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PREFACE 

In image databases ~nd other spatial data retrieval systems, the 

techniques for storing and indexing data objects require different 

kinds of search and query from those in traditional databases and 

data retrieval systems. In order to handle spatial data more 

efficiently, a new index structure supporting search for spatial 

objects by region, the Index by Dimensional Projection is proposed in 

this thesis. By this method, the number of pages accessed for 

searching a point region has a logarithmic relationship with the 

number of objects in data space and the number of comparisons 

required for searching an entry within a disk page has logarithmic 

relationship with the number of entries in the disk page. 

I wish to express my sincere gratitude to the individuals who 

assisted me in this project and during my coursework at Oklahoma 

State University. In particular, I wish to thank my major adviser, 

Dr. Huizhu l:u, for .her guidance on this study. I am also grateful to 

other committee members, Dr. George E. Hedrick and Dr. John P. 

Chandler, for their advisement during the course of this work. 
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NOMENCLATURE 

[ ) semi-open segment or semi-open rectangle 

C capacity of a page of an I D P 

Cr capacity of a page of an R-tree or an R+-tree 

D density of objects in a data space 

Di density of objects in a slice of a data space in the ith 
dimension 

f fan-out of a page of an IDP 

f r fan-out of a page of an R-tree or an R+-tree 

G starting point of the segment in an entry of an IP-tree or a 
TP-tree 

Hi height of an IP-tree 

H t height of a TP-tree 

lbi lower boundary of a rectangle in the ith dimension 

m lower boundary of the number of entries in a page 

M upper boundary of the number of entries in a page 
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n number of dimension of a data space 

N number of objects in a data space 

Ni number of objects in a slice of data space in the ith 
dimension 

P pointer in an entry 

u number of MCCSs resulting from a projection 

ubi upper boundary of a rectangle in the ith dimension 

Ui number of MCCSs resulting from the projection of a sub'-1-

space onto the ith axis 

Wi width of a rectangle along the ith ·dimension 

X 



GLOSSARY 

capacity: The number of entries a leaf node can have. 

cover: An n-d rectangle, R1, covers another n-d rectangle, R2 

if every point contained by R2 is contained by R1 also. A segment, 

S1, covers another segment, S2 if every point contained by 82 is 

contained by S1 also. 

disjoint: Two n-d rectangles or two segments disjoint from 

each other if there is no point contained by the both rectangles or 

the both segments. 

ECP (Equally Covered Points): ECP are points on an axis and 

covered by the same set of projections of rectangles onto the axis. 

enclosing rectangle: The enclosing rectangle of an object or 

some other enclosing rectangles is the smallest rectangle which 

covers the object or those rectangles. 

, end point: For a segment represented by [sl, su), the end point 

is the pain at su. 

Equally Covered Points: (see ECP) 

fan-out: The number of sub-trees a non-leaf node can have. 

IDP (Index by dimensional Projection): The IDP is an index 

structure supporting search spatial objects by region. An IDP 

indexes the spatial objects by projecting them in each dimension. 
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Index by dimensional Projection: (see lOP) 

Intermediate Projection tree: An Intermediate Projection tree 

is a part of an lOP of an n-dimensional data space. An intermediate 

Projection tree indexes a sub-space by the projection of the sub­

space onto an axis other than the axis in the nth dimension. 

intersect: Two n-dimensional rectangles or two segments 

intersect each other if there are at least one point contained by the 

both rectangles or the both segments. 

IP-tree: (see Intermediate Projection tree) 

Maximum Constantly Covered Rectangle (MCCR): A Maximum 

Constantly Covered Rectangle is a rectangle in which every point is 

contained by the same set of objects, and any rectangle which 

contains the rectangle and is not equal td the rectangle contains at 

least two points contained by different set of objects. 

Maximum Constantly Covered Segment (MCCS): A Maximum 

Constantly Covered Segment is a segment on an axis, in which all 

points are ECP, and any segment which contains the segment and is 

not equal to the segment contains at least two points which are not 

ECP. 

MCCR: (see Maximum Constantly Covered Rectangle) 

MCCS: (see Maximum Constantly covered Segment) 

overlap: (see intersect) 

point query (point search): An operation to determine all the 

objects containing a certain point. 

point search: (see point query) 
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R-tree: The R-tree is an extension of the 8-tree without the 

property of key ordering. The R-tree supports search spatial objects 

by region. 

R+-tree: The R+-tree is a variation of the R-tree with the 

restriction of not allowing the overlap among nodes on the same 

level. 

region: An rectangular space within a data space. 

search by region: An operation to determine all the objects 

intersecting a given region. 

sequential list: A sorted linked list of all leaf nodes in an IP­

tree or a TP-tree, like that in a B+-tree. 

spatial data object: A data object covering intervals in each 

dimension of the data space. 

stage: The step of projection to index spatial objects by the 

IDP. Each stage corresponds to a step of projection of the spatial 

objects onto a corresponding axis. 

starting point: For a segment represented by [sl, su), the 

starting point is the point with the coordinate value of sl. For an n­

d rectangles represented by [sh, su1, sl2, su2, ... , sin, sun), the 

starting point is the point with the coordinate of [sh, sl2, ... , sin). 

sub-space: A sub-space is a part of the data space formed by 

dividing the space by MCCSs generated from each projection of the 

data space. 
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Terminal Projection tree (TP-tree): A Terminal Projection tree 

is a part of an IDP. A terminal projection tree indexes the 

intersections of objects with the MCCRs generated from a projection 

of the nth stage. 

TP-tree: (see Terminal Projection tree) 

uniform list: A list of consecutive entries stored in the 

sequential list of a TP-tree and corresponding to the objects 

intersecting an MCCR. 

xiv 



CHAPTER I 

INTRODUCTION 

Requirement 

In most programming langu'ages and database systems, both 

numeric and string data types are available. With the growth of the 

requirements of describing and manipulating spatial data objects, 

such as in image databases and CAD, much work has been done in the 

fields of image data definition, representation and processing. 

However, comparatively less work has been done to meet the 
' 

requirements of organizing spatial data objects in large collections 

and to support storing and retrieving these objects efficiently. 

In traditional databases and data retrieval systems, many well­

developed techniques can be used to support data storage and 

retrieval. There are many kinds of data storing structures and index 

structures for alphanumeric data types. In image databases and 

other spatial data retrieval systems, the techniques for storing and 

indexing data objects require different kinds of search and query to 

improve the efficiency. However, there are not many choices 

[Same90]. 

Among all kinds of search or query operations for spatial data 

objects, search by region is one of the most different manipulations 

1 



from those for alphanumeric data types. The traditional 

alphanumeric data always are points in a data space, but spatial 

data objects are intervals in data spaces and cover areas. For 

example, temporal data can be viewed as one-dimensional spatial 

data with intervals between beginning and end points; geographic 

applications and VLSI design involve two-dimensional data; 

geological data and solid modelling applications require three­

dimensional data and sometimes require four-dimensional data. 

Queries for these kinds of data objects often are related to the 

areas they are covering. 

2 

Query by region, which is an operation to determine all data 

objects intersecting a given region, is embedded in some query 

languages of pictorial database systems such as PSQL (Pictorial 

Structured Query Language). PSQL is a relational based language for 

retrieving information from a pictorial database. It extends the 

power of SQL (Structured Query Language) for retrieving 

alphanumeric data by allowing direct spatial search. The pictorial 

database maintains the associations between the spatial and 

alphanumeric objects. 

PSQL extend mapping is in the form: 

se I e ct <attribute_target_l ist> 

from <relation list> 

on <picture_list> 

at <area_specification> 

where <qualification>; 



The following example is a typical simple query. 

select city, state,population 

from cities 

on US_map 

a t ·loc overlapping { 4±4, 11 ±9 } 

where population > 500000; 

which select all cities in the area {4±4, 11 ±9} having population 

greater than 500,000. 

If there is no index supporting the search of spatial objects by 

region, then the search for the cities within a given region on the 

picture_list has to be implemented in a method such as 

R = {4±4, 11±9}; 

for each CITY on US_map 

if overlap(CITY, R} 

output( CITY}; 

The search method of "for each" requires a linear search and is 

performed slowly. 

Problems 

In order to handle spatial data ~fficiently, as required in both 

computer-aided design and geometric data applications, a database 

system should have an index mechanism to retrieve data items 

quickly according to their spatial .locations. However, traditional 

indexing methods are not well suited to data objects with non-zero 

size located in multidimensional space. 

3 



Two existing index structures, the R-tree [Gutt84] and the R+­

tree [Sell 87], were introduced to meet these needs. Both R-trees 

and R+-trees are extensions of B-trees. Both R-trees and R+-trees 

maintain their balanced heights as well as the property of 

logarithmic page access. 

Although the R+-tree improves the performance of page access 

in a search by eliminating the overlap among nodes on the same 

level, which exists in the R-tree, algorithms for insertion and 

deletion in an R+-tree are more complicated and have greater 

complexity than those for an R-tree. Moreover, the performance of 

searching in both the R-tree and the R+-tree might be diminished in 

dynamic circumstances if the optimization of the organization of 

these trees either is not included in the insertion and/or deletion 

algorithms or is not applied to these trees periodically. 

Solution 

In order to handle spatial data more efficiently, a new index 

structure, IDP which stands for Index by Dimensional Projection is 

proposed in this thesis. An IDP is a cluster of extended B+-trees. 

An IDP has the following advantages: 

(1) The performance of page access in searching in an IDP is 

better than that in an R-tree and similar to that in an R+-tree, and 

even better when page size is small. 

(2) The algorithmic complexity for searching for an entry in a 

node of an IDP is less than it is in a node of either an R-tree or an 

4 



R+-tree. 

(3) The optimization of organizing an IDP has a linear 

complexity which is lower than the optimization of organizing 

either an R-tree or an R+-tree. 

Terminology 

5 

Before examining previous work related to index structures, the 

following terminology must be understood. 

n-dimensional space: 

An n-dimensional (denoted by n-d in the rest of the thesis) 

space is an n-dimensional Cartesian coordinate system with upper 

and lower bounds for each dimension and with discrete grid of 

coordinates. 

Segment: 

A segment [sl, su) covers the area between sl and su in a 1-

dimensional (1-d) space. sl and su are the lower and upper 

boundaries of a segment. A segment is semi-open: sl is contained in 

the segment but su is not. 

Unit segment: 

A unit segment is the minimal distinguishable segment in a 

digital space. A unit segment is indivisible. The size of a unit 

segment depends on the resolution of the space. A 1-d space is 

covered by all unit segments in the space. Any two unit segments 

are disjoint from each other. 

n-dimensional rectangle (n-d rectangle): 



6 

An n-dimensional rectangle is a rectangle perpendicular to the 

coordinate system. That is, every edge of the rectangle is parallel 

to its corresponding coordinate axis. Each edge of an n-dimensional 

rectangle is a segment. So an n-dimensional rectangle is semi-open. 

An rectangle is described in the form of 

RECT = [lb1, ub1, lb2, ub2, ... , Ibn, ubn) 

where lbi and ubi are the lower and the upper bounds of the rectangle 

in the ith dimension, correspondingly. The interval between two 

boundaries is semi-open. That is, lbi is included in the interval but 

ubi is not. n is used as the notation of the number of the dirDensions 

of the data space in the rest of the thesis. · 

Region: 

A region is an n-d rectangle in an n-d space. 

Unit region: 

A unit region is also called a point region. A unit region is a 

region with the smallest area the digital space can represent. Each 

edge of a unit region is a unit segment. Like unit segments, unit 

region are indivisible and disjoint. An n-d space is covered by all 

its unit regions. The size or the area of a unit region depends on the 

resolution of the digital space. 

Zero-size point: 

A zero-size point does not cover any area. It only has its 

position. Every zero-size point in the space is contained exactly by 

one unit region. In the digital space, different zero-size points in 

the same unit region are undistinguishable. Zero-size points in 



different unit regions are distinguished by distinguishing the unit 

regions. 

Spatial object: 

A spatial object is a tuple (or a record) representing an object 

7 

in an n-d space, such as a tuple for a city on a map, for a shaft in a 

gear box or for a piece of connection on a layout of a VLSI. Besides 

the attributes contained in a tuple for an alphanumeric object, a 

tuple for a spatial object must contain the position of the object and 

a representation of the n-d area the object covers. 

Enclosing rectangle: 

An n-d enclosing rectangle is an enclosing rectangle either of a 

spatial object or of some other enclosing rectangles. An enclosing 

rectangle of a spatial object is the minimum n-d rectangle 

containing the object. Likewise, an enclosing rectangle of some 

other enclosing rectangles is the minimum rectangle containing 

those rectangles. 

Search by region: 

Search by region determines all spatial objects intersecting a 

given region (also called search region or query window). The 

given region is usually an n-d rectangle. If the search region is a 

point region, the search is called point query or point search which 

is to find out all spatial objects containing this point. 

Because a search region is a rectangle, it can be described in the 

same form of an enclosing rectangle. 

For simplicity, the area covered by a spatial object is 
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considered as a11 n-d rectangle in indexes. A spatial. object is stored 

in indexes in the form of 

(OlD, RECT) 

where OlD is the identifier of the spatial object enclosed by the 

enclosing rectangle, RECT. 



CHAPTER II 

REVIEW OF INDEX STRUCTURES 

Traditional Index Structures 

Traditional data processing has dealt only with alphanumeric 

data types (i.e. numerals and strings) and with either numeric or 

string computations. Since database systems emerged from the 

same environment, their data types are also limited to alphanumeric 

types. So data management is limited to structured collections of 

alphanumeric values. 

New requirements came with the introduction of pictorial 

databases. Chang provided an survey of most of the attempts in the 

area of pictorial databases [Chan81 a]. Some of the classical 

database techniques were extended in several respects to meet the 

pictorial requirements [Chan81 b][Chan81 c]. 

In pictorial databases, data objects are different from those in 

traditional databases. In traditional databases, a data object is a 

data point and can be represented by a vector. In pictorial databases, 

data objects are spatial. Manipulations of spatial data objects such 

as spatial search and spatial computations must be implemented 

with the support of proper data structures. 

Spatial data objects often cover areas in multi-dimensional 

9 
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spaces, not well-represented by point locations. For example, map 

objects such as counties, lakes, cities etc. occupy regions of non­

zero size in two dimensions. A common operation on spatial data is 

a search for all objects in an area, the search by region, such as to 

implement the on clause and the at clause in a query in PSQL. This 

kind of spatial search occurs frequently in computer-aided design 

(CAD) and geo-data applications. Therefore, it is important to 

retrieve objects efficiently according to their spatial locations. 

One Dimensional Index Structures 

Traditional one-d index structures are not appropriate for 

performing a multi-dimensional spatial search. Structures based on 

exact matching of values, such as hash tables are not useful because 

a range search is required. Mapped by a hash function, the spatial 

positions of data objects no longer exist in a hash table. Structures 

using one-dimensional ordering of key values, such as sorted linear 

table, binary search trees, 8-trees and the variations to binary trees 

[Knut73] and to 8-trees [Come79], do not work because the search 

space is multi-dimensional. 

A data object with more than one key can be indexed with a one­

dimensional index if all its keys are concatenated into one. A 

concatenation of keys is equivalent to an arrangement of keys with 

the choice of one key to be the primary key and the others to be 

auxiliary in some order. In this way, a data object is considered as 

one-dimensional although it has more than one key. 
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Multi-Dimensional Index Structures 

The multi-dimensional binary search tree (k-d-tree) was 

introduced by Bentley [Bent75]. The k-d-tree is a natural 

generalization of the binary search tree to handle the case of a 

single record having multiple keys. Every key of a data record 

matches the dimensional position of the record in a k-dimensional 

space. Each key of a record is considered as the value of the 

corresponding coordinate. The multi-dimensional binary search tree 

supports associative searching, thereby dealing with a multiplicity 

of keys. In 1979, Bentley discussed the variations of k-d-trees and 

the applications of different kinds of associative searches on k-d­

trees in database applications [Bent79]. 

Since a k-d-tree can be very large as an index for many records, 

an implementation of a k-d-tree on a secondary storage device is 

necessary. In order to reduce disk page access, the method of 

storing "close" nodes on the same disk page [Knut73] is recommended 

for organizing a k-d-tree on secondary memory [Bent79]. Multi­

dimensional data objects can be indexed in the efficient and simple 

data structure of a k-d-tree. 

In 1981, a multi-dimensional B-tree (k-d-B-tree) was 

introduced [Robi81 ]. The k-d-B-tree supports both an exact 

matching search and a range search of multi-dimensional data 

objects. Like the B-tree, the k-d-B-tree maintains its height 

balance and low number of page accesses on disk. Both k-d-tree and 

the k-d-B-tree are indexes for point data objects in multi-
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dimensional space. 

R-tree 

In 1984, Guttman introduced an index structure, the R-tree 

[Gutt84], to support search by region for non-atomic, non-zero size, 

spatial objects. Search for spatial objects by region can be 

performed directly on this kind of index. 

An R-tree is a height balanced tree. A leaf node in an R-tree 

contains entries of the form 

(OlD, RECT) 

where OlD refers to the tlJple of a spatial object and RECT is the n-d 

rectangle bounding the object, the enclosing rectangle. A non-leaf 

node contains entries of the form 

( ptr, RECT) 

where ptr is the address of a lower node in the R-tree and RECT is 

the enclosing-rectangle of all the rectangles of the entries in the 

lower node. An R-tree has the following properties: 

(1) Every node is stored on one disk page and has at most M entries. 

M is determined by the sizes of the disk page and the entry. 

(2) Every leaf node contains between m and M entries unless it is the 

root. Usually, m ~ M/2. 

(3) Every non-leaf node has between m and M children unless it is 

the root. 

(4) The root has at least two children unless it is a leaf. 
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(5) All leaves are on the same level. 

Figure 1 is an example of R-tree. 

A search by region can be performed by the algorithm R_SEARCH 

in Figure 2. 

The R-tree structure does not restrict overlap among rectangles 

of entries on the same level. When a search region is covered by 

more than one 116n-leaf node, all sub-trees rooted at these nodes 

must be searched. For example, when the .search region is W (Figure 

3), both sub-tree A and B must be searched although no object in A 

overlaps W. In some cases, even a point search requires the 

searching of several sub-tre.es .. 

When an R-tree is applied'.in a dynamic circumstance, the 

rectangles of objects are inserted and deleted frequently. 

Therefore, the organization of the R-tree is changed in every 
) ' ' ' 

insertion or deletion. Different· methods of grouping the rectangles 

in a R-tree results in different organizations of the R-tree. Figure 4 

is another example of organization for the set of rectangles in 

Figure 1. The shaded areas are the overlapping of the rectangles in 

the same node. The more overlapping area is in an .A-tree the more 

page access is possibly required in a search operation. · For searching 

the R-tree in Figure 4 'by the same region W as in Figure 1 , one more 

page has to be accessed. Because the organization of A-trees is 

important to the performance of R-tree, Roussopoulos and Leifker 

[Rous85], in 1985, presented an initial packing technique for 

improving the organization of objects in an R-tree to reduce the 
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Figure 1. An, R-tree 

(a) 2-dimensional rectangles organized 1n 
an A-tree. 

(b) The correspon'ding A-tree. 

14 



Algorithm R_SEARCH ( NODE, W) 

Collect all objects intersecting the query window W in an 

R-tree rooted in NODE. 

81: If NODE is not a leaf, then for each entry (ptr, RECT) in 

NODE check whether RECT intersects W. If ,so, 8EARCH(ptr, 

W). 

82: If NODE is a leaf, check all objects in NODE, and return the 

objects which intersect W. 

Figure 2. Algorithm R_8EARCH 

number of page accesses in the search algorithm. 

15 

In 1987, the R+-tree, a variation of the R-tree, was introduced 

by 8ellis, et al [8el187]. The R+-tree has a performance of page 

access when searching that is better than that of the R-tree. R+­

trees allow no overlap among rectangles of nodes at the same level 

(Figure 5). The entries in leaf nodes and non-leaf nodes in an R+­

tree have the same forms as those in an R-tree. An R+-tree has the 

following properties: 



:-----[]---------: 
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Figure 3. A Search Window in an R-tree 

Search window W intersecting both rectangle 
A and B. 
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( a ) 

( b ) 

Figure 4. A Poorly Organized R-tree 

(a) 2-dimensional rectangles organized 1n 
an R-tree. 

(b) The corresponding R-tree. 
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(1) For each entry (ptr, RECT) in a non-leaf, the sub-tree rooted at 

the node pointed to by ptr contains rectangle R if and only if R is 

covered by RECT. The on.ly exception is when R is a rectangle at a 

leaf node. In that case, R must just overlap with RECT. 

(2) For any two entries (ptr1, RECT1) and (ptr2, RECT2) of an non­

leaf node, the overlap between RECT1 and RECT2 is zero. 

(3) The root has at least two children unless it is a leaf. 

(4) All leaves are on the same level. 

The algorithm R_SEARCH in Figure 2 can be applied directly to 

search in an R+-tree by region. 
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Searching on R+-tree has a page access complexity lower than 

on an R-tree. But, to organize an R+-tree requires more complicated 

algorithms of dividing and grouping rectangles. As in R-trees, a 

poorly organized R+-tree results in more page accesses for the 

searching algorithm. Figure 6 shows an R+-tree indexing for the 

same set of rectangles as in the Figure 5. The height of the R+-tree 

in Figure 6 is greater than in Figure 5 because of a poor 

organization of the tree. 

In 1989, a variation of the R+-tree, the Cell tree, was 

introduced by Gunther [Gunt89]. The structure of the Cell tree is 

similar to that of the R+-tree but the manner of enclosing data 

objects and grouping entries into nodes is different. Instead of 

using the minimum rectangles in the R+-tree, the Cell tree uses 

convex to enclose data objects and to divide and cover data space. 
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The building of ··an optimally organized A-tree or A+-tree 

requires a combinational algorith~. To make ·a well-organized A­

tree or A+-tree in a tractable method, some algorithms to build the 

semi-optimal A-tree or A+-tree · were introduced 

[Gutt84][Aous85][Sell87]. All of these algorithms require a large 
'' ' ' 

amount of running time and a ·large number of_ page accesses. 

The pe.rformances · of ·search algorithms. for both A-trees and A+-
,- ' 

trees were analyzed and compared in 1987 [Falo87a][Falo87b). 

Aoussopoulos et .cil proposed A+-tree to be the index in. Pictorial' 
' 

Structured Query Language (PSQL) to support a. direct spatial search 
' ' 

' ' 

[Aous88). In· 1989, Goodman et al discussed the work to invent new 

languages and to extend existing languages in ·semantics for 

knowledge-based computer visioQ managemen~ systems [Good89]. In 
' ' 

their paper, A-tree nodes are used as the type of data records to 
•' 

index the topology fields on the bounding boxes on a logarithmic 

time. However, just as Grosky and Mehrotra said, "Except for the · 

design .of. A-trees .. : , database designer~ have not conce!'ltrated -on 

designing efficient access methods for image databases [Gros89]." 
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CHAPTER Ill 

INDEX BY DIMENSIONAL PROJECTION 

Introduction 

The existing index structures supporting direct search spatial 

objects by region, R-trees and R+-trees, have some disadvantages: 

(1) R-trees do not restrict the overlap among rectangles of nodes on 

the same level. When a search region is covered by more than one 

non-leaf node, all the sub-trees rooted at these nodes must be 

accessed. Search efficiency degrades. 

(2) R+-trees allow no overlap among rectangles of nodes on the 

same level. Although search efficiency is higher than searches of R­

trees, the algorithms for splitting and grouping rectangles while 

organizing an R+-tree are much more complicated as well as more 

complex. 

(3) Entries in the node of either an R-tree or an R+-tree are 

unsorted. Search of an entry in such a node requires a linear ,search. 

(4) In dynamic circumstances, the search efficiencies of either an 

R-tree or an R+-tree might degrade seriously if no optimization is 

applied. The optimization for an R-tree or for an R+-tree requires 

combinational operations and is an NP problem. 

The proposed index structure for spatial objects, Index by 
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Dimensional Projection (IDP), has a performance of page access 

when searching that is better than that of the R-tree and similar to 

that of the R+-tree and even better in the cases of small page sizes. 

Its performance in terms of time for searching an entry within a 

page is much better than those of the R-tree and the R+-tree. 

Terminology 

A Boolean function, COVER(arg1 ,arg2) is true if both arg1 and 

arg2 are n-d rectangles and arg2 is included in arg1, or, arg1 is an n-d 

rectangle and arg2 is a segment (or a point, a zero-size segment) on 

the ith axis and arg2 is included in the projection of arg1 onto the ith 

axis, for 0 < i s; n, otherwise COVER(arg1, arg2) is false. 

A Boolean function INTERSECT(arg1 ,arg2) is true if both arg1 and 

arg2 are n-d rectangles and there is at least one point within both 

arg1 and arg2, or,. arg1 is an n-d rectangle and arg2 is a segment on 

the ith axis, and there is at least one point in both arg2 and also rn 

the projection of arg1 onto the ith axis, for 0 < i s; n, otherwise, 

INTERSECT(arg1 ,. arg2) is false. 

Points, p1 and p2, on the ith axis are Equally Covered Points 

(ECP) if for every rectangle R in the data space, either COVER(R, p1) 

and COVER(R, p2) are both true or are both false. 

A segment, S, on the ith axis is a Maximum Constantly Covered 

Segment (MCCS), if any pair of points P1 and P2 on S are ECP, and, 

there exists no such a segment S1 adjacent to S that every pair of 

points pa, on S, and p4, on S1, are ECP. An MCCS is the largest 
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segment which covers consecutive ECP. MCCSs on an axis are 

disjoint and consecutive. In Figure 7(a), the four 2-d objects: A, B, 

C and D, is projected to the 1st axis. This projection results in 8 

MCCSs, from Mo to M7 

If the rectangles in an n-d data space, [lb1, ub1, lb2, ub2, ... , Ibn, 

ubn), are projected onto the axis of the first dimension, then the axis 

is divided into MCCSs. If the number of the MCCSs is k and each of 

these MCCSs is represented by a segment [Mii, Mu1), 1 ~ i ~ k, then the 

data space can be divided into k sub-spaces. Each of these sub­

spaces is occupied by the rectangle [Mii, Mui, lb2, ub2, ... , Ibn, ubn), for 

1 ~ i ~ k, correspondingly. For example, there are 8 sub-spaces, [Mik, 

Muk, lb2,ub2), for 0 ~ k ~ 7, in Figure 7(a). These sub-spaces are said 

to be 1-order sub-spaces denoted by sub 1 -spaces, because they are 

generated from dividing an original data space by the MCCSs on the 

1st axis. A subi-space can be di~ided into subi+1-space by the MCCSs 

which are generated from the projection of the subLspace with all 

rectangles intersecting it onto the (j+ 1 )st axis, 1 ~j<n. For example, 

one of the sub1-space in Figure 7(a), M4=[MI4, Mu4, lb2,ub2), is further 

projected onto the 2nd axis. Then, 7 sub2-spaces are generated as 

shown in Figure 7(b), each' of which is [MI4,Mu4, Ml4k, Mu4k), for 

O~k~6. on the assumption that the MCCS M4k is [M14k, Mu4k). The 

numbering method for axes in this thesis is based on the ordering of 

projections, thus,each MCCS on the ith axis corresponds to a sub1-

space. The whole data space is the sub0-space. After n steps of 

divisions, all the resulting sub"-spaces are called Maximum 
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Constantly Covered Rectangles (MCCR). The 7 sub2-spaces, 

[MI4,Mu4, Ml4k, Mu4k), for Q:s;;k:s;;6 (see Figure 7(b)), are MCCRs because 

n=2. 

Structure 

An IDP consists of n-1 stages (from the 1st stage through the 

(n-1 )st stage) of Intermediate Projection trees (IP-trees) and one 

stage (the nth stage) of Terminal Projection trees (TP-trees). 

An IP-tree on the ith stage. indexes the MCCSs generated from 

the projection of the rectangles intersecting a sub'-1-space onto the 

ith axis, for 1 ::::;; i < n. Because an MCCS on the ith axis is 

corresponding to a subi-space, the IP-tree on the ith stage is the 

index for these subi-spaces. The IP-tree in Figure 8(a) corresponds 

to the index for the MCCSs resulting from the projection of data 

space (the sub0-space) onto the first axis as shown in Figure 7(a). 

Each of these subi-spaces is projected further onto the axis of 

the (i+ 1 )st dimension, then each of these projections results in a 

new set of subi+1-spaces. Each ·set of the subi+1-spaces from a 

projection of a subi-space are indexed by a corresponding I P-tree on 

the (i+ 1 )st stage. The generated subi+1_spaces are divided by the 

projection onto the next axis and indexed by the IP-trees on the next 

stage, and so on, until the subn·2-spaces are projected onto the 

(n-1 )st axis. Then the subn·1-spaces are projected on the nth axis 

and divided into MCCRs. Each of these projections onto the nth axis 
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corresponds to a TP-tree. A TP-tree indexes all the intersections of 

objects with the MCCRs. In Figure 7(b), the sub1-space 

corresponding to M4, [MI4, Mu4,lb2, ub2) in Figure 7(a) is projected on 

the 2nd axis (the nth axis in the 2-d space). This projection results 

in seven MCCRs. The intersections of the objects with these MCCRs 

are indexed by the TP-tree. in Figure 8(b). Because the TP-tree in 

Figure 8(b) is the index for the further projection of the sub 1-space 

corresponding to M4, the TP-tree is pointed to by the entry of M4 in 

the leaf node of the IP-tree in Figure 8(a). The relationship of the 

IP-trees and the TP-trees are shown in Figure 8(c). 

I P-tree 

An IP-tree is an instance of a B+-tree [Come79][Knut73]. An IP­

tree on the ith stage corresponds to the projection of a subi-1-space 

onto the ith axis and indexes the MCCSs result from this projection. 

An IP-tree has the following properties. 

(1) An entry of a node N is corresponding to a segment on the ith 

axis. The form of an entry is 

( P, G) 

where P is a pointer to a sub-IP-tree if N is a non-leaf node, 

otherwise, P is pointing to an IP-tree on the (i+ 1 )st stage if i < n-1 

or to a TP-tree if i = n-1. The value of G is the value of the starting 

point of the segment corresponding to this entry. Namely, in a leaf 

node, G corresponds to a MCCS; in a non-leaf node G corresponds to 

the smallest segment covering all segments in the node pointed to 
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Figure 8. The IP-tree and the TP-tree 

(a) The IP-tree corresponding to Figure 7 (a). 
(b) The TP-tree corresponding to Figure 7 (b). 
(c) The relationship of the I P-tree and the 

TP-tree. 
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by P. For example, the values of the entries of the IP-tree in Figure 

8(a) are shown in Figure 9(a), if Mi is represented by [MI1, Mu1), for 0 

:::;; i :::;;7. 

(2) A node of an IP-tree has at most M entries and is stored in one 

disk page. 

(3) A node of an IP-tree has at least m entries unless it is a root, 

where m = (M+ 1 )/2. If it is a root, it has at least 2 entries unless it 

is a leaf. 

(4) All leaf nodes of an IP-tree appear on the same level. 

(5) An entry (P, G) exists in a leaf node of an IP-tree at the ith stage 

if and only if there is an MCCS which starts at G on the ith axis and 

is generated by the projection corresponding to the IP-tree. All 

entries in leaf nodes are sorted in ascending order on the values of 

Gs. 

(6) A leaf node of an IP-tree has two pointers, LEFT and RIGHT. They 

point to the left and the right neighbor leaf nodes respectively. Leaf 

nodes of an IP-tree form a doubly linked Sequential List. 

TP-tree 

A TP-tree is an instance of a B+-tree [Come79][Knut73]. A TP­

tree is an instance of the B+-tree. A TP-tree corresponds to the 

projection of a subn-1-space onto the nth axis and indexes the 

intersection of objects with MCCRs generated from the projection. 

A TP-tree has the following properties. 
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(1) An entry in a leaf node of a TP-tree represents an MCCR and an 

object covering the MCCR. The entry is in the form of 

(OlD, G) 
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where OlD is the identifier of the data tuple of an object covering 

the MCCR, and the value of G is equal to the lower boundary in the 

nth dimension of the MCCR (i.e. the starting point of an MCCS on the 

nth axis). An entry (OID,G) exists in a leaf node of a TP-tree if and 

only if there is an object with the identifier OlD covering an MCCR 

which is generated by the projection corresponding to the TP-tree 

and has the lower boundary equal to G in the ith dimension. An 

empty MCCR has an entry with a dummy OlD. For example, the 

values of the entries of the TP-tree in Figure 8(b) are shown in 

Figure 9(b), if M4k is represented by [M14k, MU4k), for 0 :::;; k :::;; 6. 

(2) An entry in a non-leaf node of a TP-tree corresponds to a 

segment on the nth axis and is in the form of 

( P, G) 

in which the value of G is the smallest value of the Gs in the sub­

TP-tree pointed to by P (see Figure 9(b)). 

(3) A node of a TP-tree has at most M entries and is stored in one 

disk page. 

(4) A node of a TP-tree has at least m entries unless it is a root, 

where m = (M+ 1 )/2. If it is a root, it has at least two entries unless 

it is a leaf. 

(5) A leaf node of a TP-tree has two pointers, LEFT and RIGHT. They 



point to the left and the right neighbor leaf nodes, respectively. 

Leaf nodes of a TP-tree form a doubly linked sequential list. 

(6) All leaf nodes of a TP-tree are on the same level. 

(7) All entries in a leaf node are sorted in a non-descendent order 

on the values of G. 
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The entries with the same value of Gs in leaf nodes are stored in 

consecutive positions in the sequential list and form a u n ito rm 

list corresponding to an MCCR. For example, the entries, C and D, 

corresponding to M42 in Figure 8(b) is a uniform list (also see Figure 

9(b)). 

Al~orithms 

Using methods reminiscent to those used for B+-trees, a 

topdown search in an IP-tree and a TP-tre,e is guided by the sorted 

values of Gs. A horizontal search is along the sequential list 

through leaves. After an insertion or a deletion, either a split(s) or 

a merge(s) is(are) applied to some nodes to keep the number of 

entries within the upper and lower limits and to keep the height of 

the tree balanced. 

Search 

The searching algorithm collects all objects which overlap a 

search region. The algorithm SEARCH in Figure 10 does not change 

anything in an IDP. As the necessary parameters, ROOT is the address 

of the root node of an IDP; RECT is the given search region; STAGE 



Algorithm SEARCH {ROOT, S_Region, STAGE, n) 

Collect all the rectangles overlap the search region from 

an IP-tree or a TP-tree. 

Input: ROOT, the root of an IP-tree or a TP-tree. 

S_Region, the search regio'n. STAGE, the stage number 

(dimension number) of. the IP-tree or the TP-tree. n, the 

number of dimensions of the space. 

Output: Return RESULT, a set of all the rectangles 

intersecting the search region. 

S1. RESULT <- empty set 

S2. Find the rightmost entry, E, among all entries of leaf 

nodes with value of Gs smaller than RECT.ubsTAGE. 

S3. Scan the sequential list leftward from E. For every entry 

E i, let Si be the segment of Ei and do S4 if 

INTERSECT(S_Region, Si) is true. 

S4. If STAGE= n then add Ei.OID into RESULT, 

else add SEARCH (Ei.P, RECT, STAGE+1, n) into RESULT. 

S5. Return (RESULT) 

Figure 10. Algorithm SEARCH 
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is used to discriminate which stage of the IT-tree or the TP-tree 

being searched, and the value of STAGE is set to be 1 before the 

whole search; n is the number of dimensions of the space. All these 

parameters are considered unchanged during search. When SEARCH 

returns, a set RESULT contains the identifiers of objects each of 

which corresponds to an object if and only if the object intersects 

the search region. 

Calling the algorithm SEARCH with the value STAGE=1 leads to 

searching from the root of the IP-tree on the first stage. Since the 

entries in a node of an IP-tree or a TP-tree are sorted by the values 

of Gs, then an MCCS identified by a G can be found by a top-down 

search within an IP-tree or a TP-tree, which is similar to that in a 

B+-tree. All MCCSs intersecting· the search region are stored 

consecutively on the sequential list. Recursively searching each 

tree on the stage STAGE+1 conducts searching at a lower stage. 

When STAGE = n, a TP-tree is reached. Objects intersecting the 

search region are stored consecutively in leaf nodes. 

Insertion 

The algorithm INSERT in Figure 11 inserts an object OBJ into an 

IDP rooted at ROOT. The parameters STAGE and n have the same 

meanings as in algorithm SEARCH. OBJ, STAGE and n are unchanged 

during insertion. ROOT might be changed if a split of node happens 

to it. In this case, the address of a new root replaces the previous 



Algorithm INSERT (ROOT, OBJ, STAGE, n) 
Insert an object into an IP-tree or a TP-tree. 
Input: ROOT, the root of an IP-tree or a TP-tree. OBJ, the 

spatial object to be inserted. STAGE, the stage the IP-tree or 
the TP- tree is on. n, the number of dimensions of the space. 

11. If ROOT is a leaf, then go to 13, else, for every entry Ei in 
ROOT, let Si be the segment of Ei and INSERT(ROOT.Ej.P,OBJ, 
STAGE, n) if INTERSECT(OBJ.RECT, S1) is true. 

12. Go to 17. 
13. If STAGE = n, go to 16, else for every Ei in ROOT, let Mi be 

the MCCS of Ei and do 14 if INTERSECT(OBJ.RECT,Mi) is true. 
14. If COVER(OBJ.RECT, Mi), then INSERT (Ei.P, OBJ, STAGE+1, 

n), else replace the MCCS of Ei by a fully covered MCCS, M', 
and one or two disjointed MCCSs, duplicate the descendant 
tree(s) of Mi to attach to every replacing MCCS. Let Ei' be 
the entry of M', INSERT(E1'.P,OBJ,STAGE+1 ,n). 

15. Go to 17. 
16. For every uniform list Ui with an entry in ROOT, let Mi be 

the MCCR of Ui, if COVER(OBJ.RECT,M1), then add an entry of 
OBJ into Ui providing OBJ is not already in Ui, else if 
INTERSECT(OBJ.RECT, Mi), replace Ui by a fully covered 
uniform list and one or two disjointed uniform lists. Put 
the same collection of objects as that of Ui into each of 
the replacing uniform lists. Add an entry of OBJ into the 
fully covered uniform list. 

17. If the number of entries in a node is greater than M after 
insertion, split the node, adjust value of Gs and propagate 

splits upward if necessary. 

Figure 11. Algorithm INSERT 
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value of ROOT. 

Calling algorithm INSERT with the value STAGE=1 inserts an 

object, OBJ, into the IDP from the root of the IP-tree on the first 

stage. The object is in the form of (OlD, RECT), where OlD is the 

identifier of the data tuple of the object and RECT is the bounding 

rectangle of the object. The object is inserted into every lower tree 

or the subtree corresponding a segment S, if INTERSECT(RECT, S) is 

true. An MCCS, M', in an IP-tree, may not be fully but partially 

covered by OBJ, that is, INTERSECT(RECT, M') is true but 

COVER(RECT, M') is false. A partially covered MCCS is replaced by a 

fully covered MCCS and one or two disjointed MCCSs, which tightly 

cover the original MCCS. The pointer in the entry of each new MCCS 

points to a copy of the descendent tree(s) of the original MCCS. 

Next, the object is inserted into the descendent tree(s) rooted by the 

fully covered MCCS. When STAGE = n, a TP-tree is reached. The 

object is inserted into every uniform list whose MCCR is covered 

fully by OBJ. Similar to the cases of IP-trees, a uniform list 

covering the upper or the lower boundary of OBJ may not be fully, but 

partially, covered by OBJ. In this case, the uniform list is replaced 

by a fully covered uniform list and one or two disjointed uniform 

lists. Each of the replacing uniform lists has the same collection of 

objects as the original uniform list. OBJ is put into the fully 

covered uniform lists. 
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Deletion 

The algorithm DELETE in Figure 12 deletes an object OBJ from an 

IDP rooted at ROOT. The parameters STAGE and n have the same 

meanings as in algorithm SEARCH. OBJ, STAGE and n are unchanged 

during deletion. ROOT might be changed if a mergence of nodes 

happens to the only two child nodes of ROOT. In this case, the 

address of a new root which contains the entries in the two children 

of ROOT, replaces the previous value of ROOT. 

Algorithm DELETE proceeds in a manner similar to INSERT but 

has the opposite function. It deletes an object by removing all 

entries with OlD of the object from the uniform list whose MCCR is 

covered by the object. After the removal of OBJ, two original MCCSs 

in an IP-tree (or two original uniform lists in a TP-tree), which are 

located adjacently and separated by the lower or the upper boundary 

of the deleted object may have the same collection of objects. In 

this case, the algorithm removes one of the two MCCSs (or uniform 

lists) and enlarges the remaining MCCS (or uniform list) to cover the 

previous two MCCSs (or uniform lists) tightly. 

The program for inplementation of Algorithm SEARCH, Algorithm 

INSERT and Algorithm DELETE is ,listed in APPENDIX. 



Algorithm DELETE (ROOT, OBJ, STAGE, n) 
Delete an object from an IP-tree or a TP-tree. 
Input: ROOT, the root of an IP-tree or a TP-tree. OBJ, the 

object to be deleted. STAGE, the stage the IP-tree or the TP­
tree is on. n, the number of dimensions of the space. 

D1. If ROOT is a leaf, then go to D3, otherwise, for every 
entry, Ei, of the segment Si, in ROOT, if COVER(OBJ.RECT, 
Si), DELETE(ROOT.Ej.P, OBJ, STAGE, n). 

D2 Go to D7., 

D3. If STAGE = n, go to D5, else for every entry Ei in ROOT, 
letMi be the MCCS of Ei, if COVER(OBJ.RECT, Mi), DELETE(E,.P, 

OBJ, STAGE+1, n). 
D4. Compare the two MCCSs separated by OBJ.IbsTAGE and 

compare the two separated by OBJ.ubsr AGE. If they 
correspond to the same collection of objects, remove the 
MCCSs which start at the separating points and remove all 
their descendant trees. Go to D7. 

D5. For every uniform list Ui with an entry in ROOT, let M,' be 
the MCCR of Ui and if COVER(OBJ.RECT, Mn, remove OBJ 
from Ui. 

D6. Compare the two uniform lists separated by OBJ.Ibn and 
compare the two separated by OBJ.ubn. If they have the 
same collection of objects, remove the uniform lists 
which start at the separating point. 

D7. If the number of entries in a node is fewer than m after 
removing, merge it with its neighbor node, adjust value of 
Gs and propagate mergences upward if necessary. 

Figure 12. Algorithm DELETE 
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CHAPTER IV 

TIME COMPLEXITIES OF IDP 

The time complexity of the IDP algorithms is analyzed in two 

aspects: the time required for page access and the time required for 

searching within a page. 

In the analysis of the performance related to page access, the 

page access required for an search operation on IDP is discussed. In 

the analysis of the performance related to time for searching within 

a page, the number of comparisons for searching an entry within a 

page is discussed. 

Page Access of Search in an IDP 

Search by a Point Region 

The number of pages accessed is the number of nodes accessed 

in the IP-trees and TP-trees because every node of an IP-tree or a 

TP-tree is stored on one disk page. The page access in a search is 

the function of not only the number and the distribution of objects in 

a data space but also the size and the position of the search region. 

In this paper, the analysis of page access proceeds for the cases of 

point searches only. A point search is a search on a point region. A 

point region overlaps one MCCS on each stage because MCCSs are 
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disjoint. 

All objects containing the search point are stored in one 

uniform list in the sequential list of a TP-tree. The pages accessed 

for a point search are the sum of the heights of trees on every stage 

in the search path, plus the pages accessed for scanning a uniform 

list. 

Page Access of Search by a Point Region in an IDP 

For an IP-tree, the number of total entries of leaf nodes is the 

number of total MCCSs. 

Whi,le adding an object into the data space, the bounding 

rectangle of the object is projected to be segments on each axis. 

The starting point or the end point of the segment of the projection 

is either within an existing MCCS and it splits the MCCS into two, or 

it falls at a boundary of an existing MCCS so it does not create a new 

MCCS. Thus, inserting an object (projecting an object onto an axis) 

may increase the number of MCCSs by 0, 1 or 2. 

By the definition of MCCS, a projection of an empty space 

results in 1 MCCS. After loading N objects, u, the number of MCCSs 

on an axis, is at most 

u = 2 N+1 (E1) 

2N+ 1 is the upper boundary of the number of MCCSs. 

To calculate the height of an IP-tree or a TP-tree, f is denoted 

to be the fan-out of a non-leaf node in an IP-tree or a TP-tree, and C 

is denoted to be the capacity of a leaf node in an IP-tree or a TP-
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tree. Namely, a non-leaf node of an IP-tree or a TP-tree has f 

entries, a leaf node of an IP-tree or a TP-tree has C entries. In an 

IP-tree, the number of total entries in leaf nodes is the number of 

MCCSs on the corresponding axis. If u is the number of MCCSs in the 

leaf nodes of an IP-tree, Hi, the height of the IP-tree is 

Hi = log f ( u/C)i-1 (E2) 

In a TP-tree, the number of total entries in leaf nodes is the 

sum of all the entries of all uniform lists. If N' be the number of all 

entries in all leaves of a TP-tree, Ht, the height of the TP-tree is, 

Ht = log t ( N'/C) + 1 (E3) 

A uniform list is the collection of the objects covering a 

corresponding MCCR. When searching, a· uniform list should be 

scanned sequentially from one· end to the other. The page access for 

scanning a uniform list is the span of the list in pages. If L is the 

length of the uniform list accessed, the number of extra pages 

accessed in scanning the uniform list is (L-1 )/C , where the uniform 

list is assumed to have equal probability to be stored at any position 

in the leaf nodes. 

The page access for a point search on an IDP is 

n -1 

Pa = ( LHi'j) + Ht+(L-1)/C · 
j=1 

(E4) 

where Hi'j is the height of the IP-tree on the jth stage accessed in 

the search path. 
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A Space with Uniformly Distributed Data 

To compare the IDP with the existing structures, the 

performance of searching the IDP is analyzed in an n-d space which 

is defined below as a space with uniformly distributed objects. 

The data space, R, is represented by an n-d rectangle R=[sl 1 , su1 , 

sl2, su2, ... , sin, sun), where sl1 and SUi are the lower and the upper 

boundaries of the rectangle, respectively, in the ith ·dimension, for 1 

s; i s; n. The data space intersects a certain number, N, of object 

rectangles with same size w = w1·W2· ... ·Wn, where w1 is the width 

of the rectangle along the ith dimension. The distribution of object 

rectangles is described below. 

A super rectangle Rs = [sl1-w1. su1, sl2-w2, su2, ... , sln-Wn, sun), 

which contains the data space R, is latticed with Ni+ 1 equal 

intervals each of which is li = (su1-sli+Wi) I (Ni+ 1) along the ith 

dimension, for 1 s; is; n. Then (N1+2)·(N2+2)· ... ·(Nn+2) scaling points, 

the cross points of lattices, are generated. Each of these points 

has the coordinates of (sl1-w1 +h l1, si2~W2+j2l2, ... , sln-Wn+jnln), 

where 0 s; ji s; N1+ 1 and l1 = (sui-Sh+wl) I (N1+ 1 ), for 1 s; i s; n. Then 

(N1+2)·(N2+2)· ... ·(Nn+2) rectangles of size w are put on the scaling 

points by overlapping their starting points with these scaling 

points, one rectangle for each scaling point, where the starting 

point of a rectangle is defined to be the point with the coordinates 

of the lower boundaries of the rectangle (Figure 13). 

The data sp~ce, R, itself now intersects with the certain 
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number, N = N1·N2· ... ·Nn, of object rectangles. Those rectangles 

which does not intersect with R are considered unrelated to the data 

space. Those rectangles not included fully in R are cut by the 

boundaries of R and are considered to be the rectangles of their 

intersections with R. Every point within R is covered by same 

number of object rectangles. Figure 14 is an example of a 2-d data 

space with sh =SI2=0 and su1 =SU2=1, where object rectangles are 

uniformly distributed. 

Let Si be the notation of a slice of the space corresponding to 

the ith dimension, for 1 ~ i ~ n. An 8 1 slice is a non-empty n-d 

rectangle within Rs. A slice contains all the rectangles with their 

starting points on a line. along the ith dimension and has the space of 

a rectangle which bounds all those rectangles it contains. For the 

ith dimension, there may be more than one 8 1 slices. The space 

occupied by an Si slice can be represented by the form [1 1, 1, u1, 1 , 11, 2 , 

Ui 2 .... , li,n, Ui,n), if k = i, then li k = sli and Ui k = sui, otherwise , ' ,, 

(suk-Sik+Wk)/(Nk+ 1 ), for 1 ~ k ~ n (see Figure 14). The rectangles 

considered as in an Si are those totally included in this Si . The 

density Di at a point in an Si is defined as the number of rectangles 

which are in this Si slice and cover this point. Namely, each point in 

an Si slice is covered by same number, Di, of rectangles belonging to 

this Si slice, for 1 ~ i ~ n. A point in the data space, R, is covered by 

(D1·D2· ... ·Di-1'Di+1' ... ·Dn) Si slices. Consequently, a point in the data 
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space R is covered by D = D1·D2· ... ·Dn rectangles. D is the density of 

the data space. For example, a point p in a 2-d data space is covered 

by D2 slices of S1 and each slice of S1 has D1 rectangles covering p. 

So a point p in the data space is covered by D = D1·D2 rectangles. 

This space with uniformly distributed objects is equivalent to 

the space of uniform distribution which was introduced by Faloutsos 

et al [Falo87a][Falo87b]. In a special case of su1-sh =SU2-sl2= ... = 

SUn-Sin, W1 =W2= ... =Wn and N1 =N2= ... =Nn, the number of objects in the 

data space is N=Nin, and the density is D=Din, for 1 ~ i ~ n. 

Page Access for IDP in a Uniformly Distributed Data Space 

In the space with uniformly distributed data, as defined above, 

the scaling points are generated by latticing the space 

perpendicularly to the coordinate system. If N=N1n and D=D1n, the 

number of MCCSs from projecting N rectangles onto the 1st axis or 

from projecting a subi-space onto the (i+ 1 )th axis is equal to that 

from projecting an Si slice with· the density of D1 onto the ith axis. 

According to the definition of the space with uniformly distributed 

objects, this projection places Ni+2 segments on the ith axis by 

staring them at the positions from sli-Wi to su1 with equal intervals. 

There are just N1 segments intersect the segment [sl~,su1). There are 

D1 segments containing Sli are cut by sl" and there are D1 segments 

containing SUi and are cut by sui , because only the parts of segments 

within the space are considered. Then, the number of MCCSs in [sl1, 

SUi), denoted by Ui, varies with the overlap condition of starting and 
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end points of these segments. However, there are only two cases. 

Case 1: Di is not an integer so there is no overlap of the starting 

or end points of segments except the Di segments which originally 

started outside of the space are cut to have the same start point at 

Sli and the Di segments which originally ended outside the space are 

cut to have the same end point at SUi. The number of MCCSs in case 1 

is the upper bound of number of MCCS (see Equation E1) minus 2Di , 

Ui = 2Ni+ 1-2Di = 2(Ni-Di)+ 1 (ES) 

Case 2: Di is a non-negative integer so every segment starts at 

the position where another segment ends, except the leftmost D1 

segments and the rightmost Di segments. Among the total 2Ni 

starting and end points, Di starting points and Di end points are at 

the upper and the lower boundaries of the space, respectively. The 

remaining Ni-Di starting points and NI-Di end points overlap at Ni-DI 

different positions between the boundaries and generate Ni-D1+ 1 

MCCSs, i.e., 

(E6) 

Substituting Equations ES and E6 into Equation E2, the height of 

an IP-tree on the ith stage is, 

Hii = logd(2(Ni-DI)+1)/C) +1 (E7) 

in case 1, and, 

Hii = logd(Ni-Di+1)/C) +1 (E8) 

in case 2. Substituting Equation ES and E6 into Equations E3, the 

height of an TP-tree is, 

Ht =log f((2D(Nn-Dn)+1) I C)+ 1 , (E9) 



in case 1, and, 

Ht =log t(D(Nn-Dn+1) I C)+ 1 (E 1 0) 

in case 2. Because the length of a uniform list is the density, D. 

Equation E4, the total page access for a point search on an IDP is 

n-1 

Pa =( I,H i'j) + Ht + (D-1 )/C ( E 11 ) 
j=1 

where Hi'j is the height of the IP-tree on the jth stage accessed in 

the search path. 
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With the same parameters, the Hii and Ht calculated by E7 and E9 

are greater than by E8 and E10, respectively. So the page access 

calculated by substituting Equation E7 and Equation E9 into Equation 

E11 is the upper bound of page access for searching the IDP in a data 

space with uniformly distributed data objects. 

Page Access of Existing Structures 

Faloutsos et al [Falo87a][Falo87b] analyzed the page access of 

A-trees and R+-trees. In a space in which N rectangles are 

uniformly distributed with an average density of D, where N = N,n , 

and D = o,n . the page accesses in searching on an R-tree and an R+­

tree are 

pr = log fr ( N/Cr) + (1 + 1 /k)n + (1 + 1/k/F)n - 1 

pr+ = 1 + log fr ( N/(Cr11n - D1fn)n) 

where 

(E12) 

(E 13) 

pr is the page access for a point search on a optimally organized A­

tree, 



pr+ is the page access for a point search on a optimally organized 

R+-tree, 

fr is the fan-out of a non-leaf node in an R-tree or an R+-tree, 

Cr is the capacity of a leaf node in an R-tree or an R+-tree, 

k = Cr11n I (D11n-1), 

F = fr11n . 

pr and pr+ are the lower boundaries of page accesses in 

searching because they are for the optimal R-tree and R+-tree. 

Comparison of Page Access with Existing structures 
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In an n-d space an entry in a non-leaf node of an R- tree or of an 

R+-tree contains one pointer and 2n integers to represent an n-d 

rectangle, an entry in a leaf node of an R-tree or an R+-tree contains 

2n integers to represent an n-d rectangle and one integer for the 

identifier of an object. An entry in a node of an IP-tree or a TP-tree 

contains one pointer and one integer for a G, and an entry in a leaf 

node of an IP-tree or a TP-tree contains two integers for a G and an 

identifier. A leaf node of an IP-tree or a TP-tree needs two extra 

pointers for the sequential list. 

With the assumption that the size of a pointer, an integer or an 

identifier is 4 bytes, an entry of an R-tree or an R+-tree is of size 

4(2n+ 1) bytes, an entry in an IP-tree or a TP-tree is of size 8 bytes. 

By the assumption that every page needs 4 bytes for the page head, 

the typical fan-outs and capacities of a 2-d index in the cases of 

typical page size of 512 bytes and 1024 bytes are in Table 1. 
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The numbers of pages accessed in a point search in the IDP, the 

R-tree and the R+-tree vary with several parameters. In 

comparisons of page accesses between the I DP and existing 

structures, Equation E11 in which E7 and E9 are substituted is used 

for calculating the page access in searching om the IDP, and E12 and 

E13 are used for the R-tree and the R+-tree, respectively. In the 

calculation, one parameter is chosen to be variable and all others 

fixed. The space is assumed to have N=Nin and D=D1n, 1~i~n. 

From Figure 15 to Figure 20 , the two cases of page accesses of 

searching in IDP by a point region are compared with the lower 

boundaries of R-trees and R+-trees in point searches of 2 and 3-

dimensional spaces with uniformly distributed objects. Page size 

are chosen to be 512 and 1 024 bytes. 

In the spaces with low object densities of 1 ~ D ~ 10, The 

performances of searching in IDP are similar to that of R+-tree and 

better than R-tree in the case of 1024 byte page (Figure 15 and 

Figure 16), And even better in the case of 512 byte page (Figure 17 

and Figure 18). 

In the spaces with high object densities of 10 ~ D ~ 80, the 

performance of IDP in searching is better than that of R-tree and 

R+-tree, and even better with the increase of the object density 

(Figure 19 and Figure 20). 



(a) 

(b) 

f r: 

Cr: 

f: 

C: 

TABLE 1 

FAN-OUTS AND CAPACITIES OF A NODE 

2-dimensional index 

Page size = 512 bytes 

f r (512-4)/20 = 25 

Cr (512-4)/20 = 25 

f (512-4)/8 = 63 

c (512-12)/8 = 62 

3-dimensional index: 

Page size = 512 bytes 

f r (512-4)/20 = 18 

Cr (512-4)/20 = 18 

f (512-4)/8 = 63 

c (512-12)/8 = 62 

Fan-out of R-tree and R+-tree. 

Capacity of R-tree and R+-tree. 

Fan-out of I DP. 

Capacity of IDP. 

Page size = 1 024 bytes 

(1 024-4)/20 = 51 

(1 024-4 )/20 = 51 

(1 024-4 )/8 = 127 

(1 024-12)/8 = 126 

Page size = 1 024 bytes 

(1024-4)/20 = 36 

(1 024-4 )/20 = 36 

(1 024-4 )/8 = 127 

(1 024-12)/8 = 126 
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The performance of searching in IDP is not so sensitive to, the 

page size as the R-tree and the R+-tree. Figure 21 shows the page 

access as the function of page sizes in 2-d and 3-d spaces. The page 

size varies from 256 bytes to 2048 bytes. The object density, D, is 

fixed to be 5, and the number of objects, N, is fixed to be 100,000. 

The performance of searching in the IDP is much better than the A­

tree and the R+-tree when the page size is small. 

Time for Searching an Entry within a Page 

In addition to the 'time required for a page access in an 

operation on an index system, the time required by the CPU to 

process a page of data is another important criterion. Although a 

page accessing may be more time consuming, the processing of the 

data in a page may require more CPU time. It is common that CPU 

time is a more popular performance measure, especially in some 

multi-user system. 

In either an IP-tree or a TP-tree, the entries in a node are 

sorted on the values of their Gs. Searching an entry among M entries 

in a node requires log2M comparisons on the average if the binary 

search method is employed. 

The entries in a node of an R-tree or an R+-tree are unsorted. 

When process a page in search on an R-tree, all entries must be 

accessed even in a point search because rectangles of entries in a 

node of an R-tree can overlap each other. In the case of an R+-tree, 
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a linear search is necessary also. For a search by a non-point region, 

every entry in a node of an R+-tree should be checked to determine 

whether the entry overlaps the search region. For a point search, 

only one entry in a node of an R+-tree can overlap the point search 

region. The searching among the entries in a node of an R+-tree 

stops when an entry containing the point search region is found. But 

the point search region might be in a position which is not covered 

by any entry in a node. In this case, every entry should be checked. 

When a linear search is applied and every entry in a node has the 

same possibility to contain the point search region,' if the 

possibility of the point search region not being covered by any entry 

is zero, the average number of entries to be checked in a page is 

O.SM. otherwise, the average number of entries to be checked is 

greater than O.SM. In the worst case, the number of entries to be 

checked is M, just the same as that of the R-tree. 

To determine whether an entry of R-trees or R+-trees overlap 

with the search region requires the comparison of upper and lower 

boundaries in every dimension of the n-d space. The CPU time 

required is 2nM for processing a page when search in a R-tree or 

non-zero (or non-unit) region search in an R+-tree, and is equal to or 

greater than nM in average when a point search in an R+-tree, where 

M is the number of entries in the node being searched, n is the 

number. of dimensions of the space. 

If a node of an IDP, an R-tree or an R+-tree is stored on a disk 
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page of size 512 bytes or 1024 bytes, the number of the comparisons 

for processing a page in a point search are in Table 2, in which the 

numbers of the entries in the nodes of an IDP, an R-tree and an R+­

tree are the fan-outs of these nodes are from Table 1. In the worst 

case, the IDP and the R-tree retain their numbers of comparisons 

shown in Table 2, but the numbers of comparisons of the R+-tree 

become as large as those of the R-tree. 

TABLE 2 

NUMBER OF COMPARISONS IN SEARCHING 
AN ENTRY WITHIN A PAGE 

IDP R-tee 

2-dimensional index 

page size = 512 bytes :s;log263 < 6 2·2·25 = 100 

2-dimensional index 

page size = 1 024 bytes :s;log2127 < 7 2·2·51 = 204 

3-dimensional index 

page size = 51 2 bytes :s;log263 < 6 2·3·18 = 108 

3-dimensional index 

page size = 1 024 bytes :s;log2127 < 7 2·3·36 = 216 

R +-tree 

~2·25 =50 

~2·51 = 102 

~3·18 =54 

~3·36 = 108 



CHAPTERV 

OPTIMIZATION OF ORGANIZATION 

In the above comparison of page accesses, the IDP is assumed to 

be fully loaded and the R-tree and the R+-tree are supposed to be 

fully loaded as well as organized optimally. With the assumption of 

full load, the utilization of a memory page (the slots for entries) is 

100%. Full utilization of memory decreases the heights of trees. 

Besides the full utilization of memory, an optimally organized A­

tree must have at least the minimum coverage and overlap of nodes, 

and an optimally organized R+-tree must have at least the minimum 

coverage of nodes and the minimum splits of objects 

[Rous85][Sell87]. 

Partial Load of Pages 

Practically, in dynamic circumstances, memory utilization 

might be lower than 100% after insertion or deletion operations 

because of an entry removal or a node split. 

A node in an IP-tree, a TP-tree or an R-tree always has a 

memory utilization between m/M and 1. As instances of 8-trees or 

B+-trees, these trees have the average memory utilization of at 

least 70% [Knut73]. 

An R+-tree does not have the lower and the upper limit of 
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entries in a node. The utilization is lower than 70%. Sellis, et al 

claimed that the memory utilization of the R+-tree is about 60% 

which is like that of a k-d-B-tree 
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[Falo87a][Falo87b][Robi81][Sell87]. Because partial load of pages 

increases the height of lOPs, A-trees and R+-trees, more pages 

might be accessed in searching algorithms. In the. cases of partial 

load, the performance of page access in searching in an IDP is not so 

sensitive as an R-tree or an R+-tree. Figure 22 shows the page 

accesses as functions of memory utilization. With the memory 

utilization less than 100%, the IDP has smaller degradation of 

search performance with memory utilization decrease than those of 

the R-tree or the R+-tree. 

The algorithm COMPRESS in Figure 23 optimizes an IP-tree or a 

TP-tree to be fully loaded. 

Organizational Optimization 

Because all entries in a node of an IP-tree or a TP-tree are 

ordered, optimizing IP-trees and TP-trees to fully loaded requires 

only compressions of the nodes. A compressed IDP have the 

performance of searching as discussed in Chapter IV. 

To compress an IP-tree or a TP-tree need no extra sorting. All 

the processing is along the scanning of entries on the same level. 

This is a linear complexity in every level. A parent level has 1/C or 

1 /f entries of its child level. So the total number of entry moving is 
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a the sum of a geometric series with a ratio less than 1 and is linear 

complexity. Obviously every page is accessed only once during 

compress. The page access for compression is linear too. An 

insertion or a deletion of an object only chang~s some of the IP­

trees and the TP-trees in an lOP. The optimization required after an 

insertion or a deletion may be only a local process(es) and can be 

performed during that insertion or deletion. 

In order to maintain the performances of R-trees and R+-trees 

in searching, some methods to optimize R-trees and R+-trees are 

necessary in the insertion and/or deletion algorithms, or applied 

periodically. To optimize R-trees and R+-trees to have the 

performances in searching, which is discussed in Chapter IV, 

requires a combinational algorithm. Because, 

the criteria for optimization of an R-tree include at least, 

(a) minimal total coverage of organized rectangles, 

(b) minimal overlap among rectangles on the same level, 

(c) maximal memory utilization, 

and, the criteria for optimization of an R+-tree include at least 

(a) minimal total coverage of organized rectangles, 

(b) minimal number of rectangle splits, 

(c) maximal memory utilization [Rous85][Sell87]. 

To fulfill all the criteria is obviously an NP problem. Even fulfilling 

one of the criteria (a) and (b) of the R-tree or (a) and (b) of the R+­

tree requires combinational operations. Fulfilling only one of the 

criteria cannot improve an R-tree or an R+-tree to have the 
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Algorithm COMPRESS (ROOT) 

Compress an IP-tree or a TP-tree to make the memory 

utilization as high as possible. 

Input: ROOT, the root of an IP-tree or a TP-tree. 

Output: A fully loaded IP-tree or TP-tree rooted at ROOT. 

C1: Guided by the value of Gs in the nodes of the tree to find 

the leftmost entry in the leftmost node. Let L point to the 

node. 

C2: If L = ROOT, return. 

C3: Free all the storage of intermediate nodes. Scan the 

sequential list from L. Adjust all entries to the left to 

make all nodes on the leaf level fully loaded except the 

rightmost two. These two can have fewer than M and at 

least m entries. Free the storage of empty nodes. Let S be 

the list of nodes on the leaf level. 

C4: While S level has more than one nodes, do CS. 

CS: Make a list of nodes to be the parent level of S level. Fully 

load each of the nodes in the parent level except the 

rightmost two. These two can have fewer than M entries 

but at least m entries. Let S be the list of the nodes on 

the parent level. 

C6: Let ROOT be the address of the only node on S level. 

return. 

Figure 23. Algorithm COMPRESS 
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performances discussed in Chapter IV. 

Instead of an NP solution, Aoussopoulos and Leifker [Aous85] 

introduced a PACK algorithm. to reorganize a naturally grown A-tree. 

The comparison of page access required by the packed A-tree with 

the natural A-tree from Guttman's algorithm [Gutt84] by the 

experimental results over 100 random searches is shown in Table 3. 

Table 3 shows that optimization is very important in the use of 

A-trees. The PACK algorithm is transformed as a routine in 

insertion algorithm but is not in the deletion algorithm of the A+­

tree [Sell87]. So periodical optimization is important for A+-trees 

if deletion happens frequently. 

PACK is a non-NP algorithm but it only results in sub-optimally 

organized A-trees or A+-trees because the pack algorithm only 

pursue the criterion of a near minimal coverage of organized 

rectangles. Even as a near fulfilling of one of the criteria, PACK 

algorithm requires the sort of all rectangles by their lower 

boundaries an upper boundaries for every level of nodes along every 

dimension. Only for the sort of rectangles on the leave level, at 

least n·Niog2N comparisons are needed, where n is the number of the 

dimensions of the space, N is the number of the data objects. Page 

access during a sort is unpredictable because the values being 

compared can be on different pages. The cost of PACK is so high that 

the A-tree and the A+-tree are suitable only in semi-dynamic 

circumstances. 
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TABLE 3 

COMPARISON BETWEEN NATURAL AND PACKED R-TREES 
ON PAGE ACCESS IN A SEARCH 

The number of Page access of R-tree Page access of R-tree 
data objects from Guttman's INSERT from PACK algorithm 

10 2.217 1.424 

50 7.775 2.282 

100 12.955 3.645 

200 17.870 3.873 

300 20.838 5.397 

400 28.953 5.418 

500 36.132 5.466 

600 70.799 5.276 

700 45.924 5.604 

800 55.462 5.730 

900 63.595 6.071 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

Query for spatial data objects by region is required by pictorial 

databases and spatial data retrieve systems. Query for spatial data 

objects by region is different from the queries for traditional types 

of data and can not be supported by traditional indexes. Without 

indexes, a query for spatial data objects is processed very slowly. 

In order to handle spatial data efficiently, as required in 

computer-aided design and geometric data applications, a database 

system needs an index mechanism to retrieve data items quickly 

according to their spatial locations. However, traditional indexing 

methods are not well suited to data objects with non-zero size 

located in multidimensional space. 

Two existing index structures, the A-tree [Gutt84] and the R+­

tree [Sell87], were introduced to meet these needs. Both A-trees 

and R+-trees are extensions of 8-trees which maintain their 

balanced heights as well as logarithmic page access. 

However, either the R-tree or the R+-tree has some 

disadvantages. A new index structure, the lOP, which is proposed in 

this thesis, has the following advantages: 

(1) The performance of page access in searching in an lOP is of 

logarithmic to the number of data objects. In the spaces where data 
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objects are uniformly distributed, the page access in a point search 

in an lOP is better than that in an A-tree and similar to or better 

than that in an A+-tree, and even better when page_, size is small. 

(2) The algorithmic complexity for searching for an entry in a 

node of an lOP is logarithmic to the number of entries in the node. It 

is less than it is in a node of either an A-tree or an A+-tree. 

(3) The algorithm of organizing an optimal lOP has a time 

complexity lower than that of the algorithm of organizing either an 

optimal A-tree or an optimal A+-tree. 

The suggested future work includes: 

(1) Analysis of time complexities for search in the lOP in more 

general cases and for insertion and deletion in the lOP. 

(2) The implementation of lOP to the indexes of practical data 

collections and the experimental analysis of the performance of lOP 

in retrieval of data objects with different distributions in sizes and 

positions. 
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I*=========================================================== 

Program name: IDP _ALGORITHMS 
Language: C 

This program performs the search, insertion and deletion on an 
Index by Dimensional Projection (IDP). 

1. search an region: 
search(region, root, 1) 
region is the search region of the type 'rectangle'. 
root is the soot of the whole IDP and is the type of 

'*page'. 
This function returns a list of identifiers of objects. 
An object is in the list if and only if it overlaps 
the given region. 

2. insert an object into an IDP: 
insert(pointer_of_root, object,1) 
pointer_of_root is the pointer of the root of the 

whople IDP. This pointeris of the type '**page'. 
object is the object to be inserted. The type is 

'object'. 
3. delete an object from an IDP: 

delete(root, object, 1) 
root is the root of the whole IDP. The type of root 

is '*page'. 
object is the object to be deleted and is of the 

type 'object'. 
This function returns the root of the whole IDP after 

the removal of the given object. 
The parameters of the IDP on which the operations are applied 

are set in the '#define' lines at the beginning of the program. 
This program contains three auxiliary functions to output 

the contents of an IDP or the result of an operation: 
seqlst, output a sequential list of a TP-tree. 
tplst, output the sequential lists of descendent trees. 
prtolst, output a list of object from a search. 

===========================================================*I 

#include <rstdio.h> 

#defme dim 2 I* dimension *I 
#define capa 5 I* capasity of a leaf *I 
#defme fanout 5 I* fanout of a non-leaf *I 
#define bound 10000 I* bound of the space *I 

#define IE pb.il.entry 
#define NE pb.nl.entry 
#define TE pb.tl.entry 



struct st_nlentry I* entry of a non-leaf in IP *I { 
int g; I* guide post *I 
struct st_page *p; I* pointer to a child *I 

}; 

struct st_tlentry I* entry of a leaf in TP *I { 
int g; I* guide post *I 
int tplid; I* tuple id *I 

}; 

struct nleaf I* non-leaf node *I { 
struct st_nlentry entry[ fanout]; 

}; 

struct tleaf I* leaf in TP *I { · 
struct st_tlentry entry[capa]; 
struct st_page *left, *right; 

}; 

struct ileaf I* leaf in IP *I { 
struct st_nlentry entry[capa]; 
struct st_page *left, *right; 

}; 

typedef struct st_page I* a page *I { 
char flag; 
int load; 
union { 

struct tleaf tl; 
struct ileaf il; 
struct nleaf nl; 

} pb; 
} page; 

typedef struct st_rectangle I* n-dimensidnal rectangle *I { 
int lb[dim], ub[dim]; I* lower and upper bounds *I 

} rectangle; 

typedef struct st_obj · I* spatial object *I { 
rectangle rect; I* enclosing rectangle *I 
int tplid; . I* tuple id *I 

} object; 

typedef struct objlist I* node for the linked list of objects *I { 
int tplid; I* tuple id of the Qbject *I , 
struct objlist *next; I* the next node *I 
} objlist; 

I* functions in this program *I 

page *splitm(); 
void addentry(); 
void putm(); 
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int rightmost(); 
page *tpinsert(); 
void dupulst(); 
page *rebuild(); 
void rshift(); 
void dupent(); 
void leftentry(); 
void rightentry(); 
void addobj(); 
page *duplicate(); 
void insert(); 
void newroot(); 
objlist *search(); 
void prtolst(); 
void accobject(); 
page *del(); 
page *delete(); 
void deln(); 
void deli(); 
page *delt(); 
void rmvulst(); 
int sameobj(); 
int samelst(); 
void rmventry(); 
void mvleft(); 
void freesub(); 
objlist *collulst(); 
void rearrange(); 

FILE *fp, *ofile; 

/*=====insert inserts an object into a TP-tree or an IP-tree *I 

void insert(root, obj, stage) page **root; /*root *I 
object obj; /*object*/ 
int stage; /* the stage root is at *I 

{ 
page *brother; 

if(*root==O) /*empty tree *I { 
*root=(page*)calloc(l ,sizeof(page) ); 
(*root)->load=2; 
if(stage<dim) /* IP */ { 

} 

(*root)->flag='i'; 
(*root)->IE[O].g=O; 
(*root)-> IE[O]. p=O; 
(*root)->IE[l].g=bound; 
(*root)->IE[ 1] .p=O; 

else /* TP */ { 
(*root)->flag='t'; 
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} 

} 
} 

(*root)-> TE[O].g=O; 
(*root)-> TE[O]. tplid=O; 
(*root)->TE[1].g=bound; 
(*root)->TE[1].tplid=O; 

if(stage<dim) { 
if((brother=splitm(*root,obj,stage,1)) != 0) 

} 

newroot(root,brother); /*split the MCCS covers the upper bound*/ 
if((brother=splitm(*root,obj ,stage,O)) ! = 0) 

newroot(root,brother); /*split the MCCS covers the lower bound*/ 

else 
(*root)=tpinsert(*root,obj); fr insert into a TP tree*/ 

/*===== splitm splits an MCCS. If the MCCS is contains the lower bound 
of the object, subsidiary operations to insert object into all covered 
MCCS are invoked */ ' 

page *splitm(root, obj, stage, upper) 
page *root; /*root *I 
object obj; /* object */ 
int stage, upper;/* upper=1 means the split is by the upper bound */ 

{ 
char f; 
int right, cutpoint, high, left, leftl, rtneib, i, m; 
page *brother, *tree, *newson, *newtree, *leftnode, 

*node1, *rtnode, *head;' , 

if( upper== 1) 
cutpoint=obj.rect.ub[ stage-1 ]; 

else 
cutpoint=obj.rect.lb[stage-1]; 

f=root->flag; · 

if(stage<dim) /* IP */ { 
right=rightmost(root, cutpoint); 
left-tight; leftnode=root; 
if(f=='i') /* leaf*/ { 

rightentry(root,right,&rtnode,&rlneib ); 
if(rtnode->IE[rtneib].g=,;,cutpoint) { /*not partially covered*/ 

brother=(); 
} 

else { 
tree=duplicate(root->IE[right].p,&head); 
if(root->load<capa) { /* has a free room */ 

/* pari tally covered *I 
putm(root,right,cutpoint,tree ); 

/*duplicate lower structures*/ 
brother=O; 
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} 

} 
else { I* no free room *I 

} 

brother=(page *)calloc(1 ,sizeof(page )); 
high=(right>=capa/2)? 1: 0; 
m=( capa+high)/2; 
for(i=O;i<capa-m;i++) I* move half node to 

the new node *I 
brother->IE[i]=root->IE[m+i]; 

brother->flag='i'; 
brother->load=capa-m; 
root->load=m; 
brother->pb.il.right=root->pb.il.right; 
brother->pb.il.left=root; 
if(root->pb.il.right! =0) 

root->pb.il.right->pb.il.left=brother; 
root->pb.il.right=brother; 
if(high==1) { I* cutpoint is in th enew node *I 

putm(brother,right-m,cutpoint,tree); I* add a MCCS *I 
left=right -m; leftnode=brother; 
} 

else { I* cutpoint is in the left part *I 
putm(root,right,cutpoint,tree); I* add a MCCS *I 
} 

if(upper==O) { , I* MCCS is concerned with the lower bound *I 
rightentry(leftnode,left,&leftnode,&left); 

} 

while(leftnode!=O && leftnode->IE[left].g 

} 

< obj.rect.ul:>[stage-1]) { 
I* insert obj into every covered MCCS *I 

if(leftnode!=O) 
if( stage+ 1 <dim) I* into IP *I 

insert(&(leftnode->IE[left].p),obj,stage); 
else I* into TP *I · 

leftnode->IE[left].p 
=tpinsert(leftnode->IE [left]. p,obj); 

rightentry(leftnode,left,&leftnode,&left); 

} I* f=='i' *I 
else { I* f=='n', non-leaf *I 

if((newson~splitm(root->NE[right].p,obj,stage,upp~r)) 
!= 0) { I* lower node splitted *I 

if(root->load<fimout) { 
addentry(root,right,newson); 
brother=O; 

} 
else { 

brother=(page *)calloc(1 ,sizeof(page )); 
high=(right>=fanout/2)? 1: 0; 
m=(fanout+high)l2; 
for(i=O;i<=fanout-m;i++) 

brother->NE[i]=root->NE[m+i]; 
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} 
} 

brother->flag='n'; 
brother->load=fanout-m; 
root->load=m; 
if(high==l) I* add to the right part *I 

addentry(brother,right -m,newson); 
else I* add to the left part *I 

addentry(root,right,newson); 

else I* no split *I 
brother=(); 

} 
return(brother); 

} I* stage <dim *I , 
·else I* stage=dim, insert to a TP ,tree *I 

return( tpinsert(root,obj) ); 
} ' 

I*===== newroot makes 'oldroot' be the father of the original 
'oldroot' and 'brother' *I · 

void newroot( oldroot,brother) 
page **oldroot, *brother; 

{ 

} 

page *nroot; 

nroot=(page *)calloc(l ,sizeof(page )); 
nroot->load=2; 
nroot->flag='n'; 
nroot->NE[O].p=(*oldroot); 
nroot->NE[l].p=brother; 
if((*oldroot)->flag=='n') { 

} 

nroot->NE[O].g=(*oldroot)->NE[O].g; 
nroot->NE[l].g=brother->NE[O].g; 

else { 
nroot->NE[O].g=(*oldroot)->IE[O].g; 
nroot->NE[l].g=brother->IE[O].g; 

} 
*oldroot=nroot; 

I*===== addentry adds~ entry (a son, 'newson') to a node *I 

void addentry(node, pos, newson) 
page *node, *new son; I* node and the entry to be added in *I 
int pos; /* the position at the left of the new entry *I 
{ 
inti; 
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} 

for(i=node->load-1;i>pos;i--) 
node->NE[i+ 1]=node->NE[i]; 

if(newson->flag=='n') 
node->NE[pos+ 1].g=newson->NE[O].g; 

else 
node->NE[pos+ 1].g=newson->IE[O].g; 

node->NE[pos+ 1].p=newson; 
node->load++; 

I*===== putm adds an MCCS into a leaf node *I 

void putm(node, pos, startpoint,-tree) 
page *node, *tree; I* the node, the tree pointed by the new MCCS *I 
int pos, startpoint; I* the position at the left of the new MCCS, 

{ 

} 

the guide post of the MCCS *I 

inti; 

for(i=node->load-1 ;i>pos;i --) 
node->IE[i+ 1]=node->IE[i]; 

node->IE[pos+ 1].g=startpoint; 
node->IE[pos+ 1].p=tree; -
node->load++; 

I*==== rightmost returns the position of the greatest guidepost less than 
'cutpoint' in 'node' *I 

int rightmost(node, cutpoint) 
page *node; 
int cutpoint; 

{ 
int 1, h, mid, g; 
char f; 

f=node->flag; 
1=0; h=node->load-1; 
while(l!=h) { 

mid=(l+h+ 1)12; 
switch (f) { 

case 'n': g=node->NE[mid].g; break; 
case 'i': g=node->IE[mid]~g; break; 
case 't': g=node->TE[mid].g; break:; 

} 
if(g>=cutpoint) 

h=mid-1; 
else 

l=mid; 
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} 
return(!); 

} 

/*===== tpinsert inserts an object, 'obj', into a TP-tree */ 

page *tpinsert(root, obj) 
page *root; 
object obj; 

{ 

} 

page *r, *r1; 
int split, right, rightl; 

if(root==O) { 

} 

r=(page*)calloc( 1 ,sizeof(page) ); 
r->load=2; r->flag='t'; 
r-> TE[O].tplid=r-> TE[l ].tplid=O; 
r-> TE[O].g=O; 
r-> TE[ 1 ].g=bound; 
root=r; 

else 
r=root; 

split=O; 
while(r->flag=='n') { /* find the leaf*/ 

right=rightrnost(r,obj.rect. ub[ dirn-1 ]); 
r=r->NE[right].p; 

} 
right=rightrnost(r,obj.rectub[dirn-1]); /* find the position */ 

r1=r; rightl=right; 
rightentry(r,right,&r 1 ,&right 1 ); 
if(obj.rect.ub[dirn-1]<r1->TE[rightl].g) · 

dupulst(r,right,obj,&split,l); /*duplicate the u-list divided by the upper bound*/ 
if(right>r->load-1) { /* pos is on the right of splitted leaf*/ 

right=right-r->load; 
r=r->pb.tl.right; 

} 
addobj(r,right,obj,&split); /*add obj into every u-list */ 
if( split==O) 

return(root); 
else /* at least 1 split *I 
return(rebuild(root)); 

/*===== dupulst duplicates au-list*/ 

void dupulst(node, pos, obj, split, upper) 
page *node; /* the node containing the roghtrnost entry of the u-list */ 
int pos, *split, upper; /* pos: the rightmost object in the u-list, 
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upper= 1: dealing with the upper bound *I 
objectobj; 

{ 
int cutpoint, high, left, len, g, len1, ld; 
page *node1, *node2; 

if( upper== 1) 
cutpoint=obj.rectub[dim-1]; 

else ' 
cutpoint=obj.rect.lb[ dim-1]; 

node 1=node; 
g=node->TE[pos].g; 
left=pos; 
if(upper==O && node->TE[pos].tplid!=O) 

len=1; I* the u-list is divided by the lower bound *I 
else 

len=O; 
while(node1->TE[left].g==g && nodel!=O) { 

leftentry(node 1 ,left,&node1 ,&left); 
len++; I* the length of the u-list *I 

} 
ld=node->load; 
if(ld+len<=capa) { I* has.enough room *I 

rshift(node,ld-1 ,node,ld-1 +len,node,pos+ 1 ,ld-pos-1 ); 

} 

I* movw right to make room to duplicate 
·every entry *I 

if( upper== 1) 
dupent(node,pos,node,pos+len,len,cutpoint,O); 

else 
dupent(node,pos,node,pos+len,len,cutpoint,obj.tplid); 

node->load=ld+len; 

else { I* need at least 1 new node *I 
len1=len; node2=node; 
do { I* link all new nodes in *I 

} 

node 1 =(page *)calloc(1 ,sizeof(page) ); 
node 1->pb. tl.right=node2->pb. tl.right; 
node 1->pb. tl.left=node2; 
if(node2->pb.tl.right!=O) 

node2->pb.tl.right ->pb. tl.left=node 1; 
node2->pb. tl.right=node 1; 
node2=node1; 
node1->flag='t'; 
node 1->load=capa; I* the node in the middle are set full *I 
len1=len1-capa; 

while(len1 +ld>capa); 
if(len1 +ld>(capa+ 1)12) { /* fregment >.half page *I 

I* all new pages are full *I 
rshift(node,ld-1,node1 ,capa-1 ,O,O,ld-pos-1 ); 
node->load=ld-len1; 
if(upper==1) 
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} 

dupent(node,pos,node 1 ,capa-ld+pos,len,cutpoint,O); 
else 

dupent(node,pos,node 1 ,capa -ld+pos,len,cutpoint,obj. tplid); 

else { I* fregment <half page *I 
high=(ld+len1 +capa+ 1)12; 

83 

if(high<ld-pos && node->pb.tl.right==node1) {I* 1 new page, pos is in node *I 
rshift(node,ld-1 ,node1,high-1,node,pos+len+ 1 ,ld-pos-1); 
node1->load=high; · 

} 

node->load=ld+len-high; 
} 

else { I* > 1 new node or pos is not ih node, *I 

} 

I* nodes at middle are full *I 
rshift(node,node->load-1 ,node 1 ,high-1, 

O,O,node->load-pos-1); · 
node 1->load=high; 
node->load=(ld+len-high)%capa; 

if(ld-pos-1 <=high) I* the right end is in the rightmost new node *I 
if( upper== 1) 

dupent(node,pos,node1,high-ld+pos,len,cutpoint,O); 
else 

dupent(node,pos,node 1 ,high-ld+pos,len,cutpoint,obj. tplid); 
else I* the right endi is at.the left of the rightmost new node *I 
if(node->pb.tl.right!=node~) 

if( upper== 1) 
dupent(node,pos,node 1->pb. tl.left, 

capa+high-ld+pos-1 ,len,cutpoint,O); 
else 

else 

dupent(n0de,pos,node1->pb.tl.left, 
capa+high-ld+pos-1,len,cutpoint,obj.tplid); 

if(upper==1) 
dupent(node,pos,node,pos+len,len,cutpoint,O); 

else 
dupent(node,pos,node,pos+len,len,cutpoint,obj.tplid); 

} 
*split=1; 

} 

I*===== rshift moves the right section ofa node to the right *I 

void rshift(snode,spos,dnode,dpos,tnode,tpos,len) 
page *snode, *dnode, *tnode; I* source, destination and terminate nodes *I 
int spos, dpos, tpos, len; I* positions and' length *I 

{ 
if(dnode!=tnode} { 

while(dpos>=O && len>O) { 
dnode-> TE[ dpos--]=snode-> TE[spos--]; 
len--; 



} 

} 
if(len==O) 
return; 
else 
dnode=dnode->pb.tl.left; 

dpos=tpos+len-1; 
} 

while(dpos>tpos) 
dnode-> TE[ dpos--]=snode-> TE[ spos--]; 

/*==== dupent duplicates all entries of a u-list. When duplicate a u-list 
concerned with the upper bound, tplid is given to be 0; when lower 
bound, tplid will be put into the u-list */ 

~ , 

void dupent(snode,spos,dnode,dpos,len,g,tplid) 
page *snode, *dnode; /*source and destination nodes*/ 
int spos, dpos, len, g, tplid; , I* positions, length, guide post and tuple id */ 

{ 
page *node 1; 
intpos1; 

node1=snode; pos1=spos; 
if(snode!=dnode) { 

while(snode!=dnode) { 
while( dpos>=O) { 

if(len>O) { 

} 

if(tplid == 0) { /* dopy~an entry*/ 
dnode->TE[dpos].tplid · 

=node1->TE[spos].tplid; · 
leftentry(node 1 ,spos,&node 1 ,&spos ); 

} 
else { /*put tplid into the u-list */ 

dnode->TE[dpos].tplid=tplid; 
tplid=O; 

} 
dnode->TE[dpos--].g=g; 

} ~ 
else { /*copy the entries at the left in the same node*/ 

dnod~->TE[dpos--]=node1->TE[spos]; 
leftentry(node 1 ,spos,&node1 ,&spos ); 

} , 

len--; 
if(len==O) { 

node1=snode; spos=pos1; 
} 

dpos=capa-1; 
dnode=dnode->pb. tl.left; 

} 
dpos=pos1 +len; 
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} 

} 
while(len>O) { /*for the last node of the u-list *I 

} 

if(tplid == 0) { 
dnode->TE[dpos].tplid=node1->TE[spos].tplid; 
leftentry(node 1 ,spos,&node 1 ,&spos ); 

} 
else { 

} 

dnode-> TE[ dp(>s]. tplid=tplid; 
tplid=O; 

dnode->TE[dpos--].g=g; 
len--; 

/*==== leftentry gives the node and the position of the entry at the 
left of the given entry */ 

void leftentry(node, pos, lnode,lpos) 
page *node, **lnode; /* lnode: the resulting node *I 
int pos, *lpos; /* lpos: the resulting position*/ 

{ 

} 

if(pos>O) { 
*lpos=pos-1; *lnode=node; 

} 
else { 

} 

if( node->flag=='i') 
*lnode=node->pb.il.left; 

else 
*lnode=node->pb. tl.left; 

if(*lnode!=O) 
*lpos=(*lnode )->load-1; 

/*==== rightentry gives the node and the position of the entry at the 
right of the gi~en entry *I · 

void rightentry(node, pos, mode, rpos) 
page *node, **mode; /* mode: the resulting node *I 
int pos, *rpos; /* rpos: the resulting position*/ 

{ 
if(pos<node->load-1) { 

*mode=node; *rpos=pos+ 1; 
} 

else { 
if( node->flag=='i') 

*mode=node->pb.il.right; 
else 

. 85 



} 
} 

*mode=node->pb.tl.right; 
if(*mode!=O) 

*rpos=O; 

I*===== addobj adds an object to every covered u-list *I 

void addobj(mode, rpos, obj, split) 
page *mode; 
int rpos, *split; 
objectobj; 

{ 
page *node 1, *dnode, *newnode; 
int fin, ins, rg, rgl, frrstpos, lpos, objinc, 

high, low, posl, spos, dpos; · 
struct tleaf *rlf, *dlf; 

fin=O; 
frrstpos=rpos; objinc=O; 
dnode=mode; dpos=rpos; 
rg=mode-> TE[ rpos] .g+ 1; 

while(fin!=1) { 
node 1 =mode; pos 1 =rpos; 
while(rpos>=O && fin!=l) { I* in a node *I 

if(mode->TE[rpos].g<obj.rect.lb[dim-1]) 
fin=1; I* out of the covered u-lists *I 

while(nodel->TE[pos1].g==mode->TE[rpos].g) { 
I* search for the left end of au-list *I 

rpos--; 
if(rpos<O) break; 

} 
if(node1->TE[pos1].tplid!=O && fm!=l) 

objinc++; I* covered and non-empty u-list *I 
if(mode->pb.tl.left==O && rpos<O 

II mode->TE[rpos].g<obj.rect.lb[dim-1]) 
fin=1; I* out of the covered u-lists *I 

pos1=rpos; 
} 

mode=dnode; 
spos=mode->load-1; 
if(mode->load+objinc<=capa) { I* has enough room *I 

mode->load=mode->load+objinc; 
rpos=pos 1 +objinc; 
dnode=rnode; 

} 
else { I* split *I 

high=(mode->load+objinc+ 1)/2; 
low=mode->load+objinc-high; 
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dnode=(page *)calloc( 1 ,sizeof(page) ); 
*split=1; 
dnode->pb.tl.right=rnode->pb.tl.right; 
dnode->pb.tl.left=tnode; 
if(rnode->pb.tl.right!=O) 

rnode->pb.tl.right-;->pb.tl.left=dnode; 
mode->pb. tl.right=dnode; 
dnode->load=high; 
dnode->flag='t'; . 
dpos=high-1; 
rnode->load=low; 

} 
dpos=dnode->load-1; 
while(firstpos<spos) { /*the solid part on the righ~ */ 

dnode-> TE[dpos]=rriode-> TE[spos--]; 
leftentry( dnode,dpos,&dnode,&dpos ); 

} 

if(rnode->TE[spos].g!=rg) I* need a new entry*/ 
ins=1; 

while(spos>=O && rnode->TE[spos].g>=obj.rect.lb[dim-1]) { 
while(ins==1) { /*put obj in*/ 

} 

ins=O; 
if(rnode->TE[spos].g>=obj.rect.lb[dim-1]) 

dnode->TE[dpos].g=rnode->TE[spos].g; 
else /* for the leftmost .covered u-list */ 

dnode->TE[dpos].g=obj.rect.lb[dim-1]; 
dnode->TE[dpos].tplid=obj.tplid; 
leftentry( dnode,dpos,&dnode,&dpos ); 
if(spos>=O && rnode->TE[spos].tplid==O 

} 

&& rnode->TE[spos].g>=obj.rect.lb[dim-1]) { 
spos--; ins=1; 

node1=rnode; pos1=spos; 

if(rnode->pb.tl.left==dnode) /*out of the covered u-lists */ 
break; 

rg=rnode-> TE[spos].g; 
if(rnode->TE[spos].tplid != 0) 

dnode-> TE_[ dpos] =mode-> TE[ spos]; 
else { 

dnode->TE[dpos].g=rnode->TE[spos].g; 
dnode->TE[dpos].tplid=obj.tplid; 

} · /*move an entry*/ 
leftentry( dnode,dpos,&dnode,&dpos ); , 
spos--; 
if(spos>=O && rnode->TE[spos].g!=rg) 

ins=1; /*need a new entry*/ 
} /*end of a node*/ 

rg=rnode->TE[O].g; 
mode=rnode->pb.tl.left; 

· if(rnode!=O) { /* the next node at the left*/ 
firstpos=rnode->load-1; 
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} 

} 

if(mode->TE[frrstpos].g<obj.rect.lb[dim-1]) 
fm=1; 

else { 
while(rnode->TE[frrstpos].g==rg) 

firstpos--; /*the right solid part*/ 
objinc=O; 
rpos=firstpos; 

} 

} /*fin !=1 */ 
rightentry( dnode,dpos,&rnode,&rpos ); 
if(dpos>=O && rnode->TE[rpos].g>obj.rectlb[dim-1]) 

, dupulst(dnode,dpos,obj,split,O); /* the lower bound 
seperates au-list; duplicate the u~list */ 

/*====duplicate duplicates the substructure*/ 

page *duplicate(stree,prev) 
page * stree, **prev; /* root of the source structure, current position of linked 

{ 
page *cptree, *head; 
inti; 

if(stree-=0) return(O); 

sequential list *I 

cptree=(page *)calloc(l ,sizeof(page) ); 
cptree->load=stree->load; 
cptree->flag=stree->fl3:g; 

switch (stree->flag) { 
case 't': 

for(i=O;i<stree->load;i++) 
cptree-> TE[i]=stree:-> TE[i]; 

cptree->pb.tl.left=(*prev); /* link the leaf in the seq-list */ 
cptree->pb. tl.right=O; 
if(*prev) (*prev)->pb.tl.right=cptree;, 
(*prev)=cptree;· 
return( cptree ); 

case 'n': 
for(i=O;i<stree->load;i++) { 

cptree->NE[i].g=stree->NE[i].g; 
cptree->NE[i].p=duplicate(stree7>NE[i].p, prev); 

} 
return( cptree ); 

case 'i': 
for(i=O;i<stree->load;i++) { 

cptree->IE[i].g=stree->IE[i].g; 
head=O; 
cptree->IE[i].p=duplicate(stree->IE[i].p, &head); 
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} 
cptree->pb.il.left=(*prev); /* link the leaf into the seq-list */ 
cptree->pb.il.right=O; 
if(*prev) (*prev)->pb.il.right=cptree; 
(*prev )=cptree; 
retum(cptree); 

} 
} 

/*=====rebuild rebuilds a TP-tree in which split has happened*/ 

page *rebuild(root) 
page *root; /*the root of an TP-tree *I 

{ 
typedef struct lvlchn { 

page *node; 
struct lvlchn *next; 

} lvlchn; 
int i, count; 
page *head, *head1; 
lvlchn *chain, *chp, *chainhy, *chphy; 

head=head1=root; 
while(head->flag!='t') { /*find the leftmost leaf*/ 

head1=head->NE[O].p; 

} 

if(headl->flag! ='t') 
for(i= 1 ;i<head->load;i++) 

free(head->NE[i].p ); 
free(head); 
head=head1; 

count=1; 
chain=(lvlchn *)calloc(1,sizeof(lvlchn)); 
chain->node=head; chain->next=O; 
chp=chain; /* a chain covers a level of nodes */ 
while(head1->pb.tl.right!=O) { /*count the node on the level*/ 

} 

head1=head1->pb.tl.right; 
count++; 
chp->next=(lvlchn *)calloc( 1 ,sizeof(lvlchn) ); 
chp=chp->next; chp->node=head1; chp->next=O; 

while(count>1) { 
count=1; 
head= head 1 =(page*)calloc( 1 ,sizeof(page) ); 
head->flag='n'; head->load=O; 
chainhy=(lvlchn *)calloc( 1 ,sizeof(lvlchn) ); 
chainhy->node=head; chainhy->next=O; chphy=chainhy; 
while(1) { 

headl->NE[head1->load].p=chain->node; 
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if(chain->node->flag=='n') 
headl->NE[headl->load] .g 

=chain->node->NE[O] .g; 
else 

headl->NE[headl->load].g 
=chain->node-> TE[O] .g; 

headl->load++; 
chp=chain; chain=chain->next; free(chp); 
if( chain==O) break; 
if(headl->load==fanout) { 

} 

chphy->next=(lvlchn*)calloc(l,sizeof(lvlchn)); 
count++; 
chphy=chphy->next, chphy->next=O; 
chphy->node=headl=(page*)calloc(l,sizeof(page)); 
headl->flag='n'; headl->load=O; 

} 
chain=chp=chainhy; 

} 
free( chain); 
return(head); 

} 

/*===== seqlst lists a sequential list of a TP-tree *I 

void seqlst(head) 
page *head; /* the head of the list */ 

{ 

} 

int c, i; 

c=O; 
ofile=fopen("seq","a"); 
while(head!=O) { 

if(c>55) { fprintf(ofile,''\n"); c=O; } 
fprintf(ofile,'' $"); 
for(i=O;i<head->load;i++) { 

fprintf(ofile,"%d %d/", 
head-> TE[i].g,head-> TE[i] .tplid); 

c=c+lO; 
} 

head=head->pb.tl.right; 
} 

fprintf(ofile,''\n\n"); 
fclose( ofile ); 

/*===== tplst lists the sequential lists in a tree*/ 

void tplst(root) 
page *root; 

{ 
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} 

int pos=O; 

if(root==O) { 
ofile=fopen("seq", "a"); 
fprintf(ofile," $ .. "); 
fclose(oftle); 

} 
while(root->flag=='n') 
root=root-> NE[O]. p; 

seqlst(root); 
if(root->flag=='i') 
while(root) { 

tplst(root->IE[pos]. p ); 
rightentty(root,pos,&root,&pos ); 

} 

/*===== search searches the area of "rect" in the tree rooted at "root" on 
the stage numbered with "stage"*/ 

objlist *search(root, rect, stage) 
page *root; 
rectangle rect; 
int stage; 

{ int rtmost, leftend, g1, rtpos; 
page * rtroot; 
objlist *coll, *obj; 

coll=( objlist*)calloc(1 ,sizeof( objlist) ); 
coll->tplid=O; coll->next=O; 
if(root==O) retum(coll); 
if(root->flag!='n') 
rtmost=rightmost(root, rect.ub[stage-1 ]); 

else 
while(root->flag=='n') { 

rtmost=rightmost(root, rect. ub[stage-1 ]); 
root=root-> NE[ rtmost] .p; 

} ' 

rtmost=rightmost(root,rect. ub[ stage-1 ]); 
if(root->flag=='t') { 

leftend=O; 
do { 
if((g1=root->TE[rtmost].g)<~ect.lb[stage-1]) 
leftend=1; 

if(root->TE[rtmost].tplid != 0) { 

} 

obj=( objlist*)calloc(1 ,sizeof( objlist) ); 
obj->next=O; 
obj->tplid=root->TE[rtmost].tplid; 
accobject(coll,obj); /*not a dummy*/ 

leftentry(root,rtmost,&root,&rtmost); 
} 

91 



while(leftend==OIIgl-root->TE[rtmost].g); 
} 

-else/* 'i' */ { 
accobject(coll, search(root->IE[rtmost].p,rect, stage+ 1)); 
while(root->IE[rtmost].g>rect.lb[stage-1]) { 

leftentry(root, rtmost, &root, &rtmost); 

} 
} 

accobject(coll, search(root->IE[rtmost].p, rect, stage+ 1)); 

return( coli); 
} 

/*===== prtolst prints the list of objects *I 

void prtolst(head) 
objlist *head; 
{ 
objlist *p; 

ofile=fopen("seq","a"); 
p=head->next; 
fprintf( ofile,''\nThe intersecting objects:"); 
while(p) { 

fprintf(ofile," %d",p->tplid); 
p=p->next; 
} 

fprintf( ofile, ''\n"); 
fclose( ofile ); 
} 

!*==== accobject accumulates the acsendently ordered object list 
'ell' by the objects in the object list 'cl2' *I 

void accobject(coll, col2) 
objlist *coil, *co12; 

{ 
objlist *obj, *posl, *pos2, *obj 1; 
int found; 

obj=col2; 
while(obj) { /*for every object in col2 *I 

posl=coll; found=O; objl=obj->next; · 
while(!found) { 

pos2=pos 1; pos 1 =pos 1->next; 
if(posl==O II posl->tplid>obj->tplid) 

found=l; 
} 

if(pos2->tplid!=obj->tplid) /* insert */ { 
obj->next=pos 1; 
pos2->next=obj; 
} 
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} 

obj=obj1; 
} 

/*===== del deletes an object from the tree on the 'stage' and from 
its substructures, return the new root ofthe tree *I 

page *del(root, obj, stage) 
page *root; 
object obj; 
int stage; 
{ 
if(stage<dim) 
if(root->flag=='n') /* non-leaf of an IP-tree */ 
deln(root, obj, stage); 

else /* leaf of an IP-tree */ 
deli(root, obj, stage); 

else /* 1P-tree *I 
root=delt(root, obj); 

return(root); 
} 

/*=====delete deletes an object from the IDP rooted at 'root' *I 

page *delete( root, obj, stage) . 
page *root; 
objectobj; 
int stage; 
{ 
page *r; 

r=root=del(root, obj, stage); 
if(root->load==1 && root->flag=='n') { 

r=root->NE[O].p; 
free( root); 
} 

return(r); 
} 

/*==== deln deletes from a structure rooted at a non-leaf of an IP-tree *I 

void deln(root, obj, stage) 
page *root; 
objectobj; 
int stage; 
{ 
int i, rtmost; 
page *p1; 

rtmost=rightmost(root, obj.rect.ub[stage-1 ]); 
while(rtmost >= 0 && root->NE[rtmost].g >= obj.rect.lb[stage-1]) { 
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root->NE[rtmost].p=p1=del(root->NE[rtmost].p, obj, stage); 
if(p1->load<(capa+ 1)/2) 
rearrange(root, &rtmost); 

rtmost-=1; 
} 

for(i=O; i<root->load; i++) { 
p1=root->NE[i].p; 
root->NE[i].g= (p1->flag=='n')'l ·-= 
p1->NE[O].g: - ,. 
p1->IE[O].g; 

} 
} 

/*=== deli deletes an object from the, trees pointed to by entries. of 
a leaf node of an IP-ttee on the 'stage' */ 

' ' 

void deli(node, obj, stage) 
page *node; 
objectobj; 
int stage; 
{ 
int rtmost, i, lrtmt=O, rrtmt:;=O; 
page *lrt=O, *rrt=O, *p 1; 

rtmost=rightmo~t(node, obj.rect. ub[stage-1 ]); 
while(rtmost>=O && node->IE[rtmost].g >= obj.rect.lb[stage-1]) { 

node->IE[rtmost].p =p1 =<Iel(node->IE[rtmost].p, obj, stage+ 1);. 
if(p1->load==1 && p1->flag=='n') { I* an unneecesary node*/ 

node->IE[rtmost].p=p1->NE[O].p; · 
free(p1); 
} 

rightentry(node, rtmost, &rrt, &rrtmt); _ 
if(rrt!=O && rrt->IE[rrtmt].g==obj.recLub[stage-1]) /*right boundary *I 

if(sameobj(nQde, rtmost, rrt, rrtmt, stage)) { 
freesub(node->IE[rtmost].p, stage); , 
if(node==rrt) · {, /*'the edge is withih-the 'node'.*/ 

node->IE[rtmost].p=node->IE[rrtmt].p; 
rmventry(node,rrtmt); ' 
} 

else { /*the edge is betweell .'node' ,and 'rrt' *I 
nt->IE[O].g=node->IE[rtmost].g; · · 
node->load-=1; , ., 

} 
} ' ' 

if(node->IE[rtmost].g==obj.rect.lb[stage-1])'{ ·/*the left boundary *I 
leftentry(node, rtmost, &lrt, &,lrtmt); · 
if(lrt!=O) . , 

} 

if(sameobj(node, rttpost, lrt, lrtmt,. ,stage)) { 
freesub(node->IE[rtmost].p, stage); 
rmventty(node,O); 
} 
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rtmost--; 
} 

} 

/*===== delt deletes an object from a TP-tree rooted at 'root'*/ 

page *delt(root, obj) 
page *root; 
objectobj; 
{ 
int rtmost, rrtmt=O, cutpoint, shtg; 
page *rt, *rrt=O; 
objlist *oil, *ol2; 

rt=root; 
while(rt->flag!='t') { 
rtmost=rightillost(rt,obj .rect.ub[ dim-1 ]); 
rt=rt->NE[rtmost].p; 
} 

rtmost=rightmost(rt,obj.rect. ub[ dim-1 ]); 
rightentry(rt, rtmost, &rrt, &rrtmt); 
if(rrt!=O) { /* the right boundary is within the space */ 

oll=collulst(rt, rtmost, obj.tplid, -1); 
ol2=collulst(rrt, rrtmt, obj.tplid, 1); 
if(samelst(oll,ol2)) /*remove the redundent uniform list*/ 

rmvulst(rrt,rrtmt,rrt->TE[rrtmt].g); 
} 

while(rt!=O && rt->TE[rtmost].g>=obj.rect.lb[dim-1]) { 
/*scan and remove all entries of the obj, leftward*/ _ 

if(rt->TE[rtmost].tplid==obj.tplid) 
rmventry(rt, rtmost); 

if(rtmost==O) 
if(rt->load<(fanout+ 1)/2 && (rrt=rt->pb.tl.right)!=O) 

if(rt->load+rrt->load <=fanout) { 
mvleft(rrt,O,rt,rt->load,rrt->load); 
rt->pb.tl.right=rrt->pb.tl.right; 
if(rrt->pb.tl.right) 

} 

rrt->pb.tl.right->pb.tl.left=rt; 
free(rrt); 

else { 
shtg=(fanout+ 1)/2-rt->load; 
mvleft(rrt,O,rt,rt->load,shtg); 
mvleft(rrt,shtg,rrt,O,rrt->load); 
} 

leftentry(rt, rtmost, &rt, &rtmost); 
} . 

if(rt!=O) { /* the left boundary of the object */ 
rightentry(rt, rtmost, &rrt, &rrtmt); 
oll=collulst(rt, rtmost, obj.tplid, -1); 
ol2=collulst(rrt, rrtmt, obj.tplid, 1); 
if(samelst(oll, ol2)) 

rmvulst(rrt,rrtmt,rrt->TE[rrtmt].g); 
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} 
return(rebuild(root) ); 
} 

I*===== rmvulst removes a uniform list, the leftmost entry of which is 
at 'pos' in 'node' and with the guidepost 'egde' *I 

void rmvulst(node, pos, edge) 
page *node; 

{ 

} 

int pos, edge; 

page *node1; 
int pos1, shtg, i; 

while(node!=O && node->TE[pos].g==edge) { 
rmventry(node, pos); 
if(pos == node->load II pos<node->load && node->TE[pos].g!=edge) { 

I* no more entries in the node should be removed *I 
node 1 =node; pos 1 =pos-1; pos=O; 
node=node->p b. tl.right; 

} 
if((node->TE[pos].g!=edge II pos1==node1->load-1) && node!=O) { 

I* check the load to shift of merge *I 
if(node1->load<(fanout+ 1)/2) { 

} 

if( node 1->load+node->load<=fanout) { 
mvleft(node,O,node1,node1->load,node->load); 
node 1->pb. tl.right=node->pb.tl.right; 
if(node1->pb.tl.right) 

} 

node1->pb.tl.right->pb.tl.left=node1; 
free( node); 

else { 

} 

shtg=(fanout+ 1)/2-node1->load; 
mvleft(node,O,node 1 ,node 1->load,shtg); 
mv left( node,shtg,node,O,node-> load-shtg); 

node=node 1; pos=pos 1 + 1; 
} 

} 

I*===== sameobj compares two sets of objects in the structures pointed to 
by the 'entry1' in 'rt1' and 'entry2' in 'rt2'. both 'rt1' and 'rt2' 
are on the stage numbered by 'stage' *I 

int sameobj(rt1, entry1, rt2, entry2, stage) 
page *rt1, *rt2; 
int entry1, entry2, stage; 
{ 
inti; 
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objlist *oil, *o12; 
rectangle space; 

for(i=O; i<dim; i++) . 
{ space.lb[i]=O; space.ub[i]=bound; } 

if(rtl->flag=='n') { 
oil=search(rtl->NE[entryl].p, space, stage); 
ol2=search(rt2->NE[entry2].p, space, stage); 
} ' . . 

else { · · 
oil=search(rtl->IE[entryl].p, space, stage); 
ol2=search(rt2->IE[entry2].p, space, stage); 
} 

return( samelst(oil,ol2)); 
} 

/*===== samelst determines whehter two assendent linked list of objects 
contain the sanie set of objects *I 

int samelst(oil,ol2) 
objlist *oil, *ol2; 
{ 
int same=l; 

while(oil!=O && ol2!=0 && same) { 
if(oil->tplid!= ol2->tplid) 

same=O; 
oil=oil->next; 
ol2=ol2->next; 
} 

if( oll==O && ol2=0 && same) 
retum(l); 

else 
return(O); 

} 

!*===== rmvenrtry removes the 'entry' from the 'node'*/ 

void rmventry(node, entry) 
page *node; 
int entry; 
{ 
inti; 

node->load--; 
switch(node->flag) { 

case 't': 
for(i=entry; i<node->load; i++) 

node-> TE[i]=node-> TE[i+ 1 ]; 
break; 

97 



case 'i': 
· for(i=entry; i<node->load; i++) 

node->IE[i]=node->IE[i+ 1]; 
break; 

case 'n': 
for(i=entry; i<node->load; i++) 

node->NE[i]=node->NE[i+ 1]; 
break; 

} 
} 

I* move 'len' entries from the position of 'spos' in the node of 
'snode' to the position of 'dpos' in the node of 'dnode'. 'dpos' 
is on the left of 'sposl *I 
void mvleft(snode, spos, dnode, dpos, len) 

page *snode, *dnode; 

{ 

} 

int spos, dpos, len; 

inti; 

switch (snode->flag) { 
case 'i': 
for(i=O; i<len; i++) 

dnode->IE[dpos+i]=snode->IE[spos+i]; 
break; 

case 'n': 
for(i=O; i<len; i++) 

dnode->NE[dpos+i]=snode->NE[spos+i]; 
break; 

case 't': 

} 

for(i=O; i<len; i++) . 
dnode->TE[dpos+i]=snode->TE[spos+i]; 

break; 

if(snode==dnode) 
dnode->load=dpos+len; 

else { 
dnode->load+=len; 
snode->load-=len; 
} 

I*===== freesub frees all storage of the subtree rooted at 'node' *I 

void freesub(node) 
page *node; 
{ 
inti; 

switch(node->flag) { 
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case 't': 
free( node); 
break; 

case 'i': 
for(i=O;i<node->load; i++) 

freesub(node->IE[i].p ); 
free( node); · 

} 

break; 
case 'n': 
for(i=O;i <node->load; i++) 

freesub(node->NE[i]. p ); 
free( node); 

return; 
} 

/*===== collulst collects objects in a uniform list, leftward if dir<O 
rightward otherwise, from the 'entry in the 'node'. The object 
with tplid equal to 'id' is excluded from the result. */ 

objlist *collulst(node, entry, id, dir) 
page *node; 
int entry, id; 
int dir; 

{ 
int g; 
objlist *oll, *ol2; 

g=node-> TE[ entry] .g; 
oll =( objlist*)calloc( 1 ,sizeof( objlist) ); 
oll->tplid=O; oll->next=O; 
while(node!=O&&node->TE[entry].g==g) { 

if(node->TE[entry].tplid!=id) { 
ol2=( objlist*)calloc(l ,sizeof( objlist) ); 
ol2->tplid=node->TE[entry].tplid; 
ol2->next=0; 
accobject( oll ,ol2); } . 

if(dir<O) 
leftentry(node, entry, &node, &entry); 

else 
rightentry(node, entry, &node, &entry); 

} 
return( oil); 
} 

!*=====rearrange merges the node pointed to by 'entry[subtree]' in 'node' 
with a neighbor node or move some entries from a neoghbor into the node *I 

void rearrange( root, subtree) 
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page *root; 
int *subtree; 
{ 
int rload, lload, load, i, shtg; 
page *lnbr, *mbr, *chd; 

if(root->NE[*subtree].p->loa4>=(capa+ 1)/2) 
return; 

lnbr=mbr=O; 
if(root->load>*subtree+ 1) { /*has a right neighbor*/ 

mbr=root->NE[*subtree+1].p; 
rload=mbr->load; 
} 

if(*subtree>O) { /* has a left neighbor */ 
lnbr=root->NE[*subtree-1].p; 
lload=lnbr->load; 
} 

chd=root->NE[*subtree-1].p; 
load=chd->load; 

if(mbr!=O&&load+rload<=capa), { /* merge with the right neighbor */ 
mvleft(mbr,O,chd,chd-> load,rnbr->load); 
if(chd->flag=='i') { 

chd->pb.il.right=mbr->pb.il.right; 
if(mbr->pb.il.right) mbr->pb.il.right->pb.il.left=chd; 
} 

free(mbr); 
return; 
} 

if(lnbr!=O && load+lload<=capa) { /*merge with the left neighbor */ 
mvleft(chd,O,lnbr,lnbr->load,chd->load); 
if(chd->flag=='i') { 
lnbr->pb.il.right=chd->pb.il.right; 
if(chd->pb.il.right) chd->pb.il.right->pb.il.left=lnbr; 
} 

rmventry(root, *subtree); 
(*subtree)++; 
free(chd); 
return; 
} 

shtg=(capa+ 1)/2-load; /*shortage of entries*/ 
if(mbr) { /*move some entries from the right neoghbor */ 

mvleft(mbr,O,chd,chd->load,shtg); 
mvleft(mbr,shtg,mbr,O,mbr->load); 
return; 
} 

if(lnbr) { /*move some entries from the left neighbor*/ 
if(chd->flag=='n') { 
for(i=load-1; i>=O; i--) 

chd->NE[i+shtg]=chd->NE[i]; 
for(i=O; i<shtg; i++) 
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chd->NE[i]=lnbr->NE[lload-shtg-1 +i]; 
} 

else { 
for(i=load-1; i>=O; i--) 
chd->IE[i+shtg]=chd->IE[i]; 

for(i=O; i<shtg; i++) 
chd->IE[i]=lnbr-> IE[lload-shtg-1 +i]; 

} 
lnbr->load-=shtg; chd->load+=shtg; 
*subtree+=1; 
return; 
} 

} 
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