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PREFACE 

A method was developed to predict the pressure drop for gas-liquid 

flow in long horizontal transmission lines. The method is based on the 

assumption that the two phases flow at different velocities within the 

pipeline and provides a better estimate of the pressure drop than 

obtained by assuming homogeneous flow. 
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NOMENCLATURE 

A pipe cross-section, ft 2 

D pipe diameter, ft 

f friction factor 

Fe Flanigan elevation factor (Equation II-23) 

g acceleration due to gravity, 32.2 ft/sec2 

gc gravitational constant 

G superficial gas mass velocity, lb/ft2 sec 

G11 gas mass velocity, lb/ft2 sec (Figure 5) 

Gm mixture mass velocity, lb/ft2/sec (Equation II-6) 

HL liquid holdup, volume percent (defined on page 11) 

HL holdup, percent pipe cross-section (defined on page 35) 

For a given length of the pipe, HL also represents the 

volume percent liquid (also referred to as pseudo holdup 

in Chapter IV) 

h elevation, ft (Equation II-23) 

L superficial liquid mass velocity, lb/ft2 sec 

L' line length, ft 

L11 liquid mass velocity, lb/ft2 sec (Figure 5) 

Nd pipe diameter number, dimensionless (defined in 

Equation II-31, page 22) 

Ngv gas velocity number, dimensionless (defined in 

Equation II-30, page 22) 
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NLv liquid velocity number, dimensionless (defined in 

Equation II-29, page 22) 

NL liquid viscosity number, dimensionless (defined in 

Equation II-31, page 22) 

NFR Froude number, dimensionless (defined in Equation II-22, 

page l4) 

P pressure, psia 

~ pressure drop, psia 

(~) pressure gradient, psia/ft 

q volume flow rate, ft3/sec 

Re two-phase Reynolds number as defined in Equation II-19 for 

the Beggs and Brill method 

Retp two-phase Reynolds number as defined in Equation II-37 and 

presented in Figure 3 for the AGA method 

S correlating parameter for slip velocity 

V velocity, ft/sec 

X correlating parameter in the Lockhart-Martinelli 

correlation (Equation II-1) 

x ratio of the gas mass flow rate to the total mass flow 

rate (Equation II-4) 

xl mole fraction of liquid in Equation II-41 

Z elevation, ft 

Greek Letters 

p density, 1 b/ft3 

0 angle of inclination 
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volume fraction liquid (defined in Equation II-18, 

page 13). This parameter is expressed as volume percent 

in Figures 4, 5, 7, 8, and 9 

A1 Baker parameter in Figures 1 and 6 (defined on page 8) 

v Baker parameter in Figures 1 and 6 (defined on page 8) 

v• correlating function for liquid holdup in Equation II-30 

o surface tension, dynes/em 

~ viscosity, centipoise, lb/ft sec 

~ correlating parameter in the Lockhart-Martinelli method 

E summation symbol 

T shear stress (Equation II-23) 

b 

d 

g 

gv 

t 

tV 

m, me 

ns 

Subscripts 

base (Equation II-34) 

subscript for diameter number in Equations II-30 and II-33 

gas 

subscript for gas velocity number in Equations II-30 and 

II-32 

liquid 

subscript for liquid velocity number in Equations II-30 

and II-31 

mixture 

no-slip 

two-phase 

superficial gas velocity 

superficial liquid velocity 

ix 



CHAPTER I 

INTRODUCTION 

Pipelines are commonly used for transporting gas-1 i quid mixtures. 

In some cases, a two-phase line can save capital cost by 20 to 25% over 

two single-phasa lines. Properly designing a two-phase line requires 

accurate knowledge of the two-phase pressure drop. The introduction of 

a small amount of liquid into a gas stream can increase the pressure 

drop by an order of magnitude over what might be expected for gas flow 

alone. 

One of the major steps in calculating the pressure drop in two­

phase flow is determining the liquid holdup. The liquid holdup in a 

section of a pipeline is the inventory of liquid within that section. 

At a given point within the pipeline, the holdup depends on the velocity 

and the density of the two phases. The holdup is used to calculate the 

two-phase density and the two-phase friction factor. A number of 

empirical correlations are available to estimate the liquid holdup. 

Although many methods are available for calculating the pressure 

drop in gas-liquid flow, no single method has proved the best for use 

under all operating conditions. Akashah et al. (2) developed a method 

using an equation of state to calculate the thermodynamic properties. 

In this approach, the thermodynamic properties are calculated from the 

Soave-Redlich-Kwong (SRK) equation of state, using the algorithm in the 

computer program UNICALC (32). The liquid and vapor viscosities are 

calculated using the correlations of Thodos and coworkers (38). The 
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surface tension is calculated from equations given in the GPSA Data Book 

(23). Akashah (1) calculated the pressure drop for a gas-condensate 

mixture flowing through a horizontal pipeline with three of the more 

widely used methods -- the Beggs and Brill, the AGA, and the Lockhart­

Martinelli method. For the set of experimental data Akashah considered, 

only the Lockhart-Martinelli method predicted a pressure drop higher 

than the observed pressure drop. Many of the more widely used methods 

for calculating the pressure drop in long transmission lines predict a 

pressure drop much lower than what is actually encountered. 

The existing methods for pressure drop calculations assume 

homogeneous or no-slip flow. This means that both the gas and the 

liquid move down the pipeline at the same velocity. The methods use 

superficial phase velocities and the mixture velocity in the calculation 

procedure. The superficial velocity of a phase is the velocity the 

phase would have if it occupied the entire conduit. The mixture 

velocity is calculated by dividing the total volumetric flowrate of gas 

and liquid at pipeline conditions by the cross-section area of the 

pipeline. In reality, a phase occupies only a portion of the pipe 

cross-section. The gas slips by the liquid and the two-phases generally 

move at different velocities. Also, the velocity of the gas-liquid 

mixture controls the two-phase pressure drop. The higher the mixture 

velocity, the greater the pressure drop. 

The present work is an attempt to develop a methodology to 

artificially increase the mixture velocity so that a higher calculated 

pressure drop may be obtained by using the more widely used methods for 

flow in long, horizontal, transmission lines. Such an approach should 
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provide a better estimate of the pressure drop and improve the 

reliability of the existing methods. 
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CHAPTER II 

LITERATURE REVIEW 

Pressure drop in pipelines results from elevation changes, friction 

losses, and acceleration losses. Any correlation should consider the 

pressure effects resulting from these losses. So far, the many attempts 

to manipulate physical data defining these losses to fit actual pressure 

drops have had limited success. Several investigators have separated 

experimental data into several groups of observed flow patterns or 

regimes and then developed a correlation for each flow regime. This is 

a convenient way of correlating widely scattered data. This chapter 

briefly reviews some of the widely used pressure drop calculation 

methods using this approach. 

A large number of books, technical papers, and reports have been 

published on gas-liquid flow based on data collected from laboratory, 

pilot-plant, or full-scale tests using a limited number of fluids, flow 

rates, and pipe sizes. For example, Collier (14) has presented a 

comprehensive analysis of heat transfer and pressure drop in two-phase 

flow. Much of the information in his book is designed for application 

in nuclear reactors. Daly and Harlow (15) performed a numerical study 

to derive a model of countercurrent steam-water flow in large horizontal 

pipes. The model is useful for designing the emergency core cooling 

system for a pressurized water reactor. Bell (9) has examined some of 

the problems associ a ted with heat and mass-transfer in two-phase flow. 

In this paper, he refers to the Friedel correlation which is widely used 
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for calculating the two-phase pressure drop in the nuclear industry. 

The literature cited so far deals with flow through relatively short 

tubes and pipes. The acceleration effect on pressure drop for flow 

through short pipes is considerably greater than for flow through long 

lines. The present study deals with the pressure drop encountered in 

long transmission lines, in which the acceleration effect is 

negligible. Regardless of the type of application, the publications in 

gas-liquid flow cover such a variety of methods and approaches that 

reviewing all of them would be impractical. Those reviewed in this 

chapter are among the more widely used methods for flow in long 

horizontal transmission lines. Inclusion or exclusion of an approach 

has no significance about its worth for a specific application. 

The Lockhart-Martinelli Method 

Lockhart and Martinelli (30) presented the first method to predict 

the pressure drop for gas-liquid flow in pipes. They obtained an 

empirical correlation from experimental data for air and various liquids 

in pipes ranging from 0.586 inches to l.d17 inches in diameter. 

Although the correlation is based on data taken in small diameter pipes, 

it has been used extensively in industry for a wide variety of systems 

with moderate success (34). One correlating parameter in this method is 

the square root of the ratio of the pressure drops obtained if each 

phase occupied the entire pipe. The parameter is 

X= [(dP/dZ) /(dP/dZ) 9J112 (Il-l) 
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The pressure loss terms in Equation II-1 are separately calculated 

assuming that each phase occupies the entire pipe. The parameter X is 

then used to find a multiplying factor which can be used to calculate 

the two phase pressure drop from the single phase pressure drop: 

(II -2) 

(II -3) 

The functions ~g amd $! were presented in graphical form as shown in 

Figure 1, page 7. Lockhart and Martinelli identified four flow regimes 

which they defined as gas turbulent-liquid turbulent, gas turbulent­

liquid viscous, gas viscous-liquid turbulent, and gas viscous-liquid 

viscous flow. They presented a separate curve relating ~g and ~R. with X 

for each flow regime. Degance and Atherton (17) developed equations 

representing the functional relationships for computer application. 

Chisholm (13) recommended simplified equations to calculate the 

Lockhart-Martinelli multiplying factor ~t· The equations are of the 

form 

~2 = 1 + C/X + 1/i 
Jl. 

where C = a constant whose value depends upon the flow regime 

X = the Lockhart-Martinelli parameter 

(II-4) 

x = the ratio of the gas mass flowrate to the total mass flow-

rate. 
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According to Chisholm (13), the values of$! calculated from Equation 

II-4 are in good agreement with the empirical curves of Lockhart-

Martinelli. 

Baker (3) has shown that the Lockhart-Martinelli method over-

8 

predicts the pressure drop in large diameter pipes. He developed a flow 

regime map showing seven different flow patterns. Baker (4) recommended 

the Flanigan (22) correlation for calculating the pressure drop in 

inclined lines. Figure 2 shows Baker's flow regime map. The parameters 

in this map are defined as follows: 

L = superficial liquid mass velocity, lb/ft2 sec 

G = superficial gas mass velocity, lb/ft2 sec 

A1 = [(pg/0.075)(pL/62.3)]112 

1jJ = (~3)[JlL (62.3/pL)2]1/3 

p = gas density, lb/ft3 
g 

PL = liquid density, lb/ft3 

IlL = liquid viscosity, centipoise 

cr = surface tension, dynes/em 

Baker presented a separate equation for each type of flow to calculate 

the Lockhart ... Martinelli multiplier $g• The equations are of the form 

b 
$ = a X ( II-5) 
g (L I) c 

where a, b, and care empirically-determined constants, X the Lockhart-

Martinelli correlating parameter, and L' the line length in feet. The 

two-phase pressure drop is then calculated from Equation II-2. 

The constant c in Equation II-5 is a positive number. Since the 

other terms in the equation are independent of line length, Equation 
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11-5 implies that for very long pipelines, fg will approach a value 

close to zero. This does not seem reasonable. Baker based his 

correlations on experimental data from 8 inch and 10 inch diameter 

pipelines. According to Husain, Choe, and Wiseman (28), his 

correlations do not work well for smaller diameter pipes, except for 

air-water systems. 

10 

Besides Baker, Hoogendoorn (25) and Hoogendoorn and Buitelaar (26) 

also investigated gas-liquid flow patterns in horizontal pipelines. 

Hoogendoorn (25) measured liquid holdup in smooth pipes with diameters 

ranging from 24 mm to 140 mm. He used air as the gas and water, spindle 

oil, and gas oil as liquids in his experiments. Hoogendoorn and 

Buitelaar (26) then investigated the flow of superheated Refrigerant-11 

in horizontal 15 mm pipes. The results of these studies show that the 

Lockhart-Martinelli method does not work well for wave flow and mist-

annular flow. For wave flow, Hoogendoorn proposed the correlation: 

(11-6) 

where, c• = a constant which depends on the pipe diameter and roughness 

Gm = the mixture mass velocity, kg/m2 sec 

D = the pipe diameter, m 

G = superficial gas mass velocity, kg/m2 sec 

L = superficial liquid mass velocity, kg/m2 sec 

( ~)tp = pressure drop, N/m2 

The quantity Gm is evaluated from 

G = total mass flow rate 
m p1pe cross-sect1on 



For mist-annular flow, Hoogendoorn and Buitelaar proposed the 

correlation: 

1 L1 G2 1/4 (t.P) = 2"-- = 0.12(G)-
tp D Pg 

(II-7) 

where the terms and the units for the terms are the same as described 

for Equation II-6. 

The Beggs and Brill Method 

The Beggs and Brill method (8) is another method based on flow 

regimes. The general equation for pressure drop is 

= (dP) + (.s!!:) + (~) dL elev. dZ fric. dZ accel. (II -8} 

The three pressure loss terms in the Beggs and Brill method are: 

dP 
(az) accel. 

= } s i n e [ pl HL + 
c 

2 
= f tp Ptp Vm 

2 gc D 

[pl HL + Pg (1 - HL)J Vm Vsg dP 
gc P dZ = -

(II-9) 

( II-10) 

(I I-ll) 

where, HL = the volume of liquid in the line, expressed as percent 

11 

of total line volume. This parameter is known as the liquid 

holdup. 

Vm = the mixture velocity, ft/sec 

Vsg = the superficial gas velocity, ft/sec 



Ptp = the two-phase density, lb/ft3 

ftp = the two-phase friction factor 

The mixture velocity is defined as the velocity of the total flowing 

mixture, and is calculated as 

q + ql v = ___,._g-..--
m A 

where, q = gas flow rate, ft3/sec g 

ql = liquid flow rate, ft3/sec 

A= pipe cross-section, ft 2 

The two phase density is calculated from 

The superficial gas velocity is defined as 

( II-12) 

(II-13) 

(I I-14) 

The two-phase friction factor, ftp' is calculated from the no-slip 

friction factor fns using the equation 

{II-15) 

where 

S = [ln (Y)]/{-0.0523 + 3.182 ln(Y) ~ 0.8725 [ln(Y)] 2 

+ 0.01853 [ln{Y)]4 } (II-16) 

12 



qL 
A = volumetric 1 iquid fraction = _ __,...;;;~ 

qL + qg 

(II-17) 

(II-18} 

The no-slip friction factor, fns' is obtained from the Moody diagram 

(36) using 

( II-19) 

13 

In Equation II-19, the gas-liquid mixture is treated as a pseudo single 

phase whose physical properties can be approximated using a volumetric 

average. 

The acceleration pressure loss (Equation II-11) contains a (%i) 

term. When the three pressure loss terms represented by Equations II-9, 

II-10, and II-11 are substituted in Equation II-8, and rearranged to 

solve for the pressure gradient, the final form of the Beggs and Brill 

equation becomes 

f v2 p 
Lsine[p H +p (1-H)]+ tp m tp 

dp gc L L g L 2 9c D 
- ( -:T'?) = 

uL 1 _ [ PL HL + Pg (1 - HL)] vm v sg 
gc P 

(II-20) 

The elevation term reduces to zero for horizontal pipes. The friction 

loss term contains the square of the mixture velocity. The greater the 

mixture velocity, the greater the pressure drop. The two-phase density, 

Ptp' and the two-phase friction factor, ftp' require knowledge of the 

liquid holdup. 



14 

Beggs and Brill separated their experimental data into three 

different flow regimes and defined them as segregated, intermittent, and 

distributed flow. For each flow regime, they proposed a separate 

equation for liquid holdup. The equations are of the form 

HL = a>. a Ne ( II-21) FR 

where 

(II-22) 

a, a, and e are empirically-determined constants. 

A major drawback with Equation 11-15 is that for a given value of A 

(from 0.001 to 1.0) the calculated two-phase friction factor decreases 

as the holdup increases from 0.05 to 0.90. This does not seem 

reasonable. The denominator in the friction loss term is constant, 

while the two terms Ptp and ftp depend upon the holdup. For horizontal 

pipes, the pressure drop calculated using this method is influenced by 

the mixture velocity and the liquid holdup. 

Danesh (16) criticized the Beggs and Brill holdup correlation, and 

reported negative values and values greater than unity for data on a 

gas-condensate pipeline. He concluded that since the correlations were 

derived from air-water data, the method over-predicts the horizontal 

holdup for high pressure gas-condensate pipelines. However, the results 

obtained in the present study do not agree with these conclusions. 

Table I shows the pressure drop calculated by the Beggs and Brill method 

using superficial phase velocities in the ~alculation procedure. With 



TABLE I 

CALCULATED PRESSURE DROP FOR THE BEGGS AND BRILL 
PROCEDURE USING SUPERFICIAL PHASE VELOCITIES 

Observed Calculated* 
Data Pipe Line L1ne Liquid Gas Inlet Input L fquid L1quid Pressure Pressure 
Source Diameter Temp. Length Flow Rate Flow Rate Pressure Content Holdup Drop Drop Percent ** 
Ref. No. Inches or Miles bbl/day loVo!SCFD psi a Vol. ~ Vol. S psfa psi a Error 

3 7.75 65 2.16 192 11.68 726.7 0.36 5.8 9.0 4.1 -54.4 
7.75 70 2.01 107 6.67 1081.7 0.51 7.1 1.5 0.5 -66,7 
7.75 70 2.14 236 11.95 1077.7 0.62 7.1 7.5 3.2 -57.3 
7.75 69 2.14 244 9.48 10118.7 0.78 9.8 7 .o 2.1 -69.3 

10.14 69 7.83 244 9.48 1082.7 0.82 31.0 10.0 2.1 -79.0 
4.03 79 0.69 627 . 7.47 1101.7 2.50 13.1 20.0 14.3 -28.5 
5.94 72 2.01 627 7.47 1084.7 2.53 13.6 15.0 5.8 -61.3 

10.14 78 7.83 6592 11.89 974.7 15.25 41.2 24.0 13.6 -43.3 
10.14 69 7.83 4167 12,05 976.7 20.87 53.3 16.0 5.8 -63.7 
7.75 66 2.14 4970 6.47 978.7 21.20 21.0 6.0 2.8 -53.3 

10.14 82 7.83 5420 4.35 930.0 26.91 62.8 18.0 4.4 -75.5 
7.75 82 2.14 5420 4.35 954.7 27.20 11.0 10.0 4.5 -55.0 
7.75 75 2.14 514 25.97 997.7 0.60 6.9 19.0 19.6 +3.1 
7.75 80 2.14 5484 25.52 1021.7 6.55 21.9 32.0 33.6 +5.0 

4 12.00 60 25.45 6912 3.19 424.7 34.50 54.9 105.0 15.5 -85.2 

5 4.03 60 0.19 40 0.4 50.0 0.20 3.6. 0.8 0.5 -37,5 
4.03 60 0.19 800 8.0 400.0 2.03 8.0 128.7 21.5 -83.3 
4.03 60 0.19 500 5.0 400.0 2.03 10.6 22.3 7.9 -64.6 
4.03 60 0.19 120 1.2 400.0 2.03 13.7 1.5 0.4 -73.3 
4.03 60 0.19 1000 2.0 1000.0 2.03 43.3 4,1 1.3 -68.3 
4.03 60 0.19 800 0.4 50.0 4.03 15.5 5.6 3.7 -33.9 
4.03 60 0.19 400 0.2 50.0 4.03 17.8 3.6 1.0 -72.2 
4.03 60 0.19 200 0.1 50.0 4.03 20.2 2.4 0.2 -91.7 
4.03 60 0.19 100 0.1 50.0 4.03 22.8 0.6 0.1 -88.3 
4.03 60 0.19 2500 5.0 400,0 4.03 22.3 43.2 19.6 -54.6 
4.03 60 0.19 1200 12.0 1000.0 7.01 19.7 118.4 15.5 -86.9 
4.03 60 0.19 800 8,0 1000.0 7.01 19.3 22.8 ' 7.1 -68.8 
4,03 60 0.19 500 5.0 1000.0 7.02 23.7 9.2 2,8 -69.6 
4.03 60 0.19 200 2.0 1000.0 7.02 27.9 1.6 0.4 -75.0 
4.03 60 0.19 1500 3,0 400.0 9.65 22.9 15.7 7.2 -54.1 
4.03 60 0.19 300 3.0 400.0 28.60 11.7 8.4 2.9 -65.5 
4.03 60 0.19 600 1.2 1000.0 28.60 58.6 2.9 0.5 -82.7 
4.03 60 1.19 200 0.4 1000.0 28.60 71.7 1.4 0.1 -92.11 
4.03 60 0.19 4000 8.0 1000.0 28.80 41.2 67.6 18.8 -72.2 
4.03 60 0.19 2500 5.0 1000.0 28.80 42.0 31.9 7.6 -76.2 
4.03 60 0.19 1600 0.8 400.0 34.70 47.7 4.7 2.0 -57.4 
4.03 60 1.19 800 0.4 50.0 34.70 65.1 3.0 0.5 -83.3 
4.03 60 0.19 400 0.2 50.0 34,70 48.1 1.9 0.3 -84.2 
4.03 60 1.19 2400 1.2 400.0 34.80 47,0 20.7 4.2 -79.7 ..... 
4.03 60 0.19 2400 1.2 1000.0 79.70 55.0 12.3 2.2 -82.1 01 



TABLE I (Continued) 

Observed 
Data Pipe line line Liquid Gas Inlet Input liquid Liquid Pressure 
Source Diameter Temp. Length Flow Rate Flow Rate Pressure Content Holdup Drop 
Ref. No. Inches OF Hiles bbl/day HHSCFU psi a Vol. % Vol. % psi a 

5 4.03 60 0.19 4000 2.0 1000.0 79.80 47.0 27.3 
4.03 60 0.19 1600 0.8 1000.0 79.80 60.4 6.6 
4.03 60 0.19 800 0.4 1000.0 79.80 73.4 1.9 

41 3.00 90 0.19 158 1.8 494.7 1.90 -- 4.7 
3.00 90 0.19 169 1.7 472.7 2.60 13.2 30.0 
3.00 90 0.19 169 1.4 468.7 2.70 13.7 8.2 
3.00 90 0.19 283 1.4 473.7 4.30 13.7 8.6 
3.00 90 0.19 375 1.7 466.0 4.60 17.0 10.0 
3.00 90 0.19 734 0.7 473.1 21.30 36,2 8.4 
3.00 90 0.19 788 0.6 471.1 24.70 39.2 . 6.4 
3.00 91 0.19 157 0.1 466.1 31.40 71.7 1.4 
3.00 90 0.19 655 0.4 468.5 31.90 45.8 3.8 
3.00 90 0.19 186 1.3 466.2 32.90 14.4 4.0 
3,00 90 0.19 143 0.1 466.0 37.80 81.7 1.5 
3.00 90 0.19 171 0.1 466,0 32.40 -- 1.3 
3.00 90 0.19 671 0.4 468.3 30.30 -- 3.6 

40 2.00 65 0.02 10 0.1 50.0 0.12 2.4 0.9 
2.00 65 0.02 24 0.1 50.0 0.30 2.7 1.2 
2.00 65 0.02 65 0.1 50.0 1.49 9.4 0.4 

* The ca 1 cul a ted pressure drops have been rounded off. 
**The errors have not been rounded off. A small difference is likely to occur between the reported error and the 

error calculated fran reported values. 

Calculated* 
Pressure 
Drop 
psi a 

5.6 
1.0 
0.1 

3.5 
2.6 
3.5 
5.5 
3.1 
3.0 
0.1 
1.6 
2.7 
0.1 

0.3 
0.3 
0.2 

Percent ** 
Error 

-79.5 
-84.8 
-94.7 

-88.3 
-68.3 
-59.2 
-45.0 
-63.1 
-53.0 
-92.9 
-57.9 
-32.5 
93.3 

-66.7 
-75.0 
-50.0 

...,.. 
0'1 



the exception of the last two cases from Baker (3), the calculated 

pressure drop is lower than the observed pressure drop for all cases. 

The AGA Method 

17 

The American Gas Association (19) and the American Petroleum 

Institute (6) made a major contribution to the study of gas-liquid flow 

by funding a research project in which a wide range of experimental data 

was collected from the literature, and evaluated for accuracy and 

reliability. Existing correlations were then tested against evaluated 

data. The correlations which fit the data provided a starting point for 

developing an improved method (now known as the AGA method) for 

predicting the two-phase pressure drop. The AGA method represents a 

different approach in that it uses no flow regime map. The liquid 

holdup is a function of the volume fraction input liquid and the two­

phase Reynolds number. Figure 3, as reproduced from Akashah (1), shows 

this relationship. The three pressure loss terms in the AGA pressure 

drop equation are 

( II-23) 

where, Eh = algebraic sum of elevation changes, ft 

Fe= the Flanigan elevation factor 

(~)fric. = 
2 fte L. v~ 

144 Pg D 
Pte 

( II-24) 

P v2 2 
1 Pl V sl 

( ~) accel. = 144 
{[ g sg + 

AL ]downstream gc I - HL 



X 
Figure 3. The AGA Holdup Correlation 

Source: Akashah (1) .... 
(X) 
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2 2 
Pg V sg Pl Vsl 

- [1 - A + A ]upstream cose} 
L L 

(II-25) 

The two-phase density is calculated from the equation 

(II-26) 

The terms Vsg' Vm, A, and HL refer to the same variables defined during 

the discussion on the Beggs and Brill method. The superficial liquid 

velocity Vsl is defined as: 

ql 
v =­sl A (II-27) 

The total pressure drop is the algebraic sum of the three pressure loss 

terms represented by Equations II-23, II-24, and II-25. As before, the 

elevation and the acceleration terms may be neglected for long lines. 

The denominator in Equation II-24 is constant. So, the friction loss 

term depends only on the holdup and the mixture velocity. Table II 

shows the pressure drops calculated with the AGA method using 

superficial phase velocities. With the exception of the two cases from 

Baker (3), all the calculated pressure drops are lower than the observed 

pressure drops. 

Eaton et al. (20) conducted an experimental investigation of gas­

liquid flow in 2 and 4 inch diameter lines. They used natural gas as 

the gas and water, crude oil, and distillate as the liquid. Eaton et 

al. attempted to study the effect of changes in flow patterns on the 

pressure drop and develop separate correlations for each pattern if 

needed. They concluded that many of the variables which controlled the 



TABLE II 

CALCULATED PRESSURE DROP FOR THE AGA METHOD USING 
SUPERFICIAL PHASE VELOCITIES 

Observed Calculated* 
Data Pipe line Line Ltqufd Gas Inlet Input Lf qufd Lfqufd Pressure Pressure 
Source Diameter Temp. Lenyth Flow Rate Flow Rate Pressure Content Holdup Drop Drop Percent ** 
Ref. No. Inches or Mfles bbl/day MMSCFD psfa Vol. % Vol. % psfa psfa Error 

3 7.75 65 2.16 192 11.68 726.7 0.36 1.6 9.0 7.1 -21.1 
7.75 70 2.01 107 6.67 1081.7 0.51 -- 1.5 -- --
7.75 70 2.14 236 11.95 1077.7 0.62 1.6 7.5 5.1 -32.0 
7.75 69 2.14 244 9.48 1088.7 o. 78 1.4 7.0 3.5 -50.0 

10.14 69 7.83 244 9.48 1082.7 0.82 29.8 10.0 6.3 -37.0 
4.03 79 0.69 627 7.47 1101.7 2.50 2.5 20.0 20".0 0.0 
5.94 72 2.01 627 7.47 1084.7 2.53 2.6 15.0 12.6 -16.1 

10.14 78 7.83 6592 11.89 974.7 14.96 16.0 24.0 21.5 -10.4 
10.14 69 7.83 4167 12.05 976.7 20.87 21.5 16.0 9.0 -43.4 
7.75 66 2.14 4970 6.47 978.7 21.20 23.0 6.0 4.2 -25.8 

10.14 82 7.83 5420 4.35 930.0 26,91 29.4 18.0 6.4 -64.3 
7.75 82 2.14 5420 4.35 954.7 27.20 1.4 10.0 3.5 -65.0 
7.75 75 2.14 514 25.97 997.7 0.60 1.5 19.0 27.1 +42.6 
7.75 80 2.14 5484 25.52 1021.7 6.55 6.4 32.0 49.1 +53.4 

4 12.00 60 25.45 69.12 3.19 424.7 34.50 41.6 105.0 19.8 -81.1 

5 4.03 60 0.19 40 0.40 50.0 0.20 0.1 0.8 0.5 -37.5 
4.03 60 0.19 800 8.00 400.0 2.03 7.2 128.7 26.2 -79.6 
4.03 60 0.19 500 5.00 400.0 2.03 2.0 22.3 11.0 -50.7 
4.03 60 0.19 120 1.20 400.0 2.03 2.0 1.5 0.8 -46.7 
4.03 60 0.19 1000 2.00 1000.0 2.03 32.5 4.1 1.6 -61.0 
4.03 60 0.19 800 0.40 50.0 4.03 3.9 5.6 5.5 -1.8 
4.03 60 0.19 400 0.20 50.0 4.03 3.6 3.6 0.7 -86.1 
4.03 60 0.19 200 0.10 50.0 4.03 13.5 2.4 0.2 -91.7 
4.03 60 0.19 100 0.05 50.0 4.03 20.0 0.6 o.o -91.7 
4.03 60 0.19 2500 5.00 400.0 4.03 9.6 43.2 25.6 -40.7 
4.03 60 0.19 1200 12.00 1000.0 7.01 -- 118.4 -- --
4.03 60 0.19 800 8.00 1000.0 7.01 2.0 22.8 9.7 -57.4 
4.03 60 0.19 500 5,00 1000.0 7.02 7.3 9.2 4.1 -55.4 
4.03 60 0.19 200 2.00 1000.0 7.02 8.4 1.6 0.7 -57.4 
4.03 60 0.19 1500 3.00 400.0 9.65 9.8 15.7 9.9 -36.9 
4.03 60 0.19 300 3.00 400.0 28.60 2.0 8.4 2.9 -65.5 
4.03 60 0.19 600 1.20 1000.0 28.60 37.6 2.9 0.6 -79.3 
4.03 60 0.19 200 0.40 1000.0 28.60 46.8 1.4 0.1 -94.3 
4.03 60 0.19 4000 8.00 1000,0 28.80 31.2 67.6 20.9 -69.1 
4.03 60 0.19 2500 5.00 1000.0 28.80 . 31.4 31.9 8.8 -12.4 
4.03 60 0.19 1600 0.80 400.0 34.70 38~5 4.7 2.2 -53.2 
4.03 60 0.19 800 0.40 50.0 34.70 45.2 3.0 0.6 -80.0 
4.03 60 0.19 400 0.20 50.0 34.70 50.8 1.9 0.2 -89.5 
4.03 60 0.19 2400 1.20 400.0 34.80 37.7 71).7 4.7 -77.3 

N 
0 



TABLE II (Continued) 

Observed 
Data Pipe line line Liquid Gas Inlet Input Liquid Liquid Pressure 
Source Diameter Temp. Length Flow Rate Flow Rate Pressure Content Holdup Drop 
Ref. No. Inches OF Miles bbl/day MMSCFD ps1a Vol. S Vol. S psi a 

5 4.03 60 0.19 2400 1.2 1000.0 79.7 84.8 12.3 
4.03 60 0.19 4000 2.0 1000.0 79.8 81.7 27.3 
4.03 60 0.19 1600 0.8 1000.0 79.8 84.2 6.6 
4.03 60 0.19 800 0.4 1000.0 79.8 86.3 1.9 

41 3.00 90 0.19 157 1.8 494.7 1.9 2.0 4.7 
3.00 90 0.19 169 1.7 494.7 2.6 2.6 30.0 
3.00 90 0.19 169 1.4 472.7 2.7 2.7 8.2 
3.00 90 0.19 283 1.4 468.7 4.3 4.3 8.6 
3.00 90 0.19 375 1.7 473.7 4.6 4.6 10.0 
3.00 90 0.19 734 0.7 466.0 21.3 23.6 8.4 
3.00 90 0.19 788 0.6 473.1 24.7 21 .a 6.4 
3.00 90 0.19 157 0.1 471.1 31.4 51.9 1.4 
3.00 90 0.19 655 0.4 466.1 31.9 40.4 3.8 
3.00 90 0.19 186 1.3 468.5 32.9 3.0 4.0 
3.00 90 0.19 143 0.1 466.2 37.8 58.8 1.5 
3.00 90 0.19 171 0.1 466.0 32.4 71.4 1.3 
3.00 90 0.19 671 0.4 468.3 30.3 -- 3.6 

40 2.00 65 0.02 10 0.1 0.16 !>0.0 1.5 0.9 
2.00 65 0.02 24 0.1 0.17 50.0 1.4 1.2 
2.00 65 0.02 65 0.1 0.12 50.0 6.0 0.4 

--
* The calculated pressure drops have been rounded off. 
**The errors have not been rounded off. A ~all difference 1s likely to occur between the reported error and the 

error calculated from reported values. 

Calculated* 
Pressure 
Drop 
ps1a 

1.7 
4.2 
0.8 
0.2 

3.7 . 
5.1 
3.9 
5.2 
7.9 
3.9 
3.7 
0.1 
1.8 
4.0 
0.1 
0.2 

0.3 
0.3 
0.2 

Percent ** 
Error 

-86.2 
-84.6 
-87.9 
-89.5 

-21.3 
-83.0 
-52.4 
-39.5 
-21.2 
-53.6 
-42.2 
-92.2 
-53.1 
-1.3 

-93.3 
-88.1 

-71.1 
-72.7 
-42.8 

N ...... 
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flow pattern also controlled the pressure drop in horizontal lines. 

They proposed that a single correlation for the liquid holdup should be 

adequate for all flow regimes. The correlating function for the holdup 

is: 

where 

N 1 938 V ( PL/ ,.,)0.25 
LV = • sl v 

P/Pb = P/14.65 

3 0.25 NL = 0.15726 l!L (1/ pl a } 

NLB = 0.00226 (based on water} 

(II-28) 

(II-29) 

(I 1-30) 

(II-31} 

(II-32} 

(II-33} 

In the above equations, the units of the individual quantities are: 

a = surface tension, dynes/em 

liL = liquid viscosity, centipoise 

d = pipe diameter, ft 

PL, Pg = density, 1 b/ft3 



VsL' Vsg = superficial velocity, ft/sec 

P = pressure psia 

The last term in Equation II-28 includes the viscous effects on the 
N 

holdup function. The value of (~) 0 • 1 is always greater than unity. 
Lb 

According to Eaton et al., this term makes the liquid holdup estimated 

from Equation II-28 generally greater than the holdup calculated by 

other methods. 

Some investigators (7,17) have suggested that a reasonably good 

estimate of the pressure drop can be obtained when the Eaton et al. 

correlation is used to calculate the liquid holdup. Tables III and IV 

show the results with the Eaton et al. correlation. The calculated 
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pressure drops are in some cases higher than those reported in Tables I 

and II. However, they are lower than the observed pressure drops in all 

but the last two cases from Baker (3). This is because the mixture 

velocity controls the calculated two-phase pressure drop. The 

calculation procedure assuming no-slip flow does not include a logical 

way of. increasing the mixture velocity. 

Battara et al. (7), Mandhane et al. (33,34), and Degance and 

Atherton (17) provide a critical evaluation of some of the widely used 

holdup correlations and pressure drop calculation methods in two-phase 

flow. Battara et al. and Mandhane et al. concluded that no single 

pressure drop calculation method is suitable for all operating 

conditions. Mandhane et al. recommended different methods for different 

flow regimes. The order of preference among the recommended methods 

varied with the type of flow regime map us~d. Degance and Atherton 

concluded that the constant slip method of Dukler et al. (18) was the 

most accurate among the currently available methods. 



TABLE III 

CALCULATED PRESSURE DROP FOR THE BEGGS AND BRILL PROCEDURE USING SUPERFICIAL 
PHASE VELOCITIES AND THE EATON ET AL. HOLDUP CORRELATION 

Observed Ca 1 culated* 
Data P1pe line Line Liquid Gas Inlet Input L1 quid Liquid Pressure Pressure 
Source Diameter Temp. Length Flow Rate Flow Rate Pressure Content Holdup Drop Drop Percent ** 
Ref. No. Inches •r Hiles bbl/day HHSCFD ps1a Vol. I Vol. I ps1a ps1a Error 

3 7.75 65 2.16 192 11.68 726.7 0.36 2.8 9.0 6.3 -29.9 
7.75 70 2.01 107 6.67 1081.7 0.51 6.8 1.5 1.0 -33.3 
7.75 70 2.14 236 11.95 1077.7 0.62 5.6 7.5 3.2 -57.3 
7.75 69 2.14 244 9.48 1088.7 0.78 7.9 7.0 2.4 -65.7 

10.14 69 7.83 244 9.48 1082.7 0.82 9.9 10.0 2.1 -79.0 
4.03 79 0.69 627 7.47 1101.7 2.50 10.1 20.0 15.2 -24.0 
5.94 72 2.01 627 7.47 1084.7 2.53 14.0 15.0 8.1 -49.4 

10.14 78 7.83 6592 11.89 974.7 14.96 34.3 24.0 14.9 -37.7 
10.14 69 7.83 4167 12.05 976.7 20.87 45.0 16.0 4.5 -71.9 
7.75 66 2.14 4970 6.47 978.7 

, 
21.20 40.6 6.0 2.8 -48.3 

10.14 82 7.83 5420 4.35 930.0 26.91 52.5 18.0 4.4 -75.5 
7.75 82 2.14 5420 4.35 954.7 27.20 47 .a 10.0 4.8 -52.4 
7. 75 75 2.14 514 26.97 997.7 0.60 3.7 19.0 21.0 +10.5 
7.75 80 2.14 5484 25.52 1021.7 6.55 15.9 32.0 34.5 +7.8 

4 12.00 60 25.45 6912 3.19 424.7 34.50 61.3 105.0 12.4 -88.1 

5 4.03 60 0.19 40 0.40 50.0 0.20 0.2 0.8 0.6 -25.0 
4.03 60 0.19 800 8.00 400.0 2.03 4.6 128.7 28.0 -78.2 
4.03 60 0.19 500 5.00 400.0 2.03 14.8 22.3 14.8 -33.6 
4.03 60 0.19 120 1.20 400.0 2.03 11.9 1.5 0.9 -40.0 
4.03 60 0.49 1000 2.00 1000.0 2.03 25.8 4.1 1.2 -70.2 
4.03 . 60 0.19 800 0.40 50.0 4.03 10.0 5.6 4.2 -25.0 
4.03 60 0.19 400 0.20 50.0 4.03 13.7 3.6 1.0 -72.2 
4.03 60 0.49 200 0.10 50.0 4.03 17.7 2.4 0.3 -87.5 
4.03 60 0.19 100 0.05 50.0 4.03 22.3 0.6 0.1 -88.3 
4.03 60 0.19 2500 5.00 400.0 4.03 16.1 43.2 21.6 -49.9 
4.03 60 0.19 1200 12.00 1000.0 7.01 15.1 118.4 30.7 -74.1 
4.03 60 0.19 800 8.00 1000.0 7.01 17.7 22.8 7.3 -68.0 
4.03 60 0.19 500 5.00 1000.0 7.02 27.7 9.2 5.4 -40.9 
4.03 60 0.19 200 2.00 1000.0 7.02 27.1 1.6 0.4 -75.0 
4.03 60 0.19 1500 3.00 400.0 9.65 19.5 15.7 7.5 -52.3 
4.03 60 0.19 300 3.00 400.0 28.60 11.9 8.4 5.2 -38.8 
4.03 60 0.19 600 1.20 1000.0 28.60 53.3 2.9 0.4 -53.3 
4.03 60 0.19 200 0.40 1000.0 28.60 63.5 1.4 0.1 -92.8 
4.03 60 0.19 4000 a.oo 1000.0 28.80 35.4 67.6 19.5 -71.1 
4.03 60 0.19 2500 5.00 1000.0 28.80 39.6 31.9 7.7 -76.7 
4.03 60 0.19 1600 0.80 400.0 34.70 51.0 4.7 2.0 -57.4 
4.03 60 0.19 800 0.40 50.0 34.70 57.7 3.0 0.5 -86.7 
4.03 60 0.19 400 0.20 50.0 34.70 63.9 1.9 0.1 -94.7 

N 
~ 



TABLE III (Continued) 

Observed 
Data Pipe Une Une liquid Gas Inlet Input L1 quid liquid Pressure 
Source Diameter Temp. Length Flow Rate Flow Rate Pressure Content Holdup Drop 
Ref. No. Inches OF Miles bbl/day MMSCFD psi a Vol. S Vol. S psi a 

5 4.03 60 0.19 2400 1.2 400.0 34.8 46.9 20.7 
4.03 60 0.19 2400 1.2 1000.0 79.7 84.8 12.3 
4.03 60 0.19 4000 2.0 1000.0 79.8 81.5 27.3 
4.03 60 0.19 1600 0.8 1000.0 79.8 86.8 6.6 
4.03 60 0.19 800 0.4 1000.0 79.8 90.2 1.9 

41 3.00 90 0.19 158 1.8 494.7 1.9 7.7 4.7 
3.00 9o 0.19 169 1.7 472.7 2.6 10.0 30.0 
3.00 90 0.19 169 1.4 468.7 2.7 10.8 8.2 
3.00 90 0.19 283 1.4 473.7 4.3 13.8 8.6 
3.00 90 0.19 375 1.7 466.0 4.6 13.4 10.0 
3;00 90 0.19 734 0.7 473.1 21.3 37.8 8.4 
3.00 90 0.19 788 0.6 471.1 24.7 41.2 6.4 
3.00 90 0.19 157 0.1 466.1 31.4 64.4 1.4 
3.00 90 0.19 655 0.4 468.5 31.9 51.3 3.8 
3.00 90 0.19 186 . 1.3 466.2 32.9 ll.5 4.0 
3.00 90 0.19 143 0.1 466.0 37.8 70.3 1.5 
3.00 90 0.19 171 0.1 466.0 32.4 64.1 1.3 
3.00 90 0.19 671 0.4 468.3 30.3 49.0 3.6 

40 2.00 65 0.02 10 0.1 50.0 0.12 0.1 0.9 
2.00 65 0.02 24 0.1 50.0 0.30 0.8 1.25 
2.00 65 0.02 65 0.1 50.0 1.49 5.8 0.4 

* The calculated pressure drops have been rounded off. 
**The errors have not been rounded off. A small difference is likely to occur between the reported error and the 

error calculated from reported values. 

Calculated* 
Pressure 
Drop 
psi a 

4.2 
1.9 
5.5 
1.0 
0.2 

.3.9 
5.4 
2.8 
3.7 
5.5 
3.1 
3.0 
0.1 
1.6 
2.4 
0.1 
0.1 
1.9 

0.3 
0.7 
0.3 

Percent ** 
Error 

-79.7 
-84.5 
-79.8 
-87.8 
-89.5 

-16.2 
-81.9 
-66.3 
-59.2 
-45.5 
-63.1 
-53.0 
-92.9 
-57.9 
-32.1 
-93.3 
-92.3 
-47.8 

-66.7 
-41.3 
-25.0 

N 
c.n 



TABLE IV 

CALCULATED PRESSURE DROP FOR THE AGA METHOD USING 
SUPERFICIAL PHASE VELOCITIES ANU USING 

THE EATON ET AL. HOLDUP CORRELATION 

Observed Calculated* 
Data P1pe Une Lfne Lfqu1d Gas Inlet Input Lf quid Uquid Pressure Pressure 
Source Diameter Temp. Length Flow Rate Flow Rate Pressure Content Holdup Drop Drop Percent ** 
Ref. I Inches "F H1les bbl/day HHSCFD psla Vol. I Vol. I psi a psia Error 

3 7.75 65 2.16 192 l1.68 726.7 0.36 2.8 9.0 7.1 -22.0 
7. 75 70 2.01 107 6.67 1081.7 0.51 -- 1.5 -- --
7.75 70 2.14 236 11.95 1077.7 0.62 5.6 7.5 5.4 -28.0 
7.75 69 2.14 244 9.48 1088.7 0.78 7.9 7.0 3.5 -50.0 

10.14 69 7.83 244 9.48 1082.7 0.82 • 47.8 10.0 5.0 -50.0 
4.03 79 0.69 627 7.47 1101.7 2.50 10.1 20.0 18.6 -7.0 
5.94 72 2.01 627 7.47 1084.7 2.53 14.0 15.0 l1.7 -24.6 

10.14 78 7.83 6592 11.89 974.7 14.96 34.3 24.0 9.3 -61.2 
10.14 69 7.83 4167 12.05 976.7 20.87 45.0 16.0 6.6 -58.7 
7.75 66 2.14 4970 6.47 978.7 21.20 40.5 6.0 3.3 -44.3 

10.14 82 7.83 5420 4.35 930.0 26.91 52.5 18.0 6.8 -57.5 
7. 75 82 2.14 5420 4.35 954.7 27.20 9.8 10.0 3.6 -64.0 
7. 75 75 2.14 514 26.97 997.7 0.60 3.7 19.0 27 .o +42.1 
7.75 80 2.14 5484 25.52 1021.7 6.55 15.8 32.0 42.0 +31.5 

4 12.00 60 25.45 6912 3.19 424.7 34.50 61.2 105.0 14.8 -85.9 

5 4.03 60 0.19 40 0.40 50.0 0.20 0.1 0.8 0.7 -12.5 
4.03 60 0.19 800 8.00 400.0 2.03 15.1 128.7 21.2 -83.5 
4.03 60 0.19 500 . 5.00 400.0 2.03 6.1 22.3 8.5 -61.5 
4.03 60 0.19 120 1.20 400.0 2.03 ll.9 1.5 0.8 -46.7 
4.03 60 0.19 1000 2.00 1000.0 2.03 48.3 4.1 1.4 -65.8 
4.03 60 0.19 800 0.40 50.0 4.03 10.2 5.6 2.8 -50.0 
4.03 60 0.19 400 0.20 50.0 4.03 1J.a 3.6 1.5 -61.1 
4.03 60 0.19 200 0.10 50.0 4.03 17.7 2.4 0.2 -91.7 
4.03 60 0.19 100 0.05 50.0 4.03 22.3 0.6 o.o -93.3 
4.03 60 0.19 2500 5.00 400.0 4.03 16.2 43.2 18.9 -56.2 
4.03 60 0.19 1200 12.00 1000.0 7.01 -- ll8.4 -- --
4.03 60 0.19 BOO 8.00 1000.0 7.01 6.1 22.8 8.5 -61.5 
4.03 60 0.19 500 5.00 1000.0 7.02 17.7 9.2 5.5 -40.1 
4.03 60 0.19 200 2.00 1000.0 7.02 27.1 1.6 0.7 -58.1 
4.03 60 0.19 1500 3.00 400.0 9.65 19.6 15.7 6.8 -56.7 
4.03 60 0.19 300 3.00 400.0 28.60 7.9 8~4 3.3 -61.2 
4.03 60 0.19 600 1.20 1000.0 28.60 53.3 2.9 0.5 -81.4 
4.03 60 0.19 200 0.40 1000.0 28.60 63.5 1.4 0.1 -94.3 
4.03 60 0.19 4000 8.00 1000.0 28.80 35.3 67.6 19.4 -71.3 
4.03 60 0.19 2500 '5.00 1000.0 28.80 39.7 31.9 7.8 -75.5 
4.03 60 0.19 1600 0.80 400.0 34.70 51.0 4.7 1.9 -59.6 
4.03 60 0.19 800 0.40 50.0 34.70 57.7 3.0 0.5 -83.3 N 
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TABLE IV (Continued) 

Observed 
Data Pipe Line Line Liquid Gas Inlet Input l1qu1d L1qu1d Pressure 
Source D1cweter Temp. Length Flow Rate Flow Rate Pressure Content Holdup Drop 
Ref. No. Inches OF M1les bbl/day lfolSCFD ps1a Vol. % Vol. I ps1a 

5 4.03 60 0.19 2400 1.2 1000.0 79.7 83.0 12.3 
4.03 60 0.19 4000 2.0 1000.0 79.8 81.6 27.3 
4.03 60 0.19 1600 0.8 1000.0 79.8 86.8 6.6 
4.03 60 0.19 800 0.4 1000.0 79.8 90.2 1.9 

41 3.00 90 0.19 159 1.8 494.7 1.9 7.7 4.7 
3.00 90 0.19 169 1.7 472.7 2.6 10.0 30.0 
3.00 90 0.19 169 1.4 468.7 2.7 10.7 8.2 
3.00 90 0.19 283 1.4 473.7 4.3 13.9 8.6 
3.00 90 0.19 375 1.7 466.0 4.6 13.5 10.0 
3.00 90 0.19 734 0.7 473.1 21.3 10.7 8.4 
3.00 90 0.19 788 0.6 471.1 24.7 41.2 6.4 
3.00 90 0.19 157 0.1 466.1 31.4 64.4 1.4 
3.00 90 0.19 655 0.4 468.5 31.9 51.3 3.8 
3.00 90 0.19 186 1.3 466.2 32.9 11.5 4.0 
3.00 90 0.19 143 0.1 466.0 37.8 70.3 1.5 
3.00 90 0.19 171 0.1 466.0 32.4 64.1 1.3 
3.00 90 0.19 694 0.41 468.3 30.15 49.0 3.6 

40 2.00 65 0.02 10 0.1 50.0 0.12 0.1 0.9 
2.00 65 0.02 24 0.1 50.0 0.30 0.8 1.2 
2.00 65 0.02 65 0.1 50.0 1.49 5.8 0.4 

* The calculated pressure drops-have been rounded off. 
**The errors have not been rounded off. A small difference is 11kely to occur between the reported error and the 

error calculated fra. reported values. 

Calculated* 
Pressure 
Drop 
ps1a 

1.6 
4.2 
0.8 
0.2 

4.5 
3.9 
3.0 
3.0 
5.5 
3.0 
2.9 
0.1 
1.5 
1.6 
0.1 
0.1 
0.8 

0.3 
0.4 
0.3 

Percent ** 
Error 

-87.0 
-84.6 
-87.9 
-89.5 

-4.2 
-86.9 
-63.4 
-65.7 
-45.0 
-63.4 
-55.3 
-92.9 
-60.5 
-60.0 
-93.3 
-B9.7 
-77.8 

-72.2 
-71.1 
-25.0 

N 
......... 



28 

Akashah {1) first applied the idea of combining an equation of 

state with two-phase predictive methods for calculating pressure drop in 

gas-liquid flow. He developed a computer program containing some widely 

used two-phase flow pressure drop calculating methods. The program is 

capable of predicting the pressure drop for horizontal, inclined, and 

vertical flow under adiabatic as well as non-adiabatic conditions. The 

algorithm for his program provided a starting point for the present 

work. 

One of the major drawbacks in the methods using flow regime maps is 

that the transition between the various flow regimes is not well 

defined. According to Eaton et al. (20), there is considerable overlap 

between the various flow regimes. One of the problems encountered when 

using methods based on flow regime maps is determining which flow 

pattern exists for a given set of flow conditions, and selecting the 

correct correlation for that pattern. Several correlations are 

available for any particular flow regime. The number of possible flow 

patterns also varies, depending upon the method by which the regimes are 

i dent ifi ed. 

Another drawback with methods like the Lockhart-Martinelli, the 

Beggs and Brill, and the AGA is that these methods (as originally 

developed) do not account for the changing compositon of the gas and the 

liquid. Akashah et al. {2) incorporated an equation of state in the 

calculation procedure to account for the changi.ng composition. 

The major drawback in the methods mentioned so far is the 

assumption that both phases move at the same velocity, so that the 

velocity of the homogeneous fluid is the sum of the superficial 

velocities of the two phases. While all investigators recognize the 
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existence of slip in two-phase flow, the efforts to account for it have 

been mostly empirical. The Beggs and Brill method, for example, uses 

Equation II-15 to account for slip in two-phase flow. The AGA method 

uses a similar equation given by 

( II-34) 

where 

S = 1.281 - 0.478 (-ln )..) + (0.444) (- ln )..) 2 

- 0.094 (- 1 n )..) 3 + (0.00843) (-ln A) 4 (II-35) 

fns = 0 0014 + 0~125 
• Re0.32 

tp 
( II-36) 

In Equation II-38, Retp is evaluated as 

D vm Ptp Re = -~...:..L.-
tp lltp 

( II-37) 

where Ptp is defined as in Equation II-19, Vm as in Equation II-12, and 

( II-38) 

OTHER METHODS 

Lagierie et al. (29) carried out experiments using natural gas, 

condensate, and heavy gas oil in 6 inch di~meter lines to measure the 

pressure drop and study the flow pattern. Lagierie et al. calculated 
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the pressure drop for plug flow by solving the momentum balance 

equations for each phase. The equations are 

( II-39) 

2 
aP 2f Ptp V SL + 

(ax-) 1 = 0 Ptp g sine (I I-40) 

where, TL = shear stress in the liquid phase 

T = g shear stress in the gas phase 

A = pipe cross-section 

vsL = superficial 1 i quid velocity 

PL = pressure in the 1 iquid phase 

Pg = pressure in the gas phase 

f = friction factor 

ptp = two-phase density given by Equation II-19 

Dukler et al. (18) performed a similarity analysis, and proposed a 

constant slip method in which the two-phase friction factor is 

correlated with the no-slip friction factor and the flowing volume 

fraction liquid. Dukler et al. recommended Equation II-34, which was 

developed from a similarity analysis. Degance and Atherton (17) showed 

that Dukler's constant slip method is more accurate than the Lockhart-

Martinelli method over a wide range of data. The calculated pressure 

drops reported in Tables II and IV were obtained by using Equation II-34 

to determine the friction factor. Safti (38) developed an algorithm to 

incorporate slip in the calculations, base«;! on mathematical manipulation 

of Dukler's method. However, the procedure did not significantly 

·improve pressure drop prediction. Gould {24) has acco·unted for slip 
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between phases by determining the mole fraction of liquid using the 

equation 

II-41 

He then adjusted the composition of the mixture and calculated the 

pressure drop using the Beggs and Brill method. Gould presented a 

comparison of calculated and observed pressure drops for only one set of 

experimental data for which he obtained good agreement. 

In Equation II-41, Vg and VL stand for the gas and liquid 

velocities, respectively. They are defined as 

(I I-42) 

( II-43) 

Gould used the Beggs and Brill correlation to calculate the holdup and 

the phase velocities for Equation II-41. 

In addition to the methods mentioned above, other approaches to 

account for varying phase velocities are mentioned in some of the 

literature for transient analysis in two-phase flow. For instance, 

·Scoggins (39} used the steady state correlation of Beggs and Brill to 

account for phase slippage in his transient flow model. He took this 

approach recognizing that there is onl~ limited experimental data to 

support its validity. Fisher (21) used a variable slip correlation 

based on air-water flooding data. His correlation for vertical flow 

assumes that gravity forces dominate slip between phases and is, 



therefore, not applicable to horizontal flow. Lyczkowski (31) has 

discussed some of the computational difficulties in considering unequal 

phase velocities for transient flow models. 
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The following conclusions can be drawn from this literature review: 

1. A wide variety of methods is available for calculating the 

pressure drop in two-phase flow. No single method works well for all 

flow conditions. 

2. All investigators recognize that gas and liquid do not move 

with the same velocity in the pipeline. Yet most use superficial phase 

velocities in the calculation procedure, and account for slip between 

phases using empirical correlations. 

3. The calculated pressure drop using supercritical phase 

velocities is generally lower than the measrued pressure drop. A higher 

calculated pressure drop is obtained in some cases, when the Eaton et 

al. holdup correlation is used to estimate liquid holdup. However, the 

calculated pressure drop is much lower than the observed pressure 

drop. The calculation procedure should be modified to obtain a higher 

calculated pressure drop. 

4. The liquid holdup and the mixture velocity are the key 

parameters which influence the calculated pressure drop for long 

horizontal lines. 

5. Using phase velocities instead of superficial phase velocities 

in the calculation procedure may provide a better estimate of the 

pressure drop. 

The present work attempts to develop ~methodology to systemati­

cally increase the mixture velocity so that a higher calculated pressure 

drop is obtained. This can .be done if the two phases are assumed to 



move at different velocities, and by using phase velocities instead of 

superficial phase velocities in the calculation procedure. Such an 

approach, when tested with field data may provide a better method to 

estimate the pressure drop for gas-liquid flow in long, horizontal 

transmission lines. 
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CHAPTER III 

THE PROPOSED METHOD FOR STEADY 

STATE CALCULATIONS 

When a mixture of gas and liquid enters a pipeline the two phases 

tend to separate. The gas flows rapidly down the pipe leaving the 

liquid behind. To determine the pressure drop, the pipeline is divided 

into an appropriate number of segments. After the pressure at the end 

of the first segment is determined, the pressure at the end of the next 

segment is calculated. This procedure is continued until the pressure 

at the end of the line is determined. The key assumptions in the 

proposed method for pressure drop calculation are: 

1. The liquid and the gas move at different velocities. 

2. The gas and liquid are in equilibrium. 

· 3. The composition of the slip liquid within a given segment of 

the pipeline is the same as the composition of the liquid at average 

segment conditions. 

4. The liquid is· uniformly distributed throughout the segment. 

5. The velocity of the gas-liquid mixture always increases in 

proportion to the increase in gas velocity. 

Akashah (1) found that the number of segments did not affect the 

calculated pressure drop for pipelines up to 100 miles long. For lines 

less than 100 miles long, the stated assumptions should be valid for the 

entire pipeline. 
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As mentioned in Chapters I and II, the liquid holdup in a line is 

the inventory of liquid within the line. For a conduit of constant 

cross-section, assumption 4 allows holdup to be also defined as the 

fraction of the pipe cross-section occupied by the liquid. In equation 

form, the holdup can be defined as 

H• = cross-section area occupied by the liquid AL 
L total pipe cross section = -x (III-1) 

where AL = cross-section area occupied by the liquid. 

Some amount of liquid always exists in a line. When the liquid 

moves slower than the gas, the holdup increases. For example, if the 

liquid velocity reduces to 80 percent of its original velocity at 

pipeline conditions, the holdup will increase by 25 percent. The 

increase in holdup reduces the area available for gas flow, but not the 

gross throughput through the line. The two phases are assumed to be in 

equilibrium and their compositions are determined from an equilibrium 

flash calculation. At steady state conditions, a material balance shows 

that the holdup and the gross throughput through the line are not 

dependent on each other. Also, the composition of the individual phases 

and the overall composition of the mixture will change from point to 

point in the pipeline. 

When the liquid velocity is lower than the gas velocity, the holdup 

increases without increasing the gross throughput. If the liquid holdup 

is artificially increased and the homogeneous mixture assumed to flow 

through the area available for gas flow, a higher calculated pressure 

·drop will be obtained. The artificially increased holdup is not the 

true holdup in the line and is designated as "pseudo" holdup. 
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In the present work, assumptions 1 through 5 are applied in the 

pressure drop calculation procedure, using the 11 psuedo 11 holdup. The 

procedure outlined does not necessarily represent what actually happens 

when two phases flow simultaneously through a pipeline, but is a 

methodology to obtain a more accurate estimate of the two-phase pressure 

drop. 
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CHAPTER IV 

APPLICATION OF THE PROPOSED METHOD TO FIELD DATA 

The experimental data reported in Tables I through IV in Chapter II 

were obtained from different sources (3,4,5,40,41). In most cases, 

detailed compositional data were not available. The gas density and the 

liquid API gravity were reported in all sources. In cases where 

compositional data were not reported, the gas was assumed to consist of 

methane, ethane, propane, and n-butane. The gas composition was then 

adjusted until the gas gravity matched the reported value. The liquid 

was characterized as a heavy component with a characterization factor of 

11.2. The normal boiling point and the molecular weight were determined 

from the charts of Maxwell (35). These data are sufficient to estimate 

thermodynamic properties using the SRK equation of state (33). In the 

case of the data from Baker (3), only one liquid and gas composition was 

reported. This liquid and gas composition was used for all cases 

Tables IX through XVI in the Appendix show the gas composition and 

liquid characterization data derived from each source. Table XIV in the 

Appendix shows the liquid and gas flowrates for the data from each 

source. 

The proposed method was introduced into the Beggs and Brill 

calculation procedure. A pseudo holdup was assumed and the phase 

velocities calculated. The superficial gas velocity and the mixture 

velocity were calculated using Equations II-14 and 11-12, 

respectively. The mixture velocity to be used in the pressure drop 

37 
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equation was determined from the area available for gas flow. The gas 

velocity was used in Equation II-20 instead of the superficial gas 

velocity to calculate the acceleration pressure drop. The assumed 

pseudo holdup was used to compute the two phase friction factor and the 

two phase density using Equations II-15 and II-13, respectively. The 

pressure drop calculated this way was higher than the pressure drop 

calculated using superficial phase velocities. By adjusting the value 

of the pseudo holdup, the calculated pressure drop could be matched with 

the observed pressure drop. 

Table V shows the calculated and observed pressure drops using this 

approach in the Beggs and Brill calculation procedure. In most cases, 

the pseudo holdup necessary to match the observed pressure drop is 

higher than the holdup estimated from the Beggs and Brill correlation or 

the Eaton et al. correlation. In four cases, shown at the bottom of the 

table, the calculated pressure drop was higher than the observed 

pressure drop even after reducing the pseudo holdup to practically 

zero. The observed pressure drops in these and a few other cases 

reported in the table are small. Considering the line lengths and the 

pressures involved, the accuracy of these data is questionable. 

Equation for Pseudo Holdup 

The pseudo holdup values are not claimed to be the true holdup in 

the pipeline, but rather the values necessary to match calculated 

pressure drops with observed pressure drops. The pseudo values were 

plotted individually against a number of variables like the gas velocity 

number, the liquid velocity number, the diameter number, the gas-liquid 

ratio, the Froude number, and the input liquid content A (expressed as 



TABLE V 

CALCULATED PRESSURE DROPS FOR THE BEGGS AND BRILL METHOD 



TABLE V (Continued) 

Observed Calculated Calculated Calculated Input 
Data Pressure Pressure Pseudo Liquid Gas Mixture Liquid 

Source Drop Drop Holdup Velocity Velocity Velocity Content 
Ref. No. psi a psi a vol.% ft/sec ft/sec ft/sec vol. % 

5 2.4 2.4 71.7 0.21 12.88 13.40 4.03 
0.6 0.6 70.8 0.10 6.08 6.33 4.03 

43.2 43.2 36.1 5.67 32.08 35.28 4.03 
118.4 118.4 66.6 1.88 53.02 56.71 7.01 
22.8 22.8 49.3 1.73 22.05 23.73 7.01 
9.2 9.2 49.7 1.07 13.78 14.85 7.02 
1.6 1.6 49.6 0.43 5.47 5.90 7.02 

15.7 15.7 36.8 3.35 18.66 20.62 9.65 
8.4 8.4 47.2 0.55 24.20 24.70 28.60 
2.9 2.9 62.2 0.87 3.61 5.04 28.60 
1.4 1.4 81.6 0.22 2.47 3.46 28.60 

67.6 67.6 53.2 6.85 20.25 28.02 28.80 
31.9 31.9 55.3 4.13 12.93 18.04 28.80 
4.7 4.7 54.3 3.66 3.62 5.53 34.70 
3.0 3.0 62.2 1.01 3.14 4.80 34.70 
1.9 1.9 75.8 0.41 2.45 3.74 34.70 

20.7 20.7 59.5 3.16 9.08 13.73 34.80 
12.3 12.3 79.6 3.37 1.28 6.26 79.70 
27.3 27.3 81.5 6.05 1.99 9.47 79.80 
6.6 6.6 ·83.7 2.13 0.92 4.51 79.80 
1.9 1.9 84.7 1.05 0.47 2.30 79.80 

41 4.7 4.7 0.7 34.97 12.80 13.05 1.90 
30.0 30.0 69.4 0.42 36.82 37.78 2.60 
8.2 8.2 49.0 0.53 18.81 19.33 2.70 
8.6 8.6 41.4 1.03 16.56 17.29 4.30 

10.0 10.0 31.2 1.81 17.24 18.06 4.60 
..,::.. 
0 



TABLE V (Continued) 

.Observed Calculated Calculated Calculated 
Data Pressure Pressure Pseudo Liquid Gas 

Source Drop Drop Holdup Velocity Velocity 
Ref. No. psi a psi a vol. % ft/sec ft/sec 

41 8.4 8.4 42.3 2.48 6.79 
6.4 6.4 30.6 3.67 4.99 
1.4 1.4 76.3 0.28 1.97 
3.8 3.8 33.5 2. 77 2.99 
4.0 4.0 22.8 1.26 12.16 
1.5 1.5 80.0 0.25 1.67 
1.3 1.3 81.2 0.34 1.78 
3.6 3.6 4.7 20.38 2.35 

40 0.9 0.9 53.9 0.05 52.75 
1.2 1.2 54.3 0.13 53.74 
0.4 0.4 31.2 0.91 16.35 

3 2.0* 3.0 0.10 30.9 5.10 

5 1.9* 2.5 0.10 89.2 48.36 
1.7* 3.3 0.10 148.4 91.37 
3.8* 5.0 0.10 225.0 130.00 

*Cases where observed and calculated pressure drops could not be matched. 

Mixture 
Velocity 
ft/sec 

8.61 
6.61 
2.86 
4.38 

12.53 
2.68 
2.64 
3.37 

52.81 
53.90 
16.59 

5.16 

48.84 
92.29 

131.30 

Input 
Liquid 
Content 
vol. % 

21.30 
24.70 
31.40 
31.90 
32.90 
37.80 
32.40 
30.30 

0.12 
0.30 
1.48 

0.61 

0.18 
0.16 
0.16 

~ ...... 



volume percent). Beggs and Brill (8) have explained these variables in 

their paper. With the exception of A, and to some extent the Froude 

number, none of the other variables had any significant relationship to 

the pseudo ho 1 dup. Beggs and Bri 11 cone 1 uded that the Froude number and 

A were the two variables which influenced the liquid holdup for their 

experimental data, and obtained equations of the form of Equation II-21 
I 

to estimate the holdup. 

Generally, the lower the value of A, the greater the change in the 

pseudo holdup needed to match the observed pressure drop. However, 

there was no clear cut relationship between the two variables. Some 

investigators (3,8,20) have obtained good correlations by including the 

ratio of two quantities or two similar quantities as a variable in their 
f 

analyses. Baker (3) used the ratio of (~), Beggs and Brill used (~), 
llL • ns 

and Eaton et al. used(--) in their correlation. Plotting HL/A against uw 
A showed a definite relationship. Figure 4 shows the plot. HL 

represents the pseudo holdup. 

The pseudo holdup values in Figure 4 are the values required to 

match observed pressure drops with pressure drops calculated with the 

Beggs and Brill calculation procedure. The data was curve fitted to 

obtain an equation of the form 

ln Y =A+ B(ln A) + C(ln A) 2 + D(ln A) 3 (IV-1) 

where, y = liquid holdup 
input liquid content 

A= input liquid content, volume percent 

A,B,C,D = constants 
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Figure 4. Pseudo Liquid Holdup as a Function of Volume Percent Input Uqufd Hith the Beggs and Brtll Calculation Procedure 
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The values of the constants in Equation IV-1 were determined from a 

regression analysis, using the MARQ computer program (13). Including 

44 

the Froude number as a variable did not significantly improve the pseudo 

holdup values estimated by an equation similar to Equation IV-1. 

Equation IV-1 was used to estimate the pseudo holdup and calculate 

the phase velocities. The superficial gas velocity and the mixture 

velocity were calculated from Equations II-14 and II-12, respectively. 

The mixture velocity to be used in the pressure drop equation was 

computed from the area available for gas flow. The gas velocity based 

on the area available for gas flow was used instead of superficial gas 

velocity to calculate the acceleration pressure drop. Table VI shows 

the results using the Beggs and Brill pressure drop equation. 

Discussion of Results 

The deviations from observed pressure drop values were calculated 

from: 

Percent Error = (Calculated Value - Observed Value) 
Observed Value 

The average absolute percent error is calculated from: 

Average Absolute Error,% = ~ IPercen~ Error! 
0 

where N = number of observations. 

( IV-2) 

(IV-3} 

Mandhane et al. (34) have discussed other types of error parameters 

and their relative merits. In the present work, the average absolute 

percent error was chosen as the parameter for comparison, because it is 



Data 
Source 

Ref. No. 

3 

4 

5 

TABLE VI 

CALCULATED PRESSURE DROPS USING EQUATION IV-1 AND PHASE 
VELOCITIES IN THE BEGGS AND BRILL METHOD 

Observed Calculated Pseudo 
Pressure Pressure Holdup 

45 

Percent 
Drop Drop Volume Absolute 
psi a psi a Percent Error 

9.0 7.6 23.5 -15.5 
1.5 1.7 24.0 +13.3 
7.5 5.0 24.3 -33.3 
7.0 3.6 24.7 -48.6 

10.0 3.3 24.8 -67.0 
20.0 24.0 28.1 +20.0 
15.0 13.5 28.1 -10.0 
24.0 30.2 40.4 +25.8 
16.0 14.8 44.1 -7.5 
6.0 7.5 44.4 +25.0 

18.0 15.6 47.6 -13.3 
10.0 16.2 47.8 +62.0 
19.0 
32.0 

105.0 70.3 52.5 -33.0 

0.8 0.7 23.1 -12.5 
128.7 32.5 27.2 -74.7 
22.3 12.6 27.2 -43.5 
1.5 0.8 27.3 -46.7 
4.1 4.6 27.3 +12.2 
5.6 6.7 30.0 +19.6 
3.6 1.7 30.2 -52.8 
2.4 0.5 30.3 -79.2 
0.6 0.2 30.3 -66.7 

43.2 42.7 35.7 -1.1 
118.4 30.9 33.7 -73.9 
22.8 14.0 33.8 -38.6 
9.2 5.6 33.9 -39.1 
1.6 1.0 33.9 -37.5 

15.7 15.4 36.0 -1.9 
8.4 4.6 48.6 -45.2 
2.9 1.8 48.7 -37.9 
1.4 0.2 48.7 -85.7 

67.6 67.1 48.2 -0.7 
31.9 27.1 48.6 -15.0 
4.7 2.6 36.0 -36.6 
3.0 3.0 45.0 o.o 
1.9 2.7 51.8 +42.1 

20.7 
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TABLE VI (Continued) 

Observed Calculated Pseudo 
Data Pressure Pressure Holdup Percent 

Source Drop Drop Volume Absolute 
Ref. No. psi a psi a Percent Error 

5 12.3 20.9 70.2 +69.9 
27.3 54.7 69.7 +100.4 
6.6 9.8 70.2 +48.5 
1.9 0.6 48.7 -66.7 

41 4.7 6.3 27.1 +34.0 
30.0 5.8 28.3 -80.5 
8.2 4.4 28.4 -46.3 
8.6 6.3 30.6 -26.7 

10.0 10.0 31.0 0.0 
8.4 7.4 44.4 -11.9 
6.4 8.7 46.4 +35.9 
1.4 0.4 50.2 -92.8 
3.8 6.0 50.3 +36.7 
4.0 4.5 28.8 +12.5 
1.5 0.4 53.3 -73.3 
1.3 0.5 50.9 -61.5 
3.6 6.7 49.5 +86.1 

40 0.9 0.5 23.0 . -44.4 
1.2 0.6 23.4 -50.0 
0.4 0.3 26.3 -25.0 



47 

sensitive to errors associated with small measured values of the 

pressure drop. 

The calculated gas velocity is sensitive to the area available for 

gas flow. The mixture velocity increases in proportion to the estimated 

value of the pseudo holdup. The results in Table VI show that Equation 

IV-1 is not adequate to accurately estimate the pseudo holdup. Although 

the calculated _pressure drops shown in Table VI are higher than those 

reported in Tables I and III, the percent errors are large. 

The error in predicting the pressure drop can be reduced by 

improving the estimate of the liquid holdup. A flow regime map was 

developed for this purpose. Figure 1 shows Baker•s flow regime map. 
G Lx•v The parameters plotted in this figure are y and -G-, where G and L are 

superficial gas and liquid mass velocities, respectively. The variables 

are defined in Chapter II. In Figure 2, the quantities G and L are 

calculated by assuming that each phase occupies the entire conduit. The 
Gil Lu 

quantities y and~ x•v were calculated using mass velocities instead 

of superficial mass velocities. Figure 5 shows a plot of these two 

quantities. The quantity G11 in this figure is the gas mass velocity and 

L11 the liquid mass velocity. They are calculated as follows: 

(IV-4) 

and 

(IV-5) 

The area occupied by each phase was computed from the pseudo holdup 

values reported in Table V. These were used to detennine the phase 
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velocities for Equations IV-4 and IV-5. These parameters may be termed 

11modified 11 Baker parameters. The data were lumped into three groups 

designated as Regions I, II, and III. For each region, the quantity 
H I 

~was plotted as a function of the volume percent input liquid. 

Figures 6 through 8 show the plots. The equation for estimating the 

pseudo holdup corresponding to each region was obtained by curve-fitting 

the data using the MARQ computer program (12). The equations are: 

Region I: 

Region II: 

Y = A I - B I l n A - C I ( l n A) 2 

H' 
Y = l n (..!.) 

A 

AI, BI, CI = constant 

H' 
Y = l n (..!.) 

A 

AII' BII' CII = constant 

B 
Region III: Y = AIII (A) III 

H' 
y = f-
AIII' BIII = constant 

(IV-6) 

( IV-7) 

(IV-8) 

A trial and error procedure is required to calculate the holdup 

values using Equations IV-6 through IV-8. The pipeline is divided into 

an appropriate number of segments. For each segment, the steps involved 

are: 
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1. Estimate a holdup using Equation IV-1 and calculate the phase 

velocities. 

2. 
GIll Lll 

Calculate the quantities 1' and GV A1 ,, and locate the flow 

regime. 

3. Calculate the holdup using the equation which corresponds to 

the flow regime located in step 2. If the point corresponding to the 
Gil Lll 

calculated values of 1' and GV A' falls within Region I, use Equation 

IV-6. If the point falls within Region II, use Equation IV-7. If the 

point falls within Region III, use Equation IV-8. 

4. Using the pseudo holdup values from step 3, calculate the 
Gu . Lll 

quantities 1' and~ A~, and locate the flow regime again. 
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If the flow regime from step 4 is the same as the one from step 2, then 

use the holdup value from step 3 and complete the pressure drop 

calculation using the gas velocity, and the mixture velocity based on 

the area available for gas flow in the pressure drop equation. If the 

flow regime from step 4 is not the same as the one from step 2, use the 

holdup value from step 3 as the next estimate, and repeat steps 2 

through 4 until the flow regimes match. 

Table VII shows the pressure drops calculated by the Beggs and 

Brill equations using Figures 5 through 8 to estimate the pseudo 

holdup. The percent errors reported in Table VII is in many cases much 

lower than those reported in Table VI. This shows that using the flow 

regime map provides a better estimate of the pseudo holdup, and leads to 

a better prediction of the pressure drop. 

The line of demarkation between the regions in Figure 5 is 

arbitrary. The lines were drawn as shown using Figure 2 as a 

guideline. The regions can also be defined differently. For example, 



Data P1pe Line 
Source D1anaeter Temp. 
Ref. No. Inches OF 

3 7.75 65 
7.75 70 
7.75 70 
7.75 69 

10.14 69 
4.03 79 
5.94 72 

10.14 78 
10.14 69 
7.75 66 

10.14 82 
7.75 82 
7.75 75 
7.75 80 

4 12.00 60 

5 4.03 60 
4.03 60 
4.03 60 
4.03 60 
4.03 60 
4.03 60 
4.03 60 
4.03 60 
4.03 60 
4.03 60 
4.03 60 
4.03 60 
4.03 60 
4.03 60 
4.03 60 
4.03 60 
4.03 60 
4.03 60 
4.03 60 
4.03 60 

TABLE VII 

CALCULATED PRESSURE DROP USING FIGURE 5 AND PHASE VELOCITIES 
FOR THE BEGGS AND BRILL METHOD 

Observed 
Line L1qu1d Gas Inlet Input Liquid L1qu1d Pressure 
Length Flow Rate Flow Rate Pressure Content Holdup Drop 
M1les bbl/day MMSCFD psi a Vol. S Vol. S Reg1on ps1a 

2.16 192 11.68 726.7 0.36 39.9 III 9.0 
2.01 107 6.67 1081.7 0.44 39.2 II 1.5 
2.14 236 11.95 1077.7 0.61 43.3 III 7.5 
2.14 244 9.48 1088.7 0.78 66.1 II 7.0 
7.83 244 9.48 1082.7 0.82 32.8 II 10.0 
0.69 627 7.47 1101.7 2.46 28.8 II 20.0 
2.01 627 7.47 1084.7 2.53 28.7 II 15.0 
7.83 6592 11.89 974.7 14.96 35.7 I 24.0 
7.83 4167 12.05 976.7 20.58 41.4 II 16.0 
2.14 4970 6,47 978.7 21.01 32.1 I 6.0 
7.83 5420 4.35 930.0 20.51 41.7 II 18.0 
2.14 5420 4.35 954.7 26,91 74.5 III 10.0 
2.14 514 25.97 997.7 0.60 -- -- 19.0 
2.14 5484 25.52 1021.7 6.55 -- -- 32.0 

25.45 6912 3.19 424.7 34.50 52.5 II 105.0 

0.19 40 0.40 50.0 0.20 37.2 Ill 0.8 
0.19 800 8.00 400.0 2.03 28.9 II 128.7 
0.19 500 5.00 400.0 2.03 27.2 II 22.3 
0.19 120 1.20 400.0 2.03 51.2 III 1.5 
0.19 1000 2.00 1000.0 2.03 75.0 III 4.1 
0.19 800 0.40 50,0 4.03 29.0 II 5.6 
0~19 400 0.20 50.0 4,03 56.3 Ill 3.6 
0.19 200 0.10 50.0 4.03 56.3 Ill 2.4 
0.19 100 0.05 50.0 4.03 56.4 III 0.6 
0.19 2500 5.00 400.0 4.03 40.8 I 43.2 
0.19 1200 12.00 1000.0 7.01 43.3 I 118.4 
0.19 800 8.00 1000.0 7.01 43.2 I 22.8 
0.19 500 5.00 1000.0 7.02 43.2 I 9.2 
0.19 .200 2.00 1000.0 7.02 42.6 I 1.6 
0.19 1500 3.00 400.0 9.65 40.9 I 15.7 
0.19 300 3.00 400.0 28.60 53.5 I 8.4 
0.19 600 1.20 1000.0 28.60 47.9 II 2.9 
0.19 100 0.20 1000.0 28.60 75.1 III 1.4 
0.19 4000 8.00 1000.0 28.80 47.9 II 67.6 
0.19 2500 5.00 1000.0 28.80 47.6 II 31.9 

Calculated* 
Pressure 
Drop Percent ** 
ps1a Error 

7.6 -15.5 
1.7 +13.3 
5.0 -33.3 
3.6 -48.6 
3.3 -67.0 

24.0 +20.0 
13.5 -10.0 
28.9 +20.4 
14.8 -7.5 
6.0 0.0 

15.6 -13.3 
16.2 +62.0 

70.3 -33.0 

0.7 -12.5 
32.5 -74.7 
12 •. 6 -43.5 
1.4 -6.7 
4.6 +12.2 
6.3 +12.5 
4.1 +13.9 
1.0 -58.3 
0.3 -50.0 

42.7 +1.1 
67.3 -43.1 
23.2 +1.7 
9.3 +1.1 
1.6 0.0 

15.4 -1.9 
8.6 +2.4 
1.8 -37.9 
1.4 0.0 

67.1 -0.7 
27.1 -15.0 

(}1 
~ 



TABLE VII (Continued) 

Observed 
Data Pipe Line Line Liquid Gas Inlet Input L1 quid Uquid Pressure 
Source Diameter Tet11p. length Flow Rate Flow Rate Pressure Content Holdup Drop 
Ref. No. Inches Of Miles bbl/day IIISCFO psi a Vol. I Vol. I Region psi a 

5 4.03 60 0.19 1600 0.8 400.0 34.70 51.8 II 4.7 
4.03 60 0.19 800 0.4 50.0 34.70 51.8 II 3.0 
4.03 60 0.19 400 0.2 50.0 34.70 27.0 I 1.9 
4.03 60 0.49 2400 1.2 400.0 34.80 51.6 II 20.7 
4.03 60 0.19 2400 1.2 1000.0 79.70 82.1 II 12.3 
4.03 60 0.19 4000 2.0 1000.0 79.80 82.2 II 27.3 
4.03 60 0.19 1600 0.8 1000.0 79.80 82.2 II 6.6 
4.03 60 0.19 800 0.4 1000.0 79.80 82.2 II 1.9 

41 3.0 60 0.19 158 1.8 494.7 1.90 29.0 II 4.7 
3.0 60 0.19 169 1.7 472.7 2.60 52.0 I 30.0 
3.0 60 0.19 169 1.4 468.7 2.70 53.2 III 11.2 
3.0 90 0.19 283. 1.4 473.7 4.30 -- -- 8.6 
3.0 60 ·0.19 375 1.7 466.0 4.60 29.2 II 10.0 
3.0 60 0.19 734 0.7 473.1 21~30 63.2 11 8.4 
3.0 60 0.19 788 . 0.6 471.1 24.70 44.6 II 6.4 
3.0 60 0.19 157 0.1 466.1 31.40 7!i.l 111 1.4 
3.0 60 0.19 655 0.4 468.5 31.90 49.9 II 3.8 
3.0 60 0.19 186 1.3 466.2 32.90 28.6 II 4.0 
3.0 60 0.19 143 0.1 466.0 37.80 79.2 III 1.5 
3.0 90 0.19 171 0.1 466.0 32.40 -- -- 1.3 
3.0 60 0.19 671 0.41 468.3 30.30 48.7 II 3.6 

40 2.0 65 0.02 10 0.1 50.0 0.12 51.3 I 0.9 
2.0 65 0.02 24 0.1 50.0 0.30 45.4 II 1.2 
2.0 . 65 0.02 65 0.1 50.0 1.49 29.7 11 0.4 

*The calculated pressure drops have been rounded off. 
**The errors have not been rounded off. A SMall difference ts likely to occur between the reported error and the 

error calculated frOM reported values. 

Calculated* 
Pressure 
Drop 
psfl 

4.1 
2.4 
1.1 

15.3 
10.8 
28.7 

5.2 
1.5 

6.3 
21.3 
11.1 --
10.0 
9.4 
8.7 
1.4 
6.0 
4.9 
1.5 
--
6.7 

0.7 
0.6 
0.3 

Percent ** 
Error 

-12.8 
-25.0 
-42.1 
-26.1 
-12.2 
+5.1 

-21.2 
-21.0 

+34.0 
-29.0 
-35.4 --

0.0 
+11.9 
+44.6 

0.0 
+36.7 
+22.5 

o.o 
--

+86.1 

-22.2 
-50.4 
-14.3 

CJ1 
CJ1 
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Region I may be considered to include points with a value of less than 

10 for the horizontal axis in Figure 5. Region II may be considered to 

include all points with a horizontal axis value between 10 and 150. 

Region III may be considered as all points with a value greater than 150 

for the horizontal axis. However, defining the three regions in this 

way does not provide a better estimate of the pressure drop than is 

obtained by using Figure 5 along with Equations IV-6 through IV-9. The 

results in Table VII show that, although the distinction between the 

different flow regimes may not be well defined, the concept of using a 

flow regime map is useful for improving the predictive methods for two­

phase pressure drop. 

Table VIII gives a comparison of the average absolute error for 

different types of pressure drop calculation procedures. The results 

show that the methodology based on the assumption that the two phase 

flow at different velocities substantially cuts down the average 

absolute error. The absolute error reduces to 40% of the error 

associated with the Beggs and Brill method assuming homogeneous or no­

slip flow. 

Pressure Drop Calculation Procedure 

The following procedure is recommended for calculating the two­

phase pressure drop based on the results shown in Table VII: 

1. Divide the pipeline into an appropriate number of segments. 

For each segment, assume a pressure drop and compute the required phase 

properties at average segment conditions. 

2. Estimate a holdup from Equation IV-1. Use the trial and error 

procedure outlined earlier to calculated the holdup. The procedure 



TABLE VIII 

COMPARISON OF AVERAGE ABSOLUTE ERROR IN CALCULATING PRESSURE 
DROP USING SUPERFICIAL AND PHASE VELOCITIES 

Method Holdup Type of Average 
of Correlation Flow Absolute 

Calculation Used Assumed Error, % 

Beggs and Brill Beggs and Brill No-Slip 66.7 

Beggs and Bri 11 Eaton No-Slip 64.5 

Beggs and Brill Equations II-5, Slip 26.2 
IV-6, and 
IV-7 

AGA AGA No-Slip 56.1 

AGA Eaton No-Slip 63.0 

AGA Equations IV-5, Slip 29.4 
IV-6, and 
IV-7 
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involves using the flow regime map (Figure 5) along with Equations IV-6 

through IV-8. 

3. Calculate the phase velocities. 

4. Calculate the superficial phase velocities using Equations 

II-14, and II-12. 

5. Compute the mixture velocity to be used in the pressure drop 

equation based on the area available for gas~flow. 

6. Compute the pressure drop using the mixture velocity determined 

from step 5 and the gas velocity (instead of the superficial gas 

velocity) in the pressure drop equation. 

If the pressure drop calculated from step 6 agrees with the assumed 

pressure drop within a specified tolerance, proceed with calculations 

for the next segment. If not, repeat steps 1 through 6 with the 

calculated pressure as the next estimate. The total pressure drop is 

obtained by algebraically summing the calculated pressure drop in all 

the segments. The pressure drop calculated with this approach provides 

a better estimate of the true pressure drop than that calculated by 

using superficial phase velocities. 



CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

An improved method has been developed for calculating the pressure 

drop in gas-liquid flow in long horizontal transmission lines. The 

procedure is programmed into the pressure drop calculation routines 

originally developed by Akashah (1). Several cases involving 

experimental data from different sources were calculated using the 

program. The following are the conclusions of the study: 

1. In most cases, the pressure drop calculated using superficial 

phase velocities is lower than the observed pressure drop. 

2. In some cases, using the Eaton et al. holdup correlation 

results in a higher calculated pressure drop. 

3. The liquid holdup and the mixture velocity are the key 

parameters which influence the calculated pressure drop. 

4. In most cases, the pseudo liquid holdup required to match 

calculated pressure drops with observed pressure drops is greater than 

the holdup estimated by the Beggs and Brill, the AGA, and the Eaton et 

al. correlations. 

5. The pressure drop estimated using phase velocities instead of 

superficial phase velocities, and increasing the mixture velocity in 

proportion to the pseudo holdup is higher than the pressure drop 

estimated by assuming no-slip flow. 

6. The absolute error in the estimated pressure drop can be 

substantially reduced by using a flow regime map (Figur.e 5) along with 
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appropriate equations (Equations IV-6 through IV-9) to estimate the 

1 i quid holdup. 
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7. The methodology based on the assumption that the two phases 

flow at different velocities provides a better estimate of the pressure 

drop. 

8. The Beggs and Brill method provides the best estimate of the 

pressure drop for flow in long horizontal lines when the method 

recommended in this study is incorporated into the calculation 

procedure. 

The following recommendations are made for calculating the pressure 

drop in two-phase flow, and for future work: 

1. Calculations should first be made with the assumption of no­

slip flow to obtain an estimate of the minimum pressure drop to expect 

in a line. 

2. The concept of allowing the two phases to move at different 

velocities should be applied to study the change in pressure, 

temperature, and holdup with time during unsteady flow conditions. 

3. An investigation should be conducted to study the effect of 

slip on the holdup in inclined lines. 
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TABLE IX 

SPECIFICATIONS FOR DATA FROM BAKER (3) 

Gas Composition: 

Component Mole% 

c1 95.12 

c2 3.26 

c3 0.84 

i-C4 0.22 

n-C4 0.26 

i-c5 0.06 

C02 0.10 

c6+ 0.14 

100.00 

Liquid Composition: 

Component Mole% 

c1 24.28 

c2 4.57 

c3 2.86 

i-C4 1.58 

n-c4 1.87 

i-c5 1.58 

c6+ 63.26 

100.00 
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TABLE IX {Continued) 

C6+ Specification: 

Fraction # NBP, °F API Gravity Molecular Weight 

1 128.6 73.7 71.0 

2 287.0 58.0 116.1 

3 351.7 52.8 137.0 

4 484.4 43.7 185.5 

5 594.3 37.4 243.1 

6 687.7 32.7 281.0 
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TABLE X 

SPECIFICATIONS FOR DATA FROM BAKER (4) 

Gas Composition: 

Component Mole% 

cl 84.2 

c2 5.8 

c3 5.0 

n-c4 5.0 

100.00 

C6+ Specification: 

NBP (Normal Boiling Point) 390°F 

API Gravity 37 

Molecular Weight 154 
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TABLE XI 

SPECIFICATIONS FOR DATA FROM BAKER (5} 

Gas Composition: 

Component Mole% 

c1 77.0 

c2 16.0 

c3 6.0 

n-c4 1.0 

100.00 

C6+ Specification: 

NBP (Normal Boiling Point} 575°F 

API Gravity 30 

Molecular Weight 226 
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TABLE XII 

SPECIFICATIONS FOR DATA FROM VAN WINGEN (41) 

Gas Composition: 

Component Mole% 

c1 88.0 

c2 5.0 

c3 5.5 

n-c4 1.5 

100.00 

C6+ Specification: 

NBP (Nonnal Boiling Point) 365°F 

API Gravity 36 

Molecular Weight 144 
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TABLE XI II 

SPECIFICATIONS FOR DATA FROM SCHNEIDER ET AL. (40) 

Pressure Drop, psi a 0.90 1.21 0.35 

Component Composite Feed Composition, Mole% 

c1 74.61 71.18 54.78 

c2 15.48 14.78 11.38 

c3 4.04 3.86 2.97 

n-c4 2.73 2.62 1.97 

n-c13 3.14 7.56 28.90 

100.00 100.00 100.00 



Data Line Pipe Pipeline 
Source Temp. Diameter Length 
Ref. No. OF inches Miles 

3 65 7.75 2.16 
70 7.75 2.01 
70 7.75 2.14 
69 7.75 2.14 
69 10.14 7.83 
79 4.03 0.69 
72 5.94 2.01 
78 10.14 7.83 
69 10.14 7.83 
66 7.75 2.14 
82 10.14 7.83 
82 7.75 2.14 
75 7.75 2.14 
80 7.75 2.14 

4 60 12.0 25.45 

5 60 4.03 0.19 
60 4.03 0.19 
60 4.03 0.19 
60 4.03 0.19 
60 4.03 0.19 
60 4.03 0.19 
60 4.03 0.19 

TABLE XIV 

SPECIFICATION OF FLOW RATES 

Observed Liquid 
Pressure Flow 

Drop Rate 
psi a bbl/d 

9.0 192 
1.5 107 
7.5 236 
7.0 244 

10.0 244 
20.0 627 
15.0 627 
24.0 6592 
16.0 4167 
6.0 4970 

18.0 5420 
10.0 5420 
19.0 514 
32.0 5484 

105.0 6912 

0.8 40 
128.7 800 

22.3 500 
1.5 1200 
4.1 1000 
5.6 800 
3.6 400 

Gas Volume· 
Flow Inlet Percent 
Rate Pressure Liquid 

MMSCFD psi a at Inlet 

11.68 726.7 0.36 
6.67 1081.7 0.51 

11.95 1077.7 0.62 
9.48 1088.7 0.78 
9.48 1082.7 0.82 
7.47 1101.7 2.50 
7.47 1084.7 2.53 

11.89 974.7 15.25 
12.05 976.7 20.87 
6.47 978.7 21.20 
4.35 930.0 26.91 
4.35 954.7 27.20 

25.97 997.7 0.60 
25.52 1021.7 6.55 

3.19 424.7 34.50 

0.40 50.0 0.20 
8.00 400.0 2.03 
5.00 400.0 2.03 
1.20 400.0 2.03 
2.00 1000.0 2.03 
0.40 50.0 4.03 
0.20 50.0 4.03 

-.....! ...... 



TABLE XIV (Continued) 

Observed Liquid 
Data Line Pipe Pipeline Pressure Flow 
Source Temp. Diameter Length Drop Rate 
Ref. No. OF inches Miles psi a bbl/d 

5 60 4.03 0.19 2.4 200 
60 4.03 0.19 0.6 100 
60 4.03 0.19 43.2 2500 
60 4.03 0.19 118.4 1200 
60 4.03 0.19 22.8 800 
60 4.03 0.19 9.2 500 
60 4.03 0.19 1.6 200 
60 4.03 0.19 15.7 1500 
60 4.03 0.19 8.4 300 
60 4.03 0.19 2.9 600 
60 4.03 0.19 1.4 200 
60 4.03 0.19 67.6 4000 
60 4.03 0.19 31.9 2500 
60 4.03 0.19 4.7 1600 
60 4.03 0.19 3.0 800 
60 4.03 0.19 1.9 400 
60 4.03 0.19 20.7 2400 
60 4.03 0.19 12.3 2400 
60 4.03 0.19 27.3 4000 
60 4.03 0.19 6.6 1600 
60 4.03 0.19 1.9 800 

Gas 
Flow 
Rate 

MMSCFD 

0.1 
0.1 
5.0 

12.0 
8.0 
5.0 
2.0 
3.0 
3.00 
1.2 
0.4 
8.0 
5.0 
0.8 
0.4 
0.2 
1.2 
1.2 
2.0 
0.8 
0.4 

Inlet 
Pressure 

psi a 

50.0 
50.0 

400.0 
1000.0 
1000.0 
1000.0 
1000.0 
400.0 
400.0 

1000.0 
1000.0 
1000.0 
1000.0 
400.0 
50.0 
50.0 

400.0 
1000.0 
1000.0 
1000.0 
1000.0 

Volume 
Percent 
Liquid 
at Inlet 

4.03 
4.03 
4.03 
7.01 
7.01 
7.02 
7.02 
9.65 

28.60 
28.60 
28.60 
28.80 
28.80 
34.70 
34.70 
34.70 
34.80 
79.70 
79.80 
79.80 
79.80 

-....! 
N 



Data Line Pipe Pipeline 
Source Temp. Diameter Length 
Ref. II OF inches Miles 

41 90 3.00 0.19 
90 3.00 0.19 
90 3.00 0.19 
90 3.00 0.19 
90 3.00 0.19 
90 3.00 0.19 
90 3.00 0.19 
90 3.00 0.19 
90 3.00 0.19 
90 3.00 0.19 
90 3.0 0.19 
90 3.0 0.19 
90 3.0 0.19 

40 65 2.00 0.02 
65 2.00 0.02 
65 2.00 0.02 

TABLE XIV (Continued) 

Observed Liquid Gas 
Pressure Flow Flow 

Drop Rate Rate 
psia bbl/d MMSCFD 

4.7 169 1.7 
30.0 169 1.4 
8.2 186 1.3 
8.6 283 1.4 

10.0 375 1.7 
8.4 734 0.7 
6.4 788 0.6 
1.4 157 0.1 
3.8 655 0.4 
4.0 143 0.1 
1.5 143 0.1 
1.3 171 0.1 
3.6 671 0.4 

0.9 10 0.1 
1.2 24 0.1 
0.4 65 0.1 

Inlet 
Pressure 

psi a 

494.7 
472.7 
468.7 
473.7 
466.0 
473.1 
471.1 
466.1 
468.5 
466.2 
466.0 
466.0 
468.3 

50.0 
50.0 
50.0 

Volume 
Percent 
Liquid 
at Inlet 

1.9 
2.6 
2.7 
4.3 
4.6 

21.3 
24.7 
31.4 
31.9 
32.8 
37.8 
32.4 
30.3 

0.12 
0.30 
1.49 

....... 
w 
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