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ABSTRACT

The freshwater bivalve, Corbicula fluminea. was selected for the 

study of the internal defense mechanisms of hemocoelic invertebrates. 

Corbicula hemocytes, the primary effector cell involved in defense 

reactions, consisted of a heterogeneous cell population. Based on 

size, extent of granulation, and granular morphology, these cells were 

divided into three major cell-types: small hyaline hemocytes, vesicular 

hemocytes, and large granular hemocytes. The small hyaline cells 

composed 16% of the hemocyte population, had abundant rough and smooth 

endoplasmic reticulum, and mitochondria evenly distributed throughout 

the cytoplasm. Vesicular cells, characterized by the presence of many 

filopodia and numerous electron-opaque cytoplasmic vesicles, were the 

most abundant hemocyte-type comprising 60% of total hemocyte 

population. The rest of the hemocyte population (24%) was composed of 

large granular cells which possessed large electron-dense or lucid 

granules in the cytoplasm. All three cell-types varied in their 

cellular density, and all contained lysosomal acid phosphatase and 

non-specific esterase activity.

All types of Corbicula hemocytes were capable of adhering and 

spreading on a glass slide surface. These phenomena were plasma- and 

divalent cation-dependent. Hemocytes were also capable of 

phagocytizing formalin-fixed vertebrate RBCs vitro but only in the 

presence of a soluble plasma factor(s). The plasma factor(s) had
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opsonic properties since RBCs pre-treated with clam plasma enhanced 

particle uptake by plasma-free hemocytes. The factor was also heat 

sensitive, being inactivated at 56*0 for 30 min and 1001  for 10 min, 

and its activity was abolished upon lyophilization. The opsonin did 

not appear to be mediating its activity by interacting with 

hemocyte/RBC carbohydrate moieties, since thirteen mono- and 

disaccharides, and the glycoproteins, fetuin and mucin, had no effect 

on competitively inhibiting hemocyte erythrophagocytosis.

Hemocytes, in the absence of plasma, were shown to exert a hemolytic 

reaction against 6 species of fresh mammalian RBCs. Using a Hb-release 

assay, the reaction was shown to be effector cell dose-dependent and 

also differed between the various RBC species used in this hemolysis 

assay. Ultrastructural studies and analysis of plaque-forming 

hemocytes showed that hemocytes lysed RBCs through the active release 

of their granular contents into the medium. Corbicula plasma also 

contained a hemolytic factor(s) which also reacted against 5 species of 

mammalian RBCs tested in a dose- and divalent cation-dependent fashion. 

The plasma hemolysin was also heat sensitive. The functional 

similarities between the hemolytic factors from hemocytes and the 

plasma suggest that these lytic factors may be the same and that 

hemocytes may represent a major source of soluble plasma hemolysin in 

the intact clam.

Finally, a naturally occurring hemagglutinin was also found in 

Corbicula plasma which had the properties of being sensitive to heat 

and freeze-drying. Plasma treatment with various saccharides and



glycoproteins in competitive inhibition tests, as veil as with EDTA at 

2 mM, did not reduce its hemagglutinating activity.

Based on these _in vitro studies, it has been shown that Corbicula is 

capable of recognizing and reacting against foreign particles through 

both cellular and humoral mechanisms. A functional relationship 

between cellular and humoral components has been demonstrated in 

experiments involving hemocyte erythrophagocytosis. Additionally, 

hemocytes appear to represent a major source of plasma hemolysin.
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CHAPTER I

INTRODUCTION

The word "immunity" is derived from the latin immunis. meaning "free 

from obligation." Therefore, immunity, in a broad sense, denotes the 

existence in a species of a surveillance mechanism, the immune system, 

which protects the species against invading harmful or disagreeable 

agents. From this point of view, a system which participates in 

internal defense processes for the species can be considered as an 

immune system (Hildemann and Reddy, 1973; Cooper, 1976; Chorney and 

Cheng, 1980; Lackie, 1980; Ruben, 1982).

Although the mechanisms of immune function may well vary among 

different animal groups, the fundamental feature of such a system is to 

distinguish self from non-self. The recognition of and reaction 

against foreignness in higher vertebrates are achieved through two 

different, but complementary systems. One system is responsible for 

generating cell-mediated immune responses (CMI). This system involves 

the direct reaction of specialized cells (T-lymphocytes) with foreign 

materials and results in the direct killing of infectious organisms or 

transformed cells, or in the regulation of the animal's immune 

response. The second system involves lymphoid cells derived from the



avian bursa or mammalian bone marrow (B-lymphocytes) which are involved 

in the production of soluble recognition molecules called 

immunoglobulins or antibodies. Antibody-mediated reactions constitute 

what has been termed "humoral immunity" in these animals. Both T and B 

cells are responsible for specific acquired immune resistance. In 

addition to B and T cells, which represent the major constituents of 

this dual system, other accessory cells such as blood monocytes, 

basophils, eosinophils, polymorphonuclear leucocytes, macrophages, and 

natural killer cells participate in either regulatory or effector roles 

in both systems. This latter group of cells largely responsible for 

the natural (i.e., nonacquired) resistance observed in higher animals. 

All the above cells interact through specific ligand-receptor bindings. 

The results of the intricate interactions of these cells and their 

products in response to foreign materials and the ability of the system 

to produce an enhanced reaction after second exposure to the same 

materials (anamnesis or immune memory) form the basis of immune 

protection in the vertebrates. At the same time, the checks and 

balances between these immune components results in a fine homeostatic 

regulation of host responsiveness. Thus, recognition of non-self, 

specificity, and memory are the characteristics of vertebrate immunity 

(Fudenberg et al., 1980; Roitt, 1980; Golub, 1981; Hood et al., 1982; 

Ruben and Gershwin, 1982).

In contrast to the vertebrates, our knowledge concerning 

invertebrate immunity is still at the descriptive stage. Antibodies 

and classical complement components have not been reported from 

invertebrates (Marchalonis, 1977; Warr, 1981). Furthermore, immune



memory and transplantation immunity have only been demonstrated from 

sparse groups of invertebrates. Nevertheless, invertebrates, composed 

of a diversity of animals, exhibit a wide variety of immune reactions. 

These responses can also be divided into the broad catagories denoted 

as cellular and humoral. Phagocytosis, encapsulation, and natural 

cytotoxicity are the major cellular events elicited in invertebrates 

against foreign substances. On the other hand, naturally occurring 

bactericidal (bacteriolytic), bacteristatic, agglutinating, and opsonic 

molecules found in the body fluid or tissue extracts are principal 

mediators of invertebrate humoral reactions against non-self materials. 

A review of the cellular and humoral responses in the major 

invertebrate phyla will now be presented in the following sections:

Poriferans

Sponges, considered to have the simplest body organization among 

metazoan animals, are capable of recognizing foreign materials such as 

india ink and carmine experimentally introduced into these animals 

(Cheng et al., 1968). These foreign materials are found to be 

phagocytized by freely mobile, colorless cells called amoebocytes or 

archaeocytes. Ink and carmine-laden archeocytes migrate through the 

excurrent water canal out of the sponge, thus, removing these materials 

from the sponge body in a "suicidal" fashion (diapedesis). For 

materials too large to phagocytize, cells form a capsule around the 

foreign subject (Bang, 1975). The discrimination of non-self in the 

sponge is further demonstrated between individuals of different species 

(Spiegel, 1955; Moscona, 1968; McClay, 1971; Maclennan, 1974) or



different strains within the same species (Van de Vyver, 1975;

Hildemann et al., 197 9a; Van de Vyver, 1980). Moreover, an enhanced 

second and third allograft rejection accompanied by bilateral 

cytotoxicity between parabionts of the tropical sponge, Callvspongia 

diffusa. suggests the existence of polymorphic histocompatibility 

markers on the sponge cell surface which are responsible for alloimmune 

memory in this animal (Hildemann et al., 1979a). However, alloimmune 

memory is not considered to be a common property of all sponges. In 

Ephvdatia fluviatilis. for example, allogeneic incompatibility is 

marked by an extensive phagocytosis and the formation of a collagen 

boundary between allogeneic individuals, and this process is not 

accelerated during second set grafting (Van de Vyver, 1980, 1983; Van 

de Vyver and Barbieus, 1983).

Coelenterates

Coelenterates have two body tissue layers which are more specialized 

than that of the sponges. In the body of these animals there exists 

freely mobile cells called amoebocytes or "lymphocytes", which are 

morphologically similar to those found in sponges (Hildemann et al., 

1977). They are responsible primarily for nutrient delivery, secretion 

of waste products, and reproduction (Hickman, 1973). In addition, 

these cells are also the principal mediators for antagonistic reactions 

like phagocytosis and cytotoxicity against foreign implants in 

transplantation studies (Hildemann et al., 1977). Similarly to 

sponges, allogeneic incompatibility is well documented for hydrozoans 

(hydras and gorgonians) (Theodor, 1970; Ivker, 1972) and anthozoans



(corals and sea anemones) (Bigger, 1976; Hildemann, et al., 1977). 

However, evidence of immune memory for the members in this phylum is 

lacking, except the coral, Montipora. in which a short-term memory has 

been demonstrated (Hildemann et al., 1979b). From an evolutionary 

standpoint, xenogeneic or allogeneic incompatibility in sponges and 

coelenterates is thought to be the result of an ecological adaptation 

aimed at the maintaining of the animal''s individual integrity, since 

most of these organisms lead a colonial style of life (Lackie, 1980).

Nemertines

Nemertines or ribbon worms are acoelomates (animals without a body 

cavity) with complete digestive and primitive circulatory systems 

(Hickman, 1973). The tissue mobile cells or "immunocytes", which 

include agranular leucocytes and granular "macrophage-like" cells, are 

competent in phagocytic and cytotoxic reactions against foreign 

materials (Langlet and Bierne, 1977). Similar to sponges and 

coelenterates, nemertines are also capable of allogeneic 

discrimination. Langlet and Bierne (1977) found that graft survival 

was dependent upon species compatibility of grafted cells and 

immunocytes from the donor and recipient, respectively. Additionally, 

chimeras from two weakly histoincompatible species generate a stronger 

acute rejection of xenografts through cytotoxic reactions than those 

generated in each of the individual species alone, suggesting an 

analogous stimulatory effect comparable to that observed in vertebrate 

mixed lymphocyte cultures (Langlet and Bierne, 1983).



In summary, animals (poriferans, coelenterates, and nemertines), 

representing the lowest level of metazoans in evolution, possess in 

themselves a highly efficient immunorecognition machinery which is 

capable of mounting reactions against foreign substances and providing 

protection for these animals.

Annelids

Annelids are eucoelomates (possessing a true body cavity) with a 

complete digestive system and a closed circulatory system. Amoebocytes 

in the body cavity (coelomocytes) are responsible for mediating 

cellular defense against invading non-self organisms (Hetchnikoff,

1968; Cuenot, 1898; Cameron, 1932; Bang, 1966; Cushing and Boraker, 

1975). In the earthworm, Lumbricus terrestris. coelomocytes consist of 

five major cell-types: basophils, neutrophils, acidophils, 

granulocytes, and chloragogen cells (Hostetter and Cooper, 1974; Stein 

et al., 1977; Linthincum et al., 1977; Stein and Cooper, 1978). These 

cells seem to have differential discriminating ability against non-self 

materials with varying properties (Cameron, 1932; Fitzgerald and 

Ratcliffe, 1981). For example, coelomocytes phagocytize and clear the 

human strain of tubercle bacilli from the coelom in 3 days; however, 

the bovine and avian strain of this bacteria persist in the tissue for 

as long as 21 days (Cameron, 1932). The phagocytized microorganisms 

often are incorporated into a dark reddish mass in the body cavity 

(brown bodies) and become necrotic (Pilgrim, 1965; Fitzgerald and 

Ratcliffe, 1983). Materials too large to phagocytize, such as metazoan 

parasites, are encapsulated by coelomocytes and melanized (Poinar and



Hess, 1977).

Transplantation studies have shown that annelids are capable of both 

allogeneic and zenogenic recognitions (Cooper, 1968) and coelomocytes 

are responsible for mediating the observed annelid's transplantation 

immunity (Valembois, 1971). The above conclusion is based on the 

observations of an accelerated rejection of repeat alio- and 

xenografts, a heightened coelomocyte numbers in a short period of time 

during second set transplantation (Cooper, 1968; Hostetter and Cooper, 

1973), and by adoptive cell transference of immunity from immunized 

(i.e., grafted) to naive annelids (Valembois, 1971). An in vitro 

demonstration of cytotoxicity by Eisenia fetida coelomocytes against 

allogeneic coelomocytes further strengthens the role of coelomocytes in 

graft rejection and this reaction has also been suggested as an 

analogue of the vertebrate mixed lymphocyte reaction (MLR) (Valembois 

et al., 1980, 1982).

Lysosomal enzymes such as acid phosphatase, p-glucuronidase and 

lysozyme are found in both coelomocytes and the coelomic fluid of 

oligochaetes and polychatetes (Valembois, 1971; Stain and Cooper, 1978; 

Dales and Dixon, 1980; Marks et al., 1981; Stein et al., 1982). The 

source of the coelomic fluid lysosomal enzymes is still unknown (Stein 

et al., 1982). In spite of that, the release of an antibacterial 

chemical, hydrogen peroxide, has been observed to be associated with 

phagocytic events by Lumbricus coelomocytes (Chateaureynaud et al., 

1981). Hydrogen peroxide production in annelid cells is thought to be 

analogous to the production of reactive oxygen radicals in mammalian



neutrophils and activated macrophages (Nelson, 1976).

The finding of hydrogen peroxide and lysosomal enzymes in annelid 

coelomic fluid could explain some of the erythrocyte lytic (hemolytic) 

(Cooper, 1974; Roch, 1979; Anderson, 1980; Chateaureynaud et al., 1981; 

Chain and Anderson, 1983b) and antibacterial (Roch et al., 1981; 

Valembois et al., 1982) properties that these animals possess. In the 

polychaete, Glvcera dibranchiater. it is suggested that the coelomic 

antibacterial factor is also responsible for hemolysis of sheep 

erythrocytes (RBCs). Preabsorption of coelomic fluid with either 

bacteria or RBCs can reduce the effect of coelomic fluid on the other 

(Chain and Anderson, 1983b). A similar finding was also reported by 

Valembois et al. (1982) from the earthworm, Eisenia fetida andrei. in 

which the antibacterial and hemolytic activities of the earthworm's 

coelomic fluid were found to be caused by the same lipoprotein 

molecules. Furthermore, Roch (1979) and Roch et al. (1981) isolated 

these molecules and found that they have a molecular weight of about 4 

X 10^ daltons and exist in 4 isoforms. Most antibacterial substances 

in annelid coelomic fluid are directed against only the highly 

pathogenic soil bacteria (Valembois et al., 1982). Thus, the presence 

of humoral antibacterial factors in annelids has a notable value in the 

species' survival.

Other humoral factors such as agglutinins and opsonins are also 

found in annelid coelomic fluid. Agglutinins include a bacterial 

agglutinin (Stein et al., 1981) and a hemagglutinin, so-called, because 

of its ability to agglutinate various vertebrate RBC species (Cooper et



al., 1974; Gold and Balding, 1975; Carte and Russell, 1976; Anderson, 

1980; Stein et al., 1981). Agglutination of foreign particles in the 

coelomic fluid may increase the efficiency of coelomocyte phagocytosis, 

and eventually, the clearance of these particles from the body of the 

animal (Cooper and Lemmi, 1981). In this regard, annelid agglutinin 

can also be opsonic, although the opsonic effect of agglutinin has only 

been demonstrated in neutrophil-mediated phagocytosis of foreign 

particles (Stein and Cooper, 1981). The annelid agglutinins are 

lectin-like due to the fact that their agglutinative property can be 

competitively inhibited by some carbohydrates. They are heat-labile 

and the activity is dependent on divalent cations (Anderson, 1980;

Stein and Cooper, 1982).

Although there is much work needed in elucidating the exact roles of 

cellular and humoral factors, as well as their interaction,in annelid 

immunity, based on the available information, it is apparent that 

animals with relatively low position on the evolutionary scale already 

possess complex recognition mechanisms to protect themselves from 

infection.

Arthropods

Vast amounts of work concerning self/non-self recognition has been 

done using arthropods as experimental models. This has been due to the 

fact that arthropods are not only the most extensive in animal kingdom 

in terms of abundance and species diversity, but also because of their 

enormous medical and economic importance to humans. Arthropods are 

hemocoelic in that their body cavity serves the blood circulatory
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function. In the hemocoel flows the hemolymph which contains the 

cellular elements, called hemocytes, and the soluble plasma 

compartment. Arthropod hemocytes, as in other invertebrates, are 

morphologically diverse. Among these cells, plasmatocytes (hemocytes 

with a homogeneous cytoplasm) and granulocytes (hemocytes with 

heterogeneous granules in the cytoplasm) are the major cell-types 

observed to actively participate in cellular defense reactions. 

Metchnikoff (1884) first observed the phenomenon of phagocytosis in the 

hemocytes of water fleas, Danhnia. and pointed out a direct correlation 

between the success of hemocyte phagocytosis on foreign particles and 

the survival of the animal. Since then, phagocytosis has been observed 

in many other arthropod species including both insects (Salt, 1970; 

Anderson et al., 1973; Ratcliffe and Rowley, 1974, 1975) and 

crustaceans (McKay and Jenkin, 1970a; Patterson et al., 1976). In 

addition to the free-circulating phagocytic hemocyte, there are also 

tissues containing fixed phagocytic cells found in the gills, heart, 

and hepatopancreas which act as blood filtration system. These fixed 

phagocytic sites are thought to be analogous to tissues comprising the 

vertebrate reticuloendothelial system and are of primary importance in 

the clearance of foreign materials from the circulation (Salt, 1970; 

Smith and Ratcliffe, 1980; Tyson and Jenkin, 1973; White and Ratcliffe, 

1980; McCumber and Clem, 1983).

Metabolic pathways of insect phagocytes are similar to those of 

mammalian polymorphonuclear leucocytes (PMN) and macrophages in that 

they both utilize the glycolytic pathway as their main energy source. 

However, the hexose monophosphate pathway which is used by PMN as an
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alternative energy source, as veil as the potent antimicrobial system, 

myeloperozidase-HgOg-balide system, are absent in insect hemocytes 

(Anderson et al., 1973; Anderson, 1975). In addition, hydrolytic 

enzyme activities are associated with hemocyte phagocytosis (Rowley and 

Ratcliffe, 1979).

Encapsulation of foreign materials by arthropod hemocytes (mostly 

granular hemocytes) represents another powerful cellular means of 

protecting arthropods from microbial pathogens or macroscopic parasite. 

The formation of multicellular hemocyte layers around foreign targets 

is accompanied by melanization or the release of lytic or toxic agents 

around the targets which eventually kills or restricts the growth of 

the parasite (Salt, 1970; Nappi, 1977; Foinar and Hess, 1977; Schmit 

and Ratcliffe, 1977; Foinar et al., 1979). Another type of cellular 

reaction observed against clumps of microorganisms is nodule formation 

which appears to be a combination of phagocytosis and encapsulation. 

During nodule formation, hemocytes infiltrate the clump of 

micororganisms and phagocytize them while others flatten themselves 

around the combined mass of hemocytes and microbes forming a cellular 

capsule (Ratcliffe and Gegen, 1976). Nodules formed in the insect body 

often are melanized, become attached to the wall of the hemocoel and 

are discharged to the outside during molting. If they occur in adult 

insects they may persist for the life of the animal.

The recognition and ingestion of foreign materials by arthropod 

hemocytes can be enhanced by a humoral factor from hemolymph (McKay et 

al., 1969; Rabinovitch and DeStefano, 1970; McKay and Jenkin, 1970b;
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Ratcliffe and Rowley, 1983) and, thus, the humoral factor has been 

referred to as an opsonin. The receptor-mediated recognition of 

foreign substances by arthropod hemocytes is further supported by the 

observation of a differential rate in the phagocytosis of particles 

which differ in their surface chemical nature, and the discovery of a 

prophenolozidase recognition system in crustacean hemocytes (Ratcliffe 

and Rowley, 1983; Smith and Soderhall, 1983). Moreover, crustacean 

hemocytes presensitized with endotoxin or killed bacteria show an 

increase in phagocytosis and RBC rosette formation (McKay and Jenkin, 

1970c; Patterson et al., 1976; Goldenberg et al., 1984). Therefore, 

arthropod hemocytes may also have membrane receptors for opsonins or 

for directly interacting with foreign determinants. Receptors for 

binding foreign molecules may be endogenous and/or expressed through 

activation (Goldenberg et al., 1984).

Cytotoxicity has been demonstrated by hemocytes of the crayfish, 

Parachaeraps bicarinatus. against various vertebrate tumor cells (Tyson 

and Jenkin, 1974). In the case of crayfish hemocyte-mediated 

cytotoxicity, the recognition of the tumor cell appears to be 

triggered via a trypsin labile receptor(s) on the hemocyte membrane. 

However, no further characterization of these receptors has been 

pursued. Arthropods, in general, do not recognize allogeneic 

transplants and the success of xenogeneic transplant recognition is 

dependent on the phylogenetic relatedness of the species (Lackie,

1979).

The most fully characterized of invertebrate hemagglutinins is that
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of the horseshoe crab, Limulus polvphemus. first described by Cohen et 

al. (1965). The Limulus hemagglutinins, as veil as other naturally 

occurring hemagglutinins from various species of chelicerates, display 

a binding specificity for sialic acid (Vaste and Marchalonis, 1983).

The molecule is ring shaped with a molecular weight of approximately 

400,000 and is composed of subunits of 22,000 daltons each which are 

non-covalently associated (Marchalonis and Edelman, 1968). Its 

agglutination activity is Ca** dependent. In addition to the 

chelicerates, hemolymph agglutination activity against a variety of 

vertebrate RBCs or bacterial species have been reported from other 

species of insects and crustaceans (McKay et al., 1969; McKay and 

Jenkin, 1970b; Scott, 1971; Hall and Rowlands, 1974; Rowley and 

Ratcliffe, 1980; Lackie, 1981b; and others). In all cases, agglutinins 

are lectins and demonstrate different sugar binding specificity. Some 

agglutinins show opsonic properties (McKay and Jenkin, 1970b; Rowley 

and Ratcliffe, 1980), while others do not contribute to enhancing 

hemocyte phagocytosis.

In addition to agglutinins, inducible bactericidal substances such 

as lysozyme are found in the arthropod hemolymph (Stephens and 

Marshall, 1962; Evans et al., 1968; Anderson and Cook, 1979; Hultmark 

et al., 1980; Walters and Ratcliffe, 1983). Bactericidin of the 

waxmoth is a dialysable, non-protein, and heat-stable molecule of small 

molecular weight (Stephens and Marshall, 1962). In contrast, 

bactericidins from the moth, Hvalophora cecropia. are composed of three 

small molecular weight proteins (Hultmark et al., 1980). The largest 

protein appears to be lysozyme, while the other two smaller molecular
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weight proteins are potent, heat-stable, bactericidal substances 

(Hultmark et al., 1980). There are also inducible humoral factors in 

the insect hemolymph which appear upon challenge with heterogeneous 

proteins (McKay and Jenkin, 1969; Karp and Rheins, 1980; Rheins and 

Karp, 1982). The humoral factors which protect immunized animals from 

the lethal effects of toxic bee venom proteins are multivalent, because 

they can interact with venom components in precipitation reactions. 

Anti-venom factors are also sensitive to the proteolytic enzyme trypsin 

(Rheins and Karp, 1982). A complex factor, which is thought to be 

lymphokine-like, also can be induced by injection of latex beads in 

Galleria meHone11a subtoxicus (Mohrig and Schittek, 1979). This 

factor once transferred to a naive larva of wax moth enables the larva 

to clear from its hemolymph the normally unphagocytizable bacteria. 

Bacillus thurineiensis (Mohrig and Schittek, 1979). However, this 

factor could be a bacterial opsonin which is non-specifically induced 

through latex bead presensitization.

Molluscs

Like the arthropods, molluscs represent an enormously diverse group 

of invertebrates in terms of distribution and number of species. 

Information concerning the internal defense mechanisms of these animals 

has largely concentrated on the bivalves (clams, mussels, etc.) and 

gastropods (snails, slugs). Molluscs are hemocoelic and possess open 

circulatory system. Hemocytes of these animals vary in their 

morphology and individual chemical composition (e.g. hydrolytic enzyme 

content or surface membrane structures). Cheng (1981) categorized
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bivalve hemocytes into two major cell types: granulocyte and 

hyalinocyte. Both cells participate actively in various cellular 

immune functions of bivalves (reviewed by Bayne, 1983). On the other 

hand, gastropods possess one type of free phagocytic hemocyte, the 

amoebocytes, and two types of fixed phagocytes, reticulum cells and 

pore cells (Volburg-Buchholz, 1973; Sminia, 1981; Sminia et al., 1983). 

Fore cells are selectively endocytic in that they have a high affinity 

for proteinaceous materials (Sminia, 1981). Similar to that of the 

bivalves, gastropod amoebocytes are multi-functional cells. They are 

capable of both phagocytizing and encapsulating foreign materials 

(Sminia, 1972; Sminia et al., 1974; Sminia and Barendsen, 1980), 

synthesizing humoral defense factors (van der Knaap et al., 1981), and 

the repairing of tissue wounds (Sminia et al., 1973).

Classical experiments by Cuenot (1914), Stauber (1950), Tripp (1958, 

1960), and Feng (1965, 1966) have demonstrated that foreign particles 

experimentally introduced into the bivalve, Crassostrea vireinica 

(Amercian oyster), are phagocytized and degraded intracellularly within 

phagocytes or eliminated from the animal body by exomigration of the 

particle-laden phagocytes across epithelial borders through a process 

called diapedesis. Diapedesis, which also has been observed in other 

bivalve species, usually takes place at the sites of the foot, 

alimentary tract, gills and kidney (Stauber, 1950; Cheng et al., 1969; 

Reade and Reade, 1972; Cheng and Rudo, 1976b; Bayne et al., 1979). 

Unlike gastropods, bivalves do not appear to have fixed phagocytic 

cells, and its digestive and excretory system are generally important 

in the disposal of partiele-laden hemocytes from circulation (Cuenot,
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1914).

Molluscan hemocytes have a fine capacity for discriminating foreign 

materials of different size and chemical nature (Tripp, 1961a). 

Radiolabelled hemocyanins from animal species possessing different 

phylogenetic relatedness to the chiton, Liolophura gaimardi. were found 

to be cleared from the chiton's circulation with the farthest related 

species always being cleared faster than those more closely-ralated 

species (Crichton and Lafferty, 1975).

Lysosomal enzymes such as lysozyme, non-specific esterase, alkaline 

phosphatase, acid phosphatase, p-glucuronidase, amylase, and lipase 

have been found in hemocytes and plasma (cell-free hemolymph) of 

molluscs (HcDade and Tripp, 1967; Rodrick and Cheng, 1974; Cheng and 

Rodrick, 1975; Cheng, 1976; Cheng et al., 1978; Cheng and Yoshino, 

1978). It is evident that plasma lysosomal enzymes have originated 

from hemocytes (granulocytes). They are released from hemocytes by 

degranulation during phagocytosis (Cheng et al., 1975; Foley and Cheng, 

1977; Cheng et al., 1978; Cheng and Butler, 1979) in a fashion 

analogous to that observed in phagocytizing mammalian macrophages. In 

addition, enzymes are thought to be hypersynthesized in hemocytes and 

subsquently released into plasma upon parasite infection or other forms 

of non-specific perturbation such as injection of distilled water 

(Cheng et al., 1977). Other tissues, e.g. the headfoot or visceral 

mass, of gastropods also may serve as sources of plasma acid 

hydrolases, since these tissues have also been found to be rich in 

several lytic enzymes (Yoshino and Cheng, 1977; Cheng et al., 1980).
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Lysosomal enzymes are not only important in intracellular 

degradation of phagocytized foreign materials, but also significant in 

the extracellular destruction of microorganisms and metazoan parasites 

(Cheng and Rodrick, 1974; Cheng, 1976; Cheng et a., 1978). Also, 

enzyme levels can be elevated after parasite stimulation. The 

aminopeptidase activity was increased in the hemocytes and plasma of 

Biomphalaria glabrata 20 and 30 day following exposure to irradiated 

miracidia of the trematode, Echinostoma lindoense (Cheng et al., 1978). 

This and the enhanced cellular and humoral reactions from other species 

of molluscs as a result of previous challenge with foreign materials 

(Cushing et al., 1971; Cheng and Yoshino, 1976; Bayne, 1980; Jeong et 

al., 1980; Granath and Yoshino, 1983) are considered to be inducible 

responses which may have functional bearing on the immune systems of 

molluscs (Cheng, 1983).

Many molluscs serve as intermediate hosts for metazoan parasites 

such as nematodes and trematodes (review by Bayne, 1983). Some 

molluscs can mount cellular encapsulation response against parasites.

In some cases, a generalized proliferation of hemocytes (leukocytosis) 

is associated with the encapsulation (Yousif at al., 1979). In 

addition, hemocytes of a parasite-resistant strain of the gastropod, B>. 

glabrata. are cytotoxic to the trematode. Schistosoma mansoni. It has 

been further demonstrated that the recognition of the parasite by snail 

hemocytes is achieved through a cytophilic factor(s) present both in 

the plasma and on the hemocyte plasma membrane (Bayne et al., 1980a, 

1980b). Hemocyte cytolytic properties have also been demonstrated by 

keyhole limpet hemocytes toward normal and malignant vertebrate cells
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(Decker et al., 1981). The recognition of targets by these hemocytes 

appear to be mediated through a series of sugar-specific lectin-like 

molecules present on the hemocyte surface, since a variety of defined 

mono- and disaccharides can block the hemocyte cytolytic effect (Decker 

et al., 1981).

Rejection of transplants in molluscs has only been demonstrated on 

the xenogeneic level (reviewed by Bayne, 1983). Transplantation 

rejection is marked by a differential infiltration of various types of 

hemocytes around the transplant (encapsulation). These hemocytes 

eventually invade the implant, and phagocytize dead implanted tissue 

(Tripp, 1961; Bayne et al., 1979). More convincing evidence of 

molluscan immune specificity comes from the host-parasite system. When 

trematode-resistant strains of the snail, glabrata. are exposed to 

normal miracidia of Echinostoma lindoense or if susceptible snails are 

exposed to irradiated miracidia, the parasites penetrate the snail and 

migrate to the heart, but are then surrounded by amoebocytes usually 

resulting in death of the larval parasite (sporocyst stage). If these 

previously challenged snails are subsquently exposed to normal 

miracidia, the parasites are quickly destroyed by amoebocytes near the 

penetrated area. This response is relatively specific, since primary 

infection with lindoense does not "immunize" the snail against a

challenge with mansoni. although a certain degree of protection is

stimulated against Ê . liei. At the same time, the amoebocyte-producing 

organ becomes enlarged and its cells show mitosis during primary 

sensitization (Lie et al., 1976) suggesting a proliferation of effector 

cells (amoebocytes) in response to parasite infection.
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Humoral factors such as agglutinins and opsonins are both present in 

molluscan plasma (Prowse and Tait, 1969; Hardy et al., 1977; Chorney 

and Cheng, 1980; van der Knaap, 1980; Renvrantz et al., 1981; and 

others). Agglutinins are also found as hemocyte surface components 

(van der Knaap et al., 1981a; Vasta et al., 1982) and associated with 

cells lining gastropod blood vessels (van der Knaap et al., 1981b), and 

in the gastropod albumin gland (Hammarstrom, 1972; Anderson and Good, 

1976; Renvrantz and Mohr, 1978). Foreign particles in the hemolymph of 

molluscs have been observed attaching to the surface of blood vessels 

or in the connective tissue of various organs before they are ingested 

by fixed phagocytes (van der Knaap et al., 1981; Renvrantz et al.,

1981). It has been suggested that such attachment may be mediated 

through agglutinin molecules present on the surfaces of these cells, 

although this has yet to be unequivocally demonstrated.

A vide range of hemagglutinating specificities has been noted with 

molluscan agglutinins. Agglutinins from Helix pomatia (Hammarstrom, 

1972) and Ç.. virginica (HcDade and Tripp, 1967) agglutinate human A 

cells and are inhibited by N-acetyl-D-galactosamine and/or 

N-acetyl-D-glucosamine. Yeast and bacterial agglutinins from Lvmnaea 

staenalis bind a variety of sugars including D-galactose, L-forms of 

fucose, galactose, glucose, mannose, rhamnose and the polysaccharides, 

cellulose, galactogen and glycogen (van der Knaap et al., 1982). Also, 

the yeast agglutinin from Mvtilus edulis expresses a binding 

specificity for the glycoprotein, mucin (Renvrantz and Stahmer, 1983). 

Therefore, it is most likely that agglutinins are lectins which 

agglutinate particles possessing the proper carbohydrate binding site
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at their surface membranes.

Renvrantz and Stahmer (1983) isolated an agglutinin from the 

hemolymph of the mussel, Mvtilus edulis. and demonstrated the opsonic 

property of this purified agglutinin. Others have also recognized the 

potential opsonic characteristic of molluscan agglutinins (Cheng et 

al., 1969; Pauley et al., 1971; Anderson and Good, 1976; Renvrantz and 

Mohr, 1978; Renvrantz et al., 1981), although only a fev have used 

purified preparations to directly demonstrate the connection betveen 

agglutinating molecules and their role as opsonins (Renvrantz et al., 

1981; Renvrantz and Stahmer, 1983). In addition, hemocytes display a 

variety of carbohydrates vhich serve as lectin-binding receptors on 

their membrane surface (Renvrantz and Cheng, 1977a; Sminia et al.,

1981; Yoshino, 1981a, 1981b; Schoenberg and Cheng, 1982). Therefore, 

it is likely that agglutinin and opsonin may represent the same 

molecule vhich could react vitb foreign particles bearing the proper 

sugar moieties and subsequently mediate the chemical interaction of 

particles vith phagocytic hemocytes through the binding of similar 

hemocyte surface carbohydrates.

Other soluble factors including parasite grovth or immobolizing 

substances (Michelson, 1964; Jeong et al., 1980) and an erythrocyte 

lysin (Anderson, 1981) have also been reported from several molluscan 

species. Hovever, their functional role in molluscan immunity is still 

uncertain at this point»
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Echinodenns

The phagocytic coelomocytes, vhich compose 70% of the total echinoid 

coelomocyte population, constitute the major cellular defense 

components of these animals (Reinish and Bang, 1971; Bertheussen and 

Seljelid, 1978; Bertheussen, 1981). Injected bacteria or implanted 

tissues from other animal species into the coelom are quickly 

recognized by these cells and are subsequently phagocytized or 

encapsulated (Johnson, 1969). Bacteria-laden coelomocytes tend to form 

aggregates in the coelom and these phagocyte aggregates as veil as 

encapsulated foreign materials often become attached to the vail of the 

coelom and migrate to the tips of papulae (vater-vascular system). 

Following necrosis of these tips, cellular clumps or capsules 

containing foreign substances fall off and leave the animal (Bang, 

1975).

Recognition and internalization of foreign materials by echinoid 

coelomocytes can take place in the absence of coelomic fluid. An 

enhancement of coelomocyte phagocytosis of sheep RBCs pre-treated vith 

either vertebrate sera or antibody (IgM) and the loss of this opsonic 

effect on coelomocytes when RBCs are exposed to vertebrate sera 

depleted of C 3 or treated vith zymosan, strongly suggest that the 

echinoid phagocytic coelomocytes possess on their plasma membrane, a 

vertebrate-like C 3 complement receptors (Bertheussen and Seljelid,

1982). Further analogy betveen the echinoderm and vertebrate immune 

systems vas demonstrated by Brillouet et al. (1981) who showed that two
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different cell populations isolated from the starfish axial organ 

selectively responded to the mitogens concanavalin A (ConA), pokeweed 

mitogen (PWM), lipopolysaccharide (LPS), or limulin. Also, supernatant 

from the FWM-stimulated non-adherent cells of starfish axial organ 

contained vertebrate lymphokine-like substances. The results of this 

study support the hypothesis that the starfish axial organ represents 

an ancestral vertebrate lymphoid organ (Leclerc, 1974).

Echinoiderms also exhibit transplantation immunity in which second 

and third set allografts are rejected more quickly (12 and 8 days, 

respectively) than the first set grafts (1 month) (Karp and Hildemann, 

1976; Coffaro and Hinegardner, 1977). However, memory can only be 

demonstrated for up to a six month duration.

Hemolysins and hemagglutinins are also present in the coelomic fluid 

of ecbinoderms (Brown et al., 1968; Ryoyama, 1973). The functional 

role of these substances in echinoderm immunity is still unknown. 

However, the presence of a factor in the hemolymph of Asterias forebesi 

which interact with purified cobra venom factor and lyses RBCs has 

prompted the suggestion that ecbinoderms may possess components which 

are functionally similar to the terminal components of complement found 

in vertebrates (Day et al., 1970).

Ascidians

Ascidians, or protochordates, represent an important group of 

animals in studies concerned with the phylogeny of immune mechanisms, 

because of their phylogenetic position as the immediate progenitors to
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the vertebrates.

Ascidians are hemocoelic and contain several types of hemocytes. 

Although some of these cells morphologically resemble vertebrate 

lymphocytes, they do not show any of the functional characteristic of 

these vertebrate lymphocytes (e.g., blastogenesis or the production of 

antibodies or lymphokines upon antigen stimulation) (Warr et al., 

1977). Instead, phagocytosis and encapsulation represent the primary 

forms of cellular reactions against foreign materials (Wright, 1980).

Hemagglutinins are found in several species of sea squirts 

(Farrihello and Fatricolo, 1975; Anderson and Good, 1973; Fuke and 

Sugai, 1972). They display a binding specificity for D-galactose 

(Farrinello and Canicatti, 1982) or sialic acid (Anderson and Good,

1975). Agglutinins synthesized and secreted by certain hemocytes are 

considered to be the mediators of hemocyte-related recognition event 

(Wright and Cooper, 1981).

Ascidians are capable of specific "self" recognition in which 

separated parts of the squirt's (Amaroecium constellatum) body could 

re-sort themselves regenerating all missing members (Scott ans Schuh, 

1963). Thus, the squirt's cells are capable of recognizing their own 

specific cell surface molecules with the result that similar cells 

aggregate together. Also, colony fusion of colonial Botrvllus 

primieenus only takes place between members sharing common alleles for 

their histocompatibility antigens (Oka and Watanabe, 1960; Freeman, 

1970).
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Summary

Many invertebrate species have been shown to possess diverse 

populations of circulating cells which are considered to be very 

important in mediating their internal defense functions against foreign 

substances. Many of these cells are morphologically and functionally 

similar to certain vertebrate immune cells, although, unlike in the 

vertebrate system, the molecular basis of non-self recognition by 

invertebrate cells has remained mostly unexplored. For the most part, 

the immune functions displayed by invertebrates are mostly considered 

to be forms of natural resistance (e.g., anatomic barriers, cellular 

phagocytosis, encapsulation, natural cytotoxicity or lytic mechanisms).

Nevertheless, specific cellular reactions elicited in invertebrates 

against foreign materials have been demonstrated in several 

host-parasite system (Lie et al., 1975, 1976) and in allograft 

transplantation studies involving sponges (Hildemann et al., 1977), 

coelenterates (Hildemann et al., 1979b), annelids (Cooper, 1968; Parry,

1976), and ecbinoderms (Karp and Hildemann, 1976). In these studies, 

invertebrates exhibit accelerated cellullar reactions after the second 

exposure to the same materials. Also, in some incidences, an increase 

in the number of effector cells as the result of primary sensitization 

was observed to accompany the accelerated cellular reactions (Lie et 

al., 1976; Parry, 1976).

Lysosomal enzymes which were found in the body fluid of annelids 

(Marks et al., 1981), arthropods (Anderson and Cook, 1979), and 

molluscs (Cheng and Rodrick, 1975), play a major role in hummoral
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defense functions of these invertebrates against bacteria and other 

foreign materials. Other types of bactericidin have also been reported 

from the plasma of arthropods (Hultmark et al., 1980) and ecbinoderms 

(Wardlaw and Dnkles, 1978).

Agglutinin and hemagglutinins, another group of molecules found in 

the body fluid and on the cell surfaces of invertebrates, have been 

suggested as mediators of invertebrate non-self recognition (reviewed 

by Stein and Cooper, 1982). These molecules are lectin-like and 

agglutinate bacteria, yeast, and vertebrate RBCs in vitro. According 

to Parish's hypothesis (1977), self/non-self discrimination in 

invertebrates could be based ou recognition of carbohydrate 

determinants by soluble or cell-bound oligomers of 

glycosyl-transferases. As a result, the individual enzyme 

specificities could increase the range of invertebrate recognition of 

foreign materials bearing various carbohydrate molecules on their 

surfaces. In this regard, the definite functional role of 

hemagglutinin in invertebrate defense was demonstrated by Renwrantz and 

Stahmer (1983) in the mussel, H. edulis. They isolated the 

hemagglutinin molecule from the hemolymph and showed the opsonic effect 

of these molecules on mussel's hemocytes. Thus, direct evidence for 

humoral factors interacting with cellular effectors to accomplish a 

defense-related function in invertebrates is established.

Still, there are more questions than answers concerning the 

mechanisms of invertebrate internal defense. In order to broaden our 

knowledge in this area, the study of the invertebrate internal defense
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functions is now being extended to a group of freshwater bivalves, 

Corbicula fluminea. Mature specimens of C_. fluminea. distributed widely 

in most of the North America river systems, is of moderate size (5 cm) 

and can provide, on average, up to 3 ml of hemolymph. The hemolymph 

contains numerous circulating hemocytes which are needed for the in 

vitro manipulations described in this research. Thus, this clam 

provides a most suitable system for accomplishing the specific aims of 

this research project, which are as follows: (1) To study the

morphological and hematological characteristics of circulating 

hemocytes from this clam since these cells are considered to be the 

major effector elements in defense-related reactions, (2) To 

investigate the cellular mechanisms of Corbicula hemocytes elicited 

against non-self materials, and (3) To study the humoral mechanisms 

possessed by Corbicula hemolymph against non-self.



CHAPTER II

MATERIALS AND METHODS

Animals

Clams were hand collected at the outlet of Lake Thunderbird dam, in 

Cleveland County, Norman, Oklahoma. The size of the clams ranged from 

0.5 cm to 5 cm in width, although only the larger size (3 cm to 5 cm) 

were collected for the study. Species identification was made using 

the tooth-like structure at the hinge region of the shell. In the 

laboratory, specimens were placed in a 10 gallon aquarium containing 

"aged" tap water. Clams were either placed directly on a fine gravel 

bottom substrate or suspended off from the bottom of the aquarium on a 

plastic rack covered with a fine screen. Ground commercial fish food 

bar was provided as food.

Hematological and Morphological Properties of 

Corbicula Hemocytes

Bleeding

Hemolymph of Corbicula was withdrawn from the clam's posterior 

adductor muscle sinus using a 1 cc syringe and a 26 G needle or by 

directly cutting through the muscle using a sharp scalpel after the

27
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shells have been slightly opened and braced with a wooden stick.

Hemocyte Counts

For hemocyte counts, a drop of whole hemolymph (plasma + hemocytes) 

was placed in an American Optical Bright-Line hemocytometer and the 

number of hemocytes per milliliter of hemolymph was estimated at 200X 

using an Olympus phase-contrast microscope.

Light Microscopy

For hemocyte behavioral and morphological studies at the light 

microscope level, wet mounts were prepared by quickly placing a drop of 

whole hemolymph onto a clean glass slide and gently overlaying the drop 

with a glass cover slip ringed with Vaseline to prevent drying. The 

preparations were then viewed at a magnification of 200X or 400X using 

an Olympus phase-contrast microscope. Measurements of cell diameters 

were performed with an ocular micrometer.

Electron Microscopy

For the study of cell structures at the ultrastructural level, 

hemocytes were fixed in ice-cold 2.5% glutaraldehyde in 0.05 M 

cacodylate buffer containing 0.05 M sucrose for 30 min. After 

fixation, cells were collected by centrifuging at 40g and washed 3 

times in 0.01 M cacodylate buffer. Glutaraldehyde-fixed hemocytes were 

then post-fixed in 1% OsO^ for 1 hr, dehydrated in an alcohol series, 

and embedded in Poly/Bed 812. Silver to gray sections were obtained on 

a Forter-Blum ultramicrotome and stained for 8 min with uranyl acetate
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and 3 min with lead citrate. The ultrastructure of hemocytes was then 

studied using a Zeiss lOA electron microscope at an operating voltage 

of 60 KV.

Enzyme Cytochemistry

The presence of lysosomal acid phosphatase (AP), nonspecific 

esterase (NE), and peroxidase (PO) activity in Corbicula hemocytes was 

studied cytochemically using the procedures of Humason (1979) with some 

modifications. To prepare hemocytes, 4 clams of similar size were 

randomly selected from the stock aquarium and bled through the 

posterior adductor muscle using a syringe. Three hemolymph samples 

(approximately 20 ul per sample) from each clam were placed on glass 

slides in a humidity chamber. Hemocytes were allowed to adhere to the 

slides for about 20 min followed by the removal of plasma by washing 10 

times with a clam phosphate buffer saline (PBS), adjusted to 100 mOs/kg 

HgO. Hemocytes were fixed for about 30 min in 2.5% glutaraldehyde in 

0.05 M cacodylate buffered (pH 7.2) containing 0.05 H sucrose, washed 5 

times with clam PBS and stored in distilled water (dH^O) until 

cytochemical studies were performed.

To demostrate AP activity, hemocytes were incubated at 26°C for 10 

hr in the substrate, p-glycerophosphate in a Tris-maleate buffer (pH 

5.0). Then hemocytes were rinsed 10 times in dH^O, stained with 1% 

ammonium sulfide for about 5 min, washed 5 times with dH^O and stored 

in dHgO for microscopic examination. Controls consisted of hemocytes 

incubated in substrate to which 0.01 H NaF had been added. Naphthol
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AS-D chloroacetate in a Trio-HCl buffer (pH 7.1) was used as the 

substrate to demonstrate NE activity. Hemocytes were incubated in the 

subatrate for about 90 min, after which time they were rinsed and 

stored in dHgO for evaluation. Controls consisted of hemocytes 

incubated in a medium lacking in substrate. To demonstrate PC 

activity, hydrogen peroxide in the presence of the chromogenic reagent, 

diaminobenzidine tetrahydrochloride (DAB), in 40% ethanol was used as 

the substrate. Hemocytes were incubated at 24°C for about 5 min in the 

substrate, rinsed 5 times with dH^O and stored in dHgO. Controls 

consisted of hemocytes incubated in medium lacking ^£^2 DAB, or in 

medium to which 0.01 M KCN (cytochrome oxidase control) or 0.02 M 

aminotriazole (catalase control) bad been added.

To quantify the distribution and abundance of the enzymes within the 

hemocyte population, one hundred cells were examined for every clam and 

treatment. For those samples stained for AP or PO the mean number of 

granules per cell and percentage of postive cells were calculated for 

each clam in each treatment group. In those slides stained for NE, 

each cell was graded as staining heavily (+++), moderately (++), 

slightly (+), or not at all (-), and the percentage of positive cells 

was calculated for each clam in this treatment group.

Analysis of variance (ANOVA) was adopted for data analysis.

All percentage data were subjected to the arcsine transformation prior 

to analysis. Duncan's multiple range test was used whenever one-way 

ANOVAs showed a significant result.
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Separation of Morphologically Distinct 

Hemocyte Subpopulationa

A Fercoll step gradient centrifugation method was used to aeparate 

the morphologically distinct hemocyte subpopulations. A 60% to 90% 

discontinuous Fercoll gradient, in 5% increments, was prepared by 

mixing Fercoll (Sigma, St. Louis, MO.) and 0.1 M cacodylate buffer in 

appropriate volume to volume ratios and carefully layering the Fercoll 

solutions stepwise in to 1.5 x 10 cm cellulose nitrate centrifuge 

tubes. Hemocytes were collected from 10 clams by the direct bleeding 

of hemolymph into a beaker containing ice-cold 2.5% glutaraldehyde in 

0.03 M cacodylate buffer containing 0.05 M sucrose. The hemocytes were 

fixed for 30 min before they were collected by centrifuging at 40g and 

washed 3 times in 0.1 M cacodylate buffer. In the final wash, 

hemocytes were adjusted to a concentration of 5 x 10^ cells/ml. 

Aliquots (0.2ml) of hemocyte suspension were layered onto the Fercoll 

gradients and the separation was carried out by centrifuging at 550g at 

24°C for 30 min. Bands of hemocytes sedimented at the different 

gradient interfaces were collected from the top of each tube using a 

Fasteur pipette. Following microscopical examination and enumeration 

of the different morphological cell-types, hemocytes from each gradient 

were washed 3 times with 0.1 M cacodylate buffer and processed for 

ultrastructural studies.
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The Activities of Corbicula Hemocytes 

Against Foreign Test Particles

Phagocytosis

Test particles. Formalin-fixed vertebrate red blood cells (RBCs) were 

used as test particles to investigate the recognition and reaction of 

Corbicula hemocytes against foreignness. RBCs of horses, sheep, 

rabbits, and humans (types A, B, AB and 0) were collected in Alsever's 

solution and washed 2 times in mammalian PBS before they were fixed in 

6% neutral-buffered formalin for 6 hr at 24°C. After fixation, these 

RBCs were rinsed 3 times in PBS and one time in 0.02 M glycine to bind 

the free aldehyde groups. Finally, the RBCs were washed and 

resuspended in clam PBS at a concentration of 1 x 10^ cells/ml.

Hemocyte Preparation and Phagocytosis Assay. Hemolymph of Corbicula 

was collected through the posterior adductor muscle using a Icc 

syringe. Fifty ul aliquots of this hemolymph were dispensed into the 

wells of tissue culture chamber slide (Lab-Tek, Naperville, IL.) and 

hemocytes were allowed to adhere for 20 min. The excess hemolymph was 

centrifuged (300g, 10 min) to obtain a hemocyte-free hemolymph (plasma) 

fraction. Following hemocyte monolayer formation (20 min), samples of 

hemolymph in the wells of tissue culture chamber slide were divided 

into two groups. Hemolymph samples in the first group remained 

undisturbed. In contrast, the plasma in the second group of samples 

was carefully drawn from the hemocyte monolayers using a Pasteur 

pipette and adherent cells of this second group were immediately rinsed
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5 times vith clam PBS and followed by an addition of 30 ul clam PBS 

(for no plasma negative controls) or freshly prepared clam plasma (for 

plasma add-back positive controls). After 5 min of incubation, ten ul 

of the fixed RBCs were finally added to each hemocyte/plasma or 

hemocyte/PBS sample and the mixture was incubated for 40 min at 24°C. 

Following this incubation period, 6% neutral-buffered formalin was 

added to every sample to stop the reaction. The fixative was then 

gently aspirated from the cell layers the plastic chambers and rubber 

gaskets on each slide were removed. Slides were coverslipped and 

percentage of phagocytizing hemocytes enumerated using phase-contrast 

microscopy. The experimental protocol is summarized in Figure 1.

The percentage of phagocytizing hemocytes was determined according 

to the following formula:

The number of hemocytes 
containing 3 or more RBCs

% phagocytizing hemocytes = --------------------------  X 100
Total number of hemocytes 
counted

At least 300 to 400 hemocytes were examined for each sample.

The Effect of Plasma on Hemocvte Phaeocvtosis. Experiments testing for 

the requirement of plasma on hemocyte phagocytosis were also conducted 

using methods similar to those summarized in Figure 1. Fixed rabbit 

RBCs were used as test particles in all experiments. Portions of the 

clam plasma either heat-treated at 56°C for 30 min or 100°C for 10 min 

or lyophilized (and subsequently reconstituted in isotonic PBS), were 

employed in experiments designed to test the effects of plasma on 

hemocyte phagocytosis. Positive and negative controls consisting of
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the adding back of fresh plasma or clam PBS, respectively, were 

concurrently performed.

In order to study the opsonic effect of plasma, fixed rabbit RBCs 

were incubated in normal clam plasma for about 2 hr and then washed 5 

times in clam PBS before being added to the plasma-free hemocyte 

preparation (Hemocyte/PBS). This experiment was carried out in tissue 

culture chamber slides using similar procedures as described in the 

previous experiment. Hemocyte phagocytosis of fixed, non-opsonized 

rabbit RBCs in clam PBS (negative control) or normal clam plasma 

(positive control) was also measured at the same time.

Competitive Inhibition Tests. Because carbohydrates on the cell 

membrane have been shown to serve as receptors for soluble recognition 

factors (Harm and Renwrantz, 1980; Stahl and Schlesinger, 1980; 

Renwrantz and Stahmer, 1983), the possible inhibitory effect of several 

mono- and dissacharides and two glycoproteins on hemocyte-mediated 

erythrophagocytosis was tested. Two concentrations (0.03H and O.IH) of 

the mono- and dissacharides: L-arabinose, p-D-fructose, D-galactose,

e(-D-glucose, p-D-glucose, D-mannose, D-cellobiose, pf-D-melibiose 

p-lactose, and N-acetyl-D-glucosamine, N-acetyl-galactosamine, as well 

as 0.02% or 0.07% solutions of the glycoproteins fetuin and mucin, were 

prepared in clam PBS. Aliquots of 50 ul of freshly bled Corbicula 

hemolymph were first dispensed into wells of tissue culture chamber 

slides. Hemocytes were allowed to adhere for 20 min at 24°C, followed 

by the addition of 23 ul of each carbohydrate solution into each test 

hemolymph sample. To provide a normal phagocytosis control.
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carbohydrate solutions were substituted with 25 ul clams PBS. The 

samples were then incubated for 15 min. After which time a volume of 

25 ul of fixed rabbit RBCs (1 X 10^ cells/ml) was added to each 

preparation. Phagocytosis was allowed to proceed for 40 min, followed 

by the addition of formalin to stop each reaction. The prevalence of 

hemocytes participating in erythrophagocytosis was determined for each 

sample as previously described.

Time Course Study. A test tube method was adopted for measuring the 

kinetics of erythrophagocytosis and rosette formation, as well as the 

effect of EDTA on the rate of phagocytic and rosette forming activity. 

A volume of 0.25 ml of fresh drawn hemolymph was dispensed into each of 

6 test tubes. The test tubes were separated into two groups. In the 

first group, 0.25 ml of clam PBS was added to each hemolymph sample, 

while in the second group, 0.25 ml of clam PBS containing 4 mM EDTA was 

added to each sample. The mixtures (total volume of 0.5 ml/tube) were 

allowed to stand for 10 min before the addition of 0.5 ml of 1.2 X 10^ 

fixed rabbit RBCs/ml of clam PBS. At different time intervals (20, 40, 

and 60 min), the reaction was stopped by adding 0.1 ml of 6% buffered 

formalin into one test tube from each of the two groups. Attached 

hemocytes were gently scrapped off from the walls of the test tube 

using a modified rubber policeman. The contents of each test tube was 

then mixed well and a 50 ul sample oof this cell suspension was placed 

on a glass slide. The percentage of phagocytizing and rosette forming 

hemocytes (i.e. cells with 3 or more attached RBCs) were determined at 

each of the designated time intervals.



36

Statistical Analysis. For Corbicula ervthroDhagocvtosis studies, a 

duplication of each treatment vas made in each experiment, and every 

experiment was performed at least twice. Analysis of variance (ANOVA) 

were adopted for data analysis. All percentage data were subjected to 

the arcsine transformation prior to analysis. Duncan's multiple range 

test was used whenever a one-way ANOVA showed a significiant result.

Hemocytolytic Activity

Modified Plague Assay. A plaque assay modified from Wittke and 

Renwrantz (1984) was used to determine the reaction of Corbicula 

plasma-free hemocytes on fresh RBC targets. Fresh horse, sheep and 

chicken RBCs collected in Alsever's solution were used as target cells 

for the assay. RBCs were washed 3 times in Hank's medium (310 mOs/kg 

H2O without phenol red indicator, pH 7.4), once in a modified Hank's 

medium which had been adjusted to 210 mOs/kg H^O (without phenol red 

indicator, pH 7.4), and finally adjusted to a 50% cell suspension in 

the modified Hank's medium. Target cells were stored at 5°C until 

assays were performed. Hemocytes from 2 clams were collected by the 

direct bleeding into a beaker containing clam PBS with 2 mM EDTA. The 

hemocytes were then rinsed twice in clam PBS and finally resuspended in 

the modified Hank's medium at a concentration of 6 x 10^ cells/ml. All 

of the above procedures were performed in the cold (4°C). The modified 

Hank's medium (210 mOs/kg HgO) was chosen as the reaction medium 

because preliminary experiments had shown that, although hypotonic to 

RBCs, this medium provided minimum hemolysis of the red cells while 

viability of hemocytes remained high (82 + 5.6%) over a 4 hr period.
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Plaque assay slides (Bellco Glass Co.) were used for the assay. 

Hemocytes prepared as described above were mixed in a 1:1 volume ratio 

with the prepared fresh RBCs (50% solution), and 15 ul aliquots of this 

mixture were placed onto each plaque assay slide. Slides were covered 

with a cover slip and placed undisturbed into a humidity chamber at 24 

C for 2 hr. One set of slides, each containing target RBCs of each 

animal species was placed at 5 C for the same length of time to 

determine the effect of temperature on the reaction. Two sample 

replicates from each clam were made for each target RBC species at hoth 

temperatures. After incubation, the number of cells capable of forming 

plaques (i.e. those surrounded by a ring of lysed RBCs) per one 

thousand hemocytes was enumerated for each target species in both 

groups. Hemocyte viability was determined by trypan blue dye 

exclusion. A one-way ANOVA was used in the data analysis.

Hemoelobin (Hb) Release Assay. A measurement of the amount of Hb 

released from target RBCs in hemocyte-RBC mixtures was used as an 

indication of the intensity of specific RBC lysis caused by Corbicula 

hemocytes. This Hb release assay was substituted for the standard 

^^Cr-release cytotoxicity assay due to its safety, simplicity, and 

reliability (Anderson, 1980). Fresh RBCs of sheep, cow, goat, horse, 

guinea pig, and rabbit origin were used as target cells. These RBCs 

were washed 3 times in Hank"s medium and once in modified Hank's medium 

(210 mOs/kg HgO) before being resuspended in the latter medium at a 

concentration of 20 X 10^ cells/ml and stored at 5 °C until used.

Hemocytes from 8 clams were collected and prepared using the same
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method as described in the previous experiment except that, after 

washing, the hemocytes were adjusted to the following concentrations: 4 

X 10^, 1 X 10^, 2 X 10^, and 6 X 10^ cells/ml of modified Hank's 

medium. One-half ml aliquots of the fresh, washed RBCs were mixed in 7 

X 44 mm test tubes with 0.5 ml aliquots of hemocytes at the different 

concentrations resulting in hemocyteiRBC ratios of 1:5, 1:20, 1:100, 

1:333 for each RBC species tested. Spontaneous and maximum Hb release 

controls were obtained by incubating the RBCs in the modified Hank's 

medium or dHgO, respectively. Hemocyte/RBC mixtures and the controls 

were incubated for 2 and 4 hr at 2 4 °C. At the end of each incubation 

period, cells were gently resuspended and centrifuged at 300g for 5 min 

at 5*C. The amount of Hb released in each preparation was then 

measured spectropbotometrically at 541 nm and used as an indication of 

the degree of hemolysis caused by Corbicula hemocytes. The percent 

specific Hb released was calculated according to the following formula:

Test release - Spontaneous release
% Specific Hb release  ---------------------------------------- X 100

Maximum release - Spontaneous release

Duplicate samples were performed for each RBC species tested and at 

each hemocyte: RBC ratio and the experiment was repeated three times. 

One-way and two-way ANOVAs were used to analyze the arcsin-transformed 

data. Duncan's multiple range test was invoked whenever one-way ANOVA 

showed a significant result.
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The Activities of Corbicula Plasma 

Against Foreign Test Particles

Hemolysin

Hemolysis Assay. Five species of fresh RBCs from sheep, cow, goat, 

guinea pig, and rabbit origin (4% cell suspensions in mammalian PBS) 

were used as test cells for this assay. Hemolymph was collected by 

obtaining blood directly from the clam's posterior adductor muscle and 

centrifuging it at 300g for 10 min to obtain the hemocyte-free 

hemolymph fraction (plasma). The hemolysis assay was carried out in 

small test tubes. The plasma was serially diluted (2 fold) with 

mammalian PBS (0.5 ml/tube). Due to the difference in physiological 

osmolarity between clams and mammals, in another set of test tubes, the 

same dilution procedure was carried out using clam PBS instead of 

plasma. The freshly washed RBCs (0.5 ml) were subsequently added to 

each test tube of diluted plasma or PBS, and the latter was used as a 

spontaneous Hb release control. These tubes were then gently agitated 

and incubated at 24°C for 2 and 4 hr. Maximum Hb release controls were 

obtained by incubating the RBCs in dHgO. At the end of each incubation 

period, samples were centrifuged at 300g for 5 min. The amount of Hb 

released into the medium from the lysed RBCs was determined 

spectropbotometrically at 541 nm and used as a quantitative 

indicator of plasma-mediated hemolysis. The percentage of specific Hb 

released was calculated by employing the same formula used previously 

in the hemocyte cytolytic assay. Duplicate samples were made for each
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RBC species tested at each plasma dilution. The experiment was 

repeated twice using freshly collected plasma from two different 

batches of clams.

Effects of Heat and EDTA on Hemolysin. The effect of heat and EDTA 

treatment of plasma on hemolysis was also tested. For the heat 

treatment experiment, the procedures were identical to those described 

previously (Hemolysis Assay) except that the plasma samples were 

incubated at 56°C for 30 min or 100°C for 10 min before the serial 

dilutions were made. Fresh cow and sheep RBCs were used as test 

particles. Duplicate samples were made for each RBC species at each 

plasma dilution. The experiment was repeated once.

To study the effect of the divalent cation chelator, EDTA, on plasma 

hemolysis, dilutions of fresh plasma were made in mammalian PBS 

containing 4 mM EDTA (final concentration of 2 mM). Again the same 

procedures as outlined in the Hemolysis Assay section were adopted for 

the experiment and only cow and sheep RBCs were tested. Duplicate 

samples were made for each RBC species at each dilution level and the 

test was repeated once.

One-way and two-way ANOVAs were used to analyze the arcsin 

-transformed data. Ducan's multiple range test was used when a 

significant one-way ANOVA resulted.

Hemagglutination Activity

Hemaeglutination Assay. A hemagglutination assay (Anderson, 1980) was 

carried out in Cook "V"-shaped well microtiter plates in order to
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determine the presence of bemagglutinating factor(s) in Corbicula 

plasma. A 2-fold serial dilution of fresh clam plasma in mammalian PBS 

(25 ul per well) was prepared followed by the addition of test RBCs (25
O

ul at 1 X 10 cells/ml mammalian PBS) to each well. Freshly washed 

RBCs of horses, sheep, chickens, mice, rabbits, and humans (types A and 

B), as well as trypsinized (0.2% trypsin at 37°C for 30 min) or 

formalin-fixed rabbit RBCs, were used in this assay. Controls were 

performed by substituting the plasma with mammalian PBS for the 

dilutions. In addition, heat-treated (100°C for 10 min), and 

lyophilized, reconstituted plasma samples were tested to determine the 

effects of these treatments on plasma hemagglutinin activity. After 

adding the rest RBCs, the microtiter plates were gently tapped against 

the fingers to mix the samples and the plates were covered and 

incubated for 12 hr at 24°C. The hemagglutination titers were 

determined following incubation, and the mean titers from logg 

transformed individual titers were reported for each RBC species and 

treatment. One-way ANOVA was used to analyze the results.

Competitive Inhibition Assay. Various mono- and dissacharides, 

identical to the ones used in the phagocytosis experiment (0.1 M final 

concentration), and the glycoproteins fetuin and mucin (0.01% and 

0.035%, respectively) were dissolved in mammalian PBS. Clam plasma 

dilutions were made in these sugar-containing media. After the 

dilutions were prepared, the mixtures of clam plasma and 

sugar-containing mammalian PBS were incubated for 10 min before RBCs 

were added. Only fixed rabbit RBCs (1 x 10^ cells/ml mammalian PBS) 

were used in this assay. Positive and negative controls were prepared
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in the same manner as discribed in the previous section 

(Hemagglutination Assay). Samples were incubated for 12 hr at 24°C and 

the agglutinin titer for each sample was determined in the same way as 

described in the previous section (Hemagglutination Assay).



CHAPTER III

RESULTS

Hematological and Morphological Properties of 

Corbicula Hemocytes

Hemocyte Counts

Hemocytes of Corbicula fluminea were colorless amoeboid cells 

circulating within the hemolymph. The average concentration of 

hemocytes in the hemolymph was 7.5 + 0.6 X 10^ cells per ml.

Light Microscopy

Morphologically, hemocytes of C.. fluminea represented a 

heterogeneous cell population. Under phase-contrast optics, there were 

three major cell types which could be distinguished according to their 

size, degree of granulation, and granule morphology: small hyaline 

hemocytes, vesicular hemocytes, and large granular hemocytes. Freshly 

bled hemocytes were round and expressed many short cell processes 

(Figure 2). Small hyaline hemocytes comprised 16% of the hemocyte 

population and ranged in size from 5 to 8 microns in diameter. They 

had a homogeneous cytoplasm and large nucleus-to-cytoplasm ratio.

43
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Small cell processes projected out from the plasma membrane, although, 

on occasion, long branched cytoplasmic extensions also were observed. 

Vesicular hemocytes, which varied from round to irregular in shape, 

were the most numerous cell type comprising 60% of the total 

circulating hemocyte population. These hemocytes ranged in size from 8 

to 15 microns in diameter, possessed a kidney or oval-shaped, eccentric 

nucleus and a small nucleus-to-cytoplasm ratio. There were small 

refractile and dark granules present in the cytoplasm. The cells also 

had short processes extending out from the plasma membrane into its 

surrounding medium. The large granular hemocytes, comprising 24% of 

the hemocyte population, had large refractile granules in its 

cytoplasm. Cells of this type were measured from 12 to 20 microns in 

diameter. Nuclei of these cells were small with round or oval shapes. 

Cell processes were also present.

Upon contacting the glass slide, all three types of hemocytes 

attached to and then spread on the slide surface. After attaching to 

the substrate, these cells were observed to extend their cytoplasm 

forming long slender cytoplasmic processes and distinctive ruffled 

membranes. At this stage, cells were flatten against the substrate and 

no longer retained their spherical shape. For small hyaline and 

vesicular hemocytes, the cell membrane could spread out a considerable 

distance from center of the nucleus (Figure 3). In comparison, the 

large granular hemocytes usually displayed smaller ruffled membranes 

with prominent spike-like cell extensions (Figure 4}. The cytoplasmic 

content of the spread small hyaline hemocytes usually had a very fine 

granular appearance and remained close to the nucleus. The spread
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vesicular hemocyte had, in addition to a similar cytoplasmic appearance 

as that of the small hyaline hemocyte, many refractile or phase-dark 

vesicles present in the cytoplasm. The presence or absence of these 

vesicles was used to differentiate between small hyaline and vesicular 

hemocytes in their spread or flattened state (Figures 3 and 4). For 

large granular hemocytes, their coarse, refractile, irregular-shaped 

granules stayed within the perinuclear region and sometimes overlapped 

with the nucleus (Figure 4).

Hemocytes tended to form clumps soon after bleeding. All three 

types of cells were found in these clumps. After clumps had settled 

onto a glass slide, hemocytes tended to move over the glass surface 

away from the clump, starting on the periphery of the cell aggregates. 

Thus, crescent-shaped hemocytes with their ruffled membranes positioned 

away from each cell mass were observed (Figure 5). Hemocyte 

aggregation could be prevented by collecting the hemolymph in the 

presence of clam PBS containing 2 mM EDTA. The adherence of hemocytes 

to the glass substratum could also be prevented by EDTA.

Ultrastructure of Hemocytes

At the ultrastructural level, the small hyaline hemocytes (Figure 6) 

were round or oval cells with many short cell processes projecting out 

from the cell membrane. The cytoplasm contained numerous round, oval, 

or elongate mitochondria, and profiles of rough endoplasmic reticulum 

(HER) which were located mostly in the perinuclear region. Smooth 

endoplasmic reticulum (SER) was abundant in some cells. Free ribosomes 

and glycogen granules were numerous, often giving a localized electron
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dense appearance to the cytoplasm of the cell. The nucleus was large 

(occupying at least 1/2 of the cell volume) and oval, round, or 

irregular in shape. It contained a moderate amount of heterochromatin.

The shape of the vesicular hemocyte was irregular with many cell 

processes projecting out from the plasma membrane. The name of the 

cell was given due to the presence of many vesicles in the cytoplasm of 

the cell (X = 63.0 +7.2 vesicles/cell, n “ 10) (Figure 7). These 

vesicles, which varied in size and shape, were filled with a 

homogeneous, moderately electron-dense material. A lucid zone was 

formed in between this material and vesicular membrane. EER was not as 

abundant as found in the small hyaline hemocyte and was located 

primarily around the nuclear membrane. Golgi complexes, mitochondria, 

and SER were located in the cytoplasm between the vesicles. Ribosomes 

and glycogen granules were less numerous than in the small hyaline 

hemocytes. The nucleus was similar in appearance to that of the small 

hyaline hemocytes except being relatively smaller and eccentric in 

location.

Large granular hemocytes were mostly round and possessed few cell 

processes associated with the plasma membrane. The cytoplasm was 

occupied primarily by large granules (X = 14 + 5.7 vesicles/cell, n =

5) which measured 1.8 + 0.3 microns in diameter (Figure 8). Host of 

these granules were filled with an electron-dense material which 

resembled that found in the vesicles of the vesicular hemocyte.

However, some granules also were observed to be electron lucid and 

contained a mucus-like material. Small vesicles, similar to those of
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vesicular hemocytes, were also occasionally observed among the large 

granules in these cells. Cytoplasmic organelles, such as mitochondria, 

RER, SER, and ribosomes, were scattered through out the cytoplasm.

Golgi complexes were scarce in this type of cells. The nucleus was 

round to oval with several patches of heterochromatin.

In addition to the three major types of hemocytes, a hemocyte which 

bad the combined characteristics of all the above hemocyte types was 

observed (Figure 9). The size of the hemocyte was 4.3 X 6.1 microns. 

The shape of the hemocyte was highly irregular due to many short and 

long cellular projections. This cell was similar to the small hyaline 

hemocyte in having many elongated or rounded mitochondria which were 

localized in the endoplasmic region. Many vesicles (about 34) which 

were characteristic of vesicular hemocytes were present, as well as a 

large electron-dense granule similar to that of the large granular 

hemocyte. Sparce amounts of free ribosomes and RER were observed in 

the perinuclear region and elsewhere the cytoplasm. SER was 

distributed mostly between vesicles. Golgi complexes were not 

apparent. The size and structure of the nucleus was similar to that of 

the vesicular hemocyte.

Enzyme Cytochemistry

Almost all of the hemocytes (97 + 1.7%) contained acid phosphatase 

(AP). AF was localized in the perinuclear region as dark, large (0.5 

micron), discrete granules (Figure 10) which were not seen in the 

control samples. The number of granules present in individual 

hemocytes ranged from 1 to 32 with an average of 10.4 ±1.2 (n = 400).
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The average number of granules present in each cell-type was 8 . 2 + 1  

for small hyaline hemocytes, 11 ±1.1 for vesicular hemocytes, and 12.1 

± 1.4 for large granular hemocytes. These numbers were not 

statistically different form each other (F «■ 2.9, df «= 2,9, p > 0.05). 

Also, hemocytes from different clams possessed similar levels of AF 

activity (F = 1.2, df ■= 3,8, p > 0.05).

All of the hemocytes (100%) stained positively for nonspecific 

esterase (NE), although different degrees and patterns of staining were 

observed (Figure 11). Moderate NE activity, exhibited by 47 + 4% of 

the cells, was characterized by the presence of small granules (0.05 - 

0.2 micron) distributed evenly throughout the cytoplasm except the 

extreme peripheral region of the cell. A heavy NE activity (29 + 0.3% 

of circulating cells) was characterized by a dense granular pattern in 

the perinuclear region in addition to the distribution of numerous 

small NE granules characteristic of moderately stained cells. 

Approximately one quarter of the circulating hemocytes (24 ± 3%) 

stained only sparsely for NE activity throughout the cytoplasm. In 

addition, most of the small hyaline hemocytes (89.6%) expressed only 

slight NE activity, and the majority of vesicular hemocytes (52.1%) had 

a moderate NE activity. In contrast, 64.7% of the large granular 

hemocytes demonstrated a heavy NE activity. Ĉ. fluminea hemocytes did 

not exhibit peroxidase (FO) activity.

Separation of Hemocytes

By employing a Fercoll step gradient centrifugation method (60 to 

90% Fercoll at 5% intervals), hemocytes could be separated into two
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major populations (Figure 12). At the 65/702 Fercoll interface, 802 of 

the cells were vesiculated hemocytes, while 192 were small hyaline 

cells and only 12 were large granular hemocytes. The 802 vesiculated 

cells separated in this cell fraction represented 662 of the total 

vesiculated cell population initially introduced onto the gradient.

The 192 small hyaline hemocytes collected at this gradient interface 

constituted 592 of the total small hyaline cells put on the gradient, 

while the 12 large granular hemocytes composed of only 52 of the total 

number of this cell type originally layered on the gradient column. In 

contrast, at the 75/802 gradient interface, 462 of the cells were large 

granular hemocytes representing 95% of the total large granular cell 

population, while 412 of the cells were vesicular hemocytes (342 of the 

total vesicular cell population), and 132 were small hyaline cells (462 

of the initial total small hyaline hemocyte population).

The Activities of Corbicula Hemocvtes 

Against Foreign Test Particles

Hemocyte Phagocytosis

Hemocytes of C_, fluminea were capable of phagocytizing 

formalin-fixed mammalian RBCs from various animal species. Five 

minutes after the addition of RBCs into the hemolymph, attachments of 

these target cells to the hemocyte plasma membrane (rosette formation) 

could be observed (Figure 13). The attached RBCs were eventually 

internalized by the hemocytes (Figure 14). Individual hemocytes were 

capable of phagocytizing from 6 to 10 RBCs each and became rounded and 

detached from the glass slide surface after 40 min (Figure 15).
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Results presented in Table 1 indicate that, in the presence of 

plasma, hemocytes were equally efficient at phagocytizing RBCs from 7 

mammalian species with the prevalence of phagocytizing hemocytes 

varying from 70 to 90% (F “ 0.9, df “ 6,7, p > 0.05). In the absence 

of clam plasma, there was a significant reduction in the percentage of 

hemocytes actively participating in phagocytosis (7.3% to 21.3%) for 

all the RBC species tested (F “ 12.5, df “ 1,13, p < 0.01).

The requirement of clam plasma for hemocyte phagocytosis was further 

tested by adding hack plasma to the FBS-washed hemocyte layers before 

exposure of hemocytes to RBCs. Results, summarized in Figure 16, 

indicate that the addition of fresh clam plasma to the plasma-free 

FBS-washed hemocytes (washed hemocytes + plasma + RBCs) restored the 

ability of these cells in phagocytizing RBC ( 80.6 + 7.1%) to a level 

comparable to untreated control samples (untreated hemocytes + RBCs) 

(83.1 ± 6.1%) (t = 0.3, p > 0.05).

The effect of heating or lyophilization on the plasma factor(s)

mediating hemocyte phagocytosis was studied in experiments in which 

treated and normal plasmas were added back to washed hemocyte layers 

followed by exposure to test RBCs. Results presented in Figure 17 

indicate that the heating of plasma (56°C for 30 min or 100°C for 10 

min) or its lyophilization significantly reduced hemocyte phagocytosis 

(F “ 28.6, df “ 3,12, p < 0.01). Similar levels of hemocyte 

phagocytosis between the whole hemolymph (untreated) group and the 

group of washed hemocytes which had normal plasma added back prior to

RBC exposure (87.3 + 1.4% and 82.9 + 3.9%, respectively, p > 0.05)
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indicate that the washing and plasma add-back procedures were not a 

major contributor to the observed reduction in phagocytosis. Overall, 

the results of this experiment demonstrated that Ç,. fluminea hemocyte 

phagocytosis of formalin-fixed RBCs was plasma dependent and the plasma 

factor(s) responsible for mediating erythrophagocytosis was beat-labile 

and unstable to freeze-drying.

Another experiment was performed to determine if C.. fluminea plasma 

contained factor(s) possessing opsonic properties. Results presented 

in Figure 18 show that a greater percentage of PBS-washed hemocytes was 

capable of phagocytizing plasma-pretreated and washed rabbit RBCs in 

the absence of clam plasma (washed hemocytes + PBS + opsonized RBCs, 

85.6 + 2%, n =4 ) than untreated rabbit RBCs (washed hemocytes + PBS + 

non-opsonized RBCs, 26.2 + 4%, n =4 ) (t = 12.1, p < 0.01). Thus, it 

appears that the plasma factor(s) adsorbed onto RBC surfaces was 

capable of enhancing the direct interaction between hemocyte membrane 

components and target cells resulting in an enhanced phagocytosis.

Attempts to competitively inhibit hemocyte-mediated phagocytosis 

using a variety of mono- and dissacharides and glycoproteins were 

largely unsuccessful. Table 2 shows that the addition of sugars or 

glycoprotein prior to RBC introduction did not significantly reduce the 

rate of erythrophagocytosis exhibited by hemocytes (F = 0.3 , df =

13,36 , p > 0.05).

Finally, Figure 19 summarizes the results of an experiment designed 

to determine the effect of EDTA on the rate of hemocyte phagocytic and 

rosette forming activities. In general, there was a trend over time
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for a reduction in the percentage of hemocytes forming rosettes for 

both half-strength hemolymph (1/2 hemolymph + 1/2 PBS) and 1 mM 

EDTA-containing half-strength hemolymph (1/2 hemolymph + 1/2  EDTA/PBS) 

samples. However, differences between these two groups over time were 

not significant at the p = 0.05 level. A significant increase in 

hemocyte phagocytosis was observed by 40 min in the hemocyte group 

incubated in PBS diluted bemolymph (F = 7.3, df * 2,6, p < 0.05), 

although this increase was not found in the EDTA containing PBS-diluted 

hemolymph group (F = 2.1, df = 2,6, p > 0.05). By the end of the 

experiment (60 minutes), however, both groups reached a comparable 

value in the percentage of phagocytizing hemocytes. In conclusion,

EDTA at a 1 mM final concentration in half-strength hemolymph did not 

affect hemocyte-RBC rosette formation, but did exert a transient 

inhibitory effect on the rate of erythrophagocytosis.

Hemolytic Activity

In the modified plaque assay, the viability of hemocytes from the 

two test clams (clam 1 and clam 2) remained high (89 + 2.6% and 86 ± 

3.5%, respectively) at the end of 2 hr assay period. As the results 

indicate in Table 3, hemocytes in the two clam cell populations were 

equally capable of causing hemolysis of fresh vertebrate RBCs 

(plaques), but the amount of hemolysis caused by the hemocytes from 

clam 2 varied among the different targets (F = 227.4, df = 2,3, p < 

0.01). Fresh sheep RBCs were the most susceptible targets for
3hemocyte-mediated hemolysis with 402.5 + 15.5 hemocytes per 10 

hemocytes capable of forming RBC-lysing plaques. In contrast, chicken
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and horse RBCs (60.8 + 15.8 hemocytes/10^ hemocytes and 2 7 + 9  

hemocytes/10 hemocytes, respectively) were much less susceptible as 

targets. Also, there was a reduction in the percentage of plaques 

formed by hemocytes against sheep RBCs (F - 245.5, df = 1,2, p < 0.01), 

when temperature was lowered to 5 °C.

Results of the Hb-release (2 hr) assay are summarized in Figure 20. 

It supports the plaque assay data by showing that C.. fluminea hemocytes 

contained hemolytic substances against various mammalian RBCs. In 

addition, there was a hemocyte (effector) dose-dependency where 

increasing the ratio of effectors-to-targets produced an increased 

lytic effect (sheep F = 35.83, cow F = 51.4, horse F = 52.7, rabbit F = 

67.4, guinea pig F = 78.6, and goat F = 99.1 ;df *= 3,18; p < 0.01). In 

addition, different species exhibited different susceptibility to 

hemocyte lysis at a 1:5 effector-to-target ratio (F = 10.55, df = 5,30, 

p < 0.01) (sheep > cow > goat > horse > guinea pig > rabbit). A 

significant increase in the amount of Hb-release for all target cells 

was observed when the effector-target incubation was extended to 4 hr 

(sheep F = 24.4, horse F = 60.1, guinea pig F = 55, cow F = 10.3, 

rabbit F = 25.2, and goat F = 14.3; df = 1,35; p < 0.01). However, at 

this time, most targets reached a comparable amount of Hb-release. At 

1:5 effector-to-target ratio, there was no difference found among all 

target cells, but, at 1:20 and 1:100 ratios, sheep, cow, horse, and 

guinea pig RBCs had significantly higher amount of Hb-release than 

those of rabbit and goat RBCs (F =8.9, df = 5,30, p < 0.01 and F =

6.6, df = 5,30, p < 0.01, respectively).
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The nature of the interaction between hemocytes and their RBC 

targets was further investigated ultrastructurally. The specific types 

of hemocytes could not be clearly identified due to changes in their 

cellular morphology (degranulation) during the interaction between 

effector and target (Figure 21). However, clearly defined subcellular 

structures and intact plasma membranes indicated that hemocytes were 

still highly viable. Many hemocytes were observed to possess 

electron-lucid endocytotic vacuoles instead of their normal granular or 

vesicular contents (Figure 22). Exocytosis of large granules was also 

evident (Figure 24). Hemocytes did not seem to take up RBCs after the 

reaction had proceeded for 10 and 30 min, although many lysed RBCs were 

seen in the preparation (Figure 21). Some RBC membranes were in close 

contact with hemocytes and they all exhibited varying degrees of lysis 

(Figure 23). In conclusion, this study had confirmed that Ç.. fluminea 

hemocytes in the absence of plasma exerted a cytolytic reactivity 

toward various species of fresh mammalian RBCs through the release of 

lytic materials contained in their cytoplasm, presumably within 

cytoplasmic granules.

The Activities of Corbicula Plasma 

Aagainst Foreign Particles

Hemolytic Activity

Ĉ. fluminea plasma contained a naturally-occurring hemolysin(s) 

against five species of vertebrate RBCs. The plasma hemolytic activity 

was dose-dependent as evidenced by a marked decrease in the degree of 

hemolysis with increasing plasma dilutions after both 2 and 4 hr
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reaction times (F - 100.2, df - 4,24, p < 0.01 and F - 130.2, df - 

4,24, p < 0.01, respectively) (Figure 25). No apparent increase in the 

amount of Hb released vas found when the plasma-RBC incubation time was 

extended from 2 to 4 hr (F - 1.2, df " 1,30, p > 0.05). In other 

words, plasma hemolysin(s) reached its maximum hemolytic capability 

within 2 hr. At full strength, 1/2 and 1/4 dilutions of plasma, the 

amount of hemolysis occurring with cow, goat, and sheep RBCs were 

similar to each other. However, plasma hemolysis of rabbit and guinea 

pig RBCs, was significantly lower (2 hr; F = 3.6, df = 4,24, p < 0.05,

4 hr: F - 4.5, df ■= 4,24, p < 0.01) when compared to the above three

species, indicating that cow, goat, and sheep RBCs were considerably 

more susceptible to clam plasma hemolysin(s) than those of rabbit and 

guinea pig origin.

Corbicula plasma hemolysin(s) was heat-sensitive in that its 

activity was greatly reduced for both sheep (up to 1/4 plasma dilution) 

(F = 4.3, df *= 3,10, p < 0.05) and cow (up to 1/8 plasma dilution) (F = 

18.2, df = 3,10, p < 0.01) RBCs when plasma was pretreated with heat 

(56"C for 30 min and 100*C for 10 min) (Figures 26 and 27). The 

chelating agent, EDTA, at a 2 mM concentration, significantly reduced 

plasma hemolytic activity for sheep (up to 1/8 plasma dilution) (t = 

8.5, p < 0.01) and cow (up to 1/16 plasma dilution) (t = 4.8, p < 0.05) 

RBCs (Figure 28).

Hemagglutination Activity

Clam plasma also contained a hemagglutination factor(s) active 

against horse, sheep, chicken, rabbit, mouse, and human A and B type
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RBCs (Table 4)« Rabbit and mouse RBCs were agglutinated at 

significantly lower concentrations of plasma (1/194 and 1/256, 

respectively) than the other RBC species tested. Formalin fixation of 

rabbit RBCs did not affect plasma agglutination activity on this target 

species. However, trypsinization increased plasma hemagglutination 

activity on rabbit ELBCs. Also, an increase in the hemagglutination 

activity against fixed rabbit RBCs was recorded from both heat-treated 

and lyophilized plasmas. Lyophilized plasma did not dissolve 

completely into clam PBS. So, the above medium (lyophilized whole 

plasma) was centrifuged (300g, 10 min) and the hemagglutination 

activity of the supernatant and pellet were tested separately. It was 

found that, compared to the lyophilized whole plasma, the 

hemagglutination activity remained in the pellet, while it was greatly 

reduced in the supernatant.

Attempts to competitively inhibit plasma hemagglutination activity 

against rabbit RBCs using mono- and dissacharides and glycoproteins 

were unsuccessful (Table 5) (F = 0.4, df = 11,24, p > 0.05).



CHAPTER IV 

DISCUSSION AND CONCLUSIONS

Cellular reactions involving circulating hemocytes represent one of 

the principal means by which hemocoelic invertebrates are able to 

recognize, and therefore, interact with foreign substances introduced 

to these animals. The clams selected for this study ranged from 3 to 5 

cm in shell length and the concentration of hemocytes in the hemolymph 

varied from 6 to 12 X 10^ cell/ml. However, no correlation was found 

between clam size and hemocyte concentration. A similar conclusion 

also was drawn by Foley and Cheng (1974) when they were studing the 

hematologic parameters of hemolymph cells of the quahaug clam, 

Mercenaria mercenaria. from two geographic locations. The 

concentration of circulating hemocytes in quahaugs varied between 14 to 

20 X 10^ cell/ml. Feng (1965, 1966) reported that variability in cell 

concentration might be attributed to differences in the physiological 

state of individual clams, since physiological factors could influence 

the clam's cardiac action which, in turn, represents a major 

determinant of circulating hemocyte concentration.

Criteria used for the classification of hemocytes have been quite 

varied. However, two principal cell-types, the agranular (hyaline) and

57
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granular hemocyte, have been recognized in all bivalve species studied 

(Cheng, 1981). In this study, the size of hemocytes, the extent of 

cytoplasmic granulation, and granular morphology were used as criteria 

for classifying C. fluminea hemocytes. Based on these criteria, the 

estimated proportion of each hemocyte subpopulation was similar using 

both light and electron microscope analyses. According to the extent 

of cellular granulation, £. fluminea hemocytes could be separated into 

two general categories: hyaline hemocytes (small cells without 

prominent cytoplasmic granules) and granular hemocytes (including both 

vesicular and large granular hemocytes). This matches closely the 

classifications found in studies of other bivalve species, including 

Crassostrea virginica (Cheng and Rifkin, 1970; Cheng and Foley, 1972; 

Cheng and Cali, 1976; Cheng, 1975; Foley, 1975; Moore and Eble, 1977), 

Hvtilus edulis (Moore and Lowe, 1977), Mva arenaria (Huffman and Tripp, 

1982), and Tapes semidecussata (Cheney, 1971). However, in these 

studies, reseacher had also used other characteristics such as 

cytoplasmic staining affinities for certain histochemical stain, 

presence or absence of selected enzyme activities, and 

nucleus-to-cytoplasm ratios to subdivide the hemocyte subpopulations. 

Hemocytes of Ç,. fluminea could also be seperated into three size 

classes: the small hyaline hemocyte (5 to 8 microns), vesicular 

hemocyte (8 to 15 microns), and large granular hemocyte ( 12 to 20 

microns). The overlap in size between morphologically distinct 

hemocyte subpopulations is very common in bivalves (Cheng, 1971; Folry 

and Cheng, 1974; Moore and Lowe, 1977; Renwrantz et al., 1979). 

Therefore, classification based on hemocyte morphology may be a more
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reliable way to differentiate bivalve hemocytes.

Structurally, small hyaline hemocytes of £. fluminea were most 

similar to the hyalinocyte of £. vireinica (Foley and Cheng, 1972, 

Renwrantz et al., 1979) and M. mercenaria (Cheng and Foley, 1975; Moore 

and Eble, 1977), and the leucocyte of T. semidecussata (Cheney ,1971) 

in lacking prominent cytoplasmic granules. Corbicula hemocytes 

differed slightly in size, numbers of cell processes, density of 

cytoplasmic organelles, and shape, however. The high amount of RER, 

mitochondria, and Golgi complex present in these small hyaline cell 

also suggest the presence of a high synthetic machinery.

The vesicular hemocyte of jC. fluminea with their many small, 

electron-dense cytoplasmic granules, was similar to the granulocytes of 

M. mercenria (Cheng and Foley, 1975; Moore and Eble, 1977) and M. 

edulis (Moore and Lowe, 1977). Also, vesicles of C.. fluminea vesicular 

hemocytes were highly irregular in shape and had a lucid zone between 

the vesicular content and its delimiting membrane. This lucid zone 

structure may have been artifactual, being caused by differential 

tissue shrinkage during fixation, since it was not always observed in 

hemocytes from other sample preparations. Vesicles appear to 

correspond to the small retractile granules observed in this hemocyte 

using phase contrast microscopy based on the close relation between 

relative cell size and the abundance of vesicular inclusions observed 

at the light and electron microscopic levels. In electron micrographs, 

Golgi complexes were often seen in close association with vesicles 

which suggest that these cellular inclusions may contain Golgi
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secretory products. Similar granules in hemocytes of M. mercenaria 

have been shown to contain acid phosphatase activity (Yoshino and 

Cheng, 1976), indentifying them as lysosomes. A similar role may be 

played by granules of Ĉ. fluminea hemocytes, since, at the light 

microscope level, AP and NE activity were found localized in these 

granules.

Cells similar to C,. fluminea large granular hemocyte have not been 

reported from other species of bivalves. The electron-dense granules 

of Ç.. fluminea large granular hemocytes were bound by a single membrane 

and were, structurally, quite distinct from the double unit membrane 

surrounding the large granules observed in the hemocytes of Ç.. 

vireinica and M. mercenaria (Cheng and Cali, 1974; Cheng and Foley, 

1975). Rather, Ç.. fluminea large granular hemocytes were most similar 

to those found in the granulocytes of crustaceans, both in relative 

size and fine structural appearance (Sternshein and Burton, 1980). 

Moreover, a developmental relationship between large granular and 

vesicular hemocytes of Ç. fluminea has been suggested based on the 

following observations: (1) the electron-dense granular content of 

large granular cells was very similar to that of the vesicles from 

vesicular hemocytes, (2) cellular inclusions similar to vesicles of 

vesicular hemocytes were often seen in the large granular cells, (3) 

the observation of a cell-type which possessed the characteristics of a 

vesicular cell, but which contained a typical granular hemocyte 

granule, and (4) the finding that both cell-types contained discretely 

localized AF and NE activity at the light microscope level. Therefore, 

it is concluded that the vesicular and granular hemocytes represent
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cells of a similar ontological lineage. In this respect, granular 

cells from other bivalve species are known to be composed of cells 

which differ in size and granular staining affinity and such 

differences are thought to depend on the developmental stage of the 

individual cells (Dundee, 1953; Galtsoff, 1964; Feng et al., 1971;

Foley and Cheng, 1972, 1974). Additional cytochemical, histological, 

and physiological studies of hemocyte are needed to further clarify the 

ontogeny of hemocytes in C_. fluminea.

Studies of the cytochemistry of hemocytes provide important 

information which may be used, not only in the classification of the 

various cell types, but also in unraveling questions concerned with the 

development and function of these cells. Similar to other species of 

bivalves (Eble, 1966; Feng et al., 1971; Cheng and Rodrick, 1974, 1975, 

1976a, 1976b; Moore and Eble, 1977; Huffman and Tripp, 1982), the 

lysosomal enzymes AP and HE were found in the hemocytes of Ç.. fluminea. 

The electron-opaque vesicles or granules present in Ç.. fluminea 

hemocytes are presumed to be the storage organelles (lysosomes) for 

these cells, since enzyme activity was restricted to discrete granules 

at the light microscope level. Similar electron-dense granules present 

in the quahaug clam, M. mercenaria. have been shown to contain AP and 

are, thus, considered to be true lysosomes (Yoshino and Cheng, 1976). 

Nevertheless, additional cytochemical studies are needed to clarify the 

exact nature of these cytoplasmic granules of Ç,, fluminea hemocytes.

Lysosomal enzymes are important in the intracellular degradation of 

phagocytized material as well as in the extracellular destruction of



62

infectious agents (Cheng and Rodrick, 1974; Rodrick and Cheng, 1974; 

Cheng, 1976; Foley and Cheng, 1977; Cheng, 1983). The enzyme content 

of hemocytes may be quite variable, and appears to be dependent on the 

age and the physiological state of an organism (Eble, 1966; Feng et 

al., 1971; Cheng and Rodrick, 1974; Moore and Eble, 1977). The amount 

of AP and NE activity present in Ç,. fluminea hemocytes was similar 

among individual clams studied. This result was not surprising, since 

clams of similar size were selected for the study and were acclimated 

under similar laboratory conditions and temperature for 3 to 7 days 

before being tested. The observations of fusion of the vesicles or 

granules with phagocytized RBCs as well as exocytosis of the granular 

material by large granular cells suggest that these lysosome-Iike 

cellular inclusions are active participants in endo- and exocytotic 

functions.

Peroxidase (PO), an important intracellular bactericidal enzyme, is 

found in membrane-bound organelles of vertebrate leukocytes (Master and 

Holme, 1977). The occurrence of PO in invertebrate hemocytes is not 

uniform. Cell from the fresh water snails, B̂. glabrata (Granath and 

Yoshino, 1983), Lvmnaea stagnalis and Bulinus truncatus (Sminia and 

Burendsen, 1980), have been shown to possess PO activity, while, 

hemocytes (coelomocytes) of the earthworm, L. terrestris (Stein and 

Cooper, 1978), insects, Blaberus craniifer and Galleria mellonella 

(Anderson et al., 1973; Chain and Anderson, 1983) and bivalves, £. 

virginica and M. mercenaria (Cheng, 1975) apparently lack this enzyme. 

Like other bivalves, Ç.. fluminea hemocytes did not contain PO. 

Therefore, intracellular bactericidal activity in these PO-deficient
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invertebrates may be dependent on other enzyme systems such as lysozyme 

(Cheng and Rodrick, 1975; Anderson and Cook, 1979) or other 

non-lysozyme-like bactericidal chemicals such as the cccropins found in 

the insect, Hvalonhora cecronia (Hultmark et al., 1980).

It is known that morphologically similar hemocytes from other 

molluscan species can differ in their size, staining affinities, as 

well as cellular density (Feng et al., 1971; Foley and Cheng, 1972, 

1974; Bayne et al., 1979; Renwrantz et al., 1979; Cheng et al., 1980). 

The results of the Fercoll cell separation study have confirmed the 

above findings by showing that Ç.. fluminea hemocytes with similar 

morphological features could differ in their cellular density since 

cells from each of the morphologically distinct hemocyte subpopulations 

were collected at the same Fercoll concentrations (65% and 75%). As it 

turns out, the density of Ĉ. fluminea hemocytes varied tremendously. 

Freliminary studies, using continuous Fercoll or sucrose density 

gredients, cells could be separated into from 3 to 6 major cell 

fractions, each containing a mixture of the different cell types. 

Therefore, it is likely that a much greater range of cellular densities 

occurs among the hemocyte population than is indicated by the results 

of the step gradient technique. Nevertheless, the step gredient method 

was effective in greatly enriching one of the cell-types, the large 

granular hemocyte population.

Hemocytes of Ç.. fluminea were capable of phagocytizing 

formalin-fixed mammalian RBCs in an ^  vitro system. As has been 

observed in other molluscan species (Tripp and Kent, 1967; Stuart,
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1968; Prowse and Tait, 1969; Anderson and Good, 1976; Hardy et al., 

1977), Ç. fluminea hemocytes required a soluble plasma factor(s) before 

phagocytosis could take place. When erythrocytes were pre-treated with 

plasma, washed, and then presented to plasma-free hemocytes, phagocytic 

activity was restored to near normal levels, indicating that the plasma 

factor(s) may be functioning as an opsonin, probably through the 

enhancement of surface interaction between the hemocytes and the RBCs. 

The heat-labile property of this factor(s) suggests that it may be 

protein in nature. Also, a reduction in the plasma opsonic effect 

after freeze-drying indicates that the opsonic factor(s) is sensitive 

to freeze-drying. However, the lyophilized plasma was reconstituted in 

clam PBS, thus, a possible increase in the overall ionic concentration 

in the system to hypertonic levels may have significantly contributed 

to the reduction of hemocyte erythrophagocytosis in test group to below 

plasma control levels.

Opsonin-like substances have also been indentified in a number of 

molluscan species including Helix nomatia (Renwrantz et al., 1981), g. 

asnersa (Prowse and Tait, 1969), Lvmnaea stagnalis (Sminia et al.,

1979; van der Knaap et al., 1981; van der Knaap, 1983), and M. edulis 

(Renwrantz and Stahmer, 1983). In some species, opsonins were found to 

be lectin-like molecules which possess agglutinin activity (Hall and 

Rowlands, 1974; van der Knaap et al., 1981; Renwrantz et al., 1981; 

Renwrantz and Stahmer, 1983). The plasma opsonin-like substance and 

the hemagglutinin from jC. fluminea showed similar physical properties 

such as sensitivity to heat and freeze-dry treatments. In addition, 

several species of mono- and dissacharides and glycoproteins had no



65

inhibitory effect on the activities of either material. However, until 

the opsonin and/or agglutinin in Ç.. fluminea plasma is isolated and 

purified for further testing, the relationship between these two 

substances remains an open question.

Like vertebrate neutrophils and monocytes (Rabinowitz, 1964), 

hemocytes of Ç.. fluminea also required plasma to adhere to and spread 

on glass surfaces. This was evident when hemocyte monolayers were 

washed free of plasma components and then incubated in PBS. Hemocytes 

treated in this manner were not only poorly phagocytic but also 

retracted their cell processes, becoming rounded. Upon re-introduction 

of plasma to such preparations, cells would again re-spread on the 

glass slide surface. Phagocytic activity was also restored. One 

possible explanation for this phenomenon is that a plasma ligand, 

specific to cell surface adhesive receptors, was absorbed onto the 

substratum permitting cellular adhesion and spreading to take place 

(Grinnell, 1978). Such a ligand, fibronectin, has been shown to 

mediate substrate attachment and spreading in mammalian fibroblasts 

(Grinnell and Hays, 1978; Grinnell et al., 1980), and, in fact, both 

spreading and phagocytosis by vertebrate fibroblasts against various 

sized latex beads have been shown to be mediated through similar lectin 

and fibronectin receptors on fibroblast plasma membrane (Grinnell, 

1984). Serum-mediated macrophage spreading onto its substratum has 

been regarded as a cell trying to take up (i.e., phagocytize) a 

particle of infinite diameter (North, 1968, 1970). Fibronectin (or 

fibronectin-like) substances are widely distributed in the animal 

kingdom having been identified in the simplest metazoan, sponges
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(Labat-Robert et al., 1981), to more advanced invertebrate forma 

(Spiegel, 1980; Yoahino, 1983; Âkiyama and Jobnaon, 1983). It ia 

poaaible that aimilar moleculea in Corbicula plaama are mediating 

attachment and apreading of hemocytes to the glass surface although 

other moleculea (e.g., agglutinins) may also be involved. Lectins and 

innnunoglobulins specific for cell surface receptor also have been shown 

to promote cell adhesion and apreading (Grinnell, 1976) as well as 

cellular activities such as mitogenesis (Hicolson, 1974, 1976), 

endocytosis (Storrie, 1979) and locomotion (de Pétris, 1977). 

Invertebrate hemocytes have shown to possess cell surface receptors for 

various lectins (Roch and Valembois, 1978; Cheng et al., 1979; Yoshino 

et al., 1979; Schoenberg and Cheng, 1980b; Yoshino, 1981 and 1983), and 

cellular events such as receptor redistribution and endocytosis have 

been stimulated by binding of lectins to their surface receptors 

(Schoenberg and Cheng, 1980a, 1982; Yoshino, 1981, 1982). Therefore, 

it is again possible that Ĉ. fluminea hemocytes possess membrane 

receptors for similar endogenous lectin-like plasma ligands mediating 

various cellular activities including substrate attachment and 

spreading, cell-cell aggregation and endocytosis.

Non-specific factors such as charge effects (e.g., electrostatic or 

hydrophobic interactions) and humidity also may influence phagocytosis 

and spreading (Wilkinson, 1976). In this regard, a preliminary study 

showed the addition of Ca** ions to jC. fluminea hemocytes, freed of 

plasma and incubated in PBS, also enhanced the uptake of RBCs by 

hemocytes. It is likely that Ca** molecules may be acting as 

non-specific ligands in bridging phagocytes with their targets through
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electrostatic interactions (since most cellular membranes carry 

negative charges) (Wilkinson, 1976; Grinnell, 1978). Another possible 

explanation for the Ca**-mediated increase in Corbicula hemocyte 

phagocytosis is that Ca** is able to activate hemocyte membrane bound 

op8onin(s) and induce hemocyte phagocytosis, since divalent cations are 

essential for some ligand-mediated phagocytic events of vertebrate 

phagocytes (Rabinovitch and DeStefano, 1973). The chelator, EDTA, has 

a higher affinity for Mg**, and thus, the above statement does not 

contradict the previous finding that EDTA did not inhibit Corbicula 

hemocyte phagocytosis.

The results of rosette/phagocytosis experiments demonstrated that 

the attachment of RBCs onto the hemocyte surface was a prerequisite for 

phagocytosis. This vas based on the observation that the percentage of 

rosette forming hemocytes decreased as the prevalence of phagocytizing 

hemocytes increased over time. The attachment of target particles on 

the surface of phagocytes in other vertebrate and invertebrate systems 

is considered to be the first stage of phagocytosis (Rabinovitch, 1967) 

and, thus, these observations are consistent with the conventional 

process of phagocytosis.

Divalent cations have been shown to he required for a variety of 

cellular functions including cel1-substrate adhesion, cell spreading, 

and phagocytosis of foreign particles by phagocytes (Rabinovitch and 

DeStefano, 1973, 1974, and 1976). The Mg**/Ca^* chelator, EDTA, at a 

concentration of 1 mM, did not affect Ĉ . fluminea hemocyte rosette 

formation, although, it did delay the process of RBCs uptake by
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hemocytes. Two possible explanations for the observed different 

effects of EDTA on rosetting and RBC internalization include: (1) that 

there exits a difference in the divalent cation concentration required 

for each process (particle attachment va particle internalization) or 

(2) that binding of targets to the phagocyte membrane induces a 

divalent cation efflux (Stosael, 1981), which, in turn, could replenish 

the local concentration of divalent cation in the medium needed for 

target internalization. Thus, the time lag in phagocytosis observed in 

the EDTA-treated samples may have been caused by the time required by 

hemocyte to regulate their local cation concentrations. Similar to 

phagocytosis, it has been shown that cellular energy and divalent 

cations, are also necessary for cell-to-cell adhesion (Grinnell, 1978). 

In this study, an addition of EDTA (2 to 4 mM) into the cell's medium 

in the cold (0 to 5“C) has been effective in reducing in vitro hemocyte 

clumping because EDTA reduces divalent cation concentrations in the 

medium while the low temperature slows down cellular metabolism, 

reducing the energy necessary for this process.

Like many other molluscan species (Tripp, 1966; Acton et al., 1969; 

Hardy et al., 1978; Renwrantz and Mohr, 1978; Sminia et al., 1979; 

Renwrantz and Berliner, 1978; van der Knaap et al., 1983; Renwrantz and 

Stahmer, 1983), the plasma of Ç.. fluminea also contains a naturally 

occurring hemagglutinin(s) which reacts with several species of 

vetebrate RBCs. The sugar binding specificity of the hemagglutinin(s) 

has not been determined, and, whether differences observed in the 

titers against the different RBC targets is due to the presence on RBCs 

of different agglutinin receptors or differences in the density of
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receptors on individual RBCs for the various RBC species still remains 

an open question. Trypsinization of rabbit RBCs increases the 

hemagglutination titer against this target species. Trypsin-induced 

proteolysis is probably exposing more hemagglutinin receptors on the 

RBC surfaces, since this has been shown to be the case in other 

agglutinin studies (e.g., Renwrantz and Cheng, 1977). Heat-treatment 

or freeze-drying of clam plasma actually enhanced hemagglutinin titers 

against rabbit RBCs, although, this activity was found only in the 

insoluble fraction following heating at 100"C for 10 min (coagulated 

fraction) or freeze-drying. One explanation for this observation is 

that protein(s) possessing agglutinating activity under these 

conditions are being denatured, but, the reaction sites are remaining 

unchanged. The active agglutinin(s) in an insoluble aggregated form 

would possess multiple binding sites, thus providing an extremely 

efficient "nucleus" for RBC agglutination to occur.

The activity of hemagglutinins in vertebrates and some invertebrates 

have been shown to be dependent on divalent cations (Marchalonis and 

Edelman, 1968; Acton et al., 1969; Uhlembruck et al., 1975; Renwrantz 

and Stahmer, 1983). In contrast to these findings, EDTA at a 2 mH 

concentration did not affect C_. fluminea hemagglutinin activity. It is 

possible that, like some invertebrate agglutinins (Anderson et al., 

1972; HcDade and Tripp, 1977; Anderson, 1980), the activity of Ç.. 

fluminea hemagglutinin is not dependent on divalent cations, although, 

alternatively, 2 mH EDTA in the medium may not have been enough to 

block out completely the cations necessary for the reaction to proceed. 

From previous studies (Anderson et al., 1972; HcDade and Tripp, 1977) ,
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however, 2 mH EDTA represents a relative high chelator concentration 

and should have been able to at least reduce significantly a divalent 

cation-dependent reaction.

The spontaneous killing (cytolysis) of non-self targets of cellular 

entity exhibited by hemocytes of Ç.. fluminea was similar to the natural 

cytotoxicity of mammalian large granular lymphocytes (Herberman and 

Ortaldo, 1981) and monocytes (Remington et al., 1975; West et al.,

1977) in that effector cell activation is independent of prior 

antigenic exposure. Hemocytes from the mussel, keyhole limpet, 

starfish, and bloodworm also display a similar type of reaction toward 

normal and malignant vertebrate target cells (Decker, et al., 1981) and 

human RBCs (Wittke and Renwrantz, 1984). Moreover, like that of 

cytotoxic lymphocytes (Brunner, 1968) and natural killer cells (Patek 

et al., 1983) where target cell-killing is a dose-dependent phenomenon, 

a similar kind relationship has been demonstrated using clam hemocytes 

(effectors) and RBCs (targets). Thus, in experiments using these two 

cells, it was shown that decreasing the proportion of hemocytes in 

effector-target (E-T) cell mixtures resulted in a concomitant reduction 

in the amount of Bb released from RBCs. Also, there were consistent 

differences in the degree of hemolysis at given E-T cell ratios among 

the different target RBCs. Decker et al. (1981) suggested a 

target-specific killing mechanism for invertebrate hemocytes, and 

presented as evidence the inhibition of target cell killing by specific 

sugar compounds. Although, target specificity was not directly tested 

for Corbicula hemocytes, the clam cells did show a difference in their 

cytolytic activity against RBCs of different species at 2 hr of E-T
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incubation. However, since all of the target RBC species used in the 

assay were susceptible to lysis, the observed differences in the amount 

of Hb released among target cell species at a given E-T ratio are 

thought to be caused by differences in receptor density on target cell 

surfaces, rather than differences in the specific nature of receptors 

on the different RBC species. Also, the phenomenon of E-T recycling 

may be occurring in hemocyte-mediated RBC lysis, since extension of the 

reaction time to 4 hr resulted in most of the targets reaching a 

comparable maxium amount of hemolysis regardless of the E-T ratio.

Thus, 4 hr provided enough time for hemocytes to recycle and kill all 

targets even if there was a lower density of receptors present on a 

given RBC species. Moreover, electron microscopic observations of 

hemocyte-RBC pellets from the cytolytic experiments provided direct 

evidence that there was contact between membranes of RBCs and intact 

hemocytes (conjugate formation). However, the rapidity of the 

hemolytic reaction (2 hr) and the fact that hemocytes are able to form 

plaques (i.e., RBC lysis at considerable distances from an active 

hemocyte) strongly suggest that cytolytic activity is probably not 

based on the conventional E-T conjugation, killing, effector recycling 

scheme. Alternatively, it is suggested that C.. fluminea hemocytes lyse 

RBCs through a degranulation event, as evidenced by electron microscope 

observations, and due to its temperature sensitivity. However, whether 

initial contact between effectors and targets is necessary to start the 

lytic reaction is not known. Also, the nature of the lytic substance 

secreted by hemocytes is uncertain at this time. Many molluscan 

hemocytes are known to synthesize hydrolytic enzymes and subsquently
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release them into hemolymph (reviewed by Cheng, 1983), but the specific 

characterization of membrane-lysing soluble mediators has not yet been 

accomplished.

The plasma of Ĉ . fluminea contains a naturally occurring lytic 

factor(s) which was found to be active against several species of 

vertebrate RBCs. Based on its loss of activity in the presence of EDTA 

and after the heat treatment, it would appear that Ç, fluminea 

hemolysin has a requirement for Ca** andbr Mg^^ for maximum acitivity 

and most probably is a heat-labile protein. These properties are very 

similar to those described for other hemolytic substances from several 

other species of invertebrates (Cooper, et al., 1974; Roch, 1979; 

Anderson, 1980; Parinello and Rindone, 1981). All of the five species 

of vertebrate RBCs tested were sensitive to the lytic substanceCs), 

although consistent differences in the intensity of hemolysis were 

noted between some of the target RBC species. Parinello and Rindone 

(1981) performed a cross-species absorption study of the hemolysin from 

the annelid worm, Spiroeranhis spallanzanii. and were able to 

cross-absorb out hemolysin activity using combinations of the various 

RBC species. Their results suggest that the various mammalian RBCs 

tested bad similar reactive sites for the hemolysin and, therefore, 

differences in susceptibility among RBC species was due to differences 

in the distribution and/or abundance of hemolysin receptors on RBC 

surfaces. In contrast, Anderson (1980) believes that the differences 

in hemolytic activity observed for another annelid hemolysin (Glyura 

dibranchiata) against sheep and rabbit RBCs was due to species' 

specificity, since, some, but not all, cross reactivity between the two
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species could be removed by heterologous RBC absorption. In the 

present study, differences in target cell susceptibility observed among 

all five RBC species were consistent within and between experiment 

using 2 and 4 hr incubation periods. Still, the cause of the 

difference cannot be determined until cross-species absorption studies 

are performed.

Many of the lytic substances present in the plasma of molluscan 

species are lysosomal enzymes and it is believed that the granulocyte, 

through its secretory activity, represents one of the major sources of 

these enzymes (reviewed by Cheng, 1983). A preliminary comparison of 

the nature of the hemolytic substances from hemocyte lysates and the 

plasma of C.. fluminea indicates that cellular and plasma hemolytic 

components are resistant to a protease inhibitor (FHSF) and are 

heat-labile. Also, a similar lytic reactivity to the various species 

of RBCs (sheep and cow > goat > rabbit and guinea pig) was found 

between the hemocyte and plasma hemolysin. These observed similarities 

suggest that the hemocytes may be at least one of the sources of the 

plasma hemolysin, although, further biochemical studies are needed to 

address this question, as well as to characterize the chemical nature 

of the lytic molecule(s) itself.

This study has demostrated that the Asian clam, Ç,. fluminea. 

contains a morphologically heterogeneous population of hemocytes which 

can be classified into three groups; namely small hyaline hemocytes, 

vesicular hemocytes, and large granular hemocytes. All three 

cell-types are capable of recognizing and phagocytizing, in vitro.
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formalin-fixed vertebrate RBCs. This _in vitro phagocytic response is 

dependent upon a heat-labile component(s) present in clam plasma. In 

addition, hemocytes, as veil as clam plasma, contain a cytolytic 

substance which is reactive against a variety of vertebrate RBC 

targets. Similarities in the physico-chemical and functional 

properties of the hemocyte and plasma lysins suggest that these are the 

same molecule and that hemocytes may represent an important source of 

circulating plasma lysin. Plasma alone was capable of agglutinating 

several species of fresh and formalized vertebrate RBCs.

Therefore, it is clear from this study that Corbicula possesses, in 

its hemolymph, a multifunctional system of cells and soluble factors 

which can recognize and react against foreign particulate substances. 

The different components of this system may function alone (plasma 

lysin) or they may need to work together to achieve their defensive 

functions, as in the case of phagocytosis.
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Table 1. Corbicula hemocyte phagocytosis using a variety of vertebrate RBCs (n=2).

RBC S p e c ie s PBS Control^
2

E xperim enta l

Sheep 2 1 .3 ( 1 9 . 5 ,  2 3 .1 ? 8 7 .5 ( 8 1 . 7 ,  9 3 .4 )

H orse 16 .5 (18, 15) 7 0 .7 (5 3 ,  8 8 .5 )

Rabbit 1 1 .8 ( 1 4 . 7 ,  8 . 8 ) 8 9 .1 ( 8 6 . 6 ,  9 1 .5 )

Human A 1 1 .6 ( 1 5 . 4 ,  7 .8 ) 9 2 .1 (90.2, 9 4 .2 )

Human B 1 0 .9 ( 1 9 . 2 ,  2 . 6 ) 9 4 .3 ( 9 3 . 1 ,  9 5 .5 )

Human AB 7 .3 ( 9 . 1 , 5 . 5 ) 9 0 .1 ( 8 4 . 4 ,  9 5 .7 )

Human 0 8 .9 ( 7 . 0 ,  1 0 .9 ) 8 8 .0 ( 8 2 . 6 ,  9 3 .3 )

o00

 ̂ P e r c e n ta g e  o f  p h a g o c y t iz in g  hem ocytes  which had been washed f r e e  o f  r e s i d u a l  
plasma p r io r  to  a d d i t io n  o f  t e s t  RBCs.

2
P e r c e n ta g e  o f  p h a g o c y t iz in g  hem ocytes  i n  th e  p r e s e n c e  o f  p lasm a.

 ̂ X% (range)
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T a b le  2 .  R e s u l t s  o f  t h e  c o m p e t i t i v e  i n h i b i t i o n  a s s a y  o n
C o r b i c u l a  h e m o c y t e  p h a g o c y t o s i s  o f  f i x e d  r a b b i t  RBCs .

C a r b o h y d r a t e  S p e c i e s  % P h a g o c y t i z i n g  H e m o c y t e s ^ ( N )

C o n t r o l 8 3 . 5 + 5 . 1  (4)

M o n o s a c c h a r i d e s  ( 0 . 0 3 M  a n d  O . l M )

L - a r a b i n o s e 9 ]  . 5 + 3 ( 2 )

p - D - f r u c t o s e 8 7 . 8 + 2 . 9  (3 )

D - g a l a c t o s e 8 8 . 5 + 1 1 . 6  (3 )

o i - D - g l u c o s e 8 4 . 3 + 0 . 5  (2 )

p - D - g l u c o s e 8 3 . 5 + 9 . 1  (2 )

D - m a n n o s e 8 3 . 1 + 3 . 9  (4 )

D i s s a c h a r i d e s  ( 0 . 0 3 M  a n d  O . l M )

D - c e l l o b i o s e 7 3 . 8 + 1 3 . 5  ( 4 )

p - l a c t o s e 9 2 . 4 + 3 . 4  (4 )

o t - D - m e l i b i o s e 8 1 . 6 + 4 . 2  ( 4 )

N - a c e t y l a t e d  s u g a r s  ( 0 . 0 3 M  a n d  O . l M )

N - a c e t y l - D - g a l a c t o s a m i n e 7 7 . 3 + 1 6 . 7  ( 2 )

N - a c e t y l - D - g l u c o s a m i n e 8 6 . 8 + 5 . 3  (4 )

G l y c o p r o t e i n s

F e t u i n  ( 0 . 0 2 % ) 7 2 . 3 + 1 2 . 3  (4 )

M u c i n  ( 0 . 0 7 % ) 8 3 . 1 + 4 . 1  (4 )

^  X + S . E .  %



T able  3 . R e s u l t s  o f  RBC  ̂ c y t o l y s i s  s l i d e  t e s t s  enum erating  th e  number o f
"p laq u e-form in g"  C o r b ic u la  hem ocytes  i n  two clam  c e l l  p o p u l a t i o n s .

5°C
Clam 1 (n=2)^   ̂

24 C
0 Clam 

5 C
2 (n = 2)3  ,

24 C

Horse RBCs 2 . 0  +  0 .6^ 8 3 .8  +  3 0 .2 9 . 0  +  4 . 0 2 7 .0  +  9 . 0

Chicken RBCs 3 3 .5  +  6 .7 1 2 7 .3  +  6 .7 1 5 .8  +  1 1 .3 6 0 .8  +  1 5 .8

Sheep RBCs 7 0 .4  +  3 .3 4 1 2 .0  +  19 5 6 .3  +  1 5 .7 4 0 2 .5  +  1 5 .5

 ̂ Source o f  f r e s h  RBCs used a s  t a r g e t  c e l l s  

 ̂ Hemocyte cou n t 2 . 0  X 10^ c e l l / m l ;  v i a b i l i t y  = 89%

 ̂ Hemocyte cou n t 3 .0  X 10^ c e l l / m l ;  v i a b i l i t y  = 86%

^ X +  S .E . p la q u e - fo r m in g  hem ocytes  per  10^ hem ocytes

oo
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T a b le  4 .  H e m a g g l u t i n i n  a c t i v i t y  o f  C o r b i c u l a  p l a s m a  u s i n g
RBCs f r o m  v a r i o u s  v e r t e b r a t e  s p e c i e s  a s  a g g l u t i n a t i n g  
t e s t  p a r t i c l e s .

S a m p l e  S i z e
RBC S p e c i e s

Log2 

(X +

T i t e r

S . E . ) 1

A c t i v i t y  

U n i t s ( Y ) ^

C h i c k e n ( 4 ) 3 + 0 . 9 8

H o r s e (4 ) 3 + 1 . 1 8

S h e e p (4 ) 4 + 1 . 5 16

Hum an  A (4 ) 3 . 3 + 1 . 3 10

Hum an  B ( 4 ) 5 . 8 + 1 . 5 56

M o u s e ( 4 ) 8 + 1 2 5 6

R a b b i t ( 4 ) 7 . 6 + 1 . 2 1 9 4

T r y p s i n i z e d  R a b b i t (4 ) .9 + 1 . 3 5 1 2

F o r m a l i n ' - f i x e d  R a b b i t ( 1 1 ) 7 . 1 + 0 . 6 1 3 7

F o r m a l i n - f i x e d  R a b b i t  
w i t h  p l a s m a  i n  t h e  
p r e s e n c e  o f  2mM EDTA

(6 ) 7 . 5 + 1 . 8 1 8 1

w i t h  h e a t - t r e a t e d  
p l a s m a

( 4 ) 8 . 8 + 1 . 2 446

w i t h  l y o p h i l i z e d  
p l a s m a  ( S u p e r n a t a n t ) ( 3 ) 2 . 7 + 1 . 5 7

( P e l l e t ) ( 3 ) 1 0 . 3 + 1 . 8 1261

_  z X
X = ----------- , X =  l o g ^  Yf y  = i n d i v i d u a l  t i t e r  p o i n t

n

^ A c t i v i t y  U n i t s  (Y) = 2 ^
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T a b le  5 .  R e s u l t s  o f  C o r b i c u l a  h e m a g g l u t i n i n  c o m p e t i t i v e  
i n h i b i t i o n  a s s a y  u s i n g  f i x e d  r a b b i t  RBCs ( n = 2 ) .

C a r b o h y d r a t e  F i n a l
S p e c i e s  c o n c e n t r a t i o n

L o g 2  T i t e r  
(X +  S . E . ) ^

A c t i v i t y  ,  
U n i t s  (Y)

C o n t r o l - 5 . 5 +  1 . 2 4 5

M o n o s a c c h a r i d e s
L - a r a b i n o s e O . l M 3 . 5 +  2 . 5 1 1

B - D - f r u c t o s e O . l M 4 . 5 + 2 . 5 23

D - g a l a t o s e O . l M 3 . 5 + 2 . 5 1 1

p - D - g l u c o s e O . l M 3 . 5 + 2 . 5 1 1

D - m a n n o s e O . l M 4 + 2 16

D i s a c c h a r i d e s

D - c e l l o b i o s e O . l M 6 . 5 +  0 . 5 91

p - l a c t o s e O . l M 6 . 5 +  0 . 5 91

N - a c e t y l a t e d  s u g a r s

N - a c e t y l - D - g a l a t o s a m i n e
O . l M 4 . 5 + 1 . 5 23

N - a c e t y l - D - g l u c o s a m i n e
O . l M 4 ±  2 16

G l y c o p r o t e i n s

F e t u i n  0 .01% 4 ±  2 16

M u c i n  0 .0 3 5 % 4 . 5 +  1 . 5 23

1  _  s x
X =  ——  , X =  l o g , ,  Yt Y - i n d i v i d u a l  t i t e r  p o i n tn  '

2 X
A c t i v i t y  U n i t s  (Y) = 2
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F ig u r e  1. P r o t o c o l  u s e d  t o  m e a s u r e  p h a g o c y t o s i s  o f  f i x e d  RBCs 
b y  C o r b i c u l a  h e m o c y t e s  i n  t h e  p r e s e n c e  o r  a b s e n c e  
o f  p l a s m a .

W h o l e  H e m o l y m p h  
( h e m o c y t e s  + p l a s m a )i

5 0 u l  a l i q u o t s  i n t o  
w e l l s  o f  t i s s u e  c u l t u r e  c h a m b e r  

s l i d e s ( 2 0  m i n )

H e m o l y m p h  c o n t r o l  
h e m o c y t e s  

( u n t r e a t e d )

i
C e n t r i f u g e  e x c e s s  
w h o l e  h e m o l y m p h  
( SOOg,  6 m i n )  t o  

o b t a i n  p l a s m a

PBS w a s h  h e m o c y t e  
m o n o l a y e r s

PBS C o n t r o l  
h e m o c y t e s  

( w a s h e d  h e m o c y t e s  + 
PBS)

P l a s m a  
a d d - b a c k  

( w a s h e d  h e m o ­
c y t e s  +  p l a s m a )

l O u l  RRBCsL RRBCsi RRBCsi
I n c u b a t e d  4 0 m i n ,  2 4 ° C ;

F i x e d  w i t h  6% b u f f e r e d  f o r m a l i n  
E n u m e r a t e d  % p h a g o c y t i z i n g  H e m o c y t e s
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Figure 2. Bounded state of Corbicula fluminea
hemocytes seen under phase contrast optics. 
Bar = 10 urn. H - small hyaline hemocyte; V 
vesicular hemocyte; G - large granular 
hemocyte.

Figure 3. Spread hemocytes of Corbicula fluminea. Bar 
= 8 um. H - small hyaline hemocyte; V - 
vesicular hemocyte with vesicles (arrow).
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Figure 4. Spread hemocytes of Corbicula fluminea» Bar 
= 8 um. H - small hyaline hemocyte; V - 
vesicular hemocyte with vesicles (arrow); G 
- large granular hemocyte with granules 
(arrow).





106

Figure 5. Corbicula fluminea hemocyte clump with
hemocytes migrating away from the clump. 
Bar = 6 um. C - center of the clump; R 
ruffled mambrane.
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Figure 6. Electron micrograph of Corbicula fluminea
small hyaline hemocyte with prominent rough 
endoplasmic reticulum and mitochondria. Bar 
= 3 um. GL - glycogen granules; M - 
mitochondrion; N - nucleus; RER - rough 
endoplasmic reticulum; SER - smooth 
endoplasmic reticulum.
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Figure 7. Electron micrograph of Corbicula fluminea 
vesicular hemocyte characterized by the 
presence of many vesicles. Bar = 3 um. GL * 
glycogen granules; M - mitochondrion; N - 
nucleus ; RER - rough endoplasmic reticulum; 
SER - smooth endoplasmic reticulum; V - 
vesicle.
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Figure 8. Electron micrograph of Corbicula fluminea 
large granular hemocytes with large 
granules. Bar = 3 um. GL - glycogen 
granules; LG - large granule with both 
electron-dense and electron-lucid materials; 
IDG - large electron-dense granules; M - 
mitochondrion; N - nucleus; RER - rough 
endoplasmic reticulum; SER - smooth 
endoplasmic reticulum; V - vesicle.
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Figure 9. Electron micrograph of Corbicula fluminea
intermediate-type hemocyte. Bar = 1 um. GL
- glycogen granules; LDG - large 
electron-dense granule; M - mitochondrion; N
- nucleus ; RER - rough endoplasmic 
reticulum; SER - smooth endoplasmic 
reticulum; V - vesicle.
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Figure 10. Corbicula fluminea hemocyte with acid
phosphatase activity localized in granules 
in the perinuclear region (arrow). Bar “ 8 
um.

Figure 11. Corbicula fluminea hemocyte with moderate 
amount of non-specific esterase activity 
present in cytoplasmic granules (arrow). 
Bar = 8 um.
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FIGURE 1 2 .  S e p a r a t i o n  o f  m o r p h o l o g i c a l l y  d i s t i n c t  C o r b i c u l a  
h e m e c y t e  s u b p o p u l a t i o n  u s i n g  P e r c o l l  s t e p  
g r a d i e n t .
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Figure 13. Corbicula fluminea hemocyte with RBC
rosette formed around the hemocyte in the 
presence of clam plasma. Bar = 8 um. H - 
hemocyte; R - erythrocyte attached on the 
hemocyte.

Figure 14. Corbicula fluminea hemocyte phagocytosis 
(10 min). Bar = 8 um. aR - attached 
erythrocyte; H - hemocyte cytoplasmic 
extension; iR - internalized erythrocyte.
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Figure 15. Corbicula fluminea hemocyte phagocytosis 
(40 min). Bar = 8 um. H - hemocyte with 
many internalized RBCs CiBBC).
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F i g u r e  1 5 . T h e  r e q u i r e m e n t  o f  p l a s m a  f o r  C o r b i c u l a  h e m o c y t e  
p h a g o c y t o s i s .  F o r m a l i n - f i x e d  r a b b i t  RBCs w e r e  
a d d e d  t o  w h o l e  c l a m  h e m o l y m p h  ( U n t r e a t e d  H e m o c y t e s  
+ R B C s ) , o r  h e m o c y t e s  w a s h e d  f r e e  o f  p l a s m a  a n d  
s u b s q u e n t l y  i n c u b a t e d  i n  c l a m  PBS ( W a s h e d  H e m o c y t e s  
+ PBS +  RBCs) o r  p l a s m a  ( W a s h e d  H e m o c y t e s  +  P l a s m a  
+ R B Cs) (n = I O  w i t h  t w o  r e p l i c a t e s  i n  e a c h  s a m p l e ) .
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F i g u r e  1 7 .  T h e  e f f e c t  o f  s o m e  p h y s i c a l  t r e a t m e n t s  o n  C o r b i c u l a  
p l a s m a  f a c t o r ( s )  m e d i a t i n g  h e m o c y t e  p h a g o c y t o s i s . 
P o r t i o n s  o f  c l a m  p l a s m a  w e r e  h e a t - t r e a t e d  o r  
l y o p h i l i z e d  ( s u b s q u e n t l y  r e c o n s t i t u t e d  i n  c l a m  PBS) 
b e f o r e  a d d i n g  b a c k  t o  t h e  w a s h e d  h e m o c y t e s .
P o s i t i v e  a n d  n e g a t i v e  c o n t r o l s  c o n s i s t e d  o f  a d d i n g  
b a c k  o f  f r e s h  p l a s m a  (W a s h e d  H e m o c y t e s  +  P l a s m a  + 
RBCs) o r  c l a m  PBS ( W a s h e d  H e m o c y t e s  + PBS + RBCs) 
(n = 4  w i t h  t w o  r e p l i c a t e s  i n  e a c h  s a m p l e ) .
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F i g u r e  1 8 .  T h e  e f f e c t  o f  p l a s m a  t r e a t m e n t  o f  RBCs ( o p s o n i z e d  
RBCs) o n  C o r b i c u l a  h e m o c y t e  p h a g o c y t o s i s .
H e m o c y t e s  w e r e  w a s h e d  f r e e  o f  p l a s m a  a n d  f o l l o w e d  
b y  t h e  a d d i t i o n  o f  o p s o n i z e d  ( W a s h e d  H e m o c y t e s  + 
O p s o n i z e d  RBCs i n  PBS) o r  u n t r e a t e d  ( W a s h e d  
H e m o c y t e s  +  U n t r e a t e d  RBCs i n  PBS) f o r m a l i n - f i x e d  
r a b b i t  R B C s .  T h e s e  p r e p a r a t i o n s  w e r e  c o m p a r e d  
t o  t h e  c o n t r o l s  c o n s i s t i n g  o f  a d d i t i o n  o f  u n ­
t r e a t e d  RBCs t o  w h o l e  c l a m  h e m o l y m p h  ( U n t r e a t e d  
H e m o c y t e s  +  U n t r e a t e d  RBCs) o r  h e m o c y t e s  w a s h e d  
f r e e  o f  p l a s m a  a n d  s u b s q u e n t l y  i n c u b a t e d  i n  f r e s h  
p l a s m a  ( W a s h e d  H e m o c y t e s  + P l a s m a  +  U n t r e a t e d  R BCs) 
(n = 4  w i t h  t w o  r e p l i c a t e s  i n  e a c h  s a m p l e ) .
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F i g u r e  1 9 •  K i n e t i c s  o f  C o r b i c u l a  h e m o c y t e  RBC p h a g o c y t o s i s  a n d  
r o s e t t e  f o r m a t i o n  i n  t h e  p r e s e n c e  (EDTA T r e a t e d )  
a n d  a b s e n c e  ( U n t r e a t e d )  o f  2mM EDTA. P h a g o c y t o s i s  
w a s  a s s e s s e d  i n  a  t e s t  t u b e  a s s a y  a s  d e s c r i b e d  i n  
t h e  M a t e r i a l s  a n d  M e t h o d s  (n = 4  w i t h  t w o  r e p l i c a t e s  
i n  e a c h  s a m p l e ) .
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F ig u r e  2 0 , C o r b ic u la  h em ocyte  c y t o l y t i c  r e a c t io n  a g a in s t  6
s p e c i e s  o f  mammalian RBCs a t  v a r io u s  hem ocyte:RBC  
r a t i o s  (n=3 w ith  two r e p l i c a t e s  in  ea ch  s a m p le ) .
H em ocytes and t a r g e t  RBCs w ere in c u b a te d  f o r  2 h r  
b e f o r e  m ea su r in g  h em o g lo b in  l e v e l s  s p e c t r o p h o t o m e t r ic a l ly  
a t  541 nm.
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Figure 21. Electron micrograph of Corbicula fluminea 
hemocyte and rabbit RBC reaction pellet 
from the hemolytic assay (10 min). Bar = 4 
urn. H - hemocyte with endocytotic 
vacuoles; iRBC - intact erythrocyte; IRBC - 
lysed erythrocyte.
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Figure 22. Electron micrograph of Corbicula fluminea 
hemocyte from the hemolytic assay (lOmin). 
The hemocyte is devoid of much of its 
cytoplasmic content. Bar = 2 um. E - 
endocytotic vacuole; iRBC - intact 
erythrocyte; IRBC - lysed erythrocyte; L - 
lysosome-like granule; M - mitochondrion; N 
- nucleus.

Figure 23. Electron micrograph of Corbicula fluminea
hemocyte in close contact with a lysed RBC. 
Bar = 2 um. E - endocytotic vacuole; F - 
cell process; L - lysosome-like granule; N 
- nucleus.
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Figure 24. Electron micrograph of Corbicula fluminea 
hemocyte and rabbit RBC reaction pellet 
from the hemolytic assay (10 min). Bar = 4 
um. D - degranulation; H - hemocyte wtih 
endocytotic vacuoles; iRBC - intact 
erythrocyte; IRBC - lysed erythrocyte.
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F ig u r e  2 5 . C o r b ic u la  p lasm a h e m o ly t ic  r e a c t io n  a g a in s t  5 s p e c i e s  
o f  mammalian RBCs a t  v a r io u s  p lasm a d i l u t i o n s  (n=3  
w ith  two r e p l i c a t e s  in  ea ch  s a m p le ) . P lasm a and 
t a r g e t  RBCs w ere in c u b a te d  f o r  2 hr b e f o r e  m ea su r in g  
h em o g lo b in  l e v e l s  s p e c t r o p h o t o m e t r ic a l ly  a t  541 nm.
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F i g u r e  2 6 .  T h e  e f f e c t  o f  h e a t  t r e a t m e n t  o n  C o r b i c u l a  p l a s m a  
h e m o l y t i c  a c t i v i t y  a g a i n s t  s h e e p  RBCs ( n = 2  w i t h  
t w o  r e p l i c a t e s  i n  e a c h  s a m p l e ) .
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F ig u r e  2 7 . The e f f e c t  o f  h e a t  tr e a tm e n t  on C o r b ic u la  p lasm a  
h e m o ly t ic  a c t i v i t y  a g a in s t  cow RBCs (n=2 w ith  two 
r e p l i c a t e s  in  ea c h  s a m p le ) .
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F ig u r e  2 8 . The e f f e c t  o f  2mM EDTA on C o r b ic u la  p lasm a h e m o ly t ic  
a c t i v i t y  a g a in s t  sh eep  and cow RBCs (n=2 w ith  two 
r e p l i c a t e s  in  ea c h  s a m p le ) .
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