#### THE EFFECT OF HIGH STRENGTH CONCRETE

#### ON THE BONDABILITY

# OF PRESTRESSING

#### STRANDS

By

#### EDEN TESSEMA

Bachelor of Science

Addis Ababa University Faculty of Technology

Addis Ababa, Ethiopia

2000

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 2006

# THE EFFECT OF HIGH STRENGTH CONCRETE

### ON THE BONDABILITY OF

# PRESTRESSING

#### STRANDS

Thesis Approved:

Dr. Bruce W. Russell

Thesis Advisor

Dr. Robert N. Emerson

Dr. Charles M. Bowen

A. Gordon Emslie

Dean of the Graduate College

# ACKNOWLEDGMENTS

I am deeply indebted to my advisor, Dr. Bruce Russell, for his constant support and greatly enriched my knowledge with his exceptional insights into engineering. Without his help, this work would not be possible. I would also like to thank the members of my committee to attend my defense: Dr. Robert Emerson, and Dr. Charles Bowen.

I am also indebted to the fellow graduate students Kiran Chandran, Hema Jayaseelan, Amolganpatye Ganpatye for valuable assistance and tiresome efforts. I would also like to thank David Porter for his laboratory assistance in the completion of my research project.

Lastly, I would like to thank my parents Engineer Girma Tessema and S/r Firehiwot Woldearegay for their unreserved support and sharing their knowledge with me. I am greatly indebted to my fiancé Dr. Amsalu Erko, MD, my sister Aryam and my brothers Biruk, Misgana, and Yabeths who encourages me every time, and my aunts, uncles and cousins for your constant encouragements.

Above all, I cannot express my full gratitude to my Father God who is the source of all good things.

I dedicate this thesis to my Mom and Dad.

# **TABLE OF CONTENTS**

| List of Tables                                   | vii    |
|--------------------------------------------------|--------|
| List of Figures                                  | X      |
| CHAPTER 1                                        | X      |
| 1 INTRODUCTION                                   | 1<br>1 |
| 1.1. BACKGROUND                                  | 1      |
| 1.2. OBJECTIVE                                   | 2      |
| <b>1.3 SCOPE</b>                                 | 2      |
| Chapter 2                                        | 3      |
| 2. DEFINITIONS AND BACKGROUND.                   | 3      |
| 2.1 DEFINITIONS                                  | 3      |
| 2.1.1 Transfer Length                            | 3      |
| 2.1.2 Development Length                         | 3      |
| 2.1.3 Pull-Out Strength                          | 4      |
| 2.2 Bond Mechanics in Pull out Tests             | 4      |
| 2.3 Literature Review                            | 5      |
| 2.3.1 Untensioned Pullout Strengths              | 5      |
| 2.3.1.1Untensioned Single Strand Pull-Out Tests  | 5      |
| 2.4 Summary                                      | 11     |
| Chapter 3                                        | 12     |
| 3. EXPERIMENTAL PROGRAM                          | 12     |
| 3.1 INTRODUCTION                                 | 12     |
| 3.2 SCOPE OF RESEARCH                            | 12     |
| 3.3 TRIAL BATCHING                               | 15     |
| 3.3.1. Materials                                 | 15     |
| 3.3.2 Where to begin?                            | 16     |
| 3.3.3 Trial Batches                              | 17     |
| 3.3.4 Results from Trial Batches                 | 21     |
| 3.3.5 Summary and Conclusion from trial batching | 26     |
| 3.4. NASP TESTS IN CONCRETE                      | 29     |
| 3.4.1. Procedure                                 | 29     |

| 3.4.1.1. Specimen Design                                                | 30 |
|-------------------------------------------------------------------------|----|
| 3.4.1.2. Testing Procedure                                              | 31 |
| 3.4.2 Materials                                                         |    |
| 3.4.2.1 Strand Source                                                   |    |
| 3.4.2.2. Strand Source specimen Identification                          |    |
| 3.5 CONCRETE PRODUCTION AT PRECAST PLANT                                |    |
| 3.5.1. Trial Batching                                                   |    |
| 3.5.2 Results of Production Batching                                    | 40 |
| Chapter 4                                                               | 41 |
| 4. TEST RESULTS                                                         | 41 |
| 4.1  INTRODUCTION                                                       | 41 |
| 4.2 CONCRETE BATCHING                                                   | 41 |
| 4.3. RESULTS FROM NASP BOND TESTS                                       |    |
| 4.3.1. Results from the standardized NASP Bond Tests                    |    |
| 4.3.2. NASP Bond Tests in Concrete on strand D                          | 45 |
| 4.3.3. NASP Bond Tests in Concrete on strand A (0.5 in.)                |    |
| 4.3.4. NASP Bond Tests in Concrete on strand B (0.5 in.)                | 47 |
| 4.3.5. NASP Bond Tests in Concrete on strand A (0.6 in.)                | 47 |
| 4.3.6 NASP Bond Tests on Mortar, Strand B (0.5 in.)                     | 48 |
| 4.4 CONCRETE PROPERTIES FOR NASP BOND TESTS                             | 49 |
| 4.5. Results of concrete cast at Precast Plant                          | 54 |
| 4.6 SUMMARY                                                             | 65 |
| Chapter 5                                                               | 67 |
| 5.1 INTRODUCTION                                                        | 67 |
| 5.2 THE EFFECT OF CONCRETE STRENGTH ON THE BOND OF                      | 67 |
| PRESTRESSING STRANDS                                                    | 67 |
| 5.2.1 NASP Force vs. Concrete Strength, f'ci                            | 67 |
| 5.2.2 NASP Force vs. square root of Concrete Strength, f' <sub>ci</sub> | 72 |
| 5.2.2 Normalized value                                                  | 76 |
| 5.3 Discussion                                                          | 77 |
| Chapter 6                                                               | 79 |
| 6. SUMMARY AND CONCLUSION                                               | 79 |

| 6.1 SUMMARY                   |    |
|-------------------------------|----|
| 6.2 CONCLUSIONS               | 79 |
| 6.2.1 Concrete Batching       |    |
| 6.2.2. NASP TESTS IN CONCRETE | 80 |
| 6.3 RECOMMENDATIONS           | 80 |
| References                    |    |
| Appendix A<br>Appendix B      |    |
| Appendix C                    |    |
| Appendix D                    |    |

# List of Tables

| CHAPTER 2                                                                            |      |
|--------------------------------------------------------------------------------------|------|
| Table 2.1: NASP Test Maximum Pull-Out Force. (Russell and Paulsgrove 1999b)          | 6    |
| Table 2.2: NASP Test 0.10 in. Slip Pull-Out Force. (Russell and Paulsgrove 1999b)    | 7    |
| Table 2.3: NASP Test 0.01 in. Slip Pull-Out Force. (Russell and Paulsgrove 1999b)    | 8    |
| Table 2.4 NASP Test Results. (Brown 2003)                                            | 9    |
| Table 2.5: NASP Test Results. (Brown 2003)                                           | . 10 |
| Table 3.1A: Research Scope                                                           | . 13 |
| Table 3.1B: Research Scope                                                           | . 14 |
| Table 3.2. Grieve's Concrete Mix Design                                              | . 17 |
| Table 3.3 Mix Proportions from OSU Structures Lab                                    | . 18 |
| Table 3.4. Test Results from Trial Batching                                          | . 22 |
| Table 3.5-Concrete Mix Design, Fresh and Harden properties for Concrete III-OSU      | . 28 |
| Table 3.5.1. Trial Batches made at OSU laboratory and materials from Plant           | . 38 |
| Table 3.5.2. Trial Batches made at OSU laboratory and materials from Plant           | . 39 |
| Table 4.1: NASP RESULTS SUMMARY at OSU Laboratory                                    | . 44 |
| Table 4.2. NASP Pull- Out Test Summary, Strand D                                     | . 45 |
| Table 4.3. NASP Pull- Out Test Summaries; Strand A (0.5")                            | . 46 |
| Table 4.4 NASP Pull- Out Test Summary, Strand B (0.5 in.)                            | . 47 |
| Table 4.5 NASP Pull- Out Test Summaries; Strand A (0.6")                             | . 48 |
| Table 4.6 NASP Pull- Out Test on Mortar, Strand B                                    | . 49 |
| Table 4.7. Concrete Mix design, fresh and Hardened Properties for                    | . 50 |
| NASP Bond Tests                                                                      | . 50 |
| Table 4.8 Concrete Mix design, fresh and Hardened Properties for                     | . 51 |
| NASP Bond Tests                                                                      | . 51 |
| Table 4.9. Concrete Mix design, fresh and Hardened Properties for NASP Bond Tests .  | . 52 |
| Concrete C-II                                                                        | . 52 |
| Table 4.10 Concrete Mix design, fresh and Hardened Properties for NASP Pull-Out Te   | ests |
| Concrete C-III                                                                       | . 53 |
| Table 4.11 Concrete Mix Design, Fresh and Harden properties for Concrete IA          | . 54 |
| Core Slab Structures, Oklahoma City- Summer 2004                                     | . 54 |
| Table 4.12. Concrete Mix Design, Fresh and Harden properties for Concrete II         | . 55 |
| Core Slab Structures, Oklahoma City- Summer 2004                                     | . 55 |
| Table 4.13. Concrete Mix Design, Fresh and Harden properties for Concrete I          | . 56 |
| Core Slab Structures, Oklahoma City – Summer 2004                                    | . 56 |
| Table 4.14. Concrete Mix Design, Fresh and Harden properties for Concrete III        | . 57 |
| Core Slab Structures, Oklahoma City – Summer 2004                                    | . 57 |
| Table 4.15. CoresLab Structures Concrete Mix Design, Fresh and Harden properties for | or   |
| Concrete I –ID-6-5-1                                                                 | . 58 |
| Table 4.16. CoresLab Structures Concrete Mix Design, Fresh and Harden properties f   | or   |
| Concrete I- IB6-5-1                                                                  | . 59 |
| Table 4.17 CoresLab Structures Concrete Mix Design, Fresh and Harden properties f    | or   |
| Concrete I- IA-6-6-1                                                                 | . 60 |

| Table 4.18         CoresLab Structures Concrete Mix Design, Fresh and Harden properties for  |
|----------------------------------------------------------------------------------------------|
| Concrete III – ID-10-5-1                                                                     |
| Table 4.19 CoresLab Structures Concrete Mix Design, Fresh and Harden properties for          |
| Concrete III –IB-10-5-1                                                                      |
| Table 4.20 CoresLab Structures Concrete Mix Design, Fresh and Harden properties for          |
| Concrete III – IA-10-6-1                                                                     |
| Table 4.21.         CoresLab Structures Concrete Mix Design. Fresh and Harden properties for |
| Concrete III – IA-10-6-2                                                                     |
| Table 4.22 Average NASP Results                                                              |
| Table 5.1. Results for Regression Analysis   75                                              |
| Table 5.2. Normalized value and Concrete strength   77                                       |
| Table C 1 1 Sieve Analysis for Dolese Fine Aggregate - OSU Laboratory     105                |
| Table C 1 2 Sieve Analysis for Dolese Fine Aggregate - OSU Laboratory 106                    |
| Table C 1 3 Sieve Analysis for Dolese Fine Aggregate - OSU Laboratory     107                |
| Table C 1 5 Sieve Analysis for Dolese Coarse Aggregate - OSU Laboratory 109                  |
| Table C 1.6 Sieve Analysis for Dolese Coarse Aggregate - OSU Laboratory                      |
| Table C 1.7 Sieve Analysis for Eine Aggregate $_{-}$ Coreslab Structures 111                 |
| Table C.1.7 Sieve Analysis for Fine Aggregate - Coreslab Structures $112$                    |
| Table C.1.8 Sieve Analysis for Fine Aggregate Corestab Structures $112$                      |
| Table C.1.9 Slove Analysis for Washed Coarse Aggregate - Corestab Structures 114             |
| Table C.1.10 Sieve Analysis for Washed Coarse Aggregate - Coreslab Structures 114            |
| Table C.1.11 Sleve Analysis for Washed Coarse Aggregate - Coresiab structures 115            |
| Table C.1.12 Sieve Analysis for Washed Coarse Aggregate - Coresiab structures 110            |
| Table C.1.13 Sieve Analysis for Coarse Aggregate - Coresiab structures                       |
| Table C.1.14 Sieve Analysis for Coarse Aggregate - Coresiab structures         118           |
| Table C.1.15 Sieve Analysis for Coarse Aggregate - Coresiab structures                       |
| Table D.1.1. Concrete Mix Design, Fresh and Harden properties for Concrete 1 121             |
| OSU Lab                                                                                      |
| Table D.1.2. Concrete Mix Design, Fresh and Harden properties for Concrete I A 122           |
| OSU Lab                                                                                      |
| Table D.1.3. Concrete Mix Design, Fresh and Harden properties for Concrete II                |
| OSU Lab 123                                                                                  |
| Table D.1.4. Concrete Mix Design, Fresh and Harden properties for Concrete III               |
| OSU Lab                                                                                      |
| Table D.2.1. Concrete Mix Design, Fresh and Harden properties for Concrete IA 125            |
| Core Slab Structures, Oklahoma City- Summer 2004 125                                         |
| Table D.2.2. Concrete Mix Design, Fresh and Harden properties for Concrete II 126            |
| Core Slab Structures, Oklahoma City- Summer 2004, With No Air Entrainment 126                |
| Table D.2.3. Concrete Mix Design, Fresh and Harden properties for Concrete I 127             |
| Core Slab Structures, Oklahoma City – Summer 2004, Without Air Entrainment 127               |
| Table D.2.4. Concrete Mix Design, Fresh and Harden properties for Concrete III 128           |
| Table D.3.1 CoresLab Structures Concrete Mix Design, Fresh and Harden properties for         |
| Concrete I                                                                                   |
| Table D.3.2 CoresLab Structures Concrete Mix Design, Fresh and Harden properties for         |
| Concrete I                                                                                   |
| Table D.3.3         CoresLab Structures Concrete Mix Design, Fresh and Harden properties for |
| Concrete I                                                                                   |

| Table D.3.4         CoresLab Structures Concrete Mix Design, Fresh and Harden properties |    |
|------------------------------------------------------------------------------------------|----|
| for Concrete III                                                                         | 32 |
| Table D.3.5 CoresLab Structures Concrete Mix Design, Fresh and Harden properties for     | r  |
| Concrete III                                                                             | 33 |
| Table D.3.6 CoresLab Structures Concrete Mix Design, Fresh and Harden properties for     | r  |
| Concrete III                                                                             | 34 |
| Table D.3.7 CoresLab Structures Concrete Mix Design, Fresh and Harden properties for     | or |
| Concrete III                                                                             | 35 |
| Table D.4.1- Trail Mix Design, Fresh and Harden properties for Concrete I 13             | 36 |
| OSU Lab. Without Air Entrainment                                                         | 36 |
| Table D.4.2- Trail Mix Design, Fresh and Harden properties for Concrete I A 13           | 37 |
| OSU Lab                                                                                  | 37 |
| Table D.4.3- Trail Mix Design, Fresh and Harden properties for Concrete II 13            | 38 |
| OSU Lab                                                                                  | 38 |
| Table D.4.4-Trial Mix Designs, Fresh and Harden properties for Concrete III 13           | 39 |
| OSU Lab, With No Air Entrainment                                                         | 39 |
| Table D.5.1. Trial Batches made at OSU laboratory and materials from Coreslab            |    |
| Structures                                                                               | 40 |
| Table D.5.2. Trial Batches made at OSU laboratory and materials from Coreslab            |    |
| Structures                                                                               | 41 |
| Table D.6.1. Concrete Mix design, fresh and Hardened Properties for NASP Pull-Out        |    |
| Tests                                                                                    | 43 |
| Table D.6.2 Concrete Mix design, fresh and Hardened Properties for NASP Pull-Out         |    |
| Tests                                                                                    | 14 |
| Table D.6.3.Concrete Mix design, fresh and Hardened Properties for NASP Pull-Out         |    |
| Tests                                                                                    | 45 |
| Concrete C-II                                                                            | 45 |
| Table D.6.4.Concrete Mix design, fresh and Hardened Properties for NASP Pull-Out         |    |
| Tests, Concrete C-II                                                                     | 46 |

# List of Figures

| CHAPTER 1                                                                                                                           |         |
|-------------------------------------------------------------------------------------------------------------------------------------|---------|
| Figure 3.1 Old Test Set Up                                                                                                          | 34      |
| Figure 3.2 New Test Set Up                                                                                                          | 35      |
| Figure 5.1.Linear Regression Analysis of the compressive strength of concrete and                                                   |         |
| Bond force for Strand A (0.6").                                                                                                     | 68      |
| Figure 5.2. Linear Regression Analysis of the compressive strength of concrete and                                                  | I       |
| Bond force for Strand A (0.5").                                                                                                     | 68      |
| Figure 5.3. Linear Regression Analysis of the compressive strength of concrete and                                                  | 1       |
| Bond force for Strand B.                                                                                                            | 69      |
| Figure 5.4. Linear Regression Analysis of the compressive strength of concrete and                                                  | l I     |
| Bond force for Strand D.                                                                                                            | 69      |
| Figure 5.5.Power Regression Analysis of the compressive strength of concrete and                                                    |         |
| Bond force for Strand A (0.6").                                                                                                     | 70      |
| Figure 5.6. Power Regression Analysis of the compressive strength of concrete and                                                   |         |
| Bond force for Strand A (0.5").                                                                                                     | 70      |
| Figure 5.7. Power Regression Analysis of the compressive strength of concrete and                                                   |         |
| Bond force for Strand B.                                                                                                            | 71      |
| Figure 5.8. Power Regression Analysis of the compressive strength of concrete and                                                   | - 1     |
| Bond force for Strand D.                                                                                                            | /1      |
| Figure 5.9 Linear Regression Analysis of square root of the compressive strength $0$                                                | が<br>マン |
| concrete and Bond force for Strand A $(0.6^{\circ})$ .                                                                              | 12      |
| Figure 5.10 Linear Regression Analysis of square root of the compressive strength of concrete and Rond force for Strend A $(0.5^2)$ | 72      |
| Figure 5.11 Linear Degression Analysis of square root of the compressive strength                                                   | 15      |
| of concrete and Bond force for Strand B                                                                                             | 73      |
| Figure 5.12 Regression Analysis of square root of the compressive strength of                                                       | 15      |
| concrete and Rond force for Strand D                                                                                                | 74      |
| Figure 5.13 Regression Analysis of Normalized value vs. compressive strength of                                                     | / -     |
| concrete for all strands.                                                                                                           | 76      |
| Figure A.1 NASP Result Strand "A (0.6 in.)". C-N                                                                                    | 83      |
| Figure A.2 NASP Result Strand "A (0.6 in.)", C-I                                                                                    | 84      |
| Figure A.3 NASP Result Strand "A (0.6 in.)", C-II                                                                                   | 85      |
| Figure A.4 NASP Result Strand "A (0.6 in.)", C-III                                                                                  | 86      |
| Figure A.5 NASP Result Strand "A (0.5 in.)", C-N                                                                                    | 87      |
| Figure A.6 NASP Result Strand "A (0.5 in.)", C-I                                                                                    | 88      |
| Figure A.7 NASP Result Strand "A (0.5 in.)", C-II                                                                                   | 89      |
| Figure A.8 NASP Result Strand "A (0.5 in.)", C-III                                                                                  | 90      |
| Figure A.9 NASP Result Strand B, C-N                                                                                                | 91      |
| Figure A.10 NASP Result Strand B, C-I                                                                                               | 92      |
| Figure A.11 NASP Result Strand B, C-II                                                                                              | 93      |
| Figure A.12 NASP Result Strand B, C-III                                                                                             | 94      |
| Figure A.13 NASP Result Strand D, C-N                                                                                               | 95      |
| Figure A.14 NASP Result Strand D, C-I                                                                                               | 96      |

| Figure A.15 NASP Result Strand D, C-II                                  | 97  |
|-------------------------------------------------------------------------|-----|
| Table C.1.4 Sieve Analysis for Dolese Coarse Aggregate - OSU Laboratory | 108 |

# Chapter 1 1. INTRODUCTION

# **1.1. BACKGROUND**

Adequate bond between prestressing strand and concrete is essential for adequate structural performance and reliability of concrete members. Bond quality affects transfer and development lengths of prestressed members. If the bond between the strand and concrete is not enough, the transfer and development length of the member may exceed the code requirement. Hence non ductile failure occurs due to inadequate shear reinforcement provision.

Researchers found the current code equations governing the bond of strand have been shown to be inaccurate. Hence bond test is needed that will help to determine the effects on bond of variations in concrete properties or constituent materials. The Prestress Concrete Institute (PCI) financed projects that investigated strands manufactured by various manufacturers using various test methods. Research conducted by Cousin, Johnson and Zia indicates that the ACI code equations for bond might be inadequate and more research is needed to fully understand the bond mechanics between concrete and prestressing strand. According to Mote (2001), concrete strength would affect bond of

#### **1.2. OBJECTIVE**

This research program is focused on determining what effects; variations in concrete properties have on bond, with primary emphasis on the variation in concrete strength. The variations in concrete properties are:

- Concrete strength ranging from 4 Ksi to 10 ksi at release.
- Air entrained concrete vs. non-air entrained concrete.

# 1.3 SCOPE

The scope of this experimental program includes;

- 1. The NASP Bond Pull-out test (The NASP Test) to measure:
  - Effects of varying strength concrete
  - Effects of air entrainment
  - Effects of high range Water Reducer's (HRWR)

That was used to determine what effects; if any, had on the bond between prestressing strand and concrete.

- 2. The effect of concrete strength on the bond of prestressing strand.
- 3. Laboratory trial batching of high performance concrete mixtures.
- 4. Casting high performance concrete in beams in the prestressing plant.

Concrete batching is required to determine mix proportions that are workable and reach target one day, 28 or 56 days compressive strength. One day concrete strength varied from 4 ksi to 10 ksi. And 28 or 56 days concrete strength varied from 6 ksi to 15 ksi.

# **Chapter 2**

# 2. DEFINITIONS AND BACKGROUND

### 2.1 **DEFINITIONS**

#### **2.1.1 Transfer Length**

Transfer length is the length of strand required to transmit the prestressing force, after losses, in the prestressing strand to the concrete (Janney 1954, Hanson and Kaar 1959, Rose 1995).

#### **2.1.2 Development Length**

The development length of a prestressing strand is the sum of the transfer and the flexural bond length. The additional bonded length of strand required to anchor the strand when an external load is applied to the member is called the flexural bond length. The tension in the prestressing strand increases and generates additional anchoring forces if an external load is applied to a prestressing concrete member (Mote, 2001). The flexural bond length provides the additional anchorage requirements. The ACI 318-02 commentary (section 12.9) defines the development length as follows:

$$l_d = \left(\frac{f_{se}}{3}\right) d_b + \left(f_{ps} - f_{se}\right) d_b \tag{2.2}$$

Where  $l_d$  is the development length of the strand in inches, fps is the stress in the prestressed reinforcement at the nominal strength of the member in ksi, fse is the

effective pretensioning force in the prestressed reinforcement after all losses in ksi, and db is the nominal strand diameter in inches.

#### 2.1.3 Pull-Out Strength

The pull-out strength of a strand is the amount of force produced between the concrete and prestressing strand over an embedded length of the strand when the strand is pulled out of the concrete. This research project conducted one type of pull out tests, the North American Strand Producers (NASP) Pullout Tests. In NASP Bond tests the strands were initially untensioned. The variables of each test will be described in detail in this chapter and the chapters that follow.

#### **2.2 Bond Mechanics in Pull out Tests**

Pull out tests assess the strand pulling force verses the resulting strand slippage. In this research program, NASP Bond Tests are evaluated. The NASP pullout Test measured the "free end slip." "Free end slip" is the strand slip measured on the side opposite of the application of strand tension.

Simple pullout tests have been correlated with transfer length of prestressing strand in the past. It has advantage and disadvantage correlating pull out strength to transfer length.

The major advantage of correlating pull out strength to transfer length is that pull out tests are relatively easy to carry out. The equipments are simple and are cheaper than measuring transfer lengths of strand in beams.

The disadvantage of correlating pull out strength to transfer length is that the Hoyer's effect which is the primary element of bond in the transfer zone is absent in simple pullout tests. As the strand diameter decreases and pulls away from the concrete causing a reverse Hoyer's effect. The presence of adhesion is another disadvantage in trying to correlate pullout strength to transfer length. As the strand slips relative to the concrete, adhesion does not make a contribution but it is of little concern since adhesion bond is broken before strands reach their maximum value.

#### **2.3 Literature Review**

#### 2.3.1 Untensioned Pullout Strengths

In the past, tensioned and simple pullout tests have been performed on prestressing strand. In NASP Test strands are pulled out of a concrete specimen. The strand is initially untensioned in the simple pull out test. Simple pullout tests have been the majority of pullout tests conducted in the past.

This research project focus on a standardized prestressing strand pullout test that will be interrelated to the bond ability of prestressing strands. Research has been conducted to determine a reliable standardized test to evaluate the bond ability of prestressing strand. These tests include single specimens and concrete specimens.

#### 2.3.1.1Untensioned Single Strand Pull-Out Tests

Russell and Paulsgrove (1999) conducted a test, the NASP Pull-out Test in which the pull-out force is reported at 0.01 in. free end slip, and maximum. The mortar used had a sand to cement ratio of 2:1 and a 0.45 water to cement ratio. The NASP tests were conducted with Type III cement except for the first series at Florida wire and cable test site (FWC) which was conducted with Type I cement. The tests were conducted at OU and FWC. The results indicate that for NASP test, the 0.10 in. and maximum pull-out forces may be better for determining bond acceptance since the range of values is wider. Russell and Paulsgrove concluded that the NASP test demonstrated less variation in data between test sites. Due to the larger range in values, they recommend the pull-out force at 0.10 in. of slip be for NASP test. The results are shown in Table 2.4, 2.5, and 2.6.

|        | OU Series I |      | OU Series II |      | FWC Series I |      | FWC Series II |      |
|--------|-------------|------|--------------|------|--------------|------|---------------|------|
|        | Average     | St.  | Average      | St.  | Average      | St.  | Average       | St.  |
|        |             | Dev. |              | Dev. |              | Dev. |               | Dev. |
| Strand | (K)         | (%)  | (K)          | (%)  | (K)          | (%)  | (K)           | (%)  |
| А      | 19.2        | 9.7  | 16.6         | 8.9  | 14.7         | 29.3 | 16.6          | 18.4 |
| В      | 15.2        | 11.4 | 14.4         | 11.8 | 10.1         | 38.8 | 12.5          | 23.3 |
| С      | 21.6        | 7.8  | 18.5         | 12.3 | 15           | 24.3 | 20.4          | 17.6 |
| J      | 4.9         | 19.7 | 4.4          | 22   | 3.5          | 32.3 | 6.9           | 22.4 |
| K      | 15.8        | 11.5 | 15.6         | 9.4  | 11.2         | 24.8 | 13.4          | 10.4 |
| М      | 17.9        | 11   | 16.2         | 6.7  | 12.5         | 25.3 | 14            | 17.3 |
| Р      | 21.1        | 6.8  | 18.3         | 6.5  | 15.6         | 19.6 | 17.7          | 27.6 |
| W      | 13.2        | 14.8 | 12.6         | 9    | 7.8          | 27.2 | 12.5          | 25.2 |
| Z      | 7.9         | 16.3 | 9.1          | 13.7 | 6.1          | 26.9 | 11.3          | 17   |

 Table 2.1: NASP Test Maximum Pull-Out Force. (Russell and Paulsgrove 1999b)

|        | OU Series I |      | OU Series II |      | FWC Series I |      | FWC Series II |      |
|--------|-------------|------|--------------|------|--------------|------|---------------|------|
|        | Average     | St.  | Average      | St.  | Average      | St.  | Average       | St.  |
|        |             | Dev. |              | Dev. |              | Dev. |               | Dev. |
| Strand | (K)         | (%)  | (K)          | (%)  | (K)          | (%)  | (K)           | (%)  |
| А      | 17.7        | 11.8 | 15.9         | 7.1  | 12.5         | 27.4 | 14.5          | 18.2 |
| В      | 11.8        | 10.2 | 11.8         | 23.2 | 8            | 33.6 | 10.2          | 19   |
| С      | 19.6        | 10   | 17.8         | 12.4 | 12.9         | 20.6 | 17            | 19.1 |
| J      | 2.6         | 21.7 | 3.3          | 24   | 2.8          | 23.2 | 5             | 25.4 |
| K      | 13.8        | 12.4 | 14.6         | 11.2 | 9.3          | 29.9 | 11.8          | 9.7  |
| М      | 14.9        | 13.5 | 14.9         | 4.6  | 10.7         | 23.3 | 12.2          | 13.4 |
| Р      | 17.1        | 9.6  | 17.3         | 6.9  | 12.5         | 14.2 | 15.1          | 23.5 |
| W      | 10.4        | 14.9 | 11.3         | 11   | 6.8          | 24.7 | 9.7           | 14.5 |
| Z      | 5.7         | 21   | 7.9          | 13   | 5.2          | 26.2 | 7.8           | 17.3 |

 Table 2.2: NASP Test 0.10 in. Slip Pull-Out Force. (Russell and Paulsgrove 1999b)

|        | OU Se   | OU Series I OU Series II |         | FWC Series I |         | FWC Series II |         |      |
|--------|---------|--------------------------|---------|--------------|---------|---------------|---------|------|
|        | Average | St.                      | Average | St.          | Average | St.           | Average | St.  |
|        |         | Dev.                     |         | Dev.         |         | Dev.          |         | Dev. |
| Strand | (K)     | (%)                      | (K)     | (%)          | (K)     | (%)           | (K)     | (%)  |
| А      | 15      | 16.3                     | 11.2    | 37.4         | 9.9     | 28.6          | 11      | 15   |
| В      | 9.7     | 10                       | 9.5     | 23.7         | 7.3     | 32.5          | 8.4     | 15.5 |
| С      | 15.5    | 8.8                      | 14.4    | 15.4         | 11.3    | 15.9          | 14.1    | 18.2 |
| J      | 2.3     | 31.4                     | 3.3     | 28.4         | 3.4     | 31.4          | 4.6     | 19.2 |
| K      | 11.1    | 18.7                     | 11.9    | 14.5         | 8.2     | 34.2          | 9.1     | 8.9  |
| М      | 11.2    | 24.8                     | 11.9    | 6.7          | 9.1     | 29.7          | 10.3    | 10.9 |
| Р      | 9       | 14.7                     | 13.7    | 10           | 8.8     | 17.2          | 12.4    | 16.9 |
| W      | 8.9     | 8.8                      | 9.8     | 10.4         | 6.1     | 17.9          | 7.8     | 9.3  |
| Z      | 5.6     | 22.6                     | 7.4     | 7.5          | 5.3     | 25            | 6.9     | 15   |

 Table 2.3: NASP Test 0.01 in. Slip Pull-Out Force. (Russell and Paulsgrove 1999b)

|        | OU Se   | ries I | OU Sei  | ries II | FWC Se  | eries I | FWC Se  | eries II |
|--------|---------|--------|---------|---------|---------|---------|---------|----------|
|        | Average | St.    | Average | St.     | Average | St.     | Average | St.      |
|        |         | Dev.   |         | Dev.    |         | Dev.    |         | Dev.     |
| Strand | (K)     | (%)    | (K)     | (%)     | (K)     | (%)     | (K)     | (%)      |
| AA     | 13.9    | 9.0    | 16.0    | 16.9    | 9.7     | 7.0     | 11.6    | 14.2     |
| BB     | 6.8     | 10.6   | 10.4    | 9.3     | 5.4     | 10.7    | 8.9     | 11.7     |
| CC     | 9.9     | 25.2   | 8.8     | 15.7    | 7.7     | 22.9    | 8.0     | 15.2     |
| DD     | 14.3    | 4.2    | 15.3    | 11.5    | 10.9    | 7.7     | 11.5    | 14.6     |
| EE     | 14.1    | 4.2    | 16.0    | 26.0    | 10.0    | 7.4     | 9.7     | 15.6     |
| FF     | 6.3     | 6.5    | 8.3     | 15.6    | 7.3     | 5.5     | 8.7     | 14.9     |
| GG     | 7.2     | 14.0   | 12.4    | 10.1    | 5.0     | 10.4    | 9.1     | 13.0     |
| HH     | 11.1    | 9.0    | 10.3    | 15.9    | 9.5     | 9.1     | 8.1     | 19.6     |
| II     | 3.0     | 10.7   | 5.3     | 15.9    | 3.7     | 6.6     | 5.7     | 13.0     |
| JJ     | 19.7    | 7.1    | 17.6    | 17.9    | 14.9    | 5.9     | 13.0    | 23.0     |

 Table 2.4 NASP Test Results. (Brown 2003)

Brown (2003) conducted NASP tests continuing the research by Russell and Paulsgrove. The procedures are identical to those previously discussed. Table 2.7 summarizes the results. This research results will be analyzed with Brown's research. The proposed NASP Test procedure resulting from the testing is given in Appendix B.

|        | 0.10 in. Slip Pull-Out Force |          |      | 0.01 in. Slip Pull-Out Force |      |      |      |      |
|--------|------------------------------|----------|------|------------------------------|------|------|------|------|
|        | OU                           |          | FWC  |                              | OU   |      | FWC  |      |
|        | Avg.                         | St. Dev. | Avg. | St.                          | Avg. | St.  | Avg. | St.  |
|        |                              |          |      | Dev.                         |      | Dev. |      | Dev. |
| Strand | (K)                          | (%)      | (K)  | (%)                          | (K)  | (%)  | (K)  | (%)  |
| AA     | 13.9                         | 9        | 16   | 16.9                         | 9.7  | 7    | 11.6 | 14.2 |
| BB     | 6.8                          | 10.6     | 10.4 | 9.3                          | 5.4  | 10.7 | 8.9  | 11.7 |
| CC     | 9.9                          | 25.2     | 8.8  | 15.7                         | 7.7  | 22.9 | 8    | 15.2 |
| DD     | 14.3                         | 4.2      | 15.3 | 11.5                         | 10.9 | 7.7  | 11.5 | 14.6 |
| EE     | 14.1                         | 4.2      | 16   | 26                           | 10   | 7.4  | 9.7  | 15.6 |
| FF     | 6.3                          | 6.5      | 8.3  | 15.6                         | 7.3  | 5.5  | 8.7  | 14.9 |
| GG     | 7.2                          | 14       | 12.4 | 10.1                         | 5    | 10.4 | 9.1  | 13   |
| HH     | 11.1                         | 9        | 10.3 | 15.9                         | 9.5  | 9.1  | 8.1  | 19.6 |
| II     | 3                            | 10.7     | 5.3  | 15.9                         | 3.7  | 6.6  | 5.7  | 13   |
| JJ     | 19.7                         | 7.1      | 17.6 | 17.9                         | 14.9 | 5.9  | 13   | 23   |

# Table 2.5: NASP Test Results. (Brown 2003)

# 2.4 Summary

Based on the research effort to date, two of the untensioned pulls out tests have shown promise at becoming the most reliable means of predicting bond behavior. The NASP test appears to be the most promising for standardized testing as a standardized test should be able to be a stand alone test. This research program is useful toward investigating the effect of high strength concrete on the bond ability of prestressing strands using the NASP bond test.

# Chapter 3 3. EXPERIMENTAL PROGRAM

## **3.1 INTRODUCTION**

The testing program was designed for:

- Laboratory trial batching of HPC mixtures
- NASP Tests in Concrete

The procedures for this project will be trial batching and NASP Testing. The trial batching was required to develop mixture designs to achieve desired strengths and workability for concrete mixtures used in the NASP tests and beams in prestressing plant. The results of the NASP testing will be used to analyze the effect of concrete strength on the bond strength of varying concrete properties.

# **3.2 SCOPE OF RESEARCH**

The scope of the research includes:

1. Trial Batching of concretes C-N, C-I, C-II, C-III and C-IA to develop

Concrete mixtures for

- Fabrication of beams
- NASP Tests in Concrete
- NASP Test in Concrete to determine the effects of concrete strength on the bond of steel prestressing strand.
- 3. Variables
  - Concrete release strength

• Strand Source

Table 3.1A and 3.1B will describe the scope of the thesis.

| Targetee         | d Concrete S            | NASP Tests in<br>Concrete   |             |
|------------------|-------------------------|-----------------------------|-------------|
| Concrete<br>Type | @<br>Release<br>(1 day) | @ Design<br>( 28 or 56 day) | 0.5 in.     |
| C-N              | 4,000                   | 6,000                       | A, B, D, A6 |
| C-I              | 6,000                   | 10,000                      | A, B, D, A6 |
| C-II             | 8,000                   | 12,000                      | A, B, D, A6 |
| C-III            | 10,000                  | 15,000                      | A, B, D, A6 |
| C-IA             | 6,000 A                 | 10,000                      | A, B, D, A6 |

 Table 3.1B: Research Scope

| Targeted Concrete S        | Strengths (psi)             | Bea         | m Tests Strands |
|----------------------------|-----------------------------|-------------|-----------------|
| Concrete Type<br>@ Release | @ Design<br>( 28 or 56 day) | R - Beams   | I – Beams       |
| (1 day)                    |                             |             |                 |
| 4,000                      | 6,000                       | A, B, D, A6 | _               |
| 6,000                      | 10,000                      | A, B, D, A6 | B, D            |
| 8,000                      | 12,000                      | A, B, D, A6 | _               |
| 10,000                     | 15,000                      | A, B, D, A6 | B, D            |
| 6,000 A                    | 10,000                      | A, B, D, A6 | _               |

4. Casting HPC concrete in beams in the prestressing plant.

#### **3.3 TRIAL BATCHING**

Concrete trial batching was required to attain desired strengths and workability for five types of concrete mixtures used in the NASP tests and beams in prestressing plant.

#### 3.3.1. Materials

The materials used in the experimental procedures were Type III cement, coarse aggregate, fine aggregate, water, blast furnace slag, and chemical admixtures. The Type III cement was provided by Lafarge North America from their plant in Tulsa, Oklahoma. The cement is a Portland Type III cement meeting the specifications in ASTM C 150.

The coarse and fine aggregates were provided by Dolese Brothers Company from their Stillwater, Oklahoma plants. The blast furnace slag was supplied by Lafarge. The blast furnace was New cement.

The other chemical admixtures which includes normal range water reducer (WR) ,high range water reducers (HRWR), high early strength (HES) and air entraining admixtures (AE) were supplied by Master Builders .The normal range water reducer was polyheed 997. The high range water reducer was Glenuim 3400 for NASP testing. For preparing the preliminary mixture designs Glenium 3030 NS was used as HRWR. The air entraining admixture was AE-90.

The saturated surface dry (SSD) unit weights of the aggregates were used to compute the batch weight. The moisture content of the aggregate was measured and the batch weights were adjusted accordingly. The materials were handled in conformance with ASTM C 192.

15

The sand confirmed to ASTM C 33, the coarse aggregate ASTM, and the cement used conformed to ASTM C 150 requirements for Type III cement. The water was potable and suitable for making concrete.

The concretes were mixed in a pan mixer. At first, half of the water, all coarse aggregate were placed in the pan and mixed for a few seconds. Then all of the sand, cement and the remaining water were added and mixed for three minutes. Water reducing admixtures were added while the pan was revolving. The pan was set for three minutes without mixing and then mixed for another two minutes. The test specimens were made in conformance with ASTM C 192.

#### 3.3.2 Where to begin?

A number of trial batching was conducted to establish the required mixture proportions. First, mixtures were selected based on the desired properties from previous work conducted by Grieve (2003). Table 3.2 shows Grieves Mix design. The mix proportions are based on different water to cement ratio. The first one is with w/c ratio of 0.36 to get one day concrete strength of 6,000 psi and the second one is with w/c ratio of 0.28 to get 8,000 psi one day concrete strength. Trial batches were started out with mix design from Grieves.

|       |                           | G3030-8-36-1 | G3030-8-28-1 |
|-------|---------------------------|--------------|--------------|
|       | Cement (PCY)              | 800          | 800          |
| SL    | Coarse Agg. (PCY)         | 1800         | 1800         |
| ortio | Fine Agg. (PCY)           | 1144         | 1312         |
| Prop  | Water (PCY)               | 288          | 224          |
| Mix   | Glenium 3030 (fl. oz/cwt) | 7.5          | 22.5         |
|       | w/cm                      | 0.36         | 0.28         |

 Table 3.2. Grieve's Concrete Mix Design

#### 3.3.3 Trial Batches

Various mixture proportions were implemented in order to determine the effects of concrete strength and the age of the concrete. The ultimate goal of the concrete mixtures was to reach five desired compressive strength combinations with a workable mixture acquiring a slump of 6 to 8 in. One combination's target strengths were C-N (Normal concrete), 4,000 psi one day strength and 6,000 psi 28 or 56 day strength. The second combination's target strengths were C-I, 6,000 psi one day strength and 10,000 psi 28 or 56 day strength. Third combination's target strengths were C-IA (concrete with air), 6,000 psi one day strength and 10,000 psi 28 or 56 day strength and with 6 % air content. The fourth combination's target strengths were C-II, 8,000 psi one day strength and 14,000 psi 28 or 56 day strength. The last combination's target strengths were C-III, 10,000 psi one day strength and 18,000 psi 28 or 56 day strength. The mix designs for Concrete C-I and C-II were started out using Grieve's mix design. A number of trial batches were conducted changing the water to cement ratio and cement content for C-N and C- III. For example, to start with C-N, cement with 650 PCY was used and w/c ratio of 0.46 was used. To reach the strength, cement content was kept constant but the water to cement ratio was varied. The selected concrete mix proportions that result from trial batching are given in Table 3.3. The mix proportion and results of all trial batches conducted in the La b are specified in Appendix D.

| 3.3.1. Concrete Mix Design for Concrete C-N |                           |      |  |  |  |
|---------------------------------------------|---------------------------|------|--|--|--|
| Without Air Entrainment                     |                           |      |  |  |  |
| Date:02/15/05                               |                           |      |  |  |  |
|                                             | Cement (PCY)              | 650  |  |  |  |
| Mix Proportions                             | Coarse Agg. (PCY)         | 1800 |  |  |  |
|                                             | Fine Agg. (PCY)           | 1243 |  |  |  |
|                                             | Water (PCY)               | 298  |  |  |  |
|                                             | Glenium 3400 (fl. oz/cwt) | 8    |  |  |  |
|                                             | w/cm                      | 0.46 |  |  |  |

| Table 3.5 Mix I reportions from Obe buildenes Lab | Table 3.3 | Mix Pro | portions | from | <b>OSU</b> | <b>Structures</b> | Lab |
|---------------------------------------------------|-----------|---------|----------|------|------------|-------------------|-----|
|---------------------------------------------------|-----------|---------|----------|------|------------|-------------------|-----|

| 3.3.2. Concrete Mix Design for Concrete I<br>Without Air Entrainment |                             |      |  |  |  |
|----------------------------------------------------------------------|-----------------------------|------|--|--|--|
|                                                                      |                             |      |  |  |  |
|                                                                      | Cement (PCY)                | 800  |  |  |  |
| tions                                                                | Coarse Agg. (PCY)           | 1800 |  |  |  |
|                                                                      | Fine Agg. (PCY)             | 1144 |  |  |  |
| Propor                                                               | Water (PCY)                 | 288  |  |  |  |
| Mix F                                                                | Glenium 3030NS (fl. oz/cwt) | 8    |  |  |  |
|                                                                      | Polyheed 997 WR(fl. oz/cwt) | 3    |  |  |  |
|                                                                      | w/cm                        | 0.36 |  |  |  |

| 3.3.3. Concrete Mix Design for Concrete I A |                             |               |  |  |  |  |  |
|---------------------------------------------|-----------------------------|---------------|--|--|--|--|--|
|                                             | With 6% Total Air           |               |  |  |  |  |  |
|                                             |                             | Date:06/17/04 |  |  |  |  |  |
|                                             | Cement (PCY)                | 800           |  |  |  |  |  |
|                                             | Coarse Agg. (PCY)           | 1800          |  |  |  |  |  |
| su                                          | Fine Agg. (PCY)             | 922           |  |  |  |  |  |
| portio                                      | Water (PCY)                 | 272           |  |  |  |  |  |
| ix Pro                                      | Glenium 3030NS (fl. oz/cwt) | 10            |  |  |  |  |  |
| M                                           | Polyheed 997 (fl.oz/cwt)    | 3             |  |  |  |  |  |
|                                             | MB-AE 90 (fl.oz/cwt)        | 1.875         |  |  |  |  |  |
|                                             | w/cm                        | 0.34          |  |  |  |  |  |

| 3.3.4. Concrete Mix Design for Concrete II |                             |               |  |  |  |
|--------------------------------------------|-----------------------------|---------------|--|--|--|
| Without Air Entrainment                    |                             |               |  |  |  |
|                                            |                             | Date:06/17/04 |  |  |  |
|                                            | Cement (PCY)                | 800           |  |  |  |
|                                            | Coarse Agg. (PCY)           | 1800          |  |  |  |
| tions                                      | Fine Agg. (PCY)             | 1270          |  |  |  |
| ropor                                      | Water (PCY)                 | 240           |  |  |  |
| Mix F                                      | Glenium 3030NS (fl. oz/cwt) | 20            |  |  |  |
|                                            | Polyheed 997 WR(fl.oz/cwt)  | 3             |  |  |  |
|                                            | w/cm                        | 0.30          |  |  |  |

| 3.3.5. Concrete Mix Design for Concrete III |                              |        |  |  |  |  |
|---------------------------------------------|------------------------------|--------|--|--|--|--|
|                                             | Without Air Entrainment      |        |  |  |  |  |
|                                             | 6/16/2004                    |        |  |  |  |  |
|                                             | Cement (PCY)                 | 900    |  |  |  |  |
|                                             | 10 % Fly Ash (PCY)           | -      |  |  |  |  |
|                                             | 10 % Slag (PCY)              | 100    |  |  |  |  |
|                                             | 20 % Slag (PCY)              | -      |  |  |  |  |
| tions                                       | Coarse Agg. (PCY)            | 1800   |  |  |  |  |
| ropoi                                       | Fine Agg. (PCY)              | 1188.6 |  |  |  |  |
| Mix I                                       | Water (PCY)                  | 240    |  |  |  |  |
|                                             | Glenium 3030NS (fl. oz/cwt)  | 22     |  |  |  |  |
|                                             | Glenium 3200HES (fl. oz/cwt) | 7      |  |  |  |  |
|                                             | Polyheed 997WR (fl. oz/cwt)  | 3      |  |  |  |  |
|                                             | w/cm                         | 0.24   |  |  |  |  |

# 3.3.4 Results from Trial Batches

Concrete mix designs were developed through trial batching. The results from trial batching are reported below along with the results of the fresh and hardened concrete properties. Fresh concrete properties include slump, unit weight, air temperature, and concrete temperature. Hardened concrete properties include concrete compressive strength at different age. The results from trial batching are given in Table 3.4.

| 3.4.1- Fresh and Harden properties for Concrete C-N<br>Without Air Entrainment |                             |       |               |  |  |
|--------------------------------------------------------------------------------|-----------------------------|-------|---------------|--|--|
|                                                                                |                             |       | Date:02/15/05 |  |  |
|                                                                                | Air Temperature (°I         | 82    |               |  |  |
| SS                                                                             | Relative Air Humidity       | 24    |               |  |  |
| Fresh Propertie                                                                | Concrete Temperature        | 75    |               |  |  |
|                                                                                | Slump (in.)                 | 10    |               |  |  |
|                                                                                | Unit Weight (pcf)           | 146.8 |               |  |  |
|                                                                                | Air Content (%)             | 2.5   |               |  |  |
| Hardened                                                                       |                             |       |               |  |  |
| Properties                                                                     | Compressive Strength in psi | 1 Day | 4560          |  |  |

# Table 3.4. Test Results from Trial Batching

| 3.4.2- Fresh and Harden properties for Concrete I |                                  |        |               |  |  |  |  |
|---------------------------------------------------|----------------------------------|--------|---------------|--|--|--|--|
| Without Air Entrainment                           |                                  |        |               |  |  |  |  |
|                                                   |                                  |        | Date:06/14/04 |  |  |  |  |
| Fresh Properties                                  | Air Temperature (°F)             |        | 81            |  |  |  |  |
|                                                   | Relative Air Humidity (%)        |        | 95            |  |  |  |  |
|                                                   | Concrete Temperature (°F)        |        | 90            |  |  |  |  |
|                                                   | Slump (in.)                      |        | 8.5           |  |  |  |  |
|                                                   | Unit Weight (pcf)                |        | 148.68        |  |  |  |  |
|                                                   | Air Content (%)                  |        | 2.6           |  |  |  |  |
|                                                   |                                  | 1 Day  | 6050          |  |  |  |  |
| Hardened Properties                               |                                  | 3 Day  | 7460          |  |  |  |  |
|                                                   |                                  | 7 Day  | 8000          |  |  |  |  |
|                                                   |                                  | 28 Day | 8810          |  |  |  |  |
|                                                   | Compressive Strength in psi      | 56 Day | 9860          |  |  |  |  |
|                                                   |                                  | 1 Day  | 540           |  |  |  |  |
|                                                   | Tensile Strength                 | 28 Day | 610           |  |  |  |  |
|                                                   |                                  | 1 Day  | 5495          |  |  |  |  |
|                                                   | Modulus of Elasticity(psi)       | 28 Day | 5755          |  |  |  |  |
|                                                   | Calculated Modulus of elasticity | 1 Day  | 4640          |  |  |  |  |
|                                                   | using ACI method(psi)            | 28 Day | 5615          |  |  |  |  |

|                  | 3.4.3- Fresh and Hard        | len properties for ( | Concrete I A  |
|------------------|------------------------------|----------------------|---------------|
|                  | With                         | 6 % Total Air        |               |
|                  |                              |                      | Date:06/17/04 |
| Fresh Properties | Air Temperature (°F)         |                      | 82            |
|                  | Relative Air Humidity (%)    |                      | 95            |
|                  | Concrete Temperature (°F)    |                      | 90            |
|                  | Slump (in.)                  |                      | 8             |
|                  | Unit Weight (pcf)            |                      | 146.68        |
|                  | Air Content (%)              |                      | 5.9           |
|                  |                              | 1 Day                | 6400          |
|                  |                              | 3 Day                | 7570          |
|                  |                              | 7 Day                | 8480          |
|                  | -                            | 28 Day               | 9170          |
| rties            | Compressive Strength in psi  | 56 Day               | 9740          |
| Proper           |                              | 1 Day                | 590           |
| lened            | Tensile Strength in psi      | 28 Day               | 615           |
| Haro             |                              | 1 Day                | 4780          |
|                  | Modulus of Elasticity in psi | 28 Day               | 6120          |
|                  | Calculated Modulus of        |                      |               |
|                  | elasticity                   | 1 Day                | 4690          |
|                  | using ACI method in psi      | 28 Day               | 5610          |

| 3.4.4- Fresh and Harden properties for Concrete II |                              |        |               |  |  |  |
|----------------------------------------------------|------------------------------|--------|---------------|--|--|--|
|                                                    |                              |        | Date:06/17/04 |  |  |  |
|                                                    | Air Temperature (°F)         |        | 82            |  |  |  |
| Fresh Properties                                   | Relative Air Humidity (%)    |        | 95            |  |  |  |
|                                                    | Concrete Temperature (°F)    |        | 90            |  |  |  |
|                                                    | Slump (in.)                  |        | 8             |  |  |  |
|                                                    | Unit Weight (pcf)            |        | 152.68        |  |  |  |
|                                                    | Air Content (%)              |        | 1.8           |  |  |  |
|                                                    |                              | 1 Day  | 9230          |  |  |  |
|                                                    | _                            | 3 Day  | 10910         |  |  |  |
|                                                    | _                            | 7 Day  | 12,230        |  |  |  |
|                                                    | -                            | 28 Day | 13,010        |  |  |  |
| ties                                               | Compressive Strength in psi  | 56 Day | 13,790        |  |  |  |
| Proper                                             |                              | 1 Day  | 720           |  |  |  |
| ened ]                                             | Tensile Strength in psi      | 28 Day | 880           |  |  |  |
| Hard                                               |                              | 1 Day  | 5880          |  |  |  |
|                                                    | Modulus of Elasticity in psi | 28 Day | 7140          |  |  |  |
|                                                    | Calculated Modulus of        |        |               |  |  |  |
|                                                    | elasticity                   | 1 Day  | 5980          |  |  |  |
|                                                    | using ACI method in psi      | 28 Day | 7100          |  |  |  |
|        | 3.4.5 - Fresh and Hai       | rden properties fo | or Concrete III |
|--------|-----------------------------|--------------------|-----------------|
|        |                             |                    | Date:6/16/2004  |
|        | Air Temperature             | (°F)               | 82              |
| s      | Relative Air Humid          | ity (%)            | 95              |
| pertie | Concrete Temperati          | ure (°F)           | 90              |
| sh Prc | Slump (in.)                 |                    | 9.5             |
| Fre    | Unit Weight (p              | cf)                | 157.7           |
|        | Air Content (9              | 6)                 | 2.4             |
|        |                             | 1 Day              | 11,150          |
| s      |                             | 7 Day              | 13,850          |
| pertie |                             | 28 Day             | 16,210          |
| ed Pro | Compressive Strength in psi | 56 Day             | 17,440          |
| arden  |                             |                    |                 |
| H      | Modulus of Elasticity       | 28 Day             | 7590            |
|        | Calculated Modulus          | 28 Day             | 8320            |

## 3.3.5 Summary and Conclusion from trial batching

The concrete trial batching was conducted in order to get desired five desired compressive strength with workable mixture to be applied in the NASP Bond Test and beams in Prestressing Plant. Materials, water to cement ratio, mineral and chemical admixtures had significant effects on the fresh and hardened properties of the concrete. From the trial batching in the lab, the following wee concluded:

- For C-N, cement content of 650 PCY and w/c ratio of 0.46 will give the target strength of 4,000 psi one day strength.
- For C-I, cement content of 800 PCY and w/c ratio of 0.36 will give the target strength of 6,000 psi one day strength.
- For C-IA, cement content of 800 PCY and w/c ratio of 0.34, 1.875 fl. Oz AE-90 will give the target strength of 6,000 psi one day strength.
- For C-II, cement content of 800 PCY and w/c ratio of 0.30 will give the target strength of 8,000 psi one day strength.
- For C-III, cement content of 1000 PCY with 10 % slag replacement and w/c ratio of 0.24 and 7 fl. Oz HES will give the target strength of 10,000 psi one day.
- Chemical and mineral admixtures had significant effects on the fresh and hardened concrete properties. The chemical admixtures were used to increase the slump of the fresh concrete and to get high early strength.
- As the strength of concrete was high, the dosage of high range water reducers increased in order to get the required slump.
- A high early strength admixture was used for concrete C-III in order to get one day strength of 10,000 psi.
- Based on the Master Builder's recommendation, the high range water reducer, Glenium 3030 was replaced by Glenium 3400 HES as it is a new product.
- Mineral admixture fly ash (Type C) and blast furnace slag (New Cement) were used to increase the compressive strengths of the concrete. Based on the trial

batches performed at OSU Lab as shown in Table 3.5, fly ash had a lower effect

on the early compressive strength of concrete than blast furnace slag.

|           |                                |           | 6/9/2004 | 6/14/2004 | 6/10/2004 | 6/11/2004 | 6/16/2004 |
|-----------|--------------------------------|-----------|----------|-----------|-----------|-----------|-----------|
|           | Cement (PC)                    | ()        | 1000     | 900       | 800       | 900       | 900       |
|           | 10 % Fly Ash (F                | PCY)      | _        | 100       | _         | _         | _         |
|           | 10 % Slag (PC                  | Y)        | _        | _         | _         | 100       | 100       |
|           | 20 % Slag (PC                  | CY)       | _        | _         | 200       | _         | _         |
|           | Coarse Agg. (PCY)              |           | 1800     | 1800      | 1800      | 1800      | 1800      |
| suo       | Fine Agg. (PC                  | CY)       | 1141.7   | 1163.4    | 1141.7    | 1188.6    | 1188.6    |
| porti     | Water (PCY                     | )         | 260      | 240       | 260       | 240       | 240       |
| Mix Pro   | Glenium 3030N<br>oz/cwt)       | S (fl.    | 6.5      | 22        | 6.5       | 30        | 22        |
|           | Glenium 3200HF<br>oz/cwt)      | ES (fl.   | 6.92     | 7         | 6.92      | 7         | 7         |
|           | Polyheed 997V<br>(fl.oz/cwt)   | WR        | 3        | 3         | 3         | 3         | 3         |
|           | w/cm                           |           | 0.26     | 0.24      | 0.26      | 0.24      | 0.24      |
|           | Air Temperature                | e (°F)    | 90       | 77        | 90        | 90        | 82        |
| ies       | Relative Air Humidity<br>(%)   |           | 84       | 95        | 85        | 85        | 95        |
| h Proper  | Concrete Temper<br>(°F)        | rature    | 85       | 90        | 85        | 86        | 90        |
| Fres      | Slump (in.)                    |           | 8.4      | 10        | 3         | 10        | 9.5       |
|           | Unit Weight (p                 | ocf)      | 157.70   | 159.70    | 154.68    | 159.68    | 157.70    |
|           | Air Content (                  | %)        | 2.4      | 2.3       | 2.8       | 1.3       | 2.4       |
| ties      |                                | 1<br>Day  | 11,000   | 10,850    | 9890      | 12,080    | 11,150    |
| ed Proper | Compressive<br>Strength in psi | 7<br>Day  | 13,460   | 14,340    | 13,040    | 14,330    | 13,850    |
| Hardene   |                                | 28<br>Day | 14,660   | 16,570    | 14,170    | 16,900    | 16,210    |
|           |                                | 56        | 15,200   | 16,720    | 14,570    | 16,960    | 17,440    |

Table 3.5-Concrete Mix Design, Fresh and Harden properties for Concrete III-OSU

- The replacement of cement with 10 % blast furnace yielded the required 28 or 56 day strength as shown in Table 3.5. The 28 day compressive strength was 6.1 % greater than without cementitious replacement and 12.8 % more for 56 day.
- Water to cement ratio (w/c) and water to cementitious ratio (w/cm) had a significant effect on concrete strength. Decreasing the water to cement ratio increased the compressive strength of concrete.

## **3.4. NASP TESTS IN CONCRETE**

The NASP Bond Test specimen designs were established to give an easy repeatable and simple test to assess the bond performance of strand. The NASP Bond Test can be simply conducted at most testing facilities. The test carriage, test specimen, and LVDT can be seen Figure 3.1.The bond tests were tested using similar procedures as in the NASP grout pullout testing by Russell and Paulsgrove (1999b).

In this research program, four different sources of North American seven wire strands were used. The NASP Bond Test engaged pulling a member of strand out of an 18 in. tall by 5 in. diameter cylinder of concrete. Load verses slip curves were produced with the resulting data.

#### 3.4.1. Procedure

The first part of the NASP testing program was the fabrication of the NASP Bond Test specimens. One NASP Test consists of tests on six individual specimens. The next part is testing procedure. To allow for testing within the specified time range, the casts were spaced one hour apart. Strict control over testing and curing parameters were used.

#### 3.4.1.1. Specimen Design

The Prestressing strands used in the testing program were seven wire low relaxation strands of 0.5 in. diameter and 0.6 in diameter. The NASP Bond Test specimen mold was made with 5 in. outer diameter, 1/8 in. thick, 18 in. long steel pipe. The tube was cut to 18 in. in length and conformed to ASTM A 513 Type I. The base of the cylinders was closed using <sup>1</sup>/<sub>4</sub> in. thick steel plate that measured 6 in. by 6 in. that conformed to ASTM A 36. The strand was accommodated by the hole drilled in the center of the plat. The steel tube was welded to the base plate with a continuous weld.

Strand specimens for NASP Test were taken from four different reel of prestressing strand. Six strand specimens are required from the same reel in each test. The strand specimens conformed to ASTM A 416 and were used for prestressing application.

The bonded length of the strand was 16 in., with a 2 in. long bond breaker. A 1 <sup>3</sup>/<sub>4</sub> '' long Styrofoam and tape were used to made the bond breaker which are attached to the strand. The specimens were placed vertical on a wooden block. The holes in the base plates were aligned with holes drilled in the wooden block to accommodate strand protruding from the bottom of the specimen. Thirty two in. of lengths of strand were placed in the tubes. The duct tape bond breaker rested on the base plate and located the strand vertically.

The mixed concrete poured were mixed and poured into the tubes. The concretes were mechanically consolidated by vibrator in conformance with ASTM C 192. After the mixture had been vibrated, the tops of the specimens received a trowel finish. Three 4 x 8 in. test cylinders were made according to ASTM in order to test compressive strength before pull-out tests, three compressive strength tests after two specimens of pullout tests

30

performed and the last three compressive after four specimens of pullout test conducted. During batching, the slump, unit weight, air content, ambient temperature, concrete temperatures were recorded.

The concrete test specimens and the 4x8 in. test cylinders were cured in conformance with ASTM C 192. The concrete was cured at  $73 \pm 3^{0}$  F from the time of molding until the time of test.

#### 3.4.1.2. Testing Procedure

The NASP testing apparatus used consisted of a load frame as shown in figure 3.1and 3.2. The testing was conducted with two test frames. The specimen molds were placed on a  $\frac{1}{4}$  x 6x6 in. neoprene pad with a 9/16 in. hole. The neoprene rested on a  $\frac{3}{4}$  x 6x 6 in. steel plate with a 9/16 in. hole. The plates rested on the upper loading frame. For test frame one, the upper loading frame consisted of two 1.25 in. thick plates connected with two channels as shown in the figure 3.1. The upper plate had a 17/16 in hole to attach the loading frame to the MTS console, and the lower plate had a 9/16 in. slot to place the specimens in the frame. The lower loading frame consisted of two 1.25 in. thick plates at two channels as depicted in the figures. The lower plate had a 17/16 in hole to attach the loading frame to the MTS actuator and the upper plate had a 9/16 in. slot to place the specimens in the frame. Old test frame is used for NASP Bond test of Strand D for all types of concrete strengths.

Test frame two is needed for strands A (0.5 in.), A (0.6 in.), and B (0.5 in.).The capacity of old test fame is limited (25 Kips for the actuator) which was not enough for the above strands with HPC. Hence the new test frame was capable of running till 55 kips

and used for the strands mentioned above. For test frame two, the upper loading frame consisted of two 2.5 in thick plates and two channels as depicted in the figure. The upper pale had four 1 in. hole to attach the loading frame to the MTS actuator and the lower plate had a 9/16 in. slot to place the specimens in the frame. The lower loading frame consisted of two 2.5 in. thick plates and two channels as shown in the figure 3.2. The lower plate had a 17/16 in. hole to attach the loading frame to the 1.5 in. plate and floor. The upper plate had a 9/16 in. slot to place the specimens in the frame.

The pulls out forces were measured through the load cell of the MTS controller. The relative movement of the strand was measured on the free end through an LVDT and on the fixed end by the MTS actuator.

The MTS actuator pulled the strand at a rate of 0.10 in per minute. For test frame one, the strand was loaded approximately 6 in. from the end of the specimen while for test frame two tensions was applied to the strand using a hydraulic actuator powered by a pump driven by an electric motor. In order to gather data consistent with previously conducted NSAP pullout Tests, displacement control was used to position the hydraulic actuator.

A desk top computer was used to control the NASP pullout Test. The computer provided the signal to the MTS controller that controlled the operation of the hydraulic actuator. The stroke rate was set at 0.1 in/minute. The test was run for seven to ten minutes.

The hydraulic actuator used is an MTS (MTS systems corporation, Minneapolis, Minnesota) series 204 double en double acting actuator. The actuator was rated at 25 kips with a 3 in diameter rod and a 6 in stroke length and 55 kips for test frame two with a 12

32

in. diameter rod and a 6 in stroke length. The hydraulic pump was powered by an electric motor. An MTS model AA10VS071DFR Control unit operated the pump. The position of the hydraulic actuator was controlled using an MTS Model 490.01 Controller.

The pull- out force, MTS stroke, and free end (top of the strand) strand end slip were collected in an electric data acquisition system. The data was recorded two timed per second. The data was then analyzed to determine the pullout force at 0.01 in. and 0.1 in of free end strand slip. The loading rate was also determined from the data recorded.



Figure 3.1 Old Test Set Up



Figure 3.2 New Test Set Up

### **3.4.2 Materials**

### 3.4.2.1 Strand Source

Strands from four different sources were assessed to measure the different strand behaviors. The NASP Bond test was conducted using four of the strand sources. The strand sources used in all tests were in "as received" from manufacturer condition. All of the strands were cut to length using a table mounted cut-off saw. Clean plastic sheet was used to minimize dust and grease contamination. Once the strand was cut to desired lengths, the ends were beveled using a table-mounted sander to minimize handling risks from steel splintering.

#### **3.4.2.2. Strand Source specimen Identification**

The strands were labeled as follows: for the 0.5 in. strands A, B, C, D and for the 0.6 in strand A. The strand designations were assigned by and the manufacturing sources were anonymous except to the principal investigator. In both pullout tests, the letter designations above were used.

## **3.5 CONCRETE PRODUCTION AT PRECAST PLANT**

#### 3.5.1. Trial Batching

A number of trial batches for the plant batching were conducted at OSU laboratory to get the desired concrete strengths. To start with, the mix design from the laboratory and the materials from the plant were used. This is because the aggregate types were different, mixing procedures was different and curing condition was not according to ASTM requirement. To obtain one day strength of 10,000 for Concrete C-III was a problem at the plant especially during spring 2004. Hence changes were made to mix design for C-III that is the w/cm ratio was decreased and more HES dosage was used. Special treatment was given for the concrete cylinders by using steam curing during the whole night.

The trial batches done for the plant batching are indicated in Table 3.5.

|                                   | Table 3                  | 8.5.1. Tria | al Batches m | ade at OSU la | aboratory and | d materials fro | om Plant  |           |
|-----------------------------------|--------------------------|-------------|--------------|---------------|---------------|-----------------|-----------|-----------|
|                                   |                          |             |              | C-I           |               |                 | C-IA      |           |
|                                   |                          |             | 7/8/2004     | 7/20/2004     | 7/27/2004     | 7/8/2004        | 7/20/2004 | 7/27/2004 |
|                                   | Cement (PCY)             |             | 800          | 800           | 800           | 800             | 800       | 800       |
| S                                 | Coarse Agg. (PC)         | ľ)          | 1800         | 1800          | 1800          | 1800            | 1800      | 1800      |
| rtion                             | Fine Agg. (PCY           | )           | 1148         | 1191          | 1191          | 1137            | 1140      | 1140      |
| ropo                              | Water (PCY)              |             | 288          | 272           | 272           | 225             | 224       | 224       |
| lix P                             | Glenium 3030NS (fl. o    | oz/cwt)     | 8            | 8             | 8             | 18              | 18        | 18        |
| N                                 | MB-AE 90 (fl.oz/c        | wt)         | 3            | _             | _             | 3               | 2.5       | _         |
|                                   | Polyheed 997 (fl.oz/cwt) |             | _            | 3             | _             | 2.5             | 3         | _         |
|                                   | w/cm                     |             | 0.36         | 0.34          | 0.34          | 0.28            | 0.28      | 0.28      |
|                                   | Air Temperature (        | Ϋ́F)        | _            | 79            | _             | _               | 79        | _         |
| ties                              | Relative Air Humidit     | y (%)       | _            | 72            | _             | _               | 72        | _         |
| oper                              | Concrete Temperatur      | e (°F)      | _            | 98            | _             | _               | 98        | _         |
| sh Pr                             | Slump (in.)              |             | 6.5          | 9.25          | 4.0           | 4.5             | 9.75      | 10        |
| Free                              | Unit Weight (pcf         | )           | 149.50       | 145.20        | 150.88        | 150.50          | 145.12    | 154.12    |
|                                   | Air Content (%)          |             | 1.4          | 5.0           | 2.7           | 1.4             | 6.1       | 1.9       |
| Compressive Strength in psi 1 Day |                          | 5165        | 6190         | _             | 6220          | 6320            | _         |           |
|                                   | Calculated unit weight(P | CF)         | 149.48       | 150           | .48           | 146.74 146.81   |           | 5.81      |
|                                   | Required Air content(%   | 6)          | 2            | 2             | 2             | 6               |           | 3         |

|        | Table 3.5.2. Trial                | Batches ma | de at OSU labor | atory and mater | rials from Plant |          |
|--------|-----------------------------------|------------|-----------------|-----------------|------------------|----------|
|        | C                                 | -11        |                 |                 | C-III            |          |
|        |                                   | 7/8/2004   | 7/20/2004       | 7/8/2004        | 7/20/2004        | 8/5/2004 |
| ions   | Cement (PCY)                      | 800        | 800             | 900             | 900              | 900      |
|        | Slag(pcy)                         | _          | _               | 100             | 100              | 100      |
|        | Coarse Agg. (PCY)                 | 1800       | 1800            | 1800            | 1800             | 1700     |
| portic | Fine Agg. (PCY)                   | 1270       | 1319            | 1102            | 1102             | 1200     |
| Prol   | Water (PCY)                       | 240        | 224             | 240             | 240              | 240      |
| Mix    | Glenium 3030NS (fl. oz/cwt)       | 22         | 22              | 20              | 20               | 7        |
|        | Glenium 3400 (fl. oz/cwt)         | _          | _               | 7               | 7                | 13       |
|        | Polyheed 997 (fl.oz/cwt)          | 3          | 3               | 3               | 3                | _        |
|        | w/cm                              | 0.3        | 0.28            | 0.24            | 0.24             | 0.24     |
|        | Air Temperature (°F)              | _          | 79              | _               | 79               | 75       |
| ties   | Relative Air Humidity (%)         | _          | 72              | _               | 72               | 83       |
| oper   | Concrete Temperature (°F)         | _          | 98              | _               | 99               | 96       |
| sh Pr  | Slump (in.)                       | 9.5        | 10              | 10.0            | 10.0             | 9.0      |
| Free   | Unit Weight (pcf)                 | 154.00     | 151.92          | 156.60          | 154.28           | 152.76   |
|        | Air Content (%)                   |            | 2.5             | 1.4             | 2.4              | 2.4      |
| Comp   | Compressive Strength in psi 1 Day |            | 7650            | 8,920           | 10,200           | 11,240   |
| Ca     | Calculated unit weight(PCF)       |            | 153.44          | 153.41          | 153.41           | 153.33   |
|        | Required Air content(%)           | 2          | 2               | 2               | 2                | 2        |

# 3.5.2 Results of Production Batching

After conducting a number of trial batches for plant batching, concrete mix designs were selected to carry out rectangular and I beams for other related research work. The mixture designs are given in chapter 4.

# Chapter 4 4. TEST RESULTS

## **4.1 INTRODUCTION**

This chapter presents the test results from:

- NASP Bond Tests in concrete.
- Fresh and hardened concrete properties from NASP Bond Test.
- Fresh and hardened concrete properties for concrete cast in beams at Coreslab structures.

## **4.2 CONCRETE BATCHING**

Five different concretes, based principally on targeted release strengths were made in both the laboratory and the precast /prestressed concrete plant. The mix designs used for each were developed through trial batching described in chapter 3. Some alternations to the laboratory mix design were required for implementation at the precast plant.

The five concrete mixtures are designated as C-N, C-I, C-IA, C-II and C-III, with targeted release strengths of 4,000 psi, 6,000 psi , 6,000 psi with air entrainment, 8,000 psi, and 10,000 psi. The various concrete designations and targeted strengths are shown in Table 3.1.

The concrete mixtures were used for the NASP Tests in concrete, for the rectangular beams cast at Coreslab structures, Inc. and for the I-beams, also cast at Coreslab structures, Inc. in Oklahoma City. Table 3.1 shows the concrete type, the

strands that were tested in the NASP Bond Tests in concrete and the beams that were fabricated.

Concrete mix designs were developed through trial batching described in chapter 3. In this chapter, the results from NASP Bond Test in concrete are reported first. Along with the results of the bond tests, the mix designs and the fresh and hardened properties of concrete are also reported.

The mix designs and concrete properties from concrete cast for beam fabrication are reported after the NASP test results.

## 4.3. RESULTS FROM NASP BOND TESTS

NASP Pull out Tests were conducted on four strand samples with four different concrete strengths for each strand and two testing frames in conformance with the procedures defined in Appendix B. Six specimens from each of the four strand sources were tested for a total of 21 tests. Each specimen had a bonded length of 16 in. The tests were run for ten minutes and data points were collected every ten seconds. The tables show the pullout forces at two different intervals. The intervals include the pullout forces at 0.01 in. of slip and 0.1 in. of slip. The concrete compressive strength were tested before NASP test begins after conducting 3 NASP tests and during the last NASP load tests. The load rate and forces at free end strand slips were calculated from the data collected. The load rate was the load verses load rate curve. The flat portion of the curve was also the maximum loading rate of the specimen. Appendix E contains graphs of slip

verses load and load verses load rate. The compressive strength value used in the graphs is the value midway through the testing of the individual frame.

## 4.3.1. Results from the standardized NASP Bond Tests

The Standardized NASP Bond Test features a grout matrix to pull the strand from Tests performed in this thesis research feature NASP Bond Tests in concrete. The concrete matrix represents a deviation from the Standardized NASP Bond Test.

As part of related research performed and reported Chandran (2006), the Standardized NASP Bond Test was performed on strands that were used in this research. Table 4.1 reports the results of the Standardized NASP Bond Tests. From these results, NCHRP ID strands A, B, and D were chosen from the samples of 0.5 in. diameter strands. Strand A (or A6) was chosen from the available 0.6 in. diameter strands.

# Table 4.1: NASP RESULTS SUMMARY at OSU Laboratory

|                  | l<br>(in)          | Q     | #     | Mortar                | NASP T                            | est Re                         | sults         |      |                          |
|------------------|--------------------|-------|-------|-----------------------|-----------------------------------|--------------------------------|---------------|------|--------------------------|
| NASP I<br>STRAND | Stranc<br>Diameter | NCHRP | Batch | $\bar{f}'_{ci}$ (psi) | Pull Out<br>Force at<br>0.1" slip | Num<br>ber of<br>Speci<br>mens | STDEV<br>(LB) | w/c  | Load<br>Displ.<br>Contrc |
| С                | 0.5                | D     | 8N    | 4765                  | 6,870                             | 12                             | 861           | 0.45 | DC                       |
| G                | 0.5                | А     | 11N   | 4730                  | 20,710                            | 11                             | 1604          | 0.45 | DC                       |
| G                | 0.5                | А     | 14N   | 4953                  | 20,010                            | 12                             | 3088          | 0.45 | LC                       |
| G                | 0.5                | А     | 15N   | 4815                  | 21,930                            | 6                              | 1106          | 0.45 | LC                       |
| G                | 0.5                | А     | 15N   | 4815                  | 21,190                            | 6                              | 1333          | 0.45 | DC                       |
| С                | 0.5                | D     | 17N   | 4484                  | 8,710                             | 5                              | 432           | 0.45 | LC                       |
| С                | 0.5                | D     | 17N   | 4484                  | 6,910                             | 5                              | 338           | 0.45 | DC                       |
| G                | 0.5                | А     | 21N   | 4043                  | 20,060                            | 12                             | 1129          | 0.5  | LC                       |
| С                | 0.5                | D     | 22N   | 4117                  | 6,110                             | 12                             | 421           | 0.5  | DC                       |
| G                | 0.5                | А     | 23N   | 3981                  | 16,360                            | 12                             | 1629          | 0.5  | DC                       |
| С                | 0.5                | D     | 24N   | 5763                  | 8,420                             | 12                             | 415           | 0.4  | DC                       |
| Κ                | 0.6                |       | 27N   | 4933                  | 19,010                            | 5                              | 4311          | 0.45 | DC                       |
| L                | 0.6                | А     | 27N   | 4933                  | 17,960                            | 6                              | 1292          | 0.45 | DC                       |
| Κ                | 0.6                |       | 28N   | 4843                  | 22,420                            | 5                              | 1964          | 0.45 | DC                       |
| L                | 0.6                | А     | 28N   | 4843                  | 18,610                            | 6                              | 717           | 0.45 | DC                       |
| Α                | 0.5                | С     | 29N   | 4723                  | 14,130                            | 6                              | 1144          | 0.45 | DC                       |
| Е                | 0.5                |       | 29N   | 4723                  | 15,950                            | 6                              | 1266          | 0.45 | DC                       |
| J                | 0.5                | В     | 30N   | 4723                  | 19,330                            | 5                              | 808           | 0.45 | DC                       |
| Е                | 0.5                |       | 30N   | 4723                  | 17,210                            | 6                              | 823           | 0.45 | DC                       |
| J                | 0.5                | В     | 31N   | 4927                  | 21,090                            | 6                              | 733           | 0.45 | DC                       |
| Α                | 0.5                | С     | 31N   | 4927                  | 13,300                            | 6                              | 1763          | 0.45 | DC                       |
| Η                | 0.5                |       | 34N   | 4659                  | 15,940                            | 6                              | 1153          | 0.45 | DC                       |
| F                | 0.5                |       | 34N   | 4659                  | 13,570                            | 6                              | 968           | 0.45 | DC                       |
| Η                | 0.5                |       | 35N   | 4659                  | 18,080                            | 6                              | 1202          | 0.45 | DC                       |
| F                | 0.5                |       | 35N   | 4659                  | 16,540                            | 6                              | 684           | 0.45 | DC                       |
| Ι                | 0.5                |       | 36N   | 4451                  | 12,100                            | 6                              | 1455          | 0.45 | DC                       |
| В                | 0.5                |       | 36N   | 4451                  | 13,440                            | 6                              | 1243          | 0.45 | DC                       |
| Ι                | 0.5                |       | 37N   | 4724                  | 14,710                            | 6                              | 1181          | 0.45 | DC                       |
| В                | 0.5                |       | 37N   | 4724                  | 15,600                            | 6                              | 1044          | 0.45 | DC                       |
| Κ                | 0.6                |       | 38N   | 4153                  | 19,510                            | 12                             | 2079          | 0.45 | DC                       |
| D                | 0.5                | E     | 39N   | 4303                  | 5,240                             | 6                              | 635           | 0.45 | DC                       |

## 4.3.2. NASP Bond Tests in Concrete on strand D

Table 4.2 reports the results of NASP Bond Test in concrete on strand D. The table shows that the NASP Bond Test gave pull-out results as low as 6,660 with concrete strength equal to 4,560 psi to a high of 11,560 with concrete strength of 9,883 psi. Note from Table 4.1, strand D when tested in grout had an average pull out value of approximate 6,900 lbs. Note that OT was used for strand D.

|       |      |           |                        | NASP Te  | sts   |        |      |      |
|-------|------|-----------|------------------------|----------|-------|--------|------|------|
| ype   | 0    |           |                        | Pull Out |       |        |      | e    |
| ete T |      |           | Concrete               | Force    |       |        |      | Fram |
| oncre | STR/ | Testing   | Strength               | at 0.1"  |       | C.O.V. |      | Test |
| Ŭ     |      | Date      | f <sub>c</sub> ' (psi) | slip     | STDEV | (%)    | w/c  |      |
| C-N   | D    | 5-Feb-05  | 4,733                  | 7,479    | 248   | 3.32   | 0.45 | OT   |
| C-N   | D    | 16-Feb-05 | 4,558                  | 6,661    | 259   | 3.88   | 0.46 | OT   |
| C-I   | D    | 8-Feb-05  | 7,191                  | 8,961    | 1055  | 11.78  | 0.36 | OT   |
| C-I   | D    | 18-Feb-05 | 7,405                  | 9,512    | 836   | 8.79   | 0.38 | ОТ   |
| C-I   | D    | 23-Feb-05 | 6,546                  | 7,387    | 496   | 6.71   | 0.4  | OT   |
| C-I   | D    | 3-Mar-05  | 6,143                  | 6,737    | 609   | 9.04   | 0.4  | OT   |
| C-II  | D    | 12-Feb-05 | 8,483                  | 10,263   | 1237  | 12.05  | 0.3  | OT   |
| C-II  | D    | 17-Feb-05 | 8,420                  | 9,966    | 820   | 8.23   | 0.32 | OT   |
| C-III | D    | 18-Feb-05 | 9,883                  | 11,557   | 1386  | 11.99  | 0.26 | ОТ   |

Table 4.2. NASP Pull- Out Test Summary, Strand D

(OT – refers to Old test set up)

## 4.3.3. NASP Bond Tests in Concrete on strand A (0.5 in.)

Table 4.3 reports the results of NASP Bond Test in concrete on strand A (0.5 in.). The table shows that the NASP Bond Test gave pull-out results as low as 23,580 with concrete strength equal to 4,550 psi to a high of 35,290 with concrete strength of 11,640 psi. Note from Table 4.1, strand A when tested in grout had an average pull out value of approximate 20,070 lbs. Note that NT was used for strand A.

 Table 4.3. NASP Pull- Out Test Summaries; Strand A (0.5")

|        |           |          |                  | NASP T  | ests |       |       |       |
|--------|-----------|----------|------------------|---------|------|-------|-------|-------|
| e      |           |          |                  | Pull    |      |       |       |       |
| е Тур  | a<br>a    | Date     | Concrete         | Out     |      |       |       | ame   |
| Icrete | TRAN      | sting    | Strength         | Force   |      |       |       | st Fr |
| Con    | S         | ЦĞ       | f <sub>c</sub> ' | at 0.1" | STD  | C.O.V |       | Ψ     |
|        |           |          | (psi)            | slip    | EV   | (%)   | w/c   |       |
|        | А         |          |                  |         |      |       |       |       |
| C-N    | (0.5")    | 7-Sep-05 | 4,553            | 23,583  | 5568 | 23.61 | 0.425 | NT    |
|        | A         | 10-Sep-  |                  |         |      |       |       |       |
| 01     | (0.5")    | 05       | 6,937            | 26,353  | 1039 | 3.94  | 0.38  | Z     |
|        | А         |          |                  |         |      |       |       |       |
| C-II   | ( 0.5 " ) | 9-Sep-05 | 8,061            | 30,684  | 4549 | 14.83 | 0.36  | ΤN    |
|        | А         |          |                  |         |      |       |       |       |
| C-III  | (0.5")    | 9-Sep-05 | 11,643           | 35,288  | 4165 | 11.8  | 0.235 | NT    |

(NT – refers to New test set up)

#### 4.3.4. NASP Bond Tests in Concrete on strand B (0.5 in.)

Table 4.4 reports the results of NASP Bond Test in concrete on strand B (0.5 in.). The table shows that the NASP Bond Test gave pull-out results as low as 22,550 with concrete strength equal to 3,490 psi to a high of 34,330 with concrete strength of 10,040 psi. Note from Table 4.1, strand B when tested in grout had an average pull out value of approximate 20,210 lbs. Note that NT was used for strand B.

|       |      |              |                        | NASP Te   | ests  |       |      |      |
|-------|------|--------------|------------------------|-----------|-------|-------|------|------|
| ype   | ₽    |              |                        | Pull      |       |       |      | ne   |
| ete T | AND  |              | Concrete               | Out       |       |       |      | Fran |
| oncr  | STR. |              | Strength               | Force at  |       | C.O.V |      | Test |
| ပ     |      | Testing Date | f <sub>c</sub> ' (psi) | 0.1" slip | STDEV | (%)   | w/c  |      |
| C-N   | В    | 11-Aug-05    | 3,485                  | 22,546    | 2762  | 12.25 | 0.46 | NT   |
| C-I   | В    | 13-Aug-05    | 5,491                  | 30,796    | 2515  | 8.17  | 0.4  | NT   |
| C-II  | В    | 13-Aug-05    | 7,268                  | 28,780    | 2230  | 7.75  | 0.32 | NT   |
| C-III | В    | 25-Aug-05    | 10,036                 | 34,334    | 2640  | 7.69  | 0.24 | NT   |

 Table 4.4 NASP Pull- Out Test Summary, Strand B (0.5 in.)

(NT – refers to New test set up)

#### 4.3.5. NASP Bond Tests in Concrete on strand A (0.6 in.)

Table 4.5 reports the results of NASP Bond Test in concrete on strand A (0.6 in.). The table shows that the NASP Bond Test gave pull-out results as low as 11,610 with concrete strength equal to 2,230 psi to a high of 28,740 with concrete strength of 10,340 psi. Note from Table 4.1, strand B when tested in grout had an average pull out value of approximate 18,290 lbs. Note that NT was used for strand A (0.6 in.)

|       |           |           |                  | NASP Tes  | sts  |       |      |       |
|-------|-----------|-----------|------------------|-----------|------|-------|------|-------|
| e     |           |           |                  | Pull      |      |       |      |       |
| , Typ |           | Date      | Concrete         | Out       |      |       |      | ame   |
| crete | RAN       | sting     | Strength         | Force     | DEV  |       |      | st Fr |
| Con   | SI        | Te        | f <sub>c</sub> ' | At        | ST   | C.O.V |      | Те    |
|       |           |           | (psi)            | 0.1" slip |      | (%)   | w/c  |       |
|       | А         |           |                  |           |      |       |      | NT    |
| C-N   | (0.6 ")   | 5-Aug-05  | 2,230            | 11,607    | 662  | 5.71  | 0.46 |       |
|       | А         |           |                  |           |      |       |      | NT    |
| C-I   | (0.6")    | 30-Aug-05 | 4,965            | 23,129    | 1442 | 6.24  | 0.38 |       |
|       | A         |           |                  |           |      |       |      | NT    |
| C-II  | ( 0.6 " ) | 1-Sep-05  | 8,789            | 24,839    | 1772 | 7.13  | 0.28 |       |
|       | А         |           |                  |           |      |       | 0.23 | NT    |
| C-III | (0.6 ")   | 30-Aug-05 | 10,341           | 28,735    | 2331 | 8.11  | 5    |       |

Table 4.5 NASP Pull- Out Test Summaries; Strand A (0.6")

(NT – refers to New test set up)

## 4.3.6 NASP Bond Tests on Mortar, Strand B (0.5 in.)

Table 4.6 reports the results of NASP Bond Test in mortar on strand B (0.5 in.). The table shows that the NASP Bond Test gave equal results for both Old Test set up and New test set up of an average pull out value of 23,300 psi with mortar.

| ed.         | 0         |              |                                                | NASP Tests                              |       |              |       |           |
|-------------|-----------|--------------|------------------------------------------------|-----------------------------------------|-------|--------------|-------|-----------|
| Concrete Ty | STRAND II | Testing Date | Concrete<br>Strength<br>f <sub>c</sub> ' (psi) | Pull<br>Out<br>Force<br>at 0.1"<br>slip | STDEV | C.O.V<br>(%) | w/c   | Test Fram |
| Mortar      | В         | 27-Aug-05    | 4,636                                          | 23,521                                  | 383   | 1.63         | 0.425 | OT        |
| Mortar      | В         | 27-Aug-05    | 4,636                                          | 23,091                                  | 911   | 3.94         | 0.425 | NT        |

Table 4.6 NASP Pull- Out Test on Mortar, Strand B

# 4.4 CONCRETE PROPERTIES FOR NASP BOND TESTS

The concrete mix designs for the NASP Bond tests were based on trial batches performed at OSU laboratory. The mix designs, fresh and hardened properties for each batch of concrete are reported in Tables below.

|                  | Table 4.7. Co | oncrete Mi   | ix design, f | fresh and ] | Hardened | Properties | s for    |  |  |  |
|------------------|---------------|--------------|--------------|-------------|----------|------------|----------|--|--|--|
|                  |               |              | NASP B       | ond Tests   |          |            |          |  |  |  |
| Concrete C-N     |               |              |              |             |          |            |          |  |  |  |
|                  |               |              | C-N          | C-N         | C-N      | C-N        | C-N      |  |  |  |
| Mix Proportions  |               |              | Date:        | Date:       | Date:    | Date       | Date:    |  |  |  |
|                  |               |              | 08/03/05     | 02/15/05    | 08/03/05 | 08/10/05   | 09/06/05 |  |  |  |
|                  | Cement (PCY)  |              |              | 650         | 650      | 650        | 650      |  |  |  |
|                  | Coarse Agg    | g. (PCY)     | 1800         | 1800        | 1800     | 1800       | 1800     |  |  |  |
|                  | Fine Agg.     | (PCY)        | 1259         | 1243        | 1243     | 1243       | 1300     |  |  |  |
| tions            | Water (PCY)   |              | 292          | 298         | 298      | 298        | 276      |  |  |  |
| roport           | Glenium       | Glenium 3400 |              | 8           | 8        | 8          | 8        |  |  |  |
| Mix P            | (fl. oz/cwt)  |              |              |             |          |            |          |  |  |  |
|                  | w/cm          |              | 0.45         | 0.46        | 0.460    | 0.46       | 0.425    |  |  |  |
|                  | Air Temper    | ature (°F)   | 78           | 82          | 79       | 77         | 73       |  |  |  |
|                  | Relative Hur  | nidity (%)   | 22           | 24          | 72       | 28         | 76       |  |  |  |
|                  | Concrete Te   | mperature    | 71           | 75          | 80       | 81         | 76       |  |  |  |
| erties           | (°F           | )            |              |             |          |            |          |  |  |  |
| Prope            | Slump         | (in.)        | 10           | 10          | 8        | 8.25       | 10.5     |  |  |  |
| Fresh            | Unit Weig     | ht (pcy)     | 147.8        | 146.8       | 141.8    | 147.8      | 145.8    |  |  |  |
|                  | Air Conte     | ent (%)      | 4.5          | 2.5         | 5        | 2.9        | 3.9      |  |  |  |
| sa<br>sa         | Compressive   |              |              |             |          |            |          |  |  |  |
| arden6<br>operti | Strength in   | 1 Day        | 4730         | 4560        | 2230     | 3485       | 4550     |  |  |  |
| H.<br>Pr         | psi           |              |              |             |          |            |          |  |  |  |

|                        | Table 4.8 Concr                | ete Mix               | design, fre | sh and Ha | rdened Pr | operties fo | or       |  |  |  |  |
|------------------------|--------------------------------|-----------------------|-------------|-----------|-----------|-------------|----------|--|--|--|--|
|                        |                                |                       | NASP Bon    | d Tests   |           |             |          |  |  |  |  |
| Concrete C-I           |                                |                       |             |           |           |             |          |  |  |  |  |
| C-I C-I C-I C-I C-I    |                                |                       |             |           |           |             |          |  |  |  |  |
|                        | Mix Proportions                |                       |             | Date:     | Date:     | Date:       | Date:    |  |  |  |  |
|                        |                                |                       | 02/07/05    | 02/17/05  | 08/12/05  | 08/29/05    | 09/09/09 |  |  |  |  |
|                        | Cement (PC                     | CY)                   | 800         | 800       | 800       | 800         | 800      |  |  |  |  |
|                        | Coarse Agg. (                  | 1800                  | 1800        | 1800      | 1800      | 1800        |          |  |  |  |  |
| IS                     | Fine Agg. (P                   | CY)                   | 1144        | 1102      | 1060      | 1102        | 1102     |  |  |  |  |
| ortior                 | Water (PCY)                    |                       | 288         | 304       | 320       | 304         | 304      |  |  |  |  |
| x Prop                 | Glenium 3400 (fl. oz/cwt)      |                       | 8           | 16        | 8         | 8           | 8        |  |  |  |  |
| Mi                     | w/cm                           |                       | 0.36        | 0.38      | 0.40      | 0.38        | 0.38     |  |  |  |  |
|                        | Air Temperatur                 | re (°F)               | 77          | 84        | 77        | 81          | 91       |  |  |  |  |
|                        | Relative Humid                 | Relative Humidity (%) |             |           | 28        | 64          | 21       |  |  |  |  |
| Sc                     | Concrete Tempera               | ature (°F)            | 72          | 73        | 80        | 81          | 82       |  |  |  |  |
| pertic                 | Slump (in                      | .)                    | 9.5         | 10        | 10.25     | 10          | 10       |  |  |  |  |
| sh Prc                 | Unit Weight (                  | (pcy)                 | 147.8       | 151.8     | 146.8     | 145.8       | 147.8    |  |  |  |  |
| Fre                    | Air Content                    | (%)                   | 3           | 1.5       | 1.4       | 1.0         | 2.4      |  |  |  |  |
| Hardened<br>Properties | Compressive<br>Strength in psi | 1 Day                 | 7190        | 7405      | 5490      | 4965        | 6940     |  |  |  |  |

| Table 4.9.Concrete Mix design, fresh and Hardened Properties for NASP Bond Tests |               |               |               |               |               |               |               |  |
|----------------------------------------------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--|
|                                                                                  | Concrete C-II |               |               |               |               |               |               |  |
|                                                                                  |               |               |               |               |               |               |               |  |
| Mix Prope                                                                        | ortions       | C-II          | C-II          | C-II          | C-II          | C-II          | C-II          |  |
|                                                                                  |               | Date:02/09/05 | Date:02/11/05 | Date:02/16/05 | Date:08/12/05 | Date:08/30/05 | Date:09/08/05 |  |
| Cement (                                                                         | PCY)          | 800           | 800           | 800           | 800           | 800           | 800           |  |
| Coarse Agg                                                                       | g. (PCY)      | 1800          | 1800          | 1800          | 1800          | 1800          | 1800          |  |
| Fine Agg.                                                                        | (PCY)         | 1270          | 1270          | 1234          | 1230          | 1102          | 1314          |  |
| Water (PCY)                                                                      |               | 240           | 240           | 298           | 256           | 304           | 224           |  |
| Glenium 3400 (fl. oz/cwt)                                                        |               | 16            | 16            | 8             | 8             | 8             | 8             |  |
| w/cr                                                                             | n             | 0.30          | 0.30          | 0.46          | 0.32          | 0.38          | 0.28          |  |
| Air Tempera                                                                      | ature (°F)    | 66            | 72            | 82            | 81            | 91            | 81            |  |
| Relative Hur                                                                     | midity(%)     | 25            | 24            | 24            | 62            | 21            | 58            |  |
| Concrete Temp                                                                    | erature (°F)  | 70            | 70            | 70            | 80            | 82            | 82            |  |
| Slump                                                                            | (in.)         | 8             | 9.75          | 9.5           | 6             | 10            | 8             |  |
| Unit Weight (pcy)                                                                |               | 151.8         | 151.8         | 152.8         | 153.8         | 147.8         | 151.8         |  |
| Air Conte                                                                        | ent (%)       | 2.7           | 0.8           | 1.0           | 3.0           | 2.4           | 4.0           |  |
| Compressive<br>Strength in psi                                                   | 1 Day         | 9780          | 8480          | 8420          | 7270          | 6940          | 8790          |  |

| Table 4.10 Concrete Mix design, fresh and Hardened Properties for NASP |                                |          |                   |                   |                   |                   |  |
|------------------------------------------------------------------------|--------------------------------|----------|-------------------|-------------------|-------------------|-------------------|--|
|                                                                        | Pull-Out Tests Concrete C-III  |          |                   |                   |                   |                   |  |
|                                                                        | C-III C-III C-III C-III        |          |                   |                   |                   |                   |  |
|                                                                        | Mix Proportions                |          | Date:<br>02/17/05 | Date:<br>08/24/05 | Date:<br>08/29/05 | Date:<br>09/08/05 |  |
|                                                                        | Cement (PC                     | CY)      | 900               | 900               | 900               | 900               |  |
|                                                                        | Slag(PCY                       | ()<br>() | 100               | 100               | 100               | 100               |  |
|                                                                        | Coarse Agg. (                  | PCY)     | 1800              | 1800              | 1800              | 1800              |  |
| ions                                                                   | Fine Agg. (PCY)                |          | 1048              | 1097              | 1110              | 1110              |  |
| roport                                                                 | Water (PCY)                    |          | 260               | 240               | 235               | 235               |  |
| Mix P                                                                  | Glenium 3400 (fl. oz/cwt)      |          | 18                | 18                | 18                | 18                |  |
| L.                                                                     | Glenium 3200 (fl. oz/cwt)      |          | 7                 | 7                 | 7                 | 7                 |  |
|                                                                        | Polyheed 997 (fl. oz/cwt)      |          | 3                 | 3                 | 3                 | 3                 |  |
|                                                                        | w/cm                           |          | 0.260             | 0.24              | 0.235             | 0.235             |  |
|                                                                        | Air Temperatu                  | re (°F)  | 84                | 73                | 81                | 79                |  |
| ş                                                                      | Relative Humidity(%)           |          | 21                | 72                | 52                | 62                |  |
| pertie                                                                 | Concrete Temperature (°F)      |          | 78                | 83                | 81                | 83                |  |
| sh Prc                                                                 | Slump (in.)                    |          | 10.5              | 8.5               | 10                | 8                 |  |
| Fre                                                                    | Unit Weight                    | (pcy)    | 156.8             | 154.8             | 153.8             | 158.8             |  |
|                                                                        | Air Content                    | (%)      | 0.8               | 2.2               | 2.5               | 2.0               |  |
|                                                                        | Compressive<br>Strength in psi | 9,860    | 4,560             |                   | 10,340            | 11,640            |  |

# 4.5. Results of concrete cast at Precast Plant

Rectangular and I beams for other related research work were constructed using the mix designs prepared from trial batches at the plant. The mixture designs, the fresh and hardened concrete properties are given in tables below.

| Table 4.11 Concrete Mix Design, Fresh and Harden properties for Concrete IA |                                                  |        |            |  |  |  |  |
|-----------------------------------------------------------------------------|--------------------------------------------------|--------|------------|--|--|--|--|
|                                                                             | Core Slab Structures, Oklahoma City- Summer 2004 |        |            |  |  |  |  |
|                                                                             | With 6% Total A                                  | Air    |            |  |  |  |  |
|                                                                             |                                                  |        | Date:07/27 |  |  |  |  |
|                                                                             | Cement (PCY)                                     |        | 800        |  |  |  |  |
|                                                                             | Coarse Agg. (PCY)                                |        | 1814.4     |  |  |  |  |
| tions                                                                       | Fine Agg. (PCY)                                  |        | 1128.5     |  |  |  |  |
| 10do.                                                                       | Water (PCY)                                      |        | 218.79     |  |  |  |  |
| ix Pr                                                                       | Glenium 3030NS (fl. oz/cwt)                      |        | 8          |  |  |  |  |
| Μ                                                                           | Polyheed 997 (fl.oz/cwt)                         | 3      |            |  |  |  |  |
|                                                                             | w/cm                                             | 0.2735 |            |  |  |  |  |
|                                                                             | Concrete Temperature (°F)                        | 84     |            |  |  |  |  |
| ies                                                                         | Slump (in.)                                      | 6.5    |            |  |  |  |  |
| pert                                                                        | Unit Weight (pcf)                                | 147.9  |            |  |  |  |  |
| h prc                                                                       | Air Content (%)                                  | 5.6    |            |  |  |  |  |
| Fres                                                                        | Moisture Content of Rock (%)                     | 0.002  |            |  |  |  |  |
|                                                                             | Moisture Content of Sand (%)                     |        | 4.3        |  |  |  |  |
|                                                                             |                                                  | 1 Day  | 7960       |  |  |  |  |
|                                                                             |                                                  | 7 Day  | 9070       |  |  |  |  |
|                                                                             | Compressive Strength in psi                      | 14 day | 9100       |  |  |  |  |
| erties                                                                      |                                                  | 28 Day | 10,250     |  |  |  |  |
| Prope                                                                       |                                                  | 56 Day | 11,420     |  |  |  |  |
| led H                                                                       | Tensile Strength in psi                          | 28 Day | 820        |  |  |  |  |
| ardeı                                                                       | Modulus of Elasticity                            | 28 Day | 5690       |  |  |  |  |
| H                                                                           | (psi)                                            | 20 Day | 5080       |  |  |  |  |
|                                                                             | Calculated Modulus of elasticity                 | 28 Day | 6010       |  |  |  |  |
|                                                                             | using ACI method(psi)                            | 20 Day | 0010       |  |  |  |  |

| Та      | Table 4.12. Concrete Mix Design, Fresh and Harden properties for Concrete II |          |               |               |  |  |  |
|---------|------------------------------------------------------------------------------|----------|---------------|---------------|--|--|--|
|         | Core Slab Structures, Oklahoma City- Summer 2004                             |          |               |               |  |  |  |
|         | With No Air                                                                  | Entrainm | nent          |               |  |  |  |
|         |                                                                              |          | Date:07/29/04 | Date:08/12/04 |  |  |  |
|         | Cement (PCY)                                                                 |          | 800           | 800           |  |  |  |
| ions    | Coarse Agg. (PCY)                                                            |          | 1805          | 1803.6        |  |  |  |
| port    | Fine Agg. (PCY)                                                              |          | 1218.9        | 1163.4        |  |  |  |
| Pro     | Water (PCY)                                                                  |          | 276.92        | 269.21        |  |  |  |
| Mix     | Glenium 3030 (fl. oz/cwt)                                                    |          | 14            | 4             |  |  |  |
|         | w/cm                                                                         |          | 0.346         | 0.337         |  |  |  |
|         | Concrete Temperature (°F)                                                    |          | 90            | 83            |  |  |  |
| rties   | Slump (in.)                                                                  |          | 9.5           | 8.25          |  |  |  |
| ope.    | Unit Weight (pcy)                                                            | 151.38   | 149.6         |               |  |  |  |
| h Pr    | Air Content (%)                                                              | 0.7      | 1.4           |               |  |  |  |
| Fres    | Moisture Content of Rock (%)                                                 | 0.8      | 0.6           |               |  |  |  |
|         | Moisture Content of Sand (%)                                                 |          | 7.5           | 4.2           |  |  |  |
|         |                                                                              | 1 Day    | 8570          | 5410          |  |  |  |
|         |                                                                              | 7 Day    | 11,000        | 7,310         |  |  |  |
|         | Compressive Strength in psi                                                  | 14 day   | 11,240        | 7,640         |  |  |  |
| ies     |                                                                              | 28 Day   | 12,680        | 7,910         |  |  |  |
| pert    |                                                                              | 56 Day   | 13,490        | 8,220         |  |  |  |
| d Pro   | Tensile Strength in psi                                                      | 28 Day   | 915           | 560           |  |  |  |
| Hardene | Modulus of Elasticity 28 Day                                                 |          | 5945          | 5110          |  |  |  |
|         | Calculated Modulus of elasticity<br>Using ACI method(psi)                    | 28 Day   | 6920          | 5470          |  |  |  |

| Table 4.13. Concrete Mix Design, Fresh and Harden properties for Concrete I         General State State |                                                           |                   |               |               |  |  |  |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------|---------------|---------------|--|--|--|
|                                                                                                         | Core Slab Structures, Oklahoma City – Summer 2004         |                   |               |               |  |  |  |
|                                                                                                         | Withou                                                    | t Air Entrainment |               |               |  |  |  |
|                                                                                                         |                                                           |                   | Date:08/02/04 | Date:08/12/04 |  |  |  |
|                                                                                                         | Cement (PCY)                                              |                   | 800           | 800           |  |  |  |
| ions                                                                                                    | Coarse Agg. (PCY)                                         |                   | 1702.9        | 1698.4        |  |  |  |
| port                                                                                                    | Fine Agg. (PCY)                                           |                   | 1202.5        | 1211.6        |  |  |  |
| Pro                                                                                                     | Water (PCY)                                               |                   | 303.18        | 300.57        |  |  |  |
| Mix                                                                                                     | Glenium 3400 (fl. oz/cwt                                  | )                 | 5             | 5             |  |  |  |
| r.                                                                                                      | w/cm                                                      |                   | 0.379         | 0.376         |  |  |  |
|                                                                                                         | Concrete Temperature (°F                                  | 90                | 82            |               |  |  |  |
| ties                                                                                                    | Slump (in.)                                               | 9.5               | 5.75          |               |  |  |  |
| opeı                                                                                                    | Unit Weight (pcf)                                         | 148.78            | 149.6         |               |  |  |  |
| h Pr                                                                                                    | Air Content (%)                                           | 1.5               | 1.2           |               |  |  |  |
| resl                                                                                                    | Moisture Content of Rock (                                | 0.2               | 0.6           |               |  |  |  |
| I                                                                                                       | Moisture Content of Sand (                                | %)                | 3.5           | 4.2           |  |  |  |
|                                                                                                         |                                                           | 1 Day             | 6183          | 4855          |  |  |  |
|                                                                                                         |                                                           | 7 Day             | 7110          | 6450          |  |  |  |
|                                                                                                         | Compressive Strength in psi                               | 14 day            | 7690          | 6940          |  |  |  |
| rties                                                                                                   |                                                           | 28 Day            | 8360          | 7510          |  |  |  |
| obe                                                                                                     |                                                           | 56 Day            | 8500          | 8040          |  |  |  |
| d Pr                                                                                                    | Tensile Strength in psi                                   | 28 Day            | 660           | 480           |  |  |  |
| Hardene                                                                                                 | Modulus of Elasticity 28 Day                              |                   | 5350          | 5140          |  |  |  |
|                                                                                                         | Calculated Modulus of elasticity<br>Using ACI method(psi) | 28 Day            | 5470          | 5230          |  |  |  |

| Table 4.14. Concrete Mix Design, Fresh and Harden properties for  |             |            |          |  |  |  |
|-------------------------------------------------------------------|-------------|------------|----------|--|--|--|
| Concrete III<br>Core Slab Structures, Oklahoma City – Summer 2004 |             |            |          |  |  |  |
| With                                                              | out Air E   | Intrainmen | t        |  |  |  |
|                                                                   |             | Date:      | Date:    |  |  |  |
|                                                                   |             | 08/09/04   | 08/12/04 |  |  |  |
| Cement (PCY)                                                      |             | 900        | 902.5    |  |  |  |
| Slag(PCY)                                                         |             | 100        | 100      |  |  |  |
| Coarse Agg. (PCY)                                                 |             | 1746.5     | 1718.4   |  |  |  |
| Fine Agg. (PCY)                                                   |             | 1182.7     | 1187.5   |  |  |  |
| Water (PCY)                                                       |             | 250.75     | 247.6    |  |  |  |
| Glenium 3200 (fl. oz/cwt                                          | t)          | 7          | 8        |  |  |  |
| Glenium 3400 (fl. oz/cwt                                          | t)          | 5.43       | 1.6      |  |  |  |
| w/cm                                                              |             | 0.251      | 0.247    |  |  |  |
| Concrete Temperature (°F)                                         |             | 109        | 82       |  |  |  |
| Slump (in.)                                                       | Slump (in.) |            | 10.5     |  |  |  |
| Unit Weight (pcf)                                                 |             | 151.1      | 151.1    |  |  |  |
| Air Content (%)                                                   |             | 1.9        | 1.4      |  |  |  |
| Moisture Content of Rock                                          | (%)         | 1.0        | 0.6      |  |  |  |
| Moisture Content of Sand (                                        | (%)         | 4.5        | 4.2      |  |  |  |
|                                                                   | 1 Day       | 9710       | 9150     |  |  |  |
|                                                                   | 7 Day       | 11,630     | 11,550   |  |  |  |
| Compressive Strength in psi                                       | 14 day      | 12,320     | 12,680   |  |  |  |
|                                                                   | 28 Day      | 12,650     | 12,770   |  |  |  |
|                                                                   | 56 Day      | 14,470     | 14,610   |  |  |  |
| Tensile Strength in psi 28 Day                                    |             | 870        | 900      |  |  |  |
| Modulus of Elasticity 28 Day                                      |             | 6870       | 7180     |  |  |  |
| Calculated Modulus of elasticity<br>Using ACI method(psi)         | 28 Day      | 7370       | 7410     |  |  |  |

| Table 4.15. CoresLab Structures Concrete Mix Design, Fresh and Harden |                     |                    |                     |  |  |  |
|-----------------------------------------------------------------------|---------------------|--------------------|---------------------|--|--|--|
| properties for Concrete I –ID-6-5-1                                   |                     |                    |                     |  |  |  |
|                                                                       |                     | Without Air Entrai | nment – Spring 2005 |  |  |  |
|                                                                       | Date:03/15/05       |                    |                     |  |  |  |
|                                                                       | Cemer               | nt (PCY)           | 800                 |  |  |  |
| SI                                                                    | Coarse A            | Agg. (PCY)         | 1713.3              |  |  |  |
| ortion                                                                | Fine Ag             | gg. (PCY)          | 1215.3              |  |  |  |
| x Prop                                                                | Water               | r (PCY)            | 300.55              |  |  |  |
| Mi                                                                    | Glenium 34          | 00 (fl. oz/cwt)    | 5                   |  |  |  |
|                                                                       | w                   | /cm                | 0.376               |  |  |  |
| se                                                                    | Concrete Te         | mperature (°F)     | 58                  |  |  |  |
| operti                                                                | Slump (in.)         |                    | 9                   |  |  |  |
| esh Pr                                                                | Unit Weight (pcy)   |                    | 148.12              |  |  |  |
| Fre                                                                   | Air Content (%)     |                    | 2                   |  |  |  |
|                                                                       |                     | 1 Day              | 5492                |  |  |  |
| rties                                                                 | Compressive         | 14 day             | 7260                |  |  |  |
| Prope                                                                 | Strength in psi     | 28 Day             | 8560                |  |  |  |
| lened                                                                 |                     | 56 Day             | 9840                |  |  |  |
| Hard                                                                  | Tensile strength in |                    |                     |  |  |  |
|                                                                       | psi                 | 28 Day             | 610                 |  |  |  |

| Table 4.16. CoresLab Structures Concrete Mix Design, Fresh and Harden |                                    |                    |                     |  |  |  |
|-----------------------------------------------------------------------|------------------------------------|--------------------|---------------------|--|--|--|
|                                                                       | properties for Concrete I- IB6-5-1 |                    |                     |  |  |  |
|                                                                       |                                    | Without Air Entrai | nment – Spring 2005 |  |  |  |
|                                                                       | L                                  |                    | Date:03/17/05       |  |  |  |
|                                                                       | Cemer                              | nt (PCY)           | 800.8               |  |  |  |
| Si                                                                    | Coarse A                           | Agg. (PCY)         | 1718.3              |  |  |  |
| ortion                                                                | Fine Ag                            | gg. (PCY)          | 1227.1              |  |  |  |
| k Prop                                                                | Wate                               | r (PCY)            | 303.7               |  |  |  |
| din                                                                   | Glenium 34                         | 00 (fl. oz/cwt)    | 5                   |  |  |  |
|                                                                       | w                                  | r/cm               | 0.379               |  |  |  |
| Ş                                                                     | Concrete Te                        | mperature (°F)     | 64                  |  |  |  |
| pertie                                                                | Slun                               | np (in.)           | 8.25                |  |  |  |
| sh Pro                                                                | Unit We                            | eight (pcy)        | 148.12              |  |  |  |
| Fre                                                                   | Air Co                             | ntent (%)          | 2.8                 |  |  |  |
|                                                                       |                                    | 1 Day              | 5810                |  |  |  |
| ties                                                                  | Compressive                        | 14 day             | 7860                |  |  |  |
| roper                                                                 | Strength in psi                    | 28 Day             | 8750                |  |  |  |
| ened I                                                                |                                    | 56 Day             | 9350                |  |  |  |
| Hard                                                                  | Tensile strength in                |                    |                     |  |  |  |
|                                                                       | psi                                | 28 Day             | 510                 |  |  |  |

| Table 4.17         CoresLab Structures Concrete Mix Design, Fresh and Harden |                                       |                 |               |  |  |
|------------------------------------------------------------------------------|---------------------------------------|-----------------|---------------|--|--|
| properties for Concrete I- IA-6-6-1                                          |                                       |                 |               |  |  |
|                                                                              | Without Air Entrainment – Spring 2005 |                 |               |  |  |
|                                                                              |                                       | L               | Date:03/22/05 |  |  |
|                                                                              | Cemer                                 | nt (PCY)        | 801.4         |  |  |
| S                                                                            | Coarse A                              | Agg. (PCY)      | 1704.6        |  |  |
| ortion                                                                       | Fine Ag                               | gg. (PCY)       | 1211.44       |  |  |
| ( Prop                                                                       | Wate                                  | r (PCY)         | 303.34        |  |  |
| Mi                                                                           | Glenium 34                            | 00 (fl. oz/cwt) | 5             |  |  |
|                                                                              | W                                     | /cm             | 0.380         |  |  |
| S                                                                            | Concrete Te                           | mperature (°F)  | 60            |  |  |
| pertie                                                                       | Slun                                  | np (in.)        | 5             |  |  |
| sh Pro                                                                       | Unit We                               | eight (pcy)     | 147.5         |  |  |
| Fre                                                                          | Air Co                                | ntent (%)       | 4.1           |  |  |
|                                                                              |                                       | 1 Day           | 4381          |  |  |
|                                                                              | Compressive                           | 7 Day           | 6872          |  |  |
| pertie                                                                       | Strength in psi                       | 14 day          | 7620          |  |  |
| ed Pro                                                                       | Suchgur in psi                        | 28 Day          | 8450          |  |  |
| ardene                                                                       |                                       | 56 Day          | 8990          |  |  |
| Η                                                                            | Tensile strength in                   |                 |               |  |  |
|                                                                              | psi                                   | 28 Day          | 790           |  |  |

| Table 4.18         CoresLab Structures Concrete Mix Design, Fresh and Harden |                      |               |                           |  |  |  |
|------------------------------------------------------------------------------|----------------------|---------------|---------------------------|--|--|--|
| properties for Concrete III – ID-10-5-1                                      |                      |               |                           |  |  |  |
|                                                                              |                      | Without Air H | Entrainment – Spring 2005 |  |  |  |
|                                                                              |                      | <u> </u>      | Date:03/15/05             |  |  |  |
|                                                                              | Cement (P            | CY)           | 906.7                     |  |  |  |
|                                                                              | Slag(PC)             | Y)            | 106.7                     |  |  |  |
| s                                                                            | Coarse Agg.          | (PCY)         | 1760                      |  |  |  |
| ortion                                                                       | Fine Agg. (I         | PCY)          | 1182.8                    |  |  |  |
| ( Prop                                                                       | Water (PC            | CY)           | 217.79                    |  |  |  |
| diy                                                                          | Glenium 3200 (f      | 1. oz/cwt)    | 2.25                      |  |  |  |
|                                                                              | Glenium 3400 (f      | 1. oz/cwt)    | 5                         |  |  |  |
|                                                                              | w/cm                 |               | 0.215                     |  |  |  |
| s                                                                            | Concrete Temper      | rature (°F)   | 58                        |  |  |  |
| pertie                                                                       | Slump (in            | n.)           | 11.25                     |  |  |  |
| sh Pro                                                                       | Unit Weight          | (pcy)         | 150.88                    |  |  |  |
| Free                                                                         | Air Content          | 2 (%)         | 0.75                      |  |  |  |
|                                                                              |                      | 1 Day         | 8,225                     |  |  |  |
|                                                                              | Compressive Strength | 7 Day         | 12,975                    |  |  |  |
| perties                                                                      | in psi               | 14 day        | 13877                     |  |  |  |
| urdened Prop                                                                 | ni psi               | 28 Day        | 13790                     |  |  |  |
|                                                                              |                      | 56 Day        | 14160                     |  |  |  |
| Ηï                                                                           | Tensile Strength in  |               |                           |  |  |  |
|                                                                              | psi                  | 28 Day        | 880                       |  |  |  |
| Table 4.19 CoresLab Structures Concrete Mix Design, Fresh and Harden |                                       |             |               |  |  |  |  |
|----------------------------------------------------------------------|---------------------------------------|-------------|---------------|--|--|--|--|
| properties for Concrete III –IB-10-5-1                               |                                       |             |               |  |  |  |  |
|                                                                      | Without Air Entrainment – Spring 2005 |             |               |  |  |  |  |
|                                                                      | L                                     | I           | Date:03/17/05 |  |  |  |  |
|                                                                      | Cement (Pe                            | CY)         | 910           |  |  |  |  |
|                                                                      | Slag(PC)                              | Y)          | 100           |  |  |  |  |
| IS                                                                   | Coarse Agg.                           | (PCY)       | 1758.3        |  |  |  |  |
| ortion                                                               | Fine Agg. (I                          | PCY)        | 1188.11       |  |  |  |  |
| x Prop                                                               | Water (PC                             | CY)         | 255.13        |  |  |  |  |
| Mi                                                                   | Glenium 3200 (f                       | l. oz/cwt)  | 7             |  |  |  |  |
|                                                                      | Glenium 3400 (f                       | l. oz/cwt)  | 4.9           |  |  |  |  |
|                                                                      | w/cm                                  |             | 0.253         |  |  |  |  |
| Se                                                                   | Concrete Temper                       | rature (°F) | 64            |  |  |  |  |
| opertic                                                              | Slump (in                             | 1.)         | 10            |  |  |  |  |
| ssh Pro                                                              | Unit Weight                           | (pcy)       | 150.8         |  |  |  |  |
| Fre                                                                  | Air Content                           | 2(%)        | 3.3           |  |  |  |  |
|                                                                      |                                       | 1 Day       | 7,615         |  |  |  |  |
| S                                                                    | Compressive Strength                  | 7 Day       | 9,120         |  |  |  |  |
| pertie                                                               | in psi                                | 14 day      | 10980         |  |  |  |  |
| ed Prc                                                               | -                                     | 28 Day      | 12830         |  |  |  |  |
| larden                                                               |                                       | 56 Day      | 13490         |  |  |  |  |
| Н                                                                    | Tensile Strength in                   |             |               |  |  |  |  |
|                                                                      | psi                                   | 28 Day      | 860           |  |  |  |  |

| Tabl                                    | Table 4.20 CoresLab Structures Concrete Mix Design, Fresh and Harden |             |               |  |  |  |  |
|-----------------------------------------|----------------------------------------------------------------------|-------------|---------------|--|--|--|--|
| properties for Concrete III – IA-10-6-1 |                                                                      |             |               |  |  |  |  |
|                                         | Without Air Entrainment – Spring 2005                                |             |               |  |  |  |  |
|                                         |                                                                      |             | Date:04/12/05 |  |  |  |  |
|                                         | Cement (P                                                            | CY)         | 916.7         |  |  |  |  |
|                                         | Slag(PC)                                                             | Y)          | 106.7         |  |  |  |  |
| IS                                      | Coarse Agg.                                                          | (PCY)       | 1768.7        |  |  |  |  |
| portion                                 | Fine Agg. (I                                                         | PCY)        | 1139.4        |  |  |  |  |
| x Proj                                  | Water (PC                                                            | CY)         | 244.1         |  |  |  |  |
| Mi                                      | Glenium 3200 (f                                                      | 1. oz/cwt)  | 7             |  |  |  |  |
|                                         | Glenium 3400 (f                                                      | 1. oz/cwt)  | 5.9           |  |  |  |  |
|                                         | w/cm                                                                 |             | 0.239         |  |  |  |  |
| es                                      | Concrete Temper                                                      | rature (°F) | 63            |  |  |  |  |
| operti                                  | Slump (in                                                            | 1.)         | 10.25         |  |  |  |  |
| esh Pı                                  | Unit Weight                                                          | (pcy)       | 151.88        |  |  |  |  |
| Fr                                      | Air Content                                                          | £ (%)       | 2.5           |  |  |  |  |
|                                         | Compressive Strength                                                 | 1 Day       | 10,480        |  |  |  |  |
| es                                      |                                                                      | 7 Day       | 12,530        |  |  |  |  |
| operti                                  | in psi                                                               | 14 day      | 14090         |  |  |  |  |
| ned Pr                                  |                                                                      | 28 Day      | 15050         |  |  |  |  |
| Harde                                   |                                                                      | 56 Day      | 14990         |  |  |  |  |
|                                         | I ensile Strength in                                                 | 00 Davi     | 070           |  |  |  |  |
|                                         | psi                                                                  | 28 Day      | 870           |  |  |  |  |

| Table 4.21. CoresLab Structures Concrete Mix Design, Fresh and Harden         Table 4.21. CoresLab Structures Concrete Mix Design, Fresh and Harden |                                |           |                               |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------|-------------------------------|--|--|--|--|--|
| properties for Concrete III – IA-10-6-2                                                                                                             |                                |           |                               |  |  |  |  |  |
|                                                                                                                                                     |                                | Without A | Air Entrainment – Spring 2005 |  |  |  |  |  |
|                                                                                                                                                     |                                |           | Date:04/12/05                 |  |  |  |  |  |
|                                                                                                                                                     | Cement (PC)                    | Y)        | 910                           |  |  |  |  |  |
|                                                                                                                                                     | Slag(PCY)                      |           | 106.7                         |  |  |  |  |  |
| SI                                                                                                                                                  | Coarse Agg. (P                 | CY)       | 1768.7                        |  |  |  |  |  |
| ortion                                                                                                                                              | Fine Agg. (PC                  | CY)       | 1152.3                        |  |  |  |  |  |
| ( Prop                                                                                                                                              | Water (PCY                     | )         | 244.5                         |  |  |  |  |  |
| din                                                                                                                                                 | Glenium 3200 (fl.              | oz/cwt)   | 7                             |  |  |  |  |  |
|                                                                                                                                                     | Glenium 3400 (fl.              | oz/cwt)   | 5.9                           |  |  |  |  |  |
|                                                                                                                                                     | w/cm                           |           | 0.240                         |  |  |  |  |  |
| s                                                                                                                                                   | Concrete Temperat              | ture (°F) | 63                            |  |  |  |  |  |
| pertie                                                                                                                                              | Slump (in.)                    | 1         | 10.25                         |  |  |  |  |  |
| sh Prc                                                                                                                                              | Unit Weight (p                 | ocy)      | 153.39                        |  |  |  |  |  |
| Fre                                                                                                                                                 | Air Content (                  | %)        | 1.4                           |  |  |  |  |  |
|                                                                                                                                                     | Compressive Strength<br>in psi | 1 Day     | 10,590                        |  |  |  |  |  |
|                                                                                                                                                     |                                | 7 Day     | 12,830                        |  |  |  |  |  |
| erties                                                                                                                                              |                                | 14 day    | 14180                         |  |  |  |  |  |
| d Proj                                                                                                                                              |                                | 28 Day    | 13190                         |  |  |  |  |  |
| urdene                                                                                                                                              |                                | 56 Day    | 14930                         |  |  |  |  |  |
| Ηί                                                                                                                                                  | Tensile Strength in            |           |                               |  |  |  |  |  |
|                                                                                                                                                     | psi                            | 28 Day    | 760                           |  |  |  |  |  |

### 4.6 SUMMARY

- In this chapter the results for NASP Bond test in concrete and concrete cast at precast Plant were discussed. For each of the concrete batches made, the date, concrete type, mix design, fresh and hardened properties were reported.
- NASP pullout tests were performed after obtaining the concrete mixture design. Two Test set up were used to do the testing. For strand D, the old MTS test setup was used while the new test set up was used for strand A (0.6 "), A (0.5") and B. The purpose of conducting the NASP test was to evaluate the relative difference between strands.
- The gathered data is evaluated in Tables 4.1 through 4.6. The average results are shown in Table 4.22.

| Strand Source | 0.1 in. free end slip NASP      |
|---------------|---------------------------------|
|               | Pullout strengths ( S.D.), kips |
| A ( 0.6 ")    | 22.08 (697.48)                  |
| A ( 0.5 ")    | 28.98 (1952.73)                 |
| В             | 29.11 (228.01)                  |
| D             | 8.72 (406.23)                   |

| <b>Table 4.22</b> | Average | NASP | <b>Results</b> |
|-------------------|---------|------|----------------|
|-------------------|---------|------|----------------|

- The relative difference between strands from different source was evaluated using the results from the NASP Bond Tests. The average bond strengths for strand A (0.5 ") and strand B were higher than the average bond strength of for strand A (0.6 ") and D. When strand A (0.6 ") was compared to strand D, the average bond strength of both strand A (0.6") was higher than the average bond strength of both strand A (0.6") was higher than the average bond strength of both strand A (0.5 ") was compared to strand B, the average bond strength of both were almost similar.
- In all sources of strands, concrete compressive strength has significant effect on the bond performance. NASP Pullout tests performed with Concrete C-III had higher value than NASP Pullout tests performed with Concrete C-II, NASP Pullout tests performed with Concrete C-I and NASP Pullout tests performed with Concrete C-N. Also NASP Pullout tests performed with Concrete C-II had higher value than NASP Pullout tests performed with Concrete C-II had higher value than NASP Pullout tests performed with Concrete C-I and NASP Pullout tests performed with Concrete C-I and NASP Pullout tests performed with Concrete C-N. Strands with Concert C-I has higher NASP pullout value than concrete C-N.

# Chapter 5 5. DISCUSSION OF TEST RESULTS

#### **5.1 INTRODUCTION**

This Chapter analyzes the data and discusses the results from the experimental program. Specifically, the effects of concrete strength on the bond of prestressing strands are discussed. Further more, the successes and failures of making suitable HPC in both Lab and plant are discussed.

## 5.2 THE EFFECT OF CONCRETE STRENGTH ON THE BOND OF PRESTRESSING STRANDS

In all sources of strands, concrete compressive strength has significant effect on the bond performance. NASP bond tests performed with Concrete C-III had higher value than NASP bond tests performed with Concrete C-II, NASP bond tests performed with Concrete C-I and NASP bond tests performed with Concrete C-N. Also NASP bond tests performed with Concrete C-II had higher value than NASP bond tests performed with Concrete C-I and NASP bond tests performed with Concrete C-N. Also NASP bond tests Concrete C-I and NASP bond tests performed with Concrete C-N. Strands with Concert C-I has higher NASP bond value than concrete C-N.

#### 5.2.1 NASP Force vs. Concrete Strength, f'ci

The NASP forces and compressive strength of concrete were related in this testing program. The 0.1 in. free end slip varied approximately linearly with the compressive strength of the specimens for all strands sources. The regression analysis resulted in a good correlation of data for all strands. The linear regression analysis graphs for concrete compressive strength f'c and NASP bond force at 0.1 in. of free end slip are shown in Figure 5.1 through 5.4 and the power regression,  $R^2$  and best fit power equation are indicated in Figure 5.5 through 5.8. Table 5.1 gives the results for the regression analysis.



Figure 5.1.Linear Regression Analysis of the compressive strength of concrete and

Bond force for Strand A (0.6").



Figure 5.2. Linear Regression Analysis of the compressive strength of concrete and Bond force for Strand A (0.5").



Figure 5.3. Linear Regression Analysis of the compressive strength of concrete and

Bond force for Strand B.



Figure 5.4. Linear Regression Analysis of the compressive strength of concrete and Bond force for Strand D.



Figure 5.5. Power Regression Analysis of the compressive strength of concrete and

Bond force for Strand A (0.6").



Figure 5.6. Power Regression Analysis of the compressive strength of concrete and

Bond force for Strand A (0.5").



Figure 5.7. Power Regression Analysis of the compressive strength of concrete and

**Bond force for Strand B.** 



Figure 5.8. Power Regression Analysis of the compressive strength of concrete and Bond force for Strand D.

#### 5.2.2 NASP Force vs. square root of Concrete Strength, f'ci

In the same way, the NASP forces and the square root of concrete compressive strength were related in this testing program. The 0.1 in. free end slip varied approximately linearly with the square root of concrete compressive strength of the specimens for all strands sources. The regression analysis resulted in a good correlation of data for all strands. The linear regression analysis graphs for the square root of concrete compressive strength f'c and NASP bond force at 0.1 in. of free end slip are shown in Figure 5.9 through 5.12 .Table 5.1 gives the results for the regression analysis.



Figure 5.9 Linear Regression Analysis of square root of the compressive strength of concrete and Bond force for Strand A (0.6").



Figure 5.10 Linear Regression Analysis of square root of the compressive strength of concrete and Bond force for Strand A (0.5").



Figure 5.11 Linear Regression Analysis of square root of the compressive strength of concrete and Bond force for Strand B.



Figure 5.12 Regression Analysis of square root of the compressive strength of concrete and Bond force for Strand D.

|       | Strand A (0.6") |       | Strand A |        | Strand B |       |        | Strand D |       |       |      |       |
|-------|-----------------|-------|----------|--------|----------|-------|--------|----------|-------|-------|------|-------|
|       | df'ai           | foi   | NASP     | df'ai  | foi      | NASP  | √f'oi  | f'ai     | NASP  |       |      | NASP  |
|       | VICI            | I CI  | P.O.     | VICI   | I CI     | P.O.  | VICI   | I CI     | P.O.  | VICI  |      | P.O.  |
| z     | 47.22           | 2230  | 11607    | 67.48  | 4553     | 23583 | 59.03  | 3485     | 22546 | 68.80 | 4733 | 7479  |
| Ċ     |                 |       |          |        |          |       |        |          |       | 67.51 | 4558 | 6661  |
|       | 70.46           | 4965  | 23129    | 83.29  | 6937     | 26353 | 74.10  | 5491     | 30796 | 84.80 | 7191 | 8961  |
| 고     |                 |       |          |        |          |       |        |          |       | 86.05 | 7405 | 9512  |
| 0     |                 |       |          |        |          |       |        |          |       | 80.91 | 6546 | 7387  |
|       |                 |       |          |        |          |       |        |          |       | 78.37 | 6143 | 6737  |
| C-II  | 93.75           | 8789  | 24839    | 89.78  | 8061     | 30684 | 85.25  | 7268     | 28780 | 92.10 | 8483 | 10263 |
|       |                 |       |          |        |          |       |        |          |       | 91.76 | 8420 | 9966  |
| C-III | 101.69          | 10341 | 28735    | 107.90 | 11643    | 35288 | 100.18 | 10036    | 34334 | 99.41 | 9883 | 11557 |

 Table 5.1. Results for Regression Analysis

#### 5.2.2 Normalized value

All the results of 0.5 in. strands are combined to plot the normalized value verses concrete strength. Power regression was done to report  $R^2$  and best fit equation. From the graph, the equation

 $\frac{(\text{NASP})_{\text{C}}}{(\text{NASP}) \text{ Grout}} = 0.5 \sqrt{\text{f'ci}}$ 

is obtained. Figure 5.13 shows the Normalized Value verses concrete strength. Power regression was done and R2 and best fit are reported on the graph.



Figure 5.13 Regression Analysis of Normalized value vs. compressive strength of concrete for all strands.

| ( NASP ) <sub>C</sub> | f'ci     |
|-----------------------|----------|
| (NASP) <sub>G</sub>   | ksi      |
| 1.175035              | 4.553044 |
| 1.31303               | 6.936686 |
| 1.528827              | 8.060778 |
| 1.758231              | 11.6432  |
| 1.115578              | 3.484889 |
| 1.523793              | 5.490667 |
| 1.424063              | 7.268167 |
| 1.698872              | 10.03644 |
| 1.083889              | 4.73304  |
| 0.965422              | 4.558109 |
| 1.298768              | 7.190659 |
| 1.378579              | 7.405412 |
| 1.070609              | 6.546111 |
| 0.976375              | 6.142535 |
| 1.487406              | 8.483042 |
| 1.444354              | 8.419888 |
| 1.674944              | 9.883207 |

Table 5.2. Normalized value and Concrete strength

#### **5.3 Discussion**

- Concretes with desired compressive strength and workable mixture were obtained. The five desired concrete mixtures are repeatable able in the laboratory.
- Trial batches conducted at the lab were able be moved to the plant to perform big batches of concrete.
- Attaining 10,000 psi one day strength was difficult in the plant due to curing conditions.
- Special care was taken in the plant to ensure strength and workability. For example, the unit weight was one factor to insure we get the strength. If

the unit weight is lower than by 1 pcy, we did another concrete batch with reduced w/c ratio.

- The workability or the slump was inspected by observing the mix while the mixer was running. The dosage of HRWR was decided by looking the mix.
- > It is my opinion that we can make HPC at the plant.

## Chapter 6 6. SUMMARY AND CONCLUSION

#### 6.1 SUMMARY

This research project involved trial concrete batching to develop mix designs for fabrication of beams and NASP Tests in concrete. NASP Test performed to determine the effects of concrete strength on the bond of steel prestressing strand. The two variables were strand source and concrete release strength. Fresh and hardened concrete properties from trial batching, NASP Tests and beams at the plant were recorded.

### **6.2 CONCLUSIONS**

#### 6.2.1 Concrete Batching

Five different concretes with targeted release strengths strength were attained both in the laboratory and precast/prestressed concrete plant. The five concrete mixtures are designated as C-N, C-I, C-IA, C-II and C-III with target release strengths of 4,000 psi, 6,000 psi, 6,000psi with air entrainment, 8,000 psi and 10,000 psi. NASP Tests in concrete were conducted using the developed concrete mix designs and beams at the plant were fabricated. Water to cement ratio, mineral and chemical admixtures had significant effects on the fresh and hardened properties of the concrete. Some alternations to the laboratory mix designs were done for implementation at the precast plant.

#### **6.2.2. NASP TESTS IN CONCRETE**

The results gathered from the NASP tests indicated that the NASP Test is effective in examining the effects on bond of varying concrete properties. Increasing concrete strength on the bond of steel had significant effect for each strand. From the NASP Test, the following were revealed.

- The NASP bond forces at 0.01 in. and 0.10 in. free end slip varied linearly with the compressive strength of the specimens for all of the strands.
- The compressive strength of concrete is affecting the NASP bond force according to the regression analysis of the data.

#### **6.3 RECOMMENDATIONS**

High performance concrete could be developed in the laboratory as well as in the precast/prestessed plant. High strength concrete also has significant effect on the bond ability of prestressing strands.

### References

- 1. American Concrete Institute (1995). Building Code Requirements for Structural Concrete (ACI 318-95/318R-95), Farmington Hills, Michigan.
- 2. ACI Committee 318, "Building Code Requirements for Structural Concrete (ACI 318-95) and Commentary (ACI 318R-95)", American Concrete Institute, Farmington Hills, MI, 1995.
- Brown, M.D. (2003) "Evaluation of Test Methods in Accessing Bond Quality of Prestressing Strand," Master's Thesis. University of Oklahoma, Norman, Oklahoma.
- Hanson, N.W. and Kaar P.H. (1959). "Flexural Bond Tests of Pretensioned Prestressed Beams", *Journal of the American Concrete Institute*, Proceedings Vol. 55, No. 7, January, pp. 183-802.
- Janney, J.R. (1954). "Nature of Bond in Pre-Tensioned Prestressed Concrete," *Journal of American Concrete Institute*, Proceedings Vol. 50, No. 9, May, pp.717-736.
- 6. Logan, R.D., "Acceptance Criteria for Bond Quality of Strand for Pretensioned Prestressed Concrete Applications", *PCI Journal*, March-April 1997, pp.52-90.
- 7. Mote, J., "Bond Mechanics of Steel Prestressing Strand", Graduate Thesis for the University of Oklahoma, 2001.
- Rose, D. R. "Measurements of Bond Performance; Correlation of Pull-out Strength with Transfer Length," Graduate Thesis for the University of Oklahoma, 1995
- Russell, B. W. and Paulsgrove, G.A.(1999). "NASP Strand Bond Testing, Round One, Pull-out Tests and Friction Bond Tests of Untensioned Strand, "Final Report 99-03, Fears Structural Engineering Laboratory, University Of Oklahoma, July.
- Russell, B. W. and Burns, N. H. (1997). "Measured Transfer Lengths on Pretensioned Concrete Elements, "Journal of Structural Engineering, Vol. 123, No. 5, May, pp.541-549.
- 11. Grieve, C.B., (2004) "Investigating the Effects of Mortar Strenght and Loading rate on the NASP Bond Test." Master's Thesis. Oklahoma State University, Oklahoma.

Appendix A



Load Vs. Free End Slip Strand A (0.6 ") with Concrete C-N

Figure A.1 NASP Result Strand "A (0.6 in.)", C-N



Figure A.2 NASP Result Strand "A (0.6 in.)", C-I



Figure A.3 NASP Result Strand "A (0.6 in.)", C-II



Figure A.4 NASP Result Strand "A (0.6 in.)", C-III



Figure A.5 NASP Result Strand "A (0.5 in.)", C-N



Figure A.6 NASP Result Strand "A (0.5 in.)", C-I



Figure A.7 NASP Result Strand "A (0.5 in.)", C-II



Figure A.8 NASP Result Strand "A (0.5 in.)", C-III



Load Vs. Free End Slip Strand B with Concrete C-N

Figure A.9 NASP Result Strand B, C-N



Load Vs. Free End Slip Strand B with Concrete C-I

Figure A.10 NASP Result Strand B, C-I



Load Vs. Free End Slip Strand B with Concrete C-II

Figure A.11 NASP Result Strand B, C-II



#### Load Vs. Free End Slip Strand B with Concrete C-III

Figure A.12 NASP Result Strand B, C-III



#### Load Vs. Free End Slip Strand D with Concrete C-N

Figure A.13 NASP Result Strand D, C-N



Load Vs. Free End Slip Strand D with Concrete C-I

Figure A.14 NASP Result Strand D, C-I



Load Vs. Free End Slip Strand D with Concrete C-II

Figure A.15 NASP Result Strand D, C-II
Appendix B

## NASP STRAND BOND TEST (DRAFT)

The NASP Protocol is modified in that concrete is being used instead of the grout specified in the test protocol.

Standard Test Method to Access the Bond of 0.5 in. (12.7 mm) Seven Wire Strand with Cementitious Materials

## 1. Scope

- 1.1 This test method provides a means to assess the ability of 0.5 in. (12.7mm) seven wire strand to bond with concrete. The method tests the bond ability of strands that are made and intended for use as prestressing strands that conform to ASTM A 416.
- 1.2 This test does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the use of this test method to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

### 2. Reference Documents

- 2.1 ASTM A 416
- 2.2 ASTM C 33
- 2.3 ASTM C 150
- 2.4 ASTM C 192

#### 3. Summary of the Test Method

Test specimens are prepared by casting a single, 0.5 in. (12.7 mm) seven wire strand into a cylinder of concrete with a bonded length of 16 in. (400 mm). The constituents and proportions for the concrete mixture are prescribed. The concrete in the specimen is cured for approximately one day under controlled conditions. The specimen is tested at one day of age by pulling the strand through the concrete at a prescribed rate of loading. The pull-out force id recorded at 0.10 in. (2.5 mm) of total slip. A single NASP Bond Test shall consist of 6 of more individual pull-out tests. The strand for the NASP Bond Test shall be taken from the same lot or reel of strand.

### 4. Preparation of Test Specimens

- 4.1 Strand Specimens. The strand shall conform to ASTM A 416 and shall be intended of use in pretensioned or post-tensioned applications. Strand specimens for s single NASP Strand Bond Test shall be taken from the same lot or the same reel of prestressing strand. A minimum of six strand specimens are required for a single NASP Strand Bond Test.
- 4.2 Concrete Mixture Constituents and Proportions. The concrete mixture shall consist of sand, aggregate, cement and water mixed thoroughly. The batch weight for sand and aggregate shall be computed using the aggregate's unit weight at saturated surface dry (SSD) conditions. In computing weights for mixture proportions, the moisture content within the sand and aggregate shall be accurately sampled and measured. The mixture proportions shall be

corrected for the moisture content measured in the sand prior to mixing. Batch materials shall be handled in conformance with ASTM C 192. The cement shall conform to ASTM C 150 requirements for Type III cement. The water shall be portable and suitable for making concrete.

- 4.3 Mixing. The concrete the test specimens shall be made in conformance with ASTM C 192. Measurements of slump and air content are required.
- 4.4 Curing. The concrete test specimens shall be cured in conformance with ASTM C 192. The concrete shall be cured at  $73 \pm 3EF (23 \pm 2EC)$  from the time of molding until the moment of test. Storage during the curing period shall be in a vibration-free environment.
- 4.5 Concrete Strength. Concrete strength shall be evaluated in conformance with ASTM C 192.
- 4.6 Test specimens shall not be made by casting one single strand concentrically in concrete within a 5 in. (125 mm) diameter steel casing as described in figure B.1. The length of the steel tube shall be 18 in as shown. The bonded length of the strand shall be 16 in., with a 2 in. long bond breaker as shown in the figure. The steel casing shall have sufficient rigidity to prevent radial cracking in the specimen during testing. The test specimen shall be cast with the longitudinal axis of the strand and the steel casing in the vertical position. Test specimens shall be mechanically consolidated by vibration in conformance by vibration in conformance with ASTM C 192.

## 5. Test Procedure

- 5.1 Timing of the Test. The NASP Bond Test shall be conducted  $24 \pm 2$  hrs. form the time of casting the specimens.
- 5.2 Instrumentation and measurement. The pull-out force shall be measured by a calibrated load measuring device, either electronically or hydraulically, or in combination of hydraulics and electronics. Pull-out force shall be measured to the nearest 10 lb increments. The relative movement of the strand to the hardened concrete shall be measured. This measurement is typically called the "free-end slip" and shall be measured to 0.01 in. The slip shall be measured by a calibrated device.
- 5.3 Strand shall be pulled from the concrete by reacting against the transverse steel plate. The loading shall be controlled by strand displacement measured at the point where the load is applied to the strand. The displacement rate shall be 0. in. per minute (2.5 mm per minute).
- 5.4 The strand shall be loaded at a distance approximately 6 in. from the end of the specimen.
- 5.5 The pull-out force shall be recorded when the opposite end of the strand, or the "free-end" achieves a total displacement of 0.10 in. relative to the hardened concrete.
- 5.6 If the hardened concrete exhibits cracking in two or more of the six individual tests, then all results of NASP Strand Bond Test shall be discarded and new specimens prepared for a new NASP Strand Bond Test.

## 6. Reporting

- 6.1 Sample Size. A single NASP Strand Bond Test shall consist of a minimum of six (6) individual tests conducted on single strand specimens.
- 6.2 For each individual test, report the pull-out force that corresponds to a relative displacement of 0.1 in. between the strand and the hardened concrete.
- 6.3 For the NASP Bond Test, compute the average pull-out force from the individual testes and report the value as the average value for the NASP Bond Test. If one of the specimens exhibited radial cracking during testing, disregard the pull-out value of that specimen when reporting results. If two or more of the specimens exhibit radial cracking, the entire results should be disregarded and the NASP Bond Test performed again in its entirety.

## 7. Acceptance

7.1 The strand shall be accepted for pretensioned and post-tensioned prestressed applications when the average value of the NASP Strand Bond Test is not less than \_\_\_\_\_\_ lbs and no individual test result is less than \_\_\_\_\_\_ lbs.

Appendix C

| Table C.1.1 Sieve Analysis for Dolese Fine Aggregate - OSU Laboratory |               |          |         |          |         |  |
|-----------------------------------------------------------------------|---------------|----------|---------|----------|---------|--|
| Sieve Size                                                            | Weight        | Percent  | Percent | Fineness | Percent |  |
|                                                                       | Retained      | Retained | Coarser | modulus  | Passing |  |
|                                                                       | (g)           | (%)      | ( %)    |          | (%)     |  |
|                                                                       |               |          |         |          |         |  |
| No. 4                                                                 | 5.7           | 1.14     | 1.14    | 1.14     | 98.86   |  |
| No.8                                                                  | 10.9          | 2.18     | 3.32    | 4.46     | 96.68   |  |
| No.16                                                                 | 49.3          | 9.86     | 13.18   | 17.64    | 86.82   |  |
| No.30                                                                 | 140.3         | 28.06    | 41.24   | 58.88    | 58.76   |  |
| No.50                                                                 | 195           | 39       | 80.24   | 139.12   | 19.76   |  |
| No.100                                                                | 89.9          | 17.98    | 98.22   | 237.34   | 1.78    |  |
| No.200                                                                | 8.3           | 1.66     | 81.9    | 221.02   | 18.1    |  |
| pan                                                                   | 0.6           | 0.12     | 100     | 337.34   | 0       |  |
| Finen                                                                 | ess modulus = | 2.21     |         |          |         |  |

| Table      | Table C.1.2 Sieve Analysis for Dolese Fine Aggregate - OSU Laboratory |               |         |          |         |  |  |
|------------|-----------------------------------------------------------------------|---------------|---------|----------|---------|--|--|
| Sieve Size | Weight                                                                | Percent       | Percent | Fineness | Percent |  |  |
|            | Retained                                                              | Retained      | Coarser | modulus  | Passing |  |  |
|            | (g)                                                                   | (%)           | ( %)    |          | (%)     |  |  |
|            |                                                                       |               |         |          |         |  |  |
| No. 4      | 1.7                                                                   | 0.34          | 0.34    | 0.34     | 99.66   |  |  |
| No.8       | 13.5                                                                  | 2.7           | 3.04    | 3.38     | 96.96   |  |  |
| No.16      | 49.8                                                                  | 9.96          | 13      | 16.38    | 87      |  |  |
| No.30      | 148.6                                                                 | 29.72         | 42.72   | 59.1     | 57.28   |  |  |
| No.50      | 186.4                                                                 | 37.28         | 80      | 139.1    | 20      |  |  |
| No.100     | 90.5                                                                  | 18.1          | 98.1    | 237.2    | 1.9     |  |  |
| No.200     | 9                                                                     | 1.8           | 99.9    | 239      | 0.1     |  |  |
| pan        | 0.5                                                                   | 0.1           | 100     | 337.2    | 0       |  |  |
|            | Finene                                                                | ess modulus = | 2.39    |          |         |  |  |

| Table      | Table C.1.3 Sieve Analysis for Dolese Fine Aggregate - OSU Laboratory |               |         |          |         |  |  |
|------------|-----------------------------------------------------------------------|---------------|---------|----------|---------|--|--|
| Sieve Size | Weight                                                                | Percent       | Percent | Fineness | Percent |  |  |
|            | Retained                                                              | Retained      | Coarser | modulus  | Passing |  |  |
|            | (g)                                                                   | (%)           | ( %)    |          | (%)     |  |  |
| No. 4      | 4.4                                                                   | 0.88          | 0.88    | 0.88     | 99.12   |  |  |
| No.8       | 10.2                                                                  | 2.04          | 2.92    | 3.8      | 97.08   |  |  |
| No.16      | 50.8                                                                  | 10.16         | 13.08   | 16.88    | 86.92   |  |  |
| No.30      | 144.8                                                                 | 28.96         | 42.04   | 58.92    | 57.96   |  |  |
| No.50      | 188.3                                                                 | 37.66         | 79.7    | 138.62   | 20.3    |  |  |
| No.100     | 90.4                                                                  | 18.08         | 97.78   | 236.4    | 2.22    |  |  |
| No.200     | 10.5                                                                  | 2.1           | 99.88   | 238.5    | 0.12    |  |  |
| pan        | 0.6                                                                   | 0.12          | 100     | 336.4    | 0       |  |  |
|            | Finen                                                                 | ess modulus = | 2.39    |          |         |  |  |

| Sieve Size         | Weight   | Percent  | Percent | Fineness | Percent |
|--------------------|----------|----------|---------|----------|---------|
|                    | Retained | Retained | Coarser | Modulus  | Passing |
|                    | (g)      | (%)      | ( %)    |          | (%)     |
| 1 in               | 0        | 0        | 0       | 0        | 100     |
| <sup>3</sup> ⁄4 in | 0        | 0        | 0       | 0        | 100     |
| ¹⁄₂ in             | 0        | 0        | 0       | 0        | 100     |
| 3/8 in             | 71.6     | 7.2      | 7.2     | 7.2      | 92.84   |
| No. 4              | 820.4    | 82.0     | 89.2    | 96.4     | 10.8    |
| pan                | 108      | 10.8     | 100.0   | 196.4    | 0       |

 Table C.1.4 Sieve Analysis for Dolese Coarse Aggregate - OSU Laboratory

| Sieve Size | Weight   | Percent  | Percent | Fineness | Percent |
|------------|----------|----------|---------|----------|---------|
|            | Retained | Retained | Coarser | Modulus  | Passing |
|            | (g)      | (%)      | ( %)    |          | (%)     |
| 1 in       | 0        | 0        | 0       | 0        | 100     |
| 3/4 in     | 0        | 0        | 0       | 0        | 100     |
| 1/2 in     | 0        | 0        | 0.0     | 0.0      | 100     |
| 3/8 in     | 42.1     | 4.2      | 4.2     | 4.2      | 95.79   |
| No. 4      | 849.9    | 85.0     | 89.2    | 93.4     | 10.8    |
| pan        | 108      | 10.8     | 100.0   | 193.4    | 0       |

 Table C.1.5 Sieve Analysis for Dolese Coarse Aggregate - OSU Laboratory

| Sieve Size         | Weight   | Percent  | Percent      | Fineness | Percent |
|--------------------|----------|----------|--------------|----------|---------|
|                    | Retained | Retained | Coarser      | Modulus  | Passing |
|                    | (g)      | (%)      | ( %)         |          | (%)     |
| 1 in               | 0        | 0        | 0            | 0        | 100     |
| <sup>3</sup> ⁄4 in | 0        | 0        | 0            | 0        | 100     |
| 1⁄2 in             | 0        | 0.383    | 0.383        | 0.383    | 99.617  |
| 3/8 in             | 38.3     | 3.8      | 4.2          | 4.6      | 95.787  |
| No. 4              | 853.7    | 85.4     | <u>89.6</u>  | 94.2     | 10.417  |
| pan                | 108      | 10.8     | <u>100.0</u> | 193.8    | 0       |

 Table C.1.6 Sieve Analysis for Dolese Coarse Aggregate - OSU Laboratory

| Table C.1.7 Sieve Analysis for Fine Aggregate - Coreslab Structures |          |          |         |          |         |
|---------------------------------------------------------------------|----------|----------|---------|----------|---------|
| Sieve Size                                                          | Weight   | Percent  | Percent | Fineness | Percent |
|                                                                     | Retained | Retained | Coarser | modulus  | Passing |
|                                                                     | (g)      | (%)      | (%)     |          | (%)     |
| No. 4                                                               | 2.8      | 0.56     | 0.56    | 0.56     | 99.44   |
| No.8                                                                | 21.2     | 4.24     | 4.8     | 5.36     | 95.2    |
| No.16                                                               | 66.4     | 13.28    | 18.08   | 23.44    | 81.92   |
| No.30                                                               | 127.1    | 25.42    | 43.5    | 66.94    | 56.5    |
| No.50                                                               | 168.0    | 33.6     | 77.1    | 144.04   | 22.9    |
| No.100                                                              | 100.6    | 20.12    | 97.22   | 241.26   | 2.78    |
| No.200                                                              | 13.1     | 2.62     | 99.84   | 341.1    | 0.16    |
| pan                                                                 | 0.8      | 0.16     | 100     | 441.1    | 0       |
| Fineness modulus =                                                  |          | 3.41     |         |          |         |
|                                                                     |          |          |         |          |         |

| Table C.1.8 Sieve Analysis for Fine Aggregate - Coreslab Structures |               |          |         |          |         |  |
|---------------------------------------------------------------------|---------------|----------|---------|----------|---------|--|
| Sieve Size                                                          | Weight        | Percent  | Percent | Fineness | Percent |  |
|                                                                     | Retained      | Retained | Coarser | modulus  | Passing |  |
|                                                                     | (g)           | (%)      | (%)     |          | (%)     |  |
| No. 4                                                               | 4.7           | 0.94     | 0.94    | 0.94     | 99.06   |  |
| No.8                                                                | 19.2          | 3.84     | 4.78    | 5.72     | 95.22   |  |
| No.16                                                               | 62.1          | 12.42    | 17.2    | 22.92    | 82.8    |  |
| No.30                                                               | 122.8         | 24.56    | 41.76   | 64.68    | 58.24   |  |
| No.50                                                               | 171.6         | 34.32    | 76.08   | 140.76   | 23.92   |  |
| No.100                                                              | 105.3         | 21.06    | 97.14   | 237.9    | 2.86    |  |
| No.200                                                              | 13.7          | 2.74     | 99.88   | 337.78   | 0.12    |  |
| pan                                                                 | 0.6           | 0.12     | 100     | 437.78   | 0       |  |
| Finen                                                               | ess modulus = | 3.38     |         |          |         |  |

| Table C.1.9 Sieve Analysis for Fine Aggregate - Coreslab Structures |               |          |         |          |         |
|---------------------------------------------------------------------|---------------|----------|---------|----------|---------|
|                                                                     |               |          |         |          |         |
| Sieve Size                                                          | Weight        | Percent  | Percent | Fineness | Percent |
|                                                                     | Retained      | Retained | Coarser | modulus  | Passing |
|                                                                     | (g)           | (%)      | ( %)    |          | (%)     |
| No. 4                                                               | 5.7           | 1.14     | 1.14    | 1.14     | 98.86   |
| No.8                                                                | 21.2          | 4.24     | 5.38    | 6.52     | 94.62   |
| No.16                                                               | 64.4          | 12.88    | 18.26   | 24.78    | 81.74   |
| No.30                                                               | 127.1         | 25.42    | 43.68   | 68.46    | 56.32   |
| No.50                                                               | 168           | 33.6     | 77.28   | 145.74   | 22.72   |
| No.100                                                              | 100           | 20       | 97.28   | 243.02   | 2.72    |
| No.200                                                              | 13.1          | 2.62     | 99.9    | 245.64   | 0.1     |
| pan                                                                 | 0.5           | 0.1      | 100     | 343.02   | 0       |
| Finen                                                               | ess modulus = | 2.46     |         |          |         |

|            | Dereent  | Dereent | Dereent |
|------------|----------|---------|---------|
| Sieve Size | Percent  | Percent | Percent |
|            | Retained | Coarser | Passing |
|            | (%)      | ( %)    | (%)     |
| 1 in       | 0        | 0       | 100.0   |
| 3/4 in     | 0        | 0       | 100.0   |
| 1/2 in     | 5.82     | 5.82    | 94.2    |
| 3/8 in     | 36.2     | 42.1    | 58.0    |
| No. 4      | 56.0     | 98.1    | 1.9     |
| pan        | 1.9      | 100.0   | 0.0     |

 Table C.1.10 Sieve Analysis for Washed Coarse Aggregate - Coreslab Structures

| Sieve Size | Percent  | Percent | Percent |
|------------|----------|---------|---------|
|            | Retained | Coarser | Passing |
|            | (%)      | ( %)    | (%)     |
|            |          |         |         |
| 1 in       | 0        | 0       | 100.0   |
| 3/4 in     | 0        | 0       | 100.0   |
| 1/2 in     | 2.99     | 3.0     | 97.0    |
| 3/8 in     | 32.8     | 35.8    | 64.2    |
| No. 4      | 61.8     | 97.6    | 2.4     |
| pan        | 2.4      | 100.0   | 0.0     |

 Table C.1.11 Sieve Analysis for Washed Coarse Aggregate - Coreslab structures

| Sieve Size | Percent  | Percent | Percent |
|------------|----------|---------|---------|
|            | Retained | Coarser | Passing |
|            | (%)      | ( %)    | (%)     |
| 1 in       | 0        | 0       | 100     |
| 3/4 in     | 0        | 0       | 100     |
| 1/2 in     | 3.952    | 3.952   | 96.048  |
| 3/8 in     | 39.5     | 43.5    | 56.528  |
| No. 4      | 54.0     | 97.5    | 2.5     |
| pan        | 2.5      | 100.0   | 0.0     |

 Table C.1.12 Sieve Analysis for Washed Coarse Aggregate - Coreslab structures

| Sieve Size | Percent  | Percent | Percent |
|------------|----------|---------|---------|
|            | Retained | Coarser | Passing |
|            | (%)      | (wt. %) | (%)     |
| 1 in       | 0        | 0       | 100.0   |
| 3/4 in     | 0        | 0       | 100.0   |
| 1/2 in     | 9.2      | 9.2     | 90.8    |
| 3/8 in     | 46.2     | 55.4    | 44.6    |
| No. 4      | 42.4     | 97.9    | 2.1     |
| pan        | 2.2      | 100.0   | 0.0     |

 Table C.1.13 Sieve Analysis for Coarse Aggregate - Coreslab structures

| Sieve Size | Percent  | Percent | Percent |
|------------|----------|---------|---------|
|            | Retained | Coarser | Passing |
|            | (%)      | (wt. %) | (%)     |
| 1 in       | 0        | 0       | 100.0   |
| 3/4 in     | 0.0      | 0       | 100.0   |
| 1/2 in     | 8.2      | 8.2     | 91.8    |
| 3/8 in     | 53.4     | 61.6    | 38.4    |
| No. 4      | 35.8     | 97.4    | 2.6     |
| pan        | 2.6      | 100.0   | 0.0     |

 Table C.1.14 Sieve Analysis for Coarse Aggregate - Coreslab structures

| Sieve Size | Percent  | Percent | Percent |
|------------|----------|---------|---------|
|            | Retained | Coarser | Passing |
|            | (%)      | (wt. %) | (%)     |
| 1 in       | 0.0      | 0.0     | 100.0   |
| 3/4 in     | 0.0      | 0.0     | 100.0   |
| 1/2 in     | 5.5      | 5.5     | 94.5    |
| 3/8 in     | 55.4     | 60.9    | 39.1    |
| No. 4      | 36.5     | 97.4    | 2.6     |
| pan        | 2.6      | 100.0   | 0.0     |

 Table C.1.15 Sieve Analysis for Coarse Aggregate - Coreslab structures

Appendix D

| Table D.1.1. Concrete Mix Design, Fresh and Harden properties for Concrete I |                                  |             |               |  |  |  |  |
|------------------------------------------------------------------------------|----------------------------------|-------------|---------------|--|--|--|--|
|                                                                              | OSU Lab                          |             |               |  |  |  |  |
|                                                                              | Without Air                      | Entrainment |               |  |  |  |  |
|                                                                              |                                  |             | Date:06/14/04 |  |  |  |  |
|                                                                              | Cement (PCY)                     |             | 800           |  |  |  |  |
| ~                                                                            | Coarse Agg. (PCY)                | )           | 1800          |  |  |  |  |
| tions                                                                        | Fine Agg. (PCY)                  |             | 1144          |  |  |  |  |
| ıodoı                                                                        | Water (PCY)                      |             | 288           |  |  |  |  |
| lix P <sub>1</sub>                                                           | Glenium 3030NS (fl. oz           | /cwt)       | 8             |  |  |  |  |
| Z                                                                            | Polyheed 997 WR(fl.oz            | /cwt)       | 3             |  |  |  |  |
|                                                                              | w/cm                             | 0.36        |               |  |  |  |  |
|                                                                              | Air Temperature (°F)             |             | 81            |  |  |  |  |
| ies                                                                          | Relative Air Humidity (%)        |             | 95            |  |  |  |  |
| opert                                                                        | Concrete Temperature (°F)        |             | 90            |  |  |  |  |
| h Pro                                                                        | Slump (in.)                      |             | 8.5           |  |  |  |  |
| Fres                                                                         | Unit Weight (pcf)                |             | 148.68        |  |  |  |  |
|                                                                              | Air Content (%)                  |             | 2.6           |  |  |  |  |
|                                                                              |                                  | 1 Day       | 6050          |  |  |  |  |
|                                                                              |                                  | 3 Day       | 7460          |  |  |  |  |
|                                                                              | Compressive Strength in psi      | 7 Day       | 8000          |  |  |  |  |
| ies                                                                          |                                  | 28 Day      | 8810          |  |  |  |  |
| pert                                                                         |                                  | 56 Day      | 9860          |  |  |  |  |
| d Pro                                                                        | Tensile Strength                 | 1 Day       | 540           |  |  |  |  |
| dene                                                                         | rensne Suengui                   | 28 Day      | 610           |  |  |  |  |
| Har                                                                          | Modulus of Flasticity(psi)       | 1 Day       | 5495          |  |  |  |  |
|                                                                              | modulus of Elasticity(psi)       | 28 Day      | 5755          |  |  |  |  |
|                                                                              | Calculated Modulus of elasticity | 1 Day       | 4640          |  |  |  |  |
|                                                                              | using ACI method(psi)            | 28 Day      | 5615          |  |  |  |  |

| Table D.1.2. Concrete Mix Design, Fresh and Harden properties for Concrete I A |                                  |             |               |  |  |  |
|--------------------------------------------------------------------------------|----------------------------------|-------------|---------------|--|--|--|
|                                                                                | OSU Lab                          |             |               |  |  |  |
|                                                                                | With 69                          | % Total Air |               |  |  |  |
|                                                                                |                                  |             | Date:06/17/04 |  |  |  |
|                                                                                | Cement (PCY)                     |             | 800           |  |  |  |
|                                                                                | Coarse Agg. (PCY)                | )           | 1800          |  |  |  |
| suc                                                                            | Fine Agg. (PCY)                  |             | 922           |  |  |  |
| ortic                                                                          | Water (PCY)                      |             | 272           |  |  |  |
| Prop                                                                           | Glenium 3030NS (fl. oz           | z/cwt)      | 10            |  |  |  |
| Mix                                                                            | Polyheed 997 (fl.oz/c            | wt)         | 3             |  |  |  |
|                                                                                | MB-AE 90 (fl.oz/cw               | rt)         | 1.875         |  |  |  |
|                                                                                | w/cm                             | 0.34        |               |  |  |  |
|                                                                                | Air Temperature (°F)             |             | 82            |  |  |  |
| ies                                                                            | Relative Air Humidity (%)        |             | 95            |  |  |  |
| opert                                                                          | Concrete Temperature (°F)        |             | 90            |  |  |  |
| sh Pr                                                                          | Slump (in.)                      |             | 8             |  |  |  |
| Free                                                                           | Unit Weight (pcf)                |             | 146.68        |  |  |  |
|                                                                                | Air Content (%)                  |             | 5.9           |  |  |  |
|                                                                                |                                  | 1 Day       | 6400          |  |  |  |
|                                                                                |                                  | 3 Day       | 7570          |  |  |  |
|                                                                                | Compressive Strength in psi      | 7 Day       | 8480          |  |  |  |
| ies                                                                            |                                  | 28 Day      | 9170          |  |  |  |
| opert                                                                          |                                  | 56 Day      | 9740          |  |  |  |
| d Pro                                                                          | Tensile Strength in psi          | 1 Day       | 590           |  |  |  |
| dene                                                                           | rensile Strength in por          | 28 Day      | 615           |  |  |  |
| Har                                                                            | Modulus of Electicity in pri     | 1 Day       | 4780          |  |  |  |
|                                                                                | modulus of Endotory in por       | 28 Day      | 6120          |  |  |  |
|                                                                                | Calculated Modulus of elasticity | 1 Day       | 4690          |  |  |  |
|                                                                                | using ACI method in psi          | 28 Day      | 5610          |  |  |  |

| Table D.1.3. Concrete Mix Design, Fresh and Harden properties for Concrete II |                                  |               |               |  |  |  |  |
|-------------------------------------------------------------------------------|----------------------------------|---------------|---------------|--|--|--|--|
|                                                                               | OSU Lab                          |               |               |  |  |  |  |
|                                                                               | Without Ai                       | r Entrainment |               |  |  |  |  |
|                                                                               |                                  |               | Date:06/17/04 |  |  |  |  |
|                                                                               | Cement (PCY)                     |               | 800           |  |  |  |  |
| ~                                                                             | Coarse Agg. (PCY)                |               | 1800          |  |  |  |  |
| tions                                                                         | Fine Agg. (PCY)                  |               | 1270          |  |  |  |  |
| ıodoı                                                                         | Water (PCY)                      |               | 240           |  |  |  |  |
| ix P <sub>1</sub>                                                             | Glenium 3030NS (fl. oz           | /cwt)         | 20            |  |  |  |  |
| Z                                                                             | Polyheed 997 WR(fl.oz            | /cwt)         | 3             |  |  |  |  |
|                                                                               | w/cm                             | 0.30          |               |  |  |  |  |
|                                                                               | Air Temperature (°F              | 82            |               |  |  |  |  |
| ies                                                                           | Relative Air Humidity (%)        |               | 95            |  |  |  |  |
| opert                                                                         | Concrete Temperature (°F)        |               | 90            |  |  |  |  |
| h Pro                                                                         | Slump (in.)                      |               | 8             |  |  |  |  |
| Fres                                                                          | Unit Weight (pcf)                |               | 152.68        |  |  |  |  |
|                                                                               | Air Content (%)                  | 1.8           |               |  |  |  |  |
|                                                                               |                                  | 1 Day         | 9230          |  |  |  |  |
|                                                                               |                                  | 3 Day         | 10910         |  |  |  |  |
|                                                                               | Compressive Strength in psi      | 7 Day         | 12,230        |  |  |  |  |
| ies                                                                           |                                  | 28 Day        | 13,010        |  |  |  |  |
| opert                                                                         |                                  | 56 Day        | 13,790        |  |  |  |  |
| d Pro                                                                         | Tensile Strength in psi          | 1 Day         | 720           |  |  |  |  |
| dene                                                                          | rensile strength in psi          | 28 Day        | 880           |  |  |  |  |
| Har                                                                           | Modulus of Elasticity in psi     | 1 Day         | 5880          |  |  |  |  |
|                                                                               | modulus of Elusiony in psi       | 28 Day        | 7140          |  |  |  |  |
|                                                                               | Calculated Modulus of elasticity | 1 Day         | 5980          |  |  |  |  |
|                                                                               | using ACI method in psi          | 28 Day        | 7100          |  |  |  |  |

| Ta       | Table D.1.4. Concrete Mix Design, Fresh and Harden properties for Concrete III |            |               |  |  |  |
|----------|--------------------------------------------------------------------------------|------------|---------------|--|--|--|
| OSU Lab  |                                                                                |            |               |  |  |  |
| -        | v                                                                              | Vithout Ai | r Entrainment |  |  |  |
|          | 6/16/2004                                                                      |            |               |  |  |  |
|          | Cement (PCY)                                                                   |            | 900           |  |  |  |
|          | 10 % Fly Ash (PCY                                                              | )          | _             |  |  |  |
|          | 10 % Slag (PCY)                                                                |            | 100           |  |  |  |
|          | 20 % Slag (PCY)                                                                |            | _             |  |  |  |
| tions    | Coarse Agg. (PCY)                                                              |            | 1800          |  |  |  |
| opor     | Fine Agg. (PCY)                                                                |            | 1188.6        |  |  |  |
| ix Pı    | Water (PCY)                                                                    |            | 240           |  |  |  |
| М        | Glenium 3030NS (fl. oz/cwt)                                                    |            | 22            |  |  |  |
|          | Glenium 3200HES (fl. oz/cwt)                                                   |            | 7             |  |  |  |
|          | Polyheed 997WR (fl.oz/cwt)                                                     |            | 3             |  |  |  |
|          | w/cm                                                                           |            | 0.24          |  |  |  |
|          | Air Temperature (°F)                                                           |            | 82            |  |  |  |
| ies      | Relative Air Humidity                                                          | (%)        | 95            |  |  |  |
| opert    | Concrete Temperature (°F)                                                      |            | 90            |  |  |  |
| h Pro    | Slump (in.)                                                                    |            | 9.5           |  |  |  |
| Fres     | Unit Weight (pcf)                                                              |            | 157.70        |  |  |  |
|          | Air Content (%)                                                                |            | 2.4           |  |  |  |
|          |                                                                                | 1 Day      | 11,150        |  |  |  |
| S        | Compressive Strength in psi                                                    | 7 Day      | 13,850        |  |  |  |
| pertie   | compressive Suchgur in psi                                                     | 28 Day     | 16,210        |  |  |  |
| l Prop   |                                                                                | 56 Day     | 17,440        |  |  |  |
| Hardenec | Modulus of Elasticity 28 Day                                                   |            | 7590          |  |  |  |
|          | Calculated Modulus                                                             | 28 Day     | 8320          |  |  |  |

| Tab    | Table D.2.1. Concrete Mix Design, Fresh and Harden properties for Concrete IA |        |            |  |  |  |
|--------|-------------------------------------------------------------------------------|--------|------------|--|--|--|
|        | Core Slab Structures, Oklahoma City- Summer 2004                              |        |            |  |  |  |
|        | With 6% Total A                                                               | ir     |            |  |  |  |
|        |                                                                               |        | Date:07/27 |  |  |  |
|        | Cement (PCY)                                                                  | -      | 800        |  |  |  |
| s      | Coarse Agg. (PCY)                                                             |        | 1814.4     |  |  |  |
| rtion  | Fine Agg. (PCY)                                                               |        | 1128.5     |  |  |  |
| iodo;  | Water (PCY)                                                                   |        | 218.79     |  |  |  |
| ix Pı  | Glenium 3030NS (fl. oz/cwt)                                                   |        | 8          |  |  |  |
| Μ      | Polyheed 997 (fl.oz/cwt)                                                      |        | 3          |  |  |  |
|        | w/cm                                                                          | 0.2735 |            |  |  |  |
|        | Concrete Temperature (°F)                                                     |        | 84         |  |  |  |
| ies    | Slump (in.)                                                                   |        | 6.5        |  |  |  |
| opert  | Unit Weight (pcf)                                                             |        | 147.9      |  |  |  |
| h pr   | Air Content (%)                                                               |        | 5.6        |  |  |  |
| Fres   | Moisture Content of Rock (%)                                                  | -      | 0.002      |  |  |  |
|        | Moisture Content of Sand (%)                                                  | -      | 4.3        |  |  |  |
|        |                                                                               | 1 Day  | 7960       |  |  |  |
|        |                                                                               | 7 Day  | 9070       |  |  |  |
|        | Compressive Strength in psi                                                   | 14 day | 9100       |  |  |  |
| erties |                                                                               | 28 Day | 10,250     |  |  |  |
| rope   |                                                                               | 56 Day | 11,420     |  |  |  |
| led F  | Tensile Strength in psi                                                       | 28 Day | 820        |  |  |  |
| arder  | Modulus of Elasticity                                                         | 29 Day | 5680       |  |  |  |
| Ĥ      | (psi)                                                                         | 20 Day | 5000       |  |  |  |
|        | Calculated Modulus of elasticity<br>using ACI method(psi)                     | 28 Day | 6010       |  |  |  |

| Table D.2.2. Concrete Mix Design, Fresh and Harden properties for Concrete II |                                                           |        |               |               |  |  |
|-------------------------------------------------------------------------------|-----------------------------------------------------------|--------|---------------|---------------|--|--|
| Core Slab Structures, Oklahoma City- Summer 2004, With No Air Entrainment     |                                                           |        |               |               |  |  |
|                                                                               |                                                           |        | Date:07/29/04 | Date:08/12/04 |  |  |
|                                                                               | Cement (PCY)                                              |        | 800           | 800           |  |  |
| ions                                                                          | Coarse Agg. (PCY)                                         |        | 1805          | 1803.6        |  |  |
| port                                                                          | Fine Agg. (PCY)                                           |        | 1218.9        | 1163.4        |  |  |
| Pro                                                                           | Water (PCY)                                               |        | 276.92        | 269.21        |  |  |
| Mix                                                                           | Glenium 3030 (fl. oz/cw                                   | t)     | 14            | 4             |  |  |
|                                                                               | w/cm                                                      |        | 0.346         | 0.337         |  |  |
|                                                                               | Concrete Temperature (°F)                                 |        | 90            | 83            |  |  |
| rties                                                                         | Slump (in.)                                               |        | 9.5           | 8.25          |  |  |
| obe                                                                           | Unit Weight (pcy)                                         |        | 151.38        | 149.6         |  |  |
| h Pr                                                                          | Air Content (%)                                           |        | 0.7           | 1.4           |  |  |
| Fres                                                                          | Moisture Content of Rock (%)                              |        | 0.8           | 0.6           |  |  |
| [                                                                             | Moisture Content ofSand                                   | (%)    | 7.5           | 4.2           |  |  |
|                                                                               |                                                           | 1 Day  | 8570          | 5410          |  |  |
|                                                                               |                                                           | 7 Day  | 11,000        | 7,310         |  |  |
| Se                                                                            | Compressive Strength in psi                               | 14 day | 11,240        | 7,640         |  |  |
| erti                                                                          |                                                           | 28 Day | 12,680        | 7,910         |  |  |
| Prop                                                                          |                                                           | 56 Day | 13,490        | 8,220         |  |  |
| ened I                                                                        | Tensile Strength in psi                                   | 28 Day | 915           | 560           |  |  |
| Hard                                                                          | Modulus of Elasticity                                     | 28 Day | 5945          | 5110          |  |  |
|                                                                               | Calculated Modulus of elasticity<br>Using ACI method(psi) | 28 Day | 6920          | 5470          |  |  |

| Table D.2.3. Concrete Mix Design, Fresh and Harden properties for Concrete I |                                                                            |                           |               |               |  |  |  |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------|---------------|---------------|--|--|--|
|                                                                              | Core Slab Structures, Oklahoma City – Summer 2004, Without Air Entrainment |                           |               |               |  |  |  |
|                                                                              |                                                                            |                           | Date:08/02/04 | Date:08/12/04 |  |  |  |
|                                                                              | Cement (PCY)                                                               |                           | 800           | 800           |  |  |  |
| ions                                                                         | Coarse Agg. (PC)                                                           | Y)                        | 1702.9        | 1698.4        |  |  |  |
| port                                                                         | Fine Agg. (PCY)                                                            | )                         | 1202.5        | 1211.6        |  |  |  |
| Pro                                                                          | Water (PCY)                                                                |                           | 303.18        | 300.57        |  |  |  |
| Лix                                                                          | Glenium 3400 (fl. oz                                                       | /cwt)                     | 5             | 5             |  |  |  |
| ~                                                                            | w/cm                                                                       |                           | 0.379         | 0.376         |  |  |  |
|                                                                              | Concrete Temperatur                                                        | Concrete Temperature (°F) |               | 82            |  |  |  |
| rties                                                                        | Slump (in.)                                                                |                           | 9.5           | 5.75          |  |  |  |
| ope                                                                          | Unit Weight (pcf)                                                          |                           | 148.78        | 149.6         |  |  |  |
| h Pr                                                                         | Air Content (%)                                                            | )                         | 1.5           | 1.2           |  |  |  |
| Fres                                                                         | Moisture Content of Rock (%)           Moisture Content of Sand (%)        |                           | 0.2           | 0.6           |  |  |  |
|                                                                              |                                                                            |                           | 3.5           | 4.2           |  |  |  |
|                                                                              |                                                                            | 1 Day                     | 6183          | 4855          |  |  |  |
| ş                                                                            |                                                                            | 7 Day                     | 7110          | 6450          |  |  |  |
| ertie                                                                        | Compressive Strength in psi                                                | 14 day                    | 7690          | 6940          |  |  |  |
| rope                                                                         |                                                                            | 28 Day                    | 8360          | 7510          |  |  |  |
| d Þ                                                                          |                                                                            | 56 Day                    | 8500          | 8040          |  |  |  |
| denc                                                                         | Tensile Strength in psi                                                    | 28 Day                    | 660           | 480           |  |  |  |
| Har                                                                          | Modulus of Elasticity                                                      | 28 Day                    | 5350          | 5140          |  |  |  |
|                                                                              | Calculated Modulus of elasticity<br>Using ACI method(psi)                  | 28 Day                    | 5470          | 5230          |  |  |  |

| Table D.2.4. Concrete Mix Design, Fresh and Harden properties for |                      |                |               |  |  |
|-------------------------------------------------------------------|----------------------|----------------|---------------|--|--|
| Concrete III                                                      |                      |                |               |  |  |
| Core Slab Stru                                                    | ctures, Oklahoma Ci  | tv – Summer 2( | )04           |  |  |
| N                                                                 | Without Air Entrainn | nent           |               |  |  |
|                                                                   |                      | Date:08/09/04  | Date:08/12/04 |  |  |
| Cement (PC                                                        | CY)                  | 900            | 902.5         |  |  |
| Slag(PC)                                                          | ()                   | 100            | 100           |  |  |
| Coarse Agg. (                                                     | (PCY)                | 1746.5         | 1718.4        |  |  |
| Fine Agg. (F                                                      | PCY)                 | 1182.7         | 1187.5        |  |  |
| Water (PC                                                         | Y)                   | 250.75         | 247.6         |  |  |
| Glenium 3200 (f.                                                  | l. oz/cwt)           | 7              | 8             |  |  |
| Glenium 3400 (f.                                                  | l. oz/cwt)           | 5.43           | 1.6           |  |  |
| w/cm                                                              |                      | 0.251          | 0.247         |  |  |
| Concrete Temper                                                   | ature (°F)           | 109            | 82            |  |  |
| Slump (in                                                         | ı.)                  | 8.5            | 10.5          |  |  |
| Unit Weight                                                       | (pcf)                | 151.1          | 151.1         |  |  |
| Air Content                                                       | (%)                  | 1.9            | 1.4           |  |  |
| Moisture Content of                                               | of Rock (%)          | 1.0            | 0.6           |  |  |
| Moisture Content of                                               | of Sand (%)          | 4.5            | 4.2           |  |  |
|                                                                   | 1 Day                | 9710           | 9150          |  |  |
|                                                                   | 7 Day                | 11,630         | 11,550        |  |  |
| Compressive Strength in psi                                       | 14 day               | 12,320         | 12,680        |  |  |
|                                                                   | 28 Day               | 12,650         | 12,770        |  |  |
|                                                                   | 56 Day               | 14,470         | 14,610        |  |  |
| Tensile Strength in psi                                           | 28 Day               | 870            | 900           |  |  |
| Modulus of Elasticity                                             | 28 Day               | 6870           | 7180          |  |  |
| Calculated Modulus of elasticity<br>Using ACI method(psi)         | 28 Day               | 7370           | 7410          |  |  |

| Table D.3.1 CoresLab Structures Concrete Mix Design, Fresh and Harden |                           |                    |                     |  |  |  |
|-----------------------------------------------------------------------|---------------------------|--------------------|---------------------|--|--|--|
|                                                                       | properties for Concrete I |                    |                     |  |  |  |
|                                                                       |                           | Without Air Entrai | nment – Spring 2005 |  |  |  |
|                                                                       |                           |                    | Date:03/15/05       |  |  |  |
|                                                                       | Cemer                     | nt (PCY)           | 800                 |  |  |  |
| IS                                                                    | Coarse A                  | Agg. (PCY)         | 1713.3              |  |  |  |
| portion                                                               | Fine Ag                   | gg. (PCY)          | 1215.3              |  |  |  |
| x Proj                                                                | Water                     | r (PCY)            | 300.55              |  |  |  |
| Mi                                                                    | Glenium 3400 (fl. oz/cwt) |                    | 5                   |  |  |  |
|                                                                       | w/cm                      |                    | 0.376               |  |  |  |
| S                                                                     | Concrete Temperature (°F) |                    | 58                  |  |  |  |
| opertie                                                               | Slun                      | np (in.)           | 9                   |  |  |  |
| esh Pro                                                               | Unit We                   | eight (pcy)        | 148.12              |  |  |  |
| Fre                                                                   | Air Content (%)           |                    | 2                   |  |  |  |
|                                                                       |                           | 1 Day              | 5492                |  |  |  |
| ties                                                                  | Compressive               | 14 day             | 7260                |  |  |  |
| roper                                                                 | Strength in psi           | 28 Day             | 8560                |  |  |  |
| ened I                                                                |                           | 56 Day             | 9840                |  |  |  |
| Hard                                                                  | Tensile strength in       |                    |                     |  |  |  |
|                                                                       | psi                       | 28 Day             | 610                 |  |  |  |

| Table D.3.2 CoresLab Structures Concrete Mix Design, Fresh and Harden |                           |                                       |               |  |  |  |
|-----------------------------------------------------------------------|---------------------------|---------------------------------------|---------------|--|--|--|
| properties for Concrete I                                             |                           |                                       |               |  |  |  |
|                                                                       |                           | Without Air Entrainment – Spring 2005 |               |  |  |  |
|                                                                       |                           |                                       | Date:03/17/05 |  |  |  |
| Proportions                                                           | Cement (PCY)              |                                       | 800.8         |  |  |  |
|                                                                       | Coarse Agg. (PCY)         |                                       | 1718.3        |  |  |  |
|                                                                       | Fine Agg. (PCY)           |                                       | 1227.1        |  |  |  |
|                                                                       | Water (PCY)               |                                       | 303.7         |  |  |  |
| Miy                                                                   | Glenium 3400 (fl. oz/cwt) |                                       | 5             |  |  |  |
|                                                                       | w/cm                      |                                       | 0.379         |  |  |  |
| s                                                                     | Concrete Temperature (°F) |                                       | 64            |  |  |  |
| opertie                                                               | Slump (in.)               |                                       | 8.25          |  |  |  |
| sh Pro                                                                | Unit Weight (pcy)         |                                       | 148.12        |  |  |  |
| Fre                                                                   | Air Content (%)           |                                       | 2.8           |  |  |  |
|                                                                       |                           | 1 Day                                 | 5810          |  |  |  |
| ties                                                                  | Compressive               | 14 day                                | 7860          |  |  |  |
| Proper                                                                | Strength in psi           | 28 Day                                | 8750          |  |  |  |
| Hardened I                                                            |                           | 56 Day                                | 9350          |  |  |  |
|                                                                       | Tensile strength in       |                                       |               |  |  |  |
|                                                                       | psi                       | 28 Day                                | 510           |  |  |  |

| Table D.3.3 CoresLab Structures Concrete Mix Design, Fresh and Harden |                                       |                 |               |  |  |  |  |
|-----------------------------------------------------------------------|---------------------------------------|-----------------|---------------|--|--|--|--|
| properties for Concrete I                                             |                                       |                 |               |  |  |  |  |
|                                                                       | Without Air Entrainment – Spring 2005 |                 |               |  |  |  |  |
|                                                                       |                                       |                 | Date:03/22/05 |  |  |  |  |
| ortions                                                               | Cement (PCY)                          |                 | 801.4         |  |  |  |  |
|                                                                       | Coarse Agg. (PCY)                     |                 | 1704.6        |  |  |  |  |
|                                                                       | Fine Agg. (PCY)                       |                 | 1211.44       |  |  |  |  |
| ( Prop                                                                | Water (PCY)                           |                 | 303.34        |  |  |  |  |
| Miy                                                                   | Glenium 34                            | 00 (fl. oz/cwt) | 5             |  |  |  |  |
|                                                                       | w/cm                                  |                 | 0.380         |  |  |  |  |
| ş                                                                     | Concrete Temperature (°F)             |                 | 60            |  |  |  |  |
| pertie                                                                | Slump (in.)                           |                 | 5             |  |  |  |  |
| sh Pro                                                                | Unit Weight (pcy)                     |                 | 147.5         |  |  |  |  |
| Free                                                                  | Air Content (%)                       |                 | 4.1           |  |  |  |  |
|                                                                       | Compressive<br>Strength in psi        | 1 Day           | 4381          |  |  |  |  |
|                                                                       |                                       | 7 Day           | 6872          |  |  |  |  |
| pertie                                                                |                                       | 14 day          | 7620          |  |  |  |  |
| Hardened Proj                                                         |                                       | 28 Day          | 8450          |  |  |  |  |
|                                                                       |                                       | 56 Day          | 8990          |  |  |  |  |
|                                                                       | Tensile strength in                   |                 |               |  |  |  |  |
|                                                                       | psi                                   | 28 Day          | 790           |  |  |  |  |

| Table D.3.4         CoresLab Structures Concrete Mix Design, Fresh and Harden |                                       |        |               |  |  |  |  |
|-------------------------------------------------------------------------------|---------------------------------------|--------|---------------|--|--|--|--|
| properties for Concrete III                                                   |                                       |        |               |  |  |  |  |
|                                                                               | Without Air Entrainment – Spring 2005 |        |               |  |  |  |  |
|                                                                               | <u> </u>                              |        | Date:04/15/05 |  |  |  |  |
|                                                                               | Cement (PCY)                          |        | 906.7         |  |  |  |  |
| s                                                                             | Slag(PCY)                             |        | 106.7         |  |  |  |  |
|                                                                               | Coarse Agg. (PCY)                     |        | 1760          |  |  |  |  |
| ortion                                                                        | Fine Agg. (PCY)                       |        | 1182.8        |  |  |  |  |
| k Prop                                                                        | Water (PCY)                           |        | 217.79        |  |  |  |  |
| Mix                                                                           | Glenium 3200 (fl. oz/cwt)             |        | 2.25          |  |  |  |  |
|                                                                               | Glenium 3400 (fl. oz/cwt)             |        | 5             |  |  |  |  |
|                                                                               | w/cm                                  |        | 0.215         |  |  |  |  |
| Se                                                                            | Concrete Temperature (°F)             |        | 58            |  |  |  |  |
| opertic                                                                       | Slump (in.)                           |        | 11.25         |  |  |  |  |
| esh Pr                                                                        | Unit Weight (pcy)                     |        | 150.88        |  |  |  |  |
| Fre                                                                           | Air Content (%)                       |        | 0.75          |  |  |  |  |
|                                                                               | Compressive Strength<br>in psi        | 1 Day  | 8,225         |  |  |  |  |
| s                                                                             |                                       | 7 Day  | 12,975        |  |  |  |  |
| Hardened Properties                                                           |                                       | 14 day | 13877         |  |  |  |  |
|                                                                               |                                       | 28 Day | 13790         |  |  |  |  |
|                                                                               |                                       | 56 Day | 14160         |  |  |  |  |
|                                                                               | Tensile Strength in                   |        |               |  |  |  |  |
|                                                                               | psi                                   | 28 Day | 880           |  |  |  |  |

# Table D.3.4 CoresLab Structures Concrete Mix Design, Fresh and Harden

| Table D.3.5 CoresLab Structures Concrete Mix Design, Fresh and Harden |                                |                                       |               |  |  |  |  |
|-----------------------------------------------------------------------|--------------------------------|---------------------------------------|---------------|--|--|--|--|
| properties for Concrete III                                           |                                |                                       |               |  |  |  |  |
|                                                                       |                                | Without Air Entrainment – Spring 2005 |               |  |  |  |  |
|                                                                       |                                | I                                     | Date:03/17/05 |  |  |  |  |
|                                                                       | Cement (PCY)                   |                                       | 910           |  |  |  |  |
|                                                                       | Slag(PCY)                      |                                       | 100           |  |  |  |  |
| IS                                                                    | Coarse Agg. (PCY)              |                                       | 1758.3        |  |  |  |  |
| ortion                                                                | Fine Agg. (PCY)                |                                       | 1188.11       |  |  |  |  |
| x Prop                                                                | Water (PCY)                    |                                       | 255.13        |  |  |  |  |
| Mi                                                                    | Glenium 3200 (fl. oz/cwt)      |                                       | 7             |  |  |  |  |
|                                                                       | Glenium 3400 (fl. oz/cwt)      |                                       | 4.9           |  |  |  |  |
|                                                                       | w/cm                           |                                       | 0.253         |  |  |  |  |
| Sc                                                                    | Concrete Temperature (°F)      |                                       | 64            |  |  |  |  |
| opertic                                                               | Slump (in.)                    |                                       | 10            |  |  |  |  |
| ssh Pro                                                               | Unit Weight (pcy)              |                                       | 150.8         |  |  |  |  |
| Fre                                                                   | Air Content (%)                |                                       | 3.3           |  |  |  |  |
|                                                                       | Compressive Strength<br>in psi | 1 Day                                 | 7,615         |  |  |  |  |
| s                                                                     |                                | 7 Day                                 | 9,120         |  |  |  |  |
| pertie                                                                |                                | 14 day                                | 10980         |  |  |  |  |
| ardened Proj                                                          |                                | 28 Day                                | 12830         |  |  |  |  |
|                                                                       |                                | 56 Day                                | 13490         |  |  |  |  |
| H                                                                     | Tensile Strength in            |                                       |               |  |  |  |  |
|                                                                       | psi                            | 28 Day                                | 860           |  |  |  |  |
| Table                                                                | e D.3.6 CoresLab Str | ructures Concr | ete Mix Design, Fresh and Harden                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|----------------------------------------------------------------------|----------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| properties for Concrete III<br>Without Air Entroimment - Spring 2005 |                      |                |                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                      | Wit                  | hout Air Entra | inment – Spring 2005                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|                                                                      |                      |                | Date:04/12/05                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                                      | Cement (Pe           | CY)            | 916.7                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                                                                      | Slag(PC)             | Y)             | 106.7                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| St                                                                   | Coarse Agg.          | (PCY)          | 1768.7                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| ortion                                                               | Fine Agg. (I         | PCY)           | 1139.4                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| x Prop                                                               | Water (PC            | CY)            | 244.1                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Mi                                                                   | Glenium 3200 (f      | l. oz/cwt)     | 7                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                                                      | Glenium 3400 (f      | l. oz/cwt)     | 5.9                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|                                                                      | w/cm                 |                | 0.239                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Sc                                                                   | Concrete Temper      | rature (°F)    | 63                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| opertie                                                              | Slump (ir            | 1.)            | 10.25                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| ssh Pro                                                              | Unit Weight          | (pcy)          | For Concrete III         Entrainment – Spring 2005         916.7         106.7         1768.7         1139.4         244.1         7         5.9         0.239         63         10.25         151.88         2.5         7         10.25         151.88         2.5         7         10,480         7         10,500         9         14090         9         14090         9         870 |  |  |  |  |  |
| Fre                                                                  | Air Content          | 2 (%)          |                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                      |                      | 1 Day          | 10,480                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| s                                                                    | Compressive Strength | 7 Day          | 12,530                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| pertie                                                               | in psi               | 14 day         | 14090                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| ed Pro                                                               | -                    | 28 Day         | 15050                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| ardene                                                               |                      | 56 Day         | 14990                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Н                                                                    | Tensile Strength in  |                |                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                      | psi                  | 28 Day         | 870                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |

| Tab                         | le D.3.7 CoresLab         | Structures                | Concrete Mix Design, Fresh and Harden |    |  |  |  |  |
|-----------------------------|---------------------------|---------------------------|---------------------------------------|----|--|--|--|--|
| properties for Concrete III |                           |                           |                                       |    |  |  |  |  |
|                             |                           | Without A                 | ir Entrainment – Spring 2005          |    |  |  |  |  |
|                             |                           |                           | Date:04/12/05                         |    |  |  |  |  |
|                             | Cement (PC)               | Ý)                        | 910                                   |    |  |  |  |  |
|                             | Slag(PCY)                 |                           | 106.7                                 |    |  |  |  |  |
| ortions                     | Coarse Agg. (P            | CY)                       | 1768.7                                |    |  |  |  |  |
|                             | Fine Agg. (PC             | CY)                       | 1152.3                                |    |  |  |  |  |
| ( Prop                      | Water (PCY                | )                         | 244.5                                 |    |  |  |  |  |
| diw                         | Glenium 3200 (fl.         | oz/cwt)                   | 7                                     |    |  |  |  |  |
|                             | Glenium 3400 (fl.         | oz/cwt)                   | 5.9                                   |    |  |  |  |  |
|                             | w/cm                      |                           | 0.240                                 |    |  |  |  |  |
| s                           | w/cm<br>Concrete Temperar | Concrete Temperature (°F) |                                       | 63 |  |  |  |  |
| pertie                      | Slump (in.)               |                           | 10.25                                 |    |  |  |  |  |
| sh Pro                      | Unit Weight (p            | ocy)                      | 153.39                                |    |  |  |  |  |
| Fre                         | Air Content (             | %)                        | 1.4                                   |    |  |  |  |  |
|                             |                           | 1 Day                     | 10,590                                |    |  |  |  |  |
|                             | Compressive Strength      | 7 Day                     | 12,830                                |    |  |  |  |  |
| perties                     | in nsi                    | 14 day                    | 14180                                 |    |  |  |  |  |
| d Proj                      | Por                       | 28 Day                    | 13190                                 |    |  |  |  |  |
| ardene                      |                           | 56 Day                    | 14930                                 |    |  |  |  |  |
| Ηέ                          | Tensile Strength in       |                           |                                       |    |  |  |  |  |
|                             | psi                       | 28 Day                    | 760                                   |    |  |  |  |  |

| Ta    | Table D.4.1- Trail Mix Design, Fresh and Harden properties for Concrete I                                                           |             |               |  |  |  |  |  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|--|--|--|--|--|
|       | OSU Lab. Without Air l                                                                                                              | Entrainment |               |  |  |  |  |  |
|       |                                                                                                                                     |             | Date:06/14/04 |  |  |  |  |  |
|       | Cement (PCY)                                                                                                                        |             | 800           |  |  |  |  |  |
| s     | Coarse Agg. (PCY)                                                                                                                   |             | 1800          |  |  |  |  |  |
| rtion | Fine Agg. (PCY)                                                                                                                     | 1144        |               |  |  |  |  |  |
| roboi | Water (PCY)                                                                                                                         |             | 288           |  |  |  |  |  |
| ix Pı | Glenium 3030NS (fl. oz/cwt)                                                                                                         |             | 8             |  |  |  |  |  |
| Μ     | Polyheed 997 WR(fl.oz/cwt)<br>w/cm<br>Air Temperature (°F)<br>Relative Air Humidity (%)<br>Concrete Temperature (°F)<br>Slump (in.) | 3           |               |  |  |  |  |  |
|       | w/cm                                                                                                                                |             | 0.36          |  |  |  |  |  |
|       | Air Temperature (°F)                                                                                                                |             | 81            |  |  |  |  |  |
| ties  | Relative Air Humidity (%)                                                                                                           | 95          |               |  |  |  |  |  |
| oper  | Concrete Temperature (°F)                                                                                                           | 90          |               |  |  |  |  |  |
| th Pr | Slump (in.)                                                                                                                         | 8.5         |               |  |  |  |  |  |
| Fres  | Unit Weight (pcf)                                                                                                                   | 148.68      |               |  |  |  |  |  |
|       | Air Content (%)                                                                                                                     |             | 2.6           |  |  |  |  |  |
|       |                                                                                                                                     | 1 Day       | 6050          |  |  |  |  |  |
|       |                                                                                                                                     | 3 Day       | 7460          |  |  |  |  |  |
|       | Compressive Strength in psi                                                                                                         | 7 Day       | 8000          |  |  |  |  |  |
| ties  |                                                                                                                                     | 28 Day      | 8810          |  |  |  |  |  |
| oper  |                                                                                                                                     | 56 Day      | 9860          |  |  |  |  |  |
| d Pr  | Tensile Strength                                                                                                                    | 1 Day       | 540           |  |  |  |  |  |
| dene  | renene etterigti                                                                                                                    | 28 Day      | 610           |  |  |  |  |  |
| Har   | Modulus of Elasticity(ksi)                                                                                                          | 1 Day       | 5495          |  |  |  |  |  |
|       | modulation Elablishy (Roly                                                                                                          | 28 Day      | 5755          |  |  |  |  |  |
|       | Calculated Modulus of elasticity                                                                                                    | 1 Day       | 4640          |  |  |  |  |  |
|       | using ACI method(ksi)                                                                                                               | 28 Day      | 5615          |  |  |  |  |  |

| Ta    | Table D.4.2- Trail Mix Design, Fresh and Harden properties for Concrete I A |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |  |  |  |  |  |  |
|-------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|--|--|--|
|       | OSU Lab                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |  |  |  |  |  |  |
|       | With 6% Total Air                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |  |  |  |  |  |  |
|       |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date:06/17/04 |  |  |  |  |  |  |
| -     | Cement (PCY)                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 800           |  |  |  |  |  |  |
|       | Coarse Agg. (PCY)                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1800          |  |  |  |  |  |  |
| su    | Fine Agg. (PCY)                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 922           |  |  |  |  |  |  |
| ortio | Water (PCY)                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 272           |  |  |  |  |  |  |
| Prop  | Glenium 3030NS (fl. oz/cwt)                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10            |  |  |  |  |  |  |
| Mix   | Polyheed 997 (fl.oz/cwt)                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3             |  |  |  |  |  |  |
|       | MB-AE 90 (fl.oz/cwt)                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.875         |  |  |  |  |  |  |
|       | w/cm                                                                        | .2- Trail Mix Design, Fresh and Harden properties for Con<br>OSU LabOSU LabWith 6% Total AirDateCement (PCY)Coarse Agg. (PCY)Glenium 3030NS (fl. oz/cwt)Office Agg. (PCY)Office Agg. (PCY)Glenium 3030NS (fl. oz/cwt)Office Agg. (PCY)Office Agg. (PC)Office Agg. (PC)< | 0.34          |  |  |  |  |  |  |
|       | Air Temperature (°F)                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 82            |  |  |  |  |  |  |
| ies   | Relative Air Humidity (%)                                                   | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |  |  |  |  |  |  |
| opert | Concrete Temperature (°F)                                                   | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |  |  |  |  |  |  |
| sh Pr | Slump (in.)                                                                 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |  |  |  |  |  |  |
| Fres  | Unit Weight (pcf)                                                           | 146.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |  |  |  |  |  |  |
|       | Air Content (%)                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.9           |  |  |  |  |  |  |
|       |                                                                             | 1 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6400          |  |  |  |  |  |  |
|       |                                                                             | 3 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7570          |  |  |  |  |  |  |
|       | Compressive Strength in psi                                                 | 7 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8480          |  |  |  |  |  |  |
| ies   |                                                                             | 28 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9170          |  |  |  |  |  |  |
| opert |                                                                             | 56 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9740          |  |  |  |  |  |  |
| d Pro | Tensile Strength in psi                                                     | 1 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 590           |  |  |  |  |  |  |
| dene  |                                                                             | 28 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 615           |  |  |  |  |  |  |
| Har   | Modulus of Elasticity in kei                                                | 1 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4780          |  |  |  |  |  |  |
|       |                                                                             | 28 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6120          |  |  |  |  |  |  |
|       | Calculated Modulus of elasticity                                            | 1 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4690          |  |  |  |  |  |  |
|       | using ACI method in ksi                                                     | 28 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5610          |  |  |  |  |  |  |

| Ta     | Table D.4.3- Trail Mix Design, Fresh and Harden properties for Concrete II |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |  |  |  |  |  |  |  |
|--------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|--|--|--|--|
|        | OSU Lab                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |  |  |  |  |  |  |  |
|        | Without Air Entrainment                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |  |  |  |  |  |  |  |
|        |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date:06/17/04 |  |  |  |  |  |  |  |
|        | Cement (PCY)                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 800           |  |  |  |  |  |  |  |
| 6      | Coarse Agg. (PCY)                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1800          |  |  |  |  |  |  |  |
| rtions | Fine Agg. (PCY)                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1270          |  |  |  |  |  |  |  |
| ropoi  | Water (PCY)                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 240           |  |  |  |  |  |  |  |
| lix P  | Glenium 3030NS (fl. oz/cwt)                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |  |  |  |  |  |  |  |
| N      | Polyheed 997 WR(fl.oz/cwt)                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |  |  |  |  |  |  |  |
|        | w/cm                                                                       | Mix Design, Fresh and Harden properties for Concret<br>OSU LabWithout Air EntrainmentDate:06/1Cement (PCY)800Coarse Agg. (PCY)1800Fine Agg. (PCY)1800Fine Agg. (PCY)1800Water (PCY)240Water (PCY)200olyheed 997 WR(fl.oz/cwt)20tolyheed 997 WR(fl.oz/cwt)31w/cm0.30Air Temperature (°F)82Relative Air Humidity (%)95Concrete Temperature (°F)90Slump (in.)8Unit Weight (pcf)152.6Air Content (%)1.8I Day9230Sive Strength in psi1 Day $r Strength in psi$ 1 Day $r Strength in psi$ 1 Day $r Strength in psi$ 28 Dayof Elasticity in ksi1 DayQas Day1000Cas Day1000Cas Day1000Of Elasticity in ksi28 DayCas Day7100Cas Day7100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |  |  |  |  |  |  |
|        | Air Temperature (°F)                                                       | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |  |  |  |  |  |  |  |
| ties   | Relative Air Humidity (%)                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95            |  |  |  |  |  |  |  |
| opert  | Concrete Temperature (°F)                                                  | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |  |  |  |  |  |  |  |
| sh Pr  | Slump (in.)                                                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |  |  |  |  |  |  |  |
| Free   | Unit Weight (pcf)                                                          | 152.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |  |  |  |  |  |  |  |
|        | Air Content (%)                                                            | g. (PCY) . (PCY) PCY) JS (fl. oz/cwt) WR(fl.oz/cwt) m "ature (°F) [umidity (%) perature (°F) (in.) ght (pcf) ent (%)  1 Day 3 Day 1 psi 1 Day 1 Day 1 psi 1 | 1.8           |  |  |  |  |  |  |  |
|        |                                                                            | 1 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9230          |  |  |  |  |  |  |  |
|        |                                                                            | 3 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10910         |  |  |  |  |  |  |  |
|        | Compressive Strength in psi                                                | 7 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12,230        |  |  |  |  |  |  |  |
| ies    |                                                                            | 28 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13,010        |  |  |  |  |  |  |  |
| opert  |                                                                            | 56 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13,790        |  |  |  |  |  |  |  |
| d Pr   | Tensile Strength in psi                                                    | 1 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 720           |  |  |  |  |  |  |  |
| .dene  |                                                                            | 28 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 880           |  |  |  |  |  |  |  |
| Har    | Modulus of Elasticity in ksi                                               | 1 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5880          |  |  |  |  |  |  |  |
|        |                                                                            | 28 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7140          |  |  |  |  |  |  |  |
|        | Calculated Modulus of elasticity                                           | 1 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5980          |  |  |  |  |  |  |  |
|        | using ACI method in ksi                                                    | 28 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7100          |  |  |  |  |  |  |  |

|             |                              |            |          | OSU Lab, W | Vith No Air | Entrainmer | nt        |           |           |           |
|-------------|------------------------------|------------|----------|------------|-------------|------------|-----------|-----------|-----------|-----------|
|             |                              |            | 6/7/2004 | 6/8/2004   | 6/9/2004    | 6/10/2004  | 6/11/2004 | 6/12/2004 | 6/14/2004 | 6/16/2004 |
|             | Cement (PCY)                 |            | 900      | 900        | 1000        | 800        | 900       | 1000      | 900       | 900       |
|             | 10 % Fly Ash (PC             | CY)        | _        | 100        | _           | _          | -         | _         | 100       | _         |
| IS          | 10 % Slag (PCY               | <i>(</i> ) | 100      | _          | _           | _          | 100       | _         | _         | 100       |
| tior        | 20 % Slag (PCY               | <u>(</u> ) | -        | _          | _           | 200        | _         | _         | _         | _         |
| por         | Coarse Agg. (PC              | Y)         | 1800     | 1800       | 1800        | 1800       | 1800      | 1800      | 1800      | 1800      |
| ( Prc       | Fine Agg. (PCY               | <u>()</u>  | 1141.7   | 1141.7     | 1141.7      | 1141.7     | 1188.6    | 1194.3    | 1163.4    | 1188.6    |
| κiΜ         | Water (PCY)                  |            | 260      | 260        | 260         | 260        | 240       | 240       | 240       | 240       |
|             | Glenium 3030NS (fl. oz/cwt)  |            | 6.5      | 6.5        | 6.5         | 6.5        | 30        | 24        | 22        | 22        |
|             | Glenium 3200HES (fl. oz/cwt) |            | 6.92     | 7          | 6.92        | 6.92       | 7         | 7         | 7         | 7         |
|             | Polyheed 997WR (fl.oz/cwt)   |            | 3        | 3          | 3           | 3          | 3         | 3         | 3         | 3         |
|             | w/cm                         |            | 0.260    | 0.26       | 0.26        | 0.26       | 0.24      | 0.24      | 0.24      | 0.24      |
| S           | Air Temperature              | (°F)       | 73       | 77         | 90          | 90         | 90        | 90        | 77        | 82        |
| ertie       | Relative Air Humidi          | ty (%)     | 86       | 64         | 84          | 85         | 85        | 85        | 95        | 95        |
| rop         | Concrete Temperatu           | re (°F)    | 85       | 90         | 85          | 85         | 86        | 90        | 90        | 90        |
| hP          | Slump (in.)                  |            | 7.5      | 8.5        | 8.4         | 3          | 10        | 9         | 10        | 9.5       |
| res         | Unit Weight (pc              | f)         | 153.80   | 151.60     | 157.70      | 154.68     | 159.68    | 158.68    | 159.70    | 157.70    |
| Η           | Air Content (%               | )          | 2.5      | 3          | 2.4         | 2.8        | 1.3       | 2.3       | 2.3       | 2.4       |
| p s         |                              | 1 Day      | 10,500   | 10,550     | 11,000      | 9890       | 12,080    | 13,190    | 10,850    | 11,150    |
| dene        | Compressive Strength         | 7 Day      | 12,890   | 13,570     | 13,460      | 13,040     | 14,330    | 15,890    | 14,340    | 13,850    |
| Har(<br>rop | in psi                       | 28 Day     | 14,030   | 14,850     | 14,660      | 14,170     | 16,900    | 16,480    | 16,570    | 16,210    |
| Η           |                              | 56 Day     | 14,810   | 15,880     | 15,200      | 14,570     | 16,960    | 16,620    | 16,720    | 17,440    |

 Table D.4.4-Trial Mix Designs, Fresh and Harden properties for Concrete III

|         | Table D.5.1. Tr                   | ial Batch  | es made at | OSU laborate | ory and materi | ials from Cores | lab Structures |           |
|---------|-----------------------------------|------------|------------|--------------|----------------|-----------------|----------------|-----------|
|         |                                   |            |            | C-I          |                |                 | C-IA           |           |
|         |                                   |            | 7/8/2004   | 7/20/2004    | 7/27/2004      | 7/8/2004        | 7/20/2004      | 7/27/2004 |
|         | Cement (PCY)                      | 1          | 800        | 800          | 800            | 800             | 800            | 800       |
| S       | Coarse Agg. (PC                   | Y)         | 1800       | 1800         | 1800           | 1800            | 1800           | 1800      |
| rtion   | Fine Agg. (PCY                    | <b>(</b> ) | 1148       | 1191         | 1191           | 1137            | 1140           | 1140      |
| ropo    | Water (PCY)                       |            | 288        | 272          | 272            | 225             | 224            | 224       |
| fix P   | Glenium 3030NS (fl.               | oz/cwt)    | 8          | 8            | 8              | 18              | 18             | 18        |
| 2       | MB-AE 90 (fl.oz/cwt)              |            | 3          | _            | _              | 3               | 2.5            | _         |
|         | Polyheed 997 (fl.oz/cwt)          |            | _          | 3            | _              | 2.5             | 3              | _         |
|         | w/cm                              |            | 0.36       | 0.34         | 0.34           | 0.28            | 0.28           | 0.28      |
|         | Air Temperature (                 | (°F)       | _          | 79           | _              | _               | 79             | _         |
| ties    | Relative Air Humidi               | ty (%)     | _          | 72           | _              | _               | 72             | -         |
| oper    | Concrete Temperatu                | re (°F)    | _          | 98           | _              | _               | 98             | _         |
| sh Pr   | Slump (in.)                       |            | 6.5        | 9.25         | 4.0            | 4.5             | 9.75           | 10        |
| Free    | Unit Weight (pc                   | f)         | 149.50     | 145.20       | 150.88         | 150.50          | 145.12         | 154.12    |
|         | Air Content (%                    | )          | 1.4        | 5.0          | 2.7            | 1.4             | 6.1            | 1.9       |
| Compres | Compressive Strength in psi 1 Day |            | 5165       | 6190         | _              | 6220            | 6320           | _         |
| Calc    | culated unit weight(PCF           | -)         | 149.48     | 150.48       |                | 146.74          | 146.81         |           |
| R       | equired Air content(%)            |            | 2          |              | 2              | 6               | (              | 3         |

|        | Table D.5.2. Trial Batches I | nade at OS                                                                                                                                                                                                                                                                                            | U laboratory and | l materials from | Coreslab Struct | tures    |
|--------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|-----------------|----------|
|        |                              |                                                                                                                                                                                                                                                                                                       | C-II             |                  | C-III           |          |
|        |                              | 7/8/2004                                                                                                                                                                                                                                                                                              | 7/20/2004        | 7/8/2004         | 7/20/2004       | 8/5/2004 |
|        | Cement (PCY)                 | 800                                                                                                                                                                                                                                                                                                   | 800              | 900              | 900             | 900      |
|        | Slag(pcy)                    | -                                                                                                                                                                                                                                                                                                     | _                | 100              | 100             | 100      |
| suc    | Coarse Agg. (PCY)            | 1800                                                                                                                                                                                                                                                                                                  | 1800             | 1800             | 1800            | 1700     |
| portic | Fine Agg. (PCY)              | 1270                                                                                                                                                                                                                                                                                                  | 1319             | 1102             | 1102            | 1200     |
| Propc  | Water (PCY)                  | 240                                                                                                                                                                                                                                                                                                   | 224              | 240              | 240             | 240      |
| Mix    | Glenium 3030NS (fl. oz/cwt)  | 22                                                                                                                                                                                                                                                                                                    | 22               | 20               | 20              | 7        |
|        | Glenium 3400 (fl. oz/cwt)    | -                                                                                                                                                                                                                                                                                                     | _                | 7                | 7               | 13       |
|        | Polyheed 997 (fl.oz/cwt)     | 3                                                                                                                                                                                                                                                                                                     | 3                | 3                | 3               | -        |
|        | w/cm                         | (fl. oz/cwt)     22     22     20     240       (fl. oz/cwt)     22     22     20     20       fl. oz/cwt)     -     -     7     7       fl. oz/cwt)     3     3     3     3       0.3     0.28     0.24     0.24       ure (°F)     -     79     -     79       midity (%)     -     72     -     72 | 0.24             | 0.24             |                 |          |
|        | Air Temperature (°F)         | _                                                                                                                                                                                                                                                                                                     | 79               | -                | 79              | 75       |
| ties   | Relative Air Humidity (%)    | _                                                                                                                                                                                                                                                                                                     | 72               | _                | 72              | 83       |
| operi  | Concrete Temperature (°F)    | _                                                                                                                                                                                                                                                                                                     | 98               | -                | 99              | 96       |
| sh Pr  | Slump (in.)                  | 9.5                                                                                                                                                                                                                                                                                                   | 10               | 10.0             | 10.0            | 9.0      |
| Free   | Unit Weight (pcf)            | 154.00                                                                                                                                                                                                                                                                                                | 151.92           | 156.60           | 154.28          | 152.76   |
|        | Air Content (%)              | 2.5                                                                                                                                                                                                                                                                                                   | 2.5              | 1.4              | 2.4             | 2.4      |
| Compre | ssive Strength in psi 1 Day  | 7630                                                                                                                                                                                                                                                                                                  | 7650             | 8,920            | 10,200          | 11,240   |
| Calo   | culated unit weight(PCF)     | 152.22                                                                                                                                                                                                                                                                                                | 153.44           | 153.41           | 153.41          | 153.33   |
| R      | equired Air content(%)       | 2                                                                                                                                                                                                                                                                                                     | 2                | 2                | 2               | 2        |

| Table D.    | 6.1. Concrete   | e Mix design   | , fresh and | d Hardene | ed Propert | ies for NA | SP Pull- |
|-------------|-----------------|----------------|-------------|-----------|------------|------------|----------|
|             |                 |                | Out Te      | sts       |            |            |          |
|             |                 |                | Concrete    | C-N       |            |            |          |
|             | Mix Proportions | 3              | C-N         | C-N       | C-N        | C-N        | C-N      |
|             |                 |                | Date:       | Date:     | Date:      | Date:      | Date:    |
|             |                 |                | 08/03/05    | 02/15/05  | 08/03/05   | 08/10/05   | 09/06/05 |
|             | Cement          | (PCY)          | 650         | 650       | 650        | 650        | 650      |
|             | Coarse Ag       | g. (PCY)       | 1800        | 1800      | 1800       | 1800       | 1800     |
| S           | Fine Agg        | g. (PCY)       | 1259        | 1243      | 1243       | 1243       | 1300     |
| ortion      | Water           | (PCY)          | 292         | 298       | 298        | 298        | 276      |
| k Prop      | Glenium 3400    | 0 (fl. oz/cwt) | 8           | 8         | 8          | 8          | 8        |
| Mi          | w/c             | m              | 0.45        | 0.46      | 0.460      | 0.46       | 0.425    |
|             | Air Tempe       | rature (°F)    | 78          | 82        | 79         | 77         | 73       |
|             | Relative Hu     | umidity(%)     | 22          | 24        | 72         | 28         | 76       |
| ş           | Concrete Tem    | perature (°F)  | 71          | 75        | 80         | 81         | 76       |
| pertie      | Slump           | o (in.)        | 10          | 10        | 8          | 8.25       | 10.5     |
| sh Prc      | Unit Weig       | ght (pcy)      | 147.8       | 146.8     | 141.8      | 147.8      | 145.8    |
| Fre         | Air Cont        | ent (%)        | 4.5         | 2.5       | 5          | 2.9        | 3.9      |
|             | Compressive     |                | 4730        | 4560      | 2230       | 3485       | 4550     |
| dened       | Strength in     |                |             |           |            |            |          |
| Har<br>Proj | psi             | 1 Day          |             |           |            |            |          |

| Та               | ble D.6.1. Co   | oncrete Mix    | design, fr | esh and Ha | ardened P | roperties f | or NASP  |
|------------------|-----------------|----------------|------------|------------|-----------|-------------|----------|
|                  |                 |                | Pull-Out   | Tests      |           |             |          |
|                  |                 |                | Concrete   | C-N        |           |             |          |
|                  | Mix Proportions | 3              | C-N        | C-N        | C-N       | C-N         | C-N      |
|                  |                 |                | Date:      | Date:      | Date:     | Date:       | Date:    |
|                  |                 |                | 08/03/05   | 02/15/05   | 08/03/05  | 08/10/05    | 09/06/05 |
|                  | Cement          | (PCY)          | 650        | 650        | 650       | 650         | 650      |
|                  | Coarse Ag       | g. (PCY)       | 1800       | 1800       | 1800      | 1800        | 1800     |
| S                | Fine Agg        | . (PCY)        | 1259       | 1243       | 1243      | 1243        | 1300     |
| ortion           | Water (         | (PCY)          | 292        | 298        | 298       | 298         | 276      |
| x Prop           | Glenium 3400    | ) (fl. oz/cwt) | 8          | 8          | 8         | 8           | 8        |
| Mi               | w/c             | m              | 0.45       | 0.46       | 0.460     | 0.46        | 0.425    |
|                  | Air Temper      | rature (°F)    | 78         | 82         | 79        | 77          | 73       |
|                  | Relative Hu     | midity(%)      | 22         | 24         | 72        | 28          | 76       |
| s                | Concrete Tem    | perature (°F)  | 71         | 75         | 80        | 81          | 76       |
| opertic          | Slump           | (in.)          | 10         | 10         | 8         | 8.25        | 10.5     |
| ssh Pro          | Unit Weig       | ght (pcy)      | 147.8      | 146.8      | 141.8     | 147.8       | 145.8    |
| Fre              | Air Content (%) |                | 4.5        | 2.5        | 5         | 2.9         | 3.9      |
|                  | Compressive     |                | 4730       | 4560       | 2230      | 3485        | 4550     |
| dened<br>perties | Strength in     |                |            |            |           |             |          |
| Har<br>Proj      | psi             | 1 Day          |            |            |           |             |          |

| Table D.6.2 Concrete Mix design fresh and Hardened Properties for NASP Pull   |                 |             |          |          |          |          |          |  |  |  |
|-------------------------------------------------------------------------------|-----------------|-------------|----------|----------|----------|----------|----------|--|--|--|
| Table D.6.2 Concrete Mix design, fresh and Hardened Properties for NASP Pull- |                 |             |          |          |          |          |          |  |  |  |
| Out Tests                                                                     |                 |             |          |          |          |          |          |  |  |  |
|                                                                               |                 |             |          |          |          |          |          |  |  |  |
|                                                                               |                 |             | Concret  | e C-I    |          |          |          |  |  |  |
|                                                                               | Mix Proportions |             | C-I      | C-I      | C-I      | C-I      | C-I      |  |  |  |
|                                                                               |                 |             | Date:    | Date:    | Date:    | Date:    | Date:    |  |  |  |
|                                                                               |                 |             | 02/07/05 | 02/17/05 | 08/12/05 | 08/29/05 | 09/09/09 |  |  |  |
|                                                                               | Cement (P       | CY)         | 800      | 800      | 800      | 800      | 800      |  |  |  |
|                                                                               | Coarse Agg.     | 1800        | 1800     | 1800     | 1800     | 1800     |          |  |  |  |
| S                                                                             | Fine Agg. (I    | 1144        | 1102     | 1060     | 1102     | 1102     |          |  |  |  |
| ortion                                                                        | Water (PCY)     |             | 288      | 304      | 320      | 304      | 304      |  |  |  |
| k Prop                                                                        | Glenium 3400 (f | 8           | 16       | 8        | 8        | 8        |          |  |  |  |
| Miy                                                                           | w/cm            |             | 0.36     | 0.38     | 0.40     | 0.38     | 0.38     |  |  |  |
|                                                                               | Air Temperatu   | 77          | 84       | 77       | 81       | 91       |          |  |  |  |
|                                                                               | Relative Humi   | dity (%)    | 22       | 21       | 28       | 64       | 21       |  |  |  |
| S                                                                             | Concrete Temper | cature (°F) | 72       | 73       | 80       | 81       | 82       |  |  |  |
| pertie                                                                        | Slump (in       | n.)         | 9.5      | 10       | 10.25    | 10       | 10       |  |  |  |
| sh Pro                                                                        | Unit Weight     | (pcy)       | 147.8    | 151.8    | 146.8    | 145.8    | 147.8    |  |  |  |
| Fre                                                                           | Air Content     | 2 (%)       | 3        | 1.5      | 1.4      | 1.0      | 2.4      |  |  |  |
| es a                                                                          | Compressive     |             | 7190     | 7405     | 5490     | 4965     | 6940     |  |  |  |
| Properti                                                                      | Strength in psi | 1 Day       |          |          |          |          |          |  |  |  |

| Table                                                                       | Table D.6.3.Concrete Mix design, fresh and Hardened Properties for NASP Pull-Out Tests |               |               |               |               |               |               |  |  |  |  |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|--|--|--|--|
|                                                                             | Concrete C-II                                                                          |               |               |               |               |               |               |  |  |  |  |
|                                                                             |                                                                                        | Γ             |               |               | ſ             | ſ             |               |  |  |  |  |
| Mix Prope                                                                   | ortions                                                                                | C-II          | C-II          | C-II          | C-II          | C-II          | C-II          |  |  |  |  |
|                                                                             |                                                                                        | Date:02/09/05 | Date:02/11/05 | Date:02/16/05 | Date:08/12/05 | Date:08/30/05 | Date:09/08/05 |  |  |  |  |
|                                                                             |                                                                                        |               |               |               |               |               |               |  |  |  |  |
| Cement (                                                                    | PCY)                                                                                   | 800           | 800           | 800           | 800           | 800           | 800           |  |  |  |  |
| Coarse Agg                                                                  | 5. (PCY)                                                                               | 1800          | 1800          | 1800          | 1800          | 1800          | 1800          |  |  |  |  |
| Fine Agg.                                                                   | (PCY)                                                                                  | 1270          | 1270          | 1234          | 1230          | 1102          | 1314          |  |  |  |  |
| Water (F                                                                    | PCY)                                                                                   | 240           | 240           | 298           | 256           | 304           | 224           |  |  |  |  |
| Glenium 3400                                                                | (fl. oz/cwt)                                                                           | 16            | 16            | 8             | 8             | 8             | 8             |  |  |  |  |
| w/cn                                                                        | n                                                                                      | 0.30          | 0.30          | 0.46          | 0.32          | 0.38          | 0.28          |  |  |  |  |
| Air Tempera                                                                 | ture (°F)                                                                              | 66            | 72            | 82            | 81            | 91            | 81            |  |  |  |  |
| Relative Hum                                                                | nidity (%)                                                                             | 25            | 24            | 24            | 62            | 21            | 58            |  |  |  |  |
| Concrete Temp                                                               | erature (°F)                                                                           | 70            | 70            | 70            | 80            | 82            | 82            |  |  |  |  |
| Slump                                                                       | (in.)                                                                                  | 8             | 9.75          | 9.5           | 6             | 10            | 8             |  |  |  |  |
| Unit Weight (pcy)                                                           |                                                                                        | 151.8         | 151.8         | 152.8         | 153.8         | 147.8         | 151.8         |  |  |  |  |
| Air Content (%)         2.7         0.8         1.0         3.0         2.4 |                                                                                        |               |               |               |               | 4.0           |               |  |  |  |  |
| Compressive                                                                 |                                                                                        | 9780          | 8480          | 8420          | 7270          | 6940          | 8790          |  |  |  |  |
| Strength in psi                                                             | 1 Day                                                                                  |               |               |               |               |               |               |  |  |  |  |

| Table D.6.4.Concrete Mix design, fresh and Hardened Properties for NASP |                           |          |          |          |          |        |
|-------------------------------------------------------------------------|---------------------------|----------|----------|----------|----------|--------|
| Pull-Out Tests, Concrete C-II                                           |                           |          |          |          |          |        |
|                                                                         |                           |          |          |          |          | C IIII |
|                                                                         |                           |          | C-III    | C-III    | C-III    | C-IIII |
|                                                                         |                           |          | Date:    | Date:    | Date:    | Date:  |
|                                                                         |                           | 02/17/05 | 00/24/05 | 00/20/05 | 00/00/05 |        |
| Mix Proportions                                                         | Cement (PCY)              |          | 900      | 900      | 900      | 900    |
|                                                                         | Slag(PCY)                 |          | 100      | 100      | 100      | 100    |
|                                                                         | Coarse Agg. (PCY)         |          | 1800     | 1800     | 1800     | 1800   |
|                                                                         | Fine Agg. (PCY)           |          | 1048     | 1097     | 1110     | 1110   |
|                                                                         | Water (PCY)               |          | 260      | 240      | 235      | 235    |
|                                                                         | Glenium 3400 (fl. oz/cwt) |          | 18       | 18       | 18       | 18     |
|                                                                         | Glenium 3200 (fl. oz/cwt) |          | 7        | 7        | 7        | 7      |
|                                                                         | Polyheed 997 (fl. oz/cwt) |          | 3        | 3        | 3        | 3      |
|                                                                         | w/cm                      |          | 0.260    | 0.24     | 0.235    | 0.235  |
| Fresh Properties                                                        | Air Temperature (°F)      |          | 84       | 73       | 81       | 79     |
|                                                                         | Relative Humidity(%)      |          | 21       | 72       | 52       | 62     |
|                                                                         | Concrete Temperature (°F) |          | 78       | 83       | 81       | 83     |
|                                                                         | Slump (in.)               |          | 10.5     | 8.5      | 10       | 8      |
|                                                                         | Unit Weight (pcy)         |          | 156.8    | 154.8    | 153.8    | 158.8  |
|                                                                         | Air Content (%)           |          | 0.8      | 2.2      | 2.5      | 2.0    |
|                                                                         | Compressive               | 9,860    | 4,560    |          | 10,340   | 11,640 |
|                                                                         | Strength in psi           |          |          |          |          |        |

#### Vita

## Eden Tessema

# Candidate for the degree of

## Master of Science

# Thesis: THE EFFECT OF HIGH STRENGTH CONCRETE ON THE BOND ABILITY OF PRESTRESSING STRANDS

Major Field: Civil Engineering

**Biographical:** 

- Personal Data: Born in Addis Ababa, Ethiopia, On August 10, 1977, the daughter of Girma Tessema and Firehiwot W/ Aregay.
- Education: Graduated from Nazareth High School, Addis Ababa, Ethiopia in May 1995; received Bachelor of Science degree in Civil Engineering from Addis Ababa University Faculty of Technology, Addis Ababa, Ethiopia in July 2000. Completed the requirements for the Master of Science degree with major in Structural Engineering at Oklahoma State University in July, 2006.
- Experience: Employed by Rohobot Construction PLC, Addis Ababa, Ethiopia as Site Engineer from 2000 2002; employed by MH Engineering PLC, Addis Ababa, Ethiopia as Design Engineer from 2002 2003; employed by Oklahoma State University, Department of Civil Engineering as a graduate Research Assistant from 2004 2005; employed by Coreslab Structures (OKLA) Inc., as Junior Design Engineer of precast and prestressed elements, 2005; employed by Brockette Davis Drake Consulting Engineers Inc. as Structural Design Engineer, 2006 to present.

Professional Memberships: American society of Civil Engineers.