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Abstract: Cryptography is required for securing data in a digital or analog medium and 

there exists a variety of protocols to encode the data and decrypt them without third party 

interference. Random numbers must be used to generate keys so that they cannot be 

guessed easily.  

 

This thesis investigates new classes of random numbers, including Gopala-Hemachandra 

(GH) and Narayana sequences, which are variants of the well-known Fibonacci 

sequences. Various mathematical properties of GH and Narayana sequences modulo 

prime have been found including their periods. Considering GH sequences modulo prime 

p, the periods are shown to be either (p-1) (or a divisor) or (2p+2) (or a divisor) while the 

Narayana sequence for prime modulo have either p2+p+1 (or a divisor) or p2-1 (or a 

divisor) as their periods. New results on the use of the Narayana sequence as a universal 

code have been obtained. 

 

It is shown that the autocorrelation and cross correlation properties of GH and Narayana 

sequences justify their use as random sequences. The signal to noise ratio values are 

calculated based on the use of delayed sequences to carry different sets of data in wireless 

applications. The thesis shows that GH and Narayana sequences are suitable for many 

encoding and decoding applications including key generation and securing transmission 

of data. 
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CHAPTER I 
 

 

INTRODUCTION 

 

1.1) Introduction to Cryptography  

In the current information society, securing data is of paramount importance. Cryptography refers 

to secure transmission of data through networks so that security of data is not compromised. The 

plaintext (payload) is turned into ciphertext or a code word using different encryption algorithms. 

In order to retrieve the original plain text, ciphertext is decrypted with the same or different key 

used for encryption [1],[2]. This may be described by the block diagram shown in Figure 1. 

 

Figure 1. Block diagram of encryption and decryption algorithms 

The keys are chosen in such a way that, intruders between source and destination are unable to 

decrypt the original text and the keys are required to be random in nature. The level of security 

obtained also depends on how keys are exchanged and how a communication is set up by an 

initial protocol.
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In general, encryption algorithms include symmetric encryption, asymmetric encryption, keyless 

cipher, substitution cipher and transposition cipher [4][5]. Different encryption algorithms are 

shown in Figure 2. In symmetric encryption, encryption and decryption keys are same and can be 

represented by the equation as below 

                                                                 P = D (K, E(K, P))                                                         (1) 

where P is the plaintext and K is the key used for encryption E and decryption D. However, the 

keys used for encryption and decryption in asymmetric encryption are different and can be 

represented by the equation 

P = D(KD, E(KE,  P))                                                     (2)    

where KD and KE are decryption and encryption keys respectively [5]. 

 

Figure 2. Different Encryption Algorithms [adapted from [3]] 

Cryptography has wide range of applications in various fields, because of secure transmission of 

data. The fields of cryptographic applications include; quantum key distribution to establish 

secure communication, probability, image processing for secure processing and transmission of 

image data between different platforms, digital signature and authentication used in electronic 

mail [6][7]. Ensuring privacy of original data over a network is the primary aim of cryptography 
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and thus can be used in monitoring communication, transferring files, password authentication 

and for secure message transmission over low power computers [6]. 

1.2) Random sequences 

Random sequences are sequences generated whose outcome is random in nature, do not have a 

standard pattern and thus are not easily predictable. The random numbers can be obtained through 

random number generator, shift registers or any other approaches [8]. Random number generators 

produce random numbers or pseudorandom numbers which are periodic with certain distribution 

properties and also exhibit hidden correlations [9]. Since a key is required to be more random in 

nature and not easily decryptable, the random numbers generated using different approaches are 

used as keys for encryption and decryption of information to avoid third party interference and  

have their main functions in cryptography, key generation and multiparty communication [8][10]. 

The random numbers, when used as a key, is shared only between trusted parties using different 

protocols such that cyber criminals intruding them are not able to decrypt the message [11][12]. 

The protocols used between two parties might involve probability events, in which the receiver 

has to predict a probability of sender sharing the required key that also involves verification of the 

procedure followed by the two parties [11]. The protocols for sharing random numbers used as 

keys for multiparty communication and verification involving oblivious protocol are also 

developed in which the process consists of three steps: Initial set-up, for sharing random number 

as a key between different parties, input mapping in the range [0, 1] with uniform probability 

followed by verification process [12]. 

The randomness measure of a sequence can be obtained using autocorrelation and cross-

correlation properties. Sequences with higher autocorrelation and lower cross-correlation 

properties are said to be more random in nature and preferred as a key. Thus, random numbers 

play a vital role in the field of cryptography to maintain information secure and ensure secure 
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transmission of data. Random numbers are used in statistical cryptography, deterministic 

cryptography and quantum cryptography [13]. 

1.3) Spread spectrum 

Spread spectrum technique is one of the significant technique in the applications related to 

communication and networking. The frequency of the signal is intentionally varied in order to 

obtain a resultant signal with random sequence, ensuring secure communication [14][15]. It is 

important to spread the spectrum prior to transmission of data sequence using a code or sequence 

which doesn’t depend on the original code [14][15]. This can be achieved with the help of 

Pseudo-Noise (PN) sequences [15]. 

PN sequences are maximal length binary sequences which satisfy important properties of random 

numbers and recur in regular intervals and can be generated using linear feedback shift register 

(LFSR) [16]. The sequence can be spread through two basic techniques which include direct 

sequence spreading and frequency hopping method [14][16]. 

Multiplying the original bit sequence and PN sequence, results into a hopped signal which when 

modulated gives us a Direct Sequence Spread Spectrum (DSSS) [17]. 
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Figure 3. Direct Sequence Spread Spectrum 

Figure 3 shows the spectrum spread by PN sequence for the original bit stream defined by 1 1 0 1 

0 1 1 0 0 1 1 1 0 0 1 0. By dispreading the above spectrum with the same PN sequence used at the 

transmitter, original bit stream is obtained at the receiver. 

Frequency Hopping Spread Spectrum (FHSS) hops every bit of the signal to a new frequency 

which can be easily generated with Binary Phase Shift Keying (BPSK) signal [17]. Binary phase 

shift keying being an elementary modulation technique, generates sequences with a 180 degree 

phase shift [17]-[18]. 
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Figure 4. Frequency Hoping Spread Spectrum 

Figure 4. shows the FHSS generated by spreading the BPSK spectrum with 12 different 

frequencies. The original sequence can be retrieved by demodulating FH spectrum with the same 

12 frequencies and BPSK signal [17]-[18]. 

Spread spectrum is used in information security, key generation, data transfer and many other 

cryptographic applications since it avoids third party interference. 

1.4) Universal codes 

There are several techniques for compressing, collecting and transfer of data obtained from a 

source. It is important to gather the information about source and develop an algorithm to 

compress the original information for gathering and transmission of data. In order to develop an 

algorithm, it must consist of rules relevant to source parameters such that the algorithm is capable 

to compress any digital sequence [19]. This creates a necessity for the universal coding scheme to 

ensure secure and easy communication which is disclosed only to the source and destination 

parties. 
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The encoding and decoding codes while developing algorithms can be different and constructed 

in numerous ways. In order to minimize losses during transmission of information, there are 

fixed-rate lossless universal source coding and fixed-rate universal channel coding theorems [20]. 

By means of sparse matrices in construction of universal coding, the encoding error can be 

minimized and negligible [20]. 

Figure 5. Lossless source coding [adapted from [20]] 

Figure 6. Channel coding [adapted from [20]] 

Figure 5 and Figure 6 represent lossless source coding and channel coding respectively. Multiple 

universal coding schemes exist for ease of coding algorithm. They include Elias coding, Huffman 

coding and Levenshtein codes [21]. Elias gamma and delta coding was developed to reduce the 

number of bits for codeword representation. Elias gamma and delta codes are also implemented 

in prefix coding obtained through (2,3) representation of numbers in order to reduce the length of 

a codeword compared to original Elias coding and Fibonacci coding [21]. 

Huffman coding uses minimum redundancy coding technique to obtain codeword from the source 

code [22]. The average length of source code depends on probability of each message in source 

code and length of each message. To construct the codeword for the source code, we ensemble 

the code of each message which transmits the source code with minimum message length 

defining the optimum method of coding [22]. 
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Levenshtein coding is a universal code for encoding and decoding of non-negative integers. There 

are a set of rules to be followed in order to perform encoding and decoding [23]. The codeword 

will be a set of binary numbers which depends on the source integer [23]. The codeword which 

uses Levenshtein method has its length as a bit longer compared to the one which employs Elias 

omega coding [23]. 

1.5) Thesis organization 

This thesis aims at obtaining new classes of random sequences for cryptographic applications and 

we describe the proposed binary GH and Narayana sequences for use as random sequences for 

key generation and other applications. 

Chapter 2 summarizes previous work in the field of random numbers which include CDMA 

communication, E-commerce, Fibonacci sequences, Fibonacci universal code and golden ratio 

along with a brief introduction to secure multiparty communication. 

Chapter 3 details randomness properties of sequences derived from Fibonacci and Gopala-

Hemachandra sequences modulo m for use in key distribution applications which includes 

autocorrelation and cross-correlation properties of sequences and presents comparison with cross-

correlation properties of pseudo noise sequences. 

Chapter 4 investigates randomness and cryptographic properties of the Narayana series modulo p, 

where p is a prime number. It is shown that the period of the Narayana series modulo p is either 

p2+p+1 (or a divisor) or p2-1 (or a divisor).  

Chapter 5 presents a method of universal coding based on the Narayana series. The rules 

necessary to make such coding possible have been found and the length of the resulting code has 

been determined to follow the Narayana count. 
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Chapter 6 gives a description of the implementation of the various random sequences to 

engineering applications by investigating signal-to-noise ratio and other parameters along with 

applications of the sequences. Chapter 7 concludes the thesis with multiple classes of random 

sequences used in cryptographic applications and suggestions for further implementation and 

modification. All data processing was performed off-line using a commercial software package 

(MATLAB 6.1, The MathWorks Inc., Natick, MA, 2000).
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CHAPTER II 
 

 

PREVIOUS WORK 

 

2.1) Secure multiparty communication 

Privacy of data between multiple parties in the process of certain communication is a vital 

concept in cryptography. Suppose an access code needed to enter a room or unlock a vehicle can 

be activated only with collaboration of two or limited number of users, it is necessary to maintain 

privacy of the code and this can be achieved through secret sharing [24]. There are many 

protocols on multiparty communication whose applications extend to the fields of physics, 

intrusion detection, data protection and telecommunications. 

Certain difficulties in multiparty communication may include cooperative scientific 

computations, database query, intrusion detection, data mining, geometric computation and 

statistical analysis [25]. There are certain approaches to solve problems in secure multiparty 

communication which includes oblivious transfer, secret sharing and threshold cryptography [25]. 

Oblivious transfer is performed by generation of probability of an event, based on sharing a single 

random number to solve multiparty communication problems [12]. The probability event might 

be generated by multiple parties through decentralized oblivious transfer protocol. In centralized 

system, the trusted authority evaluates the data received from different parties and parties are 

unaware of the randomization nature of transformation used for evaluating data [12].
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Figure 7. Centralized system with trusted authority (Left); decentralized system (Right) 

The random numbers in the form of data is exchanged between multiple authorities after 

authentication of a protocol by users in a decentralized system [12]. Figure 7 shows centralized 

and decentralized systems for multiparty communication between three parties. In decentralized 

oblivious transfer protocol, multiple parties reach at a probability event in order to communicate 

without revealing the random numbers to each other [11]. This avoids third party interference and 

dishonesty by the users and thus, has been possible solution for problems in multiparty 

communication. 

2.2) CDMA communication 

Wireless Sensor Networks (WSN) is one of the new generation networks emerging to transmit 

data over long distances with the help of internet and other networks [26]. The gateway nodes 

used in WSN acts as an intermediate between sensor nodes (sender) and sink nodes (receiver) 

[26]. The sender and receiver have different types of network. The three gateways used in WSN 

include Ethernet WSN gateway, WLAN WSN gateway and GPRS/CDMA WSN gateway [26]. 

Code Division Multiple Access (CDMA) WSN gateway follows CDMA protocol which is 

schedule-based MAC (Multiple Access) protocol. The schedule-based MAC protocol divides the 

channel or gateway into smaller pieces and allocates pieces to the node for exclusive use [27]. In 

CDMA protocol, unique code is assigned to each user which refers to code set partitioning [27]. 

Although all users share same frequency, each user has own code sequence called, chipping 
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sequence to encode data. Thus, encoded signal is the product of original data and chipping 

sequence [27]. The data can be decoded through inner product of encoded signal and chipping 

sequence [27]. This is mostly used in cellular networks since it allows multiple users to co-exist 

and transmit simultaneously with minimal interference if codes are orthogonal [27]. 

Figure 8. Architecture of CDMA WSN gateway node [adapted from [26]] 

The entire architecture of WSN gateway node is shown in the figure 8. The gateway node 

receives source code information through wireless ZigBee module. The gateway node also 

accomplishes data transmission between ZigBee and ARM microprocessor [26]. In order to 

control the delivery of CDMA module, CDMA gateway runs the commands written in ARM 

processor and source code information sensed by WSN are transmitted to CDMA wireless 

network [26]. 

The CDMA communication reduces the collisions during transmission of data and the energy-

efficiency of this technology is good for communication. This establishes strong applications of 

CDMA communication in cryptography, multiparty communication and wireless communication. 

2.3) Electronic commerce 

Electronic commerce is a business in which importing and exporting of products are performed 

with the help of internet [28]. It is easy to procure goods online on behalf of onsite purchase and 
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hence E-commerce is invasive in current world [28]. There are different types of E-commerce 

which comprises B2B E-commerce, B2C E-commerce, C2C E-commerce and others including 

G2G, G2E, G2B and B2G [28]. 

In order to use E-commerce technology for business, it is important to secure information on 

both, transmitter and receiver end [29]. Cryptography comes to play to ensure appropriate 

transmission of data between multiple parties [29]. It is necessary to certify the security with the 

help of keys for encryption and decryption of data over internet since the number of users are 

indefinite [29]. Use of secret key encryption, public key encryption or digital signature can solve 

the confidentiality issues for transmission [29]. 

Symmetric encryption is also called as secret key encryption which uses same keys during 

encryption and decryption of message. In public key encryption, each user is provided with two 

keys; public key and private key in which message is transmitted from one user to another using 

public key and private key is used for decrypting the message on user ends [29]. It is important 

for the users to maintain the secrecy of private key from others in this method of encryption. The 

digital signature uses message digest, a smaller piece of information, at both ends source and 

destination [29]. The message digest is obtained in a way that suffers radical changes with very 

little changes in the original message or information and this is contained only between source 

and receiver thus maintaining the privacy of data [29]. 

Applications of cryptography in E-commerce ensures secure email, secure web access, secure 

payments and reliable downloading of code and data [29]. 

2.4) Fibonacci sequence 

Fibonacci, a mathematician of Europe, proposed a solution to the problem defined below: 
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“A pair of rabbits gives birth to a new pair. When the new pair is two months old, each pair 

produces another pair at the beginning of each month. What is the number of pairs of rabbits 

produced from the original pair at the end of 12 months? [30]” 

The solution to this problem is the resulting Fibonacci sequence given by 1,1,2,3,5,8,13,.. and so 

on. The Fibonacci sequence is generated using the below equation: 

𝐹𝑛+1 = 𝐹𝑛 + 𝐹𝑛−1                                                   (3)   

Where F(0)=F(1)=1. The ratio between next term and previous term of Fibonacci sequence is 

termed as golden ratio which is given by a recursive number 1.61803… The golden ratio 𝜑 is 

defined as summation of reciprocal of 𝜑 with 1 which is 𝜑 =
1

𝜑
+ 1 and is widely used in many 

applications [30]. The Fibonacci numbers can be evidenced in various forms in nature, some 

examples include, leaves of plants, pinecones, sunflowers, pineapples, flowers, bees and the palm 

of human hands [30]. 

Based on Fibonacci sequence, a unique Fibonacci coding which is a universal coding technique 

was developed [35]. The Fibonacci universal coding is a binary coding in which each positive 

integer has one unique representation based on certain set of defined rules [35]. The performance 

of this coding technique using Fibonacci sequence at encryption and decryption is better than 

other universal codes such as Elias coding [35]. 

The properties of Fibonacci numbers are innumerable [31]. Fibonacci numbers are used in 

various fields including physics, chemistry, mathematics and it is mainly applied to the field of 

telecommunications and cryptography for data hiding, key generation and information sharing 

[32].
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CHAPTER III 
 

 

G-H SEQUENCES 

 

3.1) Autocorrelation properties 

3.1.1) Introduction 

A   good   key   sequence   for   cryptographic   applications   must   have   excellent randomness 

properties but also be easy to generate (Figure 9). Lacking this, keys can become the weak point 

of an otherwise strong cryptographic system. Here we propose the use of Fibonacci and the 

related Gopala-Hemachandra (GH) sequences [33]-[35] for this purpose. These sequences have 

applications in coding and cryptography that are well known. We consider the randomness 

properties of the residues of the Fibonacci sequence F(n) = 0, 1, 1, 2, 3, 5, 8, …. and the related 

Gopala- Hemachandra sequence GHa,b(n) = a, b, a+b, a+2b, 2a+3b, … modulo m (The sequence 

GHa,b will also be called (a,b)-GH). We do so by considering m to be either a prime or as a 

composite number.  Note that GHa,b(n) = GHa,b-1(n) + F(n) . 

 

Figure 9: Key Generation 
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The general period properties of such sequences are well known [36]-[38] but how these 

numbers indexed by m may be mapped into random sequences has not been investigated. We 

need good mappings to map these into a binary sequence that has excellent autocorrelation 

properties. For different perspectives on randomness, that includes physical and algorithmic 

aspects, see [39]-[43]. 

Fibonacci and GH sequences are iterative. Another related iterative mapping is the algorithm to 

generate 1/p for prime p, the binary expansion a(n) of which is given by the formula [44]-[47] 

a(n)=2
n 

mod p mod 2 . Other related sequences of interest to the computer scientist and to the 

student of dynamical system theory, include those obtained from general iterative maps [48]-

[50]. 

In  this  section of the chapter,  we  summarize  general  properties  of  the  periods  of  Fibonacci 

sequences mod m. Then, we present the mapping to transform these sequences into binary 

sequences that have excellent randomness properties. 

3.1.2) Periods of Fibonacci and GH sequences mod m 

As  mentioned  before  GH  sequences  can  be  written  in  terms  of  the  Fibonacci sequence. 

Thus: 

GH2,1(n) = F(n)+2F(n-1), for n > 1                                           (4) 

As example, the sequence GH2,1(n) can be written as: 

 

2, 1, 3, 4, 7, 11, … =  0, 1, 1, 2, 3, 5, 8, … 

 

+  0, 0, 2, 2, 4, 6, 10, … 

This indicates that the period of the GH sequence modulo m will be identical to that of the 

corresponding Fibonacci sequence. 
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Consider an F sequence to mod m series where m is a prime number. In this case, we can see that 

there can at most be p
2
-1 pairs of consecutive residues in a period.  For example, for m=p=3, the 

sequence will be 0, 1, 1, 2, 0, 2, 2, 1. This consists of the pairs 01, 02, 10, 11, 12, 20, 21, 22 

which is all the possible pairs excepting 00, since that cannot be in such a sequence for it will 

lead to the next number being 0 that is impossible in a periodic residue sequence. Since p2-1 is 

(p-1)(p+1), the period of the residue sequence will either be a divisor of p-1 or p+1 (or 

equivalently of 2p+2). 

The periods of Fibonacci sequence mod m, with m as a prime, has been shown to be either p-1 if 

p≡1 or 9 (mod 10) or 2p+2 if p≡3 or 7(mod 10). The periods of GH sequences likewise follow 

the same behavior. 

The periods of generalized (a,b)-GH sequence mod p are [38]: 

(i) (p-1) or a divisor thereof if the prime number p ends with 1 or 9. 

(ii) (2p+2) or a divisor thereof if the prime number p ends with 3 or 7.  

(iii) 20 for p =5. 

The pertinent result for the period, N, of GH sequence for non-prime modulo m is: 

N(m) ≤ 6m with equality iff m = 2 * 5
n 

, for n=1, 2, 3, … 

This includes the value when the modulus is 5. 

Thus, the periods can be grouped into 2 types: p-1 or 2p+2. 

3.1.3) Generating the sequence 

One can generate an arbitrary element of the F sequence by means of the following formula: 

𝐹(𝑛) =
1

√5
(𝑢𝑛 − 𝑣𝑛)𝑚𝑜𝑑 𝑚                                                    (5) 

Where 
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𝑢 =
1+√5

2
                                                                      (6) 

And 

𝑣 =
1−√5

2
                                                                      (7) 

This result is easily proven by noting that 𝑢2 = 𝑢 + 1 and 𝑣2 = 𝑣 + 1. We get the sequence: 

𝐹(0) = 0 ; 𝐹(1) = (𝑢 − 𝑣)/√5 = 1 ; 𝐹(2) = (𝑢2 − 𝑣2)/√5 = 1 ; 𝐹(3) = (𝑢3 − 𝑣3)/√5 = 2 ; 

𝐹(4) = (𝑢4 − 𝑣4)/√5 = 3; and so on. 

If n is a whole number, F(n) is generated and modulus of F(n) is calculated. Thus, F(n) mod m 

can be generated easily. On the other hand, obtaining n from F(n) mod m is difficult for large m, 

even if sufficient number of consecutive digits are available. 

 

                                                   Figure 10. F(n) generator 

3.1.4) Mapping into random binary sequence 

As mentioned before, we propose to divide the sequence of periods for modulo p based on the 

property whether the period is a divisor of p-1 or 2p+2.   We will include p=5 in the class p-1 

since the period 20= 5x(5-1). We assign periods with multiples of (p-1) or divisor as binary 

value +1 and periods with multiples of (2p+2) or divisor as binary value -1. 

Table 1 provides the first 25 prime numbers for easy reference. 
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Table 1: Binary mapping of prime periods for GH sequences 

Prime 

numbers 

 

Periods 

 

In terms of p 

Binary 

value 

3 8 2p+2 -1 

5 20 5(p-1) 1 

7 16 2p+2 -1 

11 10 p-1 1 

13 28 2p+2 -1 

17 36 2p+2 -1 

19 18 p-1 1 

23 48 2p+2 -1 

29 14 (p-1)/2 1 

31 30 p-1 1 

37 76 2p+2 -1 

41 40 p-1 1 

43 88 2p+2 -1 

47 32 (2p+2)/3 -1 

53 108 2p+2 -1 

59 58 p-1 1 

61 60 p-1 1 

67 136 2p+2 -1 

71 70 p-1 1 

73 148 2p+2 -1 

79 78 p-1 1 

83 168 2p+2 -1 

89 44 (p-1)/2 1 

97 196 2p+2 -1 

101 50 (p-1)/2 1 

 

We call the resulting binary sequence B(n). The first 20 bits of B(n) are -1,1,-1,1,-1,-1,1,-1,1,1,-

1,1,-1,-1,-1,1,1,-1,1 and -1. 
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3.1.5) Autocorrelation properties of GH sequences 

We first consider the prime moduli and determine autocorrelation properties of B(n) to 

determine how good they are from the point of view of randomness [47]. 

The autocorrelation function is calculated using the formula: 

𝐶(𝑘) =
1

𝑛
∑ 𝐵𝑗𝐵𝑗+𝑘
𝑛−1
𝑗=0                                               (8) 

Where 𝐵𝑗 and 𝐵𝑗+𝑘 are the binary values of the sequence generated by the above process and n is 

the length of the sequence. 

Figure 11 and 12 present the normalized autocorrelation function of the B(n) sequence for 175 

and 300 points. 

 

Figure 11. Autocorrelation of B(n) for sequence length 175 
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Figure 12. Autocorrelation of B(n) for sequence length 300 

Looking at Figure 11 and Figure 12, their randomness is apparent from the effective two-valued 

character of the function. 

Randomness may be calculated using the randomness measure, R(x), of a discrete sequence x by 

the expression below [40]: 

𝑅(𝑥) = 1 −
∑ |𝐶(𝑘)|𝑛−1
𝑘=1

𝑛−1
                                                (9) 

According to this measure, a constant sequence will have the measure of 0 whereas a fully 

random sequence will have the measure of 1. The randomness measure values for Figure 11 and 

Figure 12 using the above formula is found to be 0.9516 and 0.9631. 

General moduli m. The challenge is to find the property that helps map the period information 

into two classes that lead to a random binary sequence like B(n). For length of 300, we found the 

property whether the period is a multiple of 8 to effectively put the period values into two 

classes. But the randomness measure of such a sequence was much inferior compared to that of 

Figures 11 and 12 with a value of 0.8988. 
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3.2) Cross-correlation properties 

3.2.1) Introduction 

Spread spectrum systems provide secure communications by spreading a signal over large 

frequency band. They are implemented using short periodic pseudo-random sequences with good 

correlation properties [51]-[54]. The sequences necessary for direct-sequence spreading and 

spread spectrum analysis must have low cross correlation characteristics. Peak cross-correlation 

is used when measuring the difference between two sequences of different time series [55]. 

As mentioned in the previous section of the chapter, GH sequences that are related to Fibonacci 

sequences [38] were shown to have good pseudo-randomness properties. As is well-known 

randomness can be examined both from a physics perspective [42][43][57][58] as well as an 

algorithmic one [44][45][59][60]. The family of GH sequences presents a new take on an old 

mathematical structure and is therefore of much interest. These sequences can be used also in 

sending side information that can help in authentication in cryptography systems which is one of 

the central problems in a networked society [64]-[72]. In particular, good random sequences can 

be of help in frustrating man-in-the-middle attacks in P2P systems [62] [63]. 

In this section of the chapter, we present the cross-correlation of binary GH sequences and 

compare these to that of PN sequences. For this comparison, we use peak cross-correlation 

function as a measure and show that GH sequences score over PN sequences. These sequences 

can have applications in cryptography in authentication of parties, especially in P2P systems. 

3.2.2) Periods of shift register and Fibonacci sequences 

A PN sequence is a periodic binary sequence generated using linear feedback shift register 

(LFSR) structure [56]. Figure 13 shows a fragment of a PN sequence generated using LFSR 
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structure for the polynomial p(z)=z45+z4+z3+z+1. Here we show 63 bits of a sequence whose 

period is 3.52x1013. 

 

Figure 13. PN sequence fragment of length 63 

The period of a PN sequence produced by a linear feedback shift register with m stages cannot 

exceed 2m-1. When the period is exactly 2m-1, the PN sequence is maximal length sequence or 

m-sequence [55] [56]. 

The periods of the GH sequences modulo m will be identical to that of the corresponding 

Fibonacci sequence [37]. Consider a GH sequence to mod p where p is a prime number. It is 

quite clear that there can at most be p2-1 pairs of consecutive residues in a period. Since p2-1 is 

(p-1)(p+1), the period of the residue sequence will either be a divisor of p-1 or p+1 (or 

equivalently of 2p+2). It was necessary to go beyond the results of autocorrelation properties and 

determine the cross-correlation properties of fragments of this sequence obtained from different 

regions. 

3.2.3) Cross-correlation properties of GH and PN sequences 
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The cross-correlation between two sequences is complex inner product of the first sequence with 

the shifted version of the second sequence which indicates if two sequences are distinct. The 

correlation properties of the sequences are used to detect and synchronize the communication 

process. 

We assign periods of GH sequence mod p, with multiples of (p-1) or divisors, as binary value +1 

and periods with multiples of (2p+2) or divisor, as binary value -1 and thus call the resulting 

binary sequence as B(n). The first 20 bits of B(n) are - 1,1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1,-

1,1 and -1. 

Let us consider prime moduli and determine periodic cross-correlation properties of B(n) to 

determine how good they are from the point of view of randomness. The cross correlation 

function is calculated using the formula: 

𝐶𝐶𝐹(𝑘) =
1

𝑁
∑ 𝐴𝑗𝐵𝑗+𝑘
𝑁−1
𝑗=0                                            

(10) 

Where 𝐴𝑗 and 𝐵𝑗+𝑘 are the binary values of two sequences at different time intervals and N is the 

length of sequence or period of sequence. The peak cross correlation function value of a cross 

correlated sequence will be denoted by CCFpeak. 

Figures 14 and 15 present the normalized cross-correlation function of the B(n) sequence for 100 

and 200 bits. 
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Figure 14. CCF of binary GH sequences for 100 bits 

 

Figure 15. CCF of binary GH sequences for 200 bits 

Looking at Figure 14 and Figure 15, their peak cross-correlation values are noted to be 0.25 in 

both cases. 
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Figures 16 and 17 present the normalized cross correlation function characteristics of the PN 

sequences for 100 and 200 points which peak cross-correlation values of 0.9 and 0.94 

respectively. The PN sequence fragments in these figures are from the expansion of the 

polynomial p(z)=z45+z4+z3+z+1. 

 

Figure 16. CCF of PN sequences for sequence length 100 

 

Figure 17. CCF of PN sequences of sequence length 200 
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Randomness may be calculated using the randomness measure, R (x), of a discrete sequence x 

by the expression below: 

𝑅(𝑥) = 1 −
∑ |𝐶𝐶𝐹(𝑘)|𝑁−1
𝑘=1

𝑁−1
                                            (11) 

where CCF(k) is the cross-correlation function value for k and N is the period of sequence to 

characterize the randomness of a sequence. According to above formula, the randomness 

measure of 1 indicates that the sequence is fully random whereas randomness measure of 0 

indicates a constant sequence. The randomness measure for Figure 16 and Figure 17 are found to 

be 0.9212 and 0.9342 respectively. 

3.2.4) Comparison between binary GH sequences and PN sequences 

The following table gives a comparison between peak cross-correlation function (CCF) value of 

Binary GH Sequences and PN Sequences. Here we consider two types of PN sequences: (i) 

where the fragments are taken from the same long PN sequence; (ii) where the fragments come 

from different PN sequences. 

Table 2. Peak CCF values for binary GH and PN sequences for variable length 

Length of bits Peak CCF value for binary 

GH sequences 

Peak CCF value for 

PN sequences of 

same generator 

polynomials 

Peak CCF value for 

PN sequences of 

different generator 

polynomials 

25 0.52 0.6 0.36 

50 0.32 0.72 0.32 

100 0.25 0.9 0.36 

150 0.24 0.9 0.32 

200 0.24 0.94 0.25 
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As expected, the peak cross-correlation function of the PN sequences obtained from different 

generators is lower than that obtained from the same generator. The graph that represents the 

above table is shown below in Figure 18. 

 

Figure 18. CCF of GH and PN sequences for lengths up to 200 

Hence, comparing the peak cross-correlation function (CCF) value of GH series mod p with that 

of pseudo-noise sequences, it is found that GH series mod p has excellent cross-correlation 

properties that are comparable to PN sequences obtained from different generators. 

3.2.5) Signal-to-noise ratio for binary GH sequences  

Signal-to-noise ratio parameter helps in analysis and validation of sequences for cryptographic 

applications. Signal-to-noise ratio (SNR) with high reliability can be used in speech 
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enhancement, speech detection and speech recognition [74]. It is generally defined as ratio of 

signal power to noise power as given below. 

                                                             𝑆𝑁𝑅 =
𝑆𝑖𝑔𝑛𝑎𝑙 𝑃𝑜𝑤𝑒𝑟

𝑁𝑜𝑖𝑠𝑒 𝑃𝑜𝑤𝑒𝑟
                                                       (12)                                                       

The equation for signal to noise ratio in dB is given below: 

                                𝑆𝑁𝑅𝑑𝐵 = 𝑆𝑖𝑔𝑛𝑎𝑙 𝑃𝑜𝑤𝑒𝑟 𝑖𝑛 𝑑𝐵 − 𝑁𝑜𝑖𝑠𝑒 𝑃𝑜𝑤𝑒𝑟 𝑖𝑛 𝑑𝐵                           (13) 

SNR for a sequence can be obtained using cross-correlation property of sequence at different 

time intervals. There are several metrics to measure signal to noise ratio of cross correlated 

sequence [76]. Here, SNR is calculated for cross-correlation function of GH sequences using 

peak-to-root mean square ratio. 

The peak to root mean square ratio (PRMSR) is obtained by ratio of signal, which is square of 

fundamental peak cross correlation function value CCFmax to noise, which is square of root mean 

square value of cross correlation function of a cross correlated sequence CCFrms [76]. 

                                                             𝑃𝑅𝑀𝑆𝑅 =
|𝐶𝐶𝐹𝑚𝑎𝑥|

2

𝐶𝐶𝐹𝑟𝑚𝑠
2                                                        (14) 

CCFrms is calculated for cross correlation function whose values are less than or equal to half of 

fundamental peak cross correlation function value which is given by [76]: 

                                                 𝐶𝐶𝐹𝑟𝑚𝑠
2 = √1/𝑁𝑚 ∑ |𝐶𝐶𝐹(𝑖)|2𝑖⊂𝑚

2
                                       (15) 

Where m is the number of points of CCF value with lower than half of peak primary value [76]. 

Consider cross correlation function of GH sequences for length of first 20 points as one sequence 

and next 20 points in consecutive time interval as second sequence. The resulting graph is shown 

in figure 19. 
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Figure 19. Cross correlation of GH sequences for sequence length of 20 

According to PRMSR metric, the signal to noise ratio is calculated as shown below. 

                                                         𝑆𝑁𝑅 =
(0.6)2+(0.8)2

1

18
∗((0.2)2∗10+(0.4)2∗4)

                                              (16) 

In equation (16), it is seen that fundamental peak value square of 0.8 is considered as signal and 

values lower than half of fundamental peak value are considered as noise. The values above half 

of primary peak value are also considered as signal to obtain signal to noise ratio value. 

We perform similar calculations for cross correlation function of GH sequences for a sequence 

length of 10, 20, 40, 50, 100 and 120 with consecutive time intervals in order to obtain a set of 

signal to noise ratio values. Table 3 shows SNR for varying sequence lengths of GH sequences. 

Sequence Lengths SNR Values 

10 7.7815 

20 12.3824 

40 20.86 

50 23.004 

100 22.95 

120 20.7387 
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Figure 20. Signal-to-noise ratio for GH sequences modulo prime 

Figure 20 shows SNR values for GH sequences modulo prime in which x-axis is mapped to 10, 

20, 40, 50, 100 and 120 sequence lengths and y-axis is mapped to different SNR values in dB. 

This validates the randomness of sequence and its applications in cryptography.
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CHAPTER IV 
 

 

NARAYANA SEQUENCES AND VARIANTS 

 

4.1) Narayana sequences 

4.1.1) Introduction 

There has been considerable recent interest in the Narayana sequences (e.g. [75]-[79]). Since they 

are closely related to Fibonacci sequences [34]-[36] [80], one would expect many applications in 

data coding and cryptography, especially multiparty computation [2] [11] [12] [44] [71] [72]. The 

properties of Fibonacci sequences modulo a prime have also been investigated [37]-[38].  

Fibonacci sequences are also important in entropy problems of physics [43] [66] [82]-[85]. It is 

worthwhile then to determine if the use of the Narayana sequences can replace that of Fibonacci 

sequences in certain settings. Narayana, who lived in the 14th century, proposed the following 

problem [75]: “A cow gives birth to a calf every year. When the calf is three years old, each calf 

gives birth to a calf at the beginning of each year. What is the number of progeny produced 

during twenty years by one cow”. The sequence resulting from this problem is 

1,1,1,2,3,4,6,9,13,19, ... and so on. Each number in the sequence is calculated by the summation 

of previous number and number three places before that in the sequence: 

                                                             𝑢𝑛+1 = 𝑢𝑛 + 𝑢𝑛−2                                                          (17)                                       
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In this section of the chapter, the period of Narayana series modulo p, where p is a prime number, 

is investigated and found to be either p2+p+1 (or a divisor) or p2-1 (or a divisor). Some other 

characteristics of the Narayana sequence are presented. The investigation of the autocorrelation 

and cross-correlation properties of the sequence reveals that they are good candidates for 

cryptographic and key generation applications. 

4.1.2) Generation of Narayana series 

Narayana, an outstanding Indian mathematician of the 14th century, who was interested in 

summation of arithmetic series and magic squares, proved a more general summation in the 

middle of 14th century [77]. 

                                            𝑆𝑛
(𝑚)

=
𝑛(𝑛+1)(𝑛+2)…(𝑛+𝑚)

1∙2∙3∙…..∙(𝑚+1)
                                                               (18) 

Narayana applied the above equation to the problem of a herd of cows and calves which is 

famous as Narayana’s problem. Thus, using the above equation, he obtained [77]: 

𝑛 = 1 + 20 +
17 ∙ 18

1 ∙ 2
+
14 ∙ 15 ∙ 16

1 ∙ 2 ∙ 3
+
2 ∙ 3 ∙ 4 ∙ 5 ∙ 6 ∙ 7 ∙ 8

1 ∙ 2 ∙ 3 ∙ 4 ∙ 5 ∙ 6 ∙ 7
= 2745 

Narayana’s problem can also be solved by the similar method that Fibonacci solved his rabbit 

problem. In the beginning of the first year, there were two heads since one cow produced one 

calf. In the beginning of the second and third year, the number of heads increased by one and 

therefore, the number of heads is 3 and 4 respectively. From the fourth year, the number of heads 

is defined as follows: 

                                 𝑥4 = 𝑥3 + 𝑥1, 𝑥5 = 𝑥4 + 𝑥2 , . . . , 𝑥𝑛 = 𝑥𝑛−1 + 𝑥𝑛−3,                   (19) 

since the number of cows for any year is a summation of number of cows of previous year and 

number of calves which was born (= number of heads that were three years ago). 

We have the sequence 
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                                           2,3,4,6,9, . . . , 𝑢𝑛+1 = 𝑢𝑛 + 𝑢𝑛−2                                        (20) 

Thus, we obtain u20=2745 by computation. Now, we can consider the sequence 

                                     1,1,1,2,3,4,6,9, . . . , 𝑢𝑛+1 = 𝑢𝑛 + 𝑢𝑛−2                                       (21) 

with n ≥ 2, u0= 0, u1 = 1, u2 = 1. These numbers are called Fibonacci Narayana numbers [77]. 

4.1.3) Periods of Narayana series modulo m 

Consider Narayana sequence modulo 3, the sequence is obtained as follows: 

1,1,1,2,0,1,0,0,1,1,1,2,… and so on. Here, if three consecutive zeroes appear during sequence 

generation, the next number will be a zero. Since each of the three preceding digits can take 

values from 0 to p-1, the maximum period can only be p3-1. Given a maximum length Narayana 

sequence, the digit-wise multiplication by 1 through p-1 would leave the sequence unchanged. 

Therefore, we obtain the result that the maximum period is (p3-1)/(p-1)= p2+p+1. When we 

consider only the preceding two digits, a similar argument would establish that the period can be 

p2-1. Thus, we have our central result: 

Theorem 1: 

Given Narayana sequence modulo p, where p is a prime number, the periods of the sequence will 

either be p2+p+1 (or the divisor) or p2-1 (or the divisor). 

The table below provides the list of periods for first 50 prime numbers. Periods with multiples of 

p2+p+1 (or the divisor) are assigned binary value -1 and periods with multiples of p2-1 (or the 

divisor) are assigned binary value +1 and the resulting sequence is binary sequence B(n). Also, 

primes with even periods are assigned binary value 1 and primes with odd periods are assigned 

binary value 0 and the resulting sequence is binary sequence C(n). 

Table 4. Primes from 3 to 151 for Narayana sequence 
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Prime Period  In terms 
B(n)  

Numbers Number 
 

C(n) of p 
 

  
 

3 8  1 p2-1 1  

5 31  0 p2+p+1 -1  

7 57  0 p2+p+1 -1  

11 60  1 (p2-1)/2 1  

13 168  1 p2-1 1 
 

17 288  1 p2-1 1 
 

19 381  0 p2+p+1 -1 
 

23 528  1 p2-1 1 
 

29 840  1 p2-1 1 
 

31 930  1 p2-1 1 
 

37 342  1 (p2-1)/4 1 
 

41 1723  0 p2+p+1 -1 
 

43 1848  1 p2-1 1 
 

47 46  1 (p2-1)/48 1 
 

53 468  1 (p2-1)/6 1 
 

59 3541  0 p2+p+1 -1 
 

61 1240  1 (p2-1)/3 1 
 

67 33  0 (p2-1)/136 1 
 

71 5113  0 p2+p+1 -1 
 

73 2664  1 (p2-1)/2 1 
 

79 6240  1 p2-1 1 
 

83 3444  1 (p2-1)/2 1 
 

89 7920  1 p2-1 1 
 

97 3169  0 (p2+p+1)/3 -1 
 

101 10303  0 p2+p+1 -1 
 

103 10713  0 p2+p+1 -1 
 

107 11557  0 p2+p+1 -1 
 

109 11991  0 p2+p+1 -1 
 

113 991  0 (p2+p+1)/13 -1 
 

127 2016  1 (p2-1)/8 1 
 

131 130  1 (p2-1)/132 1 
 

137 6256  1 (p2-1)/3 1 
 

139 1610  1 (p2-1)/12 1 
 

149 148  1 (p2-1)/148 1 
 

151 22800  1 p2-1 1 
 

 

Table 5. Primes from 157 to 233 for Narayana sequence 
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Prime Period  
In terms of p 

 
B(n) 

numbers Number 
 

C(n) 
 

    

157 24807  0 p2+p+1  -1 

163 26733  0 p2+p+1  -1 

167 4648  1 (p2-1)/6  1 

173 172  1 (p2-1)/174  1 

179 10680  1 (p2-1)/3  1 

181 32760  1 p2-1  1 

191 36673  0 p2+p+1  -1 

193 37443  0 p2+p+1  -1 

197 2156  1 (p2-1)/18  1 

199 3960  1 (p2-1)/10  1 

211 481  0 (p2+p+1)/93  -1 

223 12432  1 (p2-1)/4  1 

227 226  1 (p2-1)/228  1 

229 26220  1 (p2-1)/2  1 

233 54523  0 p2+p+1  -1 

 

As argued before, since the factors of p3-1 are p-1 and p2+p+1, the period of the Narayana 

sequence modulo p will either be p2+p+1 (or the divisor) or (p-1)(p+1) (or the divisor). 

4.1.4) Autocorrelation properties 

Autocorrelation is a measure of similarity between a sequence and time shifted replica of the 

sequence. Ideally, the autocorrelation function (ACF) should be impulsive i.e. peak value at zero 

time shift and zero values at all other time-shifts (i.e. side-lobes). 

The first 20 bits of resulting binary sequence B(n) obtained from periods of the Narayana series 

modulo prime  based on p2+p+1 (or the divisor)  or p2-1 (or the divisor) are 1,-1,-1,1,1,1,-

1,1,1,1,1,-1,1,1,1,-1,1,1,-1 and 1. Similarly, the first 20 bits of resulting sequence C(n) obtained 

from periods of the Narayana series modulo prime based on evens and odds are 

1,0,0,1,1,1,0,1,1,1,1,0,1,1,1,0,1,0,0 and 1. 
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We first consider prime moduli and determine periodic autocorrelation properties of B(n) and 

C(n) to determine how good they are from the point of view of randomness. For convenience, the 

zeroes in C(n) sequence is changed to -1 so as to make off-peak autocorrelation as small as 

possible. 

 

Figure 21. ACF of binary sequence B(n) for Narayana series of length 80 bits 

The autocorrelation function is calculated using expression (8) represented below: 

𝐴𝐶𝐹(𝑘) =
1

𝑁
∑ 𝐵𝑗𝐵𝑗+𝑘

𝑁−1

𝑗=0

 

Where 𝐵𝑗 and 𝐵𝑗+𝑘 are the binary values of sequence and time shifted version of the sequence 

and N is the length of sequence or period of sequence. 

Figures 21 and 22 present the normalized autocorrelation function of B(n) sequence for 80 and 

150 bits respectively. 
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Figure 22. ACF of binary sequence B(n) for Narayana series of length 150 bits 

Looking at Figure 21 and Figure 22, it is evident that their lobes are close to ideal autocorrelation 

function (ACF) with peak value at zero time shift and values close to zero at all other time-shifts 

(i.e. side-lobes). Figures 23 and 24 present the normalized autocorrelation function of C(n) 

sequence for 100 and 140 bits respectively. 

 

Figure 23. ACF of C(n) sequence for Narayana series of length 100 bits 
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Figure 24. ACF of C(n) sequence for Narayana series of length 140 bits 

Looking at Figure 23 and Figure 24, it is evident that their lobes are close to ideal autocorrelation 

function (ACF) with peak value at zero time shift and values close to zero at all other time-shifts 

(i.e. side-lobes).   

Randomness may be calculated using the randomness measure, R(x), of a discrete sequence x 

using expression (9) represented below: 

 
 

1

11
1

n

k
ACF k

R x
N



 



 

where ACF(k) is the autocorrelation function value for k and N is the period of sequence to 

characterize the randomness of a sequence.   

According to above formula, the randomness measure of 1 indicates that the sequence is fully 

random whereas randomness measure of 0 indicates a constant sequence. The randomness 

measure for Figure 21, Figure 22, Figure 23 and Figure 24 are found to be 0.8867, 0.8662, 0.8937 

and 0.9110 respectively. 
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4.1.5) Cross-correlation properties 

Cross correlation is the measure of similarity between two different sequences. The cross-

correlation between two sequences is the complex inner product of the first sequence with a 

shifted version of the second sequence which indicates if the two sequences are distinct. Ideally, 

it is desirable to have sequences with zero cross-correlation value at all time shifts [37]. The 

correlation properties of the sequences are used to detect and synchronize the communication. 

Now, we consider prime moduli and determine periodic cross-correlation properties of B(n) to 

determine how good they are from the point of view of randomness. The cross correlation 

function is calculated using the expression (10): 

CCF(k)=

1

0

1 N

j j k

jN
A B







  

Where Aj and Bj+k are the binary values of two sequences at different time intervals and N is the 

length of sequence or period of sequence. The peak cross-correlation function value of a cross-

correlated sequence is calculated using the formula: 

                                                          CCFpeak=
1

1
| ( ) |

N

k

CCF
N

k


                                                 (22) 

Where CCF(k) is the cross-correlation function value for k and N is the period of sequence. 

Figures 25 and 26 present the normalized cross-correlation function of the B(n) sequence for 50 

and 80 bits. 
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Figure 25. CCF of binary sequence B(n) for Narayana series of length 50 bits 

 

Figure 26. CCF of binary sequence B(n) for Narayana series of length 80 bits 

Looking at Figure 25 and Figure 26, their peak cross-correlation values are noted to be 0.375 in 

both cases. This value compares favorably with the peak cross-correlation value of other 

pseudorandom sequences. 
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4.1.6) Signal-to-noise ratio for Narayana sequences 

Signal-to-noise ratio (SNR) for the Narayana sequence modulo prime is calculated using 

equations (12)-(15). SNR is obtained using cross correlation function of the Narayana sequence 

for sequence length 20, 50, 70, 100, 110, 120 and 140 with consecutive time intervals. The table 

containing SNR values at different sequence length is shown below. 

Sequence Lengths SNR Values 

20 8.01632346 

50 14.79300905 

70 19.5853058 

100 20.17849357 

110 22.6634349 

120 24.1198343296 

140 21.7038757037 

 

Table 6. SNR for varying sequence lengths of Narayana sequences 

Figure 27. Signal-to-noise ratio for Narayana sequences modulo prime 
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Figure 27 shows a set of signal-to-noise ratio values for Narayana sequences modulo prime on y-

axis plotted with respect to sequence lengths 20, 50, 70, 100, 110, 120 and 140 on y-axis. Thus, 

Narayana sequences are suitable for cryptographic applications. 

4.2) Narayana Variants 

4.2.1) Introduction 

Fibonacci sequence has wide applications in the field of mathematics, science, computer science, 

botany, elementary number theory and many other fields [30] [86]-[88]. The main application of 

Fibonacci numbers is in the field of cryptography for secure communication and transmission of 

data [89]-[92]. 

The Narayana sequence derived from the Narayana problem has many properties in close relation 

with properties of Fibonacci sequence [76] [77] [93]. Hence, research in the field of cryptography 

with the help of Narayana Series is considerably large. 

The periods of the Fibonacci sequence modulo p and the Narayana sequence modulo p, where p 

is a prime number are already investigated in the previous sections of this thesis. In this section of 

chapter, periods of variants of the Narayana series is investigated which are found to be either 

(p2-1)(p2+1) (or a divisor) or (p2+p+1)(p-1) (or a divisor). 

4.2.2) Variants of Narayana sequence 

According to Narayana problem described in previous section, each term is the sum of 

penultimate term and term 3 places before that in the Narayana sequence [94]-[95]. Hence, 

Narayana sequence is given by 1,1,1,2,3,4,6,9,13,19,28 and so on. 

For n terms in the sequence, Narayana series as a result of Narayana problem can be defined as: 

                                               𝑁𝑎(𝑘 + 1) = 𝑁𝑎(𝑘) + 𝑁𝑎(𝑘 − 2)                                             (23) 
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with 𝑁𝑎(0) = 𝑁𝑎(1) = 𝑁𝑎(2) = 1  and 𝑘 ≥ 2 . A more general Narayana sequence 𝑁𝑎(𝑛) is 

given by {a, b, c, a+c, a+b+c, a+b+2c, 2a+b+3c, 3a+2b+4c, and so on} with a=1, b=2 and 

c=3. 

We consider a special case of Narayana problem in which cows had to wait until fifth year to give 

birth to calves. Beginning in its fifth year, we investigate the number of cows and calves 

produced after 20 years, when each calf gives birth to a calf at the beginning of each year [75]. 

Now, the number of cows in any year is the summation of number of cows of previous year and 

number of calves which were born. The number of calves which were born is number of heads 

that were 4 years ago. 

The sequence which results from the above problem is termed as variants of Narayana sequence 

and is given by 1,1,1,1,2,3,4,5,7,10,14,19,26 and so on. 

For n terms in the sequence, variants of Narayana sequence can be defined by the below formula: 

                                               𝑣𝑁𝑎(𝑘 + 1) = 𝑣𝑁𝑎(𝑘) + 𝑣𝑁𝑎(𝑘 − 3)                                       (24) 

With 𝑣𝑁𝑎(0) = 𝑣𝑁𝑎(1) = 𝑣𝑁𝑎(2) = 𝑣𝑁𝑎(3) = 1  and 𝑘 ≥ 3 . A more general variants of 

Narayana sequence is given by {a, b, c, d, a+d, a+b+d, a+b+c+d, a+b+c+2d, 2a+b+c+3d, and so 

on} with a=1, b=2 and c=3. 

4.2.3) Periods of variants of Narayana series modulo p 

Consider variants of the Narayana series modulo 3, where 3 is a prime number. The sequence 

obtained is as follows: 1,1,1,1,2,0,1,2,1,1,2,1,2,0,2,… and so on. Here, the next number will be 

zero if four consecutive zeroes occur during sequence generation. The maximum period can only 

be (p4-1) (which is equal to (p2-1)( p2+1)) since each of the preceding terms in the sequence can 

range between 0 and p-1. Since the sequence remains unchanged for digit-wise multiplication by 
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1 through p-1 for a given maximum length variant Narayana sequence, the period is obtained as 

(p4-1)/(p-1) = (p2+1)(p+1). When we consider only the preceding three digits, a similar argument 

establishes that the period can be (p3-1) (which is equal to (p2+p+1)(p-1)). Thus, we have our 

central result. 

Theorem 2: 

Given Variant Narayana sequence modulo p, where p is a prime number, the periods can be either 

(p2-1)(p2+1) (or a divisor) or (p2+p+1)(p-1) (or a divisor). 

The table below provides the list of periods for first 50 prime numbers. Periods with multiples of 

(p2-1)(p2+1) (or the divisor) are assigned binary value of +1 and periods with multiples of 

(p2+p+1)(p-1) (or the divisor) are assigned binary value of -1. The resulting sequence is binary 

sequence B(n). 

Table 7. Primes from 3 to 233 for Narayana variants 

Primes Periods In terms of p B(n) 

3 80 (p2-1)(p2+1) 1 

5 312 (p2-1)(p2+1)/2 1 

7 342 (p2+p+1)(p-1) -1 

11 1330 (p2+p+1)(p-1) -1 

13 2196 (p2+p+1)(p-1) -1 

17 96 (p2-1)(p2+1)/870 1 

19 14480 2(p2-1)(p2+1)/(p-1) 1 

23 12166 (p2+p+1)(p-1) -1 

29 12194 (p2+p+1)(p-1)/2 -1 

31 61568 2(p2-1)(p2+1)/(p-1) 1 

37 1368 (p2-1)(p2+1)/1370 1 

41 68920 (p2+p+1)(p-1) -1 

43 162800 2(p2-1)(p2+1)/(p-1) 1 

47 212160 2(p2-1)(p2+1)/(p-1) 1 
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53 1404 (p2-1)(p2+1)/5620 1 

59 205378 (p2+p+1)(p-1)/3364 -1 

61 75660 (p2+p+1)(p-1)/3 -1 

67 4488 (p2-1)(p2+1)/4490 1 

71 1008 (p2-1)(p2+1)/25210 1 

73 1332 (p2-1)(p2+1)/21320 1 

79 208 (p2-1)(p2+1)/187260 1 

83 82 (p2-1)(p2+1)/578760 1 

89 704968 (p2+p+1)(p-1) -1 

97 304224 (p2+p+1)(p-1)/3 -1 

101 5100 (p2-1)(p2+1)/20404 1 

103 1092726 (p2+p+1)(p-1) -1 

107 954 (p2-1)(p2+1)/137400 1 

109 2614040 (p2-1)(p2+1)/54 1 

113 3192 (p2-1)(p2+1)/51080 1 

127 16128 (p2-1)(p2+1)/16130 1 

131 5720 (p2-1)(p2+1)/51486 1 

137 642838 (p2+p+1)(p-1)/4 -1 

139 5410160 2(p2-1)(p2+1)/(p-1) 1 

149 6660600 2(p2-1)(p2+1)/(p-1) 1 

151 491850 (p2+p+1)(p-1)/7 -1 

157 3869892 (p2+p+1)(p-1) -1 

163 1443582 (p2+p+1)(p-1)/3 -1 

167 1874208 (p2-1)(p2+1)/415 1 

173 10415640 2(p2-1)(p2+1)/(p-1) 1 

179 5735338 (p2+p+1)(p-1) -1 

181 32760 (p2-1)(p2+1)/32762 1 

191 4560 (p2-1)(p2+1)/291856 1 

193 18624 (p2-1)(p2+1)/74500 1 

197 12936 (p2+p+1)(p-1) -1 

199 7880598 (p2+p+1)(p-1) -1 

211 9393930 (p2+p+1)(p-1) -1 

223 22279040 2(p2-1)(p2+1)/(p-1) 1 

227 51528 (p2-1)(p2+1)/51530 1 
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229 13110 (p2-1)(p2+1)/209768 1 

233 3162334 (p2+p+1)(p-1)/4 -1 

 

From the above table, it is seen that periods of Variant Narayana sequence can be either (p2-

1)(p2+1) (or a divisor) or (p2+p+1)(p-1) (or a divisor). 

4.2.4) Autocorrelation properties 

Autocorrelation measures the similarity of a sequence with time-shifted replica of itself [96]. The 

autocorrelation function is calculated using expression (8) represented below: 

𝐴𝐶𝐹(𝑘) =
1

𝑁
∑ 𝐵𝑖𝐵𝑖+𝑘

𝑁−1

𝑖=0

 

Where 𝐵𝑖 and 𝐵𝑖+𝑘 are the binary values of the sequence and time shifted version of the sequence 

respectively and N is the length of the sequence. Under ideal conditions, autocorrelation function 

has its peak value at zero time shift and zero values at all other time-shifts. 

The first 20 bits of resulting binary sequence B(n) are 1,1,-1,-1,-1,1,1,-1,-1,1,1,-1,1,1,1,-1,-1,1,1 

and 1. 

Figure 28 and Figure 29 represents the normalized autocorrelation function of B(n) sequence for 

50  and 80 bits respectively. 
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Figure 28. ACF of binary sequence B(n) for Narayana variants of length 50 bits 

 

Figure 29. ACF of binary sequence B(n) for Narayana variants of length 80 bits 

Looking at Figure 28 and Figure 29, it is evident that the lobes are close to ideal autocorrelation 

function (ACF) with peak value at zero time shift and values close to zero at all other time shifts. 
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Randomness is calculated using randomness measure R(x) of a discrete sequence x by the 

expression (9) represented below: 

 
 

1

11
1

n

k
ACF k

R x
N



 



 

where ACF(k) is the autocorrelation function value for k and N is the period of sequence to 

characterize the randomness of a sequence. The randomness measure of 1 indicates that the 

sequence is fully random and randomness measure of 0 indicates constant sequence. The 

randomness measure of Figure 28 and Figure 29 are found to be 0.83265 and 0.8797 respectively 

which are close to fully random sequence. 

4.2.5) Cross-correlation properties 

Cross-correlation describes the relationship between two different sequences. Here, we measure 

the cross-correlation using expected value of product of two sequences chosen from different 

time intervals [97]. The expression (10) for calculating the cross correlation function is 

represented by: 

𝐶𝐶𝐹(𝑘) =
1

𝑁
∑ 𝐴𝑖𝐵𝑖+𝑘

𝑁−1

𝑖=0

 

Where 𝐴𝑖 and 𝐵𝑖+𝑘 are the binary values of two sequences at two different time intervals and N is 

the length of the sequence. Under ideal conditions, cross correlation function has a peak value of 

zero at all time shifts. The peak cross correlation function value is calculated using expression 

(22) represented below: 

𝐶𝐶𝐹𝑝𝑒𝑎𝑘 =
1

𝑁
∑ |𝐶𝐶𝐹(𝑘)|

𝑁−1

𝑘=0
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Where CCF(k) is the cross correlation function of binary sequence B(n). Now, we perform cross 

correlation on the binary sequence B(n) to determine whether they are applicable for random 

processes. Figure 30 and Figure 31 present the normalized cross correlation function of B(n)  

sequence for 50 and 60 bits respectively. 

 

Figure 30. CCF of binary sequence B(n) for Narayana variants of length 50 bits 

 

Figure 31. CCF of binary sequence B(n) for Narayana variants of length 60 bits 
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Looking at Figure 30 and Figure 31, their peak cross-correlation function values are noted to be 

0.36 and 0.3667 respectively. These values are close to ideal conditions which are favorable for 

applications in random processes.
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CHAPTER V 
 

 

NARAYANA UNIVERSAL CODE 

 

5.1) Introduction 

A universal code maps positive integers which represent the source messages into codewords of 

different lengths. The codeword elements are a set of digits that are constructed according to a 

specified rule, and they may be binary. There are various universal codes including the Elias 

codes, the Fibonacci universal code, Levenshtein coding and non-universal codes including unary 

coding, Rice coding, Huffman coding and Golomb coding [34] [98]-[100]. If one were to 

represent numbers as sum of two prime numbers using Goldbach conjecture, inverse sequence 

may also sequences may also be used to construct a universal code [44]. 

The simplest of Elias codes is the gamma code in which the binary representation of the source 

code is preceded by [log2𝑥] zeroes indicate codeword for any natural number x, where x ∈ N= {1, 

2, 3,..}. The time requirement for compression and decompression algorithms for cases where 

decompression time is a critical issue, is advantageous in this coding [101] [102]. 

The Fibonacci code has a useful property of easy recovery of data from damaged bit stream in 

comparison with other universal codes. The performance of Fibonacci universal code is better 

than that of Elias coding [35]. Fibonacci and GH universal codes are obtained using the 

Zeckendorf representation. In this representation, every positive integer can be represented 

uniquely as a sum of non-adjacent Fibonacci numbers [103]. This helps in unique representation 

of codewords without two consecutive 1s, and this may be used for generalization of any coding. 
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Narayana (short for Narayana Pandit) wrote his famous book Gaṇita Kaumudi in 1356. His 

eponymous sequences [75]-[77], which are related to Fibonacci and GH sequences, have potential 

applications in cryptography and data coding. The properties of Fibonacci sequences together 

with applications in cryptography and coding have been presented in several studies [2] [80] [81] 

[104] [105]. Here, we present a variant of Fibonacci universal code based on Narayana series 

with the help of a representation procedure that leads to the Narayana universal code. 

5.2) Narayana sequence 

The Narayana sequence is derived from the following problem that was proposed by Narayana: 

“A cow gives birth to a calf every year. In turn, the calf gives birth to another calf when it is three 

years old. What is the number of progeny produced during twenty years by one cow?” We 

assume that we begin with a new-born calf, who is shown in the first row of the matrix below. 

After three years, in each successive year, there is a new calf born to this one and additional 

calves are born to the 3-year or older calves, leading to second and additional rows in the matrix 

every 3 steps. This may be represented in the matrix below: 

Table 8. Generation of Narayana sequence 

1 1 1 1 1 1 1 1 1 1 1 1 1 … 

   1 2 3 4 5 6 7 8 9 10… 

      1 3 6 10 15 21 28… 

         1 4 10 20… 

            1… 

            …. 

1 1 1 2 3 4 6 9 13 19 28 41 60… 
 

The last row that adds up the numbers in the previous rows represents the count of the Narayana 

sequence. This sequence is the sum of previous term and term 2 places before. It is given by  

1,1,1,2,3,4,6,9,13,19,28, ….                                                                                       
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The (k+1)st term of the Narayana series may be defined using expression (23) represented below: 

N(k+1)=N(k)+N(k-2) 

with N(0)=N(1)=N(2)=1 and k≥2. A more general Narayana sequence Na(n) is given by 

{a, b, c, a+c, a+b+c, a+b+2c, 2a+b+3c, 3a+2b+4c, and so on} with a=1, b=2 and c=3              (25) 

Consider the ratio of two consecutive terms in Narayana series. In the limit where n goes to 

infinity, we have 

                                               lim
𝑛→∞

(
𝑁𝑎(𝑛+1)

𝑁𝑎(𝑛)
) = 1 + lim

𝑛→∞
(
𝑁𝑎(𝑛−2)

𝑁𝑎(𝑛)
)                                         (26) 

Equation (26) may be written as 

                             lim
𝑛→∞

(
𝑁𝑎(𝑛+1)

𝑁𝑎(𝑛)
) = 1 + lim

𝑛→∞
(
𝑁𝑎(𝑛−2)

𝑁𝑎(𝑛−1)
) ∗ lim

𝑛→∞
(
𝑁𝑎(𝑛−1)

𝑁𝑎(𝑛)
)                                (27) 

With lim
𝑛→∞

(
𝑁𝑎(𝑛+1)

𝑁𝑎(𝑛)
) = 𝐿, we obtain the equation 𝐿3 − 𝐿2 − 1 = 0. This leads to the following 

theorem: 

Theorem 3: 

The real positive solution of equation 𝐿3 −𝐿2 −1 = 0 characterizes the relation between two 

consecutive terms in Narayana sequence, and the Narayana ratio approaches 

1.4655712318767669… 
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Figure 32. Ratio between first 100 consecutive terms of Narayana series 

This constant of 1.4655712318767669 may be termed the Narayana ratio. 

5.3) Narayana universal code 

To generate Narayana code as a generalization of Fibonacci universal code, we need to be able to 

map any given positive integer representing source code into variable length codeword in a 

manner used earlier by Thomas [34].   

Consider Narayana series N(k) given by 1,1,1,2,3,4,6,9,… for generating variable length source 

code for any given positive integer. Since the series contains 3 consecutive 1s, we obtain various 

codewords for any given positive integer and the resulting codeword fails to comply with the 

requirement of universal coding. 

Hence, to it is essential to modify Narayana series N(k) for k terms such and we define a new 

series J(k) as N(k+2)=J(k). The series N(k) is mapped to the J series as shown in Table 9. 
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Table 9. Mapping of Narayana series to J series 

Narayana Series  

N(k)  J(k) Series 

1 N(0)  

1 N(1)  

1 N(2) J(0) 

2 N(3) J(1) 

3 N(4) J(2) 

4 N(5) J(3) 

6 N(6) J(4) 

9 N(7) J(5) 

13 N(8) J(6) 

19 N(9) J(7) 

28 N(10) J(8) 

 

The conditions for unique representation of Narayana universal code in terms of J series to obtain 

binary set of codewords are now presented. 

Rule 1: For a given positive integer n, construct a vector 𝐴(𝑛)  such that 𝐴(𝑛)𝑖 = 𝐽(𝑖) ,  

i=0,1,…,d, where 𝐽(𝑑) is the largest number of J series less than or equal to n. A vector 𝐵(𝑛) of 

binary digits with dimension d is constructed such that 

                                                    𝐴(𝑛)𝑇𝐵(𝑛) = 𝑛 and 𝐵(𝑛)𝑑 = 1.                                          (28) 

The codeword 𝑁𝐵(𝑛) for the positive integer n, is defined by a vector with dimension d+1, 

where 𝑁𝐵(𝑛)𝑘 = 𝐵(𝑛)𝑘 for 1 ≤ k ≤ d, and 𝑁𝐵(𝑛)𝑑+1 = 1 [34]. 

Consider an example of constructing codeword for integer 10. Since 𝐽(5) = 9 is the largest 

number of J series less than or equal to 10, vectors 𝐴(𝑛), 𝐵(𝑛) and 𝑁𝐵(𝑛) are given as (d=5 in 

this example): 
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                                    𝐴(𝑛) =

(

  
 

1
2
3
4
6
9)

  
 

, 𝐵(𝑛) =

(

  
 

1
0
0
0
0
1)

  
 

, 𝑁𝐵(𝑛) =

(

 
 
 
 

1
0
0
0
0
1
1)

 
 
 
 

                                       (29) 

While the recursive nature of Narayana series allows to have more than one representation for 

some integers using above scheme, 𝐵(𝑛) is chosen not to have two consecutive ones [34]. In the 

above example, integer 10 can be represented as 𝐽(3) + 𝐽(4) by 𝐵(10) = (0 0 0 1 1 )𝑇 

or using Zeckendorf representation as 𝐽(0) + 𝐽(5) by 𝐵(10) = (1 0 0 0 0 1 )𝑇. Since 

𝑁𝐵(10)𝑑+1 = 𝑁𝐵(10)𝑑 = 1 , consecutive ones occur only at the termination of codeword 

𝑁𝐵(𝑛), when Zeckendorf representation is chosen. Thus, the prefix conditions for unique 

representation of codeword are found to be: 

Rule 2: If the source code to be represented/decoded is a term in Narayana series, the codeword 

consists of binary set with all zeroes followed by two consecutive ones at the termination. 

Rule 3: If the source code to be represented/decoded is not a term in Narayana series, the 

codeword consists of binary representation of summation of two or more terms in Narayana 

sequence such that 𝐴(𝑛)𝑇𝐵(𝑛) = 𝑛 which includes two consecutive ones at the termination as a 

part of the Zeckendorf representation. We consider codeword which can be represented by 

summation of least number of terms in the Narayana series. 

Consider a general the Narayana sequence which is given by {a, b, c, a+c, a+b+c, a+b+2c, 

2a+b+3c, and so on}. Let a+c=d, a+b+c=e, a+b+2c=f, 2a+b+3c=g in the above sequence 

which represents {a, b, c, d, e, f, g, and so on}. Here, g is obtained by summation of f and d (that 

is, g=d+f) which in turn are summations of e and c and c and a respectively. Since any term of 

the Narayana series is obtained by summation of two different terms in the sequence and 

codeword for any given positive integer is binary representation of sum of two or more terms in 
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the sequence, the codeword obtained is said to be unique in Zeckendorf representation. Therefore, 

we are led to the following result: 

Theorem 4: 

The variable length codeword obtained in Zeckendorf representation using the Narayana 

sequence for any given positive integer n, which represents the source message, is unique.   

Table 10 provides codewords for first 15 natural numbers which contain source messages. 

N Representation in 

terms of J series 

Binary 

Representation in 

terms of J series 

Narayana 

Code 

Number of bits required for 

representation of Narayana 

Code 

1 𝐽(0) 1 11 2 

2 𝐽(1) 01 011 3 

3 𝐽(2) 001 0011 4 

4 𝐽(3) 0001 00011 5 

5 𝐽(0) + 𝐽(3) 1001 10011 5 

6 𝐽(4) 00001 000011 6 

7 𝐽(0) + 𝐽(4) 10001 100011 6 

8 𝐽(1) + 𝐽(4) 01001 010011 6 

9 𝐽(5) 000001 0000011 7 

10 𝐽(0) + 𝐽(5) 100001 1000011 7 

11 𝐽(1) + 𝐽(5) 010001 0100011 7 

12 𝐽(2) + 𝐽(5) 001001 0010011 7 

13 𝐽(6) 0000001 00000011 8 

14 𝐽(0) + 𝐽(6) 1000001 10000011 8 

15 𝐽(1) + 𝐽(6) 0100001 01000011 8 

 

In order to decode the codeword, remove the last 1 in the codeword and assign the remaining 

bits with the values 1,2,3,4,6,9,13,19,… which are terms of the Narayana series (Narayana 

number) and add. Thus, the Narayana code can be used to encode any positive integer, which 

could be a portion of signal with source messages contained in it. 

A variant of Narayana coding scheme can be obtained by defining second-order variant 

Narayana sequence, 𝑉𝑁𝑎(𝑛), such that 𝑏 = 3 − 𝑎 and 𝑐 = 1 − 𝑎. This yields 𝑉𝑁𝑎(0) = 𝑎 (𝑎 ∈

𝑍), 𝑉𝑁𝑎(1) = 3 − 𝑎, 𝑉𝑁𝑎(2) = 1 − 𝑎 and for 𝑛 ≥ 3, 𝑉𝑁𝑎(𝑛) = 𝑉𝑁𝑎(𝑛 − 1) + 𝑉𝑁𝑎(𝑛 − 3). 
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With the above definition, we obtain the variant Narayana sequence 𝑉𝑁−2(𝑛), which starts with 

𝑎 = −2, as {-2,5,3,1,6,9,10,16,25,..}. However, certain codewords cannot be represented with 

the above definition since there is no Zeckendorf representation for integer 2 using the above 

sequence. 

Similarly, we obtain 𝑉𝑁−1(𝑛)  as {-1,4,2,1,5,7,8,13,20,28,..}, 𝑉𝑁−3(𝑛)  as {-

3,5,4,1,6,10,11,17,27,38,..} and there is no Zeckendorf representation for integers 3 and 15 

using the sequence 𝑉𝑁−1(𝑛) and integers 2,13 and 19 cannot be represented using sequence 

𝑉𝑁−3(𝑛). Although, codes obtained through variant Narayana sequence are not capable for 

encoding certain positive integers, they could be used for portions of source messages which 

they are able of encode. But, variant Narayana sequences cannot be considered for universal 

coding.   

Figure 33 presents the number of bits required for representation of codewords, obtained through 

Narayana universal coding, for first 1000 natural numbers. 

 

Figure 33. Required number of bits for first 1000 natural numbers 
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Let the number of elements with the same number of bits, in the codeword representation for 

natural numbers obtained through Narayana universal coding, for repeated count greater than or 

equal to 2, be represented by the sequence b(x).   

With the above definition, we have b(1)=2, b(2)=3, b(3)=4, b(4)=6 and so on. We see that 

sequence b(x) represents Narayana series. 

Theorem 5: 

The sequence b(n) which represents the number of elements with the same number of bits for 

repeated count greater than or equal to 2, is also according to the Narayana series. 

Proof. The above statement is true with respect to Rule 1 in which the codeword is defined by a 

vector with dimension d+1, where 𝑁𝐵(𝑛)𝑘 = 𝐵(𝑛)𝑘 for 1 ≤ k ≤ d, and 𝑁𝐵(𝑛)𝑑+1 = 1. 

5.3) Implementation of Narayana series for Encryption and Hashing 

The Narayana series can be used as a key for encryption of plain text in order to obtain cipher 

text. Suppose an alphabet is used as a key and the Narayana series is used to index alphabets, 

where index starts from key alphabet, a cipher text could be obtained by combination of ASCII 

values of key alphabet, the Narayana series indexed alphabets and plain text, dividing the 

resultant set of numbers into pairs and assigning a letter in the range of [0-25] starting from a to 

z based on modulus of the pair of numbers [91]. The set of numbers obtained by combining 

ASCII values can also be considered as cipher text. This provides cipher text whose length is 

nearly same as that of plain text and thus useful for encryption methods. 

The Narayana series can also be used to generate hash table for hashing the plain text into 

cipher text. This provides various combinations to obtain cipher text leading to difficulty in 

decrypting and obtaining plain text. Hence, the Narayana series is used in hashing algorithms 

which ensures protection of data from intruders. 
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CHAPTER VI 
 

 

                                                                 CONCLUSION 

 

The thesis presents new classes of random numbers for cryptographic applications. The new 

classes include binary GH and Narayana sequences for use in key generation and in wireless 

communications. Considering GH sequences modulo prime p, the periods are found to be either 

(p-1) (or a divisor) or (2p+2) (or a divisor) while the Narayana sequence for prime modulo have 

either p2+p+1 (or a divisor) or p2-1 (or a divisor) as their periods. By mapping the different 

periods to binary values we obtain a corresponding binary sequence. It is shown that the 

autocorrelation and cross correlation properties of GH and Narayana sequences justify their use 

as random sequences. The signal to noise ratio values are calculated based on the use of delayed 

sequences to carry different sets of data in wireless applications. The use of the Narayana 

sequence as universal code was also established. In summary, the newly discovered classes of 

random numbers described in the thesis can be used for encoding and decoding applications along 

with data hiding and information transmission. 
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