
JHE INDEX BY DIMENSIONAL PROJECTION

-AN INDEX SUPPORTING SEARCH FOR

SPATIAL OBJECTS BY REGION

BY

XIAOMING ~HENG

Bachelor of Science

Shanghai Jiao Tong University

Shanghai, China

1982

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the Degree of
MASTER OF SCIENCE

May, 1991

OkJah~ma State Univ. Library

THE INDEX BY DIMENSIONAL PROJECTION

..:.. AN INDEX SUPPORTING SEARCH FOR

SPATIAL ,OBJECTS BY REGION ,

Thesis Approved:

V·Thesis Ad~

/i~ E- ·J!~

Dean of the_ Graduate Coll~g~ ,

ii

1393108

PREFACE

In image databases ~nd other spatial data retrieval systems, the

techniques for storing and indexing data objects require different

kinds of search and query from those in traditional databases and

data retrieval systems. In order to handle spatial data more

efficiently, a new index structure supporting search for spatial

objects by region, the Index by Dimensional Projection is proposed in

this thesis. By this method, the number of pages accessed for

searching a point region has a logarithmic relationship with the

number of objects in data space and the number of comparisons

required for searching an entry within a disk page has logarithmic

relationship with the number of entries in the disk page.

I wish to express my sincere gratitude to the individuals who

assisted me in this project and during my coursework at Oklahoma

State University. In particular, I wish to thank my major adviser,

Dr. Huizhu l:u, for .her guidance on this study. I am also grateful to

other committee members, Dr. George E. Hedrick and Dr. John P.

Chandler, for their advisement during the course of this work.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

Requirement
Problems
Solution'
Terminology

1
3
4
5

II. REVIEW OF INDEX STRUCTURES 9

Traditional Index Structures 9
....... 10 One-Dimensional Index Structures

Multi-Dimensional Index Structures 11
1 2 R-tree

R+-tree . 1 5

Ill. INDEX BY DIMENSIONAL PROJECTION 22

Introduction
Terminology
Structure

IP-tree
TP-tree

Algorithms
Search
Insertion
Deletion

............................... 22
23

................................. 26
.............................. 27

29
................................ 32

.............................. 32
............................ 34

37

iv

Chapter Page

IV. TIME COMPLEXITIES OF IDP 39

Page Access of Search in an IDP 3 9
Search by a Point Region 3 9
Page Access of Search by

a Point Region in an IDP 4 0
A Space with Uniformly

Distributed Data 4 2
Page Access for IDP in a

Uniformly Distributed Data Space 4 5
Page Access of Existing Structures 4 7
Comparison of Page Access with

Existing Structures . 4 8
, Time for Searching an Entry within a Page 57

V. OPTIMIZATION OF ORGANIZATION 61

Partial Load of Pages . 61
Organizational Optimization 6 2

VI. SUMMARY AND CONCLUSIONS 68

REFERENCES .. 70

APPENDIX - PROGRAM FOR IMPLEMENTATION
OF ALGORITHMS . 7 3

v

LIST OF TABLES

Table Page

1 . Fan-outs and Capaciti~s of a Node 50

2. Number. of Comparisons in Searching
an Entry within a Page . 6 0

3. Comparison betwe.en Natural and Packed A-trees
on Page Access in Search 67

vi

LIST OF FIGURES

Figure Page

1. An R-tree . 1 4

2. Algorithm R_SEARCH . 1 5

,,

3. A Search Window in an R-tree . 1 6

4: A Poorly Organized R-tree . 1 7

5. An R+-tree . 2 0

6. A Poorly organized R+-tree, . 21

7. The Projection of a 2-dimensional Space ... " 25

8. The IP-tree and the TP-tree . 2 8

9. The Values of the Nodes in the
IP-tree and the TP-tree . 3 0

1 0. Algorithm SEARCH 33

11. Algorithm INSERT 35

12. Algorithm DELETE 38

13. The Starting Point of a 2-Dimensional Rectangle 43

vii

Figure Page

14. A 2-Dimensional Data Space with Uniformly
Distributed Objects, . 4 3

15. Page Accesses as Functions of D and N in 2-dimensional
Space (Page Size=1 024 Bytes) . 51

16. Page Accesses as Functions of D and N in 3-dimensional
Space (Page Size=1 024 Bytes) . 52

17. Page Accesses as Functions of D and N in 2-dimensional
Space (Page Size=512 Bytes) . 53

18. Page Accesses as Functions of D and N in 3-dimensional
Space (Page Size=512 Bytes) 54

19. Page Accesses as Functions of D (Page Size=512 Bytes,
N=1 00,000) 55

20. Page Accesses as Functions of D (Page Size=1 024 Bytes,
N=1 00,000) . 56

21 . Page Accesses as Functions of Page Size 58

22. Page Accesses as Functions
of Memory Utilization . 6 4

23. Algorithm COMPRESS 65

viii

NOMENCLATURE

[) semi-open segment or semi-open rectangle

C capacity of a page of an I D P

Cr capacity of a page of an R-tree or an R+-tree

D density of objects in a data space

Di density of objects in a slice of a data space in the ith
dimension

f fan-out of a page of an IDP

f r fan-out of a page of an R-tree or an R+-tree

G starting point of the segment in an entry of an IP-tree or a
TP-tree

Hi height of an IP-tree

H t height of a TP-tree

lbi lower boundary of a rectangle in the ith dimension

m lower boundary of the number of entries in a page

M upper boundary of the number of entries in a page

ix

n number of dimension of a data space

N number of objects in a data space

Ni number of objects in a slice of data space in the ith
dimension

P pointer in an entry

u number of MCCSs resulting from a projection

ubi upper boundary of a rectangle in the ith dimension

Ui number of MCCSs resulting from the projection of a sub'-1-

space onto the ith axis

Wi width of a rectangle along the ith ·dimension

X

GLOSSARY

capacity: The number of entries a leaf node can have.

cover: An n-d rectangle, R1, covers another n-d rectangle, R2

if every point contained by R2 is contained by R1 also. A segment,

S1, covers another segment, S2 if every point contained by 82 is

contained by S1 also.

disjoint: Two n-d rectangles or two segments disjoint from

each other if there is no point contained by the both rectangles or

the both segments.

ECP (Equally Covered Points): ECP are points on an axis and

covered by the same set of projections of rectangles onto the axis.

enclosing rectangle: The enclosing rectangle of an object or

some other enclosing rectangles is the smallest rectangle which

covers the object or those rectangles.

, end point: For a segment represented by [sl, su), the end point

is the pain at su.

Equally Covered Points: (see ECP)

fan-out: The number of sub-trees a non-leaf node can have.

IDP (Index by dimensional Projection): The IDP is an index

structure supporting search spatial objects by region. An IDP

indexes the spatial objects by projecting them in each dimension.

xi

Index by dimensional Projection: (see lOP)

Intermediate Projection tree: An Intermediate Projection tree

is a part of an lOP of an n-dimensional data space. An intermediate

Projection tree indexes a sub-space by the projection of the sub­

space onto an axis other than the axis in the nth dimension.

intersect: Two n-dimensional rectangles or two segments

intersect each other if there are at least one point contained by the

both rectangles or the both segments.

IP-tree: (see Intermediate Projection tree)

Maximum Constantly Covered Rectangle (MCCR): A Maximum

Constantly Covered Rectangle is a rectangle in which every point is

contained by the same set of objects, and any rectangle which

contains the rectangle and is not equal td the rectangle contains at

least two points contained by different set of objects.

Maximum Constantly Covered Segment (MCCS): A Maximum

Constantly Covered Segment is a segment on an axis, in which all

points are ECP, and any segment which contains the segment and is

not equal to the segment contains at least two points which are not

ECP.

MCCR: (see Maximum Constantly Covered Rectangle)

MCCS: (see Maximum Constantly covered Segment)

overlap: (see intersect)

point query (point search): An operation to determine all the

objects containing a certain point.

point search: (see point query)

xii

R-tree: The R-tree is an extension of the 8-tree without the

property of key ordering. The R-tree supports search spatial objects

by region.

R+-tree: The R+-tree is a variation of the R-tree with the

restriction of not allowing the overlap among nodes on the same

level.

region: An rectangular space within a data space.

search by region: An operation to determine all the objects

intersecting a given region.

sequential list: A sorted linked list of all leaf nodes in an IP­

tree or a TP-tree, like that in a B+-tree.

spatial data object: A data object covering intervals in each

dimension of the data space.

stage: The step of projection to index spatial objects by the

IDP. Each stage corresponds to a step of projection of the spatial

objects onto a corresponding axis.

starting point: For a segment represented by [sl, su), the

starting point is the point with the coordinate value of sl. For an n­

d rectangles represented by [sh, su1, sl2, su2, ... , sin, sun), the

starting point is the point with the coordinate of [sh, sl2, ... , sin).

sub-space: A sub-space is a part of the data space formed by

dividing the space by MCCSs generated from each projection of the

data space.

xiii

Terminal Projection tree (TP-tree): A Terminal Projection tree

is a part of an IDP. A terminal projection tree indexes the

intersections of objects with the MCCRs generated from a projection

of the nth stage.

TP-tree: (see Terminal Projection tree)

uniform list: A list of consecutive entries stored in the

sequential list of a TP-tree and corresponding to the objects

intersecting an MCCR.

xiv

CHAPTER I

INTRODUCTION

Requirement

In most programming langu'ages and database systems, both

numeric and string data types are available. With the growth of the

requirements of describing and manipulating spatial data objects,

such as in image databases and CAD, much work has been done in the

fields of image data definition, representation and processing.

However, comparatively less work has been done to meet the
'

requirements of organizing spatial data objects in large collections

and to support storing and retrieving these objects efficiently.

In traditional databases and data retrieval systems, many well­

developed techniques can be used to support data storage and

retrieval. There are many kinds of data storing structures and index

structures for alphanumeric data types. In image databases and

other spatial data retrieval systems, the techniques for storing and

indexing data objects require different kinds of search and query to

improve the efficiency. However, there are not many choices

[Same90].

Among all kinds of search or query operations for spatial data

objects, search by region is one of the most different manipulations

1

from those for alphanumeric data types. The traditional

alphanumeric data always are points in a data space, but spatial

data objects are intervals in data spaces and cover areas. For

example, temporal data can be viewed as one-dimensional spatial

data with intervals between beginning and end points; geographic

applications and VLSI design involve two-dimensional data;

geological data and solid modelling applications require three­

dimensional data and sometimes require four-dimensional data.

Queries for these kinds of data objects often are related to the

areas they are covering.

2

Query by region, which is an operation to determine all data

objects intersecting a given region, is embedded in some query

languages of pictorial database systems such as PSQL (Pictorial

Structured Query Language). PSQL is a relational based language for

retrieving information from a pictorial database. It extends the

power of SQL (Structured Query Language) for retrieving

alphanumeric data by allowing direct spatial search. The pictorial

database maintains the associations between the spatial and

alphanumeric objects.

PSQL extend mapping is in the form:

se I e ct <attribute_target_l ist>

from <relation list>

on <picture_list>

at <area_specification>

where <qualification>;

The following example is a typical simple query.

select city, state,population

from cities

on US_map

a t ·loc overlapping { 4±4, 11 ±9 }

where population > 500000;

which select all cities in the area {4±4, 11 ±9} having population

greater than 500,000.

If there is no index supporting the search of spatial objects by

region, then the search for the cities within a given region on the

picture_list has to be implemented in a method such as

R = {4±4, 11±9};

for each CITY on US_map

if overlap(CITY, R}

output(CITY};

The search method of "for each" requires a linear search and is

performed slowly.

Problems

In order to handle spatial data ~fficiently, as required in both

computer-aided design and geometric data applications, a database

system should have an index mechanism to retrieve data items

quickly according to their spatial .locations. However, traditional

indexing methods are not well suited to data objects with non-zero

size located in multidimensional space.

3

Two existing index structures, the R-tree [Gutt84] and the R+­

tree [Sell 87], were introduced to meet these needs. Both R-trees

and R+-trees are extensions of B-trees. Both R-trees and R+-trees

maintain their balanced heights as well as the property of

logarithmic page access.

Although the R+-tree improves the performance of page access

in a search by eliminating the overlap among nodes on the same

level, which exists in the R-tree, algorithms for insertion and

deletion in an R+-tree are more complicated and have greater

complexity than those for an R-tree. Moreover, the performance of

searching in both the R-tree and the R+-tree might be diminished in

dynamic circumstances if the optimization of the organization of

these trees either is not included in the insertion and/or deletion

algorithms or is not applied to these trees periodically.

Solution

In order to handle spatial data more efficiently, a new index

structure, IDP which stands for Index by Dimensional Projection is

proposed in this thesis. An IDP is a cluster of extended B+-trees.

An IDP has the following advantages:

(1) The performance of page access in searching in an IDP is

better than that in an R-tree and similar to that in an R+-tree, and

even better when page size is small.

(2) The algorithmic complexity for searching for an entry in a

node of an IDP is less than it is in a node of either an R-tree or an

4

R+-tree.

(3) The optimization of organizing an IDP has a linear

complexity which is lower than the optimization of organizing

either an R-tree or an R+-tree.

Terminology

5

Before examining previous work related to index structures, the

following terminology must be understood.

n-dimensional space:

An n-dimensional (denoted by n-d in the rest of the thesis)

space is an n-dimensional Cartesian coordinate system with upper

and lower bounds for each dimension and with discrete grid of

coordinates.

Segment:

A segment [sl, su) covers the area between sl and su in a 1-

dimensional (1-d) space. sl and su are the lower and upper

boundaries of a segment. A segment is semi-open: sl is contained in

the segment but su is not.

Unit segment:

A unit segment is the minimal distinguishable segment in a

digital space. A unit segment is indivisible. The size of a unit

segment depends on the resolution of the space. A 1-d space is

covered by all unit segments in the space. Any two unit segments

are disjoint from each other.

n-dimensional rectangle (n-d rectangle):

6

An n-dimensional rectangle is a rectangle perpendicular to the

coordinate system. That is, every edge of the rectangle is parallel

to its corresponding coordinate axis. Each edge of an n-dimensional

rectangle is a segment. So an n-dimensional rectangle is semi-open.

An rectangle is described in the form of

RECT = [lb1, ub1, lb2, ub2, ... , Ibn, ubn)

where lbi and ubi are the lower and the upper bounds of the rectangle

in the ith dimension, correspondingly. The interval between two

boundaries is semi-open. That is, lbi is included in the interval but

ubi is not. n is used as the notation of the number of the dirDensions

of the data space in the rest of the thesis. ·

Region:

A region is an n-d rectangle in an n-d space.

Unit region:

A unit region is also called a point region. A unit region is a

region with the smallest area the digital space can represent. Each

edge of a unit region is a unit segment. Like unit segments, unit

region are indivisible and disjoint. An n-d space is covered by all

its unit regions. The size or the area of a unit region depends on the

resolution of the digital space.

Zero-size point:

A zero-size point does not cover any area. It only has its

position. Every zero-size point in the space is contained exactly by

one unit region. In the digital space, different zero-size points in

the same unit region are undistinguishable. Zero-size points in

different unit regions are distinguished by distinguishing the unit

regions.

Spatial object:

A spatial object is a tuple (or a record) representing an object

7

in an n-d space, such as a tuple for a city on a map, for a shaft in a

gear box or for a piece of connection on a layout of a VLSI. Besides

the attributes contained in a tuple for an alphanumeric object, a

tuple for a spatial object must contain the position of the object and

a representation of the n-d area the object covers.

Enclosing rectangle:

An n-d enclosing rectangle is an enclosing rectangle either of a

spatial object or of some other enclosing rectangles. An enclosing

rectangle of a spatial object is the minimum n-d rectangle

containing the object. Likewise, an enclosing rectangle of some

other enclosing rectangles is the minimum rectangle containing

those rectangles.

Search by region:

Search by region determines all spatial objects intersecting a

given region (also called search region or query window). The

given region is usually an n-d rectangle. If the search region is a

point region, the search is called point query or point search which

is to find out all spatial objects containing this point.

Because a search region is a rectangle, it can be described in the

same form of an enclosing rectangle.

For simplicity, the area covered by a spatial object is

8

considered as a11 n-d rectangle in indexes. A spatial. object is stored

in indexes in the form of

(OlD, RECT)

where OlD is the identifier of the spatial object enclosed by the

enclosing rectangle, RECT.

CHAPTER II

REVIEW OF INDEX STRUCTURES

Traditional Index Structures

Traditional data processing has dealt only with alphanumeric

data types (i.e. numerals and strings) and with either numeric or

string computations. Since database systems emerged from the

same environment, their data types are also limited to alphanumeric

types. So data management is limited to structured collections of

alphanumeric values.

New requirements came with the introduction of pictorial

databases. Chang provided an survey of most of the attempts in the

area of pictorial databases [Chan81 a]. Some of the classical

database techniques were extended in several respects to meet the

pictorial requirements [Chan81 b][Chan81 c].

In pictorial databases, data objects are different from those in

traditional databases. In traditional databases, a data object is a

data point and can be represented by a vector. In pictorial databases,

data objects are spatial. Manipulations of spatial data objects such

as spatial search and spatial computations must be implemented

with the support of proper data structures.

Spatial data objects often cover areas in multi-dimensional

9

10

spaces, not well-represented by point locations. For example, map

objects such as counties, lakes, cities etc. occupy regions of non­

zero size in two dimensions. A common operation on spatial data is

a search for all objects in an area, the search by region, such as to

implement the on clause and the at clause in a query in PSQL. This

kind of spatial search occurs frequently in computer-aided design

(CAD) and geo-data applications. Therefore, it is important to

retrieve objects efficiently according to their spatial locations.

One Dimensional Index Structures

Traditional one-d index structures are not appropriate for

performing a multi-dimensional spatial search. Structures based on

exact matching of values, such as hash tables are not useful because

a range search is required. Mapped by a hash function, the spatial

positions of data objects no longer exist in a hash table. Structures

using one-dimensional ordering of key values, such as sorted linear

table, binary search trees, 8-trees and the variations to binary trees

[Knut73] and to 8-trees [Come79], do not work because the search

space is multi-dimensional.

A data object with more than one key can be indexed with a one­

dimensional index if all its keys are concatenated into one. A

concatenation of keys is equivalent to an arrangement of keys with

the choice of one key to be the primary key and the others to be

auxiliary in some order. In this way, a data object is considered as

one-dimensional although it has more than one key.

11

Multi-Dimensional Index Structures

The multi-dimensional binary search tree (k-d-tree) was

introduced by Bentley [Bent75]. The k-d-tree is a natural

generalization of the binary search tree to handle the case of a

single record having multiple keys. Every key of a data record

matches the dimensional position of the record in a k-dimensional

space. Each key of a record is considered as the value of the

corresponding coordinate. The multi-dimensional binary search tree

supports associative searching, thereby dealing with a multiplicity

of keys. In 1979, Bentley discussed the variations of k-d-trees and

the applications of different kinds of associative searches on k-d­

trees in database applications [Bent79].

Since a k-d-tree can be very large as an index for many records,

an implementation of a k-d-tree on a secondary storage device is

necessary. In order to reduce disk page access, the method of

storing "close" nodes on the same disk page [Knut73] is recommended

for organizing a k-d-tree on secondary memory [Bent79]. Multi­

dimensional data objects can be indexed in the efficient and simple

data structure of a k-d-tree.

In 1981, a multi-dimensional B-tree (k-d-B-tree) was

introduced [Robi81]. The k-d-B-tree supports both an exact

matching search and a range search of multi-dimensional data

objects. Like the B-tree, the k-d-B-tree maintains its height

balance and low number of page accesses on disk. Both k-d-tree and

the k-d-B-tree are indexes for point data objects in multi-

12

dimensional space.

R-tree

In 1984, Guttman introduced an index structure, the R-tree

[Gutt84], to support search by region for non-atomic, non-zero size,

spatial objects. Search for spatial objects by region can be

performed directly on this kind of index.

An R-tree is a height balanced tree. A leaf node in an R-tree

contains entries of the form

(OlD, RECT)

where OlD refers to the tlJple of a spatial object and RECT is the n-d

rectangle bounding the object, the enclosing rectangle. A non-leaf

node contains entries of the form

(ptr, RECT)

where ptr is the address of a lower node in the R-tree and RECT is

the enclosing-rectangle of all the rectangles of the entries in the

lower node. An R-tree has the following properties:

(1) Every node is stored on one disk page and has at most M entries.

M is determined by the sizes of the disk page and the entry.

(2) Every leaf node contains between m and M entries unless it is the

root. Usually, m ~ M/2.

(3) Every non-leaf node has between m and M children unless it is

the root.

(4) The root has at least two children unless it is a leaf.

13

(5) All leaves are on the same level.

Figure 1 is an example of R-tree.

A search by region can be performed by the algorithm R_SEARCH

in Figure 2.

The R-tree structure does not restrict overlap among rectangles

of entries on the same level. When a search region is covered by

more than one 116n-leaf node, all sub-trees rooted at these nodes

must be searched. For example, when the .search region is W (Figure

3), both sub-tree A and B must be searched although no object in A

overlaps W. In some cases, even a point search requires the

searching of several sub-tre.es ..

When an R-tree is applied'.in a dynamic circumstance, the

rectangles of objects are inserted and deleted frequently.

Therefore, the organization of the R-tree is changed in every
) ' ' '

insertion or deletion. Different· methods of grouping the rectangles

in a R-tree results in different organizations of the R-tree. Figure 4

is another example of organization for the set of rectangles in

Figure 1. The shaded areas are the overlapping of the rectangles in

the same node. The more overlapping area is in an .A-tree the more

page access is possibly required in a search operation. · For searching

the R-tree in Figure 4 'by the same region W as in Figure 1 , one more

page has to be accessed. Because the organization of A-trees is

important to the performance of R-tree, Roussopoulos and Leifker

[Rous85], in 1985, presented an initial packing technique for

improving the organization of objects in an R-tree to reduce the

N
c

-I

-------------------~

(a)

(b)

Figure 1. An, R-tree

(a) 2-dimensional rectangles organized 1n
an A-tree.

(b) The correspon'ding A-tree.

14

Algorithm R_SEARCH (NODE, W)

Collect all objects intersecting the query window W in an

R-tree rooted in NODE.

81: If NODE is not a leaf, then for each entry (ptr, RECT) in

NODE check whether RECT intersects W. If ,so, 8EARCH(ptr,

W).

82: If NODE is a leaf, check all objects in NODE, and return the

objects which intersect W.

Figure 2. Algorithm R_8EARCH

number of page accesses in the search algorithm.

15

In 1987, the R+-tree, a variation of the R-tree, was introduced

by 8ellis, et al [8el187]. The R+-tree has a performance of page

access when searching that is better than that of the R-tree. R+­

trees allow no overlap among rectangles of nodes at the same level

(Figure 5). The entries in leaf nodes and non-leaf nodes in an R+­

tree have the same forms as those in an R-tree. An R+-tree has the

following properties:

:-----[]---------:
I 0

I M '
I I L I

I

I
I

c
-----------~-------J

Figure 3. A Search Window in an R-tree

Search window W intersecting both rectangle
A and B.

16

B

I

~-L--.IJ

N

I

--... ---- - - -~

(a)

(b)

Figure 4. A Poorly Organized R-tree

(a) 2-dimensional rectangles organized 1n
an R-tree.

(b) The corresponding R-tree.

17

(1) For each entry (ptr, RECT) in a non-leaf, the sub-tree rooted at

the node pointed to by ptr contains rectangle R if and only if R is

covered by RECT. The on.ly exception is when R is a rectangle at a

leaf node. In that case, R must just overlap with RECT.

(2) For any two entries (ptr1, RECT1) and (ptr2, RECT2) of an non­

leaf node, the overlap between RECT1 and RECT2 is zero.

(3) The root has at least two children unless it is a leaf.

(4) All leaves are on the same level.

The algorithm R_SEARCH in Figure 2 can be applied directly to

search in an R+-tree by region.

18

Searching on R+-tree has a page access complexity lower than

on an R-tree. But, to organize an R+-tree requires more complicated

algorithms of dividing and grouping rectangles. As in R-trees, a

poorly organized R+-tree results in more page accesses for the

searching algorithm. Figure 6 shows an R+-tree indexing for the

same set of rectangles as in the Figure 5. The height of the R+-tree

in Figure 6 is greater than in Figure 5 because of a poor

organization of the tree.

In 1989, a variation of the R+-tree, the Cell tree, was

introduced by Gunther [Gunt89]. The structure of the Cell tree is

similar to that of the R+-tree but the manner of enclosing data

objects and grouping entries into nodes is different. Instead of

using the minimum rectangles in the R+-tree, the Cell tree uses

convex to enclose data objects and to divide and cover data space.

19

The building of ··an optimally organized A-tree or A+-tree

requires a combinational algorith~. To make ·a well-organized A­

tree or A+-tree in a tractable method, some algorithms to build the

semi-optimal A-tree or A+-tree · were introduced

[Gutt84][Aous85][Sell87]. All of these algorithms require a large
'' ' '

amount of running time and a ·large number of_ page accesses.

The pe.rformances · of ·search algorithms. for both A-trees and A+-
,- '

trees were analyzed and compared in 1987 [Falo87a][Falo87b).

Aoussopoulos et .cil proposed A+-tree to be the index in. Pictorial'
'

Structured Query Language (PSQL) to support a. direct spatial search
' '

' '

[Aous88). In· 1989, Goodman et al discussed the work to invent new

languages and to extend existing languages in ·semantics for

knowledge-based computer visioQ managemen~ systems [Good89]. In
' '

their paper, A-tree nodes are used as the type of data records to
•'

index the topology fields on the bounding boxes on a logarithmic

time. However, just as Grosky and Mehrotra said, "Except for the ·

design .of. A-trees .. : , database designer~ have not conce!'ltrated -on

designing efficient access methods for image databases [Gros89]."

\
:------[0 --1-l]
8 : G :

~_A_--q_--~---a
r-----o---------1 '

' ' ' M
I I L '

N
c

-------------------~

(t:l)

(b)

Figure 5. An R+-tree

(a) 2-dimensional rectangles organized in
an R+-tree.

(b) The corresponding R+.:tree.

20

r.·-----n~r-c- ~-----i ~---_ ~--~ -!
ill bj:------fi{l-- 8 ~- ¥1 ~- :_ i

I CQ II u .
p

N

A ~~ .
II

r-i-----. II
II
II

T
II

M li L I ___________ _
I ..,__ _ __._,
I

' '

I

---L-------'

(a)

(b)

Figure 6. A Poorly organized R+-tree

(a) 2-dimensional rectangles organized 1n
an R+-tree.

(b) The corresponding. R+-tree ..

21

CHAPTER Ill

INDEX BY DIMENSIONAL PROJECTION

Introduction

The existing index structures supporting direct search spatial

objects by region, R-trees and R+-trees, have some disadvantages:

(1) R-trees do not restrict the overlap among rectangles of nodes on

the same level. When a search region is covered by more than one

non-leaf node, all the sub-trees rooted at these nodes must be

accessed. Search efficiency degrades.

(2) R+-trees allow no overlap among rectangles of nodes on the

same level. Although search efficiency is higher than searches of R­

trees, the algorithms for splitting and grouping rectangles while

organizing an R+-tree are much more complicated as well as more

complex.

(3) Entries in the node of either an R-tree or an R+-tree are

unsorted. Search of an entry in such a node requires a linear ,search.

(4) In dynamic circumstances, the search efficiencies of either an

R-tree or an R+-tree might degrade seriously if no optimization is

applied. The optimization for an R-tree or for an R+-tree requires

combinational operations and is an NP problem.

The proposed index structure for spatial objects, Index by

22

23

Dimensional Projection (IDP), has a performance of page access

when searching that is better than that of the R-tree and similar to

that of the R+-tree and even better in the cases of small page sizes.

Its performance in terms of time for searching an entry within a

page is much better than those of the R-tree and the R+-tree.

Terminology

A Boolean function, COVER(arg1 ,arg2) is true if both arg1 and

arg2 are n-d rectangles and arg2 is included in arg1, or, arg1 is an n-d

rectangle and arg2 is a segment (or a point, a zero-size segment) on

the ith axis and arg2 is included in the projection of arg1 onto the ith

axis, for 0 < i s; n, otherwise COVER(arg1, arg2) is false.

A Boolean function INTERSECT(arg1 ,arg2) is true if both arg1 and

arg2 are n-d rectangles and there is at least one point within both

arg1 and arg2, or,. arg1 is an n-d rectangle and arg2 is a segment on

the ith axis, and there is at least one point in both arg2 and also rn

the projection of arg1 onto the ith axis, for 0 < i s; n, otherwise,

INTERSECT(arg1 ,. arg2) is false.

Points, p1 and p2, on the ith axis are Equally Covered Points

(ECP) if for every rectangle R in the data space, either COVER(R, p1)

and COVER(R, p2) are both true or are both false.

A segment, S, on the ith axis is a Maximum Constantly Covered

Segment (MCCS), if any pair of points P1 and P2 on S are ECP, and,

there exists no such a segment S1 adjacent to S that every pair of

points pa, on S, and p4, on S1, are ECP. An MCCS is the largest

24

segment which covers consecutive ECP. MCCSs on an axis are

disjoint and consecutive. In Figure 7(a), the four 2-d objects: A, B,

C and D, is projected to the 1st axis. This projection results in 8

MCCSs, from Mo to M7

If the rectangles in an n-d data space, [lb1, ub1, lb2, ub2, ... , Ibn,

ubn), are projected onto the axis of the first dimension, then the axis

is divided into MCCSs. If the number of the MCCSs is k and each of

these MCCSs is represented by a segment [Mii, Mu1), 1 ~ i ~ k, then the

data space can be divided into k sub-spaces. Each of these sub­

spaces is occupied by the rectangle [Mii, Mui, lb2, ub2, ... , Ibn, ubn), for

1 ~ i ~ k, correspondingly. For example, there are 8 sub-spaces, [Mik,

Muk, lb2,ub2), for 0 ~ k ~ 7, in Figure 7(a). These sub-spaces are said

to be 1-order sub-spaces denoted by sub 1 -spaces, because they are

generated from dividing an original data space by the MCCSs on the

1st axis. A subi-space can be di~ided into subi+1-space by the MCCSs

which are generated from the projection of the subLspace with all

rectangles intersecting it onto the (j+ 1)st axis, 1 ~j<n. For example,

one of the sub1-space in Figure 7(a), M4=[MI4, Mu4, lb2,ub2), is further

projected onto the 2nd axis. Then, 7 sub2-spaces are generated as

shown in Figure 7(b), each' of which is [MI4,Mu4, Ml4k, Mu4k), for

O~k~6. on the assumption that the MCCS M4k is [M14k, Mu4k). The

numbering method for axes in this thesis is based on the ordering of

projections, thus,each MCCS on the ith axis corresponds to a sub1-

space. The whole data space is the sub0-space. After n steps of

divisions, all the resulting sub"-spaces are called Maximum

The 2nd Dimension

I s I l
I

I

c I oj
I

I I
I I
I I

The 1 st Dimension

I

Mo M1 Mz M3 Mq. Ms Me. M1

(6)

The 2nd Dimension

------------r----~ ~ I I I
I ' A I

---------~--L• --~---J
~-----------1 :

- -I- 8 -.-------1------l (___ J ______ _. I
I I I

------~----~-~---~ I I I I I
I I I I D I
I I 1 I I

------~------r---+----1 I

I c I l
------~~~----~

I I
I I

The 1 st Dimension
I I

' I

(b)

Figure 7. The Projection of a 2-dimensional Space

(a) The projection onto the first axis.
(b) The projection of a sub1-space onto

the second axis.

25

26

Constantly Covered Rectangles (MCCR). The 7 sub2-spaces,

[MI4,Mu4, Ml4k, Mu4k), for Q:s;;k:s;;6 (see Figure 7(b)), are MCCRs because

n=2.

Structure

An IDP consists of n-1 stages (from the 1st stage through the

(n-1)st stage) of Intermediate Projection trees (IP-trees) and one

stage (the nth stage) of Terminal Projection trees (TP-trees).

An IP-tree on the ith stage. indexes the MCCSs generated from

the projection of the rectangles intersecting a sub'-1-space onto the

ith axis, for 1 ::::;; i < n. Because an MCCS on the ith axis is

corresponding to a subi-space, the IP-tree on the ith stage is the

index for these subi-spaces. The IP-tree in Figure 8(a) corresponds

to the index for the MCCSs resulting from the projection of data

space (the sub0-space) onto the first axis as shown in Figure 7(a).

Each of these subi-spaces is projected further onto the axis of

the (i+ 1)st dimension, then each of these projections results in a

new set of subi+1-spaces. Each ·set of the subi+1-spaces from a

projection of a subi-space are indexed by a corresponding I P-tree on

the (i+ 1)st stage. The generated subi+1_spaces are divided by the

projection onto the next axis and indexed by the IP-trees on the next

stage, and so on, until the subn·2-spaces are projected onto the

(n-1)st axis. Then the subn·1-spaces are projected on the nth axis

and divided into MCCRs. Each of these projections onto the nth axis

27

corresponds to a TP-tree. A TP-tree indexes all the intersections of

objects with the MCCRs. In Figure 7(b), the sub1-space

corresponding to M4, [MI4, Mu4,lb2, ub2) in Figure 7(a) is projected on

the 2nd axis (the nth axis in the 2-d space). This projection results

in seven MCCRs. The intersections of the objects with these MCCRs

are indexed by the TP-tree. in Figure 8(b). Because the TP-tree in

Figure 8(b) is the index for the further projection of the sub 1-space

corresponding to M4, the TP-tree is pointed to by the entry of M4 in

the leaf node of the IP-tree in Figure 8(a). The relationship of the

IP-trees and the TP-trees are shown in Figure 8(c).

I P-tree

An IP-tree is an instance of a B+-tree [Come79][Knut73]. An IP­

tree on the ith stage corresponds to the projection of a subi-1-space

onto the ith axis and indexes the MCCSs result from this projection.

An IP-tree has the following properties.

(1) An entry of a node N is corresponding to a segment on the ith

axis. The form of an entry is

(P, G)

where P is a pointer to a sub-IP-tree if N is a non-leaf node,

otherwise, P is pointing to an IP-tree on the (i+ 1)st stage if i < n-1

or to a TP-tree if i = n-1. The value of G is the value of the starting

point of the segment corresponding to this entry. Namely, in a leaf

node, G corresponds to a MCCS; in a non-leaf node G corresponds to

the smallest segment covering all segments in the node pointed to

~~···~

pointing to TP-trees

(8)

(b)

/ : E,....pty MCCR

The IP-tree on
the 1 st stage

The lp-trees on
the 2nd stage

~ L The TP-trees on
the nth stage

(c)

28

Figure 8. The IP-tree and the TP-tree

(a) The IP-tree corresponding to Figure 7 (a).
(b) The TP-tree corresponding to Figure 7 (b).
(c) The relationship of the I P-tree and the

TP-tree.

29

by P. For example, the values of the entries of the IP-tree in Figure

8(a) are shown in Figure 9(a), if Mi is represented by [MI1, Mu1), for 0

:::;; i :::;;7.

(2) A node of an IP-tree has at most M entries and is stored in one

disk page.

(3) A node of an IP-tree has at least m entries unless it is a root,

where m = (M+ 1)/2. If it is a root, it has at least 2 entries unless it

is a leaf.

(4) All leaf nodes of an IP-tree appear on the same level.

(5) An entry (P, G) exists in a leaf node of an IP-tree at the ith stage

if and only if there is an MCCS which starts at G on the ith axis and

is generated by the projection corresponding to the IP-tree. All

entries in leaf nodes are sorted in ascending order on the values of

Gs.

(6) A leaf node of an IP-tree has two pointers, LEFT and RIGHT. They

point to the left and the right neighbor leaf nodes respectively. Leaf

nodes of an IP-tree form a doubly linked Sequential List.

TP-tree

A TP-tree is an instance of a B+-tree [Come79][Knut73]. A TP­

tree is an instance of the B+-tree. A TP-tree corresponds to the

projection of a subn-1-space onto the nth axis and indexes the

intersection of objects with MCCRs generated from the projection.

A TP-tree has the following properties.

I±] Entry form

pointing to TP-trees

(e)

M4 I±]
lo~o I

/

(b)

Figure 9. The Values of the Nodes in the
I P-tree and 'the TP-tree

An entry in
a non-leaf

An entry
in a leaf

E ptyMCCR

(a) The values of the nodes in the I P-tree
corresponding to Figure 8 (a).

(b) The values of the nodes in the TP-tree
corresponding to Figure 8 (b).

30

(1) An entry in a leaf node of a TP-tree represents an MCCR and an

object covering the MCCR. The entry is in the form of

(OlD, G)

31

where OlD is the identifier of the data tuple of an object covering

the MCCR, and the value of G is equal to the lower boundary in the

nth dimension of the MCCR (i.e. the starting point of an MCCS on the

nth axis). An entry (OID,G) exists in a leaf node of a TP-tree if and

only if there is an object with the identifier OlD covering an MCCR

which is generated by the projection corresponding to the TP-tree

and has the lower boundary equal to G in the ith dimension. An

empty MCCR has an entry with a dummy OlD. For example, the

values of the entries of the TP-tree in Figure 8(b) are shown in

Figure 9(b), if M4k is represented by [M14k, MU4k), for 0 :::;; k :::;; 6.

(2) An entry in a non-leaf node of a TP-tree corresponds to a

segment on the nth axis and is in the form of

(P, G)

in which the value of G is the smallest value of the Gs in the sub­

TP-tree pointed to by P (see Figure 9(b)).

(3) A node of a TP-tree has at most M entries and is stored in one

disk page.

(4) A node of a TP-tree has at least m entries unless it is a root,

where m = (M+ 1)/2. If it is a root, it has at least two entries unless

it is a leaf.

(5) A leaf node of a TP-tree has two pointers, LEFT and RIGHT. They

point to the left and the right neighbor leaf nodes, respectively.

Leaf nodes of a TP-tree form a doubly linked sequential list.

(6) All leaf nodes of a TP-tree are on the same level.

(7) All entries in a leaf node are sorted in a non-descendent order

on the values of G.

32

The entries with the same value of Gs in leaf nodes are stored in

consecutive positions in the sequential list and form a u n ito rm

list corresponding to an MCCR. For example, the entries, C and D,

corresponding to M42 in Figure 8(b) is a uniform list (also see Figure

9(b)).

Al~orithms

Using methods reminiscent to those used for B+-trees, a

topdown search in an IP-tree and a TP-tre,e is guided by the sorted

values of Gs. A horizontal search is along the sequential list

through leaves. After an insertion or a deletion, either a split(s) or

a merge(s) is(are) applied to some nodes to keep the number of

entries within the upper and lower limits and to keep the height of

the tree balanced.

Search

The searching algorithm collects all objects which overlap a

search region. The algorithm SEARCH in Figure 10 does not change

anything in an IDP. As the necessary parameters, ROOT is the address

of the root node of an IDP; RECT is the given search region; STAGE

Algorithm SEARCH {ROOT, S_Region, STAGE, n)

Collect all the rectangles overlap the search region from

an IP-tree or a TP-tree.

Input: ROOT, the root of an IP-tree or a TP-tree.

S_Region, the search regio'n. STAGE, the stage number

(dimension number) of. the IP-tree or the TP-tree. n, the

number of dimensions of the space.

Output: Return RESULT, a set of all the rectangles

intersecting the search region.

S1. RESULT <- empty set

S2. Find the rightmost entry, E, among all entries of leaf

nodes with value of Gs smaller than RECT.ubsTAGE.

S3. Scan the sequential list leftward from E. For every entry

E i, let Si be the segment of Ei and do S4 if

INTERSECT(S_Region, Si) is true.

S4. If STAGE= n then add Ei.OID into RESULT,

else add SEARCH (Ei.P, RECT, STAGE+1, n) into RESULT.

S5. Return (RESULT)

Figure 10. Algorithm SEARCH

33

34

is used to discriminate which stage of the IT-tree or the TP-tree

being searched, and the value of STAGE is set to be 1 before the

whole search; n is the number of dimensions of the space. All these

parameters are considered unchanged during search. When SEARCH

returns, a set RESULT contains the identifiers of objects each of

which corresponds to an object if and only if the object intersects

the search region.

Calling the algorithm SEARCH with the value STAGE=1 leads to

searching from the root of the IP-tree on the first stage. Since the

entries in a node of an IP-tree or a TP-tree are sorted by the values

of Gs, then an MCCS identified by a G can be found by a top-down

search within an IP-tree or a TP-tree, which is similar to that in a

B+-tree. All MCCSs intersecting· the search region are stored

consecutively on the sequential list. Recursively searching each

tree on the stage STAGE+1 conducts searching at a lower stage.

When STAGE = n, a TP-tree is reached. Objects intersecting the

search region are stored consecutively in leaf nodes.

Insertion

The algorithm INSERT in Figure 11 inserts an object OBJ into an

IDP rooted at ROOT. The parameters STAGE and n have the same

meanings as in algorithm SEARCH. OBJ, STAGE and n are unchanged

during insertion. ROOT might be changed if a split of node happens

to it. In this case, the address of a new root replaces the previous

Algorithm INSERT (ROOT, OBJ, STAGE, n)
Insert an object into an IP-tree or a TP-tree.
Input: ROOT, the root of an IP-tree or a TP-tree. OBJ, the

spatial object to be inserted. STAGE, the stage the IP-tree or
the TP- tree is on. n, the number of dimensions of the space.

11. If ROOT is a leaf, then go to 13, else, for every entry Ei in
ROOT, let Si be the segment of Ei and INSERT(ROOT.Ej.P,OBJ,
STAGE, n) if INTERSECT(OBJ.RECT, S1) is true.

12. Go to 17.
13. If STAGE = n, go to 16, else for every Ei in ROOT, let Mi be

the MCCS of Ei and do 14 if INTERSECT(OBJ.RECT,Mi) is true.
14. If COVER(OBJ.RECT, Mi), then INSERT (Ei.P, OBJ, STAGE+1,

n), else replace the MCCS of Ei by a fully covered MCCS, M',
and one or two disjointed MCCSs, duplicate the descendant
tree(s) of Mi to attach to every replacing MCCS. Let Ei' be
the entry of M', INSERT(E1'.P,OBJ,STAGE+1 ,n).

15. Go to 17.
16. For every uniform list Ui with an entry in ROOT, let Mi be

the MCCR of Ui, if COVER(OBJ.RECT,M1), then add an entry of
OBJ into Ui providing OBJ is not already in Ui, else if
INTERSECT(OBJ.RECT, Mi), replace Ui by a fully covered
uniform list and one or two disjointed uniform lists. Put
the same collection of objects as that of Ui into each of
the replacing uniform lists. Add an entry of OBJ into the
fully covered uniform list.

17. If the number of entries in a node is greater than M after
insertion, split the node, adjust value of Gs and propagate

splits upward if necessary.

Figure 11. Algorithm INSERT

35

36

value of ROOT.

Calling algorithm INSERT with the value STAGE=1 inserts an

object, OBJ, into the IDP from the root of the IP-tree on the first

stage. The object is in the form of (OlD, RECT), where OlD is the

identifier of the data tuple of the object and RECT is the bounding

rectangle of the object. The object is inserted into every lower tree

or the subtree corresponding a segment S, if INTERSECT(RECT, S) is

true. An MCCS, M', in an IP-tree, may not be fully but partially

covered by OBJ, that is, INTERSECT(RECT, M') is true but

COVER(RECT, M') is false. A partially covered MCCS is replaced by a

fully covered MCCS and one or two disjointed MCCSs, which tightly

cover the original MCCS. The pointer in the entry of each new MCCS

points to a copy of the descendent tree(s) of the original MCCS.

Next, the object is inserted into the descendent tree(s) rooted by the

fully covered MCCS. When STAGE = n, a TP-tree is reached. The

object is inserted into every uniform list whose MCCR is covered

fully by OBJ. Similar to the cases of IP-trees, a uniform list

covering the upper or the lower boundary of OBJ may not be fully, but

partially, covered by OBJ. In this case, the uniform list is replaced

by a fully covered uniform list and one or two disjointed uniform

lists. Each of the replacing uniform lists has the same collection of

objects as the original uniform list. OBJ is put into the fully

covered uniform lists.

37

Deletion

The algorithm DELETE in Figure 12 deletes an object OBJ from an

IDP rooted at ROOT. The parameters STAGE and n have the same

meanings as in algorithm SEARCH. OBJ, STAGE and n are unchanged

during deletion. ROOT might be changed if a mergence of nodes

happens to the only two child nodes of ROOT. In this case, the

address of a new root which contains the entries in the two children

of ROOT, replaces the previous value of ROOT.

Algorithm DELETE proceeds in a manner similar to INSERT but

has the opposite function. It deletes an object by removing all

entries with OlD of the object from the uniform list whose MCCR is

covered by the object. After the removal of OBJ, two original MCCSs

in an IP-tree (or two original uniform lists in a TP-tree), which are

located adjacently and separated by the lower or the upper boundary

of the deleted object may have the same collection of objects. In

this case, the algorithm removes one of the two MCCSs (or uniform

lists) and enlarges the remaining MCCS (or uniform list) to cover the

previous two MCCSs (or uniform lists) tightly.

The program for inplementation of Algorithm SEARCH, Algorithm

INSERT and Algorithm DELETE is ,listed in APPENDIX.

Algorithm DELETE (ROOT, OBJ, STAGE, n)
Delete an object from an IP-tree or a TP-tree.
Input: ROOT, the root of an IP-tree or a TP-tree. OBJ, the

object to be deleted. STAGE, the stage the IP-tree or the TP­
tree is on. n, the number of dimensions of the space.

D1. If ROOT is a leaf, then go to D3, otherwise, for every
entry, Ei, of the segment Si, in ROOT, if COVER(OBJ.RECT,
Si), DELETE(ROOT.Ej.P, OBJ, STAGE, n).

D2 Go to D7.,

D3. If STAGE = n, go to D5, else for every entry Ei in ROOT,
letMi be the MCCS of Ei, if COVER(OBJ.RECT, Mi), DELETE(E,.P,

OBJ, STAGE+1, n).
D4. Compare the two MCCSs separated by OBJ.IbsTAGE and

compare the two separated by OBJ.ubsr AGE. If they
correspond to the same collection of objects, remove the
MCCSs which start at the separating points and remove all
their descendant trees. Go to D7.

D5. For every uniform list Ui with an entry in ROOT, let M,' be
the MCCR of Ui and if COVER(OBJ.RECT, Mn, remove OBJ
from Ui.

D6. Compare the two uniform lists separated by OBJ.Ibn and
compare the two separated by OBJ.ubn. If they have the
same collection of objects, remove the uniform lists
which start at the separating point.

D7. If the number of entries in a node is fewer than m after
removing, merge it with its neighbor node, adjust value of
Gs and propagate mergences upward if necessary.

Figure 12. Algorithm DELETE

38

CHAPTER IV

TIME COMPLEXITIES OF IDP

The time complexity of the IDP algorithms is analyzed in two

aspects: the time required for page access and the time required for

searching within a page.

In the analysis of the performance related to page access, the

page access required for an search operation on IDP is discussed. In

the analysis of the performance related to time for searching within

a page, the number of comparisons for searching an entry within a

page is discussed.

Page Access of Search in an IDP

Search by a Point Region

The number of pages accessed is the number of nodes accessed

in the IP-trees and TP-trees because every node of an IP-tree or a

TP-tree is stored on one disk page. The page access in a search is

the function of not only the number and the distribution of objects in

a data space but also the size and the position of the search region.

In this paper, the analysis of page access proceeds for the cases of

point searches only. A point search is a search on a point region. A

point region overlaps one MCCS on each stage because MCCSs are

39

40

disjoint.

All objects containing the search point are stored in one

uniform list in the sequential list of a TP-tree. The pages accessed

for a point search are the sum of the heights of trees on every stage

in the search path, plus the pages accessed for scanning a uniform

list.

Page Access of Search by a Point Region in an IDP

For an IP-tree, the number of total entries of leaf nodes is the

number of total MCCSs.

Whi,le adding an object into the data space, the bounding

rectangle of the object is projected to be segments on each axis.

The starting point or the end point of the segment of the projection

is either within an existing MCCS and it splits the MCCS into two, or

it falls at a boundary of an existing MCCS so it does not create a new

MCCS. Thus, inserting an object (projecting an object onto an axis)

may increase the number of MCCSs by 0, 1 or 2.

By the definition of MCCS, a projection of an empty space

results in 1 MCCS. After loading N objects, u, the number of MCCSs

on an axis, is at most

u = 2 N+1 (E1)

2N+ 1 is the upper boundary of the number of MCCSs.

To calculate the height of an IP-tree or a TP-tree, f is denoted

to be the fan-out of a non-leaf node in an IP-tree or a TP-tree, and C

is denoted to be the capacity of a leaf node in an IP-tree or a TP-

41

tree. Namely, a non-leaf node of an IP-tree or a TP-tree has f

entries, a leaf node of an IP-tree or a TP-tree has C entries. In an

IP-tree, the number of total entries in leaf nodes is the number of

MCCSs on the corresponding axis. If u is the number of MCCSs in the

leaf nodes of an IP-tree, Hi, the height of the IP-tree is

Hi = log f (u/C)i-1 (E2)

In a TP-tree, the number of total entries in leaf nodes is the

sum of all the entries of all uniform lists. If N' be the number of all

entries in all leaves of a TP-tree, Ht, the height of the TP-tree is,

Ht = log t (N'/C) + 1 (E3)

A uniform list is the collection of the objects covering a

corresponding MCCR. When searching, a· uniform list should be

scanned sequentially from one· end to the other. The page access for

scanning a uniform list is the span of the list in pages. If L is the

length of the uniform list accessed, the number of extra pages

accessed in scanning the uniform list is (L-1)/C , where the uniform

list is assumed to have equal probability to be stored at any position

in the leaf nodes.

The page access for a point search on an IDP is

n -1

Pa = (LHi'j) + Ht+(L-1)/C ·
j=1

(E4)

where Hi'j is the height of the IP-tree on the jth stage accessed in

the search path.

42

A Space with Uniformly Distributed Data

To compare the IDP with the existing structures, the

performance of searching the IDP is analyzed in an n-d space which

is defined below as a space with uniformly distributed objects.

The data space, R, is represented by an n-d rectangle R=[sl 1 , su1 ,

sl2, su2, ... , sin, sun), where sl1 and SUi are the lower and the upper

boundaries of the rectangle, respectively, in the ith ·dimension, for 1

s; i s; n. The data space intersects a certain number, N, of object

rectangles with same size w = w1·W2· ... ·Wn, where w1 is the width

of the rectangle along the ith dimension. The distribution of object

rectangles is described below.

A super rectangle Rs = [sl1-w1. su1, sl2-w2, su2, ... , sln-Wn, sun),

which contains the data space R, is latticed with Ni+ 1 equal

intervals each of which is li = (su1-sli+Wi) I (Ni+ 1) along the ith

dimension, for 1 s; is; n. Then (N1+2)·(N2+2)· ... ·(Nn+2) scaling points,

the cross points of lattices, are generated. Each of these points

has the coordinates of (sl1-w1 +h l1, si2~W2+j2l2, ... , sln-Wn+jnln),

where 0 s; ji s; N1+ 1 and l1 = (sui-Sh+wl) I (N1+ 1), for 1 s; i s; n. Then

(N1+2)·(N2+2)· ... ·(Nn+2) rectangles of size w are put on the scaling

points by overlapping their starting points with these scaling

points, one rectangle for each scaling point, where the starting

point of a rectangle is defined to be the point with the coordinates

of the lower boundaries of the rectangle (Figure 13).

The data sp~ce, R, itself now intersects with the certain

the 2nd axis

/
the 3nd axis

.L:==7I An object LY rectangle

" The starting point

the 1st axis

Figure 130 The Starting Point of a 2-Dimensional Rectangle

The
2nd axis

N:2:+2 rectangles
in a line

1+w2 ,..........,.__
--r--------

I ,,

An Sz slice w1th
~zrectangles

Ari S1 slice with

--L--------L---~--~----~ I 1 I

-~~--~-----J----~-t----

I

I

N1 +2 rectangles
in a line

f-- ~ 1 +w1

The
'staxis ' -w:2: ,

The interval in the
2nd d1mension

Figure 14. A 2-Dim~ns\onal Data Space" with Uniformly
Distributed Objects

43

44

number, N = N1·N2· ... ·Nn, of object rectangles. Those rectangles

which does not intersect with R are considered unrelated to the data

space. Those rectangles not included fully in R are cut by the

boundaries of R and are considered to be the rectangles of their

intersections with R. Every point within R is covered by same

number of object rectangles. Figure 14 is an example of a 2-d data

space with sh =SI2=0 and su1 =SU2=1, where object rectangles are

uniformly distributed.

Let Si be the notation of a slice of the space corresponding to

the ith dimension, for 1 ~ i ~ n. An 8 1 slice is a non-empty n-d

rectangle within Rs. A slice contains all the rectangles with their

starting points on a line. along the ith dimension and has the space of

a rectangle which bounds all those rectangles it contains. For the

ith dimension, there may be more than one 8 1 slices. The space

occupied by an Si slice can be represented by the form [1 1, 1, u1, 1 , 11, 2 ,

Ui 2 , li,n, Ui,n), if k = i, then li k = sli and Ui k = sui, otherwise , ' ,,

(suk-Sik+Wk)/(Nk+ 1), for 1 ~ k ~ n (see Figure 14). The rectangles

considered as in an Si are those totally included in this Si . The

density Di at a point in an Si is defined as the number of rectangles

which are in this Si slice and cover this point. Namely, each point in

an Si slice is covered by same number, Di, of rectangles belonging to

this Si slice, for 1 ~ i ~ n. A point in the data space, R, is covered by

(D1·D2· ... ·Di-1'Di+1' ... ·Dn) Si slices. Consequently, a point in the data

45

space R is covered by D = D1·D2· ... ·Dn rectangles. D is the density of

the data space. For example, a point p in a 2-d data space is covered

by D2 slices of S1 and each slice of S1 has D1 rectangles covering p.

So a point p in the data space is covered by D = D1·D2 rectangles.

This space with uniformly distributed objects is equivalent to

the space of uniform distribution which was introduced by Faloutsos

et al [Falo87a][Falo87b]. In a special case of su1-sh =SU2-sl2= ... =

SUn-Sin, W1 =W2= ... =Wn and N1 =N2= ... =Nn, the number of objects in the

data space is N=Nin, and the density is D=Din, for 1 ~ i ~ n.

Page Access for IDP in a Uniformly Distributed Data Space

In the space with uniformly distributed data, as defined above,

the scaling points are generated by latticing the space

perpendicularly to the coordinate system. If N=N1n and D=D1n, the

number of MCCSs from projecting N rectangles onto the 1st axis or

from projecting a subi-space onto the (i+ 1)th axis is equal to that

from projecting an Si slice with· the density of D1 onto the ith axis.

According to the definition of the space with uniformly distributed

objects, this projection places Ni+2 segments on the ith axis by

staring them at the positions from sli-Wi to su1 with equal intervals.

There are just N1 segments intersect the segment [sl~,su1). There are

D1 segments containing Sli are cut by sl" and there are D1 segments

containing SUi and are cut by sui , because only the parts of segments

within the space are considered. Then, the number of MCCSs in [sl1,

SUi), denoted by Ui, varies with the overlap condition of starting and

46

end points of these segments. However, there are only two cases.

Case 1: Di is not an integer so there is no overlap of the starting

or end points of segments except the Di segments which originally

started outside of the space are cut to have the same start point at

Sli and the Di segments which originally ended outside the space are

cut to have the same end point at SUi. The number of MCCSs in case 1

is the upper bound of number of MCCS (see Equation E1) minus 2Di ,

Ui = 2Ni+ 1-2Di = 2(Ni-Di)+ 1 (ES)

Case 2: Di is a non-negative integer so every segment starts at

the position where another segment ends, except the leftmost D1

segments and the rightmost Di segments. Among the total 2Ni

starting and end points, Di starting points and Di end points are at

the upper and the lower boundaries of the space, respectively. The

remaining Ni-Di starting points and NI-Di end points overlap at Ni-DI

different positions between the boundaries and generate Ni-D1+ 1

MCCSs, i.e.,

(E6)

Substituting Equations ES and E6 into Equation E2, the height of

an IP-tree on the ith stage is,

Hii = logd(2(Ni-DI)+1)/C) +1 (E7)

in case 1, and,

Hii = logd(Ni-Di+1)/C) +1 (E8)

in case 2. Substituting Equation ES and E6 into Equations E3, the

height of an TP-tree is,

Ht =log f((2D(Nn-Dn)+1) I C)+ 1 , (E9)

in case 1, and,

Ht =log t(D(Nn-Dn+1) I C)+ 1 (E 1 0)

in case 2. Because the length of a uniform list is the density, D.

Equation E4, the total page access for a point search on an IDP is

n-1

Pa =(I,H i'j) + Ht + (D-1)/C (E 11)
j=1

where Hi'j is the height of the IP-tree on the jth stage accessed in

the search path.

47

With the same parameters, the Hii and Ht calculated by E7 and E9

are greater than by E8 and E10, respectively. So the page access

calculated by substituting Equation E7 and Equation E9 into Equation

E11 is the upper bound of page access for searching the IDP in a data

space with uniformly distributed data objects.

Page Access of Existing Structures

Faloutsos et al [Falo87a][Falo87b] analyzed the page access of

A-trees and R+-trees. In a space in which N rectangles are

uniformly distributed with an average density of D, where N = N,n ,

and D = o,n . the page accesses in searching on an R-tree and an R+­

tree are

pr = log fr (N/Cr) + (1 + 1 /k)n + (1 + 1/k/F)n - 1

pr+ = 1 + log fr (N/(Cr11n - D1fn)n)

where

(E12)

(E 13)

pr is the page access for a point search on a optimally organized A­

tree,

pr+ is the page access for a point search on a optimally organized

R+-tree,

fr is the fan-out of a non-leaf node in an R-tree or an R+-tree,

Cr is the capacity of a leaf node in an R-tree or an R+-tree,

k = Cr11n I (D11n-1),

F = fr11n .

pr and pr+ are the lower boundaries of page accesses in

searching because they are for the optimal R-tree and R+-tree.

Comparison of Page Access with Existing structures

48

In an n-d space an entry in a non-leaf node of an R- tree or of an

R+-tree contains one pointer and 2n integers to represent an n-d

rectangle, an entry in a leaf node of an R-tree or an R+-tree contains

2n integers to represent an n-d rectangle and one integer for the

identifier of an object. An entry in a node of an IP-tree or a TP-tree

contains one pointer and one integer for a G, and an entry in a leaf

node of an IP-tree or a TP-tree contains two integers for a G and an

identifier. A leaf node of an IP-tree or a TP-tree needs two extra

pointers for the sequential list.

With the assumption that the size of a pointer, an integer or an

identifier is 4 bytes, an entry of an R-tree or an R+-tree is of size

4(2n+ 1) bytes, an entry in an IP-tree or a TP-tree is of size 8 bytes.

By the assumption that every page needs 4 bytes for the page head,

the typical fan-outs and capacities of a 2-d index in the cases of

typical page size of 512 bytes and 1024 bytes are in Table 1.

49

The numbers of pages accessed in a point search in the IDP, the

R-tree and the R+-tree vary with several parameters. In

comparisons of page accesses between the I DP and existing

structures, Equation E11 in which E7 and E9 are substituted is used

for calculating the page access in searching om the IDP, and E12 and

E13 are used for the R-tree and the R+-tree, respectively. In the

calculation, one parameter is chosen to be variable and all others

fixed. The space is assumed to have N=Nin and D=D1n, 1~i~n.

From Figure 15 to Figure 20 , the two cases of page accesses of

searching in IDP by a point region are compared with the lower

boundaries of R-trees and R+-trees in point searches of 2 and 3-

dimensional spaces with uniformly distributed objects. Page size

are chosen to be 512 and 1 024 bytes.

In the spaces with low object densities of 1 ~ D ~ 10, The

performances of searching in IDP are similar to that of R+-tree and

better than R-tree in the case of 1024 byte page (Figure 15 and

Figure 16), And even better in the case of 512 byte page (Figure 17

and Figure 18).

In the spaces with high object densities of 10 ~ D ~ 80, the

performance of IDP in searching is better than that of R-tree and

R+-tree, and even better with the increase of the object density

(Figure 19 and Figure 20).

(a)

(b)

f r:

Cr:

f:

C:

TABLE 1

FAN-OUTS AND CAPACITIES OF A NODE

2-dimensional index

Page size = 512 bytes

f r (512-4)/20 = 25

Cr (512-4)/20 = 25

f (512-4)/8 = 63

c (512-12)/8 = 62

3-dimensional index:

Page size = 512 bytes

f r (512-4)/20 = 18

Cr (512-4)/20 = 18

f (512-4)/8 = 63

c (512-12)/8 = 62

Fan-out of R-tree and R+-tree.

Capacity of R-tree and R+-tree.

Fan-out of I DP.

Capacity of IDP.

Page size = 1 024 bytes

(1 024-4)/20 = 51

(1 024-4)/20 = 51

(1 024-4)/8 = 127

(1 024-12)/8 = 126

Page size = 1 024 bytes

(1024-4)/20 = 36

(1 024-4)/20 = 36

(1 024-4)/8 = 127

(1 024-12)/8 = 126

50

en 4
Cl)
en
en
Cl)
0
0

<C 3

Cl)
CL

"' a..

U) 4
Q)
en
en
Q) 3
0
0

<C
Cl) 2
C)

"' a..

1!1

•
•

0 2. 4 6 8 10

D: Density of Objects

(a)

1!1

•
1 10 100

N: Number of Objects
1000

(x1000)

(b)

Figure 15. Page Accesses as Functions of D
and N in 2-dimensional Space
(Page size = 1 024 bytes) ,

(a) N = 100,000. (b) D = 5.

The R-tree

The R+-tree

The IDP

The R-tree

The R+-tree

The IDP

51

rn 6
G)
rn
rn 5
G)
0
0
<(4

G)
a3
ca
a.

2

rn 5
G)
rn rn 4
G)
0

0 2 4 6 8 10

D: Density of Objects

(a)

~ 3.

~2
ca
a.
1+-~~~~~~~~~~m

1 10 100 1000

•
•

N: Number of Objects (x1 000)

(b)

The R-tree

The R+-tree

The IDP

The R-tree

The R+-tree

The lOP

Figure 16. Page Accesses as Functions of D
and N in 3-dimensional Space
(Page size = 1024 bytes)

(a) N = 100,000. (b) D = 5.

52

(I) 5
G)
(I)
(I)
G) 4
(,)
(,)

<C

The R-tree
The R+-tree
The IDP

0 2 4 6 8 10

D: Density of Objects

(a)

--a-- The R-tree

G) 3 .
C)

• The R+-tree

a The IDP ca
0.

1 10 100 1000

N: Number of Objects (x1 000)

(b)

Figure 17. Page Accesses as Functions of D
and N in 2-dimensional Space
(Page size = 512 bytes)

(a) N = 100,000. (b) D = 5.

53

rn 7
CD
rn 6 rn
CD
(,) 5 (,)

<C
4

CD

~3
a.

2
0

rn 7
CD
rn 6 rn
CD
(,) 5
(,)

<C
4

CD
1:»3 as
a.

2
1

N:

a a a a a -a

2 4 6 8 10

D: Density of Objects

(a)

10 100 1000

--+--
a

The R-tree
The R+-tree

The IDP

a The R-tree

The R+-tree

a The IDP

Number of Objects (x1 000)

(b)

Figure 18. Page Accesses as Functions of D
and N in 3-dimensional Space
(Page size = 512 bytes)

(a) N = 100,000. (b) D = 5.

54

en 12
CD = 10
CD
(,) 8
(,)

<C
6

CD

g»4
D..

The A-tree
The A+-tree

The IDP

2~~--~--~~~~--~~

en 20
CD en
en 15
CD
(,)
(,)

<C 10

CD as
as
D..

0

0 20 40 60 80

D: Density of Objects

(a)

0 20 40 60 80

D: Density of Objects

(b)

m The A-tree

The A+-tree

• The IDP

Figure 19. Page Accesses as Functions of D
(Page size = 512 bytes,

N = 100,000)

(a) 2-dimensional space,
(b) 3-dimensional space.

55

en 7
C1)

~ 6
C1)

CJ 5
CJ

<C
4

C1)

g'a
c.

1!1

•

The R-tree

The R+-tree

The IDP

2+-~--~~~r-~~--~~

0 20 40 60 80

D: Density of Objects

(a)

en 12
C1)

en 10 en
C1)
CJ'
CJ 8

<C
6 -a- The R-tree

C1)
C)

4 co
c.

• The R+-tree

• The IDP

2
0 20 40 60 80

D: Density of Objects

(b)

Figure 20. Page Accesses as Functions of D
(Page size = 1024 bytes,

N = 100,000)

(a) 2-dimensional space,
(b) 3-dimensional space.

56

57

The performance of searching in IDP is not so sensitive to, the

page size as the R-tree and the R+-tree. Figure 21 shows the page

access as the function of page sizes in 2-d and 3-d spaces. The page

size varies from 256 bytes to 2048 bytes. The object density, D, is

fixed to be 5, and the number of objects, N, is fixed to be 100,000.

The performance of searching in the IDP is much better than the A­

tree and the R+-tree when the page size is small.

Time for Searching an Entry within a Page

In addition to the 'time required for a page access in an

operation on an index system, the time required by the CPU to

process a page of data is another important criterion. Although a

page accessing may be more time consuming, the processing of the

data in a page may require more CPU time. It is common that CPU

time is a more popular performance measure, especially in some

multi-user system.

In either an IP-tree or a TP-tree, the entries in a node are

sorted on the values of their Gs. Searching an entry among M entries

in a node requires log2M comparisons on the average if the binary

search method is employed.

The entries in a node of an R-tree or an R+-tree are unsorted.

When process a page in search on an R-tree, all entries must be

accessed even in a point search because rectangles of entries in a

node of an R-tree can overlap each other. In the case of an R+-tree,

en 6
CD
en
en 5
CD
(.)
(.)
<(4

CD
a3
ca
c.

2

en 8
CD en 1
en
CD 6
(.)
(.)
<(5

CD 4
a
ca 3
c.

0 512 1024

Page Size
1536

{Byte)

(a)

2048

1:1 The A-tree

The A+-tree
a The lOP

a

The A-tree

The A+-tree
The lOP

2+-~--~~~--~~----~

0 512 1024 1536 2048

Page Size {Byte)

(b)

Figure 21. Page Accesses as Functions of
Page Size

0 = 5, N = 100,000,
(a) 2-dimensional space,
(b) 3-dimensional space.

58

59

a linear search is necessary also. For a search by a non-point region,

every entry in a node of an R+-tree should be checked to determine

whether the entry overlaps the search region. For a point search,

only one entry in a node of an R+-tree can overlap the point search

region. The searching among the entries in a node of an R+-tree

stops when an entry containing the point search region is found. But

the point search region might be in a position which is not covered

by any entry in a node. In this case, every entry should be checked.

When a linear search is applied and every entry in a node has the

same possibility to contain the point search region,' if the

possibility of the point search region not being covered by any entry

is zero, the average number of entries to be checked in a page is

O.SM. otherwise, the average number of entries to be checked is

greater than O.SM. In the worst case, the number of entries to be

checked is M, just the same as that of the R-tree.

To determine whether an entry of R-trees or R+-trees overlap

with the search region requires the comparison of upper and lower

boundaries in every dimension of the n-d space. The CPU time

required is 2nM for processing a page when search in a R-tree or

non-zero (or non-unit) region search in an R+-tree, and is equal to or

greater than nM in average when a point search in an R+-tree, where

M is the number of entries in the node being searched, n is the

number. of dimensions of the space.

If a node of an IDP, an R-tree or an R+-tree is stored on a disk

60

page of size 512 bytes or 1024 bytes, the number of the comparisons

for processing a page in a point search are in Table 2, in which the

numbers of the entries in the nodes of an IDP, an R-tree and an R+­

tree are the fan-outs of these nodes are from Table 1. In the worst

case, the IDP and the R-tree retain their numbers of comparisons

shown in Table 2, but the numbers of comparisons of the R+-tree

become as large as those of the R-tree.

TABLE 2

NUMBER OF COMPARISONS IN SEARCHING
AN ENTRY WITHIN A PAGE

IDP R-tee

2-dimensional index

page size = 512 bytes :s;log263 < 6 2·2·25 = 100

2-dimensional index

page size = 1 024 bytes :s;log2127 < 7 2·2·51 = 204

3-dimensional index

page size = 51 2 bytes :s;log263 < 6 2·3·18 = 108

3-dimensional index

page size = 1 024 bytes :s;log2127 < 7 2·3·36 = 216

R +-tree

~2·25 =50

~2·51 = 102

~3·18 =54

~3·36 = 108

CHAPTERV

OPTIMIZATION OF ORGANIZATION

In the above comparison of page accesses, the IDP is assumed to

be fully loaded and the R-tree and the R+-tree are supposed to be

fully loaded as well as organized optimally. With the assumption of

full load, the utilization of a memory page (the slots for entries) is

100%. Full utilization of memory decreases the heights of trees.

Besides the full utilization of memory, an optimally organized A­

tree must have at least the minimum coverage and overlap of nodes,

and an optimally organized R+-tree must have at least the minimum

coverage of nodes and the minimum splits of objects

[Rous85][Sell87].

Partial Load of Pages

Practically, in dynamic circumstances, memory utilization

might be lower than 100% after insertion or deletion operations

because of an entry removal or a node split.

A node in an IP-tree, a TP-tree or an R-tree always has a

memory utilization between m/M and 1. As instances of 8-trees or

B+-trees, these trees have the average memory utilization of at

least 70% [Knut73].

An R+-tree does not have the lower and the upper limit of

61

entries in a node. The utilization is lower than 70%. Sellis, et al

claimed that the memory utilization of the R+-tree is about 60%

which is like that of a k-d-B-tree

62

[Falo87a][Falo87b][Robi81][Sell87]. Because partial load of pages

increases the height of lOPs, A-trees and R+-trees, more pages

might be accessed in searching algorithms. In the. cases of partial

load, the performance of page access in searching in an IDP is not so

sensitive as an R-tree or an R+-tree. Figure 22 shows the page

accesses as functions of memory utilization. With the memory

utilization less than 100%, the IDP has smaller degradation of

search performance with memory utilization decrease than those of

the R-tree or the R+-tree.

The algorithm COMPRESS in Figure 23 optimizes an IP-tree or a

TP-tree to be fully loaded.

Organizational Optimization

Because all entries in a node of an IP-tree or a TP-tree are

ordered, optimizing IP-trees and TP-trees to fully loaded requires

only compressions of the nodes. A compressed IDP have the

performance of searching as discussed in Chapter IV.

To compress an IP-tree or a TP-tree need no extra sorting. All

the processing is along the scanning of entries on the same level.

This is a linear complexity in every level. A parent level has 1/C or

1 /f entries of its child level. So the total number of entry moving is

63

a the sum of a geometric series with a ratio less than 1 and is linear

complexity. Obviously every page is accessed only once during

compress. The page access for compression is linear too. An

insertion or a deletion of an object only chang~s some of the IP­

trees and the TP-trees in an lOP. The optimization required after an

insertion or a deletion may be only a local process(es) and can be

performed during that insertion or deletion.

In order to maintain the performances of R-trees and R+-trees

in searching, some methods to optimize R-trees and R+-trees are

necessary in the insertion and/or deletion algorithms, or applied

periodically. To optimize R-trees and R+-trees to have the

performances in searching, which is discussed in Chapter IV,

requires a combinational algorithm. Because,

the criteria for optimization of an R-tree include at least,

(a) minimal total coverage of organized rectangles,

(b) minimal overlap among rectangles on the same level,

(c) maximal memory utilization,

and, the criteria for optimization of an R+-tree include at least

(a) minimal total coverage of organized rectangles,

(b) minimal number of rectangle splits,

(c) maximal memory utilization [Rous85][Sell87].

To fulfill all the criteria is obviously an NP problem. Even fulfilling

one of the criteria (a) and (b) of the R-tree or (a) and (b) of the R+­

tree requires combinational operations. Fulfilling only one of the

criteria cannot improve an R-tree or an R+-tree to have the

U) 6
Q)
U)
U)

Q) 5
(,)
(,)
<(

Q) 4
C)
m
0.
3+-~-r~~~~r-~~~~

tn 5
Q)
U)
U)

~ 4
(,)
<(

Q) 3
C)
m
0..

0.5 0.6 0.7

Memory
0.8 0.9

Uti I ization

(a)

1.0

24-~~~~~~~~~~~

0.5 0.6 0.7

Memory
0.8 0.9 1.0

Utilization

(b)

•
a

a

The R-tree

The R+-tree

The IDP

The R-tree

The R+-tree
The IDP

Figure 22. Page Accesses as Functions of
Memory Utilization

2-dimensional space, D = 5,
N = 100,000, (a) 5128 page,
(b) 1 0248 page.

64

Algorithm COMPRESS (ROOT)

Compress an IP-tree or a TP-tree to make the memory

utilization as high as possible.

Input: ROOT, the root of an IP-tree or a TP-tree.

Output: A fully loaded IP-tree or TP-tree rooted at ROOT.

C1: Guided by the value of Gs in the nodes of the tree to find

the leftmost entry in the leftmost node. Let L point to the

node.

C2: If L = ROOT, return.

C3: Free all the storage of intermediate nodes. Scan the

sequential list from L. Adjust all entries to the left to

make all nodes on the leaf level fully loaded except the

rightmost two. These two can have fewer than M and at

least m entries. Free the storage of empty nodes. Let S be

the list of nodes on the leaf level.

C4: While S level has more than one nodes, do CS.

CS: Make a list of nodes to be the parent level of S level. Fully

load each of the nodes in the parent level except the

rightmost two. These two can have fewer than M entries

but at least m entries. Let S be the list of the nodes on

the parent level.

C6: Let ROOT be the address of the only node on S level.

return.

Figure 23. Algorithm COMPRESS

65

66

performances discussed in Chapter IV.

Instead of an NP solution, Aoussopoulos and Leifker [Aous85]

introduced a PACK algorithm. to reorganize a naturally grown A-tree.

The comparison of page access required by the packed A-tree with

the natural A-tree from Guttman's algorithm [Gutt84] by the

experimental results over 100 random searches is shown in Table 3.

Table 3 shows that optimization is very important in the use of

A-trees. The PACK algorithm is transformed as a routine in

insertion algorithm but is not in the deletion algorithm of the A+­

tree [Sell87]. So periodical optimization is important for A+-trees

if deletion happens frequently.

PACK is a non-NP algorithm but it only results in sub-optimally

organized A-trees or A+-trees because the pack algorithm only

pursue the criterion of a near minimal coverage of organized

rectangles. Even as a near fulfilling of one of the criteria, PACK

algorithm requires the sort of all rectangles by their lower

boundaries an upper boundaries for every level of nodes along every

dimension. Only for the sort of rectangles on the leave level, at

least n·Niog2N comparisons are needed, where n is the number of the

dimensions of the space, N is the number of the data objects. Page

access during a sort is unpredictable because the values being

compared can be on different pages. The cost of PACK is so high that

the A-tree and the A+-tree are suitable only in semi-dynamic

circumstances.

67

TABLE 3

COMPARISON BETWEEN NATURAL AND PACKED R-TREES
ON PAGE ACCESS IN A SEARCH

The number of Page access of R-tree Page access of R-tree
data objects from Guttman's INSERT from PACK algorithm

10 2.217 1.424

50 7.775 2.282

100 12.955 3.645

200 17.870 3.873

300 20.838 5.397

400 28.953 5.418

500 36.132 5.466

600 70.799 5.276

700 45.924 5.604

800 55.462 5.730

900 63.595 6.071

CHAPTER VI

SUMMARY AND CONCLUSIONS

Query for spatial data objects by region is required by pictorial

databases and spatial data retrieve systems. Query for spatial data

objects by region is different from the queries for traditional types

of data and can not be supported by traditional indexes. Without

indexes, a query for spatial data objects is processed very slowly.

In order to handle spatial data efficiently, as required in

computer-aided design and geometric data applications, a database

system needs an index mechanism to retrieve data items quickly

according to their spatial locations. However, traditional indexing

methods are not well suited to data objects with non-zero size

located in multidimensional space.

Two existing index structures, the A-tree [Gutt84] and the R+­

tree [Sell87], were introduced to meet these needs. Both A-trees

and R+-trees are extensions of 8-trees which maintain their

balanced heights as well as logarithmic page access.

However, either the R-tree or the R+-tree has some

disadvantages. A new index structure, the lOP, which is proposed in

this thesis, has the following advantages:

(1) The performance of page access in searching in an lOP is of

logarithmic to the number of data objects. In the spaces where data

68

69

objects are uniformly distributed, the page access in a point search

in an lOP is better than that in an A-tree and similar to or better

than that in an A+-tree, and even better when page_, size is small.

(2) The algorithmic complexity for searching for an entry in a

node of an lOP is logarithmic to the number of entries in the node. It

is less than it is in a node of either an A-tree or an A+-tree.

(3) The algorithm of organizing an optimal lOP has a time

complexity lower than that of the algorithm of organizing either an

optimal A-tree or an optimal A+-tree.

The suggested future work includes:

(1) Analysis of time complexities for search in the lOP in more

general cases and for insertion and deletion in the lOP.

(2) The implementation of lOP to the indexes of practical data

collections and the experimental analysis of the performance of lOP

in retrieval of data objects with different distributions in sizes and

positions.

REFERENCES

[Bent75] Bentley, J.L., Multidimensional Binary Search Trees Used

for Associative Searching, CACM, 18,9(Sept. 1975), 509-517.

[Bent79] Bentley, J.L., Friedman, J.H. Data Structures for Range

Search. Computing Surveys, 11.4(1979), 397-409.

[Chan81 a] Chang, S.K., Pictorial Information System: Guest Editor's

Introduction, IEEE Computer, 14, 11(Nov. 1981), 10-11.

[Chan81 b] Chang, S.K., Kunii, T.L., Pictorial Data-Base System,

IEEE Computer, 14, 11(Nov. 1981), 13-21.

[Chan81 c] Chang, N.S., Fu, K.S., Picture Query Languages for

Pictorial Data-base Systems, IEEE Computer, 14,11 (Nov. 1981).

[Come79] Comer, D., The Ubiquitous B-tree, Computing Surveys,

11, 2(1979), 121-138.

[Falo87a] Falousos, C., Sellis, T., Roussopoulos, N., Analysis of

Object Oriented Spatial Access Methods, Proc. of the ACM

SIGMOD, 1987, 426-439.

[Falo87b] Faloutsos, C., Sellis, T., Roussopoulos, N., Metaxas, D.,

Object Oriented Access Methods for Spatial Objects: Analysis

for Multi-Dimensional Spaces, UMIACS-TR-87-54 CS-TR-1940

Univ. of Maryland, Oct. 1987.

[Free89] Freeston, M. W., A Well-Behaved File Structure for the

Storage of Spatial Objects, The First Symposium on the Design

70

and Implementation of Large Spatial Database, Santa Borara,

CA., July 1989.

[Good89] Goodman, A.M., Hralick, R.M., Shapiro, L.G., Knowledge-

Based Computer Vision, IEEE Computer, 22.12(1989), 43-54.

[Gros89] Grosky, W.l., Mehrotra, R., Guests' Introduction: Image

Databases Management, IEEE Computer, 22.12(1989), 7-8.

[Gunt89] Gunther, 0., The Design of the Cell tree: An Object-

Oriented Index Structure for Geometric Databases, Proc. of the

5th International Cont. on Data Engineering, Los Angeles, Feb.

6-10, 1989.

[G utt84] Guttman, A., A-trees: A Dynamic Index Structure for

71

Spatial Searching, Proc. of the ACM SIGMOD, 1984 June, 47-57.

[Knut73] Knuth, D.E., The Art of Computer Programming, Vol.3.

Addison-Wesley Publishing, 1973.

[Robi81] Robinson, J.T., The k-d-8-tree: A Search Structure for

Large Multidimensional Dynamic Indexes, Proc. of the ACM

SIGMOD, 1981, 10-18.

[Rous85] Roussopoulos, N., Leifker, D., Direct Spatial Search on

Pictorial, Databases Using Packed A-trees. Proc. of the ACM

SIGMOD, 14.4(1985), 17-31.

[Rous88] Roussopoulos, N., Faloutsos, C., Sellis, T., An Efficient

Pictorial Database System for PSQL, IEEE Transactions on

Software Engineering, 14.5(1988), 639-650.

[Same84] Samet, H., Quadtrees and Related Hierarchical Data

Structures, Computing Surveys, 16.2(1984), 187-260.

[Same90] Samet, H., The design and Analysis of Spatial Data

Structures, Addison-Wesley Publishing, 1990.

72

[SellS?] Sellis, T., Roussopoulos, N., Faloutsos, C., The R+-tree: A

Dynamic Index for Multidimensional Objects, The 13th

International Cont. on VLDB, Brighton, 1987, 507-518.

APPENDIX

PROGRAM FOR IMPLEMENTATION OF ALGORITHMS

73

74

I*===

Program name: IDP _ALGORITHMS
Language: C

This program performs the search, insertion and deletion on an
Index by Dimensional Projection (IDP).

1. search an region:
search(region, root, 1)
region is the search region of the type 'rectangle'.
root is the soot of the whole IDP and is the type of

'*page'.
This function returns a list of identifiers of objects.
An object is in the list if and only if it overlaps
the given region.

2. insert an object into an IDP:
insert(pointer_of_root, object,1)
pointer_of_root is the pointer of the root of the

whople IDP. This pointeris of the type '**page'.
object is the object to be inserted. The type is

'object'.
3. delete an object from an IDP:

delete(root, object, 1)
root is the root of the whole IDP. The type of root

is '*page'.
object is the object to be deleted and is of the

type 'object'.
This function returns the root of the whole IDP after

the removal of the given object.
The parameters of the IDP on which the operations are applied

are set in the '#define' lines at the beginning of the program.
This program contains three auxiliary functions to output

the contents of an IDP or the result of an operation:
seqlst, output a sequential list of a TP-tree.
tplst, output the sequential lists of descendent trees.
prtolst, output a list of object from a search.

===*I

#include <rstdio.h>

#defme dim 2 I* dimension *I
#define capa 5 I* capasity of a leaf *I
#defme fanout 5 I* fanout of a non-leaf *I
#define bound 10000 I* bound of the space *I

#define IE pb.il.entry
#define NE pb.nl.entry
#define TE pb.tl.entry

struct st_nlentry I* entry of a non-leaf in IP *I {
int g; I* guide post *I
struct st_page *p; I* pointer to a child *I

};

struct st_tlentry I* entry of a leaf in TP *I {
int g; I* guide post *I
int tplid; I* tuple id *I

};

struct nleaf I* non-leaf node *I {
struct st_nlentry entry[fanout];

};

struct tleaf I* leaf in TP *I { ·
struct st_tlentry entry[capa];
struct st_page *left, *right;

};

struct ileaf I* leaf in IP *I {
struct st_nlentry entry[capa];
struct st_page *left, *right;

};

typedef struct st_page I* a page *I {
char flag;
int load;
union {

struct tleaf tl;
struct ileaf il;
struct nleaf nl;

} pb;
} page;

typedef struct st_rectangle I* n-dimensidnal rectangle *I {
int lb[dim], ub[dim]; I* lower and upper bounds *I

} rectangle;

typedef struct st_obj · I* spatial object *I {
rectangle rect; I* enclosing rectangle *I
int tplid; . I* tuple id *I

} object;

typedef struct objlist I* node for the linked list of objects *I {
int tplid; I* tuple id of the Qbject *I ,
struct objlist *next; I* the next node *I
} objlist;

I* functions in this program *I

page *splitm();
void addentry();
void putm();

75

int rightmost();
page *tpinsert();
void dupulst();
page *rebuild();
void rshift();
void dupent();
void leftentry();
void rightentry();
void addobj();
page *duplicate();
void insert();
void newroot();
objlist *search();
void prtolst();
void accobject();
page *del();
page *delete();
void deln();
void deli();
page *delt();
void rmvulst();
int sameobj();
int samelst();
void rmventry();
void mvleft();
void freesub();
objlist *collulst();
void rearrange();

FILE *fp, *ofile;

/*=====insert inserts an object into a TP-tree or an IP-tree *I

void insert(root, obj, stage) page **root; /*root *I
object obj; /*object*/
int stage; /* the stage root is at *I

{
page *brother;

if(*root==O) /*empty tree *I {
root=(page)calloc(l ,sizeof(page));
(*root)->load=2;
if(stage<dim) /* IP */ {

}

(*root)->flag='i';
(*root)->IE[O].g=O;
(*root)-> IE[O]. p=O;
(*root)->IE[l].g=bound;
(*root)->IE[1] .p=O;

else /* TP */ {
(*root)->flag='t';

76

}

}
}

(*root)-> TE[O].g=O;
(*root)-> TE[O]. tplid=O;
(*root)->TE[1].g=bound;
(*root)->TE[1].tplid=O;

if(stage<dim) {
if((brother=splitm(*root,obj,stage,1)) != 0)

}

newroot(root,brother); /*split the MCCS covers the upper bound*/
if((brother=splitm(*root,obj ,stage,O)) ! = 0)

newroot(root,brother); /*split the MCCS covers the lower bound*/

else
(*root)=tpinsert(*root,obj); fr insert into a TP tree*/

/*===== splitm splits an MCCS. If the MCCS is contains the lower bound
of the object, subsidiary operations to insert object into all covered
MCCS are invoked */ '

page *splitm(root, obj, stage, upper)
page *root; /*root *I
object obj; /* object */
int stage, upper;/* upper=1 means the split is by the upper bound */

{
char f;
int right, cutpoint, high, left, leftl, rtneib, i, m;
page *brother, *tree, *newson, *newtree, *leftnode,

*node1, *rtnode, *head;' ,

if(upper== 1)
cutpoint=obj.rect.ub[stage-1];

else
cutpoint=obj.rect.lb[stage-1];

f=root->flag; ·

if(stage<dim) /* IP */ {
right=rightmost(root, cutpoint);
left-tight; leftnode=root;
if(f=='i') /* leaf*/ {

rightentry(root,right,&rtnode,&rlneib);
if(rtnode->IE[rtneib].g=,;,cutpoint) { /*not partially covered*/

brother=();
}

else {
tree=duplicate(root->IE[right].p,&head);
if(root->load<capa) { /* has a free room */

/* pari tally covered *I
putm(root,right,cutpoint,tree);

/*duplicate lower structures*/
brother=O;

77

}

}
else { I* no free room *I

}

brother=(page *)calloc(1 ,sizeof(page));
high=(right>=capa/2)? 1: 0;
m=(capa+high)/2;
for(i=O;i<capa-m;i++) I* move half node to

the new node *I
brother->IE[i]=root->IE[m+i];

brother->flag='i';
brother->load=capa-m;
root->load=m;
brother->pb.il.right=root->pb.il.right;
brother->pb.il.left=root;
if(root->pb.il.right! =0)

root->pb.il.right->pb.il.left=brother;
root->pb.il.right=brother;
if(high==1) { I* cutpoint is in th enew node *I

putm(brother,right-m,cutpoint,tree); I* add a MCCS *I
left=right -m; leftnode=brother;
}

else { I* cutpoint is in the left part *I
putm(root,right,cutpoint,tree); I* add a MCCS *I
}

if(upper==O) { , I* MCCS is concerned with the lower bound *I
rightentry(leftnode,left,&leftnode,&left);

}

while(leftnode!=O && leftnode->IE[left].g

}

< obj.rect.ul:>[stage-1]) {
I* insert obj into every covered MCCS *I

if(leftnode!=O)
if(stage+ 1 <dim) I* into IP *I

insert(&(leftnode->IE[left].p),obj,stage);
else I* into TP *I ·

leftnode->IE[left].p
=tpinsert(leftnode->IE [left]. p,obj);

rightentry(leftnode,left,&leftnode,&left);

} I* f=='i' *I
else { I* f=='n', non-leaf *I

if((newson~splitm(root->NE[right].p,obj,stage,upp~r))
!= 0) { I* lower node splitted *I

if(root->load<fimout) {
addentry(root,right,newson);
brother=O;

}
else {

brother=(page *)calloc(1 ,sizeof(page));
high=(right>=fanout/2)? 1: 0;
m=(fanout+high)l2;
for(i=O;i<=fanout-m;i++)

brother->NE[i]=root->NE[m+i];

78

}
}

brother->flag='n';
brother->load=fanout-m;
root->load=m;
if(high==l) I* add to the right part *I

addentry(brother,right -m,newson);
else I* add to the left part *I

addentry(root,right,newson);

else I* no split *I
brother=();

}
return(brother);

} I* stage <dim *I ,
·else I* stage=dim, insert to a TP ,tree *I

return(tpinsert(root,obj));
} '

I*===== newroot makes 'oldroot' be the father of the original
'oldroot' and 'brother' *I ·

void newroot(oldroot,brother)
page **oldroot, *brother;

{

}

page *nroot;

nroot=(page *)calloc(l ,sizeof(page));
nroot->load=2;
nroot->flag='n';
nroot->NE[O].p=(*oldroot);
nroot->NE[l].p=brother;
if((*oldroot)->flag=='n') {

}

nroot->NE[O].g=(*oldroot)->NE[O].g;
nroot->NE[l].g=brother->NE[O].g;

else {
nroot->NE[O].g=(*oldroot)->IE[O].g;
nroot->NE[l].g=brother->IE[O].g;

}
*oldroot=nroot;

I*===== addentry adds~ entry (a son, 'newson') to a node *I

void addentry(node, pos, newson)
page *node, *new son; I* node and the entry to be added in *I
int pos; /* the position at the left of the new entry *I
{
inti;

79

}

for(i=node->load-1;i>pos;i--)
node->NE[i+ 1]=node->NE[i];

if(newson->flag=='n')
node->NE[pos+ 1].g=newson->NE[O].g;

else
node->NE[pos+ 1].g=newson->IE[O].g;

node->NE[pos+ 1].p=newson;
node->load++;

I*===== putm adds an MCCS into a leaf node *I

void putm(node, pos, startpoint,-tree)
page *node, *tree; I* the node, the tree pointed by the new MCCS *I
int pos, startpoint; I* the position at the left of the new MCCS,

{

}

the guide post of the MCCS *I

inti;

for(i=node->load-1 ;i>pos;i --)
node->IE[i+ 1]=node->IE[i];

node->IE[pos+ 1].g=startpoint;
node->IE[pos+ 1].p=tree; -
node->load++;

I*==== rightmost returns the position of the greatest guidepost less than
'cutpoint' in 'node' *I

int rightmost(node, cutpoint)
page *node;
int cutpoint;

{
int 1, h, mid, g;
char f;

f=node->flag;
1=0; h=node->load-1;
while(l!=h) {

mid=(l+h+ 1)12;
switch (f) {

case 'n': g=node->NE[mid].g; break;
case 'i': g=node->IE[mid]~g; break;
case 't': g=node->TE[mid].g; break:;

}
if(g>=cutpoint)

h=mid-1;
else

l=mid;

80

}
return(!);

}

/*===== tpinsert inserts an object, 'obj', into a TP-tree */

page *tpinsert(root, obj)
page *root;
object obj;

{

}

page *r, *r1;
int split, right, rightl;

if(root==O) {

}

r=(page*)calloc(1 ,sizeof(page));
r->load=2; r->flag='t';
r-> TE[O].tplid=r-> TE[l].tplid=O;
r-> TE[O].g=O;
r-> TE[1].g=bound;
root=r;

else
r=root;

split=O;
while(r->flag=='n') { /* find the leaf*/

right=rightrnost(r,obj.rect. ub[dirn-1]);
r=r->NE[right].p;

}
right=rightrnost(r,obj.rectub[dirn-1]); /* find the position */

r1=r; rightl=right;
rightentry(r,right,&r 1 ,&right 1);
if(obj.rect.ub[dirn-1]<r1->TE[rightl].g) ·

dupulst(r,right,obj,&split,l); /*duplicate the u-list divided by the upper bound*/
if(right>r->load-1) { /* pos is on the right of splitted leaf*/

right=right-r->load;
r=r->pb.tl.right;

}
addobj(r,right,obj,&split); /*add obj into every u-list */
if(split==O)

return(root);
else /* at least 1 split *I
return(rebuild(root));

/*===== dupulst duplicates au-list*/

void dupulst(node, pos, obj, split, upper)
page *node; /* the node containing the roghtrnost entry of the u-list */
int pos, *split, upper; /* pos: the rightmost object in the u-list,

81

upper= 1: dealing with the upper bound *I
objectobj;

{
int cutpoint, high, left, len, g, len1, ld;
page *node1, *node2;

if(upper== 1)
cutpoint=obj.rectub[dim-1];

else '
cutpoint=obj.rect.lb[dim-1];

node 1=node;
g=node->TE[pos].g;
left=pos;
if(upper==O && node->TE[pos].tplid!=O)

len=1; I* the u-list is divided by the lower bound *I
else

len=O;
while(node1->TE[left].g==g && nodel!=O) {

leftentry(node 1 ,left,&node1 ,&left);
len++; I* the length of the u-list *I

}
ld=node->load;
if(ld+len<=capa) { I* has.enough room *I

rshift(node,ld-1 ,node,ld-1 +len,node,pos+ 1 ,ld-pos-1);

}

I* movw right to make room to duplicate
·every entry *I

if(upper== 1)
dupent(node,pos,node,pos+len,len,cutpoint,O);

else
dupent(node,pos,node,pos+len,len,cutpoint,obj.tplid);

node->load=ld+len;

else { I* need at least 1 new node *I
len1=len; node2=node;
do { I* link all new nodes in *I

}

node 1 =(page *)calloc(1 ,sizeof(page));
node 1->pb. tl.right=node2->pb. tl.right;
node 1->pb. tl.left=node2;
if(node2->pb.tl.right!=O)

node2->pb.tl.right ->pb. tl.left=node 1;
node2->pb. tl.right=node 1;
node2=node1;
node1->flag='t';
node 1->load=capa; I* the node in the middle are set full *I
len1=len1-capa;

while(len1 +ld>capa);
if(len1 +ld>(capa+ 1)12) { /* fregment >.half page *I

I* all new pages are full *I
rshift(node,ld-1,node1 ,capa-1 ,O,O,ld-pos-1);
node->load=ld-len1;
if(upper==1)

82

}

dupent(node,pos,node 1 ,capa-ld+pos,len,cutpoint,O);
else

dupent(node,pos,node 1 ,capa -ld+pos,len,cutpoint,obj. tplid);

else { I* fregment <half page *I
high=(ld+len1 +capa+ 1)12;

83

if(high<ld-pos && node->pb.tl.right==node1) {I* 1 new page, pos is in node *I
rshift(node,ld-1 ,node1,high-1,node,pos+len+ 1 ,ld-pos-1);
node1->load=high; ·

}

node->load=ld+len-high;
}

else { I* > 1 new node or pos is not ih node, *I

}

I* nodes at middle are full *I
rshift(node,node->load-1 ,node 1 ,high-1,

O,O,node->load-pos-1); ·
node 1->load=high;
node->load=(ld+len-high)%capa;

if(ld-pos-1 <=high) I* the right end is in the rightmost new node *I
if(upper== 1)

dupent(node,pos,node1,high-ld+pos,len,cutpoint,O);
else

dupent(node,pos,node 1 ,high-ld+pos,len,cutpoint,obj. tplid);
else I* the right endi is at.the left of the rightmost new node *I
if(node->pb.tl.right!=node~)

if(upper== 1)
dupent(node,pos,node 1->pb. tl.left,

capa+high-ld+pos-1 ,len,cutpoint,O);
else

else

dupent(n0de,pos,node1->pb.tl.left,
capa+high-ld+pos-1,len,cutpoint,obj.tplid);

if(upper==1)
dupent(node,pos,node,pos+len,len,cutpoint,O);

else
dupent(node,pos,node,pos+len,len,cutpoint,obj.tplid);

}
*split=1;

}

I*===== rshift moves the right section ofa node to the right *I

void rshift(snode,spos,dnode,dpos,tnode,tpos,len)
page *snode, *dnode, *tnode; I* source, destination and terminate nodes *I
int spos, dpos, tpos, len; I* positions and' length *I

{
if(dnode!=tnode} {

while(dpos>=O && len>O) {
dnode-> TE[dpos--]=snode-> TE[spos--];
len--;

}

}
if(len==O)
return;
else
dnode=dnode->pb.tl.left;

dpos=tpos+len-1;
}

while(dpos>tpos)
dnode-> TE[dpos--]=snode-> TE[spos--];

/*==== dupent duplicates all entries of a u-list. When duplicate a u-list
concerned with the upper bound, tplid is given to be 0; when lower
bound, tplid will be put into the u-list */

~ ,

void dupent(snode,spos,dnode,dpos,len,g,tplid)
page *snode, *dnode; /*source and destination nodes*/
int spos, dpos, len, g, tplid; , I* positions, length, guide post and tuple id */

{
page *node 1;
intpos1;

node1=snode; pos1=spos;
if(snode!=dnode) {

while(snode!=dnode) {
while(dpos>=O) {

if(len>O) {

}

if(tplid == 0) { /* dopy~an entry*/
dnode->TE[dpos].tplid ·

=node1->TE[spos].tplid; ·
leftentry(node 1 ,spos,&node 1 ,&spos);

}
else { /*put tplid into the u-list */

dnode->TE[dpos].tplid=tplid;
tplid=O;

}
dnode->TE[dpos--].g=g;

} ~
else { /*copy the entries at the left in the same node*/

dnod~->TE[dpos--]=node1->TE[spos];
leftentry(node 1 ,spos,&node1 ,&spos);

} ,

len--;
if(len==O) {

node1=snode; spos=pos1;
}

dpos=capa-1;
dnode=dnode->pb. tl.left;

}
dpos=pos1 +len;

84

}

}
while(len>O) { /*for the last node of the u-list *I

}

if(tplid == 0) {
dnode->TE[dpos].tplid=node1->TE[spos].tplid;
leftentry(node 1 ,spos,&node 1 ,&spos);

}
else {

}

dnode-> TE[dp(>s]. tplid=tplid;
tplid=O;

dnode->TE[dpos--].g=g;
len--;

/*==== leftentry gives the node and the position of the entry at the
left of the given entry */

void leftentry(node, pos, lnode,lpos)
page *node, **lnode; /* lnode: the resulting node *I
int pos, *lpos; /* lpos: the resulting position*/

{

}

if(pos>O) {
*lpos=pos-1; *lnode=node;

}
else {

}

if(node->flag=='i')
*lnode=node->pb.il.left;

else
*lnode=node->pb. tl.left;

if(*lnode!=O)
*lpos=(*lnode)->load-1;

/*==== rightentry gives the node and the position of the entry at the
right of the gi~en entry *I ·

void rightentry(node, pos, mode, rpos)
page *node, **mode; /* mode: the resulting node *I
int pos, *rpos; /* rpos: the resulting position*/

{
if(pos<node->load-1) {

*mode=node; *rpos=pos+ 1;
}

else {
if(node->flag=='i')

*mode=node->pb.il.right;
else

. 85

}
}

*mode=node->pb.tl.right;
if(*mode!=O)

*rpos=O;

I*===== addobj adds an object to every covered u-list *I

void addobj(mode, rpos, obj, split)
page *mode;
int rpos, *split;
objectobj;

{
page *node 1, *dnode, *newnode;
int fin, ins, rg, rgl, frrstpos, lpos, objinc,

high, low, posl, spos, dpos; ·
struct tleaf *rlf, *dlf;

fin=O;
frrstpos=rpos; objinc=O;
dnode=mode; dpos=rpos;
rg=mode-> TE[rpos] .g+ 1;

while(fin!=1) {
node 1 =mode; pos 1 =rpos;
while(rpos>=O && fin!=l) { I* in a node *I

if(mode->TE[rpos].g<obj.rect.lb[dim-1])
fin=1; I* out of the covered u-lists *I

while(nodel->TE[pos1].g==mode->TE[rpos].g) {
I* search for the left end of au-list *I

rpos--;
if(rpos<O) break;

}
if(node1->TE[pos1].tplid!=O && fm!=l)

objinc++; I* covered and non-empty u-list *I
if(mode->pb.tl.left==O && rpos<O

II mode->TE[rpos].g<obj.rect.lb[dim-1])
fin=1; I* out of the covered u-lists *I

pos1=rpos;
}

mode=dnode;
spos=mode->load-1;
if(mode->load+objinc<=capa) { I* has enough room *I

mode->load=mode->load+objinc;
rpos=pos 1 +objinc;
dnode=rnode;

}
else { I* split *I

high=(mode->load+objinc+ 1)/2;
low=mode->load+objinc-high;

86

dnode=(page *)calloc(1 ,sizeof(page));
*split=1;
dnode->pb.tl.right=rnode->pb.tl.right;
dnode->pb.tl.left=tnode;
if(rnode->pb.tl.right!=O)

rnode->pb.tl.right-;->pb.tl.left=dnode;
mode->pb. tl.right=dnode;
dnode->load=high;
dnode->flag='t'; .
dpos=high-1;
rnode->load=low;

}
dpos=dnode->load-1;
while(firstpos<spos) { /*the solid part on the righ~ */

dnode-> TE[dpos]=rriode-> TE[spos--];
leftentry(dnode,dpos,&dnode,&dpos);

}

if(rnode->TE[spos].g!=rg) I* need a new entry*/
ins=1;

while(spos>=O && rnode->TE[spos].g>=obj.rect.lb[dim-1]) {
while(ins==1) { /*put obj in*/

}

ins=O;
if(rnode->TE[spos].g>=obj.rect.lb[dim-1])

dnode->TE[dpos].g=rnode->TE[spos].g;
else /* for the leftmost .covered u-list */

dnode->TE[dpos].g=obj.rect.lb[dim-1];
dnode->TE[dpos].tplid=obj.tplid;
leftentry(dnode,dpos,&dnode,&dpos);
if(spos>=O && rnode->TE[spos].tplid==O

}

&& rnode->TE[spos].g>=obj.rect.lb[dim-1]) {
spos--; ins=1;

node1=rnode; pos1=spos;

if(rnode->pb.tl.left==dnode) /*out of the covered u-lists */
break;

rg=rnode-> TE[spos].g;
if(rnode->TE[spos].tplid != 0)

dnode-> TE_[dpos] =mode-> TE[spos];
else {

dnode->TE[dpos].g=rnode->TE[spos].g;
dnode->TE[dpos].tplid=obj.tplid;

} · /*move an entry*/
leftentry(dnode,dpos,&dnode,&dpos); ,
spos--;
if(spos>=O && rnode->TE[spos].g!=rg)

ins=1; /*need a new entry*/
} /*end of a node*/

rg=rnode->TE[O].g;
mode=rnode->pb.tl.left;

· if(rnode!=O) { /* the next node at the left*/
firstpos=rnode->load-1;

87

}

}

if(mode->TE[frrstpos].g<obj.rect.lb[dim-1])
fm=1;

else {
while(rnode->TE[frrstpos].g==rg)

firstpos--; /*the right solid part*/
objinc=O;
rpos=firstpos;

}

} /*fin !=1 */
rightentry(dnode,dpos,&rnode,&rpos);
if(dpos>=O && rnode->TE[rpos].g>obj.rectlb[dim-1])

, dupulst(dnode,dpos,obj,split,O); /* the lower bound
seperates au-list; duplicate the u~list */

/*====duplicate duplicates the substructure*/

page *duplicate(stree,prev)
page * stree, **prev; /* root of the source structure, current position of linked

{
page *cptree, *head;
inti;

if(stree-=0) return(O);

sequential list *I

cptree=(page *)calloc(l ,sizeof(page));
cptree->load=stree->load;
cptree->flag=stree->fl3:g;

switch (stree->flag) {
case 't':

for(i=O;i<stree->load;i++)
cptree-> TE[i]=stree:-> TE[i];

cptree->pb.tl.left=(*prev); /* link the leaf in the seq-list */
cptree->pb. tl.right=O;
if(*prev) (*prev)->pb.tl.right=cptree;,
(*prev)=cptree;·
return(cptree);

case 'n':
for(i=O;i<stree->load;i++) {

cptree->NE[i].g=stree->NE[i].g;
cptree->NE[i].p=duplicate(stree7>NE[i].p, prev);

}
return(cptree);

case 'i':
for(i=O;i<stree->load;i++) {

cptree->IE[i].g=stree->IE[i].g;
head=O;
cptree->IE[i].p=duplicate(stree->IE[i].p, &head);

88

}
cptree->pb.il.left=(*prev); /* link the leaf into the seq-list */
cptree->pb.il.right=O;
if(*prev) (*prev)->pb.il.right=cptree;
(*prev)=cptree;
retum(cptree);

}
}

/*=====rebuild rebuilds a TP-tree in which split has happened*/

page *rebuild(root)
page *root; /*the root of an TP-tree *I

{
typedef struct lvlchn {

page *node;
struct lvlchn *next;

} lvlchn;
int i, count;
page *head, *head1;
lvlchn *chain, *chp, *chainhy, *chphy;

head=head1=root;
while(head->flag!='t') { /*find the leftmost leaf*/

head1=head->NE[O].p;

}

if(headl->flag! ='t')
for(i= 1 ;i<head->load;i++)

free(head->NE[i].p);
free(head);
head=head1;

count=1;
chain=(lvlchn *)calloc(1,sizeof(lvlchn));
chain->node=head; chain->next=O;
chp=chain; /* a chain covers a level of nodes */
while(head1->pb.tl.right!=O) { /*count the node on the level*/

}

head1=head1->pb.tl.right;
count++;
chp->next=(lvlchn *)calloc(1 ,sizeof(lvlchn));
chp=chp->next; chp->node=head1; chp->next=O;

while(count>1) {
count=1;
head= head 1 =(page*)calloc(1 ,sizeof(page));
head->flag='n'; head->load=O;
chainhy=(lvlchn *)calloc(1 ,sizeof(lvlchn));
chainhy->node=head; chainhy->next=O; chphy=chainhy;
while(1) {

headl->NE[head1->load].p=chain->node;

89

if(chain->node->flag=='n')
headl->NE[headl->load] .g

=chain->node->NE[O] .g;
else

headl->NE[headl->load].g
=chain->node-> TE[O] .g;

headl->load++;
chp=chain; chain=chain->next; free(chp);
if(chain==O) break;
if(headl->load==fanout) {

}

chphy->next=(lvlchn*)calloc(l,sizeof(lvlchn));
count++;
chphy=chphy->next, chphy->next=O;
chphy->node=headl=(page*)calloc(l,sizeof(page));
headl->flag='n'; headl->load=O;

}
chain=chp=chainhy;

}
free(chain);
return(head);

}

/*===== seqlst lists a sequential list of a TP-tree *I

void seqlst(head)
page *head; /* the head of the list */

{

}

int c, i;

c=O;
ofile=fopen("seq","a");
while(head!=O) {

if(c>55) { fprintf(ofile,''\n"); c=O; }
fprintf(ofile,'' $");
for(i=O;i<head->load;i++) {

fprintf(ofile,"%d %d/",
head-> TE[i].g,head-> TE[i] .tplid);

c=c+lO;
}

head=head->pb.tl.right;
}

fprintf(ofile,''\n\n");
fclose(ofile);

/*===== tplst lists the sequential lists in a tree*/

void tplst(root)
page *root;

{

90

}

int pos=O;

if(root==O) {
ofile=fopen("seq", "a");
fprintf(ofile," $.. ");
fclose(oftle);

}
while(root->flag=='n')
root=root-> NE[O]. p;

seqlst(root);
if(root->flag=='i')
while(root) {

tplst(root->IE[pos]. p);
rightentty(root,pos,&root,&pos);

}

/*===== search searches the area of "rect" in the tree rooted at "root" on
the stage numbered with "stage"*/

objlist *search(root, rect, stage)
page *root;
rectangle rect;
int stage;

{ int rtmost, leftend, g1, rtpos;
page * rtroot;
objlist *coll, *obj;

coll=(objlist*)calloc(1 ,sizeof(objlist));
coll->tplid=O; coll->next=O;
if(root==O) retum(coll);
if(root->flag!='n')
rtmost=rightmost(root, rect.ub[stage-1]);

else
while(root->flag=='n') {

rtmost=rightmost(root, rect. ub[stage-1]);
root=root-> NE[rtmost] .p;

} '

rtmost=rightmost(root,rect. ub[stage-1]);
if(root->flag=='t') {

leftend=O;
do {
if((g1=root->TE[rtmost].g)<~ect.lb[stage-1])
leftend=1;

if(root->TE[rtmost].tplid != 0) {

}

obj=(objlist*)calloc(1 ,sizeof(objlist));
obj->next=O;
obj->tplid=root->TE[rtmost].tplid;
accobject(coll,obj); /*not a dummy*/

leftentry(root,rtmost,&root,&rtmost);
}

91

while(leftend==OIIgl-root->TE[rtmost].g);
}

-else/* 'i' */ {
accobject(coll, search(root->IE[rtmost].p,rect, stage+ 1));
while(root->IE[rtmost].g>rect.lb[stage-1]) {

leftentry(root, rtmost, &root, &rtmost);

}
}

accobject(coll, search(root->IE[rtmost].p, rect, stage+ 1));

return(coli);
}

/*===== prtolst prints the list of objects *I

void prtolst(head)
objlist *head;
{
objlist *p;

ofile=fopen("seq","a");
p=head->next;
fprintf(ofile,''\nThe intersecting objects:");
while(p) {

fprintf(ofile," %d",p->tplid);
p=p->next;
}

fprintf(ofile, ''\n");
fclose(ofile);
}

!*==== accobject accumulates the acsendently ordered object list
'ell' by the objects in the object list 'cl2' *I

void accobject(coll, col2)
objlist *coil, *co12;

{
objlist *obj, *posl, *pos2, *obj 1;
int found;

obj=col2;
while(obj) { /*for every object in col2 *I

posl=coll; found=O; objl=obj->next; ·
while(!found) {

pos2=pos 1; pos 1 =pos 1->next;
if(posl==O II posl->tplid>obj->tplid)

found=l;
}

if(pos2->tplid!=obj->tplid) /* insert */ {
obj->next=pos 1;
pos2->next=obj;
}

92

}

obj=obj1;
}

/*===== del deletes an object from the tree on the 'stage' and from
its substructures, return the new root ofthe tree *I

page *del(root, obj, stage)
page *root;
object obj;
int stage;
{
if(stage<dim)
if(root->flag=='n') /* non-leaf of an IP-tree */
deln(root, obj, stage);

else /* leaf of an IP-tree */
deli(root, obj, stage);

else /* 1P-tree *I
root=delt(root, obj);

return(root);
}

/*=====delete deletes an object from the IDP rooted at 'root' *I

page *delete(root, obj, stage) .
page *root;
objectobj;
int stage;
{
page *r;

r=root=del(root, obj, stage);
if(root->load==1 && root->flag=='n') {

r=root->NE[O].p;
free(root);
}

return(r);
}

/*==== deln deletes from a structure rooted at a non-leaf of an IP-tree *I

void deln(root, obj, stage)
page *root;
objectobj;
int stage;
{
int i, rtmost;
page *p1;

rtmost=rightmost(root, obj.rect.ub[stage-1]);
while(rtmost >= 0 && root->NE[rtmost].g >= obj.rect.lb[stage-1]) {

93

root->NE[rtmost].p=p1=del(root->NE[rtmost].p, obj, stage);
if(p1->load<(capa+ 1)/2)
rearrange(root, &rtmost);

rtmost-=1;
}

for(i=O; i<root->load; i++) {
p1=root->NE[i].p;
root->NE[i].g= (p1->flag=='n')'l ·-=
p1->NE[O].g: - ,.
p1->IE[O].g;

}
}

/*=== deli deletes an object from the, trees pointed to by entries. of
a leaf node of an IP-ttee on the 'stage' */

' '

void deli(node, obj, stage)
page *node;
objectobj;
int stage;
{
int rtmost, i, lrtmt=O, rrtmt:;=O;
page *lrt=O, *rrt=O, *p 1;

rtmost=rightmo~t(node, obj.rect. ub[stage-1]);
while(rtmost>=O && node->IE[rtmost].g >= obj.rect.lb[stage-1]) {

node->IE[rtmost].p =p1 =<Iel(node->IE[rtmost].p, obj, stage+ 1);.
if(p1->load==1 && p1->flag=='n') { I* an unneecesary node*/

node->IE[rtmost].p=p1->NE[O].p; ·
free(p1);
}

rightentry(node, rtmost, &rrt, &rrtmt); _
if(rrt!=O && rrt->IE[rrtmt].g==obj.recLub[stage-1]) /*right boundary *I

if(sameobj(nQde, rtmost, rrt, rrtmt, stage)) {
freesub(node->IE[rtmost].p, stage); ,
if(node==rrt) · {, /*'the edge is withih-the 'node'.*/

node->IE[rtmost].p=node->IE[rrtmt].p;
rmventry(node,rrtmt); '
}

else { /*the edge is betweell .'node' ,and 'rrt' *I
nt->IE[O].g=node->IE[rtmost].g; · ·
node->load-=1; , .,

}
} ' '

if(node->IE[rtmost].g==obj.rect.lb[stage-1])'{ ·/*the left boundary *I
leftentry(node, rtmost, &lrt, &,lrtmt); ·
if(lrt!=O) . ,

}

if(sameobj(node, rttpost, lrt, lrtmt,. ,stage)) {
freesub(node->IE[rtmost].p, stage);
rmventty(node,O);
}

94

rtmost--;
}

}

/*===== delt deletes an object from a TP-tree rooted at 'root'*/

page *delt(root, obj)
page *root;
objectobj;
{
int rtmost, rrtmt=O, cutpoint, shtg;
page *rt, *rrt=O;
objlist *oil, *ol2;

rt=root;
while(rt->flag!='t') {
rtmost=rightillost(rt,obj .rect.ub[dim-1]);
rt=rt->NE[rtmost].p;
}

rtmost=rightmost(rt,obj.rect. ub[dim-1]);
rightentry(rt, rtmost, &rrt, &rrtmt);
if(rrt!=O) { /* the right boundary is within the space */

oll=collulst(rt, rtmost, obj.tplid, -1);
ol2=collulst(rrt, rrtmt, obj.tplid, 1);
if(samelst(oll,ol2)) /*remove the redundent uniform list*/

rmvulst(rrt,rrtmt,rrt->TE[rrtmt].g);
}

while(rt!=O && rt->TE[rtmost].g>=obj.rect.lb[dim-1]) {
/*scan and remove all entries of the obj, leftward*/ _

if(rt->TE[rtmost].tplid==obj.tplid)
rmventry(rt, rtmost);

if(rtmost==O)
if(rt->load<(fanout+ 1)/2 && (rrt=rt->pb.tl.right)!=O)

if(rt->load+rrt->load <=fanout) {
mvleft(rrt,O,rt,rt->load,rrt->load);
rt->pb.tl.right=rrt->pb.tl.right;
if(rrt->pb.tl.right)

}

rrt->pb.tl.right->pb.tl.left=rt;
free(rrt);

else {
shtg=(fanout+ 1)/2-rt->load;
mvleft(rrt,O,rt,rt->load,shtg);
mvleft(rrt,shtg,rrt,O,rrt->load);
}

leftentry(rt, rtmost, &rt, &rtmost);
} .

if(rt!=O) { /* the left boundary of the object */
rightentry(rt, rtmost, &rrt, &rrtmt);
oll=collulst(rt, rtmost, obj.tplid, -1);
ol2=collulst(rrt, rrtmt, obj.tplid, 1);
if(samelst(oll, ol2))

rmvulst(rrt,rrtmt,rrt->TE[rrtmt].g);

95

}
return(rebuild(root));
}

I*===== rmvulst removes a uniform list, the leftmost entry of which is
at 'pos' in 'node' and with the guidepost 'egde' *I

void rmvulst(node, pos, edge)
page *node;

{

}

int pos, edge;

page *node1;
int pos1, shtg, i;

while(node!=O && node->TE[pos].g==edge) {
rmventry(node, pos);
if(pos == node->load II pos<node->load && node->TE[pos].g!=edge) {

I* no more entries in the node should be removed *I
node 1 =node; pos 1 =pos-1; pos=O;
node=node->p b. tl.right;

}
if((node->TE[pos].g!=edge II pos1==node1->load-1) && node!=O) {

I* check the load to shift of merge *I
if(node1->load<(fanout+ 1)/2) {

}

if(node 1->load+node->load<=fanout) {
mvleft(node,O,node1,node1->load,node->load);
node 1->pb. tl.right=node->pb.tl.right;
if(node1->pb.tl.right)

}

node1->pb.tl.right->pb.tl.left=node1;
free(node);

else {

}

shtg=(fanout+ 1)/2-node1->load;
mvleft(node,O,node 1 ,node 1->load,shtg);
mv left(node,shtg,node,O,node-> load-shtg);

node=node 1; pos=pos 1 + 1;
}

}

I*===== sameobj compares two sets of objects in the structures pointed to
by the 'entry1' in 'rt1' and 'entry2' in 'rt2'. both 'rt1' and 'rt2'
are on the stage numbered by 'stage' *I

int sameobj(rt1, entry1, rt2, entry2, stage)
page *rt1, *rt2;
int entry1, entry2, stage;
{
inti;

96

objlist *oil, *o12;
rectangle space;

for(i=O; i<dim; i++) .
{ space.lb[i]=O; space.ub[i]=bound; }

if(rtl->flag=='n') {
oil=search(rtl->NE[entryl].p, space, stage);
ol2=search(rt2->NE[entry2].p, space, stage);
} ' . .

else { · ·
oil=search(rtl->IE[entryl].p, space, stage);
ol2=search(rt2->IE[entry2].p, space, stage);
}

return(samelst(oil,ol2));
}

/*===== samelst determines whehter two assendent linked list of objects
contain the sanie set of objects *I

int samelst(oil,ol2)
objlist *oil, *ol2;
{
int same=l;

while(oil!=O && ol2!=0 && same) {
if(oil->tplid!= ol2->tplid)

same=O;
oil=oil->next;
ol2=ol2->next;
}

if(oll==O && ol2=0 && same)
retum(l);

else
return(O);

}

!*===== rmvenrtry removes the 'entry' from the 'node'*/

void rmventry(node, entry)
page *node;
int entry;
{
inti;

node->load--;
switch(node->flag) {

case 't':
for(i=entry; i<node->load; i++)

node-> TE[i]=node-> TE[i+ 1];
break;

97

case 'i':
· for(i=entry; i<node->load; i++)

node->IE[i]=node->IE[i+ 1];
break;

case 'n':
for(i=entry; i<node->load; i++)

node->NE[i]=node->NE[i+ 1];
break;

}
}

I* move 'len' entries from the position of 'spos' in the node of
'snode' to the position of 'dpos' in the node of 'dnode'. 'dpos'
is on the left of 'sposl *I
void mvleft(snode, spos, dnode, dpos, len)

page *snode, *dnode;

{

}

int spos, dpos, len;

inti;

switch (snode->flag) {
case 'i':
for(i=O; i<len; i++)

dnode->IE[dpos+i]=snode->IE[spos+i];
break;

case 'n':
for(i=O; i<len; i++)

dnode->NE[dpos+i]=snode->NE[spos+i];
break;

case 't':

}

for(i=O; i<len; i++) .
dnode->TE[dpos+i]=snode->TE[spos+i];

break;

if(snode==dnode)
dnode->load=dpos+len;

else {
dnode->load+=len;
snode->load-=len;
}

I*===== freesub frees all storage of the subtree rooted at 'node' *I

void freesub(node)
page *node;
{
inti;

switch(node->flag) {

98

case 't':
free(node);
break;

case 'i':
for(i=O;i<node->load; i++)

freesub(node->IE[i].p);
free(node); ·

}

break;
case 'n':
for(i=O;i <node->load; i++)

freesub(node->NE[i]. p);
free(node);

return;
}

/*===== collulst collects objects in a uniform list, leftward if dir<O
rightward otherwise, from the 'entry in the 'node'. The object
with tplid equal to 'id' is excluded from the result. */

objlist *collulst(node, entry, id, dir)
page *node;
int entry, id;
int dir;

{
int g;
objlist *oll, *ol2;

g=node-> TE[entry] .g;
oll =(objlist*)calloc(1 ,sizeof(objlist));
oll->tplid=O; oll->next=O;
while(node!=O&&node->TE[entry].g==g) {

if(node->TE[entry].tplid!=id) {
ol2=(objlist*)calloc(l ,sizeof(objlist));
ol2->tplid=node->TE[entry].tplid;
ol2->next=0;
accobject(oll ,ol2); } .

if(dir<O)
leftentry(node, entry, &node, &entry);

else
rightentry(node, entry, &node, &entry);

}
return(oil);
}

!*=====rearrange merges the node pointed to by 'entry[subtree]' in 'node'
with a neighbor node or move some entries from a neoghbor into the node *I

void rearrange(root, subtree)

99

page *root;
int *subtree;
{
int rload, lload, load, i, shtg;
page *lnbr, *mbr, *chd;

if(root->NE[*subtree].p->loa4>=(capa+ 1)/2)
return;

lnbr=mbr=O;
if(root->load>*subtree+ 1) { /*has a right neighbor*/

mbr=root->NE[*subtree+1].p;
rload=mbr->load;
}

if(*subtree>O) { /* has a left neighbor */
lnbr=root->NE[*subtree-1].p;
lload=lnbr->load;
}

chd=root->NE[*subtree-1].p;
load=chd->load;

if(mbr!=O&&load+rload<=capa), { /* merge with the right neighbor */
mvleft(mbr,O,chd,chd-> load,rnbr->load);
if(chd->flag=='i') {

chd->pb.il.right=mbr->pb.il.right;
if(mbr->pb.il.right) mbr->pb.il.right->pb.il.left=chd;
}

free(mbr);
return;
}

if(lnbr!=O && load+lload<=capa) { /*merge with the left neighbor */
mvleft(chd,O,lnbr,lnbr->load,chd->load);
if(chd->flag=='i') {
lnbr->pb.il.right=chd->pb.il.right;
if(chd->pb.il.right) chd->pb.il.right->pb.il.left=lnbr;
}

rmventry(root, *subtree);
(*subtree)++;
free(chd);
return;
}

shtg=(capa+ 1)/2-load; /*shortage of entries*/
if(mbr) { /*move some entries from the right neoghbor */

mvleft(mbr,O,chd,chd->load,shtg);
mvleft(mbr,shtg,mbr,O,mbr->load);
return;
}

if(lnbr) { /*move some entries from the left neighbor*/
if(chd->flag=='n') {
for(i=load-1; i>=O; i--)

chd->NE[i+shtg]=chd->NE[i];
for(i=O; i<shtg; i++)

100 '

chd->NE[i]=lnbr->NE[lload-shtg-1 +i];
}

else {
for(i=load-1; i>=O; i--)
chd->IE[i+shtg]=chd->IE[i];

for(i=O; i<shtg; i++)
chd->IE[i]=lnbr-> IE[lload-shtg-1 +i];

}
lnbr->load-=shtg; chd->load+=shtg;
*subtree+=1;
return;
}

}

101

VITA\

Xiaoming Cheng

Candidate of the Degree of

Master of Science

Thesis: THE INDEX BY DIMENSIONAL PROJECTION - AN INDEX
SUPPORTING SEARCH FOR SPATIAL OBJECTS BY REGION

Major Field: Computer Science

Biographical:

Personal Data: Born in Shanghai, China, January 4, 1950, the
son of Wang Cheng and Junsu Qian.

Education: Received Bachelor of Science Degree in Computer
Science from Shanghai Jiao Tong University at Shanghai,
China in February, 1982; completed requirements for the
Master of Science degree at Oklahoma State University in
May, 1991.

Professional Experience: Lecturer, Engineering College,
Shanghai University, February, 1982 to March, 1989.

