
AN EXECUTION BATCH MONITOR FOR

PROCESSING STUDENT

JOBS

By

SHARON JOYCE ~LARKE

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1974

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1979

-1~.

'9/'1
C!.91 /e
Cop.~

AN EXECUTION BATCH MONITOR

PROCESSING STUDENT

JOBS

Thesis Approved:

Dean of Graduate College

1042920

ii

PREFACE

This study deals with the investigation and implementa­

tion of a method of reducing operating system overhead for

the short-running student jobs at Oklahoma State University.

The method chosen is that of an execution batch monitor

which eliminates much of the job overhead in processing

these student jobs. Sound operating system principles and

techniques are studied and incorporated into the monitor, as

it assumes some of the operating system functions for the

jobs which it processes.

I wish to express deep appreciation to my major

adviser, Dr. Donald Fisher, for his guidance and assistance

throughout my graduate study.

I would also like to thank Dr. John Chandler and Dr.

Eugene Bailey for serving on my graduate committee and for

their continuing support throughout my college career.

Thanks also to Dr. George Hedrick for all his help and guid­

ance.

A very special thanks goes to Dr. Verlin Drinen whose

technical expertise made this study possible. I wish to

thank all my friends in the Computing and Infomation Sci­

ences Department and the University Computer Center for

their friendship and encouragement. I am especially indebt-

iii

ed to John Sherblom who pleasantly and patiently answered

all my questions about SCRIPT, the text formatting program

used to produce this thesis.

Special thanks go to the students enrolled in CO~SC

2113 during the spring semester, 1979, for contributing to

my test data, along with my sincere hope that they will be

using my system as students in more advanced computer sci­

ence classes in the future.

Finally I wish to express deep love and gratitude to my

parents and family for their unfailing love and support of

my endeavors.

iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

4 II. OPERATING SYSTEM OVERVIEW

Operating System Evolution • • • • • 5
Batch Monitor Characteristics . • • . 6
A Batch Monitor Superimposed on the Operating

System • • • • . • • • • • • • • • • • • • 8

III. OPERATING SYSTEM TECHNIQUES • 10

Selection of Design Objectives and
Methodologies .••.••..••.•••• 10

I/O Buffering Techniques .•••.••••• 12
Accounting for System Resource Usage .••• 15
Operating System Characteristics •••• 15

IV. BATCH MONITOR IMPLEMENTATION • • . . • • • 1 8

Design Objectives and Methodology .
Buffering Techniques ••.
Resource Accounting ..••••
Batch Monitor Limitations ..••.

• 1 8
• • • • • 1 9
. 20
• • • • • 2 3

v. MONITOR EVALUATION AND ENHANCEMENTS • • • • 26

Testing Methods and Results • • . •••• 26
Monitor Evaluation • • . . ••••• 29
Improvements and Future Work . . • • • • 33
Summary • • • • • • • • • • • • • • • • • 35

REFERENCES 36

APPENDIX A - SUPERMON USER'S GUIDE 38

APPENDIX B - SUPERMON PROGRAMMER'S GUIDE 43

APPENDIX c - SUPERMON ERROR MESSAGES 70

APPENDIX D - ACRONYMS 82

v

Table

I.

LIST OF TABLES

Central Processor Utilization •

II. Device Access Count ••.••

vi

Page

. 27

• • 28

Figure

1 •

2.

3.

LIST OF FIGURES

Basic Form of a Batch Monitor . . .
SUPERMON Hierarchical Module Chart

SUPERMON Logic PDL • • • • • • • •

vii

.

Page

7

• 45

. 47

CHAPTER I

INTRODUCTION

The combination of faster and more powerful computer

hardware and the increased diversity of computer applica­

tions have contributed to the trend towards large and com-

pl ex general purpose operating systems. As the complexity

of operating systems has grown, the overhead associated with

accomplishing a given task on a computer has increased.

This overhead, or work which the operating system must per­

form to control a task, can sometimes exceed the work which

the task actually performs.

An example of this can be seen in a typical university

computer center which utilizes a general purpose operating

system to service both academic and administrative func­

tions. A large number of the jobs processed by such a cen­

ter are short-running student jobs which require minimal

computer resources.

and terminate these

The computer time necessary to initiate

student jobs is often greater than the

time spent in actual processing.

Such a situation exists at the Oklahoma State Univer­

sity Computer Center which utilizes the IBM OS/VS2 MVS oper­

ating system on an IBM 370/168 computer to process both aca-

1

2

demic and administrative jobs. Almost half of the jobs

processed at this center invoke one of the four available

fast compilers developed for student use. Many of these

student jobs spend less central processor time in actual

execution than they do in initiation and termination.

The purpose of this study is to investigate and imple­

ment a method of reducing the system overhead for this spe­

cial class of jobs at Oklahoma State University. This

method involves the use of a monitor which assumes some of

the tasks which the operating system normally performs. For

this reason it is necessary to study the concepts and

selected techniques of operating systems.

Chapter II of this study presents a brief overview of

operating system evolution. The characteristics of batch

monitor systems are presented in greater detail.

Chapter III discusses the various operating system

techniques which have applicability to batch monitors.

Chapter IV discusses the implementation of the monitor

system at Oklahoma State University. Approaches taken to

avoid the historic pitfalls of monitor systems are also

presented.

Chapter V discusses the methods used in testing to

determine the amount of system overhead saved by the monitor

system. Future work and possible improvements are also

presented.

3

The appendices include a user's guide, a programmer's

guide, and an error message manual for the monitor implemen-

tation. A logic description of the monitor is given in the

progra~mer's guide. Also included is a list of common acro­

nyms used in these documents.

CHAPTER II

OPERATING SYSTEM OVERVIEW

Definitions of the term "operating system" are as plen-

tiful as the number of people who write about them

(1, 12, 15, 16). The underlying theme of these definitions is

that an operating system is a set of programs which manages

computer resources for the user of the machine. Madnick and

Donovan (15) classify these computer resources as memory,

processors, I/O devices, and information to include programs

and data. They further define the tasks of the operating

system in managing these resources as keeping track of the

resource; enforcing policy that determines which job gets

what, when, and how much of each resource; allocating the

resource; and reclaiming the resource.

In order to understand the underlying concepts, a brief

overview of operating system evolution is in order. The

material in the next section is based on the historical work

of Robert F. Rosin (16). The approximate dates of each

development are those of Madnick and Donovan (15).

4

5

Operating System Evolution

Before any type of operating system existed, program­

mers wrote in machine code and operated the computer person­

ally. Batch monitor systems, first developed around 1956,

allowed users to "batch" their jobs together, eliminating

the need for each programmer to load his or her program man­

ually. The bottleneck which still existed was that of the

relatively slow speeds of the input and output processors

compared to the faster speed of the central processor.

The advent of the data channel and I/O interrupt pro­

cessing ushered in the first executive systems in the late

1950's. These systems permanently resided in memory and

provided the user with input and output management routines.

Although some overlap of I/O and computational processing

was provided, the real advantages of interrupt processing

were not realized until the development of multiprogramming

operating systems in the early 1960's.

Multiprogramming is the ability to have more than one

program in main storage at the same time. The processes of

the various programs are interleaved rather than simulta­

neously executed as is done in a multiprocessing environ­

ment. This implies that one process may use the central

processor while one or more other processes wait for the

completion of an I/O operation.

Multiprogramming greatly enhanced system throughput and

led to the increased use of computers for a wider range of

6

applications. These included sophisticated data processing

and interactive systems. Data management routines and

timesharing techniques were incorporated into operating sys­

tems in the middle 1960's to handle these tasks.

This brief sketch of operating system development

illustrates the improvements which have been made since the

early days of computing. At the same time it illustrates

the inherent complexity of modern operating systems. Sys-

terns have become so elaborate that the amount of computer

time used in actual processing of a job can be exceeded by

the amount of time required by the system to control that

job.

Rosin (16) concludes that more work must be done in the

area of providing systems which result in as little overhead

as possible for jobs which do not require the full resources

of a system, while providing extended functions for those

jobs which require them. The incorporation of the batch

monitor concept into modern general purpose operating sys­

tems provides a solution to this problem.

Batch Monitor Characteristics

As discussed, the concept of batch monitors is a primi­

tive one. They were used in the early days of computing to

run whole sequences of jobs without human intervention in

order to save the time lost waiting for an operator to

respond to a request or initiate a new job.

7

Colin (2) presents the basic form of a batch monitor as

shown in Figure 1.

+------------+
yes I COMPILE

START -------> Ii\ ----------------->: NEXT
l JOB

I no
I

\!/
STOP

+------------+

yes

I
I
I

. I

<--------------------------------
ARE

THERE
ERRORS?

+----------+
I RUN THE I I no

--I OBJECT :<------------------------~
I PROGRAM I
+----------+

Figure 1. Basic Form of a Batch Monitor

It simply automates the job cycle and maintains control over

the compiler and the object program produced by the compiler

by calling them as subroutines. Each job is preceded by

some type of job description and terminated by a special

record to enable the monitor to distinguish individual jobs.

This simple system has several drawbacks which limit

its use. The compilers available to a job are only those

which have been written into the system as subroutines. The

8

addition or modification of a compiler implies that the mon-

itor itself must be modified. Another problem is that an

error in the compiler or object program can cause the entire

system to terminate or loop indefinitely. Since no protec­

tion of the area of memory in which the monitor resides is

provided, the object program might also replace part of the

monitor causing unpredictable results for other jobs in the

stream.

In spite of these drawbacks the batch monitor is used

in this simple form, particularly at universities where the

job .load consists of many short simple jobs.

A Batch Monitor Superimposed on the

Operating System

Another type of batch monitor, sometimes called a

"pseudo" batch monitor, is one which is superimposed on

another more general operating system (2). In IBM's MVS

operating system this facility is called an execution batch

monitor and is actually provided by the Job Entry Subsystem

(JES) which is primarily responsible for the input and out­

put of jobs. JES controls the monitor which appears to the

operating system as a single job. In actuality multiple

jobs of a pre-specified "batch" class are passed to the mon­

itor by JES. The monitor is then responsible for processing

each of these jobs. The monitor itself is not provided by

JES as it must be tailored to the unique needs of the par­

ticular installation.

9

The possibility of reducing system overhead for the

jobs processed by such a monitor is substantial because the

operating system itself does not control the jobs which are

processed by the monitor. The monitor, on the other hand,

introduces some overhead because it must provide some of the

functions of an operating system to the jobs which it is

processing. The amount of overhead introduced depends on

the needs of the installation and how efficiently the moni­

tor implements the operating system functions which it

assumes.

For this reason it is necessary to investigate selected

operating system techniques and to explore methods of elimi­

nating or reducing the problems associated with early batch

monitors.

ters.

These areas are presented in the following chap-

CHAPTER III

OPERATING SYSTEM TECHNIQUES

Much of the theoretical work currently being done in

operating systems is directed toward the complex inter­

actions found in multiprogramming systems. Although a batch

monitor is by definition a serial processor, its design uti­

lizes basic operating system principles. Among these are

the selection of appropriate design objectives, I/O buffer­

ing techniques, job accounting considerations, and general

operating system characteristics.

Selection of Design Objectives and

Methodologies

Brinch Hansen (1, p. 18) states that "the key to suc­

cess in programming is to have a realistic, .clearly-defined

goal and use the simplest possible methods to achieve it."

This is especially true for operating systems and yet can be

most difficult to achieve.

The objective of many general purpose operating systems

is to provide a large variety of services in accommodating

an environment of diverse applications on a range of hard-

ware configurations. Systems constructed on this premise

10

1 1

normally use a horizontal or functional approach. In this

type of design the system is a collection of tools, tech­

niques, and functions which can be assembled in a variety of

ways to meet the requirements of a particular user. MVS is

a good exa~ple of this type of construction. Although it is

commercially successful, the combination of such a broad

objective and the functional design method chosen are

directly responsible for its lack of efficient performance

(1 4) •

In contrast a special purpose operating system can take

advantage of such critical components as available resources

and predictable workloads to optimize performance. Lynch

(14, p. 582) proposes that "the success of the design pro­

cess is strongly influenced by how well the load for the

system can be characterized.'' He cites airline reservation

systems as exa~ples of systems with statistically predicta­

ble workloads. Brinch Hansen (1) suggests that the success

of the EXECII spooling system is due to the designers'

knowledge of the expected workload and of the characteris­

tics of the I/O device used for spooling.

Brinch Hansen also suggests that productive sharing of

a large installation requires a range of operating systems,

each providing a particular service in the most efficient

and simplest manner. The designers of the FAMOS system (6)

disagree, citing the development cost of independent systems

as being prohibitive. The major goal of the FAMOS system is

12

to show the feasibility of a system family based on the

design methodology introduced by Dijkstra (4) in the T.H.E.

system. This design methodology, referred to as vertical

design, defines the system as a hierarchy of levels of

abstraction. Each level is in effect a virtual machine to

be used by the higher levels. It is the contention of the

FAMOS designers that an efficient general purpose system

family can be constructed using this methodology.

the

Regardless of

importance of

the objectives or

clearly defining

methodology employed,

the objectives and

selecting an appropriate methodology is emphasized by the

designers of each of the systems discussed.

I/O Buffering Techniques

The concept of data transfer is a basic one as this

function can be found in the simplest of operating systems.

Buffering is a technique in which a block of data is input

into or output fro~ an area of memory called a buffer so

that the central processor can access it. Once the input or

output operation is begun, the actual data movement is per­

formed by the data channel. This leaves the central pro­

cessor free to perform other processing as long as the

buffer area is not accessed until the I/O operation is com-

plete.

and I/O

This capability of overlapping computational time

time has led to the development of algorithms for

buffer management which attempt to utilize this overlap.

13

Two classes of alGorithms exist: synchronous and

asynchronous. A synchronous technique is one which requires

that the program periodically check for the completion of

the I/O operation. The more commonly used asynchronous

technique is one which depends on an interrupt from the I/O

device to signal completion.

Knuth (11) describes some synchronous algorithms,

although the concepts presented can be readily adapted to an

asynchronous environment. The simplest technique which

Knuth describes is that of buffer swapping. In this tech-

nique two buffers are used so that while one is involved in

an input or output operation, the other may be accessed by

the program. The algorithm includes a simple method of

detecting which buffer may be accessed.

A more general algorithm involving any nu~ber of buff-

ers arranged in a circularly linked list is also described.

Knuth depicts a buffer as being in one of the following

three states:

1. The buffer is ready to be assigned; that is,
it is filled with information in the case of
input or is a free area in the case of
output.

2. The buffer is the current one with which the
program is communicating.

3. The buffer is released; that is, it is a free
area in the case of input or it is filled
with information in an output situation.

14

In the algorithm pointers are kept to the next buffer in

each of the three states and proceed around the circularly

linked list of buffers in an orderly fashion. Checks must

be made to ensure that the pointers do not pass each other.

Another important consideration in buffer management is

the size of the buffer. The time which it takes to move a

block of data between auxiliary and main storage can be

broken into two parts: access and flow. Access consists of

some form of mechanical positioning such as disk arm

movement and rotational delay or tape start time. A single

access is required regardless of the amount of data being

transferred. The time for flow, or actual transmittal of

the data, on the other hand, is directly proportional to the

amount of data trans~itted. This implies that the total

time to transmit a given amount of information can be

reduced if each access is to as much data as possible. Tne

trade-off is obviously in the amount of main storage

required for the buffer.

The concepts presented here are used by Hellerman and

Smith (7) in an analysis of the effect on performance of

some idealized overlap configurations. Their results

indicate that some overlap of computation and I/0 operation

is usually better. However, they do point out that in an

I/O bound system with a single channel a nonoverlapped

operation with a larger buffer is better.

15

Accounting for System Resource Usage

One of the important aspects

keeping records of system resource

the users of the system equitably.

of an operating system is

usage in order to charge

Sayers (3) describes the

information typically recorded by a system for each job as

job identification and termination status, number of records

added to or deleted from each permanent file, central pro­

cessor time utilized, time used by each channel and each

device, number of lines printed, number of cards punched,

and number of records written on system output units. In

most systems the actual routines needed to analyze and sub­

sequently charge the user account are left for the installa­

tion to code.

IBM's OS/VS2 MVS operating system provides this func­

tion through a facility called System Management Facilities

or S~F (9). SMF records a variety of both system-wide and

job related information. It provides exits that allow

installations to add routines to the system to perform addi­

tional processing or create their own records. S~F records

are written on special system data sets which may subse­

quently be read by installation routines to perform the

actual job billing.

Operating System Characteristics

Kurzban (12) presents the following list of desirable

qualities of an operating system.

1. Usability - The system's interfaces are
designed with its users' convenience in mind.

2. Generality - The system does exactly those
things which its users want it to do -- no
more, no fewer.

3. Efficiency - The system makes optimum use of
the resources at its disposal.

4. Visibility - The system
learn those things about
be of value to them.

permits its users to
itself which might

5. Flexibility - The system can be modified
(tuned) in response to the behavior of its
users.

6. Opacity - The system permits its users to
remain ignorant of those things which are
beneath the interface it provides.

7. Security - The system protects those things
which its users entrust to it.

8. Integrity - The system protects itself from
damage which might be caused by its users'

9.

errors or malice. Conversely, its users can
be sure that the errors they see are their
own and not the system's or anyone else's.

Capacity - The system presents as lar3e an
interface as possible within its physical
constraints.

10. Reliability - The system fails as rarely as
possible with as little impact upon its users
as possible.

11. Availability The system continues to
function in the presence of as many errors as
possible, albeit with restricted capability
or efficiency.

12. Serviceability - The system does as much as
possible to facilitate and expedite repair.

13. Extensibility - The system facilitates the
addition to it of functions which its users
might desire.

16

17

Many of these qualities have application to the batch

monitor described in the next chapter.

CHAPTER IV

DATCH MONITOR IMPLEMENTATION

The execution batch monitor facility of JES provides a

method of reducing system overhead for the numerous student

jobs processed at the Oklahoma State University Computer

Center. As described in Chapter II, this facility passes

jobs of a pre-specified class to a user-written monitor for

processing. The monitor appears to the MVS operating system

as a single job. Thus dataset allocation and job initiation

and termination are performed one time instead of once for

each of the student jobs processed by the monitor.

The monitor is responsible for processing each of the

jobs passed to it in an efficient and reliable manner. How

this is acco~plished is discussed in the rt~ainder of this

chapter.

Design Objectives and Methodology

As stated, the primary objective of the monitor is to

reduce system ~verhead. An important secondary objective is

to provide the functions required by the student jobs in

such a way as to make the change in processing invisible to

the user. At Oklahoma State University a "student" job is

classified as a job which:

18

1. Uses ten seconds or less of central processor
time,

2. Does not require disk or tape mounts,

3. Requires no additional DD cards, and

4. Executes one of the fast student compilers,
WATFIV, PLC, ASSIST, or WATBOL, or the OSU­
written programs LIST or ROUTE.

19

Iri the text which follows, a "processor" refers to one of

these six programs elgible for student job processing.

A top-down structured methodology is used in the design

of the monitor. This methodology is more applicable than

either the functional or vertical approaches described

earlier because of the sequential nature of the monitor.

The processes which it must perform for each job can be

easily broken down into functions which can be coded as

subroutines. Each function or subroutine can then be coded

and tested separately before inclusion in the monitor. The

logic descriptions given in the Programmer's Guide in

Appendix D enu~erate these functions.

Buffering Techniques

Each job processed by the monitor includes an input

stream. If the job invokes one of the student compilers,

this stream consists of the program to be compiled and any

associated data. The monitor must create a file from this

stream for use by the processor.

20

The Basic Access Method (BSAM), which requires that the

program perform buffering, is used to create the file. A

simple one-buffer technique is employed for two reasons.

First of all it is possible to predict the average size of

the file. By selecting a buffer size large enough to con­

tain all the input for one job, only one output operation is

needed. Second, it is important to realize that although

the monitor is a serial processor, it is operating in a mul­

tiprogramming environment. Any time which it spends waiting

for the completion of an I/O operation is used by other jobs

in the system. This implies that the expense in terms of

programming effort and additional overhead outweighs any

gains in implementing a more sophisticated buffering algo­

rithm.

The monitor does achieve a degree of overlap between

co~putational and output operations. When it detects the

end of a job it immediately begins the output operation on

the buffer it is building. It then proceeds to perform

other tasks for the job such as final authorization check­

ing. The wait for the completion of the output operation is

done just before invocation of the required processor.

Resource Accounting

Another important function of the monitor is that of

resource accounting. The resources available to each job

running under the monitor are limited to ten seconds of cen-

21

tral processor time, access to certain system datasets pre­

allocated to the monitor (for exa~ple, WATFIV subroutine

libraries), and the capability of producing an output file

of up to 1500 lines. The monitor is responsible for ensur­

ing that these limitations are not exceeded and charging the

user for resources expended.

In order to accomplish this, the monitor utilizes the

control block structure of MVS. Because the monitor is a

single job to MVS, resource statistics are maintained for it

as they are for any other job in the system that is not run­

ning under the monitor. These statistics are kept in con­

trol blocks available to the monitor and are checked before

and after a batch job is processed. Details of the control

blocks used are described in the Programmer's Guide in

Appendix B.

The problem which remains is that of ensuring that a

batch job does not use more resources than it is allowed,

that is, ~G~e than ten seconds of central processor time or

more than 1500 lines of output. In order to explain how

this problem is resolved, definitions of the terms "task"

and "subtask" are required.

A task is a program which resides in storage and has

been scheduled to use the central processor. It has the

ability to create another task, known as a subtask, which

competes for system resources in the same manner as any

other task in the system.

22

For reasons to be discussed later, the actual process­

ing of the student job by the compiler takes place as an

independent subtask of the monitor. This means that the

timer facility of MVS cannot be used simply to interrupt

processing of the subtask after it has used ten seconds.

Instead the monitor must periodically check the time used by

the subtask. It accomplishes this by activating itself at

given intervals of time which decrease to a set minimum as

the time used by the subtask nears ten seconds or the number

of lines output approaches its maximum. This algorithm can

by no means produce an exact cutoff, but it works quite well

if careful attention is given to selection of the activation

intervals.

The monitor not only collects resource usage data, but

it also charges the user for the job. The method for charg­

ing the user is essentially the same as that used for other

jobs in the system. A five-digit project number is assigned

to each user or project and must be inclujed in the account­

ing information on the JOB card of each job submitted. The

current balance for each project number is kept in a perma­

nent file and is updated by the monitor after a job is pro­

cessed. The monitor optionally prints the accounting infor­

mation for the user. In addition the monitor outputs an SMF

record detailing the resource usage for each job. SMF is

the system-wide collector of resource usage data and is

described in Chapter III. These records are read by a daily

23

accounting job which ensures that each project number is

charged correctly for its usage.

The monitor contains an accounting feature which is not

available for other jobs. At Oklahoma State University it

is often the case that a course is assigned one project num­

ber for all the students enrolled in that course to use.

This is necessary because of the volume of paperwork

involved if each of 800 students, say, were assigned an

individual nurnb~er. The professor often wishes to be able to

maintain better control over the funds available to a par­

ticular student. In order to do this a user exit is pro­

vided which allows the professor (or anyone who can be per­

suaded) to code his or her own program to perform whatever

functions are desired. The exit has the capability of deny­

ing access to any job running under its project number.

Batch Monitor Limitations

As discussed in Chapter II, monitor systems have three

major drawbacks. In this implementation two of these are

eliminated and the third reduced in severity.

The limitation which remains is the problem of adding

functions. The monitor is designed to invoke one of six

pre-defined processors, all of which have unique parameter

and calling requirements which must be coded in the monitor.

Although it is true that the monitor must be modified and

re-assembled to provide additional processors, this modifi-

24

cation is limited to four of the seventeen modules which

comprise the monitor, and consists mainly of adding appro­

priate entries to existing tables. Instructions for doing

this are well-documented in the program, which further adds

to the ease of modification.

The two remaining drawbacks of monitor systems are that

errors in the user program can cause the system to terminate

or loop indefinitely and that the system itself may be over­

lain by a user program because of the lack of protection.

These drawbacks are eliminated by attaching the required

processor as an independent subtask instead of calling it as

a subroutine. The problem of the indefinite loop is nulli­

fied by the previously described method of periodically

checking the central processor time used by the subtask.

The ability to create a subtask is provided by the MVS

operating system and does include drawbacks of its own.

More overhead is introduced than would be if the processor

were called as a subroutine. Tne inability to time the sub-

task directly has already been mentioned. These drawbacks

are minor compared to the advantages which are provided.

The abnormal termination of a subtask does not terminate the

creating task, but rather simply returns control to it with

an appropriate condition code. Memory protection is pro­

vided for both tasks, in that neither one can overlay part

of the other. Communication between tasks is also provided

so that the monitor can regain control when the processor is

25

completed. The monitor also has the ability to abort the

subtask if it exceeds the resources allotted to it. Thus

the advantages gained by attaching the processor greatly

enhance the reliability of the monitor.

CHAPTER V

MONITOR EVALUATION AND ENHANCEMENTS

In order to evaluate the performance of the batch moni­

tor, a discussion of the testing methods and results is in

order.

Testing Methods and Results

In order to test the resource savings of the batch mon­

itor system, a job stream consisting of 101 jobs was run on

a stand-alone system first under the monitor and then under

the control of MVS. The jobs were run on the IBM 370/158 in

use at the university at the time of the tests. Approxi­

mately half of these jobs were collected from students tak­

ing a beginning course in programming using WATFIV at Okla­

homa State University. The remaining jobs were generated by

the author and other members of the University Computer Cen­

ter Systems staff in order to test certain aspects of the

system. The jobs used anywhere from less than a second to

the full ten seconds of central processor time allotted and

were representative of the job mix normally run at the

installation. The Resource Management Facility (RMF) of MVS

was used to collect the statistics shown in Tables I and II.

26

TABLE I

CENTRAL PROCESSOR UTILIZATION

Elapsed Real Time
In Seconds

CPU Utilization
In Seconds

Average CPU Utilization
Per Job in Seconds

% Cpu Idle

Batch
Monitor

337.357

162.442

1. 608

51.84

MVS
OS/VS2

606.746

306.714

3.037

49.44

27

As Table I shows, the batch monitor used 47% less cen-

tral processor time than the conventional operating system.

This savings can be directly attributed to the reduced over-

head of the monitor system. It is interesting to note that

the monitor has little effect on the percentage of time

which the central processor spent idle, or waiting for work

to do~·

Table II depicts the count of device accesses for each

of four disk devices in use at the installation. The over-

all decrease of 46% occurs for several reasons. The savings

in activity on DASD50 are due to the absence of scratch

dataset creation under the batch monitor. The monitor use~

VIO (Virtual I/0) for its scratch space if needed. Under

MVS one or more scratch datasets are allocated for each job

whether they are used or not.

28

TABLE II

DEVICE ACCESS COUNT

Volume Batch MVS
Serial Monitor OS/VS2

DASDOO 3533 6068
DASD10 4071 8801
SYS TSO 3268 2128
DASD50 0 3279

----- -----
TOTAL 10872 20276

The device activity on DASDOO is primarily due to

accesses to the processor load modules. Each retrieval of a

processor by the MVS operating system actually requires two

accesses because the processors are stored as members of a

partitioned library. One access is needed to the directory

of the library to obtain the location of the member and a

second access is required to retrieve the processor load

module. The batch monitor introduces a savings of nearly

50% because it performs one access to the partitioned

library directory during its initialization process and

saves the location of each processor which it needs. It

then must perform only one access per job to retrieve the

applicable load module.

A reduction in accesses to the accounting file explains

the savings found on DASD10. The monitor performs one read

and one write to this file for each job. Under MVS two

29

reads and one write are required because the authorization

and updating are performed by independent modules.

The increase in activity on SYSTSO under the batch mon­

itor is due to the need for the intermediate file for input

to the attached processor. Overall, however, the test

results indicate a significant savings in central processor

utilization and device activity.

Monitor Evaluation

It is now useful to evaluate the performance of the

batch monitor using Kurzban's thirteen qualities of a good

operating system given in Chapter III.

Usability

The system is designed with the users' interface con­

venience in mind as the job control language remains

unchanged

Although it

from that used before its implementation.

is possible to have used fewer than the three

control cards necessary to run a job, this implementation

requires that the user learn only one set of control cards

to run a job in any class.

Generality

According to Kurzban, generality in an operating system

is the quality of doing exactly those things which the users

want it to do. This is rather hard to judge because the

30

desires of the users are not well-defined. The monitor does

in fact perform exactly those things which are required of

it to process the special class of jobs known as student

jobs at Oklahoma State University, and in this respect it

fulfils the requirement.

Efficiency

Efficiency is a quality which evades unbiased evalua­

tion. The test results show that the monitor processes its

jobs with greater efficiency than the MVS operating system,

but according to Lynch (14) that is a rather weak claim.

Efficient methods are utilized in the monitor as presented

in this study, but improvements are nearly always possible

and are discussed in a later section of this chapter.

Visibility

The quality of allowing users of the system to learn

those things about the system which might be of value is not

present in the batch ~onitor. This is not a serious draw­

back because the majority of users are students who have

limited interest in how their jobs are processed.

Flexibility

The area of tuning the monitor in response to user

behavior is one of the areas which needs improvement.

is discussed in a later section.

This

31

Opacity

Opacity, which is allowing users to remain ignorant of

the system's internal processing, is probably one of the

best features of the monitor system. The monitor has been

operating in a production environment at Oklahoma State Uni­

versity for over five months and students who have not been

informed of the change are totally unaware that their jobs

are being processed differently.

Security and Integrity

These qualities are presented together as they are

actually provided by the MVS operating system as discussed

in Chapter IV. The monitor itself possesses these qualities

by the way in which it makes use of the facilities of MYS

available to it.

Capacity

Presenting as large

physical constraints is

an interface as possible

another quality which has

within

little

impact on the evaluation of the batch monitor. The monitor

is designed to be a special purpose system with restricted

capabilities and so presents a limited capacity to its

users.

32

Reliability and Availability

Reliability is another strong feature of the batch mon­

itor. After an initial period of two weeks in which two

errors were found and corrected, the system has not failed

in a five month period of use. This contributes strongly to

its availability, although the monitor does not have the

ability to function in the presence of errors. It does

report certain errors to the operators of the machine so

that they can remedy the situation and restart the monitor

in many cases.

Serviceability

The quality of expediting repair has not been ade­

quately tested since only two errors have been discovered.

The top-down methodology used in the design of the monitor

should contribute to isolating problems when they occur.

Extensibility

The ease of adding processors to the monitor system has

been discussed earlier. The addition of other functions,

for example the ability to allocate datasets dynamically,

could be accomplished but probably not as easily. Here

~gain the top-down methodology lends itself to the addition

of functions.

33

Improvements and Future Work

Overall the test results and evaluation indicate that

the batch monitor provides an efficient method of processing

student jobs. Improvements, however, are an important part

of any functioning system.

One way to improve the monitor is to add the capability

to collect statistics about itself. Useful information

could include the number of jobs run, the amount of

resources used, the number of times each processor was

invoked, the number of records written to the output file,

and so forth. This information could then be used to tune

the system. For example, if it were discovered that a large

percentage of the jobs write only fifty records to the out­

put file which the monitor is responsible for buffering, the

size of the buffer could be reduced resulting in a signifi­

cant storage savings.

The problem which exists in collecting data about the

jobs it is processing is that the monitor never terminates

normally. It is actually an infinite loop, continually

processing the jobs sent to it and waiting in an inactive

state when there are no jobs to process. The monitor is

abnormally terminated by JES when its initiator is drained.

This implies that a simple collection of data and some type

of report or record written just before termination is not

possible. Writing a record to a file for each job seems

excessive, particularly since the load on the system fluctu-

34

ates according to the due date of the next assignment and

careful attention would have to be taken to ensure that the

file would not overflow. A better alternative would be to

collect statistics and generate a record for a given inter­

val of real time, such as every half hour. These statistics

could then be printed as part of a daily job and used to

tune the system.

Another area in which the monitor could be improved is

in storage utilization. Currently the monitor requests the

maximum amount of storage required by any of its six pro­

cessors at initialization time and performs no dynamic stor­

age requests. Because the processors require varying

amounts of storage, the monitor could make more efficient

use of storage by dynamically requesting the amount needed

depending on the processor invoked. This method introduces

more overhead, so a careful analysis of the benefits versus

the disadvantages is required. The aforementioned enhance­

ment of collecting statistics would greatly benefit this

analysis.

A third possibility for improvement is for the monitor

to decipher and print the return code from the attached

processor for the user's information. This was not done in

the original version because a non-zero return code from

WATFIV, the processor used most often, is usually meaning­

less. Other processors, in particular WATBOL, have useful

return codes and thus give this enhancement some merit.

35

Summary

This study deals with the investigation and implementa­

tion of a method of reducing system overhead for the short­

running student jobs processed at Oklahoma State University.

This study is important because of the large percentage of

overhead introduced by the general purpose operating system

for this special class of jobs.

The method chosen was that of the execution batch moni-

tor facility of JES. Sound operating system principles and

techniques were studied and incorporated into the monitor.

Testing showed that an overall savings of nearly 50% was

introduced by the use of the monitor over conventional job

processing.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

REFERENCES

Brinch Hansen, P. Operating System Principles.
Englewood Cliffs, N.J.: Prentice-Hall, 1973.

Colin, A. J. T. Introduction to Operating Systems.
London, Great Britain: Macdonald & Co., 1971.

Comtre Corporation. Operating Systems Survey. Ed.
Anthony P. Sayers. New York: Auerbach, 1971.

D i j ks tr a , Ed s g er W • " The St r u c tu r e o f the T • H • E .
Multiprogramming System." Communications of the
ACM, 11, 5 (May, 1968), 341-346.

Gibson, O. L. "AUTOBATCHER: The Virginia Tech Student
Job Processor." Proceedings of Share XLIII, Vol.
2, (August, 1974), 750-754.

Habermann, A. N., P. Feiler, L. Flon, L. Guarino, L.
Cooprider, B. Schwanke. Modularization and
Hierarchy in ~ Family of Operating System
Pittsburgh, Pennsylvania: Department of Computer
Science, Carnegie-Mellon University, 1978.

Hellerman, H., H. J. Smith, Jr. "Throughput Analysis
of Some Idealized Input, Output, and Compute
Overlap Configurations." Computing Surveys, 2, 2
(June, 1970), 111-117.

IBM, OS/VS2 MVS System Programming Library: ~·
Poughkeepsie, New York: IBM, 1979.

IBM, OS/VS2 MVS System Programming Library: .§.ystem
Management Facilities. Poughkeepsie, Ne~k:
IBM, 1977.

Keedy, J. L., "On Structuring Operating Systems With
Monitors." Operating Systems Review, 13, 1
(January, 1979), 5-9.

Knuth, Donald E. The Art of Computer Programming.
Vol. 1. 2nd E~ Reading, Mass.: Addison-Wesley,
1973.

36

37

(12) Kurzban, Stanley A., Thomas S. Heines, Anthony P.
Sayers. Operating Systems Principles. New York:
Petrocelli/Charter, 1975.

(13) Liskov, Barbara H. "The Design of the Venus Operating
System." Communications of the ACM, 15, 3
(March, 1972), 144-149. -- --- ---

(14) Lynch, W. C. "Operating System Performance."
Communications of the ACM, 15, 7 (July, 1972),
579-583. - -

(15) Madnick, Stuart E. and John J. Donovan. Operating
Systems. New York: McGraw-Hill, 1973.

(16) Rosin, Robert F. "Supervisory and Monitor Systems."
Computing Surveys, 1, 1 (March 1969), 37-53.

(17) Warwick, Martin. "Introduction to Operating System
Concepts." Executive Programs and Operating
Systems. Ed. G. Cuttle and P. B. Robinson. New
York: American Elsevier, 1970, 1-10.

APPENDIX A

SUPERMON USER'S GUIDE

General Description

SUPERMON is an execution batch monitor program respon-

sible for the execution of Class Z jobs. Execution batching

is a facility of JES whereby quick-running jobs using simi­

lar resources are "batched" together as a single job thereby

eliminating certain job management overhead.

At OSU Class Z jobs fall into this category because

they are jobs which:

1.

2.

3.

4 ..•
··., .. ···.·

Use ten seconds or less of CPU time,

Do not require disk or tape mounts,

Require no additional DD cards, and

Execute one of the fast "student" compilers
WATFIV, PLC, ASSIST, or WATBOL, or the OSU­
written programs LIST or ROUTE.

Very simply, execution batching works in the following

way at CSU. When a job is read into the system with

'CLASS=Z' on the JOB card, JES passes the entire job to the

execution batch monitor, SUPERMON. SUPERMON is the1.

responsible for reading the job, performing validity

checking, invoking the processor (WATFIV, PLC, etc.) which

the job requires, and performing OSU accounting for the job.

38

39

SUPERMON processing is essentially transparent to the

user and for this reason the details of processing are not

given here. Users who wish more detailed information may

refer to the Programmer's Guide in this docu~ent.

Job Submission

Job submission for Class Z is essentially the same as

other classes at OSU with a few minor differences.

are:

1. MSGCLASS=Z is the default message class for
Class Z jobs. This job card parameter
suppresses the listing of input JCL and the
OSU accounting box. Users who wish to have
these listed must specify MSGCLASS=A on the
first (or only) JOB card. MSGCLASS should
not be specified on a JOB continuation card
for Class Z.

2. Allocation messages, step condition codes,
and EXCP counts are not listed for Class Z
jobs.

3. Error messages are printed for Class Z users
if the password check fails, the account is
out of funds, or a JCL error occurs,
regardless of the value of MSGCLASS.

4. The TIME parameter on the JOB card has no
meaning, but a 10 second time limit is in
effect. Users who wish to lower this time
limit may do so by using the $JOB card for
WATFIV, WATBOL, and ASSIST, and the *PL/C
card for PL/C.

5. The MSGLEVEL parameter on the JOB card does
not affect the JCL listing because the class
Z job does not execute a procedure.

6. The number of cards input is limited to 1500.

7. The number of lines output is limited to
1500.

These

8. fl. '//jobname JOB' card or a null JCL card
('11 ') cannot be 1 isted using LIST under
Class Z. A JOB card, even though part of a
DD DATA input stream, is still recognized as
a JOB card and unpredictable results will
occur. A null JCL card terminates the
listing.

40

Other OSU standards for the JOB card and /*PASSWORD

card remain in effect. A single '// EXEC ' card must be

included and specify one of the processors WATFIV, ASSIST,

PLC, WATBOL, LIST, or ROUTE. The only DD card which may be

included is a '//SYSIN DD' card which must immediately

precede the input.

SUPERMON prints the following user messages under

certain conditions.

OSU001I
OSU008I
OSU015I
OSU101I
OSU105I

OSU002I
OSU009I
OSU016I
OSU102I
OSU106I

OSU006I
OSU011I
OSU019I
OSU103I
OSU115I

OSU007I
OSU014I
OSU032I
OSU104I

These messages are listed in detail elsewhere in this

document.

User Exit Description

Purpose

A user exit facility has been implemented which pro-

vides the project director of an OSU account more control

over Class Z usage. This facility consists of a program,

written by a user with the project director's authorization,

41

which performs additional validity checking of the JOB card

used to submit a job under that OSU project nu~ber. For

example, the user exit could contain a list of social secu­

rity numbers which would be valid and refuse access to a job

which did not have a valid social security nu~ber. The

criteria for validation is solely at the discretion of the

project director as long as OSU standards are first met.

User Exit Requirements

The user exit must accept two parameters, an 80 byte

char.acter string containing the job card and a full-word

(length 4) binary return code. This latter parameter is

used to indicate to SUPERMON how the user exit wishes the

job in question to be handled. A code of zero indicates

that the job is to be processed. Any other value indicates

that the job is not to be processed. In this latter case

SUPERMON issues a message to the user indicating that the

job has been cancelled by a user exit.

The user exit may be written in any language although

Assembler is recommended for performance reasons. The user

should be aware that resources used by the user exit (CPU

time, disk accesses, and so forth) will be charged accord­

ingly.

Anyone wishing to implement a user exit should check

with the Systems Group no later than the completion of the

early design phase of such a project. File requirements

42

must be approved, and a~ple time must be provided for test­

ing before a user exit will be permitted to be placed in

production.

APPENDIX B

SUPERMON PROGRAMMER'S GUIDE

System Description

Abstract

SUPERMON is an execution batch program responsible for

processing Class Z jobs at Oklahoma State University. Ex-

ecution batching is a JES facility which allows certain job

management overhead to be eliminated. A description of ex-

ecution batch processing is contained in OS/VS2 MVS System

Programming Library: JES2 in the section "JES2 Processing".

Programs

SUPERMON is actually one Assembler progra~ incorpo-

rating several subprograms. Because of its large size, each

subprogram is treated as an individual program for purposes

of this documentation. The source for each of the subpro-

grams listed below may be found in the library

'SYS1.SUPERMON.SOURCE'.

1. PARSPRM - Parses the parameter which is
passed to SUPERMON on its EXEC card.

2. INITBTCH - Initializes pointers which remain
constant throughout the life of a SUPERMON
batch run.

43

3. INITSDB - Initializes pointers to the SDBs
for all of the SYSOUT files which the
attached processors use.

4. BUILDL - Retrieves directory information for
the processor and user exit load modules
which SUPERMON attaches.

5. EXCPKNT - Retrieves the EXCP counts for disk
files used by SUPERMON and its attached
processors.

6. JOBSCAN - Verifies the JOB card for a
SUPERMON job.

7. WRTCRD - Writes a card to an external file
for use by the attached processor.

8. EXECSCN - Verifies the EXEC card for a
SUPERMON batch job.

9. USERINF - Calls the user exit if one exists
for the job's project number.

10. LINEKNT - Totals the number of lines output
to the SYSOUT files used by the attached
processor.

11. FNDTIME - Converts CPU time to 100ths of a
second.

12. UPDACCT - Updates the OSU active file and
prints the accounting box.

13. SMFREC - Writes the SMF record.

14. CONVDATE - Converts a Julian date to MMDDYY
format.

15. ACCTVER Performs project number
verification and authorization checks.

16. TIMEXT - Timing exit used to post the timer
ECB.

44

The relationship between modules is illustrated in Figure 2.

SUPERMON

- - - -- -· - -,

r I I I
I
I
I

PARSPRM INITSDB I I I
I
I

:
I

I
I

I

INITBTCH BUILDL I I
I

I
I

I
I
1 Batch Initialization '

- -- - - - - - - - - - - - - - - - ·-- - - - - - - -- - - - - - -I

- - -· - - - - - - - - - - - - -- -- -- - - - - - - - 1

I 1 I I
I
I

I

EXCPKNT FNDTIME LINEKt-IT I :
I

I

1 Utility Subprograms for :
~ _______ 13~~91lr9~- 8.ccoun_t_in,g ________ ;

I
I

USER INF I

r - - - - - - - - - - - - - - -· - -- - - - - - -,

I
I
I

: I UPDACCT
I
I
I
I
I
I
I
I
I
I
I
I
I

I I SMFREC

_J
ICOHVDATE

:,___I_i_l'!i:!~ A<2!:? _~QQ_QtJDtlng __ J

.- ~- - - - -- - - - - - - - - - - - - - - -· - - - - - -- - - - - - ;

1 I I I
I
I

: I JJBSCAN EXECSCN WRTCRD
I

I
I

I I
I

I
I

: I ACCTVER Input Loop
I

I

I_ - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - _J

Figure 2. SUPERMOM Hierarchical Module Chart
J:=
V1

Files

SUPERMON utilizes the following four files:

1. SYSIN - The input file created by JES from
which SUPERMON reads the Class Z jobs to be
processed.

2. SYSIN$$$ - The output file which SUPERMON
creates for the processor which it attaches.

3. TUOREPUS - The output file for messages to
the user job.

4. ACCTFILE - The OSU active file which SUPERMON
must read and update for accounting purposes.

46

SUPERMON also must open and close the SYSOUT files

used by the attached processors in order to save pointers to

the line count field in the SDB. This is necessary to

control the number of lines output by a Class Z job. These

files are FT06F001, SYSOUT, SYSPRINT, and COBPRINT.

Other files are required by the attached processors but

are not directly accessed by SUPERMON. These files may be

found in the procedure used to start SUPERMON processing,

B$$$$Z 1.

System Flow

A very brief overall description of SUPERMON processing

is shown in Figure 3. Details may be found in each of the

program descriptions elsewhere in this document.

INITIALIZATION FOR THE ENTIRE BATCH RUN;
DO WHILE THERE ARE MORE JOBS TO PROCESS;

DO UNTIL THE END OF A CLASS Z JOB IS FOUND OR
AN ERROR OCCURS;

READ THE NEXT CARD FROM INPUT;
IF IT IS A JOB CARD THEN

PERFORM JOB CARD VALIDATION;
IF IT IS AN EXEC CARD THEN

PERFORM EXEC CARD VALIDATION;
IF IT IS A DATA CARD THEN

WRITE THE CARD TO SYSIN$$$ FILE;
END;
IF THE JOB HAS PASSED ALL VALIDATION CHECKS THEN

DO;
ATTACH THE REQUESTED PROCESSOR;
WAIT FOR ITS CO~PLETION;

END;
UPDATE THE OSU ACTIVE FILE;
WRITE AN SMF RECORD;

END;

Figure 3. SUPERMON Logic PDL

Program Description - SUPERMON

Abstract

47

SUPERMON is the main csect of this system. As such,

its overall flow is given in Figure 3. A more detailed

description is given in ''Program Logic" below.

Link Edit Attributes

Link edit attributes are only given for the main pro-

gram SUPERMON since all programs are linked together as one

module as previously explained. The only attribute required

is 'AC=1 '· SUPERMON must be an authorized program in order

48

to place itself into supervisor state. This is necessary to

allow SUPERMON to perform such authorized tasks as writing

SMF records while attaching unauthorized subtasks.

Subroutines

The subroutines which SUPERMON calls are listed above.

Two other external subroutines utilized by SUPERMON but not

written by this author are:

1. ACCTRW - Access routines to the OSU active

2.

file. SUPERMON uses the entry points OPEN,
READ and WRITE.

NQDQ -
file.
DEQ.

Enqueue routines for the OSU active
SUPERMON uses the entry points ENQ and

Documentation for these subroutines may be found in the

UCC Systems Documentation Manual.

Macros

SUPERMON uses the following local macros which are all

contained in 'SYS1.SYS.MACLIB'.

1. SMCOMMON - Layout of the common storage area.
This area contains information which is used
by many of SUPERMON's subroutines.

2. SMACTREC - Layout of the OSU active file
record.

3. SMFRC254 - Layout of the SMF record which is
generated by SUPERMON for each job it
processes.

Inputs and Outputs

1. Parameter - SUPERMON is passed a parameter
string via the EXEC statement in the pro­
cedure which JES uses to begin SUPERMON
processing. This parameter string consists
of project numbers which have user exits and
the entry point names for the user exits.
The exact form is
'99999,eeeeeeee,99999,eeeeeee ••• ' where
'99999' is a valid OSU project number and
'eeeeeeee' is the one to eight-character
entry point name. The project numbers and
corresponding entry point names must be in
ascending alphabetical order by entry point
name. At present a limit of ten user exits
may be specified, although this number could
be increased with minor modifications to
SUPERMON.

2. Files - File requirements for SUPERMON are
discussed in the 'System Description' above.

3. Messages - SUPERMON outputs messages to the
user job via the file TUOREPUS. These
include:

OSU001I
OSU008I
OSU015I
OSU101I
OSU105I

OSU002I
OSU009I
OSU016I
OSU102I
OSU106I

OSU006I
OSU011I
OSU019I
OSU103I
OSU115I

OSU007I
OSU014I
OSU032I
OSU104I

SUPERMON outputs the following messages to
the operator console:

OSU024I
OSU109I
OSU113I
OSU 118I

OSU025I
OSU110I
OSU114A
OSU119I

OSU107I
OSU111I
OSU116I.
OSU120I

OSU108I
OSU 112I
OSU117I

These messages are listed elsewhere in this
document. If MSGCLASS=A is specified on the
JOB card, SUPERMON also prints the input JCL
and the accounting box on file TUOREPUS.

49

50

Program Logic

SUPERMON logic may be broken into two main parts. The

first consists of initialization for the batch run. This

part is executed only when JES invokes SUPERMON for the

first time after its initiator has been drained and re-

started. Processing which is performed includes:

1. Writing a message to the operator console
that SUPERMON has started,

2. Parsing the input parameter string containing
user exit information,

3. Opening the required files,

4. Initializing pointers to certain control
block information,

5. Initializing pointers to the SDBs of the
SYSOUT files used by the attached processors,

6. Retrieving directory information for the
processor and user exit load modules,

7. Placing itself into supervisor state.

The second part of SUPERMON is in reality an infinite

loop which is executed once for each Class. Z job which it

processes. The processing within this loop is comprised of

the following steps:

1. Read the input file until a JOB card is
found.

2. Verify the accounting information and other
keywords on the JOB card. If there is an
error, print the message and go to Step 1.

3. Read each card of the input file SYSIN until
a null JCL card is found. SUPERMON utilizes
the internal subroutine CREAD to determine

the type of card read. Depending on the
type, do one of the following things:

a. For an EXEC card, verify that the
processor name is valid.

b. For a /*PASSWORD card, save the
password for later validation.
(The last password card found is
used in password checking.)

c. For a delimiter card (/* or user­
specified), a JCL comment card, or
a //SYSIN DD * card, print the card
if desired (MSGCLASS=A).

d. For a JOB continuation card,
continue the JOB card validation.

e. For any other type of JCL card,
print an error message.

f. For any other type of non-JCL card,
write the card to the external file
SYSIN$$$ to be used by the attached
processor.

4. Write out the last block of data for the file
SYS IN$$$.

5. Perform miscellaneous validation
as final input card count and
checking.

checks such
password

6. If an error has occurred, go to Step 8.

7. Call the user exit routine if one exists for
the project number of the current job.

8. Perform a 'dummy' close on the file SYSIN$$$.
(This allows SUPERMON to begin writing at the
beginning of the file without opening it
again.)

9. If the user exit requested cancellation of
the job, go to Step 14. If some other error
occurred, go to Step 1.

10. Attach the requested processor (WATFIV,
WATBOL, ASSIST, PL/C, ROUTE, or LIST).

11. Set a timer to activate SUPERMON after a
given period of real time.

51

12. Wait for one of two events: the attached
processor finishing or the timer expiring.
If the attached processor is finished, go on
to the next step, otherwise check the CPU
time used and the lines output for the Class
Z limits. If they exceed the limits, go to
the next step, otherwise reset the timer and
start this step again.

13. Detach the processor subtask.

14. Calculate the CPU time used and the disk
EXCPs performed by the job.

15. Update the active file and print the
accounting box if requested.

16. Issue the SMF record type 254 for the job.

17. Go back to Step 1 of the infinite loop to
process the next job.

52

When SUPERMON attempts to read the next job, JES

detects this condition and temporarily suspends SUPERMON

processing while it performs termination tasks for the job

which just completed. These include spooling the output

files, queuing the job for printing and so forth. If

another Class Z job is waiting to be executed, JES

reactivates SUPERMON immediately at this point. Otherwise,

SUPERMOU remains in a wait state until another Class Z job

is read by JES.

There are only two methods of terminating SUPERMON's

infinite loop. The first is by draining or cancelling the

initiator. The second is if SUPERMON abnormally terminates.

53

Program Description - PARSPRM

Abstract

PARSPRM is the csect which parses the input parameter

string to SUPERMON and builds the user exit project nu~ber

table and the BLDL list for the user exit entry points.

Inputs and Outputs

1. Parameters PARSPRM is passed three
parameters:

a. The address of the parameter string
to be parsed. (See the section on
parameters in the program
description of SUPERMON for a
description of the format.)

b. A table which on output contains
UCC project numbers with user
exits.

c. The BLDL list for the user exits.
This list must be initialized to
blanks except for the field
containing the length of each BLDL
entry which must contain the
appropriate length.

2. Return codes - PARSPRM returns a condition
code of 4 if it encounters an error in the
parameter string, otherwise it returns a
condition code of zero.

Program Logic

PARSPRM simply scans the parameter string alternately

picking off a UCC project number and its corresponding user

exit entry point name. It expects the project number to be

exactly 5 digits in length. It uses the TRT (translate and

test) instruction to locate the comma following a user exit

entry point name so that the names can be of any valid

length (1 to 8 characters). It places the entry point names

in the BLDL list for use by the subroutine BUILDL. Use of

the BLDL facility is explained in the program description of

BUILDL.

Program Description - INITPTRS

Abstract

INITPTRS is the csect which initial:zes certain point-

ers which remain constant throughout the life of a SUPERMON

batch run. These include pointers to the SDB (Subsystem

Data Set Block), the JCT (Job Control Table), the TCT (Tim­

ing Control Table), and the CPU elapsed time field from the

ASCB (Address Space Control Block). Also returned is the

CPU System Identifier from the SMCA (System Management Con­

trol Area).

Parameters

INITPTRS expects the following six parameters, the

first of which is input and the rest output.

1. Address of the DCB for the file which
SUPERMON uses for its user messages. (Needed
to locate the SDB and JCT.)

2. Address of the SDB.

3. Address of the JCT.

4. Address of the CPU elapsed time field from
the ASCB.

55

5. System Identifier from the SMCA.

6. Address of the TCT.

Program Logic

INITPTRS simply traces through the appropriate control

blocks for the required information. This operation is well

documented in the internal program documentation.

Program Description - INITSDB

Abstract

INITSDB is the csect which finds and saves pointers to

the SDB for each of the SYSOUT files used by the processors

which SUPERMON attaches. These pointers are needed to

locate the current line count for each of the files. The

line count is used in determining if a job processed by

SUPERMON has exceeded its output line limit.

Inputs and Outputs

1. Parameters - INITSDB expects the following
two parameters, both of which are output:

a. SDB address table

b. Failing DDname

The latter parameter is used only if an OPEN
fails for one of the DDnames.

2. Return codes - INITSDB returns a condition
code of 4 if any of the OPENs for the SYSOUT
files returns a non-zero condition code.
Normal processing is indicated by a return
code of zero.

56

INITSDB progresses through a table of DDnames in its

own local storage performing the following for each DDname:

1. Opens the file.

2. Locates the SDB.

3. Saves the pointer to the SDB in the next
location of the table passed to it.

4. Closes the file.

One DCB is used for all of the SYSOUT files.

Program Description - BUILDL

Abstract

BUILDL is the csect which performs BLDLs for the pro-

cessors and user exits which SUPERMON attaches. Use of the

BLDL facility allows SUPERMON to reduce the access time in

retrieving the load modules to be attached. The BLDL list

contains the directory information of a partitioned library

for these members. This allows SUPERMON to skip the direc-

tory access when attaching the processors and user exits.

Inputs and Outputs

1. Parameters - BUILDL expects the following
three parameters to be passed to it:

a. The BLDL list for the processors
which SUPERMON attaches.

b. The BLDL list for the user exits
which SUPERMON attaches.

c. A table of user exit OSU project
numbers in the same order as the
user exit BLDL list.

Both of the BLDL lists must be completed
prior to calling this procedure. The format
for the BLDL list may be found in MVS Data
Management Macro Instructions.

2. Return codes - This procedure returns a code
of 4 if it receives a non-zero return code
from the BLDL for the processors. Normal
processing is indicated by a return code of
zero.

Program Logic

57

BUILDL performs two BLDLs, one for the processors and

one for the user exits. As noted above, both BLDL lists

must be completed before entry to this procedure.

If an error is returned from the BLDL for the pro-

cessors, this procedure determines the failing entry point,

issues a message to the operator, and returns a code of 4.

This causes SUPERMON to shut itself down, as this error must

be corrected before processing can continue.

If an error is returned from the BLDL for the user

exits, this procedure determines the failing entry point,

deletes the corresponding OSU project number from the table,

and issues a warning message to the operator. This has the

effect of cancelling the failing user exit without impacting

SUPERMON processing.

58

Program Description - JOBSCAN

Abstract

JOBSCAN is the csect which performs the verification of

a JOB card for a job processed by SUPERMON.

Subroutines Called

JOBSCAN calls ACCTVER to verify the accounting informa-

tion.

Macros

JOBSCAN uses the macro SMCOMMON from 'SYS1.SYS.MACLIB'

to define the layout of SUPERMON's common storage area.

Inputs and Outputs

1. Parameters - Although JOBSCAN receives no
parameters, it expects the following
registers to contain the indicated
information:

a. R5 - Points to 'JOB' on the card
to be scanned.

b. R6 - Points to the end of the card
to be scanned.

c. R11 - Points to SUPERMON's co:nmon
storage area.

2. Return codes - JOBSCAN returns one of the
following condition codes:

a. 0 - Normal completion, no errors
encountered.

b. 4 - Error found on JOB card or in
account verification routine,
applicable error address and length
stored .in CSA.

c. 8 - ACCTVER returned condition code
of 8 which indicates a bad read of
the active file.

Program Logic

59

JOBSCAN performs two main functions. It verifies the

accounting information and searches for certain keywords on

the JOB card. Once it validates the format of OSU account-

ing information, it calls ACCTVER to read the active file

record and perform authorization checks for the project num-

ber. Next, it loops searching for keywords on the JOB card.

If the card being scanned is a continuation card, only the

keyword search is performed.

If JOBSCAN encounters an error, it sets the error mes-

sage address and length fields in the CSA so that its caller

(SUPERMON) can issue the appropriate message to the user.

It also sets the return code as shown above.

Program Description - ACCTVER

Abstract

ACCTVER is the csect which performs account verifica-

tion and authorization for a job which SUPERMON is process-

ing.

Macros

ACCT VER uses the following macros from

'SYS1.SYS.MACLIB'.

1. SMACTREC - Layout for the OSU active file

record.

2. SMCOMMON - Layout for SUPERMON's common
storage area.

Inputs and Outputs

1. Parameters - ACCTVER expects no parameters,
but does require that the address of
SUPERMON's common storage area be in register
1 1 •

2. Return codes - ACCTVER returns one of the
following codes:

a. 0 - Normal processing, no errors
encountered.

b. 4 - Project nu~ber in question
failed one of the authorization
checks.

c. 8 - I/O error on the active file.

Program Logic

60

ACCTVER retrieves the project number for verification

and authorization checks from the co~mon storage area. The

checks which it makes are:

1. Numeric project number

2. Open account

3. Positive account balance or unlimited funds

4. Current shift authorization

It also saves the byte of flags which provide processor

authorization in the common storage area for later use by

EXECSCN.

61

Program Description - EXECSCN

Abstract

EXECSCN is the csect which scans the EXEC card of a

job, looking for a valid procedure name.

Macros

EXECSCN uses the macro S~COMMON from 'SYS1.SYS.MACLIB'

to define the layout of SUPERMON's common storage area.

Inputs and Outputs

1. Parameters - Although EXECSCN receives no
parameters, it expects the following
registers to contain the indicated
in form at ion:

a. R5 - Points to 'EXEC' on the card
to be scanned.

b . R6 - Points to the end of the card
to be scanned.

c. R 11 - Points to SUPERMON's common
storage area.

2. Return codes - EXECSCN returns a condition
code of 4 if it encounters an error on the
EXEC card, otherwise it returns zero.

Program Logic

EXECSCN first attempts to locate a procedure name fol-

lowing 'EXEC' on the card to be scanned. Then it compares

the name found to a table of valid procedure names contained

in its local storage. If a valid one is found, it checks

62

for authorization from the flags from the active file which

have been saved in the CSA. Lastly, it moves the appro­

priate parameter to be passed to the attached processor to a

field in the CSA.

If an error is encountered, it uses the error message

address and length fields of the CSA to allow its caller

(SUPERMON) to output the appropriate message to the user.

This routine must be modified if additional processors

are to be added to SUPERMON's capabilities. Instructions

for doing this may be found in the internal program documen­

tation.

Program Description - WRTCRD

Abstract

WRTCRD is the csect which is responsible for writing

records to the file which the attached processor accesses

for its input. It uses the BSAM access method and is

responsible for blocking the data.

Macros

WRTCRD uses the macro SMCO~MON from 'SYS1.SYS.MACLIB'

to define the layout of SUPERMON's common storage area.

Parameters

WRTCRD expects one input parameter,

DCB to which it is to write records.

the address of the

The address of the

common storage area must also be in register 11.

63

Program Logic

WRTCRD ~oves the card from its input buffer in the com-

mon storage area to the next location in the output buffer

which it has in its local storage. When the buffer becomes

full, it issues a write and does not at~empt to place more

records into the buffer until it issues a check which

ensures that the I/O operation is complete.

If WRTCRD is called and the FINALWRT flag in the common

storage area is on, the routine simply writes the block

which it has already built, provided there are records to

write.

Program Description - USERINF

Abstract

USERINF is the interface between SUPERMON and its user

exits.

Macros

USERINF uses the macro SMCOMMON from 'SYS1.SYS.MACLIB'

to define the layout of SUPERMON's common storage area.

Inputs and Outputs

1. Parameters - USERINF expects one input
parameter, the address of the BLDL list for
the user exits. It also requires that the
address of the common storage area be passed
in register 11.

2. Return codes - USERINF returns a condition
code of 4 if the user exit requested

cancellation of the job, otherwise it returns
zero.

Program Logic

64

USERINF first determines if a user exit exists for the

current project number by checking the project nu~ber table

in the common storage area. If not, it simply returns to

its caller. If an exit does exist, it sets up the required

parameters and attaches the appropriate routine. In the

remote possibility that the user exit gets in an infinite

loop, USERINF sets a timer to reactivate itself in order to

check the CPU time used by the exit. If it is forced to

detach the user exit before its completion, it issues a mes-

sage to the console so that the situation does not go unno-

ticed.

If the user exit returns a non-zero co~pletion code,

USERINF formats a message to the user that the job has been

cancelled because of the user exit. The error message

address and length are then saved in the common storage area

so that the caller (SUPERMON) can issue the message.

Program Description - TIMEXT

Abstract

TIMEXT is the timer exit for SUPERMON. It receives con-

trol when the timer expires. The timer is used to re-acti-

vate SUPERMON out of the wait state it enters after it has

attached a subtask.

65

Program Description - FNDTIME

Abstract

FNDTIME is used by SUPERMON to convert CPU time from

its internal forTiat to hundredths of seconds.

Parameters

FNDTIME expects two parameters; the first is the

address of the CPU time field, and the second is the area to

return the result.

Program Logic

The input CPU time field is an unsigned 64-bit fixed

point number where bit 51 is equivalent to one microsecond.

The result is returned in a full word binary number repre­

senting the equivalent time in 100ths of a second. The con­

version process is explained in the internal program docu­

mentation.

Program Description - LINEKNT

Abstract

LINEKNT is the csect which totals the number of lines

output to the SYSOUT files used by the attached processors

of SUPERMOM.

66

Parameters

LINEKNT expects two parameters, a fullword area to

return the count and a table of SDB addresses, one address

for each SYSOUT file to be included in the count.

Program Logic

LINEKNT progresses through the table of SDB addresses

sent to it, locating the line count field and adding it to a

total.

Program Description - EXCPKNT

Abstract

EXCPKNT is the csect which totals the EXCPs performed

on the disk files used by SUPERMON.

Parameters

EXC PK~JT expects the following three parameters, the

first of which is in put:

1 • Address of the TCT (Timing Control Table)

2. Fullword count of the disk EXCPs

3. Fullword count of the VIO EXCPs

Program Logic

This procedure uses the information in the I/O table of

the TCT to locate and sum the disk and VIO (Virtual I/O)

67

EXCPs. This operation is well defined in the internal pro-

gram documentation.

Program Description - SMFREC

Abstract

SMFREC is the csect which formats and writes the SMF

record issued by SUPERMON for each job it processes.

Macros

SMFREC uses the following macros

'SYS1.SYS.MACLIB':

1. SMFRC254 - Layout of the SMF record type 254

2. SMCOMMON - Layout of SUPERMON's common
storage area.

Parameters

from

SMFREC expects one input parameter, the address of the

SMF record it is to format and write. It also expects the

address of SUPER~ON's common storage area to be passed in

register 11. Much of the information which it uses to fill

in SMF record fields comes from the common storage area.

Program Logic

SMFREC obtains and formats the following information

for the SMF record:

1. Job name and number,

2. Date and time job started,

3. Accounting information to include the UCC
project number and the social security
number,

4. EXCP and input card counts,

5. Amount charged for the job,

6. Date and time job ended.

68

The procedure uses the MVS macro SMFWTM to perform the

actual write of the record and outputs a message to the

operator if an error occurs.

Program Description - UPDACCT

Abstract

UPDACCT is the csect which updates the active file and

prints the accounting box if requested (MSGCLASS=A).

Macros

UPDACCT uses the macro SMCOMMON from 'SYS1.SYS.MACLIB'

to define the layout of SUPERMON's common storage area.

Parameters

UPDACCT expects one input parameter, the address of the

DCB to use in writing the accounting box. It also expects

the address of SUPERMON's common storage area to be passed

in register 11.

69

Program Logic

UPDACCT calculates and formats the following accounting

information:

1. Processor time charge,

2. Processor storage charge,

3. Disk EXCP charge,

4. Discount for shifts other than the prime
shift,

5. Total charge for the job,

6. Amount of funds remaining in the project
account.

It also updates the active file with this information. The

accounting box is printed only if the user specifies

MSGCLASS=A on the JOB card.

APPENDIX C

SUPERMON ERROR MESSAGES

OSU001I JCL ERROR - PERFORM= PARAMETER IS NOT PERMITTED

Explanation: The PERFORM= parameter has been detected
on the JOB card. This is not in accordance with OSU
JCL standards. This message is issued by the
subroutine JOBSCAN.

System Action: The job is terminated without execution.

Operator Response: None.

Programmer Response: Remove the PERFORM= parameter from
the job and resubmit.

OSU002I JCL ERROR - INVALID SYNTAX IN ACCOUNTING SUBFIELDS

Explanation: The accounting subfields on the job card
must be specified in the following format:

//jobname JOB (nnnnn,sss-ss-ssss, •..••.

where 'nnnnn' is a valid UCC project nu~ber and
'sss-ss-ssss' is the social security number of the
user. This message is issued by the subprogram
ACCTVER.

System Action: The job is purged from the system
without execution.

Operator Response: None.

Programmer Response: Resubmit the job specifying UCC
project number and social security number in the
format shown above.

70

OSU006I JCL ERROR - NON-NUMERIC CHARACTER ENCOUNTERED IN
PROJECT NUMBER

71

Explanation: The project number in the accounting
subfields of the JOB card contains non-numeric data.
This message is issued by the subprogram JOBSCAN.

System Action: The job is purged from the system
without execution.

Operator Response: None.

Programmer Response: Resubmit the job specifying a
valid project number on the JOB card. The project
number format is described in the message OSU002I.

OSU007I JCL ERROR - NON-EXISTENT OR CLOSED PROJECT NUMBER

Explanation: The project number used in the accounting
subfields of the JOB card is not active. This
message is issued by the subprogram ACCTVER.

System Action: The job is purged from the system
without execution.

Operator Response: None.

Programmer Response: Check the project number for
correctness. If no error is found, contact the
project director or Accounting Services of the
University Computer Center.

OSU008I JCL ERROR - INSUFFICIENT FUNDS

Explanation: The account specified by the project
number in the accounting subfield of the JOB
statement is out of funds. This message is issued
by the subprogram ACCTVER.

System Action: The job is purged from the system
without execution.

Operator Response: None.

Programmer Response: Contact the project director.
Further questions can be forwarded to the Accounting
Services Section of the University Computer Center.

72

OSU009I PROJECT NUMBER NOT AUTHORIZED FOR THIS SHIFT

Explanation: The project number used in the accounting
subfield of the JOB card has not been authorized to
be used on the shift (1, 2 or 3) that has been
attempted. This message is issued by the subprogram
ACCTVER.

System Action: The job is purged from the system
without execution.

Operator Response: None.

Programmer Response: See the project director to
determine for which shifts the project nu~ber is
authorized. Any further questions may be forwarded
to the Accounting Services Section of the University
Computer Center.

OSU011I JCL ERROR - PASSWORD CHECK FAILED

Explanation: The password contained on the /*PASSWORD
card is not the valid password for the account, or
the /*PASSWORD card has been omitted. This message
is issued by SUPERMON.

System Action: The job is purged from the system
without execution.

Operator Response: None.

Programmer Response: Include a /*PASS~ORD card with the
proper password in the job stream. If the password
is invalid, contact the project director.

OSU014I PROCEDURE OR PROGRAM NOT AUTHORIZED FOR CLASS Z

Explanation: The job is attempting to use a procedure
or program which is not designed for use in the
CLASS=Z processor. This message is issued by the
subprogram EXECSCN.

System Action: The job is purged from the system
without execution.

Operator Response: None.

Programmer Response: Resubmit the job using any valid
class other than Z. Consult the UCC User's Manual
to determine those procedures and programs
authorized for CLASS=Z.

OSU015I JCL ERROR - MULTIPLE JOB STEPS NOT AUTHORIZED FOR
CLASS Z

Explanation: The job contains more than one job step.

73

This is not allowed for class Z jobs. This message
is issued by SUPERMON.

System Action: The job is purged from the system
without execution.

Operator Response: None.

Programmer Response: Resub~it the job using any valid
class other than CLASS=Z.

OSU016I JCL ERROR - ACCOUNT NOT AUTHORIZED FOR CLASS Z
PROCESSOR SPECIFIED

Explanation: A job with CLASS=Z specified on the JOB
statement has requested the use of a processor
(WATFIV, for example) that was not authorized for
use by the project number specified in the
accounting subfields of the JOB statement. This
message is issued by the subprogram EXECSCN.

System Action: The job is purged from the system
without execution.

Operator Response: None

Progra~mer Response: Consult the project director to
determine which processors are authorized for the
account. Further information can be supplied by
Accounting Services of the University Computer
Center.

OSU019I JCL ERROR - INVALID DD CARD FOR CLASS Z JOB

Explanation: The class Z processors allow only one DD
statement: SYSIN. Any other DD statements contained
in the job stream are invalid for the class Z
processors. This message is issued by SUPERMON.

System Action: The job is purged from the system
without execution.

Operator Response: None.

Programmer Response: Change the CLASS=Z parameter on
the JOB card to any valid class other than Z, or
delete the invalid DD card in the job.

74

OSU024I ACTIVE FILE OPEN FAILED, CONTACT UCC SYSTEMS

Explanation: The program received a non-zero return
code from the OPEN subroutine which opens the active
file. This message is issued by SUPERMON.

System Action: SUPERMON is terminated.

Operator Response: Contact UCC Systems as soon as
possible.

Programmer Response: None.

OSU025I I/O ERROR ON ACTIVE FILE, CONTACT UCC SYSTEMS

Explanation: The program which issued the message has
received a non-zero return code from the subroutine
NQDQ or ACCTRW which process the active file. This
message is issued by the subprograms ACCTVER and
UPDACCT.

System Action: SUPERMON is terminated.

Operator Response: Contact UCC Systems as soon as
possible.

Programmer Response: None.

OSU032I JCL ERROR - ADDRSPC=REAL NOT AUTHORIZED

Explanation: The parameter ADDRSPC=REAL has been found
on the JOB card. Use of this parameter is not
allowed in Class Z. This message is issued by the
subprogram JOBSCAN.

System Action: The job is purged from the system
without execution.

Operator Response: None.

Programmer Response: Remove the request ADDRSPC=REAL
from the JOB card.

75

OSU101I CLASS Z LINE LIMIT EXCEEDED. JOB CANCELLED.

Explanation: The line limit for a Class Z job has been
exceeded. This message is issued by SUPERMON.

System Action: The job is terminated before execution
is complete.

Operator Response: None.

Programmer Response: Resubmit the job using any valid
class other than Z. Consult the UCC User's Manual
for the current line limit of Class Z jobs.

OSU102I JCL ERROR - MISPLACED EXEC CARD.

Explanation: An EXEC card has been found out of order.
This message is issued by SUPERMON.

System Action: The job is purged from the system
without execution.

Operator Response: None.

Programmer Response: Examine the order of the input
JCL. Be sure the EXEC card comes before any SYSIN
cards. This problem may occur if an unrecognizable
card is included before the EXEC card such as a
misspelled PASSWORD card. After correcting the
error, resubmit the job.

OSU103I JCL ERROR - MISSING EXEC CARD

Explanation: A Class Z job did not include an EXEC card
in the input JCL. This message is issued by
SUPERMOM.

System Action: The job is purged from the system
without execution.

Operator Response: None.

Programmer Response: Inlude a valid EXEC card
specifying one of the Class Z procedures. Consult
the UCC User's Manual for the JCL required to
correctly submit a Class Z job.

OSU104I JCL ERROR - CLASS Z CARD LIMIT EXCEEDED.

Explanation: A Class Z job has exceeded the maximum
nu~ber of cards allowed on input. This message is
issued by SUPERMON.

System Action: The job is purged from the system
without execution.

Operator Response: None.

Programmer Response: Resubmit the job using any valid
class other than Z. Consult the UCC User's Manual
for the current input card limit for Class Z.

OSU105I CLASS Z TIME LIMIT EXCEEDED. JOB CANCELLED

76

Explanation: A Class Z job has exceeded its time limit.
This message is issued by SUPERMON.

System Action: The job is terminated.

Operator Response: None.

Programmer Response: Resubmit the job using any valid
class other than Z. Consult the UCC User's Manual
for the current time limit for Class Z.

OSU106I JCL ERROR - $$ CARD ENCOUNTERED

Explanation: A Class Z job has included a '$$' card
somewhere in its input. This card may not be used
in Class Z. This message is issued by SUPERMON.

System Action: The job is purged from the system
without execution.

Operator Response: None.

Programmer Response: Remove the '$$' card from the
input job stream or resubmit the job using any valid
class other than Z.

OSU107I SUPERMON PROCESSOR ATTACH FAILED, CONTACT UCC
SYSTEMS

Explanation: The attach for one of the Class Z
processors has failed. This message is issued by
SUPERMON.

System Action: SUPERMON will abnormally terminate.

77

Operator Response: Message OSU114A will also be issued.
Refer to it for the prop2r action.

Programmer Response: None.

OSU108I SUPERMON SYSIN$$$ FILE CLOSE FAILED, CONTACT UCC
SYSTEMS

Explanation: The close of SYSIN$$$ has failed. This
message is issued by SUPERMON.

System Action: SUPERMON will abnormally terminate.

Operator Response: Message OSU114A will also be issued.
Refer to it for the proper action.

Programmer Response:· None.

OSU109I SUPERMON xxxxxxxx FILE OPEN FAILED, CONTACT UCC
SYSTEMS

Explanation: The OPEN for the file designated by
xxxxxxxx has failed. This message is issued by
SUPERMON.

System Action: SUPERMON will abnormally terminate.

Operator Response: Message OSU114A will also be issued.
Refer to it for the proper action.

Programmer Response: None.

78

OSU110I SUPERMON RECEIVED INVALID PARM. CONTACT UCC SYSTEMS

Explanation: The parameter specified on the EXEC card
of the procedure for SUPERMON is invalid. This
message is issued by the subprogram PARSPRM.

System Action: SUPERMON will abnormally terminate.

Operator Response: Leave SUPERMON's initiator drained
until the Systems Group has corrected the problem.
Message OSU114A will also be issued.

Programmer Response: The systems programmer must
correct the invalid parameter in SUPERMON's
procedure.

OSU111I SUPERMON USER EXIT xxxxxxxx EXCEEDED MAXIMUM TIME.
NOTIFY UCC SYSTEMS.

Explanation: The designated user exit has exceeded its
allotted time and is probably looping. This message
is issued by the subprogram USERINF.

System Action: None.

Operator Response: Notify UCC Systems. SUPERMON
processing will continue.

Programmer Response: The Systems programmer must notify
the appropriate project director of the probable
user exit problem.

OSU112I SUPERMON RECEIVED ERROR CODE FROM WRITE OF SMF
RECORD RC=xx, CONTACT UCC SYSTEMS

Explanation: The write of the SMF record has failed.
This message is issued by the subprogram SMFREC.

System Action: SUPERMON will abnormally terminate.

Operator Response: Message OSU114A will also be issued.
Refer to it for the proper action.

Programmer Response: None.

79

OSU113I SUPERMON VERSION x.x IS NOW PROCESSING CLASS Z JOBS

Explanation: This message is issued when SUPERMON
begins processing. The denotation x.x indicates the
current version in use. This message is issued by
SUPERMON.

System Action: None.

Operator Response: None.

Programmer Response: None.

OSU114A SUPERMON IS ABNORMALLY TERMINATING. DRAIN ITS
INITIATOR AND CONTACT UCC SYSTEMS BEFORE REPLYING
y

Explanation:
which it
preceded
problem.

SUPERMON has encountered an error from
is unable to recover. This message will be
by another message defining the exact

This message is issued by SUPERMON.

System Action: SUPERMON will terminate.

Operator Response: Drain SUPERMON's initiator, contact
UCC Systems and then reply 'Y' to this message.
Unless otherwise instructed, attempt to restart
SUPERMON by re-starting its initiator. If the
problem recurs, leave the initiator drained.

Progra~mer Response: The System programmer must correct
the applicable problem.

OSU115I JOB CANCELLED BY USER EXIT. RC=xxxx. SEE YOUR
INSTRUCTOR OR PROJECT DIRECTOR FOR INFORMATION.

Explanation: A user exit has requested cancellation of
a Class Z job. This message is issued by the
subprogram USERINF.

System Action: The job is purged from the system
without execution.

Operator Response: None.

Programmer Response: See the instructor or project
director concerning the reason the job was
cancelled.

OSU116I SUPERMON USER EXIT xxxxxxxx ATTACH FAILED. CONTACT
UCC SYSTEMS.

80

Explanation:
failed.
USERINF.

The attach of the designated user exit has
This message is issued by the subprogram

System Action: None.

Operator Response: Notify the Systems Group as soon as
possible.

Programmer Response: The Systems programmer must
correct the problem and notify the applicable
project director responsible for the failing user
exit.

OSU117I SUPERMON BLDL FAILED BECAUSE OF INSUFFICIENT
STORAGE, CONTACT UCC SYSTEMS

Explanation: The BLDL for SUPERMON's processors failed
because of insufficient storage. This message is
issued by the subprogram BUILDL.

System Action: SUPERMON will terminate.

Operator Response: Message OSU114A will also be issued.
Refer to it for the proper action.

Programmer Response: None.

OSU118I SUPERMON BLDL I/O ERROR, CONTACT UCC SYSTEMS

Explanation: An I/O error has occurred while SUPERMON
was performing a BLDL for its processors. This
indicates a problem with the directory of SUPERMON's
step library. This message is issued by the
subprogram BUILDL.

System Action: SUPERMON will terminate.

Operator Response: Message OSU114A will also be issued.
Refer to it for the proper action.

Programmer Response: None.

OSU119I SUPERMON CONTAINS INVALID BLDL LIST, CONTACT UCC
SYSTEMS

81

Explanation: BLDL has returned a condition code of 4,
but the program was unable to detect which processor
was not located. This message is issued by the
subprogram BUILDL.

System Action: SUPERMON will terminate.

Operator Response: Message OSU114A will also be issued.
Refer to it for the proper action.

Programmer Response: None.

OSU120I SUPERMON BLDL FAILED, MISSING ENTRY POINT NAME
xxxxxxxx, CONTACT UCC SYSTEMS

Explanation:
missing.
BUILDL.

The entry point indicated by 'xxxxxxxx' is
This message is issued by the subprogram

System Action: If the missing entry point is one of the
Class Z processors, SUPERMON will terminate. If it
is a user exit, SUPERMON will continue processing
without it.

Operator Response: If message OSU114A is also issued,
refer to it for the proper action. Otherwise,
contact UCC systems as time allows.

Programmer Response: None.

APPENDIX D

ACRONYMS

ASCB - Address Space Control Block

BLDL - Macro used in retrieving directory information

from a partitioned data set.

BSAM - Basic Access Method

CPU - Central Processing Unit

CSA - Common Storage Area

DCB - Data Set Control Block

EXCP - EXecute Channel Program

JCL - Job Control Language

JCT - Job Control Table

JES - Job Entry Subsystem

MVS - Multiple Virtual Storage

RMF - Resource Management Facility

SDB - Subsystem Data Set Block

SMCA - System Management Control Area

SMF - System Management Facilities

TCT - Timing Control Table

VIO - Virtual Input/Output

82

VITA

Sharon Joyce Clarke

Candidate for the Degree of

Master of Science

Thesis: AN EXECUTION BATCH MONITOR FOR PROCESSING STUDENT
JOBS

Major Field: Computing and Information Sciences

Biographical:

Personal data: Born in Ponca City, Oklahoma, on
October 17, 1949, the daughter of John and
Marcelle Clarke.

Education: Graduated from Ponca City High School,
Ponca City, Oklahoma, in June, 1967; received
Bachelor of Science degree in Mathematics from
Oklahoma State University in December, 1974;
completed requirements for Master of Science
degree at Oklahoma State University, Stillwater,
Oklahoma, in December, 1979.

Professional Experience: Associate Programmer/Analyst,
Standard Oil Company (Indiana), 1975-1977;
graduate teaching assistant, Oklahoma State
University, Computing and Information Sciences
Department, 1977-1978; systems programmer,
University Computer Center, Oklahoma State
University, 1978-1979.

