to the wetting phase moves off a previously covered surface, the similar 
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process to drying. The same wetting phase on the same surface introduces different 

contact angles depending on the movement of the wetting phase. Sometimes, this 

phenomenon is called rain drop effect (Bear, 1972). Obviously, the contact angle on the 

wetting side is larger than the one on the drying side. On the basis of Eq. (3.2), the 

difference in the contact angle between wetting and drying sides explains why the suction 

is different at a given water content. Actually, the hysteresis of the contact angle during 

the wetting-drying process also explains the hysteresis of SWCCs. Fig. 3.4(b) illustrates 

the effect of pore geometry, especially the effect of some small irregular asperities on the 

hysteresis of soil water characteristics. The geometric non-uniformity of individual pores 

results from the so-called ink bottle effect. The meniscus A stands for the equilibrium 

state of wetting and nonwetting phases within the pore channel and the contact angle is 

given as θ . On the asperity, if the local suction is increased, the meniscus will move to 

the left and reach balance at B. As shown in Fig. 3.4(b), the contact angle decreases to 

aθθ − , where aθ  represents the contact angle change due to the asperity. Similarly, if 

suction decreases on the asperity, the meniscus will migrate to the right ending at C and 

the contact angle will change to aθθ + . Of course, it is possible for the meniscus to leave 

the asperity if suction is high or low enough. The migration of meniscus in the pore 

channel is corresponding to the drying-wetting process. Similar discussion can be found 

in Pride and Flekkøy (1999). Physical explanation of hysteresis in SWCCs for clays is 

further complicated and is still not very well understood due to the physicochemical 

interactions between clay particle surfaces and pore fluids. 
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Inclusion of hysteresis effects is essential to simulating the infiltration related 

problems in unsaturated soils (e.g. Beese and van der Ploeg, 1976; Stauffer and Dracos, 

1984; Kool and Parker, 1987). Proper simulation of infiltration processes in unsaturated 

soils is important to analyze the failure of earth slopes during or after heavy rainfall 

events and other complex phenomena. The inclusion of hysteresis effects of suction is 

also important to investigate the shear strength of unsaturated soils. How to correlate the 

shear strength to SWCCs was discussed by many people, such as Fredlund et al. (1995). 

In fact, many factors, such as soil type and compaction conditions have strong influence 

on the shape of SWCCs. The related discussion on the impact of soil type and 

compaction conditions on soil water characteristics can be found in Miller et al. (2002). 

The relationship between pore size, particle size, aggregate size and soil water 

characteristics is referred to in the work done by Wu et al. (1990). 

 

Some special features of soil water characteristics were briefly discussed. This 

section also introduced the mechanisms behind the hysteresis of soil water characteristics. 

Attention is next turned to a method to predict the hysteresis in soil water characteristics 

in unsaturated soils. The literature review is carried out first and then a phenomenological 

model based on the bounding surface plasticity concept is presented. The performance of 

the proposed SWCCs model is extensively validated using available data. 

 

3.2 LITERATURE REVIEW 

 

3.2.1 MODELS FOR SINGLE SWCC  
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In this section, the models for predicting single SWCC are reviewed. Some 

important concepts in single SWCC are discussed. A typical single SWCC is given in Fig. 

3.5. Basically, a single SWCC model ignores the hysteresis in the SWCCs and represents 

any one of these curves with an equation. The shapes of SWCC of different soils, i.e., 

clays and sands are different. The general shape of SWCC is sigmoidal as given in Fig. 

3.5. The SWCCs of some gap-graded soils show bimodel or multimodel distribution, see 

de F.N. Gitirana and Fredlund (2004) and Zhang and Chen (2005). Minco silt is not gap-

graded, so only sigmoidal or S-shaped SWCC is discussed here. In practice, water 

content can be given in volume fraction of water, degree of saturation or other convenient 

choices.  
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Fig. 3.5 A typical soil water characteristic curve 

 

How to determine the air-entry value (AEV) and residual water content (RWC) is 

graphically illustrated in Fig. 3.5. AEV is the suction value where air starts to enter the 
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largest pores in the soil. RWC stands for the residual water content, which is the water 

content where large suction change is required to remove additional water from the soil. 

If current suction is lower than the AEV, then the soil behaves like saturated soils, 

although the suction is not zero. This means the concept of effective stress for saturated 

soils works well to predict stress-strain behavior of unsaturated soils when the suction is 

lower than the AEV. Based on experimental observation (e.g., Croney and Coleman, 

1961) and thermodynamical considertations (e.g., Richards, 1965), a suction slightly 

lower than 106 kPa can bring almost any soils to near zero relative humidity.  

 

Many researchers, such as Brooks and Corey (1964), van Genuchten (1980) and 

Fredlund and Xing (1994), have proposed functional forms to describe the single SWCC. 

Some popular models for single SWCC are given in their modified forms as follows: 
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where:  is volume fraction of water;  and  are residual and saturated volume 

fraction of water, respectively;  is suction; a ,  and  are model parameters.  
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These models are essentially curve fitting equations, found through best fit of test 

data. The pros and cons of those SWCC equations have been extensively investigated by 

Leong and Rahardjo (1997), Barbour (1998) and Sillers et al. (2001). Overall, the SWCC 

equations have enough accuracy to fit test results. Their main difference comes from the 

number of model parameters. Some equations have RWC as a model parameter, while 

others do not. Although the inclusion of RWC gives more physical meaning, it is not 

necessary to have RWC in the SWCC equations since most of those equations are just 

based on curve fitting techniques. Especially, it is not always easy to find out RWC, 

because suction can not easily reach very high value in practice. Recently, Pham and 

Fredlund (2008) have proposed two equations for single SWCC and both equations fit the 

test data very well of soil state from slurry state to completely dry condition. Although 

the volume change of soils is observed in the drying process, both curve fitting equations 

can still capture the evolution of gravimetric water content with suction change. These 

two equations are too complicated to be applied in practice easily.  

  

3.2.2 MODELS FOR HYSTERETIC SWCCS  

 

To better simulate the stress-strain behavior of unsaturated soils, it is desirable to 

include the soil water characteristics in the constitutive model. Since SWCCs exhibit 

strong hysteretic behavior, there is no reason to simplify the hysteretic SWCCs into 

single SWCC. The hysteretic phenomenon has been widely observed (e.g., Morrow and 
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Harris, 1965; Talsma, 1970; Vachaud and Thony, 1971; Nimmo and Miller, 1986) and 

many models have been proposed to simulate hysteretic capillary behavior since 1960s.  

 

Mualem (1973, 1974 & 1984), Haverkamp et al. (2002), Pham et al. (2003), 

Rojas and Rojas (2005), Maqsoud et al. (2006) and many others proposed different 

methods to simulate the hysteresis in SWCCs. Generally speaking, the available models 

for simulating hysteretic SWCCs can be classified into different categories, such as 

geometric scaling models (e.g., Parker and Lenhard, 1987; Gandola et al., 2004), 

independent domain models (e.g., Everett, 1954 & 1955; Mualem, 1973), dependent 

domain models (e.g., Topp, 1971b; Mualem, 1974 & 1984; Poulovassilis and El-Ghamry, 

1978; Mualem and Miller, 1979) and rational extrapolation models (e.g., Parlange, 1976; 

Braddock et al., 2001; Haverkamp et al., 2002). Excellent review on the available models 

for hysteretic SWCCs can be found in Viaene et al. (1994) and Maqsoud et al. (2004). 

 

Using the similarity hypothesis, Mualem (1973) assumed that pore water 

distribution function of soils is a product of two independent functions that are difficult to 

obtain. By considering a different integration domain, Mualem (1974 & 1984) improved 

his independent domain model (Everett, 1954 & 1955; Mualem, 1973). The separate 

description of primary drying scanning curve, primary wetting scanning curve and the 

higher-order wetting/drying curves after a series of alternating processes of drainage and 

imbibition makes the model very complicated. In addition, the integration process to find 

out the drying function and wetting function in different integration domain impedes the 

application of Mualem’s model in practice.  
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Although the independent domain theory of hysteresis is useful in describing the 

hysteretic behavior of soil water characteristics in some cases, the theory is not general 

enough to describe all soil water characteristics of porous media (e.g., Topp and Miller, 

1966). By introducing the hypothesis that the domain accumulation or removal depends 

on the values of the variables at reversal, Poulovassilis and Childs (1971) extended the 

concept of domains and the primary scanning curves can be well described using their 

domain theory. Later, Poulovassilis and El-Ghamry (1978) extended the primitive 

domain theory of Poulovassilis and Childs (1971) to cover scanning curves of any order. 

Comparisons between the predictions based on the domain theory and test results show 

the good model performance. 

 

The representative models based on the concept of rational extrapolation were 

introduced by Parlange (1976) and Haverkamp et al. (2002). Mualem and Morel-Seytoux 

(1978) investigated the model proposed by Parlange (1976) and pointed out Parlange’s 

(1976) model is mathematically complicated. In addition, as pointed by Parlange (1976) 

himself, the actual wetting boundary curve is seldom obtained in the determination of the 

moisture retention characteristic. Compared with Mualem’s dependent model, Parlange’s 

model is incomplete in that his model only considered even drying and uneven wetting 

scanning curves without providing even wetting and uneven drying scanning curves. 

Haverkamp et al. (2002) also proposed a method to simulate the SWCCs based on the 

concept of rational extrapolation and geometric scaling of various curves. It is assumed 

that the water retention curve is described by three parameters. One of the three 
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parameters defines the shape of the water retention curve and the other two parameters 

scale the soil water pressure head and volume fraction of water, respectively. 

Correspondingly, three conditions to determine the three parameters are introduced. 

Although only one curve is needed to predict all the other water retention curves, the 

proposed method requires information such as the drying and wetting sequence numbers 

that are difficult to determine for practical applications.  

 

Pham et al. (2003) proposed empirical equations to model only the main drying 

and wetting curves. Maqsoud et al. (2006) extended Kovacs’ (1981) model and predicted 

the main drying and wetting curves and a scanning curve that originated on the main 

curves for sands using certain assumptions about the contact angle for the air-water 

interface. Rojas and Rojas (2005) proposed a model based on detailed description of the 

pore geometry. It is, however, difficult to determine the parameters describing the pore 

geometry. Recently more rigorous models based on different theoretical grounds have 

been presented to describe the hysteresis in SWCCs (e.g. Li, 2004; Wei and Dewoolkar, 

2006; Kohgo, 2008). It is also very interesting to note that there is a trend to use the 

bounding surface plasticity concept (Dafalias and Popov, 1975 & 1976) to simulate the 

hysteretic soil water characteristic curves. However, experimental validations of these 

models are still limited.  

 

In summary, the above mentioned hysteretic SWCCs models either involve 

complex mathematics calculations or deserve deep physical understanding behind the 

hysteretic phenomenon. Another disadvantage of those models is the difficulty related to 
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the calibration of model parameters, because some models are based on the microscopic 

consideration and some parameters do not have explicit physical meanings. In fact, a 

close look at the typical SWCCs in Fig. 3.1 indicates the hysteretic phenomenon in soil 

water characteristics is nothing new but a similar phenomenon to Bauschinger effect in 

metals. This means the hysteresis of SWCCs can be described using classical 

elastoplasticity theory, which is familiar to most geotechnical engineers. A simple 

SWCCs model based on the bounding surface plasticity concept (Dafalias and Popov, 

1975 & 1976) is presented in the next section.  

 

3.3 SWCCS MODEL BASED ON THE BOUNDING SURFACE 

PLASTICITY CONCEPT 

 

In section 2.4, the energy dissipation mechanisms of soil skeleton and pore water 

are given in Eqs. (2.8) and (2.9). Comparison between the two equations indicates that 

the two energy dissipation mechanisms have identical form except the energy dissipation 

of soil skeleton is given in tensors while the energy dissipation related to suction is in 

scalars. Stress-strain behavior of the soil skeleton and SWCCs of unsaturated soils have 

many features in common. Both stress-strain curves and SWCCs exhibit hysteresis during 

loading-unloading and drying-wetting cycles and the behavior is path dependent. Since 

elastoplasticity theory has been successfully used to predict the stress-strain behavior of 

soils, it is possible to propose a model for SWCCs using elastoplasticity theory to 

simulate the hysteresis of SWCCs. 
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Motivated by the observation that all scanning curves are bounded by primary 

wetting curve and the second drying curve (see Fig. 3.1), the bounding surface plasticity 

theory, which was reviewed in Chapter 2, is selected to be the elastoplastic framework for 

hysteretic SWCCs prediction. Due to its ability to predict plastic deformations within the 

bounding surface, the bounding surface plasticity theory is a good choice to simulate 

cyclic loading such as drying and wetting. Li (2004) also presented a simplified bounding 

surface model for SWCCs, but without validation against experimental data. Part of the 

following work was published by Liu and Muraleetharan (2006) and Muraleetharan et al. 

(2008). Here, some modifications are adopted and more validations on the proposed 

SWCCs model are carried out. 

 

3.3.1 BOUNDING CURVES 

 

Observations on Fig. 3.1 indicate that the primary drying curve is not appropriate 

to be selected as one of the bounding curves because of the air entrapment. Therefore, it 

is convenient to select the primary wetting curve and the secondary drying curve as 

bounding curves and the equation proposed by Feng and Fredlund (1999) may be used to 

describe these two curves as given below:  
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where:  is the water content at zero suction (= porosity, ,  is the residual water 

content at very high suction. , ,  and  are four material parameters and  and 

 have the same unit as suction in this study. The adoption of Eqs. (3.4) to simulate the 

bounding curves is based on the observation that  when suction  and 

 when suction is very high. Any other appropriate equations for the bounding 

curves can also be used as long as they provide enough accuracy for curve-fitting the test 

results.  

satn )n resn

1b 1d 2b 2d 1b

2b

satw nn = kPasc 0=

resw nn =

 

3.3.2 CAPILLARY ELASTIC AND PLASTIC MODULI 

 

Because suction is the stress variable and it is a scalar, the description of SWCCs 

can be treated as a one-dimensional problem. Volume fraction of water is regarded as the 

conjugated strain-like variable to suction. In this way, the relationship between suction 

and volume fraction of water, i.e., SWCCs is an equivalent problem as the classical 

elastoplastic problem. At the beginning of any drying/wetting cycle, purely capillary 

elastic behavior is expected. That is, the volume fraction change will be totally 

recoverable upon suction reversal. During other parts of drying/wetting cycles the 

behavior will be capillary elastoplastic. Similar to the elastoplastic theory, the capillary 

elastic and plastic moduli,  and eΓ pΓ , can be respectively defined as: 

 

e
w

e
c dnds Γ=  (3.5) 

p
w

p
c dnds Γ=  (3.6) 
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where:  is the increment in suction and  and  are the increments in 

recoverable (elastic) and irrecoverable (plastic) volume fraction of water. 

cds e
wdn p

wdn

 

Generally speaking, a constant capillary elastic modulus eΓ  can provide sufficient 

accuracy. Usually,  is a large number and this means the elastic behavior of SWCCs is 

not dominant and purely elastic behavior of SWCCs just occurs at the very beginning 

portion of each scanning curve. Actually, it is convenient to assume that the yielding of 

SWCCs starts at the beginning of each suction path change without losing any accuracy. 

In addition, the capillary elastic modulus can be related to suction if enough test data are 

available for such a treatment. According to Dafalias and Popov (1976), capillary plastic 

modulus  on the current stress state point can be assumed to have the following 

functional form: 

eΓ

pΓ

 

( in
pp δδ ,Γ=Γ )  (3.7) 

 

where: δ  is the vertical distance (in suction units) between the current stress state point 

and its corresponding bounding curve; inδ  is the value of δ  at the initiation of yielding 

for each drying/wetting process. Fig. 3.6 illustrates the meanings of inδ  and δ . 

 

In Fig. 3.6, the calibration scanning curve is a drying curve, starting from the 

lower bound and ending at the upper bound. δ  is the vertical distance between the 

current state point and the drying bound. It is also possible that the scanning curve does 
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not start from either bound, because suction path can change anytime and anywhere 

between two bounds. Similarly, to predict the scanning curve during wetting process, the 

wetting bound is used to calculate the plastic modulus. For each drying or wetting path, a 

new inδ  needs to be calculated. inδ  does not change until the suction path is changed 

from wetting to drying or from drying to wetting.  
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  δδ
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Fig. 3.6 Illustration of δ  and inδ  for the SWCCs model 

 

Assuming the standard additive decomposition, the following relationships hold 

for all state points on SWCCs. 

 

p
w

e
ww dndndn +=  (3.8) 

pe Γ+Γ=Γ /1/1/1  (3.9) 
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where:  is the tangent capillary modulus in Γ wc ns −  space. 

 

Dafalias and Popov (1976) proposed a possible evolution equation for . With 

some modifications this evolution equation can be expressed as: 

pΓ

 

( >−<⋅+Γ=Γ δδδ gh in
pp /10 )  (3.10) 

 

where:  is the value of  when p
0Γ pΓ 0=δ , i.e., the value of pΓ on the bounding curves. 

is a model parameter, which typically ranges from 1.0 to 2.0. In this study, it is set to 

be 1.0. < > is the Macaulay brackets. When 

g

inδδ = , ∞=Γ p  and it means the elastic 

behavior dominates, which occurs at the beginning of each drying or wetting process. 

When 0=δ ,  and it means the scanning curve merges onto the corresponding 

bounding curve and develops along that bounding curve.  is a shape parameter, which 

can be a constant or can be made to be a function of 

pp
0Γ=Γ

h

δ  and inδ  as follows: 

 

( )mrfh ⋅+= 1/ρ  (3.11) 

inr δδ /=  (3.12) 

 

where: ρ ,  and  are three other parameters. In fact, a constant shape parameter  

provides enough accuracy. For simplicity, a constant  is used in this study.  

f m h

h

 

 59



 Based on the bounding surface plasticity concept, a simple SWCCs model is 

developed for simulating the hysteretic behavior of SWCCs. The model is described 

within the framework of classical elastoplasticity theory. The only difference in this 

SWCCs model is the selection of stress and strain variables to be suction and volume 

fraction of water, respectively. All other concepts are identical, for example the capillary 

elastic and plastic moduli correspond to the elastic and plastic moduli used in the 

description of the stress-strain behavior. 

 

3.3.3 SWCCS MODEL CALIBRATION 

 

Because of air entrapment, the primary drying curve generally gives unstable soil 

water characteristics if the soil starts drying from a saturated state (see Fig. 3.1). To apply 

the proposed SWCCs model, the secondary drying and the primary wetting curves (i.e., 

bounding curves) and a scanning curve are required to calibrate the model parameters. As 

to the bounding curves, there are six parameters to be calibrated.  and  can be 

determined very easily from the bounding curves. , ,  and  should be 

determined using a trial-and-error procedure. Any scanning curve can be used to calibrate 

 and . The initial portion of the scanning curve will be used to find out  while the 

shape parameter  has to be calibrated in a trial-and-error way.  

resn satn

1b 1d 2b 2d

eΓ h eΓ

h

 

3.4 SWCCS MODEL PERFORMANCE 
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To check the performance of the proposed SWCCs model, available test results 

for several different soils are compared with the model predictions. The test results cover 

a wide range of soil samples, including different sands (e.g. Topp, 1969; Poulovassilis, 

1970a; Gillham et al., 1976; Dane and Hruska, 1983; Chen et al., 2007), silt loam (e.g. 

Topp, 1971 a & b; Clothier and Smettem, 1990; Haverkamp et al., 1997), clay loam (e.g. 

Dane and Hruska, 1983) and some glass-bead medium (e.g. Topp and Miller, 1966). All 

the model parameters are calibrated and given in Table 3.1. In this study, the SWCCs 

data from six different sands, three different silts, one clay and two glass-bead media are 

used to check the validity of the proposed SWCCs model. For the convenience to 

compare the predictions with the original test results, all the units in the model are 

modified according to the original units used in the corresponding test programs. For 

example, the suction unit may be given in cm (centimeter) of water, instead of kPa. In 

some cases, degree of saturation, not volume fraction of water is used to represent the 

water content information. The model predictions are, however, carried out using suction 

and volumetric water content as stress-strain variables as described before. 

 

Fig. 3.7 illustrates the comparison between measured and predicted scanning 

curves for the U.S. Silica (Berkeley Springs, West Viginia) F-95 sand (Chen et al., 2007). 

Using the calibrated model parameters, predictions are made for a complex suction path 

given by 8.62 kPa (A) → 4 kPa (B) → 9.2 kPa (C) → 4.1 kPa (D) → 8.0 kPa (E) with 

the starting point at (0.06, 8.62 kPa). These scanning curves were not used in the 

calibration of the model parameters. The scanning curve used for the calibration is shown 

in Fig. 3.6. Although not shown here the same set of model parameters can be used to 
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predict all the other scanning curves. The detailed material information and experimental 

setup can be found in Chen et al. (2007). The refined treatment of eΓ  and h  may 

significantly improve the model performance for certain soils, but in this study constant 

values for these parameters provided sufficient accuracy. 

 

 Fig. 3.8 compares the predicted scanning drying curve (SDC) and wetting curve 

(PWC) with the measurements for Las Cruces sand (Dane and Hruska, 1983). The model 

accurately predicts all the other scanning curves. In addition, the equations of the 

bounding curves work very well too. 

  

The next example illustrates the predictions and measurements of the hysteretic 

behavior of Rubicon sandy loam (Topp, 1969). Although the simulation of the 

drying/upper bound at low suction is not good, the overall model performance is 

satisfactory. The shape of the drying/upper bound is too much different from that of the 

wetting/lower bound. Recall that all the drying scanning curves are predicted based on 

the slope at each point on the dry bound and the distances between suction states on the 

scanning curves and the dry bound. Because of the discrepancy in some portion of the dry 

bound, the simulations of the wetting scanning curves are better than those of the drying 

scanning curves. Of course, a more accurate bounding curve equation other than the one 

proposed by Feng and Fredlund (1999) can be used for better simulation of the bounding 

curves and then of the scanning curves. Although related research is not carried out, it is 

even possible that totally different forms of the drying bound and the wetting bound can 

be used to predict the scanning curves. Generally speaking, better bounding curve 
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equations will give better simulations of scanning curves. For some special soils, the 

bounding curves can even be divided into different pieces and piecewise functions can be 

used to carry out the analysis to obtain better predictions. 

 

Fig. 3.10 compares the measurements and predictions of scanning curves of Wray 

dune sand (Gillham et al., 1976) and reasonable predictions are achieved. Fig. 3.11 and 

Fig. 3.12 deal with the hysteretic behavior of two different porous bodies I and II 

(Poulovassilis, 1970a). Both porous bodies are essentially sand. Porous body I has a 

slightly wider pore size distribution than porous body II. From Table 3.1, the calibrated 

model parameters are very close for porous body I and body II. All the predictions, 

including the bounding curves are satisfactory.  

 

Figs. 3.13 through 3.15 present the model predictions for three silts, i.e., Caribou 

silt loam (Topp, 1971 a & b), silt loam (Haverkamp et al., 1997) and Manawatu silt loam 

(Clothier and Smettem, 1990). Because silts have smaller size particles than sands, it 

takes a longer time to reach equilibrium whenever suction changes. To run SWCCs tests 

on silts is time consuming. Especially, the soil water characteristic data of silts do not 

provide smooth evolution curves and this phenomenon has been observed by many 

researchers, e.g., Chen (2006). For the three silts given here, only very limited data are 

available. Although there are only limited data available, the overall performance of the 

SWCCs model is satisfactory.  
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Fig. 3.16 illustrates the capillary hysteresis of Rideau clay loam (Topp, 1971a). 

This is the only case study dealing with the hysteretic SWCCs of clay. Clays generally 

have very fine particles and suction can reach high levels. Too many uncertainties, such 

as organic components make the investigation of soil water characteristics of clays 

difficult. SWCCs tests on clays can take couple of months or even years. New techniques 

to measure SWCCs are badly needed to provide complete results in a reasonable time 

period. Considering the time-consuming process to get complete SWCCs of clay, the 

SWCCs model provides an alternative way to account for the suction effects on clay 

hydraulic behavior when limited test data are available. The overall performance of the 

simple SWCCs model on predicting SWCCs behavior of clays is reasonably shown in 

Fig. 3.16. 

 

Figs. 3.17 and 3.18 show the model performance for man-made glass-bead media 

(Topp and Miller, 1966). The two glass samples have different pore-space geometries. 

The glass-bead media I is composed of relatively uniform glass spheres of about 180 µm 

in diameter, while the glass-bead media II is composed of much smaller aggregated glass 

beads. As expected, Figs. 3.17 and 3.18 clearly show that the model yields very good 

predictions of the hysteretic scanning curves. 

 

3.5 SUMMARY 

 

In this chapter, a thorough literature review on modeling both single SWCC and 

hysteretic SWCCs was presented. The physical explanation for the hysteresis in SWCCs 
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in porous media was briefly discussed. Within the framework of classical elastoplasticity 

theory, a simple SWCCs model based on the bounding surface plasticity concept was 

proposed. An extensive validation study of the proposed model was carried out using test 

results for different porous media and satisfactory comparisons between model 

predictions and test results are obtained. This simple SWCCs model will be implemented 

into the constitutive model of unsaturated soils to investigate the coupling effects 

between mechanical and hydraulic behavior in the next two chapters. 
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Table 3.1 Model parameters for SWCCs model validation 

 Sand1 Sand2 Sand3 Sand4 Sand I5 Sand II5 Silt6 Silt7 Silt8 Clay9 Glass-Bead A10 Glass-Bead B10

1b  4.2 16.2 38.0 19.9 19.3 21.1 40.0 443 27.0 28.0 29.2 26.4 

1d  8.0 4.4 1.5 4.4 3.1 3.1 1.2 3.7 2.8 1.5 7.7 7.1 

2b  2.7  33.7 98.0 33.8 26.9 29.7 139 881 52.5 73.0 47.4 40.2 

2d  0.8  4.3 4.0 8.6 4.5 6.1 2.6 3.7 2.8 2.2 14.9 9.9 
eΓ  100−  -1800 -1500 -1700 -1200 -1200 -5000 -14000 -1000 -5500 -150 -150 

h  0.7  5.0 7.0 7.0 3.0 2.0 10.0 7.0 5.0 7.0 15.0 16.0 

satn  3.0  0.386 0.38 0.3 0.2725 0.258 0.402 0.443 0.293 0.415 0.833 0.9 

resn  053.0  0.006 0.157 0.1 0.05 0.05 0.306 0.01 0.015 0.285 0.1 0.2 66 

Note 1: 

1: U.S. Silica F-95 sand (Chen et al., 2007)    2: Las Cruces sand (Dane and Hruska, 1983) 
3: Rubicon sandy loam soil (Topp, 1969)    4: Wray dune sand (Gillham et al., 1976) 
5: Porous body I and porous body II (Poulovassilis, 1970a)  6: Caribou silt loam (Topp, 1971 a & b) 
7: Silt loam (Haverkamp et al., 1997)     8: Manawatu silt loam (Clothier and Smettem, 1990) 
9: Rideau clay loam (Topp, 1971a)     10: Glass-bead media (Topp and Miller, 1966)  
 
Note 2:  
 
Only suction in sand1 is in kPa and other suctions are in cm (centimeter) of water. ,  and 1b 2b eΓ  have the same unit as suction. Only 
water content in glass-beads10 is in degree of saturation, while others are in volume fraction of water. 
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Fig. 3.7 Comparison between measured and predicted scanning curves for the U.S. Silica 
F-95 sand (test results from Chen et al., 2007) 
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Fig. 3.8 Comparison between measured and predicted scanning curves for Las Cruces 
sand (test results from Dane and Hruska, 1983) 
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(a) Wetting scanning curves 

0.15 0.20 0.25 0.30 0.35 0.40
Volume fraction of water

50

150

0

100

200

Su
ct

io
n 

(c
m

 w
at

er
)

Bounding curves (measured)

Bounding curves (fitted)

Scanning curves (predicted)

 

(b) Drying scanning curves 

Fig. 3.9 Comparison between measured and predicted scanning curves for Rubicon sandy 
loam soil (test results from Topp, 1969) 
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(a) Wetting scanning curves 
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(b) Drying scanning curves 

Fig. 3.10 Comparison between measured and predicted scanning curves for Wray dune 
sand (test results from Gillham et al., 1976) 
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(a) Wetting scanning curves 
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(b) Drying scanning curves 

Fig. 3.11 Comparison between measured and predicted scanning curves for porous body I 
(test results from Poulovassilis, 1970a) 
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(a) Wetting scanning curves 
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(b) Drying scanning curves 

Fig. 3.12 Comparison between measured and predicted scanning curves for porous body 
II (test results from Poulovassilis, 1970a) 
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(a) Wetting scanning curves 
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(b) Drying scanning curves 

Fig. 3.13 Comparison between measured and predicted scanning curves for Caribou silt 
loam (test results from Topp, 1971 a & b) 
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Fig. 3.14 Comparison between measured and predicted scanning curves for a silt loam 
(test results from Haverkamp et al., 1997) 
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Fig. 3.15 Comparison between measured and predicted scanning curves for Manawatu 
silt loam (test results from Clothier and Smettem, 1990) 
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(a) Wetting scanning curves 
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(b) Drying scanning curves 

Fig. 3.16 Comparison between measured and predicted scanning curves for Rideau clay 
loam (test results from Topp, 1971a) 

 74



 

0.00 0.20 0.40 0.60 0.80 1.00
Degree of saturation

20

60

0

40

80

Su
ct

io
n 

(c
m

 w
at

er
)

Bounding curves (measured)

Bounding curves (fitted)

Scanning curves (predicted)

 

(a) Wetting scanning curves 
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(b) Drying scanning curves 

Fig. 3.17 Comparison between measured and predicted scanning curves for glass-bead 
media I (test results from Topp and Miller, 1966) 
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(a) Wetting scanning curves 
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(b) Drying scanning curves 

Fig. 3.18 Comparison between measured and predicted scanning curves for glass-bead 
media II (test results from Topp and Miller, 1966) 
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CHAPTER 4 

 

AN ISOTROPIC MODEL FOR UNSATURATED SOILS 

 

 

4.1 INTRODUCTION 

  

In Chapter 2, a thorough literature review was carried out to investigate the 

selection of stress-strain variables and constitutive modeling of unsaturated soil behavior. 

From Eq. (2.10) in Chapter 2, it is clear that the intergranular stress is directly related to 

both suction and water content, so it stands to reason that the mechanical behavior of 

unsaturated soil is strongly dependent on the soil state relative to the SWCCs. Although 

many either simple or complicated models have been proposed in the past decades, most 

of these models have focused on the mechanical behavior and neglected the coupling 

effects between the mechanical and hydraulic mechanisms. In Chapter 3, a simple 

SWCCs model was presented to show that the suction path has a strong effect on the 

hysteretic relationship between suction and water content. In fact, not only the wetting 

and drying history, but also the stress history of the soil has strong influence on SWCCs. 

Besides the stress or strain history, both the suction history and water content influence 

the stress-strain behavior of unsaturated soils as well. To simulate the unsaturated soil 

behavior in a complete sense, it is necessary to incorporate both mechanical and 
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hydraulic behavior in the constitutive model. Both mechanisms are not independent and 

they affect each other in an interactive way and this idea is supported by laboratory work, 

such as Sun et al. (2007c) and Miller et al. (2008). 

 

In recent years, the important role of SWCCs in unsaturated soil mechanics has 

come to the forefront of geotechnical research. Although major progress has been made, 

it is apparent that additional research is needed to improve existing models and develop 

new models. As discussed in Chapter 2, there are very few models that incorporate 

hysteresis in SWCCs and none are widely accepted. This is partly because there are very 

little experimental data available that reveals the detailed relationship between the 

SWCCs and externally applied stress. It is worth to note that some valuable data do exist 

(e.g., Ng and Pang, 2006; Ho et al., 2006; Miller et al., 2008), but they are relatively 

limited in terms of the number of tests and variables examined. To investigate the 

coupling effects between mechanical and hydraulic behavior of unsaturated soils is a 

relatively new topic and it is still under development.  

 

In this chapter, a simple isotropic constitutive model for unsaturated soils is 

proposed. The coupling effects between mechanical and hydraulic behavior are fully 

considered. The hysteretic SWCCs model presented in Chapter 3 is incorporated in this 

isotropic model to account for the coupling effects between hysteretic SWCCs and stress-

strain behavior of unsaturated soils. The main purpose of this chapter is to present a 

general idea on how to describe the coupling effects between stress-strain behavior and 

SWCCs. The proposed isotropic model will be validated via comparing the model 
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predictions against available laboratory test results. A hypothetical soil is also used to 

predict some special characteristics of unsaturated soils under complex suction and stress 

paths. 

 

4.2 ISOTROPIC MODEL FORMULATION 

  

This section presents a coupled hydraulic-mechanical constitutive model for 

unsaturated soils by combining the elastoplastic SWCCs presented in Chapter 3 with an 

isotropic elastoplastic stress-strain model for the solid skeleton. While the SWCCs are 

described using a bounding surface plasticity model as detailed earlier, the isotropic 

stress-strain behavior is described using a classical, yield surface-based, plasticity model 

in a manner similar to the one proposed by Wheeler et al. (2003). The coupled model is 

presented here to illustrate the capabilities of the elastoplastic framework described. The 

framework and the concepts presented are general enough to allow the use of more 

sophisticated models to describe the stress-strain behavior as shown in Chapter 5.  

 

In this isotropic model, the stress variables are the mean intergranular stress from 

Eq. (2.10) and matric suction. Their conjugated strain variables are volumetric strain and 

volume fraction of water. The model formulation and all the calculations are expressed 

using these conjugated stress-strain variables. For convenience, the stress-strain variables 

shown in the figures are those typically used in unsaturated laboratory tests. For example, 

net stress and degree of saturation are common variables for external loading and water 

content used in laboratory tests, respectively. Volumetric strain is generally given in 
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terms of specific volume or void ratio change. 

 
The discussion on the theory of this isotropic model is part of the work by 

Muraleetharan et al. (2008). The case studies in Section 4.3 used to validate the isotropic 

model performance are part of Muraleetharan et al. (2008) and Miller et al. (2008). 

 

4.2.1 HARDENING LAWS 

 

The hardening laws define the modification of the yield surfaces during the 

process of plastic flow. Since the irrecoverable volume fraction of water and plastic 

volumetric strain are treated as plastic strain variables, the evolution of all the bounding 

surfaces, including the bounding suction curves and the yield mean intergranular stress is 

affected by both the irrecoverable volume fraction of water and plastic volumetric strain. 

The effect of soil deformation on the hysteresis of SWCCs has been extensively 

discussed by many researchers, such as Li (2007 a&b), Gallipoli et al. (2008) and Nuth 

and Laloui (2008b). In the current research, it is assumed that the plastic volumetric strain 

of soil skeleton has a direct effect on the bounding suctions. The history of soil skeleton 

deformation therefore affects the bounding suctions. Once the bounding suctions change, 

any scanning SWCC curve shifts. In this way, the effect of soil deformation on the 

SWCCs can be appropriately accounted for. Simultaneously, the irrecoverable volume 

fraction of water also influences the yield stress of the soil skeleton. Essentially, the 

irrecoverable volume fraction of water represents a joint effect from both the stress-strain 

history and the suction history. Any volumetric deformation of soil skeleton during 

drying or wetting process can be captured well through this method. With fully 
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consideration of the coupling effects between the mechanical and hydraulic mechanisms, 

the coupled hardening laws for SWCCs and soil skeleton are defined as follows: 

 

p
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p
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p
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p
c ddnds εΓ+Γ= 00  (4.1) 

p
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p dnKdKpd 100 +=′ ε  (4.2) 

 

The hardening laws given above describe the change in bounding suction ( ) 

and yield mean intergranular stress (

0cs

0p′ ) with respect to changes in plastic volumetric 

strain ( ) and irrecoverable volume fraction of water ( ). The bounding suction refers 

to values on two different curves, the wetting bounding curve and the drying bounding 

curve. The coefficients in Eqs. (4.1) and (4.2) are defined as ‘plastic moduli’.  is the 

value of capillary plastic modulus  on the bounding curves and it is defined in Eq. 

(3.10) in Chapter 3. The other three moduli are defined as: ,  and 
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101 ηpK p ′−= ζ , 0η  and 1η  are three material parameters and  is the specific 

volume, which is defined in terms of porosity n as: 

v

n
v

−
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1
1 . Both Eqs. (4.1) and (4.2) 

state that the plastic volumetric strain and irrecoverable volume fraction of water have 

effects on the bounding suctions and the yield mean intergranular stress. In addition, the 

inclusion of specific volume v  in  and  has similar function to the capillary 

bonding function proposed by Gallipoli et al. (2003a). The hardening laws in Eqs. (4.1) 

and (4.2) are one of the special features that differentiate the current model from other 

p
vΓ

pK0
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models. The coupling effects between the mechanical and hydraulic mechanisms are fully 

accounted for using the hardening laws. 

 

4.2.2 YIELD FUNCTIONS 

 

Similar to what Wheeler et al. (2003) assumed, the yield surface, which is plotted 

in Fig. 4.1, is composed of three curves, i.e., the drying bound BC, the wetting bound AD 

and the yield mean intergranular stress AB.  

 

cs

A

BC

D
wcs 0

dcs 0

),'( csp.
. ),'( 0dcsp

.
),'( 0wcsp

p′0p′  

Fig. 4.1 Yield surfaces of the isotropic model 

 

The bounding/yield curves are described by the following three functions:  

 

0pp ′=′  (4.3) 

wcc ss 0=  (4.4) 

dcc ss 0=  (4.5) 
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where:  and  stand for bounding suctions on the primary wetting and secondary 

drying curves, respectively. Rearranging Eq. (3.4) in Chapter 3,  and  can be 

calculated as follows: 

wcs 0 dcs 0

wcs 0 dcs 0

 

The primary wetting curve: 
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The secondary drying curve: 
2
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where:  is the water content at zero suction ( = porosity .  is the residual water 

content at very high suction.  is current water content. , ,  and  are four 

material parameters and  and  have the same unit as suction in this study. 

satn )n resn

wn 1b 1d 2b 2d

1b 2b p′  is the 

mean intergranular stress, which is the first invariant of the intergranular stress tensor 

(see Eq. (2.10)) and is given by:  

 

( ) cwa snppp +−=′+′+′=′ )(
3
1

332211 σσσ  (4.8) 

 

where: p  and  are the mean total stress and pore air pressure, respectively. ap

( )3322113
1 σσσ ++=p , where 11σ , 22σ  and 33σ  are the total stresses.  is the suction. cs
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4.2.3 ELASTIC RESPONSES 

 

Elastic responses of the solid skeleton and water content are given by: 
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where: k is a constant standing for the slope of an elastic swelling line in the pv ′− ln  

space.  is the capillary elastic modulus. eΓ

 

4.2.4 FLOW RULES 

 

A flow rule is the necessary kinematic assumption postulated for plastic 

deformation or plastic flow. Flow rules define how the plastic volumetric strain and 

irrecoverable water content change with yield intergranular stress and yield suction. A 

general form of yield function and its consistency condition are given as follows: 
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According to the bounding surface plasticity concept (Dafalias and Herrmann, 

1975&1976), the loading index can be written as: 
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where:  and pK pK  are the actual plastic modulus and the bounding plastic modulus, 

respectively. Recall the yield surface in Eqs. (4.3) to (4.5) and the loading indices along 

AB and BC or AD can be written as follows: 
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The plastic volumetric strain and irrecoverable volume fraction of water are 

treated as internal variables and the flow rules can be given as follows: 
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Recall the definition of the capillary plastic modulus: 
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( >−<⋅+Γ=Γ δδδ gh in
pp /10 )  (4.18) 

 

Eq. (4.16) is consistent with the flow rule  and Eq. (4.17) is 

consistent with the flow rule . The definitions of plastic moduli  and 

 are given in Eq. (3.10) in Chapter 3.  
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These flow rules imply that the yield curve given by 0pp ′=′  and the bounding 

curve(s) given by (or ) are perpendicular to each other on the  plane. 

At the intersection of the bounding curve(s) and the yield curve,  and  are 

calculated by solving two simultaneous equations given by Eqs. (4.1) and (4.2): 

wcc ss 0= dcs 0 csp −′

p
vdε p

wdn

 

( ) ( ) 0

0

0100

0
0

0100

1

p
pd

sv
ds

sv
d

c
p

p

c
c

p
p

v ′
′

+Γ
Γ

+
+Γ

=
ζηηζηη

η
ε  (4.19) 

( ) ( ) 0

0

0100

0
0

0100

0

p
pd

s
s

ds
s

dn
c

p
c

c
c

p
p
w ′

′
+Γ

−
+Γ

=
ζηη

ζ
ζηη

η
 (4.20) 

 

 So far, the isotropic model formulation has been completely presented in terms of 

mean intergranular stress and suction. The coupling effects between mechanical and 

hydraulic behavior of unsaturated soils are fully described and the hysteretic SWCCs 

model is included in this isotropic coupled model. Although the definitions of yield 

surface, flow rules and hardening laws are simple, the idea to investigate the coupling 

effects is fully described. 

 86



 

4.2.5 ISOTROPIC MODEL CALIBRATION 

 

How to calibrate the SWCCs model parameters is given in Chapter 3 and the 

procedure is not repeated here. Besides the six parameters of SWCCs model, four 

additional parameters, , k ζ , 0η  and 1η   are required to describe the coupled hydraulic-

mechanical behavior. The parameter  can be obtained from an unloading-reloading 

portion of a constant suction oedometer test  and k  is the slope of that portion of the 

curve in  space. With  obtained the parameter 

k

pe ′− ln k 0η  can be calibrated by 

matching the loading curves during a constant suction oedometer test in pe ′− ln  space. 

The calibration of the parameters ζ  and 1η  will require coupled hydraulic-mechanical 

tests where the soil undergoes plastic volume and irrecoverable water content changes. A 

wetting-induced collapse test is one such test. To calibrate all the model parameters, 

SWCCs with bounding curves and a scanning curve, a constant suction oedometer test 

and a constant external loading flooding test are needed. Although these tests are not 

trivial, they are becoming common in terms of studying the behavior of unsaturated soils. 

Some important progress in accelerating the measurement of SWCCs is described by 

Chen et al. (2007) and Miller et al. (2008).  

 

4.3 ISOTROPIC MODEL VALIDATION 

 

Very limited experimental results are available in the literature to investigate the 

coupling effects between hydraulic and mechanical behavior of unsaturated soils. The 
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dearth of test data on this topic is mainly due to the time-consuming procedure to run 

tests to obtain hysteretic SWCCs. The other possible reason for the lack of test data is 

that the earlier researchers did not pay enough attention to the coupling effects. Most of 

the available test programs dealt with the mechanical behavior of unsaturated soils under 

constant or different suctions, but very few studies investigated the effects of external 

loading on the soil water characteristics, especially the hysteretic property of SWCCs. 

Simple isotropic collapse tests conducted by Sun et al. (2007c) on Pearl clay are first 

used to illustrate the capabilities of the proposed model. Then predictions for three 

different hypothetical, but complex tests with varying stresses and suctions that can be 

carried out in the laboratory are presented to give further insight into the capabilities of 

the model. Finally, another valuable set of laboratory results from the University of 

Oklahoma (Miller et al., 2008) are used to check the validity of the proposed isotropic 

constitutive model for unsaturated soils. In unsaturated laboratory tests, stress quantities 

traditionally reported are net stress and suction. Traditional stress strain quantities are 

used to report the predictions to provide insight for the readers into the behavior predicted 

by the model. The model calculations are, however, carried out using intergranular stress 

and suction as illustrated in the model development. All the model parameters used in 

these predictions are given in Table 4.1.  

 

4.3.1 PEARL CLAY: CONSTANT MEAN NET STRESS COLLAPSE TESTS  

 

This series of suction-controlled triaxial tests (Sun et al., 2007c) were designed to 

investigate the collapse behavior of unsaturated compacted clay. Pearl clay reported by 
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Sun et al. (2007c) has a liquid limit of 49, a plasticity index of 22, and a specific gravity 

of 2.71. As shown in Fig. 4.2a, only the primary wetting curve is available. The measured 

curve shown in Fig. 4.2a is obtained at a mean net stress )( app −  of 20 kPa. This curve 

is used to calibrate the parameters , , , and . Typical values are used for rest 

of the SWCCs parameters and these values are given in Table 4.1. Predicted secondary 

drying curve and a scanning curve with this set of parameters are also shown in Fig. 4.2a 

and the predictions appear reasonable. Next, the coupling parameters and the stress-strain 

parameter k  are calibrated using an isotropic collapse test.  comes directly from the 

initial portion of  at constant suction of 147 kPa, which is Loading Phase #1 

given below. Loading Phases #2 and #3 are used to calibrate 

1b 1d satn resn

k

pv ′− ln

ζ , 0η  and 1η . The test 

results and the calibrated model predictions are shown in Fig. 4.2b. The stress path for 

this test involves three different loading phases as given below: 

 

Loading Phase #1: Constant suction 147 kPa, mean net stress: 20 kPa (A) → 98 kPa (B); 

Loading Phase #2: Constant mean net stress 98 kPa, suction: 147 kPa (B) → 0 kPa (C); 

Loading Phase #3: Constant suction 0 kPa, mean net stress: 98 kPa (C) →196 kPa (D). 

Initial conditions at A are as follows: 314.0=wn ; mean yield intergranular stress, 

.   kPa0.950 =′p

 

 Finally, using the calibrated model parameters another collapse test results are 

predicted as shown in Fig. 4.2c. Compared with the test used for model calibration, the 

only difference of the validation test lies in the mean net stress when wetting occurs. For 

the calibration test, the suction is reduced from 147 kPa to 0 kPa at a mean net stress of 
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98 kPa, while for the validation test, the wetting occurs at mean net stress of 49 kPa. 

Model predictions compare reasonably well with the measured results.  

 

4.3.2 HYPOTHETICAL SOIL: CONSTANT-SUCTION ISOTROPIC LOADING 

TESTS 

 

The soil experiences isotropic loading at a constant suction  and 

initial volume fraction of water, 

kPasc 50=

35.0=wn . Initial specific volume of the soil sample, 

 corresponding to a porosity ( ) of 0.44. The mean net stress path is given as: 10 

kPa (A) → 200 kPa (C) → 10 kPa (D) → 1000 kPa (G). The mean yield intergranular 

stress is initially set at . The results are presented in Figs. 4.3a and 4.3b. In 

Fig. 4.3b and several other figures, degree of saturation, , is used to clearly illustrate 

the behavior after the soil becomes a two-phase material. For the predictions presented 

here, the soil is treated as a two-phase material when  

8.1=v n

kPap 1410 =′

rs

.999.0≥rs

 

During the loading from A to B, only elastic volumetric strains are calculated. At 

point B, the yield surface is reached and the elastoplastic behavior begins. The 

elastoplastic behavior is sustained until the mean net stress increase ends at point C. From 

C to D unloading occurs and the soil exhibits purely elastic behavior. During the 

reloading phase the yield surface is reached again at point E. As the mean net stress keeps 

increasing, the soil becomes compressed and the degree of saturation keeps increasing 

simultaneously. Finally, the soil reaches a saturated state at point F, resulting in a change 

in slope of the specific volume-mean net stress curve after point F as shown in Fig. 4.3a.  

 90



 

4.3.3 HYPOTHETICAL SOIL: MOVEMENT OF THE SWCCS DUE TO 

CHANGES IN NET STRESS  

 

Wetting-drying curves are predicted for two different mean net stresses, 60 and 

600 kPa as shown in Figs 4.4a and 4.4b. The initial conditions at Point A are: 

, , kPapp a 60=− kPasc 120= 16.0=wn , 2.2=v , 29.0=rs , and . First, 

at a constant mean net stress of 60 kPa a wetting-drying cycle is carried out given by the 

suction path: 120 kPa (A) → 30 kPa (C) → 120 kPa (D). For the second simulation 

starting with the same initial conditions at Point A, the mean net stress is increased from 

60 kPa to 600 kPa while keeping the suction at 120 kPa (A to E). This loading is then 

followed by a wetting-drying cycle 120 kPa (E) → 30 kPa (F) → 120 kPa (G).  

kPap 1410 =′

 

For the simulation at a mean net stress of 60 kPa, starting at point A, the degree of 

saturation increases during the wetting process and the soil becomes saturated. During the 

initial part of this wetting phase (A → B), due to the reduction in the intergranular stress, 

the soil experiences increase in volume. Towards the end of the wetting phase (B → C), 

however, slight reduction in volume can be observed. The reason for this reduction in 

volume is the change in  due to the coupling effect given by Eq. (4.2) during the 

wetting process. Although suction keeps decreasing from A to B and then to C, swelling 

is observed during AB portion while collapse occurs during BC. After the mean net stress 

is increased from 60 kPa to 600 kPa, the same suction path (see EFG) is applied onto the 

soil. Similar behavior of volume change occurs, but the magnitudes of swelling and 

0p′
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collapse during EF are much smaller than those during ABC. The large volume decrease 

observed from A to E prevents further volume change during the wetting process from E 

to F. Additional volume change can be observed during subsequent drying from F to G. 

The hysteresis in SWCCs and the influence of the net stress on the SWCCs are clearly 

shown in Fig. 4.4a. In this case study, the effects of external loading (i.e., mechanical 

behavior) on hydraulic behavior are presented.  

 

4.3.4 HYPOTHETICAL SOIL: COMPLEX STRESS PATHS 

 

This simulation involves three different loading phases: 

 

Loading Phase #1: Constant suction 100 kPa, mean net stress: 50 kPa (A) → 200 kPa (C) 

→ 50 kPa (D); 

Loading Phase #2: Constant mean net stress 50 kPa, suction: 100 kPa (D) → 60 kPa (E) 

→ 100 kPa (F); 

Loading Phase #3: Constant suction 100 kPa, mean net stress: 50 kPa (F) → 800 kPa (H). 

Initial state: , , 2.2=v 16.0=wn 29.0=rs , kPap 1410 =′ .  

 

The predictions are illustrated in Figs. 4.5a and 4.5b. During the Loading Phase 

#1, the soil behavior is very similar to what is shown in Fig. 4.3a. The yield surface is 

reached at Point B and elastoplastic strains are predicted from B to C. When the mean net 

stress experiences a reduction from 200 kPa to 50 kPa, only elastic volumetric strains are 

predicted.  
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During the wetting-drying cycle in Loading Phase #2, the soil experiences elastic 

swelling from D to E and then elastic compression from E to F (Fig. 4.5a). During this 

phase the degree of saturation changes from point D to point E and then comes back to 

point F as shown in Fig. 4.5b. During the Loading Phase #3, the yield surface is reached 

at point G, different from the point C reached during the Loading Phase #1. The wetting-

drying cycle in Loading Phase #2 leads to a change in yield pint from C to G.  

 

4.3.5 OU MIXTURE: LOADING HISTORY EFFECTS ON SWCCS 

 

This series of laboratory tests conducted by Miller et al. (2008) seems to be one of 

the first sets of data investigating the coupling effects between mechanical and hydraulic 

behavior of unsaturated soils in a systematic way. The OU mixture is a mixture of two 

commercially available manufactured porous media, Sil-Co-Sil 250 (U.S. Silica 

Company) and Glass Beads, Size BT-9 (Zero Products). Its grain size distribution is 

similar to that of fine sandy silt having about 48% fine sand, 46% silt and 6% clay. 

Details on the mixture can be found in Miller et al. (2008). The SWCCs conducted for 

net vertical stress of 10 kPa and 200 kPa are presented in Figs. 4.6a and 4.6b, 

respectively. The bounding curves for these two net vertical stresses are compared in Fig. 

4.6c. The SWCCs model parameters are calibrated from the 10 kPa net vertical stress 

results. This calibration and all the subsequent predictions are made using a coefficient of 

earth pressure at rest,  of 1.0. That is, the vertical stress is assumed to be same as the 0K
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mean stress. The measured and predicted SWCCs for net vertical stress of 10 kPa are 

presented in Fig. 4.6d.  

 

 The four additional isotropic model parameters were calibrated from the test 

results given in Fig. 4.6e. With these calibrated model parameters, the SWCCs for 200 

kPa net vertical stress are predicted following a stress/suction change path that simulates 

the stress/suction change path for a portion of the experiment. Specifically, starting with 

as compacted conditions, loading and wetting paths as shown in Fig. 4.6e are first 

simulated. Then the following wetting/drying cycles are simulated: start at zero suction 

and follow the secondary drying curve to near residual saturation at a suction of 70 kPa, 

wet back to a point along the primary wetting curve at a suction of 20 kPa, followed by a 

complete drying and wetting path (suction increase to 60 kPa then decrease back to 20 

kPa) to establish a scanning curve loop. The measured and predicted portions of the 

SWCCs for 200 kPa net vertical stress are shown in Fig. 4.6f. The only parameter that 

needed adjustment was the residual saturation. A value of  is used to predict 

the behavior at 200 kPa net vertical stress. The comparison in Fig. 4.6f demonstrates that 

the proposed model is well suited to capture the hysteretic nature of the SWCCs and 

reasonable agreement with experimental results was obtained. To further appreciate the 

potential of the model to capture the coupled mechanical-hydraulic behavior, the 

predicted SWCCs for net vertical stress of 10 and 200 kPa are shown together alongside 

a similar graph depicting the experimental data in Fig. 4.6g. In this figure it is apparent 

that the model is capturing some of the essential features demonstrated by the 

experimental data. In particular, the shape and position of the model SWCCs for 10 and 

06.0=resn
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200 kPa net vertical stress is similar to that exhibited by the experimental curves. That is, 

the model SWCC for a net vertical stress of 200 kPa is slightly steeper and positioned 

slightly above the model SWCC for a vertical stress of 10 kPa. However, the model does 

not show the slight difference in the air-entry value observed in the experimental results. 

 

4.4 SUMMARY 

  

A simple isotropic constitutive model for unsaturated soils was presented and its 

ability to simulate the coupling effects between mechanical and hydraulic behavior was 

investigated. Both the effects of external loading history on the SWCCs and the effects of 

SWCCs on soil deformation were extensively studied and the proposed isotropic model 

provided reasonable predictions. Although the model formulation is very simple, it does 

capture most of the special characteristics of unsaturated soils. In addition, the model is 

able to simulate the transition from unsaturated to saturated behavior exhibited by the 

isotropic collapse that occurs during sample flooding and subsequent saturated 

compression. Due to its success in simulating the soil behavior, the general idea behind 

this isotropic model will be implemented into a comprehensive constitutive model for 

unsaturated soils in general stress space in the next chapter. 
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Table 4.1 Model parameters for Pearl clay, hypothetical soil and OU mixture 

 Symbol Pearl Clay Hypothetical Soil OU Mixture
1b  kPa22  kPa40  kPa19  

1d  1.6 5.0 1.4 
2b  kPa100  kPa60  kPa32  

2d  5.0 5.0 1.7 
eΓ  kPa3000− kPa1100−  kPa1700−  

h  15.0 7.0 7.0 
satn  0.492 0.5 0.384 

SWCCs parameters 

resn  0.305 0.15 0.042 

0η  17.5 7.69 50.0 

1η  10.0 7.0 15.5 
ζ  16.0 6.15 16.0 

Coupling parameters 

k  0.07 0.02 0.001 
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Fig. 4.2a Measured and predicted SWCCs for Pearl clay 
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Fig. 4.2b Change of specific volume with mean net stress for Pearl clay: Wetting at 98 
kPa mean net stress 
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Fig. 4.2c Change of specific volume with mean net stress for Pearl clay: Wetting at 49 
kPa mean net stress  
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Fig. 4.3a Change of specific volume with mean net stress for the hypothetical soil  
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Fig. 4.3b Change of saturation with mean net stress for the hypothetical soil 
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Fig. 4.4a Change of saturation with suction under different mean net stresses for the 

hypothetical soil 
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Fig. 4.4b Change of specific volume with suction under different mean net stresses for 
the hypothetical soil 
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Fig. 4.5a Variation of specific volume with mean net stress for the hypothetical soil 
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Fig. 4.5b Variation of saturation with mean net stress for the hypothetical soil 
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Fig. 4.6a Soil water characteristic curves for net vertical stress of 10 kPa 
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Fig. 4.6b Soil water characteristic curves for net vertical stress of 200 kPa 
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Fig. 4.6c Comparison of SWCCs for net vertical stresses of 10 kPa and 200 kPa 
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Fig. 4.6d Measured and predicted SWCCs for net vertical stress of 10 kPa 
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Fig. 4.6e Specific volume vs. net vertical stress: test results and model calibration 
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Fig. 4.6f Measured and predicted scanning SWCCs for net vertical stress of 200 kPa 
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Fig. 4.6g Comparison of measured and predicted scanning SWCCs for net vertical 
stresses of 10 kPa and 200 kPa 
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CHAPTER 5 

 

3-D MODEL FOR UNSATURATED SANDS AND SILTS 

 

 

5.1 INTRODUCTION 

 

To fully investigate unsaturated silt or sand behavior, it is very useful to look into 

saturated silt or sand behavior. In fact, saturated silt or sand behavior can be treated as a 

special case for unsaturated soils when the suction reduces below the air entry value. The 

incorporation of the hysteresis SWCCs and the coupling effects between the mechanical 

and hydraulic behavior of unsaturated sands or silts differentiate the model developed in 

the current research from previously developed unsaturated soil models.  

 

 It is well known that the behavior of sand or silt depends not only on the density 

of the material, but also on the confining stress applied. Subjected to shear loadings, 

loose sands contract, while medium or dense sands dilate. To account for the effects of 

soil density on soil behavior, earlier models (e.g., Lade, 1977; Vermeer, 1978; Wang et 

al., 1990; Crouch and Wolf, 1994a) generally used different sets of model parameters to 

capture the sand behavior, treating the same sands with different initial densities as 
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different soils. The limitation raised from this approach is obvious and this approach does 

not provide good control over the soil state during loading or unloading.  

 

 To treat the effects of density and confining stress on sand behavior in a unified 

way, some important concepts, such as the state parameter (Been and Jefferies, 1985), the 

phase transformation line or PTL (Ishihara et al., 1975) and the state index (Ishihara, 

1993), have been proposed over the last two decades. The state parameter, cee −=ψ , is 

defined to be the difference between the current void ratio  and the corresponding 

critical void ratio  at the same effective stress. In fact, the concept of the state 

parameter opens a new window for simulating the special behavior of sands. The 

introduction of the state parameter makes it possible to use a unique set of model 

parameters to simulate sand behavior under various loading conditions. Many researchers 

(e.g., Nova and Muir Wood, 1979; Been et al., 1986; Yu, 1994, 1996 & 1998; Manzari 

and Dafalias, 1997; Gajo and Muir Wood, 1999; Li et al., 1999) have proposed different 

saturated sand models on the basis of the concept of the state parameter and great 

progress on sand modeling has been achieved. Although the concept of the state 

parameter is attractive to simulate the sand behavior, the limitations on application of the 

state parameter are also obvious. For example, Bardet (1986) and Li et al. (1999) only 

correlated the state parameter to their dilatancy rules. Although the state parameter is 

explicitly included in both the dilatancy surface and the bounding surface in the model 

proposed by Manzari and Dafalias (1997), this model has to resort to some special 

treatments to prevent purely elastic deformation under constant stress ratio paths and to 

avoid initial dilation of loose samples under certain loading conditions. To overcome 

e

ce
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these limitations, Taiebat and Dafalias (2008) introduce a modified SANISAND model, 

which enables the prediction of plastic strains during any type of constant stress-ratio 

loadings. Different techniques are also introduced by several other researchers (e.g., 

Desai, 1974; Pastor et al., 1985 & 1990; Yang, 2003; Yang and Muraleetharan, 2003) to 

simulate saturated sand behavior, but these ideas are generally very complicated and the 

application of these models into practice is not easy.  

 

One of the most important topics related to saturated sands is dilatancy, which can 

be defined as p
q

p
vD εε &&=  (e.g., Roscoe and Burland, 1968) in the triaxial space with 

( )ppp
v 31 2εεε &&& +=  to be the change rate of the plastic volumetric strain and 

( ) 3/2 31
ppp

q εεε &&& −=  to be the change rate of the plastic deviatoric strain, respectively.  

and  are the plastic principal strain increments. In the earlier works the dilatancy was 

assumed to be a function of stress ratio 

p
1ε&

p
3ε&

pq ′=η  as ( )CDD ,η=  (e.g., Rowe, 1962; 

Roscoe and Schofield, 1963 ) with 31 σσ ′−′=q  and ( ) 32 31 σσ ′+′=′p . 1σ ′  and 3σ′  are 

the effective principal stresses. C  can be some other material constant, such as the 

friction angle (Rowe, 1962) or the critical state constant M  (Roscoe and Schofield, 

1963). In fact, experimental observations demonstrate dilatancy is not only a function of 

stress ratio, but also many other internal variables, such as the shear strain (Kabilamany 

and Ishihara, 1990), plastic volumetric strain (Li, 1997) and critical void ratio (Wan and 

Guo, 1999). Later, Li et al. (1999) and Li and Dafalias (2000) proposed some generalized 

state-dependent forms for the sand dilatancy. This means the dilatancy should be related 

not only to the stress ratio and plastic volumetric strain, but also to many other state-
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dependent variables, such as void ratio, the state parameter, critical void ratio and even 

anisotropic parameters. The correct description of dilatancy is critical to capturing the 

phase transformation behavior of sand before it reaches the ultimate critical state. The 

phase transformation behavior is also one of the most obvious properties which 

differentiate sands from clays. By differentiating the restrictions on dilative shear failure 

from those on the critical state, Li (1997) defined a dilative shear failure mode between 

the phase transformation state and the critical state. Li’s (1997) work captured the 

evolution of shear stiffness well and explicitly considered the termination of dilative 

tendency along the limiting deviatoric stress ratio path. On the basis of the basic structure 

of Wang et al. (1990), Li (2002) also developed a double-hardening bounding surface 

sand model with a state-dependent dilatancy (Li and Dafalias, 2000). A similar idea was 

introduced by Manzari and Dafalias (1997), who show that the proposed state-dependent 

dilatancy is equivalent to an interpretation that the phase transformation stress ratio is 

variable with the state parameter. The physical explanation of dilatancy should be carried 

out on the microscopic level (see Goddard and Didwania, 1998; Wan and Guo, 2001), but 

the microscopic interpretation is beyond the scope of current research. Recently, Dafalias 

and Manzari (2004) investigated sand behavior under cyclic undrained loading conditions 

and concluded that the inclusion of the fabric change is critical to capture the reduction of 

shear modulus under cyclic loadings. The introduction of fabric-dilatancy internal 

variables improves the model performance, such as the prediction of liquefaction, so that 

the inclusion of fabric-dilatancy variables in sand modeling is well justified. 
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Another very important topic related to sand is its anisotropic properties, either 

the structural anisotropy or the stress/strain-induced anisotropy. Microscopic 

investigations on the sand anisotropy have been carried out over the last two decades 

(Tobita, 1988 & 1989; Oda and Nakayama, 1988; Yoshimine et al., 1998). Mooney et al. 

(1998) found that the critical state line in the pe ′− ln  space is not unique and Yoshimine 

et al. (1998) pointed out that this contradiction to the critical state soil mechanics is due 

to the anisotropic fabric. As pointed out by Li and Dafalias (2002) and Dafalias et al. 

(2004), the dependence of the critical state line on the fabric anisotropic does not 

invalidate the framework of the critical state soil mechanics, but rather expands the 

critical state concept for sands. On the basis of micromechanical considerations, Li and 

Dafalias (2002) defined an anisotropic state variable, which is incorporated into both the 

critical state equation and plastic modulus, to characterize the influence of the sand fabric 

on the stress-strain-strength responses. Later, motivated by the observation that rotations 

of principal stresses yield non-coaxial plastic deformations, Li and Dafalias (2004) 

generalized the anisotropic parameter to involve a properly defined loading direction 

relevant to the stress reversal process. This model is able to describe sand behavior under 

either proportional or non-proportional loading conditions. Ling et al. (2002) have 

proposed an anisotropic elastoplastic bounding surface model, which accounts for the 

isotropic hardening, kinematic hardening and distortional hardening as well. Similarly, 

within the framework of anisotropic bounding surface plasticity, Datcheva and Schanz 

(2003) developed an unsaturated soil model accounting for the isotropic and kinematic 

hardening effects. The above mentioned work provides insight understanding of the 

sand/silt behavior. 
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Great efforts have been taken to model sand behavior for the last four decades and 

major progress has been achieved on saturated sand modeling. Although unsaturated clay 

modeling has attracted attention from many researchers, for example Alonso et al. (1990), 

Wheeler and Sivakumar (1995) and Li (2007b), the investigation of unsaturated silts 

and/or sands is relatively new. This lack of progress in unsaturated silt/sand modeling is 

mainly due to the lack of systematical laboratory investigation of the engineering 

properties of unsaturated silts/sands, especially the coupling effects between mechanical 

and hydraulic mechanisms. The already complicated (saturated) sand behavior discussed 

above is another factor contributing to the slow progress in extending saturated sand/silt 

models to unsaturated ones.  

 

Recently, in an investigate of the capillary effects on unsaturated soil behavior, 

Gallipoli et al. (2008) revisited the test data on Jossigny silt and Barcelona clayey silt and 

confirmed that a unique capillary bonding function linking the ratio between unsaturated 

and saturated void ratios at the same mean average skeleton stress exists. Further, their 

analysis also confirmed that the capillary bonding function applies to both the normal 

consolidation state and the critical stress state. The main contribution from Gallipoli et al. 

(2008) is that the volumetric changes of soil samples can be accounted for during either 

wetting or drying. Although Gallipoli et al. (2008) addressed the effect of hydraulic 

mechanism on soil deformation, they did not pay attention to the effect of soil 

deformation on the hydraulic behavior. Khalili et al. (2008) also proposed a 

comprehensive constitutive model for unsaturated soils, fully considering the coupling 
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effects between hydraulic and mechanical hysteresis. Because Khalili et al.’s (2008) 

model is based on the bounding surface clay plasticity, their model is essentially a clay 

model and it is not appropriate for simulating sand or silt behavior. Also, Sun et al. (2008) 

and Yang et al. (2008) introduced unsaturated soil models to simulate the hydro-

mechanical behavior under undrained conditions. Both models belong to the Barcelona 

Basic Model framework (Alonso et al., 1990), so some of the drawbacks of the Barcelona 

Basic Model still remain. To capture the unsaturated soil behavior under cyclic loadings, 

Yang et al. (2008) integrated their model into the bounding surface plasticity theory 

framework (Dafalias and Herrmann, 1982), so the model proposed by Yang et al. (2008) 

is also essentially for clay, not silt or sand. 

 

In this chapter, the main objective is to propose a comprehensive constitutive 

model for unsaturated sands/silts. This model should be kept as simple as possible yet 

still have the ability to simulate most of the special features of unsaturated silts/sands, 

such as wetting-induced collapse and shearing-induced dilation, and especially the 

coupling effects between mechanical and hydraulic behavior under monotonic or cyclic 

loadings. To achieve a smooth transition between saturated and unsaturated states, this 

unsaturated soil model should become a saturated soil model when suction becomes 

lower than the air entry value, the matric suction value that must be exceeded before air 

enters the largest soil pores. The air entry value of sand is generally very low, because the 

soil particles are large compared to clays and silts. The typical air entry value of sand is a 

couple of kPa. Formulation of this unsaturated sand/silt model is presented in the next 

section.  
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5.2 3-D MODEL FORMULATION 

 

The unsaturated sand/silt model is developed on the basis of available saturated 

sand/silt models with necessary modifications. The coupling effect between mechanical 

and hydraulic behavior in the 3-D model is handled similarly to that of the isotropic 

model as described in Chapter 4. In this chapter, the superscripts e and p stand for elastic 

and plastic variables, respectively. Variables in bold font are tensors and overdotted 

variables stand for the changes of these variables with respect to time. The operator “:” 

between two tensors denotes the trace of their product. The operator “⊗ ” between two 

tensors represents the tensor product. Following the discussion of the selection of stress-

strain variables in Chapter 2, the stress variables are selected as follows: 

 

The intergranular stress: ( ) IIσσ cwa snp +−=′ ; ( ) ijcwijaijij snp δδσσ +−=′  (5.1) 

The matric suction:  (5.2) wac pps −=

 

where:  and  are the pore air pressure and pore water pressure, respectively; σ  is 

the total stress tensor; I  is the second-order unit tensor and 

ap wp

ijδ  is the Kronecker delta. 

The conjugated strain variables are the regular strain tensor ε  (or ijε ) of the soil skeleton 

and the volume fraction of water , respectively. As discussed in detail in Chapter 2, 

alternative stress-strain variables may be used. The basis for the selection of stress-strain 

wn
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variables is that the selected variables should be consistent with the thermodynamic 

theory and be easily measured. 

 

5.2.1 ELASTIC RESPONSES 

 

The elastic responses of soil skeleton and water content are given as follows: 

 

K
pe

v
′

=
&

&ε ; 
G

e
q 2

sε
&

& =  (5.3) 

e
ce

w
s

n
Γ

=
&

&  (5.4) 

 

where: ( 3/332211 )σσσ ′+′+′=′p  and s  are the hydrostatic intergranular stress and the 

deviatoric stress tensor, respectively; vε  and  are the volumetric strain and deviatoric 

strain of soil skeleton; 

qε

K , G  and  are the bulk modulus, shear modulus and capillary 

elastic modulus, respectively. As mentioned in Chapter 3, the capillary elastic modulus 

 can be assumed to be a constant or a function of suction if experimental data warrant 

such a treatment. For simplicity,  is assumed to be a constant in the current study. 

Although the effect of suction on the elastic deformation of soil skeleton is not explicitly 

provided, the inclusion of suction in the intergranular stress accounts for the suction 

effects on soil deformation. Since the purely recoverable component of water content is 

not significant, as discussed in Chapter 3, the effect of soil deformation on the 

recoverable water content change is not accounted for here and the recoverable 

eΓ

eΓ

eΓ

 113



component of water content change is only related to the change of suction. The related 

definitions of stress-strain variables and moduli are given as below: 

 

( ) ( ) cwazzyyxxzzyyxx snpp +−++=′+′+′=′ 3/3/ σσσσσσ  (5.5) 

( ) ( )ijij devdev σσ =′=s  (5.6) 

( ) zzyyxxijv tr εεεεε ++== , ( )ijq dev ε=ε  (5.7) 

1

0

b

refp
pKK ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ ′
= ; 

1

0

d

refp
pGG ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ ′
=  (5.8) 

 

where: ijσ  and ijσ ′  are the total stress and intergranular stress tensors, respectively. , 

,  and  are four model parameters.  is a reference pressure, which is usually 

assumed to be the atmospheric pressure for convenience. Any other value rather than the 

atmospheric pressure can also be assigned to  as long as it provides reasonable 

simulations. Although the bulk and shear moduli may be proposed to be functions of the 

hydrostatic intergranular stress 

0K

0G 1b 1d refp

refp

p′  and the current void ratio e , see Richart et al. (1970), 

Pestana and Whittle (1995) and Taiebat and Dafalias (2008), a simple form of the bulk 

modulus and shear modulus are adopted in Eq. (5.8) providing a hypoelastic description 

of soil skeleton response. Such a definition in Eq. (5.8) does not guarantee the existence 

of a potential and both moduli are simply defined to best match the test results.  

  

5.2.2 YIELD, CRITICAL, BOUNDING AND DILATANCY SURFACES 

 

 114



Following the work by Manzari and Dafalias (1997) and Taiebat and Dafalias 

(2008), the yield surface is defined in such a way that both isotropic and kinematic 

hardening effects are fully considered. For the convenience of visualization, the surfaces 

will be schematically described in the triaxial stress space first, and then all the surfaces 

will be generalized from the triaxial stress space to the general stress space. The yield 

surface in the triaxial stress space is defined as follows: 

  

( ) ( ) ( )[ ] 0/1,;, 0
222 =′′−′−′−=′ βαα pppmpqmsf cσ  (5.9.1) 

( )βαη 0/1 ppm ′′−±=  (5.9.2) 

 

where: ( ) 3/2 31 σσ ′+′=′p , 31 σσ ′−′=q . α , which is the kinematic hardening parameter, 

defines the center of the yield surface in the triaxial stress space. In the generalized stress 

space, α  will be extended to be a tensor localizing the center of the yield surface and it 

captures the kinematic hardening behavior. m  is the isotropic hardening parameter, 

which is generally a small constant. 0p′  represents a high mean effective stress, which 

should not be lower than the highest mean effective stress at which the sand sample bears 

during a loading process. β  is a model parameter, which can be set to 20 as a default 

value as suggested by Taiebat and Dafalias (2008) or calibrated from experimental results. 

A desirable property of this yield surface is its closed cap-like shape at the tip of the yield 

surface, where the stress level becomes close to 0p′ . Without this closed cap at the tip of 

the yield surface, it is possible that no plastic deformation will occur if  and q  

increase at a constant stress ratio 

p′

η . Eq. (5.9.2) defines the stress ratio on the yield 
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surface as ( )βαη 0/1/ ppmpq ′′−±=′= . When p′  is small or  is large, ( )  

can be assumed very close to be zero and 

0p′ β
0/ pp ′′

m±= αη & , which becomes the yield surface 

proposed by Manzari and Dafalias (1997), a special form of Eq. (5.9.1). Under a constant 

stress ratio, i.e., constant pq ′= /η  loading conditions, the loading path can reach the 

yield surface and plastic deformation will occur. This special property of the yield surface 

overcomes the limitation of the yield surface discussed in Manzari and Dafalias (1997).   

 

bα

cα
dα

α

q

Yield surface

Dilatancy surface 

Critical surface

Bounding surface 

p′0p′

 

Fig. 5.1 Model surfaces in triaxial stress space (after Taiebat and Dafalias, 2008) 

 

The yield surface in the triaxial stress space is schematically illustrated in Fig. 5.1. 

Fig. 5.1 also shows the other three surfaces, i.e., the dilatancy surface, the critical surface 

and the bounding surface. Following Muir Wood et al. (1994), Manzari and Dafalias 

(1997) proposed simple definitions for all the three surfaces in the triaxial stress space. 
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Similar to the definition of the yield surface in stress ratio, the stress ratios of the 

dilatancy, critical and bounding surfaces can be defined in a modified form as follows:  

 

( ) >−<+=′′−+= ψα β b
c

c
c

b
c

b
c kMppmM 0/1   (5.10.1) 

( ) >−<+=′′−+= ψα β b
e

c
e

b
e

b
e kMppmM 0/1  (5.10.2) 

( )βα 0/1 ppmM c
c

c
c ′′−+=  (5.10.3) 

( )βα 0/1 ppmM c
e

c
e ′′−+=  (5.10.4) 

( ) ψα β d
c

c
c

d
c

d
c kMppmM +=′′−+= 0/1   (5.10.5) 

( ) ψα β d
e

c
e

d
e

d
e kMppmM +=′′−+= 0/1  (5.10.6) 

 

where: superscripts b, c and d represent variables for the bounding surface, the critical 

surface and the dilatancy surface, respectively. Subscripts c and e stand for variables 

under compression and extension, respectively. M ’s are stress ratios on the three 

surfaces and α ’s are slopes as given in Fig. 5.1. < > is the Macauley brackets. The slopes 

of the four surfaces, including the yield surface, on the extension side are actually 

negative. Eqs. (5.10) just provide absolute values of the stress ratios of the surfaces on the 

extension side. , ,  and  are positive model parameters. b
ck b

ek d
ck d

ek cee −=ψ  is the state 

parameter and it is defined to be the difference between the current void ratio  and the 

critical void ratio  at the same stress state. When 

e

ce 0=ψ ,  and 

. It means all the three surfaces merge when the critical state is reached. 

c
c

d
c

b
c ααα ==

c
e

d
e

b
e ααα ==
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When 0<ψ , a state denser than the critical state,  and . It 

means that the stress ratio can pass the dilatancy surface, showing phase transformation 

behavior before the critical state is reached. When 

d
c

c
c

b
c ααα >> d

e
c
e

b
e ααα >>

0>ψ , a state looser than the critical 

state,  and . Under this condition, sands/silts show no 

dilatancy. The multisurfaces capture the sand behavior well, accounting for the density 

and stress state in a unified manner. Taiebat and Dafalias (2008) defined an exponential, 

instead of linear relationship of the surfaces with the state parameter.  

d
c

c
c

b
c ααα <= d

e
c
e

b
e ααα <=

 

To describe the unsaturated soil behavior in the general stress space, the yield 

surface should be generalized from the triaxial stress space to the multiaxial stress space. 

The hydrostatic intergranular stress p′  in the triaxial stress space is now written as I  and 

the new yield surface in the general stress space is given as follows: 

 

( ) ( ) ( ) ( ) 0/13/2:,;, 0 =−−−−=′ βIImIIImsf c αsαsασ  (5.11) 

 

where:  stands for the center of the yield surface. m is the isotropic hardening parameter, 

which stands for the size of the yield surface.  plays a similar role as  in the yield 

surface defined in the triaxial stress space, see Eq. (5.9). The coefficient 

α

0I 0p′

3/2  has been 

introduced for convenience of interpretation in the standard triaxial stress space. As can 

be seen, the yield surface in the general stress space is a modified -plasticity yield 

surface. Fig. 5.2 illustrates the yield surface and the other three surfaces, i.e., the 

bounding surface, the critical surface and the dilatancy surface in the general stress space. 
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Fig. 5.2 Model surfaces in multiaxial stress space (after Taiebat and Dafalias, 2008) 

 

The tensor α  in the multiaxial stress space is equivalent to 21 ααα −=  in the 

triaxial stress space, where 1α  and 32 αα =  are the principal values of . With the 

definition of a modified Lode angle 

α

θ  given below, all the variables defined in the 

triaxial space can be generalized to the general stress space. 

 

αsr I−= , ⎟
⎠
⎞

⎜
⎝
⎛ −== αsrr

II
, 

rr
rn
:

=  (5.12) 

( )
2/1

2

2
1

⎥⎦
⎤

⎢⎣
⎡= rtrJ , ( )

3/1
3

3
1

⎥⎦
⎤

⎢⎣
⎡= rtrS , 

3

2
333cos ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

J
Sθ  (5.13) 

( ) ( ) ( ) θ
θ

3cos11
2,

cc
ccg
−−+

= , c
c

c
e

M
M

c = , b
c

b
e

b k
k

c = , d
c

d
e

d k
k

c =  (5.14) 

 119



 

where: J  and S  are the second and third stress invariants. θ  is the Lode angle, ranging 

from 0º to 60º. Note: ( ) 1,0 =cg o  and ( ) ccg =,60o . c  is the conversion factor between a 

quantity in extension and compression.  is the unit deviatoric stress ratio tensor. n

 

 The stress ratios in the triaxial stress space can now be generalized in the general 

stress space as follows: 

 

nα bb
θθ α3/2= , nα dd

θθ α3/2= , nα cc
θθ α3/2=  (5.15) 

( ) ( ) ( )βθ ψθθα 0/1,, IImkcgMcg b
cb

c
c

b −−>−<+=  (5.16) 

( ) ( ) ( )βθ ψθθα 0/1,, IImkcgMcg d
cd

c
c

d −−+=  (5.17) 

( ) ( )βθ θα 0/1, IImMcg c
c

c −−=  (5.18) 

 

When the state parameter 0=ψ , the three surfaces, i.e., the bounding surface, 

dilatancy surface and critical surface become identical.  

 

5.2.3 HARDENING LAWS 

 

The kinematic hardening parameter  is assumed to be a function of current stress 

state and plastic deviatoric strain of the soil skeleton. The suction is assumed to affect the 

kinematic hardening only through its contribution to the intergranular stress tensor. The 

isotropic hardening parameter  is not only a function of stress state, but also plastic 

α

m
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volumetric strain and irrecoverable water content. The assumption on the isotropic 

hardening is based on the fact that the change of effective stress and/or suction will 

change the stiffness of the soil skeleton. This can change the size of the yield surface.  
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where:  is the loading index, which will be defined in the next section.  is the initial 

void ratio. ,  and 

Λ 0e

vc mc ϖ  are model parameters. The rate of change of the kinematic 

hardening parameter α  is dependent on & ( )αα −b
θ , which is the distance between α  and its 

image on the bounding surface . This is exactly what the bounding surface plasticity 

concept (Dafalias and Popov, 1975; Krieg, 1975) states. The added feature of h  

depending on  was proposed by Dafalias (1986) and its performance was verified 

for sand behavior by Manzari and Dafalias (1997). It is assumed that the elastic soil 

deformation and the recoverable water content change will not affect the isotropic 

hardening parameter. Only the plastic volumetric strain of soil skeleton and the 

irrecoverable water content change have influence on the isotropic hardening parameter. 

Observations on the SWCCs show that  is an increasing function of suction. When 

b
θα

|| n:b

wcns
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suction increases,  also increases. The suction-induced hardening effects are 

accounted for in this way. The hardening laws defined in Eqs. (5.20) and (5.21) are one 

of the special features of the proposed model. The inclusion of suction in the 

intergranular stress tensor and the effects of suction and irrecoverable water content 

change on the size of the yield surface differentiate the current model from most of the 

available unsaturated soil models. 

p
wn

 

To investigate the coupling effects between the mechanical and hydraulic 

behavior of unsaturated sands or silts, the evolution of the bounding suctions on the 

drying bound and wetting bound (  and ) are given below.  dcs 0 wcs 0
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The equations of the two bounding curves are given by: 

 

Wetting: ( )
( ) 2

2

20

20

/1
/

d
wc

d
wcwrws

w bs
bsnnn

+
+

=  (5.24.1) 

Drying: ( )
( ) 3

3

30

30

/1
/

d
dc

d
dcwrws

w bs
bsnnn

+
+

=  (5.24.2) 

 

 122



where: , , ,  and 2b 2d 3b 3d ζ  are material parameters and v  is the specific volume, 

which is defined in terms of the porosity n as: 
n

v
−

=
1

1 .  and  are the saturated 

and residual volumetric water contents, respectively.  and  are suctions on the 

wetting and drying bounds, respectively.  and  are the capillary plastic moduli on 

the wetting and drying bounds, respectively. The capillary plastic moduli,  and , 

are calculated in the next section. 
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5.2.4 FLOW RULES AND PLASTIC MODULI 

 

With the assumptions in Eq. (5.19), the consistency condition  leads to: 0=f&
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where:  and  are two plastic moduli, representing the two mechanisms related to 

the yield surface.  is equivalent to the traditional plastic modulus in the 

elastoplasticity theory, while  is a new plastic modulus accounting for the effects of 

the hydraulic mechanism on the yield surface.  
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The loading index  in Eq. (5.25) is given below: Λ
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where:  is the capillary plastic modulus, which was defined in Chapter 3. The above 

loading index clearly shows the coupling effects coming from both the intergranular 

stress and matric suction. With the definition of the loading index, the strain tensor of the 

soil skeleton can be decomposed into hydrostatic and deviatoric components as follows: 

pΓ
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where: R  is the direction of , consisting of a deviatoric component n  and a 

volumetric component 

pε&

ID
3
1 .  can be either  or , depending on the suction path 

to be wetting or drying. 
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where:  and  are the capillary plastic moduli on the primary wetting bound and 

the secondary drying bound, respectively. Similar to the isotropic model presented in 

Chapter 4, the two capillary plastic moduli are calculated as follows:  
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In the above-calculated capillary plastic moduli, both  and  are directly 

related to the soil configuration. As soil deformation develops,  and  will 

definitely change.  always equals the ratio between the volume of pore voids and the 

volume of soil sample. , which represents the residual volume fraction of water, can 

not be calculated similar to . To find out the evolution of , some microscopic 

variables representing the soil configuration have to be introduced. This procedure will 
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tremendously increase the complication of the proposed model. For simplicity, it is 

assumed  is a constant for a given soil. wrn

 

5.2.5 DILATANCY COEFFICIENT AND CRITICAL STATE LINE 

 

As suggested by Nova and Muir Wood (1979), the dilatancy coefficient is 

assumed to be proportional to ( )η−d
cM  or ( )η−d

eM , which is the difference between the 

stress ratio on the dilatancy surface and the current stress ratio. In the triaxial stress space, 

the dilatancy coefficient is defined as: ( )η−= d
cMAD 3/2  for compression or 

( η−= d
eMAD 3/2 ) for extension. In the general stress space, the dilatancy coefficient 

is directly generalized from the triaxial stress space as: 

 

( ) ndnαα :: BBD d =−= θ  (5.34) 

( ><+= nF :10BB )

)

 (5.35) 

( FnF +>−<>Λ<−= maxFDc f
&  (5.36) 

 

where:  and  are model parameters.  is another model parameter, representing 

the maximum value the fabric tensor 

0B fc maxF

F  can attain. Similar definitions of the dilatancy 

coefficient are adopted by Manzari and Dafalias (1997) and Taiebat and Dafalias (2008). 

As discussed by Dafalias and Manzari (2004), the consideration of fabric change effects 

is very important to reach low effective stress of sand under cyclic loading under 

undrained condition. This scenario is related to many of the behavioral characteristics of 

 126



sand, such as liquefaction and large permanent deformation. The fabric tensor in Eq. 

(5.36) is used to facilitate the modeling of sand behavior during loading-unloading cycles, 

see Dafalias and Manzari (1999) and Manzari and Prachthananukit (2001). 

 

To account for the inherent fabric anisotropy on the mechanical response of 

Toyoura sand, Dafalias et al. (2004) introduced the dependence of critical state line on 

the fabric anisotropy. Because the correlation between the fabric anisotropy and the 

critical state line is difficult to calibrate, a simple and useful critical state line (Li, 1997) 

is adopted: 

 

ξ

λ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

ref
crc p

Iee  (5.37) 

cee −=ψ  (5.38) 

 

where: λ  and ξ  are two model parameters.  is the void ratio at critical state. Although 

many other alternatives to define the critical state line have been proposed (e.g. Scofield 

and Wroth, 1968), Eq. (5.37) has the advantage of capturing the critical state for sand or 

silt under high effective stress utilizing model parameters that are readily calibrated. The 

state parameter, 

ce

ψ , is defined to be the difference between current void ratio, e , and the 

critical void ratio, , at the same mean effective stress.  ce

  

5.3 NUMERICAL INTEGRATION OF THE MODEL 
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To put the proposed unsaturated silt/sand model into practice and use the model to 

simulate silt/sand behavior under complex loading conditions, it is necessary and critical 

to integrate the rate equations presented in the last section and determine the evolution of 

the stiffness matrix. Different integration schemes (e.g., Simo and Taylor, 1985; Ortiz 

and Popov, 1985; Simo and Ortiz, 1985), such as the explicit integration method and the 

implicit integration method are available. Further, the explicit integration method can be 

divided into the forward Euler method and the Vemeer method. The implicit integration 

method includes the backward Euler method, the generalized mid-point method and the 

generalized trapezoidal method. In selecting between different integration methods, 

primary concern includes simplicity, efficiency, stability and accuracy. As to the J2-

plasticity models, extensive investigation on the implicit integration method was carried 

out by many researchers (e.g., Manzari and Prachathananukit, 2001; Yang et al., 2008) 

and it is concluded that the closest point projection method (CPPM) is accurate and stable 

in all simulations including those conducted by using relatively large strain increments 

without the need for global sub-increments. The CPPM is a generalization of the 

backward Euler return rule for an arbitrary convex yield surface. The application of the 

CPPM to integrate different soil models is abundant in the literature (Alawaji et al., 1991; 

Macari et al., 1997 & 2003). In the current research, the CPPM is adopted to carry out the 

model integration process.  

 

 Before the consistent tangent stiffness matrix was introduced by Simo and Taylor 

(1985) and Braudel et al. (1986), the continuum tangent stiffness matrix was prevalently 

used. The superiority of the consistent tangent stiffness matrix to the continuum tangent 
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stiffness matrix was proved by many applications and comparisons (Borja, 1990 & 1991; 

Jeremic and Sture, 1997). The consistent tangent stiffness matrix is consistent with the 

integration process of the model equations and beneficially the quadratic rate of the 

asymptotic convergence of the consistent tangent stiffness matrix can save tremendous 

computational resources for large problems. However, the consistent tangent stiffness 

matrix is more complex than the continuum tangent stiffness matrix in the sense that 

there is no analytical solution for many models and numerical methods have to be used to 

develop the consistent tangent stiffness matrix. Given the highly nonlinear property of the 

proposed model, it is impossible to find a closed-form solution for the consistent tangent 

stiffness matrix in the current research, thus the consistent tangent stiffness matrix will be 

developed numerically. 

 

 The formulation of the unsaturated silt/sand model was presented in detail in the 

last section. The main purpose of this section is to numerically implement the model to 

simulate the silt/sand behavior under complex loading conditions. At the current step n, it 

is assumed that all the model quantities and the strain increments, including the change of 

the volume fraction of water are given. The integration process is used to solve all the 

quantities at step n+1 based on the model formulation and the strain increments. The 

superscript m stands for the local iteration number. It is important to realize that it is not 

necessary to integrate all the model equations under all possible loading conditions. The 

selection on the equations to carry out the integration process depends on the loading 

conditions. For example, if the current skeleton stress state is on the yield surface under 

constant suction, then the integration of suction related equations, i.e., 5R , 6R , 10R  and 
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11R  (see below), do not have to be carried out during further loading. It is also possible 

that only the suction related equations have to be integrated, as long as the stress state is 

inside the yield surface and suction or water content keeps changing. The coupling effects 

between the mechanical and hydraulic behavior will be accounted for during the stress-

strain update algorithm.  

 

In this section, the main purpose is to integrate the model equations and derive the 

consistent tangent stiffness matrix using the closest point projection method. To account 

for the most general situation, i.e., the mechanical and hydraulic loadings exerting 

simultaneously when the current stress state is on the yield surface, the model equations 

that need to be integrated are given as follows: 
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Drying bound: 
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All the variables in the above equations are defined in the last section. The 

residuals and the unknowns needed to be solved in the above system of equations are: 
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To solve the highly nonlinear system, the Newton-Raphson algorithm is used: 

 

RU
U
RUT Δ=Δ
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−=Δ−  (5.53) 

 

 The differentiation of R  with respect to , which is the tangent stiffness matrix 

, is presented in detail in Appendix II. The initial value of U  is determined using the 

elastic predictor with the assumption that no plastic strains and no irrecoverable water 

U

T
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content change occur. With the given loading conditions, the trial stress state based on the 

elastic assumption can be easily calculated. If the trial stress state is located within the 

yield surface, then it means the elastic assumption holds. However, if the trial stress state 

is located on or outside of the yield surface, then it is necessary to use the plastic 

corrector to modify the predictions by simultaneously satisfying all the rate equations 

from (5.39) through (5.50). The iteration process will not stop until certain error control 

criteria are met. As mentioned earlier, the selection of the rate equation(s) and how to 

update the stress strain state depend on the loading conditions. The stress update 

algorithm is presented in Appendix I.  

 

 It is well known that the performance of the closest point projection method is 

greatly enhanced when a consistent tangent stiffness matrix, which is consistent with the 

integration scheme, is used in the solution of the global finite element equations. The 

consistent tangent stiffness matrix is derived in Appendix III. 

 

5.4 CALIBRATION OF MODEL PARAMETERS 

 

The proposed model is basically composed of three components: the soil skeleton 

part or the mechanical part, the SWCCs part or the hydraulic part and the coupling effects 

between the mechanical and hydraulic behavior. Most of the model parameters can be 

easily calibrated from common laboratory tests, while some of them have to be 

determined using a trial-and-error procedure. All the related parameters are listed below: 
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Elastic parameters:   , , , ,  0K 0G 1b 1d refp

Critical state parameters:  , cre λ , ξ , ,  c
cM c

eM

State parameters:   , , ,  b
ck d

ck b
ek d

ek

Hardening parameters:  , m , , , 0h mc 0I β ,  , vc ϖ  

Dilatancy parameter:    0B

Fabric parameters:   ,  fc maxF

SWCCs model parameters:  , , , ,2b 2d 3b 3d eΓ  , g , H , , , wsn wrn ς  

 

 In the above-listed parameters, most of them can be easily calibrated from 

convention triaxial tests. As to the elastic parameters, i.e., , , ,  and , the 

elastic modulus and shear modulus at different effective stresses should be calculated for 

saturated soils. Although some purely elastic behavior is expected at the beginning 

portion of loading, it is common and convenient to calibrate the elastic parameters during 

the unloading process. Generally, the unloading process during undrained triaxial tests 

can be used to find the shear modulus and the unloading process during drained tests can 

be used for the bulk modulus.  

0K 0G 1b 1d refp

 

 The critical state parameters, i.e., , cre λ , ξ ,  and  can also be easily 

calibrated. Undrained triaxial tests on saturated soils can be used to calibrate  and 

, which are the ratios between deviatoric stresses and effective mean stresses during 

compression and extension, respectively. To get a good estimation of  and , it is 

c
cM c

eM

c
cM

c
eM

c
cM c

eM
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always desirable to increase axial strain to reach the phase transformation line. Drained 

triaxial tests on saturated soils can be used to calibrate , cre λ  and ξ , which are calibrated 

using curve-fitting technique from the pe ′−  relationships. Here e  is the critical void 

ratio under certain effective mean stress p′ .  

 

 The state parameters, , ,  and  are special parameters used in the 

proposed model.  and  relate to the bounding stress ratio, while  and  relate to 

the dilatancy stress ratio. Eqs. (5.10) should be used to calculate , ,  and .  For 

example, in order to calculate the coefficient , a constant confining stress drained test 

can be used. It is not difficult to measure the stress ratio  and  during the test. 

Once the state parameter 

b
ck d

ck b
ek d

ek

b
ck b

ek d
ck d

ek

b
ck d

ck b
ek d

ek

b
ck

b
cM c

cM

ψ  is known,  can be easily calculated from Eq. (5.10.1). 

Similar procedures can be adopted for calibration of  ,  and . To find out the 

dilatancy stress ratio, the confining stress has to be high enough to warrant dilation. 

b
ck

d
ck b

ek d
ek

 

If stress-dilatancy data are available, it is not difficult to find out the dilatancy 

parameter . One alternative is to run a constant confining stress drained test, in which 

the relationship between the volumetric strain and the axial strain can be determined. 

Because the dilatancy coefficient deals with the plastic strains, a fine-tuned procedure has 

to be carried out for a best fit . 

0B

0B

 

 134



No explicit physical meaning is defined for the hardening parameter  and the 

calibration of  can be carried out by a trial-and-error procedure. As is shown in the 

model formulation,  is directly related to the evolution of the kinematic hardening 

parameter, so  may be calibrated by matching the model predictions to the -

0h

0h

0h

0h q 1ε  curve 

in a drained compression test. The yield surface-related parameters, i.e., m ,  and 0I β  

are usually calibrated based on observation. The size of the yield surface, , is generally 

small at the beginning of loading. From Fig. 5.1, it shows that  is the effective 

confining stress at the tip of the yield surface.  in the triaxial stress space is equivalent 

to  in the general stress space. A reasonable 

m

0I

0p

0I p′ -  curve will provide a good 

estimation of . As discussed earlier, 

q

0I β  can be assumed to be 20 or calibrated from test 

results. Generally, β  does not introduce too much difference to the model predictions if 

it is large enough.  

 

mc  is related to the evolution of the isotropic hardening parameter. If  0=mc , it 

means the size of the yield surface has nothing to do with the plastic volumetric strain of 

the soil skeleton. Generally speaking,  is a small number. A trial-and-error procedure 

can give a good estimation of . Now,  and 

mc

mc vc ϖ  have to be determined.  and vc ϖ  

contribute the evolution of the size of the yield surface when suction changes. It is 

beneficial to realize that the effect of suction on the size of the yield surface is not 

significant, so  is always a small number. vc
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The fabric tensor is important for sand and silt behavior. Soil dilation and 

liquefaction are significantly affected by the fabric tensor. Calibration of the fabric 

parameters,  and , has to be done using a trial-and-error procedure, since no test 

results directly related to the fabric tensor are provided for most studies. Considering that 

sands and silts generally have a high strength, the fabric parameters  and  are 

large numbers.  

fc maxF

fc maxF

 

 The SWCCs model parameters, i.e., , , , , , 2b 2d 3b 3d eΓ g , H ,  and , can 

be easily calibrated from any drying and wetting process. To make sure the calibration 

curves are close enough to the real drying and wetting bounds, it is always good to apply 

very high suction during the drying process and start the wetting process from high 

suction as well. The bounding curves are used to calibrate , , ,  ,  and . 

Any scanning curve can be used to calibrate , 

wsn wrn

2b 2d 3b 3d wsn wrn

eΓ g  and H . As mentioned in Chapter 3, 

g  can be always assumed to be 1 with satisfying accuracy. Of course, any value of g  

different from 1 is also possible, if a better accuracy for the SWCCs model is required. 

, the slope of the initial portion of any scanning curve, is usually a large number. eΓ ς  is 

a coupling parameter to demonstrate the effect of soil deformation on the soil water 

characteristic curves. To determine ς , at least two sets of SWCCs under different 

confining stresses or a wetting-collapse test are required. ς  is usually a small number and 

it can be calibrated using a trial-and-error process. Given the fact that it is time-

consuming to run laboratory tests to determine complete SWCCs, it is common that only 

part of the SWCCs information is available and assumptions have to be made to 
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determine all of the SWCCs parameters. This procedure is demonstrated in the following 

section. 

 

5.5 MODEL PERFORMANCE 

 

Very limited test results are available to investigate the coupling effects between 

the mechanical and hydraulic behavior of unsaturated soils. Generally, the cyclic drying-

wetting process influences the elastoplastic behavior of unsaturated soils and the soil 

skeleton deformation introduces shift in the soil water characteristic curves. To validate 

the predictions of the proposed comprehensive constitutive unsaturated silt/sand model, 

the available test results from Minco silt (Vinayagam, 2004) and a series of tests on 

Toyoura sand (Verdugo and Ishihara 1996; Uchida and Stedman 2001; Unno et al. 2008) 

are used. Next, some hypothetical examples are used to demonstrate the coupling effects 

between the mechanical and hydraulic behavior of unsaturated soils. 

 

5.5.1 MINCO SILT 

 

Minco silt is an Oklahoma silt and the engineering properties of Minco silt have 

been experimentally investigated at the University of Oklahoma over the last decade 

(Deshpande, 1997; Ananthanathan, 2002; Vinayagam, 2004; Tan, 2005). According to 

the USCS classification, Minco silt belongs to CL with a liquid limit of 28%, plastic limit 

of 20% and specific gravity of 2.68. Minco silt is composed of 27% of sand and 73% of 
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fines. The maximum dry unit weight of Minco silt is about 17.9 kN/m3 and its optimum 

moisture content is about 12.8%. 

 

Vinayagam (2004) carried out a systematic investigation on Minco silt. All the 

tests on Minco silt were carried out on two different automated triaxial apparatuses, the 

GDS and the GCTS, available at the University of Oklahoma. Different test conditions, 

including different densities, different stresses and different initial suctions were used to 

investigate the stress-strain behavior of Minco silt. In addition, the specimens were 

loaded monotonically and cyclically under different drainage conditions as well. Two 

types of compression tests were run: constant water content tests (CW) and undrained 

tests (CU). During the shearing period, the water line connected to the triaxial cell was 

shut off to keep gravimetric water content constant during the constant water content tests 

(CW), while the air line was set at pressure control. The pore air pressure was constant, 

while the pore water pressure changed during the CW tests. For the undrained tests (CU), 

both the water line and the air line were closed, so pore air pressure and pore water 

pressure changed according to the external loadings. If the soil sample is compressed and 

the volumetric strain is positive, both pore air pressure and pore water pressure will 

increase. If the soil sample changes from contraction to dilation, the pore air pressure and 

pore water pressure will stop increasing and start decreasing. During the shearing process 

of CW and CU tests, the gravimetric water content is constant. With the assumption that 

the temperature is constant during the CU tests, the product of the pore air pressure  

and its volume  is a constant, i.e. 

ap

aV .constVp aa =×   
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No hysteretic SWCCs data for Minco silt is available. Fig. 5.3 presents all the 

initial soil water characteristic points for Minco silt by Vinayagam (2004). Deshpande 

(1997) provided a single wetting SWCC for Minco silt with a dry density that was very 

close to the one used by Vinayagam (2004) and this curve is treated as the wetting 

bounding curve in current study. To apply the hysteretic SWCCs model in Chapter 3, all 

the initial soil water characteristic points should be inside the bounding curves, so the 

drying bounding curve is hypothetically proposed for Minco silt as plotted in Fig. 5.3. 
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Fig. 5.3 SWCCs for Minco silt 

 

All the model parameters for Minco silt are calibrated and they are given in Table 

5.1. The model parameters related to the mechanical behavior are calibrated using Test 

No. 2, while the SWCCs model parameters are calibrated using Test No. 5. The 

parameters dealing with the coupling effects are calibrated using a trial-and-error 
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procedure. Tests No. 1 through No. 10 are constant water content tests (CW), while all 

the other tests presented here, including Tests No. 11, 12, 14, 15, 20 and 22 are undrained 

tests (CU). The test conditions, i.e., the compaction conditions and initial conditions for 

shearing on the soil samples are given in Table 5.2 as well.  

 

Fig. 5.4 presents the comparisons between the model predictions and test results 

with the initial suction of 30 kPa in a CW test. The comparisons show that the model can 

capture the stress-strain behavior well, including volumetric strain, deviatoric stress and 

mean net normal stress. The suction change is not well simulated and the test results of 

the suction change show that suction initially decreases and then increases. However, test 

results show that the volumetric strain is always positive, which means the soil sample 

contracted during shearing. Since the water line is closed during the shearing process, the 

pore water pressure should keep increasing, while the pore air pressure is kept constant. 

This means the suction, which is the difference between the pore air pressure and the pore 

water pressure should keep decreasing. Especially, the SWCCs model states that the 

increase in the volumetric water content corresponds to a decrease in suction and since 

the water volume does not change during CW tests, the volumetric water content 

increases when the soil sample contracts. This further shows that the suction should 

decrease with axial loading in this CW test.  

 

The pore water pressure was measured by Vinayagam (2004) only at the bottom 

of the soil sample. A potential reason for this inaccurate measurement of pore water 

pressure is the shearing rate. If the loading rate is not slow enough, the pore water 
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pressure inside the sample will not come to equilibrium with the bottom drainage where 

pore water pressures are measured. Celes (1996) reported the permeability of Minco silt 

was as low as 4.0×10-8 cm/sec when the gravimetric moisture content was 13~14%, at 

which most of the soil samples were compacted by Vinayagam (2004). Vinayagam (2004) 

used a strain rate of 0.18%/hour for all triaxial tests. Although she attempted to calculate 

a suitable rate of loading, this rate may not have been slow enough for Minco silt. Similar 

discrepancies can be seen in the simulations of other tests as well. 

 

Fig. 5.5 presents the test results of Test No. 2. The test results were used in the 

model calibration for the mechanical parameters. Although the suction is again 30 kPa, 

the absolute values of pore air pressure and pore water pressure are different from Test 

No. 1. The stress-strain behavior is again simulated well, but there exists a discrepancy 

between measured and predicted suction changes as described before. 

 

As can be seen, most of the model simulations for soil behavior under monotonic 

loadings, including both CW and CU tests are reasonable. The suction changes in Fig. 5.8 

and Fig. 5.15 are simulated reasonably well. The test results reported in Fig. 5.8 were 

used to calibrate the coupling model parameters. For the CU tests, in which both the air 

line and the water line are closed, both pore air pressure and pore water pressure should 

increase during shearing-induced compaction. When the soil sample contracts, most of 

the deformation is translated into volume change of pore air, with a small amount of 

volume change in pore water. Because pore water is undrained, the volumetric water 

content increases as the soil sample contracts. As volumetric water content increases, the 
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suction decreases. This means that the magnitude of the pore water pressure change 

should be higher than that of the pore air pressure. This explanation on the SWCCs 

evolution is confirmed from the test results and the model simulations as well. From the 

deviatoric stress vs. axial strain curves, it can be seen that the maximum deviatoric stress 

increases with increasing net confining stress, given the identical initial suction.  

 

As to the unsaturated Minco silt behavior under cyclic loadings, only two sets of 

data are examined and they are presented in Fig. 5.16 and Fig. 5.17. The main difference 

between the two tests is their initial suctions, one is 30 kPa and the other is 60 kPa. Their 

initial net stresses and void ratios are very close. Higher suction means higher 

intergranular stress if the net stress is the same. The model well captures the suction 

changes and the volumetric strains in both tests. Another very important behavior of 

Minco silt under cyclic loadings is that the stress-strain cycles stabilize after certain 

loading cycles. The suction change and volumetric strain also show similar stabilization.  

 

The proposed model has been tested under different loading conditions. The 

overall performance of the proposed model for simulating the Minco silt behavior is 

reasonable. The model can reproduce most of the Minco silt behavior. Some 

discrepancies can be seen in the model predictions of pore water pressure and pore air 

pressure, but the potential reason may come from the loading rate and measurement. 

 

5.5.2 TOYOURA SAND 
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Toyoura sand is a uniform fine sand consisting of 75% quartz, 22% feldspar and 

3% magnetite (Oda et al., 1978). The minimum and maximum void ratios of Toyoura 

sand are about 0.6 and 0.97, respectively. Toyoura sand has a specific gravity of 2.65 and 

.  mmD 17.050 =

 

 As discussed earlier, the unsaturated soil model becomes a saturated soil model 

when the suction drops below the air entry value. In this section, model parameters for 

Toyoura sand are calibrated and used to simulate saturated sand behavior under 

monotonic loading conditions and unsaturated sand behavior under cyclic loadings. It is 

important to notice that the stresses applied to test Toyoura sand (Verdugo and Ishihara, 

1996; Unno et al., 2008) cover a very wide range from 30 kPa to 3000 kPa. The stress 

used for cyclic loading tests (Unno et al., 2008) on Toyoura sand was very low. To better 

simulate the sand behavior under both saturated and unsaturated conditions, the model 

parameters are calibrated using low-stress test results. Because of the compromise 

between low and high stresses, some discrepancies between model simulations and test 

results under high stress can be seen. The overall model performance is still reasonable. 

Unno et al. (2008) only provided a single drying SWCC and this curve is used as the 

drying bounding curve. All the other SWCCs parameters are assumed. Most of the 

mechanical parameters are calibrated from saturated sand test results (Verdugo and 

Ishihara, 1996; Uchida and Stedman, 2001) under low confining stresses. The coupling 

parameters are calibrated using a trial-and-error method. In this way, the proposed model 

can be examined in a comprehensive manner. The model parameters are given in Table 

5.1. A series of undrained tests on Toyoura sand with different void ratios has been 
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carried out by Verdugo and Ishihara (1996). Model predictions are compared to the test 

results in Fig. 5.19 to Fig. 5.23. 

 

 When the Toyoura sand is very dense (i.e., the void ratio e = 0.735), compression 

is expected at the beginning of axial strain loading. The pore water pressure is 

accumulated and the effective stress decreases. However, as the strain loading continues 

the Toyoura sand experiences dilation. The process from compression to dilation is a 

special property for sand and it is called the phase transformation behavior. The proposed 

model can capture the phase transformation property of sand very well. As dilation 

continues, the accumulated pore water pressure starts decreasing and the effective stress 

increases.  

 

The initial density of the sand sample plays an important role in determining how 

the sand behaves during the loading process. When the initial state is loose (i.e., the void 

ratio e = 0.907), compression is dominant while no obvious dilation can be observed 

under given loading conditions. Fig. 5.23 clearly illustrates the pure contraction during 

axial strain loading. As the soil contracts, the pore water pressure accumulates and the 

effective stress decreases. However, for a medium density sand (i.e., the void ratio e = 

0.833), the effective confining stress plays a significant role. When the effective 

confining stress is low, dilation occurs at an early stage, while if the intergranular 

confining stress is high, the soil will experience contraction and then dilation. In this 

study for saturated Toyoura sand, the sand behavior is demonstrated to be strongly related 

to soil density and stress magnitude. 
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Limited research on unsaturated Toyoura sand is available in the literature. Unno 

et al. (2008) seems to be the first who systematically investigated unsaturated Toyoura 

sand behavior. Unfortunately, the strain they applied is small and the effective stress only 

reaches 30 kPa. In that stress range, little plastic response can be expected. Figs. 5.24 to 

5.26 present the test results and the model simulations. Fig. 5.24 shows that as the cyclic 

loading continues, the soil sample experiences contraction and the intergranular stress 

decreases. It is of great interest to notice that the effective intergranular stress becomes 

very low at the end of the test. This phenomenon is of great importance in both theory 

and practice, because liquefaction may occur at the end of the test. In other words, 

liquefaction not only occurs in saturated sand, but also in unsaturated sand. In addition, 

the proposed model can also capture the changes in the pore water pressure and pore air 

pressure very well, as illustrated in Fig. 5.26. 

 

5.5.3 HYPOTHETICAL SOIL 

 

Since no test results are available on the coupling effects between the mechanical 

and hydraulic mechanisms in unsaturated soils, some hypothetical investigation is carried 

out in this section. All the model parameters are the same as calibrated for Toyoura sand 

in section 5.5.2.  

 

SWCCs obtained for two different mean total stresses are shown in Figure 5.27. 

The simulation was conducted as follows. The suction path A (4 kPa)  B (20 kPa)  C 
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(4 kPa) is simulated keeping the mean total stress at 120 kPa. At point C, the mean total 

stress is increased from 120 kPa to 300 kPa. Then the suction is changed from C (4 kPa) 

 D (20 kPa)  E (4 kPa) while the mean total stress is kept constant at 300 kPa. The 

effects of soil deformation on the SWCCs can be clearly seen in Figure 5.27. When the 

mean total stress is higher, greater suction has to be exerted to hold the same amount of 

water in the soil sample. Following the analysis in Chapter 3, higher suction means 

smaller pore radius, if the contact angle and air-water interface energy are assumed to be 

constant. In other words, the soil sample contracts under higher mean total stress. It is the 

volumetric strains under different confining stresses that introduce the shift of the 

SWCCs. Not only the location of the SWCCs changes, but the shape of the SWCCs also 

changes as shown in Fig. 5.27.   

 

Figs 5.28 through 5.32 present hypothetical analyses of drained stress-strain 

behavior of unsaturated Toyoura sand. One group of the hypothetical analysis is carried 

out under mean total stress of 200 kPa, two suctions of 6 kPa and 96 kPa and different 

initial void ratios, i.e., 0.74, 0.80 and 0.99. Another group of hypothetical analysis is 

carried out with the assumption that mean total stress is 800 kPa, while two suctions, i.e, 

6 kPa and 96 kPa and two initial void ratios, i.e, 0.74 and 0.99 are adopted. All the 

hypothetical analyses are assumed to be strain-controlled tests with the axial strain going 

up to 20%. 

  

 Fig. 5.28 presents the relationships between mean intergranular stress and 

deviatoric stress. Under a given mean total stress, the deviatoric stress increases when the 
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suction is higher. Figs. 5.29 and 5.30 clearly demonstrate the relationship between 

deviatoric stress and suction and they show that the soil has a higher strength as higher 

suction is applied onto the soil. Figs. 5.31 and 5.32 illustrate the effect of the initial 

density on the soil behavior, with the soil sample contracting initially and then dilating 

when the soil has a high density, i.e, 74.00 =e  and 0.80. However, loose sand ( 99.00 =e ) 

contracts from the beginning of the loading process. The hypothetical analysis on the 

unsaturated Toyoura sand is consistent with the general properties of sand. How the 

mechanical behavior affects the SWCCs and how the SWCCs affect the mechanical 

responses are hypothetically analyzed in this section. 

 

5.6 SUMMARY 

 

Starting from the saturated sand models proposed by Manzari and Dafalias (1997) 

and Taiebat and Dafalias (2008), a comprehensive constitutive model for unsaturated 

sand and silt was presented in this chapter. Some special properties of the proposed 

model include: 1) a hysteretic SWCCs model based on the bounding surface plasticity 

concept was implemented to fully capture the soil water characteristic curves during 

cyclic wetting-drying process; 2) the adoption of the intergranular stress tensor was 

critical to the development of the unsaturated soil model; 3) a modified yield surface was 

adopted with a closed cap at its end to improve the model performance when the stress 

acting on the soil is high; 4) special hardening laws were proposed to account for the 

coupling effects between the mechanical and hydraulic behavior; 5) the model had been 

generalized from triaxial stress space to the general stress space. Finally, the rate 
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equations were integrated using a fully implicit integration scheme and the consistent 

tangent stiffness was also developed to enhance the model performance. Available test 

results on Minco silt and Toyoura sand were extensively examined using the proposed 

model and the overall performance of the model was reasonable.  
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Table 5.1 Model parameters for Minco Silt and Toyoura sand 

Parameter list Minco Silt Toyoura sand 
0K  (kPa) 20000 20000 

0G  (kPa) 30000 10000 

1b  0.5 0.5 
Elastic parameters 

1d  0.5 0.5 

cre  0.75 0.935 
λ  0.1 0.019 
ξ  0.7 0.7 

c
cM  1.45 1.29 

Critical state parameters 

c
eM  1.45 1.29 

b
ck  2.0 0.5 
d
ck  1.5 3.0 
b
ek  2.0 2.0 

Other state parameters 

d
ek  3.0 0.07 

0h  30 500 
m  0.25 0.40 

mc  1.0 0.0 

0I  (kPa) 5000 5000 
β  20 20 

vc  0.5 0.5 
ϖ  10 10 

Hardening parameters 

ς  10 10 
Dilatancy parameters 0B  0.1 0.5 

fc  5.0 100 
Fabric parameters 

maxF  500 100 

2b  8.6 2.3 

2d  0.7 1.05 

3b  100 4.0 

3d  0.5 1.3 
eΓ  (kPa) -2500 -100 

H  5.0 7.0 
wsn  0.413 0.95 

SWCCs model parameters 

wrn  0.001 0.03 
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Table 5.2 Test conditions for tests on Minco silt (after Vinayagam, 2004) 

After sample preparation After isotropic 
consolidation 

Stress state after 
isotropic 

consolidation Test 
No. 

Test 
type Water 

content 

(%) 
γdry

(kN/m3) 

Void 
ratio 

eo

Water 
content 

(%) 
γdry

(kN/m3) 
Void 
ratio  

e 

Mean 
net 

stress 
(kPa) 

Suction 
(kPa) 

pa
(kPa)

1 CW 14.00 14.28 0.842 13.81 14.49 0.814 50 30 60 

2 CW 14.20 14.25 0.845 13.95 15.16 0.733 150 30 45 

3 CW 14.04 14.19 0.852 13.50 15.63 0.682 300 30 45 

4 CW 14.06 14.30 0.838 13.72 14.54 0.808 50 30 60 

5 CW 14.19 14.28 0.841 11.87 14.45 0.819 50 100 120 

6 CW 14.23 14.23 0.847 13.57 15.21 0.728 150 30 50 

7 CW 14.03 14.18 0.854 13.29 15.01 0.752 150 30 50 

9 CW 8.50 15.90 0.654 8.13 16.13 0.630 100 30 50 

10 CW 8.17 16.03 0.639 9.13 16.31 0.612 100 40 70 

11 CU 14.20 14.15 0.858 13.59 15.32 0.716 150 30 50 

12 CU 14.18 14.16 0.857 13.76 15.51 0.695 150 30 50 

14 CU 14.08 14.25 0.845 12.72 14.78 0.779 150 60 80 

15 CU 14.23 14.18 0.854 13.53 15.09 0.742 150 30 50 

20 CU 14.11 13.97 0.881 12.75 15.26 0.723 150 60 80 

22 CU 14.14 14.23 0.847 13.60 15.41 0.71 150 30 50 

 

Note:  

Water contents in Table 5.2 are referred to gravimetric water content. 
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Fig. 5.4 Model predictions and CW test results for Test No.1 on Minco silt 
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Fig. 5.5 Model predictions and CW test results for Test No.2 on Minco silt 
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Fig. 5.6 Model predictions and CW test results for Test No.3 on Minco silt 
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Fig. 5.7 Model predictions and CW test results for Test No.4 on Minco silt 
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Fig. 5.8 Model predictions and CW test results for Test No.5 on Minco silt 
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Fig. 5.9 Model predictions and CW test results for Test No.6 on Minco silt 
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Fig. 5.10 Model predictions and CW test results for Test No.7 on Minco silt 
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Fig. 5.11 Model predictions and CW test results for Test No.9 on Minco silt 
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Fig. 5.12 Model predictions and CW test results for Test No.10 on Minco silt 
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Fig. 5.13a Model predictions and CU test results for Test No.11 on Minco silt 
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Fig. 5.13b Model predictions and CU test results for Test No.11 on Minco silt 
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Fig. 5.14a Model predictions and CU test results for Test No.12 on Minco silt 
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Fig. 5.14b Model predictions and CU test results for Test No.12 on Minco silt 
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Fig. 5.15a Model predictions and CU test results for Test No.14 on Minco silt 
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Fig. 5.15b Model predictions and CU test results for Test No.14 on Minco silt 
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Fig. 5.16a CU cyclic test results for Test No.15 on Minco silt (Vinayagam, 2004) 

 

 166



 

0 1 2 3
Axial Strain (%)

0

40

80

120

D
ev

ia
to

ric
 S

tre
ss

 (k
Pa

)

0 1 2 3
Axial Strain (%)

-16

-12

-8

-4

0

4

Su
ct

io
n 

C
ha

ng
e 

(k
Pa

)

0 1 2 3
Axial Strain (%)

0

1

2

V
ol

um
et

ric
 S

tra
in

 (%
)

120 150 180 210 240
Mean Net Normal Stress (kPa)

0

50

100

D
ev

ia
to

ric
 S

tre
ss

 (k
Pa

)

 

 

Fig. 5.16b Model predictions for CU cyclic Test No.15 on Minco silt 
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Fig. 5.17a CU cyclic test results for Test No.20 on Minco silt (Vinayagam, 2004) 
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Fig. 5.17b Model predictions for CU cyclic Test No.20 on Minco silt 
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Fig. 5.18a Model predictions and CU test results for Test No.22 on Minco silt 
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Fig. 5.18b Model predictions and CU test results for Test No.22 on Minco silt 
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Fig. 5.19 Saturated undrained Toyoura sand (e = 0.735) behavior under initial effective 

stresses of 0.1 MPa and 1 MPa 
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Fig. 5.20 Saturated undrained Toyoura sand (e = 0.735) behavior under initial effective 

stresses of 2 MPa and 3 MPa 
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Fig. 5.21 Saturated undrained Toyoura sand (e = 0.833) behavior under initial effective 

stresses of 0.1 MPa and 1 MPa  
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Fig. 5.22 Saturated undrained Toyoura sand (e = 0.833) behavior under initial effective 

stresses of 2 MPa and 3 MPa 
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Fig. 5.23 Saturated undrained Toyoura sand (e = 0.907) behavior under initial effective 

stresses of 1 MPa and 2 MPa 
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Fig. 5.24a Unsaturated test results ( qp −′ ) for Toyoura sand (Unno et al., 2008) 

 

0 10 20 30 4
Mean intergranular stress

0
-20

0

20

40

60

D
ev

ia
to

ric
 s

tre
ss

 (k
Pa

)

 

Fig. 5.24b Unsaturated model predictions ( qp −′ ) for Toyoura sand 
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Fig. 5.25a Unsaturated test results ( qa −ε ) for Toyoura sand (Unno et al., 2008) 
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Fig. 5.25b Unsaturated model predictions ( qa −ε ) for Toyoura sand 
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Fig. 5.26a Pore air/water pressure for Toyoura sand (Unno et al., 2008) 
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Fig. 5.26b Model predictions of pore air/water pressure for Toyoura sand 
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Fig. 5.27 Demonstration of influence of stress state on SWCCs 
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Fig. 5.28  under different total stresses and suctions qp −′
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Fig. 5.29 qa −ε  under mean total stress of 200 kPa 
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Fig. 5.30 qa −ε  under mean total stress of 800 kPa 
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Fig. 5.31 va εε −  under mean total stress of 200 kPa 

 

0 4 8 12 16 20
Axial strain (%)

-5

0

5

10

Vo
lu

m
et

ric
 s

tra
in

 (%
)

e0 = 0.74, Sc = 6 kPa

e0 = 0.99, Sc = 6 kPa

e0 = 0.74, Sc = 96 kPa

e0 = 0.99, Sc = 96 kPa

 

Fig. 5.32 va εε −  under mean total stress of 800 kPa 

 182



 

CHAPTER 6 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

6.1 CONCLUSIONS 

 

The following conclusions can be drawn based on the current research: 

 

1. A comprehensive constitutive model for unsaturated sands/silts in general stress 

space has been presented for the first time; 

2. The appropriate selection of stress-strain variables is one of the most important 

steps required in the development of a sound constitutive model for unsaturated 

soils. With the appropriate selection of stress-strain variables, some important 

concepts, such as critical state and phase transformation line can be directly 

extended from saturated soils to unsaturated soils. The stress-strain variables for 

modeling unsaturated soils should be consistent with thermodynamic 

considerations; 

3. To account for the coupling effects between mechanical and hydraulic behavior of 

unsaturated soils, it is necessary to include a practical hysteresis model for 

SWCCs; 
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4. In addition to the appropriate selection of stress-strain variables and the hysteretic 

SWCCs model, the proposed hardening laws are the key to predicting the coupled 

hydraulic and mechanical behavior of unsaturated sands and silts; 

5. The soil deformation has a strong influence on the evolution of SWCCs in 

unsaturated soils. The effect of suction on the sand deformation may not be as 

significant as the effect of soil deformation on the SWCCs in sands; 

6. Liquefaction not only occurs in saturated sands, but also in unsaturated sands; 

7. Under cyclic loadings, the stress-strain curves in unsaturated silts and sands show 

stabilization. 

 

6.2 RECOMMENDATIONS FOR FUTURE RESEARCH 

 

The following research may be carried out to improve current research on 

modeling unsaturated sands and silts: 

 

1. In the proposed model, the capillary elastic modulus  and residual volume 

fraction of water  are assumed to be constant for simplicity. As discussed in 

Chapters 3 and 5,  may change with suction and  may be related to the soil 

deformation. Note that  had to be changed to make better predictions for the 

OU mixture. Although the new functional forms of  and  will increase the 

complexity of the model, the model performance should definitely be enhanced. 

eΓ

wrn

eΓ wrn

wrn

eΓ wrn
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2. Although the proposed SWCCs model can well simulate the suction-water content 

relationships for most of the soils, the thermodynamic basis of the hysteresis of 

SWCCs or the physical explanation on the hysteresis will definitely help 

understand the mechanism behind the hysteretic phenomenon. More experimental 

and theoretical research is needed to investigate the hysteresis of SWCCs. The 

related topic on SWCCs has a broad application in geotechnical engineering, 

geoenvironmental engineering, petroleum engineering and many other fields; 

3. Given the fact that very limited test results are available on the coupling effects 

between the mechanical and hydraulic behavior of unsaturated soils, especially 

sands and silts, a systematic experimental investigation on unsaturated sands and 

silts is strongly suggested; 

4. The proposed unsaturated soil model is basically for sands or silts, not clays. In 

near future, a unified unsaturated soil model, which covers sands, silts and 

especially clays, is desired. It is beneficial to treat all the soils in a unified 

framework; 

5. The proposed unsaturated soil model has only been investigated on the single 

element level. It will be beneficial to implement the current model into a finite 

element program to examine some boundary and initial value problems. Some 

potential application in practice is highly desired; 

6. Liquefaction in unsaturated sands has not been extensively investigated. The 

importance of liquefaction in unsaturated sands has not drawn enough attention in 

the geotechnical engineering community. It would be valuable to carry out more 

research on liquefaction in unsaturated sands and silts both experimentally and 
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theoretically. Liquefaction of unsaturated sands and silts has important practical 

applications, especially for geotechnical engineering structures subjected to 

earthquake; 

7. Fabric has a strong effect on the sand and silt behavior, especially when 

liquefaction is of interest. Although some issues on the fabric have been studied 

recently, extensive investigation on the fabric of sands has not yet been carried 

out. Some topics, such as the selection of internal variables to capture the fabric 

effects and the evolution of the fabric tensor, are just beginning to get attention 

from soil science community and geotechnical community. 
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APPENDIX I: STRESS UPDATE ALGORITHM 

 

(I-1) Elastic predictor 

At step n+1, for iteration number zero: 

( ) ( ) ( ) ( ) ( ) 00
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0
1

0
1,

0
1,

0
1, =Δ=Δ=Δ=Δ=Δ +++++ nn

p
nw

p
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p
nv mn αεε         (A.1) 

The updated stresses: 
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0
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⎠

⎞
⎜
⎜
⎝

⎛
= +

+      (A.3) 

( )
1,,

0
1, ++ ΔΓ+= nw

e
ncnc nss         (A.4) 

Wetting:         (A.5) ( )
nwcnwc ss ,0

0
1,0 =+

Drying:         (A.6) ( )
ndcndc ss ,0

0
1,0 =+

(I-2) Plastic corrector 

The SWCCs are elastoplastic, so the plastic water content has to be introduced whenever 

suction changes. If the trial stresses are outside of the yield surface, i.e., , 

it is also necessary to correct the elastic predictions by simultaneously satisfying all the 

rate equations: 

( ) 0,;, >′ msf c ασ
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Wetting bound: 
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Drying bound: 
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In the above plastic corrector, some important parameters are given as follows: 
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Note: inδ  is not constant. In this model, inδ  changes whenever the suction loading 

direction is changed. In a given drying or wetting process, inδ  is treated as a constant. 
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(I-3) Stress update algorithm 

Step 1: Initialize the local iteration number, , loading index,m Λ , and the incremental 

plastic strains, i.e., 
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Step 2: Calculate the trial stress state using an elastic prediction 
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Step 3: Check the suction path and yield condition:  
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Set m  m+1, and GO TO step 3 

END IF 

(3) ELSE IF: {suction  changes} and {cs ( )
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1 Tolf n ≤+ }, THEN: Calculate the residuals: 
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m
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( ) ( ) ( ) ( )m
n

m
n

m
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m
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m
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m
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Drying bound: 
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( ) ( ) ( ) ( ) ( )( )β01111112 /13/2: IIImR m
n

m
n

m
n

m
n

m
n +++++ −−= rr     (C.30) 

IF: ( )
21 Tolm

n ≤+R , THEN:  

IF: ( ) ( ) ( )m
ndc

m
nc

m
nwc sss 1,01,1,0 +++ ≤≤ , THEN: EXIT 

ELSE IF: ( ) ( )m
nc

m
nwc ss 1,1,0 ++ > , THEN: 

( ) ( ) 01,01,0 <−=Δ ++
m

nwcc
m

nwc sss  (i.e., ( )m
nwcs 1,0 +  decreases to )  cs

( ) ( ) ( )mp
nw

m
nwc

mp
nw sn 1,01,01, / +++ ΓΔ=Δ  

( ) ( )m
nc

m
nwc ss 1,1,0 ++ =  
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( ) ( )m
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m
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END IF 

ELSE IF: ( )
21 Tolm

n >+R , THEN: Obtain incremental plastic strains and internal 

variables by solving the system: ( ) ( ) ( )m
n

m
n

m
n 111 +++ −=Δ RUT . ( )m

n 1+ΔU  is a 32×32 matrix. 

( )m
n 1+ΔU ={ , , ,( )m

nI 1+Δ ( )mp
n,v 1

2
+εΔ ( )m

n 1+Δs ( )mp
nq 1,

2
+Δε , ( )m

ncs 1, +Δ , ( )mp
nwn 1,

2
+Δ , ( )m

n 1+Δα , ( )m
nm 1+Δ , ( )m

n 1+ΔF , ,( )m
nwcs 1,0 +Δ ( )m

ndcs 1,0 +Δ ( )m
n 1+ΔΛ } 

Update stresses, plastic strains and internal variables: 
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1
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1
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+
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m
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1
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+
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( ) ( ) ( )mp
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2
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1
1, ++
+
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( ) ( ) ( )m
nc

m
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m
nc sss 1,1,

1
1, ++

+
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( ) ( ) ( )mp
nw

mp
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mp
nw nnn 1,

2
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1
1, ++
+
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( ) ( ) ( )m
n

m
n

m
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1
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+

+ Δ+= ααα    
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m
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m
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1
1,0 ++

+
+ Δ+=   

( ) ( ) ( )m
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m
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1
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+
+ Δ+=   

( ) ( ) ( )m
n

m
n

m
n 11

1
1 ++
+
+ ΔΛ+Λ=Λ    

Set , and GO TO Step 3 1+→ mm

END IF 

END IF 
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I  is related to the matric suction . When the matric 

suction is controlled to be constant, the mean intergranular confining stress is not a 

function of suction. From the algorithm in Appendix I, the selection of the residuals 

depends on the loading conditions. In the following calculation, only the general situation 

is treated. For simplicity, the local iteration number m and the step number n+1 are 
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In the above-mentioned quantities, more calculations should be carried out to give more 

details and all the relationships are listed below: 
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APPENDIX III: CONSISTENT TANGENT STIFFNESS MATRIX 

 

The consistent tangent stiffness matrix is calculated following the procedure by 

Manzari and Prachathananukit (2001). The general stress-strain relation and its 

incremental form are given as follows: 
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Rearrange (E-2) as: 
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Rewrite (E.3) in a simplified form as: ( )( )∗
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∗
++ Λ−Δ= 1111 : nnnn ddd RεDσ   (E.4) 
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Note that Eq. (E.4) is very similar to the stress-strain relationship. From eq. (E.4): 
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The consistent tangent operator is obtained using a standard procedure as: 
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Note:  is a fourth-order tensor and its second-order form is given below: eD
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In fact, the above consistent tangent operator in Eq. (E.7) and the elastic stiffness matrix 

in Eq. (E.9) are just for the soil skeleton. The hydraulic mechanism is not included and 
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they should be accounted for separately. In this way, the elastic stiffness matrix in Eq. 

(E.9) will be expanded to a 7x7 matrix with the element of , while the 

corresponding element in the consistent tangent modulus from the soil water 

characteristic curves is 

eeD Γ=)7,7(

( )pepepeepD Γ+ΓΓΓ=Γ+Γ= /)/1/1/(1)7,7( . 
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