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STATEMENT OF PROBLEM 

This work focuses on the development of selectivity information and applied 

methods for the use of a novel chromogenic reaction based on the Chugaev reaction. The 

emphasis is placed 011- quantitative comparisons of reactions with various analytes and 

quantitation of analytes related to the determination of unsaturated lipids in sera. 

The use of color forming reactions with organic molecules has been an important 

part of analytical and medical science. These reactions have allowed the analysis of a 

variety of compounds found in living systems. Modem colorimetric reactions for the 

analysis of biological analytes often involve enzymatically-catalyzed reactions. The 

accuracy of chemical methods, however, often make them the standard methods of· 

analysis by which the enzymatic systems are evaluated. 

The reaction used in this study was first disclosed in 1995.1 It consists of a 

reaction conducted at ambient temperatures that is known to be chromogenic with a 

variety of analytes. The reaction was further characterized to be reactive with 

polyunsaturated fatty acids (PUFA).2 At that time, the working hypothesis was that the 

reagent reacted with a variety of unsaturated carbon systems. 

The reaction was shown at the time of its disclosure to be quantitative for 

cholesterol. The ability to quantitate cholesterol is a characteristic of a variety of 

chemical reactions. The most common chemical reaction for the quantification of 

cholesterol is the Liebermann-Burchard (L-B) reaction. It was of interest to determine 

the relationship between the current chromogenic assay and the L-B reaction to 

understand the differences and benefits of the current assay. 
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Chapter I addresses the question of what spectral response and what potential this 

reaction has to selectively quantitate alternative double bond containing compounds. The 

analytical potential for this reagent in the analysis of various compounds relies on 

understanding these reaction properties. A variety of analytes was tested to this end 

primarily in the steroid, terpene, and PUF A categories. Also tested were small 

unsaturated organic compounds. All of the reactions were conducted at stoichiometric 

equivalence (where possible) in order to quantitatively compare the spectral response of 

the analytes. The relationship between the chemical reaction presented with the L-B 

reaction was considered by conducting chemical reactions with identical analytes using 

both reagents. 

In Chapter II, the use of the chemical assay to simultaneously determine 

concentrations of analytes in mixtures using multivariate analysis is explored. Synthetic 

mixtures were prepared as models to allow the development and further refinement of 

methods to the goal of a routine, reliable assay not requiring separations or other sample 

pretreatments. Combinations of PUF A and cholesterol mimicking the proportions found 

in human sera were made and analyzed using multi-linear regression (MLR) in order to 

test the feasibility of applying multivariate analysis on real samples. 

Also considered in Chapter II is the ultimate goal for the chemical assay to be 

used in the routine clinical analysis of patients' sera. It is believed that the assay's 

chemical stability, low cost per assay and ability to determine alternative PUF A 

information can position the reaction as a viable alternative routine assay in the future. 

A literature review is presented outlining the current routine clinical analysis 

methods. Also demonstrated is the dynamic nature of the lipids analysis field and 
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discussion of some developing analytical methods is made. Finally, a summary of the 

information in the literature on the importance of PUF A profiles in human disease 

demonstrates the potential importance of this new assay to the clinical physician. Special 

emphasis is placed on the quantification of PUF A profiles and the determination of 

conjugated dienes as ah indicator of oxidative stress. 

Finally in Chapter II, the use of the chemical reagent in clinical settings was 

demonstrated when a dyslipidemic patient was monitored over the course of a dietary 

intervention. This study demonstrated the utility of the reagent in its current (relatively 

undeveloped) form. A direct comparison between the current standard methods used in 

routine clinical analysis and the chromogenic reaction was made when the multivariate 

method developed for the analysis of synthetic mixtures was used for the analysis of the 

case study sera. 

The results presented in this work add to the developing information about this 

convenient, low cost, robust chemical assay. It adds to the pure and applied scientific 

knowledge needed to bring the assay to application. 
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CHAPTER I 

CHROMOGENIC REACTIONS OF MODEL COMPOUNDS 

One of the oldest and most commonly used color forming reactions is the L-B 

reaction. The Liebermann reaction was first used in the 19th century,3 and was later 

applied to cholesterol by Burchard, thus becoming known as the L-B reaction.4 The L-B 

reaction uses sulfuric acid with acetic anhydride in the presence of acetic acid. Another 

commonly used reaction for the determination of cholesterol is the Zac reaction.5 

Similarly, the Zac reaction takes advantage of the same acetic acid and sulfuric acid 

solutions, while utilizing ferric ions (Fe3+) in place of the acetic anhydride. The Fe3+ is 

required for the reaction to occur.6 An alternative chromogenic reaction is the Chugaev 

reaction. In the Chugaev reaction, the acetic anhydride is replaced by acetyl chloride 

while the other component of the reaction mixture is zinc chloride. Unlike the L-B 

reaction, the Chugaev reaction requires heating to facilitate the chromophore production. 

Studies on the mechanisms of strong acid cholesterol reactions such as the L-B and Zac 

reactions usually mention the Chugaev reaction. The Chugaev reaction actually seems to 

be a unique reaction that can, in a modified form, react in selective ways with unique 

analytes at room temperature. 

The mechanism of the strong acid cholesterol reactions has been studied for some 

time. The area is practically dormant currently as strong evidence has led to mechanisms, 

which are adequate for the current applications. When strong acids such as perchloric or 

hexafluorophosphoric acid are added to an organic solution of cholesterol in equivalent 

stoichiometric amounts a "colorless sterolium salt" forms. If the acid is added in excess 
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the "colorless sterolium salts" form a purple colored solution of "salts of cholestadiene".7 

It was eventually hypothesized that this acid reaction involves cholesterol undergoing 

dehydration to form 3,5-cholestadiene and 2,4-cholestadiene that then forms the dimers 

(1) 3-3'-bis-3,5-cholestadiene and (2) 3,3'-bis-2,4-cholestadiene.8 Other studies 

substantiated this hypothesis, and the L-B reaction was believed to also involve this 

dehydration of cholesterol followed by the formation of dimers.9• 10 Eventually the dimer 

hypothesis was proven with the isolation of 3,3'-bis-3;5-cholestadiene.8 The 2,4 dimer 

(2) was found in the reaction mixtures of the L-B, Zac and Chugaev reactions.8• 11• 12 The 

presence of the dimer(s) does not preclude other significant product formation. 

Later research proposed the· formation of an extended conjugated system within 

the ring structure of cholesterol, rather than the dimer, as the primary absorbing product. 13 

Much later the L-B reaction product was substantiated as an extended conjugated ring 

structure by Burke.6 Burke monitored the production of sulfur dioxide during the L-B 

reaction to calculate the chromophore structure produced. Dulou also measured sulfur 

dioxide production in the L-B reaction and found results in agreement with Burke's 

conclusions.6• 9• 14 

Along with the controversial nature of the area of strong acid cholesterol color 

reaction mechanisms, later reports supported the dimer hypothesis. The dimer formation 

reaction requires the presence of a species to accept the freed hydrogen. In the case of 

the TCA-HCl (1:1) reaction, the absence of oxygen prevented the dehydration from 

occurring, 15 therefore preventing the production of the dimer. The reaction does produce 

3,5-cholestadiene, cholesteryl chloride, and cholesteryl trichloroacetate. The absorbance 

spectrum is missing the 560 nm peak that is said to be -the dimer.16 It would be logical to 
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consider that the dimer would form if a "hydrogen acceptor" were in solution. The 

authors used oxygen and hydrogen peroxide as the hydrogen acceptor and found the 

dimer forms with oxygen. The structure hypothesized by Burke. 6 was not isolated in this 

reaction. 15 

While the mechanism and active product of the strong acid reactions are not fully 

· understood, the activity and analytical utility of these reagents are well known. The L-B 

reaction is currently the Center for Disease Control (CDC) standard chemical cholesterol 

determination method. Throughout development of the modem enzymatic cholesterol 

determination methods, the new systems have been compared to the Abell-Kendall 

method. The Abell-Kendall method is the CDC standard, which uses transesterification 

lipid isolation of the cholesterol from human plasma samples and the L-B reaction for 

quantification.17 The L-B reaction is also routinely used in modem research laboratory 

analysis and method development. 18 

Introduction to Model Compounds 

The model compounds are composed of three major classes: fatty acids, steroids, 

and terpenes. Each will be considered as independent groups and finally cross class 

correlations will be summarized. 

Steroids 

The steroid compounds are all based on the cholesterol ring template and are 

structurally unique. The analysis of steroids is a widely used process by industries 

including agriculture, medicine, forensic, and nutritional sciences. 19•24 Many of the 

steroids considered are physiologically relevant to mammals. 
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The nomenclature used in the description of steroids is specialized. It uses a 

specific carbon numbering system and ring designation to define the structural features. 

The cholestane skeleton numbering system is as follows: (Figure 1) 

2 

3 

21 22 24 
23 

6 

Figure 1. Steroid carbon numbering and 
ring designations. 

26 

There are 26 steroids in this study. They include cholesterol and its derivatives 

including cholesteryl chloride. Cholesterol (Figure 2(A)(R=H)) has a hydroxide on 

carbon 3 and an unsaturation at carbon 5 while cholesteryl chloride (Figure 2(A)(Cl on 

carbon 3)) has a chloride at carbon 3 and the double bond at carbon 5. There were ester 

derivatives of cholesterol including cholesteryl oleate, cholesteryl nonanoate, cholesteryl 

myristate, cholesteryl acetate, cholesteryl linolenate, and cholesteryl linoleate. These 

compounds have an additional carbon chain attached as an ester of the hydroxide on 

carbon 3 (Figure 2(A)(R=COR)) 

Other steroids tested are stigmasterol (Figure 2(B)), dihydrocholesterol (Figure 

2(C)), 7-dehydrocholesterol (Figure 2(D)), alpha-estradiol (Figure 2(E)), beta-estradiol 

(Figure 2(E)), ergosterol (Figure 2(F)), stanozolol (Figure 2(G)), norethynadrel (Figure 

2(1)), diosgenin (Figure 2(J)), testosterone (Figure 2(K)), 17-alpha-methyl testosterone 

(Figure 2(L)), 4-cholesten-3-one (Figure 2(M)), 5-cholesten-3-one (Figure 2(N)), 5-
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cholesten-3-beta-ol-7-one (Figure 2(0)), progesterone (Figure 2(P)), prednisone (Figure 

2(Q)), hydrocortisone (Figure 2(R)) and prednosilone (Figure 2(S)). 

Terpenes 

The terpenes are polymers of the isoprene unit (CH2=C(CH3)-CH=CH2). They 

are found mostly in plants. Some of them are important in human physiologically such as 

vitamin Al. The synthesis of terpenes commonly includes cyclization of the isoprene 

polymers to form commonly found ring structures. The terpenes, in fact, can be 

subdivided into those with linear structures and those with cyclic structures. They will be 

presented in this study as two separate groups. The linear terpenes will also be presented 

with other small organic model compounds that are not terpenes. 

The small organic model compounds are 1,4-pentadiene, trans-1,3-pentadiene and 

cis-1,3-pentadiene (Figure 3) The linear terpenes are myrcene, squalene and farnesol 

(Figure 3). Limonene, S-(+)-carvone, alpha-pinene, beta-pinene and camphene comprise 

the cyclic terpenes (Figure 3) 

Polyunsaturated Fatty Acids 

Fatty acids in the context of this work are all methyl esters. The fatty acids have 

varying degree of unsaturation. The natural forms of fatty acid unsaturations are 

methylene bridged so that the unsaturated fatty acids can be represented as (­

. CH=CHCH2-)n polymers at the double bond containing region. The degree of 

unsaturation is determined by both dietary and metabolic modification (see Chapter I) . 

. The location of the unsaturated region is also physiologically important (see Chapter I). 

The nomenclature for lipids has many variations summarized in Table 1. 
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Table 1. Description of polyunsaturated fatty acid structures. 

Name Total Double bonds Double bond Omega 
Carbons locations number 

Oleate 18 1 9 9 

Linoleate 18 2 9,12 6 

Conjugated 18 2 10,12 6 
Linoleate 
Linolenate 18 ~ 9,12,15 3 .) 

Arachidonate 20 4 5,8,11,14 6 

Eicosapentaenoate 20 5 5,8,11,14,17 3 

Docosahexaenoate 22 6 4, 7 ,l 0, 13, 16, 19 3 
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Experimental Methods 

The experimental methods used in this study are based on the reaction of acetyl 

chloride (AC) with unsaturated compounds and a catalyst. The analytes include steroids, 

terpenes, fatty acids and small organic compounds. The reaction was discovered during 

investigation of Chugaev reaction for cholesterol.25 The original Chugaev method was 

problematic due to a procedure that involves heating the analytes in AC with ZnCli. The 

modified method, presented here, involves the use of an alternative catalyst such as 

perchloric acid (PA), zinc acetate, or zinc perchlorate.1 With these alternative catalysts 

the reaction occurs at ambient laboratory conditions. The reaction is also convenient, as 

the reaction is initiated by the addition of catalyst and analysis of complex samples such 

as human serum can be done without pretreatment. The reaction with serum results in the 

precipitation of protein upon the addition of catalyst. This may occur due to the 

acetylation of the proteins to less soluble forms. The resulting precipitate is easily 

removed by centrifugation or filtration. The absence of the requirement for pretreatment 

is commercially significant as sample analysis times are shortened. 

This new reagent has been used for the determination of total cholesterol (TC) by 

measuring the absorbance at 520 nm. It has also been used for the determination of the 

high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL­

C), and very low-density lipoprotein cholesterol (VLDL-C) concentrations by single 

spectra multivariate analysis. 1 The reactivity of unsaturated fatty acids was demonstrated 

in the early twenty first century.2 This information was used in the theoretical 

recognition of dyslipidemias by spectral comparison. 
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The reagent is currently composed of 1.0 mL of 98% AC and 40 µL of 70% PA 

or 0.1 g solid catalyst. The most commonly used solid catalyst is zinc acetate. All 

reagents were from Sigma-Aldrich. The utilization of 40 µL of perchloric acid 

introduces 12 µL water into the AC. The reaction of AC with water produces HCl and 

acetic acid. This reaction occurs in the absence of catalyst. Zinc acetate is a dihydrate 

salt that is soluble in AC. The total water in 0.1 g of Zinc acetate is 1.6 times the water in 

40 µL PA. This is problematic, as the reaction products with water are known to be 

inhibitory to the reaction. The advantage of zinc acetate is that it is a stable non­

hygroscopic salt, which could be pre-weighed for automated high throughput analyses. 

An earlier procedure for the acetylation involved the use of dichloroethane (DCE) 

in the AC as a diluent. The resulting reaction was milder than the reaction with pure AC. 

DCE, however, does not increase the selectivity or sensitivity of the reagent and it is 

toxic and difficult to remediate. DCE seems to have the effect of lowering the 520 nm 

peak. Therefore, the preferred reagent uses pure AC. 

Reaction of Pure Compound with Perchloric Acid Catalyst 

Analysis is conducted by adding 10 µL of analyte solution to the bottom of a 13 X 

100 mm borosilicate disposable test tube. Pure AC (1.0 mL) is added to the analyte. The 

reaction is initiated when 40 µL PA is added to this mixture. The reaction timer is started 

immediately after addition of catalyst. The reaction is energetic thus caution should 

taken to slowly add the PA. The reaction is mixed by hand vortexing for 20 seconds and 

then either placed in a Teflon 10 mm pathlength cuvette for kinetic determination over 20 

minutes or allowed to mature inside the test tube to later be analyzed at the 15-minute 
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endpoint. Following maturation in the test tube the solution is transferred to the 10 mm 

pathlength cuvette with a glass Pasteur pipette and full spectral data (350-800 nm) are 

collected. 

Spectrophotometric Determination of Reaction 

Absorbance data of the colored products after the reactions were determined on a 

HP8452a Hewlett Packard spectrophotometer. A 5 second integration time and a 2 nm 

resolution were used. The blank for each reaction was the reagent (AC) without catalyst. 

The reagent once mixed with catalyst produces some coloration in the absence of analyte 

over the 20-minute reaction period. Since the coloration was small, varied, and did not 

necessarily produce equal amounts with and without analyte, the blank did not include 

this contribution. For future analytical applications of this reagent, the aforementioned 

considerations must be addressed in a rigorous way and an appropriate compensating 

solution implemented. 

Rate curves were calculated usmg standard software onboard the 

spectrophotometer.· The data were collected from 350 to 800 nm for each spectral 

collection. The usual spectral range of importance for the analytes in this study was from 

350 to 650 nm. There are 150 data points in the spectra from 350 to 650 nm. 

Absorbance data were automatically recorded every minute for 20 minutes. Any data 

between the addition of catalyst and completion of data preparation were lost at the 

beginning of the reaction. The resulting data were a 20 X 225 element matrix. It was 

found that the kinetics of the reaction demonstrates significant information about the pure 
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compounds, and may prove useful for the quantification of the known analytes m 

mixtures. 

Model Compound Calibration Data 

Calibration curves were done in duplicate with a minimum of 14 concentration 

data points per analysis. The calibration data were comprised only of the 15-minute 

spectra for each of the concentrations on the curve. Molar extinction coefficients were 

determined for 2-3 of the maxima in the spectra. Average data for each analyte were 

collected by repeated spectral determination. Using the molar extinction coefficient 

from the calibration curves, the best fit to the average spectra was made in order to 

determine the molar extinction coefficient at every wavelength. The resulting graph 

contained the molar extinction coefficient for the compound determined at the 

wavelength at which the calibration curve was obtained and extrapolated to all other 

wavelengths in the spectral range. 

Calibration curves were linear from 0.05-0.90 absorbance units with R-squared 

values in the range of 0.980 or better. The maximum molar absorptivity values for the 

model compounds analyzed were from 250-9000 Absorbance units per mole. The 

highest absorptivities were found in the conjugated dienes in linear carbon systems and in 

cholesterol. Limits of detection were determined for a subset of model compounds and 

are in the order of0.01-0.08 mM. 

Fatty acids 

Analyte stock solutions were either 0.02 M or 0.01 M in spectroscopic grade 

chloroform (Aldrich) depending on the molar extinction coefficients. For an analysis, 10 
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µL of the stock analyte is used in the reaction the chosen reagent. A total of 2.0 x 10-7 

moles of analyte is all that is needed for each analysis. All of the PUF As are prone to 

autoxidation and were stored under argon, at less than 0°C, and kept from light. 

Liebermann-Burchard Reagent Preparation 

The L"'.'B reagent was made by addition of ice cold 20 mL acetic anhydride and 1.0 

mL of ice cold concentration sulfuric acid. The mixture was stirred for 10 minutes on 

ice. To the cold mixture, 10 mL of acetic acid was added and the mixture was allowed to 

come to room temperature. 

Liebermann-Burchard Reaction 

The L-B reaction was conducted by the addition of 50 µL of analyte dissolved in 

chloroform (0.02 M) to a 13 X 100 mm borosilicate disposable test tube. To the analyte 

1.0 mL of L-B reagent was added. The reaction timer was started immediately after the 

addition of the L-B reagent. The reaction was allowed to occur for 30 minutes. The 

sample was then transferred to the Teflon sealed 10 mm cuvette using a glass Pasteur 

pipette. The sample was analyzed by UV Nisible spectrophotometry at 30 minutes into 

the reaction from 350 to 800 nm. A catalyst is not required. The final color of the 

reaction is blue-green. 
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Results and Discussion 

Steroids 

Steroids with 5-ene-3-P-substituents (cholesteryl esters) 

A common physiological derivative of cholesterol involves esterification of a side 

chain at the 3-beta hydroxide. The reagent is effectively blind to the ester and leads to 

spectrum practically identical to cholesterol (Figure 3(C)). The cholesteryl esters are 

important in the hydrophobic transport of cholesterol (Figure 2(A)(R=H)). For all esters 

that have saturated chains, the spectra were very similar including cholesteryl nonanoate 

(Figure 3(D)), cholesteryl myristate (Figure 3(E)), and cholesteryl acetate (Figure 3(F)). 

Cholesteryl oleate (Figure 3(B)) has the monounsaturated oleate fatty acid attached at the 

3-beta ester. The spectrum indicates a similar electronic spectrum over all wavelengths 

below 550 nm. The contribution of oleate at 0.02 M should be very small in the short 

wavelength range and not affect the region around 520 nm. All of the cholesteryl esters 

have a maximum absorbance at 360 nm, 420 nm, and 520 nm with the 520 nm peak 

having the largest absorptivity. 

The final · cholesteryl ester compounds considered were those with 

polyunsaturated ester linked side chains. These include cholesteryl linoleate (Figure 

4(B)) and cholesteryl linolenate (Figure 4(A)). For these cholesteryl compounds the 

spectrum is not equal to that for cholesterol (Figure 4(C)). It would be expected that the 

linoleate and linolenate functional double bonds would react to form a spectrum similar 

to the methyl esters of linoleate (Figure 4(E)) and linolenate (Figure 4(D)). In fact when 

the 0.01 M spectra for methyl linoleate and linolenate are subtracted from the cholesteryl 

linoleate and linolenate respectively, the resulting spectra (Figure 4(insert: G,H)) are very 
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similar to that of cholesterol (Figure 4(insert)(C)). It is not clear why there is a consistent 

rise in the 520 nm region and lowering in the shorter wavelengths. The spectra are the 

same within experimental errors. 

One compound with a non-ester substitution at the 3-J3 position was considered. 

Cholesteryl chloride (Figure 3(A)) has chloride as an alternative functional group in place 

of the hydroxide. The chloride at the 3-J3 position alters the resulting spectrum by 

increasing the overall absorptivity at all wavelengths and shifting the maximum 

absorbance from 520 nm to 514 nm. 
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Figure 3. Overlaid spectra of cholesterol derivative including A) cholesteryl 
chloride and B) cholesteryl oleate C) cholesterol D) cholesteryl nonanoate 
E) cholesteryl myristate F) cholesteryl acetate. 
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3-J3-ol 5-ene compounds 

Cholesterol has 3-J3-ol and 5-ene functional groups. Three other compounds 

share these exact functional groups. They are diosgenin (Figure 5(A)), 5-cholesten-3-P­

ol-7-one (Figure 5(B)), and stigmasterol (Figure 5(C)). Comparing the resulting spectra 

and the steroid structure that produced them, the spectrum for diosgenin is significantly 

· different from those for the other cholesterol like compounds. 

Diosgenin only varies structurally at the 17th carbon were there is added ring in 

place of the aliphatic chain of cholesterol (Figure 2(1)) The electronic spectrum of 

diosgenin has a broad peak with maximum at 420 nm. The spectrum extends from 350 

nm out to 650 nm with several underlying maxima present. Differential analysis shows 

the maxima at 362, 396, 420, 444, 498, and 570 nm. The spectrum is completely 

different from cholesterol with significant broadening and obvious lack of the 520 nm 

peak. There is no obvious explanation for this result. 

5-cholesten-3-J3-ol-7-one is structurally different from cholesterol in the active 

area (Figure 2(0)). The added ketone is in close proximity to the active unsaturated 

region on carbon 5. It is not clear how the ketone effects the reaction in terms of the 

product formed, however, the spectral differences are significant (Figure 5(B)). The 

spectrum shows a maximum at 444 nm, a large absorbance in the short wavelength past 

350 nm and a small absorbance at 526 nm. The conjugated ketone formed by the 

addition of the ketone to carbon seven has been reviewed in a number of compounds 

addressed later. 
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Stigmasterol only varies from cholesterol at the 17 carbon aliphatic chain (Figure 

2(B)). The side chain has an unsaturation at the 19th carbon and an ethyl group at carbon 

21. Knowing the double bond is cis for stigmasterol, we can best correlate the double 

bond to methyl linolelaidate (Figure 15(A)). In both cases, the absorption at 420 nm is 

increased. Stigmasterol also has another larger absorbance at 404 nm. This larger 

absorbance makes the 420 nm absorbance a distinguishable shoulder. Furthermore, 

stigmasterol has a 362 nm peak similar to cholesterol except with a larger absorbance. 

Stigmasterol has almost exactly the same absorbance at 520 nm as cholesterol at equal 

molarity. Finally, there is an absorbance at 594 nm that is unique to stigmasterol among 

the 3-P-5-ene compounds. 

Other Steroid Compounds 

Another compound tested containing sterol skeletons 1s dihydrocholesterol. 

Dihydrocholesterol is composed of exactly the same carbon framework, as cholesterol 

except it does not have the 5,..carbon unsaturation (Figure 2(C)). The reaction of 

dihydrocholesterol results in no appreciable color formation (Figure 6(F)). Another 

compound tested also did not undergo chromogenesis with the AC reagent was P­

estradiol. Alpha and P-estradiol are both composed of a sterol skeleton with an aromatic 

benzene-like structure on ring A (Figure 2(E)). No spectral response was seen after 

reaction with the acetyl reagent (Figure 6(E)). 

While P-estradiol gives no coloration upon reaction, a-estradiol forms one of the 

most intense spectra of the sterols examined (Figure 6(A)). The spectrum includes a 
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weak broad absorbance around 384 run with an intense absorbance at 512 run. There is 

also a shoulder to the largest peak around 454 run. The two differ only in the 

enantiomeric orientation of the 17-hydroxide. The variation of response between the two 

compounds is profound. 

7-dehydrocholesterol has the same structure as cholesterol except there is an 

additional unsaturation at carbon-7 (Figure 2(D)). This second unsaturation produces a 

conjugation double bond in ring B of the sterol backbone. The resulting spectrum shows 

a large absorption at 392 run and a smaller absorption that seems to split with minima at 

486 run and 508 run (Figure 6(C)). Ergosterol has the same structure as 7-

dehydrocholesterol except it has an unsaturation on carbon-19 and a methyl group off 

carbon-21 (Figure 2(F)). The unsaturation and hydroxide configuration are exactly 

equivalent in the first two rings (A and B) of the structures. The double bond on the side 

chain has a trans conformation. It is therefore similar to methyl oleate. The spectrum for 

ergosterol is similar to that of 7-dehydrocholesterol except there is an increase in the 

absorbance and there is an overall broadening of the spectrum (Figure 6(B)). The 

maximum absorbance is at 388 run and 486 run. There is a significant tail beyond 570 run 

extending out to 800 run. 

Stanozolol has a unique structure with a nitrogen heterocycle fused to ring A of 

the sterol skeleton (Figure 2(G)). It has a 17-hydroxyl similar to the estradiols 

spectroscopically stanozolol has a relatively simple spectrum (Figure 6(D)). It has a 

single broad peak around 394 run. 
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Figure 6. Overlaid spectra of steroid compounds A) a.-estradiol B) ergosterol 
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Compounds with Cortjugated 3-ones 

A number of compounds have the hydroxide at the 3-carbon of cholesterol 

replaced by a ketone. In a majority of the sterols considered in this study, the ketone is 

accompanied by an unsaturation at the 4-carbon forming an unsaturated ketone on ring A. 

Testosterone is a good example of this type of compound. Testosterone is a 4-ene-3-one 

structure with a 17-hydroxide (Figure 2(K)). The spectral response for testosterone is 

comprised of a large absorption at 368 nm (Figure 8(C)). The spectrum of testosterone is 

very simple. Other 4-ene-3-one compounds are more complex in their spectral response. 

5-cholesten-3-one is very different structurally from testosterone (Figure 2(N)). The 3-

position ketone is no longer conjugated as the unsaturation is at the 5 carbon as is the 

case with cholesterol. The spectral response includes a maximum absorbance at 372 nm 

and a smaller absorbance at 526 nm (Figure 7(C)). There is little similarity between 5-

cholesten-3-one and testosterone. There are more structural similarities between 4-

cholesten-3-one and testosterone (Figure 2(M)). The spectrum of 4-cholesten-3-one 

includes a maximum at 372 nm and a smaller peak at 526 nm the same as 5-cholesten-3-

one (Figure 7(D)). Both 4-cholesten-3-one and 5-cholesten-3-one have the aliphatic 

group from cholesterol on the carbon-17 position. This difference may contribute to the 

lack of similar spectra in the 4-cholesten-3-one and testosterone. 

Another 4-ene-3-one compound is progesterone. Progesterone is the same sterol 

structure as testosterone except the 1 7- position has an a ketone ethyl group in place of 

testosterone's hydroxide group (Figure 2(P)). Progesterone has a maximum absorbance 

at 368 nm just like testosterone with almost the same molar extinction coefficient. 
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Progesterone also has a small broad absorbance in the longer wavelength around 590 nm 

(Figure 7(B)). The absorption at 590 nm may be due to the 17-ethyl ketone group. 

Hydrocortisone is also a 4-ene-3-one containing compound. Hydrocortisone is 

more highly substituted than the other 4-ene-3-one compounds. It has a hydroxide on 

ring C and at the 17- position, there is a hydroxide and a ketone ethanol group (Figure 

2(R)). The spectral response for this compound involves an absorbance at 366 nm 

reduced in size from the corresponding absorbance in testosterone (Figure 7(E)). It is 

common in these reactions that hydroxides react to lower absorbance of unsaturated 

groups. This is best illustrated by the fact that small alcohols can act to prevent the 

reaction all together. 

Testosterone can be modified so its 17-~-hydroxyl group is bonded to the same 

carbon as an enantio-specific carbon (Figure 2(L)). This 17-a-methyl forces the 

hydroxide to be alpha. The response to 17-a-methyl testosterone includes the absorbance 

at 368 nm with almost exactly the same extinction coefficient, and a number of 

absorbances not found in testosterone (Figure 8(B)). These 17-a-methyl testosterone 

specific absorbances include 496, 580, and 620 nm forming a significant absorbance in 

the longer wavelength range. 

3-one compounds 

Norethynadrel has a carbon-3 ketone and a double bond between ring A and ring 

B (Figure 2(1)). Instead, it has a double bond between ring A and B. Further 

complicating the structure, the 17 position has a hydroxide and ethyne group attached to 
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it. The spectral response for norethynadrel includes a peak at 384 run with a shoulder at 

426 run (Figure 8(A)). Norethynadrel also has absorbances at 520 and 584 nm. 

Double Conjugated 3 Ketone 

Two of the sterol compounds have unsaturations at the 1 and 4 carbons with a 

ketone at the 3- position. This forms a double unsaturated ketone compound. Prednisone 

and prednisolone are structurally similar to hydrocortisone except the double bond on 

carbon-I for prednisolone and prednisone and the ketone in place of the hydroxide on 

ring C for prednisone (Figure 2(Q and S)). The absorbance spectra of both prednisone 

and prednisolone are baseline (Figure 8(D and E) ). 
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Terpenes 

The calibration plots for terpenes are linear between 0.05 to 1.2 mM. The 

correlation coefficients for the Beers' law plots are for example 0.987 for a-pinene at the 

390 nm maxima. The correlations for farnesol are 0.988 at 386 nm, and 0.991 at the 486 

nm maxima. The limits of detection are in the order of 1. 0 x 10-5 M. 

Linear Model Compounds 

Pentadienes 

Included are non-terpene compounds such as 1,4-pentadiene, trans 1,3-pentadiene 

and cis 1,3-pentadiene (Figure 9. Trans 1,3-pentadiene, cis 1,3 pentadiene and 1,4-

pentadiene all have very similar spectra (Figure lO(E,F,G)). They all have single maxima 

at 412 nm. All three also have monotonic kinetics leading to the 15 minute maximum. 

There is a shoulder at 495 nm for all three pentadienes and the appearance of a minimum 

around 360 nm for the two 1,3-pentadienes may indicate an absorbance below 350 nm. 

Trans 1,3-pentadiene is 0.075 absorbance units higher than cis 1,3-pentadiene at 

412 nm at the 0.02 M stock concentrations. This difference can be related to the 

absorbance difference between methyl linoleate and methyl linolelaidate fatty acids. This 

may indicated that the cis I trans conformation of the 1,3-pentadienes does affect the 

resulting spectrum. However the conjugation in the double bonds of the two 1,3-

pentadienes would be analogous to conjugated methyl linoleate. The conjugation in 

methyl linoleate leads to a large increase in the resulting absorptivities and large variation 

in the kinetics of the reaction in the 422 nm region compared to methylene bridged 

linoleate. Furthermore, the large absorptivity of the product with conjugated methyl 
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linoleate is not formed in the reaction with a terminal double bond (1,3-pentadiene ). 

Therefore, the difference in the conjugated double bonds between the pentadienes and the 

conjugated methyl linoleate is the absence of a peripheral saturated carbon. It has been 

hypothesized in this laboratory that the reaction requires a local methylene (CH2) ( or 

possibly methyl) group in order to proceed. This hypothesis is supported by the 

pentadiene data. 

The 1,4-pentadiene does have a centralized methylene CH2 group yet it produces 

almost identical spectral features as the 1,3-pentadienes. This similarity of spectral 

responses is not likely due to double bond rearrangement of the 1,4-pentadiene into 1,3-

pentadiene configuration. If this type of rearrangement were a feature of this reagent 

system it would occur in the methyl linoleate and I or conjugated methyl linoleate 

systems. It is however, possible that the terminal double bonds are susceptible to 

rearrangement. In the case of three pentadienes, it is illogical to assume that the 1,4-

pentadiene with two terminal double bonds should have the same absorbance as the 1,3-

pentadienes with only one terminal double bond. Future work should include the analysis 

. of short double bond systems to elucidate the reaction mechanisms and products. 

Another point can be made from the reactions with small double bond containing 

compounds such as the pentadienes. The reaction mechanism hypothesis involving the 

buildup of a carbon structure from the double bond system is supported in these reaction 

as there is no possibility of the standard strong acid cholesterol reaction hypothesis 

involving dehydrogenation to create conjugated unsaturations any larger than already 

exist on the small molecules. The occurrence of the chromogenic reaction with the 
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pentadienes is strong evidence toward a mechanism for the reaction that involves an 

alternative mechanism than the acid reactions currently used in sterol determination. 

Linear Terpenes 

The most simple terpene is isoprene. The spectral response of isoprene involves a 

large absorbance at 362 nm (Figure lO(A)). The absorptivity is very small at 0.02 M, and 

isoprene is structurally similar to 1,3-pentadiene with conjugated double bonds being 

found on the end of the carbon chain. The difference between isoprene and 1,3-

pentadiene is in the presence of a methyl carbon sidechain from the internal carbon of 

one of the two terminal double bonds rather than off one of the outside double bond 

carbons as with 1,3-pentadiene. The extremely small absorptivity cannot be explained by 

the presence of two terminal double bonds as 1,4-pentadiene also contains two terminal 

double bonds although they are methylene bridged rather than conjugated. The cause of 

the spectral response of this do~ble bond configuration will only be understood when the 

mechanism is better understood. 

Myrcene, squalene and famesol are different from the pentadienes and from each 

other (Figure 9). Myrcene is characterized by a broad maximum at 370 nm with a broad 

shoulder around 454 nm (Figure lO(D)). Squalene has a maximum at 390 nm and a broad 

tail across the longer wavelengths (Figure lO(C)). Finally, famesol has two distinct 

maxima at 384 and 486 nm (Figure lO(B)). 

All of the linear terpenes and the included small-unsaturated compounds have 

unique spectra and should be discriminable in mixtures. It is important to remember that 

the equivalent maximum absorbance observed for the two 1,3 and the 1,4-pentadiene 
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does not preclude spectral determination and isolation of the compounds. The spectra at 

415 nm are different while all three spectra are very similar at 494 nm. This is a good 

indication that the spectra are linearly independent from each other and therefore 

determinable by a variety of multivariate analysis methods. 
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Figure 10. Overlaid spectra of all linear terpenes including A) 10 µl of 
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Cyclic Model Compounds 

The cyclic terpenes are particularly interesting due to the homogeneity in 

structural motifs. For example limonene, carvone, and a-pinene are all very similar 

structurally (Figure 9). The spectral response for a-pinene, limonene and 13-pinene are 

almost exactly the same (Figure 9). All three have a large maximum at 388 nm and 

smaller absorbance at 494 nm (Figure l l(A,B,C)). Limonene and a-pinene are 

structurally similar, as the double bond for both is endocyclic. Limonene has another 

double bond on its sidechain. Because the spectra for the limonene is so close to that of 

a-pinene, the difference of the two spectra would indicate the contribution by limonene's 

external double bond would be inconsequential. 13-pinene is similar to a-pinene except 

the double bond is exocyclic rather than endocyclic. This structural variation would be 

expected to give significantly different spectra in the chromogenic reaction. However, 

the resulting spectrum for 13-pinene is very similar to the response for a-pinene. 

The structural similarity between limonene and carvone is dramatic. The only 

difference is the presence of a ketone forming an unsaturated ketone with the endocyclic 

double bond. The response of carvone is dramatically lower than that of limonene 

(Figure ll(E)). This indicates that the presence of the ketone prevents the production of 

the chromophore associated with limonene. There is some coloration formed, however, it 

is less intense and less sharp than that of limonene. 

The side chain of limonene is analogous to the methyl-substituted double bond 

found in isoprene. It may be that terminal double bonds with a single methyl substitution 

are structurally inappropriate for the chromogenic reaction with AC. 
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Camphene has an exocyclic double bond similar to the double bond of P-pinene. 

The spectral response to camphene is, however, significantly lower than that of P-pinene. 

Camphene is also slightly shifted from 288 nm to 284 nm and has a broadened base at 

longer wavelengths (Figure 1 l(D)). The only differences in the local structures of the two 

compounds are the substitution on the p carbons and the bicyclic structure. 

From the camphene results it seems the reaction only requires a -CH=CH-CH2-

group to occur. The possible combinations of carbons that create this simple structural 

motif are vast. The reaction is highly influenced by the structural environment in the 

analyte. Variations as simple as an added ketone or as subtle as the differences in 

camphene and P-pinene contribute to the spectral uniqueness of practically all of the 

analytes tested. 
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Figure 11. Overlaid spectra of all cyclic terpenes including A) a-pinene, B) 
limonene, C) 13-pinene, D) camphene, E) carvone. 
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Polyunsaturated Fatty Acids 

The reaction of saturated fatty acids gives essentially background absorbance. 

Oleic acid has a single unsaturation in the middle of the 18-carbon chain. It was 

previously suspected that single unsaturated acids did not give spectroscopic responses in 

the chromogenic reactions. It was discovered that a small response does occur with AC 

and both zinc acetate and PA catalysts. An aliquot containing 5 X 10-7 moles of oleic 

acid gives a small response. Oleic acid as a monounsaturated chain gives a very small 

absorbance that requires large concentrations to detect (Figure 12(H)). This makes both 

saturated and monounsaturated species physiologically irrelevant. All other fatty acids 

were observed at the same concentration ( except conjugated linoleic) so that 

stoichiometric comparisons can be made. 

Methyl linoleate has a maximum absorbance at 362 nm. The second absorbance 

at 422 nm has a relatively lower absorptivity (Figure 12(G)). The result for the trans 

isomer of methyl linoleate (methyl linolelaidate) indicates a difference in the absorptivity 

at 422 nm while close correlation exists at the 362 nm region (Figure 12(F)). This 

variation at 15 minutes seems to indicate the ability to distinguish between the cis and 

trans linoleic acid isomers in serum (Figure 15(A and B)). Gamma-linolenate and 

linolenate acids also present unique spectra at 0.02 M stock concentration (Figure 12(D 

and E)). Conjugated methyl linoleate (Figure 12(A)) is significantly different in intensity 

from methyl linoleate (Figure 12(G)). It is clear that conjugated methyl linoleate is not 

proportional to methyl linoleate at 15 minutes (Figure 14(inset)). Even greater 

differentiation is found when the kinetics of conjugated methyl linoleate and methyl 

linoleate are compared (Figure 13(Top & Bottom)). The kinetics at 422 nm is 
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significantly more complex for the conjugated methyl linoleate with a decline in the 

spectral intensity after seven minutes at 422 nm. 

The apparent ability to distinguish cis and trans isomers in linoleate and 

linolelaidate has significance in the determination of both physiological and foodstuff 

composition of trans fatty acids. It is currently necessary to do separations for the 

determination of trans fatty acids found. in complex mixtures such as foodstuff or 

biological samples. The potential for a detection method for cis and trans fatty acids 

isomers cannot be overstated. 

The regioisomer differences observed for methyl linolenate and gamma methyl 

linolenate are not easily explained. The unsaturations affect the rigidity of the fatty acid 

chain. It is clear that regioisomers interact with physiological systems in a unique ways 

(see Chapter I). In the living system, such structure dependence is to be expected. The 

kinetics of the reaction could be affected by the change in the flexibility of the fatty acid 

chain depending on the unsaturation location. This phenomenon is of interest and 

warrants further study. 

The kinetic difference between conjugated methyl linoleate and methyl linoleate 

could allow the determination of the two in a mixture. In binary and more complex 

mixtures, quantitative analysis of the kinetics of the reaction may allow quantitation of 

the levels of conjugated methyl linoleate not possible by simple analysis at a standard 

time. It should be noted that the differences between linoleate and methyl linolelaidate 

at 15 minutes are not due to dramatic kinetics differences as with conjugated methyl 

linoleate and methyl linoleate. They are rather do to a small difference in the monotonic 

41 



progression in the kinetics at 422 nm resulting in a larger absorbance for that wavelength 

at the 15 minute endpoint (Figure 15(including inset)). 

The primary hypothesis for the reagent's selectivity in PUFAs attributes the 

difference in spectral response to the number of unsaturations. The ability of the reagent 

to produce color with fatty acid chains is different from purely acidic reaction such as the 

L-B reaction which itself does not give a response with PUFAs (Figure 16(B-D)). While 

the cholesterol molecule gives a good response (Figure 16(A)). Taking into account the 

current hypothesis for color formation in the case of acid reactions with sterols involve 

the process of dehydrogenation, it is difficult to see how dehydrogenation is a viable 

mechanism for the formation of coloration in lipid chains. The isolated double bounds in 

all of the fatty acids are methylene bridged and for all practical purposes equivalent in 

terms of their potential to be involved in dehydrogenation reactions. This means the 

dehydrogenation to form conjugated chromophores would not be as selective as the 

presented chromogenic reaction. The alternative hypothesis involves a buildup of cyclic 

structures utilizing the fatty acid as a template (see Chapter I). In this mechanism, unique 

energy levels within the electron orbitals of the product associated with the spectral 

absorbances would not be independent of the template. The reaction does not depend on 

the locations of the double bonds but rather the number of methylene bridged double 

bonds in a group. 

The spectral dependence on the number of unsaturations, the regioisomers and 

cis/trans confirmations support the hypothesis of a synthetic mechanism. The one · 

anomaly in this deductive trend is the fact that the PUF As with 5 and 6 unsaturations 

appear to have almost the same spectra at 15 minutes. Eicosapentaenoate and 
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docosahexaenoate are both omega-3 fatty acids with no obvious reason for the similarity 

iri their spectra (Figure 12(B and C)). Methyl linolenate contains three unsaturations in 

the omega-3 positions and forms an independent spectral response. This means the 

omega-3 unsaturation alone does not cause Eicosapentaenoate and docosahexaenoate to 

be similar. 
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Figure 12. Overlaid polyunsaturated fatty acid spectra for 10 µL of 
0.02 M (unless stipulated otherwise) reacted with 1.0 mL acetyl 
chloride catalyzed · by 40 µL of perchloric acid at 15 minutes 
including; A) methyl conjugated linoleate (O.OlM stock) B) methyl 
eicosapentaenoate C) methyl Docosahexaenoate D) gamma-methyl 
linolenate E) methyl linolenate F) methyl linolelaidate G) methyl 
linoleate H) methyl·oleate (2.5 times more concentrated). 
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Figure 13. (TOP)) Electronic absorbance spectra of the reaction of 10 µL 0.01 M 
conjugated methyl linoleate with 1.0 mL acetyl chloride and 40 µL perchloric 
acid over 20 minutes Inset: Kinetic plots of 372 and 422 nm over reaction time. 
(BOTTOM)) Electronic absorbance spectra of the reaction of 10 µL 0.02 M 
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Summary 

The results presented in Chapter I give strong evidence that proves the selectivity 

of this reaction in the analysis of unsaturated organic compounds. The reactions on 

model compounds indicate the selectivity of the reagent for a variety of analytes. The 15 

minute spectra of 17 from 26 total steroids (including four saturated cholesteryl esters) 

can be resolved as unique to the other spectra. Eight of the twelve terpene compounds 

can be considered unique compared with the other spectra. From the PUF A set of 

compounds, seven of the eight compounds have unique spectra. The reaction can 

distinguish among conformational and location isomers. Compounds with differences as 

small as a single carbon, as in the analysis of 17-alpha-methyl testosterone and 

testosterone, can be determined. 

The results indicate an · alternative reaction mode with the selectivity of species 

that have equivalent unsaturations. The hypothesis before this series of reactions was that 

the reagent only reacted with double bonds. The current results, especially those of the 

steroid compounds, raises questions about the in:(luence the unsaturated and heteroatomic 

structure of an analytes may have on the reaction products and resulting spectra. While 

the mechanism of the reaction has not been elucidated, the understanding about the nature 

of the chromogenic reaction has been increased. Both unsaturated and saturated portions 

of the analyte may contribute to the spectral response of the reaction. This indicates a 

large increase in the selectivity the reagent has with any given analyte. 

The results presen,ted also indicate the additive and quantitative nature of the 

reagent with a variety of· analytes. The compounds considered in Chapter I are 

potentially important analytes in a variety of analytical applications. The determination 
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of molar extinction coefficients was done for all of the physiologically relevant PUF A 

( except methyl oleate ). Linearities for all of those PUF A were good with R squared 

terms above 0.95. Determinations of some of the terpenes indicated limits of detection 

on the order of 1x10·5 M and R squared terms around 0.988. Cholesterol has been 

characterized as linearly related to concentration from the inception of the reagent. Also 

of importance is the additive nature of the compounds as indicated by the difference 

spectra of the unsaturated cholesteryl linoleate and cholesteryl linolenate with methyl 

linoleate and linolenate respectively. This additivity and consequential lack of mutual 

interference between the analytes is a requirement for the utility of the reagent in the 

simultaneous determination of mixtures using multivariate analysis methods. 

The determination of cholesterol and PUF A is directly related to the analysis of 

human sera for the determination of disease states. Current clinical methods utilize the 

determination of cholesterol for the analysis of disease states. The utility of analyzing 

PUF A is not well developed as a separate field in the current literature, however there are 

a variety of diseases that result in, or are caused by, a variation in the PUF A profiles of 

the blood ( see introduction Chapter II). 

The ability to determine conjugated unsaturated species such as conjugated 

methyl linoleate is related to the determination of oxidative intermediates and oxidative 

stress (see introduction Chapter II). If the reagent can be used in the determination of 

oxidative stress levels, the early detection of a number of oxidative stress. related 

diseases, from atherosclerosis to Alzheimer's disease, may be impacted by the 

availability of this reagent. 
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Results from Chapter I indicate the umque nature of the new chromogenic 

reaction presented. When the results of the standard colorimetric cholesterol reaction, the 

L-B reaction, is compared to the new chromogenic assay it becomes apparent that the 

new reaction is different. First, the new reaction creates a larger absorbance with an 

equal amount of cholesterol indicating an increased molar extinction coefficient resulting 

in increased sensitivity for cholesterol. The second difference between the two reactions 

is the inability of the L-B reaction to detect PUFA. This difference may be indicative of 

. a variation in the reaction mechanism. In fact, comparison of the accepted reaction 

mechanisms for L-B with the results with the new reagent further supports the idea of an 

alternative reaction mechanism. The dehydration mechanism is not a viable option for 

compounds such as the unsaturated pentadienes. 
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CHAPTER II 

DETERMINATION OF MIXTURES 

Lipoproteins Introduction 

Lipoproteins are the carriers of the hydrophobic cholesterol and triglycerides 

considered in the routine clinical analysis of serum. They are composed of hydrophobic 

cholesterol esters 'and triglycerides in the interior of the particle. The more hydrophilic 

free cholesterol and phospholipids are on the surface of the particle. Also on the surface 

are apolipoproteins. These charged proteins help make the lipoprotein soluble. They 

also act in the function and interaction of the lipoprotein within the living system.26 

Chylomicrons are large lipoproteins that originate in the gut. Chylomicrons are 

primarily composed of triglycerides (90%). They have four apolipoproteins associated 

with them including a fragment of the apolipoprotein B-100 called apo B-48 as well as 

apo Al, C, and E. They are present in large numbers immediately after meals. They are 

taken up by the liver with the apo E acting in the control mechanism. Chylomicrons are 

cleared within twelve hours of a meal, and are the reason that fasting is incurred prior to 

serum sampling. 26 

Very low-density lipoproteins (VLDL) are large lipoproteins originating from the 

liver. They have apolipoprotein B-100, apo C, and apo E. VLDL is active in the 

transport of triglycerides to the cells of the body. The VLDL loses triglycerides 

metabolically, consequently becoming smaller in diameter. During this process, the 

apolipoprotein C dissociates from the particle. The resulting particle is the intermediate 

density lipoprotein (IDL).26 
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Fifty percent of the IDL that forms from VLDL is taken up by the liver. 

Apolipoprotein E facilitates this uptake. The other 50% lose the apolipoprotein E that 

remained from the VLDL form. Leaving a particle that contains only apolipoprotein B­

l 00 and is high in cholesterol. This new form of IDL is the low-density lipoprotein 

(LDL) particle.26 

LDL particles are taken into cells that need cholesterol through endocytosis. This 

endocytosis is facilitated by the apolipoprotein B-100 (VLDL, IDL, and LDL all have B-

100). Roughly sixty seven percent of the TC in the serum is found in LDL particles.26 

High-density lipoprotein (HDL) particles act in the removal of excess cholesterol 

from the cardiovascular system. This uptake function is unique to the HDL particle. 

HDL is formed in the liver, intestine or circulatory system, and contains 20-30% of the 

total serum cholesterol. The HDL particle contains lecithin-cholesterol acyl transferase 

(LCAT), which acts to esterify free cholesterol. Apolipoprotein A-1 acts in the 

cholesterol esterification in conjunction with LCAT. Apo A-1 is the main apolipoprotein 

in HDL particles. Cholesterol ester transfer protein acts to move esterified cholesterol 

from HDL to IDL or LDL. The cholesteryl ester is cleared via the uptake mechanisms 

for these lipoproteins in the liver. Cholesterol is eliminated from the body in the bile as 

either free cholesterol or bile acids. 26 
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Current Lipoproteins Determinations and Diagnostics 

The measurement of lipids in sera involves the quantification of TC or total 

triglycerides (TG) and the determination of the lipoproteins. Currently there are a variety 

of diagnostic tools for the analysis of lipids and lipoproteins. The current standard 

method is the enzymatic determination of TC, TG and HDL-C followed by the 

Friedewald approximation, which calculates the LDL-C. Prior to the enzymatic method, 

there were chemical methods such as the L-B reaction (see Chapter I) and 

ultracentrifugation analysis (beta quantification or BQ) of the lipoprotein fractions. 

These two techniques eventually became the CDC standard methods BQ and Abell­

Kendall for cholesterol analysis. 

A number of new techniques have become available in the last decade. One of 

the most important is the direct LDL-C concentration determination method. This 

technique involves the selective precipitation of all lipoproteins except LDL and Lp(a). 

The LDL and Lp(a) ate subsequently measured using the cholesterol enzymatic 

determination. Other analytical techniques under development for routine use include 

gradient gel electrophoresis, NMR, and lipoprotein high performance liquid 

chromatography. These alternative methods do not enjoy the acceptance of the 

enzymatic Friedewald approximation due to the lack of substantiating studies. 

As new analytical tools for lipoprotein analysis are developed, new risk factors 

for cardiovascular disease need to be addressed. A number of new risk factors are 

currently in the verification stages. For a risk factor to be considered for routine or semi­

routine analyses it must have substantial prospective and retrospective clinical supporting 
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evidence. The most commonly known new risk factors include trans-fatty acids, 

apolipoprotein a, and homocysteine. Other future risk factors are fibrinogen, 

antioxidants, LDL oxidizability, and the subclasses ofHDL and LDL lipoproteins.26 

Standard Lipoprotein Clinical Methods 

The current standard methods used for the primary screening of patients uses the 

enzymatic analysis of TC and TG combined with the Friedewald equation to approximate 

the LDL-C value. Beyond this initial screening, standard methods for the analysis of 

dyslipidemias include analysis of lipoproteins. If lipoprotein analysis warrants concern, 

the primary screening is followed by more specialized tests such as pheno- and 

genotyping of lipoproteins or quantitative analysis for the presence of chylomicrons in 

fasting serum. Furthennore, direct determination of the LDL-C can be done using 

ultracentrifugation or selective precipitation to help verify the dyslipidemic state. 

Both plasma and serum measurements are used for the analysis of lipids in the 

blood. When collecting plasma samples, EDT A treatment for coagulation prevention is 

preferred to avoid secondary outcomes such as oxidation and bacterial growth. Both 

cholesterol and triglycerides are 3 % greater in serum than in plasma. HDL-C 

concentrations are 5-10 % lower in non-fasting serums. This results in an acceptable 

error on the side of increased risk that is resolvable with further testing.26 Biological 

variances can be significant in the routine determination of serum lipids. The (%) 

biological variances are: TC (6.1), triglycerides (22.6), LDL-C (9.5), and HDL-C (7.4).27 

The patient should be fasting 10-12 hours prior to the blood draw. The patient 

should also have avoided alcohol, and the diet of the patient should be normal and steady 

for 2-3 weeks prior to sampling. In addition, blood work should be avoided during a 
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period of 2-3 weeks after minor illness. If the patient has undergone a major illness, 

surgery, or trauma, blood sampling should be avoided for 3 months. The degree of 

physical activity just prior to taking a venous sample is a variable that has to be 

controlled. It is recommended the subject be at rest for five minutes prior to the blood 

draw. Finally, any medication that alters lipid levels should be discontinued, if possible, 

3 weeks before samples are taken. 26 

Enzymatic Methods 

There are a several variations of the enzymatic methods used to determine the 

lipids in serum and plasma. The routine method involves enzymatic reactions that lead to 

products that can then form chromophoric indicators of concentration. An example of 

this type of diagnostic procedure precipitates the LDL and VLDL lipoproteins with an 

appropriate agent such as dextran sulfate or phosphotungstic acid. The HDL .. c that 

remains is modified by hydrolyzes of the cholesterol esters using cholesterol esterase. 

The resulting free cholesterol is converted by cholesterol oxidase to cholest-4-en-3-one 

and free H202. The H202 reacts with precursors, which in turn react with a dye to form 

the colored product from which quantitative absorbance measurements are made. From 

the whole serum, the TC is determined separately by the same enzymatic procedure. For 

TG determination, a separate serum sample is treated with lipase to hydrolyze the ester 

bonds between the fatty acids and the glycerol molecule. The glycerol is reacted with 

glycerol kinase to form glycerol-3-phosphate (GP). GP is then reacted with glycerol-3-

phosphate oxidase to form dihydroxyacetone phosphate and H202. The H202 undergoes a 

· similar reaction as in the determination of cholesterol to give a colorimetric response. 
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Friedewald Equation 

Knowing the TC, HDL-C, and TG concentrations, and from extensive clinical 

studies presuming the VLDL-C is equal to the 0.2TG the LDL-C is determined according 

to the Friedewald's approximation: 

LDL-C = TC - 0.2 TG - HDL-C (1) 

Unfortunately, the Friedewald's approximation results are never accurate. If the 

TG is greater than 200 mg/dL, the calculated value of LDL-C compared with a direct 

measurement is marginal. If the TG is greater than 400 mg/dL, the model fails.28 If the 

patient has Type II dyslipidemia or chylomicrons are present the equation is also 

unreliable.26 The use of the Friedewald approximation also requires fasting, as the TG 

levels are uncertain in the presence of chylomicrons. Even if accurate, TG constraints 

exist. The Friedewald approximation also ignores other potentially significant entities 

such as Lp(a) lipoprotein, which can lead to inaccurate LDL-C values.29 

Beta Quantification 

The CDC standard method for determining lipoprotein fractions is the BQ 

procedure. In this procedure, the serum lipoproteins are separated by ultracentrifugation 

enabling LDL-C to be determined directly. This avoids the problems associated with 

hypertriglyceridemic patients and the Friedewald approximation. The Friedewald 

equation is an attempt to approximate the results of direct LDL determination by the BQ. 

Today direct determination of LDL-C is possible by a variety of isolation methods, 

however the National Cholesterol Education Program (NCEP) still recommends the 
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approximation due to an epidemiological study link that demonstrated the importance of 

LDL-C levels.30 It is anticipated that eventually the BQ and Friedewald approximation 

methods will be supplanted by one or more of the direct LDL-C determination methods. 

Alternative Lipoprotein Determination Methods 

Electrophoresis 

Very early in the study of blood lipids physical separations were used to analyze 

lipoproteins and lipoprotein concentrations. Electrophoresis involves the migration of 

serum lipoprotein components through a separating media utilizing electromotive force. 

Electrophoresis of serum components has been used in the analysis of serum components 

since the beginning of lipoprotein studies. However, the more modem forms of 

electrophoretic methods have increased their usefulness in lipoprotein analysis. Various 

separation media can be used for electrophoresis in the analysis of lipoproteins. Common 

separation media are non-denaturing polyacrylamide and agarose gels. Agarose gel 

electrophoresis can be used for accurate lipoprotein determinations.31 Specialized 

separation media are also used. Immuno-electrophoresis allows selective separation 

based on specific interaction with the apolipoproteins present and has the potential for 

direct measurement of apolipoproteins and assays that are more specific.32• 33 For 

instance, a modified electrophoresis method allows the determination of glycated 

lipoproteins as a means for detection of diabetes. 34 

Electrophoresis can be used to directly determine the level of cholesterol of all 

lipoprotein fractions in sera. 35• 36 Electrophoresis can consequently be used to describe 

and identify dyslipidemias.37 Furthermore, it can be used for the determination of 
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lipoprotein remnants;38• 39 When electrophoresis of the lipoproteins is done a number of 

disorders can be elucidated. This is particularly useful for patients with borderline 

cholesterol levels. If the beta band in the electropherogram is broad it is an indication of 

Type III dyslipidemia, when a combined hyperlipoproteinemia exists. If the beta and 

pre-beta bands are resolvable, a patient has Type II-B dyslipidemia, when both 

cholesterol and triglycerides are at high concentration.26 If the patient has Type III 

dyslipidemia the electropherogram can also indicate beta-VLDL, an altered VLDL 

particle. This is done by first separating the VLDL particles from the other lipoproteins 

by ultracentrifugation and separating them by electrophoresis. If the VLDL shows beta 

mobility instead of alpha-2 mobility, they are beta-VLDL. In electrophoresis, any 

chylomicrons present do not migrate. This fact can also be used to determine 

chylomicron presence.26 

Electrophoresis can also give an indication of the charge of the lipoproteins. This 

is important since the oxidized LDL particles are linked to atherogenesis.40• 41 The 

oxidized LDL's surface becomes more electronegative which is detected by increased 

electrophoretic mobility on the electrophoresis gel.42• 43 These oxidized LDL particles are 

termed "LDL-" and they are minimally oxidized with the majority of reactive oxidized 

species being on the surface of the particle.44 Electrophoresis, therefore, can be used to 

assess the level of oxidative stress in a biological system.45 

Electrophoresis also gives information about lipoprotein particle size. There are 

variations in LDL size, which are associated with increased risk for atherogenesis.46• 47 

HDL particle size is indicative of the development stage of the lipoprotein and its 

associated action in cholesterol transport.48 Electrophoretic methods can determine the 

59 



standard subclasses of lipoproteins such as LDL, HDL, VLDL cholesterol without need 

for precipitation and in an automatable fashion.49' 50 LDL and HDL subclass deviations 

are better indicators of CAD than lipoprotein cholesterol levels and this is detectable with 

electrophoresis almost exclusively.51•53 LDL subclasses may indicate acute risk of 

myocardial infarction. 54 

Electrophoresis has many other potential benefits in analysis. For example, 

standard equipment can be used for the analysis of fatty acids by electrophoresis.55 The 

utilization of efficient capillary electrophoresis for the determination of lipoproteins is a 

developing separation method. 56' 57 Capillary electrophoresis is beneficial in its high 

throughput potential. Capillary electrophoresis is currently readily automatable and 

commercially available platforms are available for this type of electrophoresis. 

Direct LDL-C Determination 

Several direct LDL-C analysis methods currently exist. These methods will allow 

the analysis of true LDL-C for any patient independent of any dyslipidemic state that may 

exist. These methods primarily rely on selective precipitation. A number of separation 

methods have the potential to replace ultracentrifugation including HPLC gel filtration 

and gradient electrophoresis. Selective precipitations are typically based either on charge 

neutralization or on antibody binding.38• 58 

The N-geneous™ LDL-C assay is an example of a direct LDL-C system. It 

utilizes detergents to selectively solubilize LDL away from the other lipoprotein 

components. Results have been shown to be very similar to ultracentrifugation59 and it is 

not affected by glycemic control. The N-geneous™ system is fully automated and is less 
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expensive than ultracentrifugation.60 Direct LDL-C determination methods can be done 

on people with dyslipidemias, diabetes and are non-fasting with little error.61-64 

The original studies of cardiovascular risk factors indicated that cholesterol was 

an independent risk factor. The TC value is enough in cases where the cholesterol 

concentrations are significantly high or low. A large segment of the patients undergoing 

cardiovascular screening are borderline patients where TC is misleading in terms of their 

risk of coronary artery disease (CAD). It is in the intermediate values that the cholesterol 

lipoprotein distribution is useful in determining the risk for CAD.65 

If cholesterol is not a suitable risk factor to predict CAD, the lipoproteins are the 

better predictive risk factors.65 Specifically, high VLDL-C and LDL-C are both positive 

risk factors for CAD. High HDL-C concentrations act in a preventive mechanism for 

CAD.66• 67 IDL particles are also associated with an increased risk of atherosclerosis68 It 

is currently recommended to determine VLDL-C, LDL-C, and HDL-C concentrations 

before making a diagnosis or prescribing a therapy for the prevention of CAD.65 The 

routine determination methods for HDL-C and LDL-C are more time consuming than the 

determination of TC or TG due to separation steps. 69 

While the lipoprotein fractions are better for borderline patients, for a small 

number of patients the values for lipoproteins are also not enough to characterize their 

risk for developing CAD. The subclasses of the lipoproteins are still better as predictive 

indicators. Lipoprotein subclasses have been characterized in terms of their role in 

atherogenesis.70 The LDL particle contribution to atherogenesis largely depends on the 

"particle size" .54• 11•15 The small LDL particles infer a higher risk of CAD at normal LDL­

C concentrations. 65 The associated beneficial effect of HDL does not occur across all of 
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the HDL subclasses. While the largest HDL particles are protective against 

atherosclerosis, the two smallest particles are positive risk factors for CAD.76• 77 The 

inability of the body to clear chylomicrons is associated with increased risk for coronary 

heart disease (CHD). The inability to clear chylomicrons causes the presence of larger 

VLDL lipoprotein particles to appear in fasting serums that correlates with an increased 

risk of CAD.78' 79 The lipoprotein subclass profile can demonstrate increased risk for 

patients with HDL-C and LDL-C values that are considered "normal" by the NCEP 

definitions.80 The lipoprotein subclasses are very similar to each other. This results in a 

10 time increase in difficulty to speciate them compared to the standard lipoprotein 

separations. 81 

The determination of VLDL subclasses is not a routine matter and the 

relationships between the VLDL subclasses and CAD are not well studied. Lipoprotein 

subclasses can be determined by chemical precipitation, ultracentrifugation, 

electrophoresis, and chromatography. The analysis of the lipoprotein subfractions 

requires either a separation or a marker specific for each of the subclasses.65 

NMR Analysis 

NMR can determine the size of lipoprotein particles based on the relative nuclear 

magnetic resonance shifts.65 The NMR procedure utilizes the absorbance shift in the 

methyl group resonance for each different particle size. These different resonances are 

due to the oriented phospholipids on the surface of the lipoprotein.82 

One limiting factor of NMR is that the particles are only determined by size and 

therefore any overlap in the size of the particles, whether of the same or different 
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lipoprotein classes, are viewed as equivalent. In addition, any interesting chemical 

variation is lost in NMR analysis. This can be important, for example, because 

"chylomicron remnants" and VLDL particles are of a similar size. In addition, the 

apolipoprotein is not distinguished so important variants like Lp(a) derived from LDL are 

not represented in the data. 65 

Because the NMR method only determines the particles based on their size, errors 

occur when translating the NMR data to cholesterol concentrations found in the various 

lipoproteins. The values determined by the standard methods for LDL-C and HDL-C 

ignore the variation of the concentration of cholesterol in the particles, 83 i.e. only 

cholesterol in the lipoprotein fraction is determined. The number of LDL particles is 

determined assuming the LDL particle contains a standard amount of cholesterol. In the 

case of NMR this source of error in LDL particle number determination is avoided. The 

actual cholesterol concentrations of LDL and LDL subclasses are determined by analysis 

of a "bulk lipid signal" from NMR analysis which does not vary based on the transfer of 

cholesterol from the core of the particle. Therefore, traditional data for the association of 

lipoproteins to diseases are· based on the cholesterol found in the particle. The actual 

number of lipoproteins is not the standard risk factor. Further, the determination of 

cholesterol from the total number of lipoproteins is complicated by the same variation of 

cholesterol that makes the NMR analysis more rigorous.65 

While the NMR method is limited in a number of important ways, the method 

does have a few advantages. For example, chylomicrons can be determined with NMR 

so having a fasting sample is not necessarily needed.65 NMR also has the potential to do 

direct determination of conjugated fatty acids in a mixture with pure fatty acids.84 The 
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ability of NMR to determine species with specific resonances may prove extremely 

powerful in the analysis of chemical components of blood. Another limiting factor is that 

the analysis is based on methyl resonances only and is not specific and readily susceptible 

to interferences. 65 

Why Lipoproteins are the Current Model for Diseases 

Introduction to Dyslipidemias 

There are varieties of classification systems for lipid disorders. One system is the 

Fredrickson classification. 85• 86 Dyslipidemias can be simply classified as 

hypercholesterolemia, hypertriglyceridemia, high LDL-C, low HDL-C, or some 

combination of the above. This simplified system ignores the fact that the dyslipidemia 

can be primary (genetic) or secondary (non-genetic).26 Some secondary causes of 

hypertriglyceridemia are obesity, pregnancy, and diabetes mellitus. Some secondary 

causes of hypercholesterolemia are hypothyroidism, nephrotic syndrome, and 

cholestasis. 26 

Primary causes of hypercholesterolemia include a single gene mutation in LDL 

receptors.87 If this disorder is homozygote the TC levels can rocket to 600-1000 mg/dL. 

In the heterozygote form TC levels are much lower (300-450 mg/dL). The heterozygote 

form of the disorder involves a one-half decrease in LDL receptor function.26 The 

homozygote form of this disorder can be devastating to the patient who suffers from 

tendon xanthoma and has atherosclerosis before midlife.26 The mutations that cause this 

disorder are well understood. 87• 
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Hypertriglyceridemia, when taken independently, is a risk factor for CAD. 

However, when TG concentrations are incorporated with other risk factors its 

performance as a risk factor falls below acceptable limits.85' 86 Complex algorithms have 

been developed to explain the loss of relevance in TG concentration when combined with 

other factors. 88 A primary (genetic) cause of hypertriglyceridemia is Type IV 

dyslipidemia. Type IV dyslipidemia is autosomal dominant and results in overproduction 

of triglycerides in the liver. A characteristic of this dyslipidemia is the presence of larger 

VLDL particles due to the extra triglycerides available at the liver. There are no 

biochemical markers for this disorder and there is no evidence to link this disorder to 

increased risk of CAD. The serum TG levels tend to be less than 600 mg/dL and the 

LDL-C concentrations tend to be within the normal range.26 Combined these symptoms 

make it difficult to diagnose the condition given no specific marker. 

TG levels above 1000 mg/dL are associated with chylomicronemia syndrome. 

Such high levels of TG mean the patient could have pancreatitis.26 Chylomicronemia can 

be caused by lowered function of lipoprotein lipase (LPL).89 This lowered level of 

enzyme function may be due to lower levels caused by an autosomal recessive disorder, 

or by lowered level of apolipoprotein C-II that is necessary for LPL to function. LPL 

deficiency shows up in childhood, and is not linked to early atherosclerosis. Low levels 

of apolipoprotein C-II is a rare disorder caused by an autosomal recessive gene.89 

Another cause of chylomicronemia is Type V dyslipidemia. This is especially 

relevant to the adult onset of chylomicronemia.26 These cases require the presence of 

familial hypertriglyceridemia. To this existing disorder some secondary cause (obesity, 

alcohol, etc) facilitates the chylomicronemia onset. Type V disorder is marked by high 
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VLDL-C concentrations and the presence of chylomicrons in fasting serums. Type Vis 

genetic in its nature but the details of how it is inherited are not clear.26 

Combined dyslipidemias occur when both TC and TG levels are above normal. 

There are two main subcategories of combined dyslipidemia. The first is combined 

familial hyperlipidemia (CFH); the most common form of combined dyslipidemia.85• 86• 90, 

91 CFH is also called "familial multiple lipoprotein-type hyperlipidemia". This disorder 

can cause increased concentrations of cholesterol, triglycerides, or both. CFH is 

autosomal dominant, and causes overproduction of apolipoprotein B-100. Consequently, 

increased levels of apolipoprotein B-100 are found in VLDL, IDL, and LDL lipoproteins. 

Patients with CFH have increased risk of atherosclerosis. The diagnosis of this disorder 

relies on the presence of low HDL-C concentrations and elevated apolipoprotein B-100 

levels in the serum.26 A similar disorder to CFH is hyperapobetalipoproteinemia where 

there are normal levels of LDL-C and increased levels of apolipoprotein B-100. This 

disorder is associated with increased risk for CAD.92 

The second main subcategory of combined dyslipidemias is Type III disorder, 

also called dysbetalipoproteinemia. In this disorder, the patient is homozygous for the 

apolipoprotein E-2 gene rather than the normal apolipoprotein E-3. This difference in 

alleles does not directly cause Type III disorder. One percent of the population is 

homozygous for apolipoprotein E-2. It requires secondary causes to lead to the onset of 

Type III disorder. Secondary causes such as obesity or diabetes can lead to the onset of 

Type III disorder. Apolipoprotein A-2 is not as good at inducing uptake at the liver as 

the other forms of apolipoproteins E. This results in decreased chylomicron and IDL 

particle uptake by the liver and their subsequent increased concentration in the circulatory 
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system.26 Unique to Type III disorder is the presence of a "broad beta band:" in the 

electropherogram of the lipoproteins. Due to the high concentration of chylomicrons the 

analysis of this sample requires direct determination of VLDL-C or LDL-C given the TG 

concentrations are beyond the working range of the Friedewald approximation. A 

confirming measure is if the VLDL-C versus TG ratio is greater or equal to 0.30. Type 

III patients will experience increased atherosclerosis.93 

In hyperapobetalipoproteinemia, the LDL lipoprotein tends to be the smaller, 

denser version. These smaller LDL particles are found with many disorders including 

hypertriglyceridemia, insulin resistance, glucose intolerance, and hypertension. This 

presence of small dense LDL particles in so many disorders may indicate a pathological 

relationship between these special LDL lipoproteins and the disorders. The prevalence of 

this phenomenon has lead to it being called syndrome X by researchers.94 

The interest in the relationship between serum lipids and their relationship to 

disease is divided into two fields of study. The first is the study of lipoprotein 

composition and the second is the study of actual fatty acid composition. 

Lipoproteinology is currently the model used as a marker for a number of diseases 

including atherosclerosis, CHO, and susceptibility to stroke. The current standards for 

lipoprotein cholesterol were reiterated in a report published in 2002 by the NCEP. In the 

report the standards for lipoprotein cholesterol and serum total values of LDL-C less than 

100 mg/dL; TG less than 150 mg/dL; and HDL-C is greater than 40 mg/dL are 

recommended as the normal range.28 

The NCEP has issued three Adult Treatment Panels (ATP) since it's inception in 

1983. The variation of the standard values is of interest. In the ATPIII (2002) the value 
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for TG is lower than the value espoused in the ATPII (1993) of 200 mg/dL. ATPII had 

already lowered the TG value from 400 mg/dL recommended in ATPI (1983). These 

variations indicate the continued development of the models underlying these values.28 

The need for variation in the cutoff values is made clear by the fact that in 1999 thirty 

three percent of the patients with CHO had "normal" LDL-C values defined in the 

ATPll.95 The ATPU report recommended alternative LDL-C determination if the 

cholesterol level is normal (<200 mg/dL) but the HDL-C is less than 35 mg/dL; TC is 

borderline (200-239 mg/dL) and two or more risk factors are present; if TC is greater or 

equal to 240 mg/dL.26 

There are many risk factors associated with CAD. One of the risk factors is age. 

There is an increased risk for CAD in men 45 years and older, and for women 55 years 

and older. Women with premature menopause without estrogen replacement therapy are 

considered at greater risk before 55 years-of-age. Another risk factor is a family history 

of CAD. Smoking is one of the most controllable risk factors. Hypertension and 

diabetes mellitus are diseases that increase the risk of CAD. IfHDL-C is greater or equal 

to 60 mg/dL this counts as a negative risk factor, i.e. HDL-C is greater or equal to 60 

mg/dL helps protect against CAD.26 

The risk factors currently used may be supplanted or supported by a number of 

risk factors now being evaluated. These include apolipoprotein concentrations in the 

blood. For example, higher apolipoprotein B and lower apolipoprotein A-1 

concentrations, resulting in a low apo A-1 I apo B ratio, is a marker for CAD. 

Prospective studies are still necessary for this measure to be accepted as a routine 

evaluation method.33• 96 Standardization in measuring apolipoproteins is not complete but 
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in general, progress is being made. The accurate measurement of apolipoprotein B-100 

and apolipoprotein A-1 will be a method in the future. 97 Apolipoprotein B-100 

measurement will help diagnose hyperapobetalipoproteinemia that results in 

atherosclerosis in patients with normal LDL-C concentrations.26 Apolipoprotein(a) 

(Apo(a)) is an important apolipoprotein98-101 found in lipoprotein(a) (Lp(a)). Lp(a) is 

similar to LDL in lipid composition and apolipoproteins except the addition of Apo(a). 

Apo(a) is a glycosylated lipoprotein that exists with disulfide bonds linking it to the 

apolipoprotein B-100 in the surface layer.26 Apo(a) has high amino acid sequence 

identity with plasminogen. This fact may prove important for determination of the origin 

of Apo(a). Apo(a) levels are not readily influenced by external factors. It seems to be 

under genetic control. 26 

A large number of studies, involving various designs, have shown correlation 

between LDL-C and atherosclerosis. Some of these studies have shown the effectiveness 

of treatments that lower LDL-C on CAD.102, 103 

The Framingham study showed that low HDL-C is a risk factor for CAD.66 

Lowered HDL-C can result from secondary factors including smoking, diabetes, and 

obesity. A primary (genetic) cause of lowered HDL-C is hypoalphalipoproteinemia.26 

Exceptions to the trend of low HDL-C as beneficial do exist. Individuals with 

apolipoprotein A-1 mutation have lowered HDL-C concentrations but no increased risk 

of atherosclerosis.88 Hyperalphalipoproteinemia produces HDL-C levels greater than 70 

mg/dL. These individuals seem to be at lower risk for CAD.26 
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Alternatives to Lipoprotein Analysis 

Total Lipids Determination and Human Diagnostics 

The lipid profile of the serum has been investigated in a variety of studies 

utilizing a variety of analytical methods. The most common methods are 

chromatographic methods: high performance liquid chromatography (HPLC), gas 

chromatography (GC), and thin layer chromatography (TLC). The results of these 

studies are largely dependent on the hypothesis being tested. Overall, these studies give 

an indication of the importance of the serum fatty acid composition in relation to disease 

states. 

How Do Unsaturations and Cholesterol Affect Health 

PUF As are known to affect the lipid composition of the serum. Fish oil, high in 

PUF As, lowers levels of VLDL and IDL lipoproteins when taken at I g/day.104 Fish oil 

has also been used successfully in the treatment of type IV, V, combined and 

chylomicronemia dyslipidemias. 105•106 Fish oil can counter the results of 

hypertriglyceridemia that is associated with carbohydrate intake. 107 In the liver of 

"hyperlipidemic rats" docosahexaenoic fatty acid (DHA) prevents the excessive 

production of lipids. 108 

Omega-3 fatty acids are essential dietary components related to cancer 

development and treatment. Cancer is related to diet 20-60% of the time, depending on 

the type of cancer.109 Prospective studies have suggested fish supplementation can be 

protective for women against colorectal cancer.110 When challenged with carcinogens, 

eicosapentaenoic acid (EPA) and DHA inhibit carcinogenesis in the colon of rats.111 Fish 
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oil gave similar results in carcinogen challenged rat models. 112 HT29 human cancer cells 

in the nude mouse colon also responded with in a positive way to fish oil treatment. 113 

Liver cancer rat models had positive effects for n-3 PUFA and n-6 PUFA on adenoma 

but not carcinoma. In this study, the PUFA source was plant based and therefore did not 

contain EPA or DHA.114 A study has shown positive effects when hepatic carcinomas are 

treated with EPA and DHA ethyl esters. 115 

The mechanism of action for EPA is that it prevents cell proliferation, and DHA 

acts to stimulate apoptosis. 116 The effect of n-3 PUF A on breast cancer is less clear. 

Animal models showed that EPA and DHA decreased the chance of breast cancer but 

they did not prevent cancer proliferation. 117 A review of data from 1966 to 1994 indicates 

that n-6 PUF A and saturated fatty acids are associated with increased growth of breast 

cancer, while n-3 PUFA are slightly inhibitory.118 Overall, the lack of congruence 

between the studies is likely due to confounding factors not considered in all studies. 116 

n-3 PUF A does prevent metastasis of breast cancer. 119•121 EPA prevented cancer growth 

and metastasis in rat breast cancer models. 119 Breast cancer growth and lung metastasis is 

prevented with menhaden fish oil supplementation.120 Using transplanted tumor models 

the protective effect on n-3 fatty acids are seen with inhibition of breast cancer 

proliferation and metastasis. 121 EPA treatment inhibits the metastasis of liver cancer. 122 

However, fish oil treatment resulted in promotion of metastasis in comparison to a 

safflower diet. 123 

In mouse models lung cancer also has increased metastasis with n-3 PUFA 

supplementation compared with n-6 PUF A or saturated oil diet. 124 In mouse models of 
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highly metastatic cancer cells EPA and DHA supplementation resulted in lower lung 

metastasis when compared to linoleic and arachidonic acids. 125 

The beneficial effect of PUF A is associated with increased PUF A peroxidation. 126 

The ability of fish oil to prevent mouse carried breast cancer is limited by vitamin E. 127 

Vitamin E supplementation increased the likelihood of cancer and the proliferation of the 

carcinoma. 128 In a study seeking to increase lipid peroxidation and evaluate its effect on 

human breast cancer cells in mouse hosts, the increase of peroxidation by added iron and 

a peroxidation inducing drug limited cancer cell growth proportionally.129 The 

cytotoxicity of PUF A oxidative products is a significant factor. Hydroperoxides of 

unsaturated fatty acids are cytotoxic. The ability of DHA to affect cancer cells depends 

on the cells ability to counter oxidation processes. The "hydroperoxy-DHA" species is a 

major cytotoxic byproduct ofDHA peroxidation.130 Sarcoma cells were treated with "n-3 

PUFA (DHA>ALA>EPA)" and the n-3 PUFA acted to inhibit cell growth. Vitamin E 

inhibited the toxic effect of these fatty acids while lipid peroxidation was increased with 

all of the fatty acids in the study.131 Most leukemia cells are affected by arachidonic acid, 

EPA, and DHA. The leukemia cells die by both necrosis and apoptosis. EPA causes 

necrosis rather than apoptosis. The effect of EPA is counteracted by the presence of 

vitamin E. 132 

Malignant pancreas cells are induced to undergo apoptosis by EPA, DHA and n-6 

arachidonic acid in vitro. In these cases apoptosis depended on lipid oxidation. 133 

Mitomycin C is an anticancer drug that causes increased oxidation in vivo. EPA has 

been shown to increase the effectiveness of mitomycin C. The increased unsaturated fatty 

acids in the tumor allowed for higher toxicity in the tumor cell. 134• Dietary intake of "pro-
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oxidants" facilitated the effectiveness of anthracyclins against breast cancer. Addition of 

dietary vitamin E inhibited this effect. 135 The use of DHA and EPA also allow the relief 

of cardiotoxic effects of anthracyclins in rat models.136 The amount of n-3 PUF A in 

breast adipose is directly correlated to chemotherapy response. The level of DHA was 

high in patients who responded well to chemotherapy and low in people who did not 

respond well to chemotherapy.137 Anthracyclin effectiveness increased with increased 

levels of DHA. Lipid peroxides and lipid peroxidation products are therefore associated 

with the mechanism of drug effectiveness and the use of these factors can assist in future 

chemotherapy treatment schemes. 138 The use of pro~oxidants combined with fish oil 

· supplementation effectively slowed breast cancer cells in mice. 129 

The increased effectiveness of chemotherapy with n-3 PUF A may not be 

universally due to peroxidation. Cyclophosphamide has enhanced in vivo performance 

with menhaden oil due to the effect of the PUF A in modulating liver detoxifying enzyme 

function and altering liver and carcinoma enzymes that activate cyclophosphamide. 139 

The presence of PUF A in cancer cells also assist in the toxic effects of radiation 

treatment.140 Treatment of rat hosted cancer cells as treated by hyperthermia is enhanced 

with addition of ALA and GLA. 141 In the radiation treatment of cancerous astrocytoma 

cells n-6 GLA and n-3 EPA and DHA all increase tumor toxicity especially GLA. 142 

GLA is toxic only to ''neoplastic astrocytoma cells" not normal astrocytes making it a 

good candidate for cotreatment of these cancer cells with radiation therapy. 143 

EPA and DHA are taken into membranes of rat cells without making them more 

susceptible to peroxidation. 144 n-3 PUF A is taken into several parts of rat liver cells 

rapidly.145 The "physiological conditions" in which the PUF A exists is important since 
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antioxidants can act as prooxidants depending on the partial pressure of oxygen. 146 The 

levels of n-3 PUF A can be manipulated with diet to give optimum n-3/n-6 PUF A ratios 

within a few months. This effect can have benefits for several types of cancer especially 

breast cancer. 147 It is vital that n-3 PUF A effect be considered in terms of n-6 PUF A and 

antioxidant components. The toxicity of PUFA is ·higher for cancer cells than normal 

cells. This is probably due to the lower levels of antioxidants during "malignant 

transformations" .116 

Lipid Oxidation 

Lipids undergo oxidation in the mitochondria in order to be used as energy 

sources. Lipoxygenases are the enzymes that induce hydrogen removal and dioxygen 

reaction in a regiospecific manner. The reaction is very similar to lipid autoxidation 

except it is directed to a specific area of the lipid. 148 

Autoxidation 

Unsaturated lipids can undergo autoxidation through peroxidation. The process 

involves the introduction of both oxygen atoms of diatomic oxygen onto the carbon chain 

of the lipid in a free radical mechanism. 149 Reactive oxygen species (ROS) can induce a 

carbon radical in the chain by heterolytically removing hydrogen from the carbon. 
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The initial reaction is important because the initiation rate strongly influences the 

reaction products. 1s0 Normally unsaturations in lipids are methylene-bridged. However, 

when the free radical is formed in the initiation of lipid peroxidation the double bonds 

rearrange to eliminate the methylene group to become conjugated. The free radicals react 

with dioxygen forming peroxide radicals. 149 

-CH2CH=CHCH=CH°CH- + 02 --+ ••• CH=CHCHoo· (3) 

The peroxide radical can abstract hydrogen form another carbon chain. The 

nature of these free radical reactions dictates that large numbers of "initiations" can be 

achieved by this regeneration of initiator. If the chain has more than one methylene 

carbon between the double bonds, they will not rearrange into conjugation. 149 Peroxides 

tend to form on the outside methylene at the two ends of the unsaturated regions. They 

are less likely to form between double bonds on the methylene bridge carbon.1s1 

Transition metals can catalyze the formation of alkylperoxy radicals or alkoxy 

radicals from existing lipid peroxides. The alkoxy radical can further react to form 

aldehyde, ketone, and hydroxy containing products. Alkoxy radicals can also breakdown 

through chain cleavage producing "short chain aldehydes". 149 Linoleate autoxidation can 

form compounds that are unsaturated aldehydes, such as hept-2-enal, oct-2-enal, and 

deca-2,4-enal. Linolenate autoxidation can form products such as deca-2,4,7-trienal, 

hepta-2,4-dienal, prop-2-enal, and pent-2-enal.1s2 The unsaturated ketone is ubiquitous in 

peroxidation breakdown. Malondialdehyde (MDA) is an autoxidation product commonly 

considered in analytical techniques for oxidation. MDA is produced from a lipid that is 
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at least triunsaturated. The rearrangement of the middle unsaturation to conjugation with 

either of the other double bonds is followed by peroxide formation between the double 

bonds. The peroxide is located closest to the conjugated double bonds leaving a 

methylene group between the peroxy-carbon and the third unsaturation. In this position, 

the peroxy radical can form a peroxy bridge with the third unsaturation. This peroxy 

bridge decomposes into two ketones with the concomitant scission of the bonds beyond 

the alpha carbons to each ketone. Determination of the extent of oxidative degradation is 

achieved by monitoring the products of the autoxidation reactions. MDA is a common 

analyte. As with all free radical reactions the end of the reaction comes with a 

termination step. This involves the reaction of the reactive species on carbon chains with 

other free radicals to terminate both reactive species. The overall result is lipid cross­

linking through carbon-carbon bonds and peroxides.149 

Aldehydes can form protein adducts via protein free radical oxidation or Michael 

Addition of conjugated aldehydes with protein thiol groups. The thiol attacks the carbon 

of the double bond forming an enol that tautomerizes into an unsaturated aldehyde. These 

reactions result in unnatural proteins with lowered or lost functionality, making 

unsaturated aldehyde adducts toxic to cells. The cytoplasmic concentration of total 

"carbonyls" has been estimated as a means of detecting lipid oxidation. Lipid 

peroxidation products are hydrophobic. There is, therefore, an increased level of them in 

the cell membranes. DNA adducts can also be formed with aldehydes such as hex-2-enal 

and malonyldialdehyde.149 This leads to abnormal DNA processing and mutagenesis. 

In lipid peroxidation reactions of serum samples, linoleic acid is the predominant 

fatty acid and therefore is the predominant form of oxidized fatty acid in the serum. 
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Analysis of the oxidation of LDL has demonstrated the importance of the oxidized form 

of linoleic acid in oxLDL formation. 153 

Current Determination of Lipid Autoxidation and Oxidative Stress 

Currently, the methods for the determination of lipid peroxidation in foodstuffs 

and medical applications are well developed, and include chemical, immunochemical, 

and separation methods for the determination of the extent of oxidation of lipids in given 

situations. UV Nisible, fluorescence and chemiluminescence are all used for analysis of 

autoxidation products. 149 Headspace GC is also a commonly used technique. 154• 

A variety of methods are used and preferred in the determination of autoxidation 

of foodstuffs. Peroxide value, hexanal and MDA concentrations are among the most 

common.155 Thiobarbituric acid reactive species (TBARS), lipid peroxide, fluorescence 

and volatiles (including hexanal) are also used. 149 Monitoring the consumption of oxygen 

is useful for foodstuff but is of little use for autoxidation determinations in vivo. 156 

Physiological determinations of TBARS is currently the most commonly used method. 149 

As was described earlier, the formation of free radical sites in unsaturated lipids 

leads to conjugated double bonds. These double bonds absorb light in the UV region at 

234 nm. Detection at 234 nm can be used to determine conjugated dienes in a variety of 

samples. Interference by biological compounds that also absorb in the 234 nm region has 

seriously limited the use of UV detection. Extraction methods have been used to alleviate 

this problem.149 With the advent of second derivative spectroscopic techniques the 

elimination of the extraction procedures is possible. Methylene bridged dienes absorb at 

210 nm, trans-trans conjugated dienes absorb at 234 nm, cis-trans conjugated dienes 

absorb at 244 nm and ketone dienes absorb at 280 nm. 156 
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Determination of peroxides is another procedure commonly used for the 

determination of oxidation. In foodstuffs the procedure involves the dissolution of the 

sample into a chloroform I acetic acid mixture. This solution is reacted with potassium 

iodide. The peroxide acts to form iodine that is reduced with a suitable agent by titration 

to form iodide. This redox titration is monitored with starch as the indicator. 149 The 

endpoint of the titration occurs when the dark blue starch complex disappears. The 

iodine determination can also be monitored with spectrophotometric methods. 157 

Enzymatic detection of peroxides with horseradish peroxidase type II is also possible. 158 

Peroxides can also be determined with chemiluminescence. 159-161 In one study the link 

between toxicity of the cancer drug doxorubicin and lipid peroxidation was determined 

using a chemiluminescent method. 162 Chemiluminescence methods use luminol in 

reaction with hydroperoxides. 149 Fluorescence is achieved using fluorescent indicators 

like Diphenyl-l-pyrenylphosphine.33• 163 

A major class of lipid peroxidation products is carbonyl compounds. Reviews 

have been written on aldehyde containing products. 164 Determination of carbonyl 

containing compounds is commonly done by derivatizing the carbonyl with 2,4-

dinitrophenylhydrazine to form 2,4-dinitrophenylhydrazones. These 2,4-

dinitrophenylhydrazones are detected with UV Nis spectrophotometry.149 This system 

has been used in spectrophotometric detection in HPLC separations of 2,4-

dinitrophenylhydrazone aldehyde derivatives. 165 Currently an immunochemical method is 

being used to detect carbonyl species where the antibody binds directly to the 2,4-

dinitrophenylhydrazones. This allows the detection of the carbonyl species within the 
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context of a living cell. 166 Fluorescence determinations are achieved by forming 

decahydroacridine derivatives164• 167 or by other derivatizations.168 

MDA concentrations can be determined but they are not indicative of lipid 

peroxidation levels in vivo. 164 A very small amount of MDA can be produced from the 

diunsaturated linoleic acid.149 MDA is not the most common peroxidation product. 
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Summary 

This review summarizes current routine clinical methods. It presents the 

importance placed on lipoprotein determination, and emphasizes the current and 

developing methods for lipoprotein isolation and quantification. It reviews why 

determinations of TC and lipoprotein fractions have been traditionally used for the 

determination of lipids in the sera. The association of these values to a variety of lipids 

disease states ( dyslipidemias) is also discussed. 

. The methods of lipoprotein analysis are largely dependent on such techniques as 

centrifugation, electrophoresis, or selective precipitations. These isolation methods have 

made the analysis of lipoproteins accessible for the last few decades. The utility of 

lipoprotein data has been demonstrated in cross-sectional clinical studies to predict risk of 

CAD. Methods under development, including direct determinations of LDL-C, are 

dependent on similar clinical studies to prove the reliability of the method for the 

determination of risk. In fact, every new method, including the one presented in this 

work, requires such clinical verification. 

Methods to separate and analyze individual lipid components have been available 

for several decades. Lipid components in this sense means cholesterol, its esters, 

polyunsaturated fatty acids in a transesterified state, etc. The analysis of these lipid 

species is a tool currently used for the analysis of diseases with associated variations of 

blood lipids. These analyses have depended primarily on isolation of the species by 

separation methods. The use of lipid profiles for the prediction, determination or 

monitoring of disease states is not currently an organized field of scientific study. 
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That the direct determination of lipids by means of the chemical assay described 

in this work can be used for the determination of disease states is supported by the 

literature. The ability of the present method to simultaneously determine the lipid 

components of sera is unprecedented. The assay can determine mono- and 

polyunsaturated fatty acid compositions as well as having a superior detection limit over 

the L-B reaction for the determination of TC. Cholesterol is still considered the 

overriding determinant of cardiovascular risk. High TC is predictive of risk for CAD 

regardless of the lipoproteins concentrations. Combined with the ability to determine 

levels of the PUF A, which are known to be associated with variations of lipoprotein 

ratios and subsequently cardiovascular risk, the chromogenic assay has the possiblity to 

revolutionize routine clinical analyses. 

Beyond the known analytes of cholesterol and PUF A, there are other beneficial 

analytes potentially determinable with the reagent. Spectral responses of the reaction 

have demonstrated positional and enantio-specificity potentially allowing determination 

of cis vs trans and conjugated double bond isomers. The presence of conjugated double 

bonds is indicative of oxidative stress, and oxidative stress is associated with a variety of 

diseases in humans from atherosclerosis to diabetes. With all of the disease implications 

of the known analytes detected by this assay when combined with the known capability 

of the assay to cluster diabetics from a set of 100 normal and dyslipidemic patients 

(unpublished results) further emphasizes the potential of the assay as an alternative 

routine clinical assay. 
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Mixture Determination 

Introduction 

In order to determine the components of a mixture from a spectrum of the mixture 

a multivariate analysis method must be used. The simplest of the multivariate analysis 

methods is MLR. In MLR, the components of the mixture and the molar extinction 

coefficients of all components must be known. In the application of the chromogenic 

reaction for analysis of serums, the components absorbing the spectra are known. Once 

calibration data is determined for the full spectrum of each component, MLR should 

produce an accurate result for the concentration of each component. 

Studying synthetic mixtures is the first approach to the development of a real 

calibration system for the analysis of serum spectra can be developed. This study uses 

mixtures of lipids at concentration percentages of each component corresponding to the 

amounts found in actual serum samples. MLR analysis of the synthetic mixtures is then 

used to determine the feasibility of such a calibration system for real samples. 

Multiple Linear Regression 

MLR is the most basic of the multivariate analysis methods. The technique 

involves solving linear equations to determine thevconcentrations of the components that 

compose a mixture. The technique is accurate and resilient if all components of the 

mixture are known and appropriate calibration data are available for each component. In 

multiple linear regression, the dependent variable is related to a group of independent 

variables. For systems obeying Beer's law: 
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A= abc (4) 

Where A is the absorbance, a is the molar extinction coefficient, b is the pathlength and c 

is the concentration of the absorbing species. The dependent variable is the absorbance 

(A) at any wavelength. The absorbance (A) of a mixture is dependent on the sum of 

absorbance contributions from all of the components at that wavelength: 

Here b is a consistent pathlength of 10 mm. The above calculation can be done at all 

wavelengths by solving the simultaneous linear equations, and is easily achieved using 

matrix algebra. In matrix form equation 2 becomes: 

A=Xc (6) 

Where A is the spectral response from the mixture at all wavelengths, X is the molar 

absorptivity matrix for all components of the mixture at all wavelengths ( also known as 

the K matrix) and c is equal to the molar concentration vector. 

To determine the concentration for each component given the spectra A, solve 

equation ( 6) algebraically: 

(7) 
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In matrix algebra, the inverse of a non-square matrix does not equal to the algebraic 

inverse. It is necessary to calculate a "pseudo-inverse" instead. The pseudo-inverse is 

equal to: 

x-1 = (X'Xr1 X' (8) 

Where X' is the transpose of the matrix X. Substituting (5) into (4), we get the solvable 

equation: 

(9) 

In spectroscopic determinations, equation (9) is adequate if the components are 

present in large enough quantities to contribute to the resulting spectrum. In the analysis 

of PUF A at concentrations found in "normal" sera, some of the components are present 

in exceedingly small amounts. When equation (6) was used in the analysis the resulting 

concentration vector contained values less than zero. The Matlab function lsqnonneg 

does multiple linear regression analysis while avoiding errors caused by fitting a curve 

with data that is not significantly represented in the spectra. Lsqnonneg works by doing 

the minimization of the residual between the actual and calculated spectrum defined as; 

norm(CxX -d) (10) 
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Where C is the K matrix, d is the spectrum that is being fitted, and X is the concentration 

result of the lsqnonneg calculation. C times X creates a theoretical spectrum representing 

the concentrations determined by MLR. 

For lsqnonneg the values in X are required to be greater than zero. The residuals 

between the calculated spectra and the actual spectra were evaluated as; 

Y = norm(Cxlsqnonneg(C,d)-d) (11) 

Where C is the K matrix, d is the spectrum that is being fitted, and Y is the residual 

between the two. 

Negative outcomes influence the results for components that are in larger amounts 

and are adequately represented in the spectrum being analyzed. Lsqnonneg interprets 

negative results as "out of range" and automatically removes the absorptivity data for 

those components from the calculation and recalculates without these data, thus relying 

entirely on the remaining components of the K matrix. The resulting .concentration 

matrix has a zero in place of any negative values. The resulting solutions for the 

remaining components give a poorer fit to the calculated curve but relieve errors 

associated by the use of negative concentration values. 

The K matrix must contain linearly independent vectors. If the K matrix does not 

contain linearly independent vectors separation of the individual components would not 

be possible. In this work, the K matrix was determined to have the rank equal to the 

number of matrix columns (7), which indicates that the columns of the K matrix 

adequately represent unique components. 
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Methods 

Mixture Preparations 

Mixtures of the seven most common lipid components, methyl linoleate, methyl 

linolenate, methyl arachidonate, methyl eicosapentaenoate, methyl docosahexaenoate, 

methyl conjugated linoleate, and free cholesterol were created by approximating the 

percentages of the PUF As present in what were considered to be "normal" sera. Stock 

solutions for each PUF A, based on these percentages, were made with a maximum total 

PUF A concentration equal to 0.02 M. The total concentration of 0.02 M was chosen so 

that the spectral response in the lower wavelengths would be between 0.2 and 0.9 

absorbance units. The concentration of cholesterol used was also approximated to that 

found in a "normal" serum. Stock solutions were first made by dissolving the analyte in 

chloroform. The chloroform in the mixture was then evaporated under a stream of 

nitrogen. The resulting oily samples were then mixed with 1.0 mL pure AC and the 

reaction was initiated by 40 µL PA. Absorbance data were measured at 15 minutes into 

the reaction. 

Ratios of PUF A in "normal" sera were calculated using references that summarize 

human population fatty acid profiles data.44• 169' 170 Percentages were determined by 

dividing the concentration of the individual PUF A by the total PUF A concentration. 

Only PUF A were considered, saturated and monounsaturated fatty acids were not 

incorporated into the data. 
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Reaction of Mixtures with Perchloric Acid Catalyst 

Analysis was conducted by adding 2, 5 or IO µL of each proportional analyte 

stock solution to a 13 X 100 mm borosilicate disposable test tube. The chloroform was 

removed with a stream of nitrogen. Pure AC (1.0 mL) was added to the analyte mixture. 

The reaction was initiated by the addition of 40 µL PA. The reaction timer was started 

immediately after addition of catalyst. The reaction was energetic thus caution was taken 

to avoid bumping. The reaction was mixed by hand vortexing for IO seconds and then 

either placed in the cuvette for kinetic determination over 20 minutes or develop in the 

tube to later be analyzed at the 15-minute endpoint. Following maturation in the test tube 

the solution was transferred to the cuvette with a glass Pasteur pipette and full spectral 

data (350-800 nm) were collected. 

. Script Calculation Description 

The determination of the mixtures was done by automating the calculation 

through a matlab m-file script. The script is in Appendix A. The script analyzes the 

spectra using data at wavelengths from 350 to 650 nm to calculate all seven of the known 

components especially the two most prevalent components ( cholesterol and methyl 

linoleate ). It then calculates the theoretical spectra of both cholesterol and linoleate 

based on the calculated concentrations and the molar extinction coefficients for all 

wavelengths. Difference spectra are calculated by subtracting the theoretical cholesterol 

and linoleate spectra from the original spectra. The difference spectra are then 

determined for all remaining components in a second iteration utilizing a K matrix that 

excludes data for cholesterol or linoleate. By doing the spectral difference and a second 
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calculation, it was anticipated the amount of information determinable from any given 

spectra would be increased. 
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Results and Discussion 

The chemical assay has been demonstrated to have potential use in the analysi~ of 

lipids in sera. Experimental investigation into the use of the chemical assay for the 

analysis of blood lipids was done utilizing mixtures containing seven blood lipid 

components at physiologically correct concentrations. The results of multi-linear 

regression of these mixtures representing.serum concentrations of PUFA and cholesterol 

are encouraging. The power of quantitative analysis of sera depends on the ability to 

quantify all PUF A independent of the concentrations found in sera. The more highly 

unsaturated PUF A such as EPA and DHA are found at the lowest concentrations and are 

of the most importance physiologically. The ability to quantitate all PUF A real time 

could prove a useful routine assay containing information relevant to modem diseases. 

This notion is supported by the ability to cluster out diabetics from a group of 100 

subjects including dyslipidemic patients. 

The samples were run independently and the results were independent for each of 

the samples. Each sample was recorded at 15 minutes into the reaction over the range of 

350-800 nm. The samples were determined by MLR analysis using a matlab script as 

presented in Appendix A. The results of the MLR analysis included the residual for each 

calculated spectrum. The actual concentrations and MLR determined concentrations of 

the stock solutions are presented in Table 3. Observing this table, it is clear that the MLR 

analysis is not ideal for the determination of all PUF A in the mixtures. Indeed, there is a 

recurring theme throughout the mixture sets that the DHA and EPA concentrations are 

not accessible to the MLR calculation. From Table 2, the stock concentrations of DHA, 

EPA and methyl linolenate are all four times lower than methyl arachidonate and 15 
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times lower than methyl linoleate. It is likely that the inconsistencies in the 

determination of these PUF A are due to the low concentrations at which they are found. 

This result does not eliminate the possibility of utilizing this method for the full 

determination of PUF A m sera. Alternative methods. including increasing the 

concentration of sera in the reaction in order to get better resolution in the low 

wavelengths or analysis methods which take advantage of the information contained in 

the kinetics plots of the chromogenic reactions may prove MLR useful for the 

determination of real samples. 

Table 2. Polyunsaturated fatty acids concentrations. 

Fattv acid %PUFA stock cone 
leic 75 0.015 M 

lenic 3.4 0.001 M 
arach 17 0.004 M 
DHA 2.8 0.001 M 
EPA 1.4 0.001 M 

total= 0.022 M 

The results also indicate that arachidonate is not as accurate as the linoleate and 

cholesterol values. This is likely due to the three times smaller concentration. This lower 

concentration does not allow adequate resolution of the concentrations. The "sum" 

values on the last two columns of the table are the sum of all PUF A determined by MLR 

analysis and the sum of the actual expected concentrations. It is clear from these values 

that the nonnegative MLR is detecting and quantitating the majority of the PUF A species 

. present but is not able to separate the values into discrete concentrations. 

Some of the mixtures included conjugated methyl linoleate. The resulting 

. concentrations are sometimes determinable but at the lowest concentrations, MLR returns 

a zero result. Conjugated methyl linoleate concentrations were lower than 5 X 10-7 M in 
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samples 6,7,13, and 14, and were not determined by MLR analysis. Overall MLR 

determinations worked well for methyl linoleate, cholesterol and conjugated methyl 

linoleate concentrations. Conjugated methyl linoleate was more readily determinable at 

relatively high concentrations. 
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Table 3: Results including actual and MLR determined concentrations for all seven 
components (M) 

leic- leic- lenic- lenic- arach- arach- DHA- DHA-
actual MLR actual MLR actual MLR actual MLR 

1 2.9E-05 1.5E-05 9.6E-06 2.1E-05 3.8E-05 6.1E-05 9.6E-06 0 
2 7.2E-05 4.6E-05 9.6E-06 6.1E-05 3.8E-05 4.6E-05 9.6E-06 0 
3 1.4E-04 8.6E-05 1.9E-06 1.3E-04 3.8E-05 6.9E-07 9.6E-06 0 
4 1.4E-04 9.4E-05 4.8E-06 1.3E-04 3.8E-05 0 9.6E-06 0 
5 1.4E-04 9.9E-05 9.6E-06 1.0E-04 7.7E-06 0 9.6E-06 0 
6 1.4E-04 9.2E-05 9.6E-06 1.4E-04 3.8E-05 0 1.9E-06 0 
7 1.4E-04 9.8E-05 9.6E-06 1.4E-04 3.8E-05 0 4.8E-06 0 
8 1.4E-04 9.6E-05 9.6E-06 1.5E-04 3.8E-05 0 9.6E-06 0 
9 1.4E-04 8.6E-05 9.6E-06 1.6E-04 3.8E-05 0 9.6E-06 0 
10 1.4E-04 9.5E-05 9.6E-06 1.6E-04 3.8E-05 0 9.6E-06 0 
11 1.4E-04 9.1E-05 4.8E-06 1.1E-04 3.8E-05 0 4.8E-06 0 
12 0 0 1.9E-06 0 3.8E-05 6.2E-05 4.8E-06 0 
13 0 0 4.8E-06 0 7.7E-06 3.1E-05 9.5E-06 0 
14 1.4E-04 7.4E-05 0 9.4E-05 1.9E-05 0 1.9E-06 0 
15 7.2E-05 5.0E-05 9.5E-06 5.1E-05 0 0 4.8E-06 0 
16 2.9E-05 2.0E~05 4.8E-06 4.2E-05 3.8E-05 3.6E-05 0 0 
17 0 0 1.9E-06 0 1.9E-05 3.9E-05 9.5E-06 0 
18 7.2E-05 4.5E-05 9.5E-06 9.3E-05 3.8E-05 2.6E-05 1.9E-06 0 
19 2.9E-05 2.2E-05 9.5E-06 4.1E-05 3.8E-05 6.0E-05 4.8E-06 0 
20 1.4E-04 6.6E-05 4.8E-06 9.0E-05 7.7E-06 0 9.5E-06 0 
21 1.4E-04 0 9.6E-06 2.5E-04 3.8E-05 0 9.6E-06 0 
22 1.4E-04 1.05E-04 9.6E-06 1.5E-04 3.8E-05 0 9.6E-06 0 
23 1.4E-04 1.46E-04 9.6E-06 8.3E-05 3.8E-05 3.4E-05 9.6E-06 0 
24 7.2E-05 0 4.8E-06 3.4E-04 1.9E-05 0 4.8E-06 0 
25 7.2E-05 0 4.8E-06 2.5E-04 1.9E-05 0 4.8E-06 0 
26 7.2E-05 5.0E-05 4.8E-06 1.1E-04 1.9E-05 0 4.8E-06 0 
27 7.2E-05 5.5E-05 4.8E-06 7.5E-05 1.9E-05 0 4.8E-06 0 
28 7.2E-05 4.7E-05 4.8E-06 9.3E-05 1.9E-05 0 4.8E-06 0 
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Table 3. Results including actual and MLR determined concentrations for all seven 
components (M) (cont.) 

EPA- EPA- chol- chol- conj- conj- sum- sum-
actual MLR actual MLR actual MLR actual MLR 

1 9.6E-06 0 7.2E-05 7.4E-05 0 0 9.6E-05 9.6E-05 

2 9.6E-06 0 7.2E-05 7.6E-05 0 0 1.4E-04 1.5E-04 
3 9.6E-06 0 7.2E-05 7.7E-05 0 0 2.0E-04 2.2E-04 
4 9.6E-06 0 7.2E-05 7.SE-05 0 0 2.1E-04 2.2E-04 
5 9.6E-06 0 7.2E-05 7.4E-05 0 0 1.SE-04 2.0E-04 
6 9.6E-06 0 7.2E-05 7.2E-05 0 0 2.0E-04 2.3E-04 
7 9.6E-06 0 7.2E-05 6.SE-05 0 0 2.1E-04 2.4E-04 
8 1.9E-06 0 7.2E-05 7.3E-05 0 0 2.0E-04 2.5E-04 
9 4.SE-06 0 7.2E-05 6.6E-05 0 0 2.1E-04 2.5E-04 
10 9.6E-06 0 7.2E-05 6.7E-05 0 0 2.1E-04 2.6E-04 
11 1.9E-06 0 7.2E-05 6.9E-05 0 0 1.9E-04 2.0E-04 
12 9.5E-06 0 7.2E-05 7.1E-05 0 0 5.4E-05 6.2E-05 
13 4.SE-06 0 7.2E-05 7.4E-05 0 0 2.7E-05 3.1E-05 
14 9.5E-06 0 7.2E-05 6.BE-05 0 4.1E-06 1.7E-04 1.7E-04 
15 1.9E-06 0 7.2E-05 7.6E-05 0 0 8.SE-05 1.0E-04 
16 4.SE-06 0 7.2E-05 7.2E-05 0 0 7.6E-05 9.9E-05 
17 0 0 7.2E-05 7.2E-05 0 0 3.1E-05 3.9E-05 
18 9.5E-06 0 7.2E-05 7.3E-05 0 0 1.3E-04 1.6E-04 
19 9.5E-06 0 7.2E-05 7.5E-05 0 0 9.1E-05 1.2E-04 
20 4.SE-06 0 7.2E-05 7.6E-05 0 1.4E-05 1.7E-04 1.7E-04 
21 9.6E-06 0 7.2E-05 6.1E-05 4.SE-05 5.1E-05 2.6E-04 3.0E-04 
22 9.6E-06 0 7.2E-05 7.4E-05 4.SE-05 0 2.6E-04 2.5E-04 
23 9.6E-06 0 7.2E-05 7.2E-05 1.9E-05 0 2.3E-04 2.6E-04 
24 4.SE-06 0 1.4E-04 1.2E-04 9.6E-05 6.0E-05 2.0E-04 4.0E-04 
25 4.SE-06 0 1.4E-04 1.3E-04 4.SE-05 3.6E-05 1.5E-04 2.9E-04 
26 4.SE-06 0 1.4E-04 1.4E-04 4.SE-05 0 1.5E-04 1.6E-04 
27 4.SE-06 0 1.4E-04 1.5E-04 9.6E-05 0 2.0E-04 1.3E-04 
28 4.SE-06 o. 1.4E-04 1.4E-04 1.9E-05 0 1.3E-04 1.4E-04 
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Analysis of errors was used to discriminate any obviously erroneous data in the 

original pool. It was decided that any spectra, which had a 520 nm absorbance of 0.02 

absorbance unit below the expected value for the actual concentration, would be removed 

as erroneous. 

The MLR analysis concentrations are used to create a "theoretical" spectrum that 

is used in the optimization of the calculation. Outside the MLR calculation this spectra, 

when compared to the original empirical spectra gives some idea of how well the MLR 

model fits the spectrum. Mixture 3 was analyzed to determine the MLR spectrum and the 

difference between the empirical spectrum and the MLR spectrum (Figure 17(including 

insert)). The differences are minimized in the lsqnonneg calculation process. 

There seems to be a consistent shift in the 520 nm maximum during the 

calculation of the MLR spectrum. It is not clear why this occurs in the MLR calculation 

but not in the empirical spectra. The determination of the absorbance spectrum for pure 

cholesterol using the K matrix from the MLR analysis does not lead to the 520 nm shift. 

However, upon addition of other components into the concentration vector the shift 

occurs. 

During the processmg of the mixtures, the diluted stocks containing the 

approximation to physiological amounts of each component were run. They were done 

with 10 µL of the each one in the normal AC I PA reaction. The results give an 

indication as to the approximate absorbances occurring due to each concentration at the 

maximum quantities they were used. They are presented in (Figure 18). The low 

concentrations of methyl linolenate, DHA, and EPA create low absorbance spectra with 

increasing associated errors. The lowest concentration of methyl conjugated linoleate 
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give a similar absorbance as the highly unsaturated fatty acids: This gives some insight 

into the inability to resolve the lower methyl conjugated linoleate concentrations by MLR 

analysis. 

The results of the MLR analysis of mixtures are not as good as expected. It was 

hoped that the analysis could recover reliable data for all PUF A species including those at 

lower concentrations. The determination using a pseudo-inverse K-matrix gave negative 

values this is attributed to errors in determining the concentrations. This is potentially 

due to low signal to noise at the levels the more highly unsaturated PUF A occur. It also 

may be due to errors associated with Matlab numerical determinations used for the 

analysis. 

Matlab uses numerical methods to determine the results for matrix calculations. 

These types of calculations result in unavoidable errors. If the program uses iterative 

routines to calculate values, the error accumulates. This type of error is only avoidable if 

full control of the calculation process is available to the programmer. Matlab does not 

allow that level of control. If from equation (7) the K-matrix and the concentration 

vector are known, an absorbance spectrum is determinable. This "theoretical spectra" 

can then be used in MLR with the same K-matrix to achieve the concentration vector 

back again. There should be no variation between the theoretical and determined 

concentrations. When this type of calculation is used for the determination of errors 

associated with the calculations, the calculation using the standard pseudo-inverse has a 

small associated error for concentration values down to 1 X 10-14 M. The pseudo-inverse 

calculation also gives negative responses, however, leading to erroneous results. The 

preferred lsqnonneg script, for the determination of concentration without the errors due 
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to negatives, results in a similar error as the standard calculation down to a concentration 

of about 4 X 10-7 M. At and below this concentration the mathematical approach breaks 

down. The resulting values are not representative of the ''theoretical" concentration 

originally put into the calculation. This result may be due to cumulative errors associated 

with the iterative calculation. These errors may be circumvented by increasing the 

concentration in the actual analysis to give high absorbance values in the lower 

wavelengths. It may also be overcome by more rigorous programming control of errors. 

Also important is that the MLR calculation is accounting for the background 

correction associated with the reagent itself. At 15 minutes, the maximum absorbance of 

the background is 0.02 absorbance units at 350 nm. This is approximately a five percent 

error for an absorbance of 0.4 absorbance units. The error diminishes for PUF As as the 

wavelengths increase. 

The error, between the MLR determined concentrations and the theoretical 

concentrations, also includes experimental errors. These errors are significant because 

the volumes used were small and many measurements were made. The samples were 

also made to maximize variation in the components not to assure accuracy through 

repeated spectral measurements. 

Despite difficulties in the calculation of the concentrations found in the 

spectroscopic analysis of mixtures, the utility of the assay is proven. The method in its 

first generation form can determine cholesterol and linoleic acid at ·their natural 

concentrations as well as conjugated linoleic acid at elevated levels. These data 

combined represent a new era of rapid PUF A determinations that has the potential to 

contribute meaningful information to diagnostic determinations made today. 
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Figure 17. Mix 3 empirical spectrum (A) with overlaid MLR determined 
spectrum (B). insert: Difference between empirical spectrum minus MLR 
determined spectrum. 
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Figure 18: Overlaid spectra of all seven components at the concentrations on table 
4. All were created by using 10 µl chloroform sample plus 1.0 ml acetyl chloride 
catalyzed with perchloric acid. Including: equivalence of 10 µl of A) 0.01 M 
methyl conjugated linoleate B) 0.0075 M cholesterol C) 0.015 M methyl linoleate 
D) 0.00034 M methyl arachidonate E) 0.001 M methyl conjugated linoleate 
F) 0.00028 M methyl EPA G) 0.00078 M methyl DHA H) 0.00068 M methyl 
linolenate I) 0.0001 M methyl conjugated linoleate 
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Dietary Intervention Study 

Introduction 

The diet of a 28-year-old obese Caucasian male volunteer was modified from a 

high fat diet to a low fat diet. Serum lipids were monitored with regularity over a 4-

month period. The dietary intake of the subject was monitored and analyzed for lipid 

content. The serum lipid modification was also monitored using the novel chromogenic 

reaction discussed earlier, which is quantitative for cholesterol and PUF As. The weight 

of the subject was also monitored. 

The expected result of a low-fat dietary intervention is lowered lipids including 

cholesterol and TG concentrations. This was observed and an attempt was made to also 

monitor the PUF A content of the serum. The reactions were performed using a modified 

reagent that was a mixture of 3/2 AC I DCE, plus PA as catalyst. This decision was made 

in order to make comparisons between this study and a South African study in which 

diabetics were found to be separated from 100 "normal" and dyslipidemic patients in 2-D 

and 3-D clustering analysis. 

The subject self-monitored his diet for fats, cholesterol, and calories following 

recommendations from the nutritionist at Oklahoma State University Seretean Wellness 

Center. Subscribing to a diet that preferred PUFAs over saturated fatty acids; the subject 

consumed more fish and chicken instead of beef. Simple sugars were also avoided as a 

means of maintaining low caloric intake. The diet of the subject was recorded in a daily 

journal, which included food type and portion size. The diet was then analyzed using an 

Internet database. The subject did not undertake an exercise program for the duration of 

the trial. 
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The hypothesis being tested was the ability of the assay to be used in the tracking 

patient responses to intervention studies. Such studies are particularly well suited to this 

assay as the cost per analysis is low. Furthermore, quantification of the serum 

components is not entirely necessary during the study, as the differences in the spectra 

during the study are more than adequate to determine the effectiveness of the treatment. 

As described in the Chapter I and in previous research, the assay is linearly dependent on 

the serum lipid components: cholesterol, linoleic acid and conjugated linoleic acid. The 

assay can potentially be modified to increase the sensitivity to include data for the PUP A 

found at lower concentrations. Eventually the quantitative determination of all PUP A, 

including conjugated dienes will allow the reaction to supplement or supplant currently 

used methods in routine lipid analysis of human sera. 
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Methods 

Serum Sampling 

Samples were drawn at the Oklahoma State University Wellness Center and 

analyzed at the Regional Medical Laboratory. The samples were taken as venous draws 

from the arm into two Vacutainer™ red-stoppered serum separation tubes. These tubes 

use a density gel to assist in separation of. the serum from the red blood cells. The 

samples were allowed to stand at room temperature for 30 min to allow clotting factors to 

solidify. The vacuum tube was then centrifuged at 5,000 rpm for 15 min to allow 

separation in a tabletop centrifuge (Fisher Centrific model 228). One of the tubes was 

submitted to the Regional Medical Laboratory and the other was utilized for the chemical 

analysis in the Oklahoma State University Department of Chemistry. The samples for 

chemical analysis were stored in 10 mL vials with screw caps. 

Reaction of Serum with Perchloric Acid Catalyst 

Analyses were done by adding the usual 10 µL of analyte ( serum) to the bottom of 

a 13 X 100 mm borosilicate disposable test tube. Acylating agent, pure AC/DCB (1.0 

mL ), was added to the analyte. The reaction was initiated on careful addition of 40 µL 

PA, and the reaction timer started immediately. Precautions and mixing by vortexing 

were done as before. Protein precipitants were removed by centrifugation for 3 minutes 

at 3400 rpm. The sample was separated from the precipitate pellet and either placed in 

the cuvette for kinetic determination or allowed to develop inside a separate test tube 

until the 15-minute endpoint was reached. Full spectral data (350-800 nm) were 

collected as before. 
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A minimum of three samples of each serum sample was run. The full spectral 

data (350 - 800 run) were stored for all reaction times between five and 20 min. Data 

before 5 min were not available due to the centrifugation process. 

It is important to note that the data were taken with a modified reagent. The 

reagent contained 60% AC to 40% DCE. This reagent was used so the subject's data 

could be compared to previously collected cross-sectional clinical data. 

Clinical Laboratory Results 

The clinical laboratory used standard enzymatic reaction and Friedewald 

approximations (see Chapter III introduction) to determine TC, TG, HDL-C and LDL-C. 

The clinical laboratory also returned results for trace analytes such as sodium, calcium 

and liver enzymes (see results and discussion). 

MLR Analysis Methods 

Analysis of the serum samples included the use of the MLR method described 

earlier in this chapter. The cholesterol, linoleic acid, and docosahexaenoic acid 

concentrations for the subject over the trial was determined from the chromogenic 

reaction spectra using the MLR method. The modified script file for the analysis of 

serum samples is presented in the Appendix B. 
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Results and Discussion 

Over the course of the study, the TC was progressively lowered from 282 mg/dL 

to a minimum of 172 mg/dL (Figure 19(B)). The LDL-C concentration was also lowered 

from 186 mg/dL to a minimum of 85 mg/dL (Figure 19(C)). The HDL-C concentration 

was lowered slightly during the study from 47 mg/dL to a minimum of 33 mg/dL (Figure 

19(D)). TG values were lowered from 392 mg/dL to 155 mg/dL at the lowest point 

(Figure 20(A)). The subject's weight was lowered from 285 lbs. to 252 lbs. at the lowest 

point 

The alteration of the LDL-C concentration to the HDL-C concentration is of 

interest in that the lowered LDL-C and/or elevated HDL-C concentration is indicative of 

diminishing risk of atherosclerosis and heart disease. In this dietary intervention study 

the LDL-C/HDL-C concentration ratio as determined by the standard clinical assay 

decreased over the duration of the study from 4.2 to a minimum of2.2 (Figure 21). 

Other serum values measured included glucose, BUN, creatinine, sodium, 

potassium, chloride, bicarbonate, anion gap, uric acid, calcium, phosphorus, protein total, 

albumin, bilirubin total, iron, ALK PHOS, LD. None of these analytes altered 

significantly during the dietary trial. 

The liver enzymes aspartate aminotransferase (AST (SOOT)), alanine 

aminotransferase (ALT (SGPT)), and gamma-glutamyltransferase (GGT) were also 

determined during the dietary trial and were all above normal values initially. Elevated 

liver enzymes are a sign ofliver damage. There are a number of causes for elevated liver 

enzyme levels. The use of cholesterol lowering statin drugs can cause increase in free 

liver enzymes. The subject was not using such medication. Infectious hepatitis can cause 
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increased liver enzyme levels. The possibility of infectious hepatitis was eliminated by 

testing for the presence of such viruses. The possible diagnosis from the subject's 

personal physician was either fatty liver or liver cancer. The recommended diagnosis 

verification method was liver biopsy. Fatty liver as the alternative diagnosis would be 

evident in increased fat cells in the liver biopsy. The subject decided to postpone liver 

biopsy and tracked the liver enzymes as the diet was changed. The values for AST 

(SGOT) were lowered over the trial from 86 to a minimum of 19. ALT (SGPT) went 

from 171 to 29. The levels of GGT dropped from 100 to a minimum of 31. All three 

liver enzymes dropped into the normal range over the course of the study. These results 

indicated that nonalcoholic fatty liver was the cause of the elevated liver enzymes and 

that the dietary regimen the subject was using acted as an effective treatment for that 

disorder. Interestingly, the process of liver biopsy, while routine, is an invasive 

technique with risks associated with such techniques. The possibility of an alternative 

noninvasive method of diagnosis was not recommended as an option. 

The value of the absorbance at 520 nm was adjusted by multiplying by a constant 

so the average of the adjusted 520 nm values is equal to the average values of the 

cholesterol concentration determined by the standard clinical assay in mg/dL. The value 

of the constant is 437. The clinically measured value of cholesterol overlays the adjusted 

value of the 520 nm peak for the subject over the time of the study (Figure 19(A)). This 

indicates there is a close relationship between the cholesterol value and the 520 nm value, 

and is expected given the understanding that the majority of the 520 nm peak comes from 

the reaction with cholesterol. 
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The 362 nm absorbance value was adjusted by multiplication by a constant (908). 

The result is that the average of the adjusted 362 nm absorbance is equal to the average 

TG values determined by the standard clinical assay in mg/dL. The adjusted 362 nm 

values overlay the values of the TG concentration determined by the standard clinical 

assay (Figure 20(A and B)). Particularly interesting is the upturn of both the clinical TG 

values and the adjusted 362 nm absorbances. This indicates there is a real increase near 

the end of the study. 

The enzymatic method for the determination of TG only detects the glycerol 

portion of the triacylglycerol molecule. Concentrations of TG are not equivalent to a 

particular species of fatty acid. Since there are saturated, monounsaturated and PUF A 

attached to the glycerol. The fact that the TG concentrations mirror the adjusted 362 nm 

values is representative of the ubiquitous presence of the PUF A in serum components. 
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Figure 19. Overlaid graph of all clinical data with adjusted absorbances from 
chemical assay A) 520 nm absorbance adjusted by a constant (437) so the average of 
the absorbances over the trial is equal to the concentrations of cholesterol in mg/dL 
by standard clinical assay B) cholesterol in mg/dL by standard clinical assay C) LDL 
cholesterol concentration determined by standard clinical assay D) HDL cholesterol 
concentration determined by standard clinical assay. 
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Figure 20. Overlaid graph of A) triglyceride concentration mg/dL B) absorbance at 
362 nm adjusted by a constant (908) so that the average adjusted 362 nm absorbance 
value was equal to the average triglyceride concentration in mg/dL. 
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Figure 21. Graph demonstrating decrease in the LDL/HDL cholesterol 
concentration ratio, determined by the standard clinical method, for the 
duration of the intervention trial. Lower LDL/HDL ratio is associated with a 
decrease in the risk of atherosclerosis and heart disease. 
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MLR results 

The method developed for the determinations of lipid components of mixtures 

presented earlier in this thesis was applied to the determination of lipids in real sera. The 

reagent used for the determination of the sera is modified from pure AC to 60% AC 40% 

DCE. The results for the determination of sera using the calibration data from the 

mixture section are therefore systematically shifted. However, the comparison between 

the values as they change in this intervention study should are independent of this 

systematic error. 

The relationship between the TC determined by the enzymatic clinical laboratory 

method and the value by MLR are linearly correlated (Figure 22). The clinical value was 

converted to molarity in the assay solution by standard conversions. The linear cross­

correlation plot of the two sets of values against each other has a slope of 0. 7824 and R 

squared of 0.9249. They-intercept of this plot is 1X10'5. 

The TC values determined by the standard clinical assay and the MLR analysis of 

the chromogenic assay data were plotted versus the days of the study. The correlation 

between the clinical data and the chemical assay data is good. Both the clinical data 

(Figure 23(B)) and the MLR data (Figure 23(A)) decrease early in the intervention 

coming to a plateau around 100 days into the study. Both data sets indicate a slight 

increase in cholesterol towards the end of the study. 

Linoleic acid was also determined in the MLR analysis of the chromogenic 

chemical assay spectra. Interestingly linoleic acid was progressively lowered during the 

study. However, the ratio between the linoleic acid and cholesterol determined by MLR 
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analysis seems to be constant for the duration of the study until the end where the ratio 

increases significantly (Figure 24). This increase occurs in the region of the study at 

which TG determined by the standard clinical assay increases, which suggests that the 

increase in the standard clinical assay later in the study is associated with a variation of 

fatty acid composition while the initial lowering of the lipid levels is not. 

There is a correlation between TG and the values for the PUF As found by MLR. 

In the plot of the overlaid values for TG determined by the standard clinical assay and the 

sum of the concentrations oflinoleic acid, DHA (possibly highly unsaturated PUPA), and 

conjugated linoleate versus the days of the study indicates the relationship. Both the 

clinical TG value (Figure 25(A)) and the value of the MLR determined combined 

concentrations of the PUPA (Figure 25(B)) decrease at the beginning of the study, reach 

a minimum around 100 days and increase at the end of the study. 

When the TG values determined by the standard clinical assay and the sum of the 

concentrations of linoleic acid, DHA (possibly highly unsaturated PUF A), and 

conjugated double bond are plotted versus the TG concentrations in mg/dL, a linear 

correlation is seen (Figure 26). The MLR determined PUF As values were multiplied by 

a constant to bring the average of all the values into the range of the average of all of the 

TG concentrations. The value needed to normalize the two sets of data was 4.25X106• 

The result of least squares linear regression was a slope of 0.5088 with R squared of 

0.7087 and y intercept of 124.28. The very high y-intercept is a consequence of the 

variability in the molecular weight of the "average" PUF A in triglyceride structures. The 

residuals of the MLR calculations are presented on (Figures 23 and 24). 
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Figure 22. Cross-correlation plot demonstrating linear relationship 
between cholesterol concentrations determined by MLR analysis of the 
chemical assay spectra and the cholesterol concentration determined by 
the standard clinical assay. The linear regression of the cross-correlation 
plot describes the best fit line as having a slope of 0.7824 with R squared 
of 0.9249 and a y intercept of lXl0-5• 
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Figure 23. Overlaid graph A) cholesterol concentration determined by the MLR 
analysis of the chemical assay spectra and B) the cholesterol concentration 
determined by the standard clinical assay .. This demonstrates the close relationship 
between the determination of cholesterol by MLR analysis of the chemical assay and 
the determination of cholesterol by the standard clinical assay. 
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Figure 24. Graph demonstrating the steady nature of the ratio of 
linoleic acid determined by MLR analysis of the chemical assay 
spectra and the cholesterol concentration determined by MLR analysis 
of the chemical assay spectra. The upturn of the ratio between linoleic 
acid and cholesterol at the end of the trial is particularly interesting. 
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Figure 25. Overlaid graph of A) triglyceride concentrations 
determined by the standard clinical assay and B) the sum of 
concentrations of linoleic acid, DHA, and conjugated diene 
concentrations in molarity determined by MLR analysis of the 
chemical assay spectra adjusted by multiplication of integer (4.25Xl06) 

to make the average of the concentration of the summed PUF A equal 
to the average of the triglyceride values determined by the standard 
clinical assay in mg/dL. 
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Figure 26. Cross-correlation plot of the adjusted value of the sums of 
linoleic acid, DHA, and conjugated diene determined by the MLR 
analysis of the chemical assay spectra versus the ) triglyceride 
concentrations determined by the standard clinical assay in mg/dL 
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Summary 

The determination of lipids in blood is routinely used for the analysis of 

dyslipidemias and risk for CAD, the leading cause of death in the United States. Results 

presented in Chapter II give a clear indication of the utility of the reagent for (I) the 

quantitative determination of the major lipids in concentrations consistent with those 

found in sera; (2) the ability of the data available from the chromogenic reaction to 

correlate and consequently model the data determined by routine methods currently being 

used and (3) the potential utility of quantitative determination of lipids in the sera for 

routine monitoring of patients and the diagnosis of disease states. 

The ability to determine the concentration of major lipid components; cholesterol, 

linoleic acid and arachidonic acid from mixtures that have PUF A concentration ratios 

similar to sera is the first step toward an analytical method for the determination of all 

PUF A in sera by multivariate analysis. Good correlations are currently available with 

this first generation data analysis method. Future work will extend the boundaries to 

include all PUF As and the resultant lipid profiles will have important applications in 

screening patients for emerging disease risks. 

The observed consistency in the correlation between the values for the PUF As, 

represented by the 362 nm absorbance values with the standard clinically measured TG 

concentrations, was an expected result given the ubiquitous nature of the PUF A species 

throughout the chemical forms in which they occur in the blood. While the determination 

of "triglyceride" values is not possible with the PUF A concentration data available from 

the chromogenic reaction, the ability to monitor a patient's fatty acid variation in a 

longitudinal manner is demonstrated. Furthermore, there is strong evidence in the 
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literature that the concentration values of individual PUF A species are likely more 

important for determination of disease states than the collective value as represented by 

TG. 

The ability to quantitatively determine cholesterol, linoleic, arachidonic acid 

concentrations is indicative of the power the chromogenic reaction has in the analysis of 

lipids and the subsequent determination of disease states. Even in the preliminary 

methods presented here the quantitative determination of TC by MLR and the qualitative 

demonstration of acquiring information about fatty acids in the triglyceride form only 

available by enzymatic methods routinely used today for analysis is demonstrated. In its 

present state, the assay could be used for the monitoring of patients and the determination 

of relative change in PUF A and TC. 

The techniques used for the demonstration of the chromogenic reaction's utility 

took advantage of the unique spectra present in six of the seven components. The ability 

of the reagent combined with a multivariate analysis method to be perfected in the future 

will bring a new world of information to the physician's hands in minutes. 
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CHAPTER III 

CONCLUSIONS 

Chapter I shows the unique selectivity and quantitative nature of the chromogenic 

reaction. The chromogenic reaction of AC with unsaturated compounds catalyzed by 

Lewis or Bronsted acids is shown useful for the analysis of a variety of structural 

moieties. The emphasis of this thesis is on the determination of lipid components of sera. 

The reaction has potential in a variety of alternative applications. The ability of the 

reagent to not only be selective to for the unsaturated portion of the analyte but also the 

saturated portion supports the idea of analyzing more complex chemical structures. 

Broader applications are supported by the evidence presented in Chapter I where 

the reagent was used to produce chromogenic responses from a broad variety of 

compounds. Stoichiometric comparisons were made in order to understand the 

contributions each unique structural region contributes to the spectrum. The results 

indicate a highly selective reaction for both unsaturated and saturated structures. Molar 

extinction coefficients were determined by calibration curve analysis for some of the 

compounds. Linearity and limits of detection for these compounds confirmed the 

quantitative nature of the reaction. It was found that the spectral response of the various 

compounds to the reagent was related to the structural components of the compounds and 

. that the reagent also appeared to be selective to positional and stereo-variations. It was 

also demonstrated that the spectra for individual components in a mixture are strictly 

. additive and spectra from different chromophores in the same molecule are additive. 
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In analytical applications, the reaction could serve to detect the presence of 

contaminating unsaturated compounds that produce their own chromogenic response to 

the reagent. Accordingly, in. quantitative assays, the lack of a spectral response for a 

given pure compound may be indicative of non-chromogenic contaminants. 

Alternatively, the reagent could be used for quantitative determination of mixtures using 

multivariate analysis. In complex natural mixtures of PUF A for instance, the 

determination of the components would allow monitoring and management of the 

components. In areas such as plant oil processing or biodiesel production, this simple, 

cheap and automatable method of analysis could increase profitability and quality control 

in the manufacture process. Finally, the reaction has demonstrated selectivity for 

unsaturated structural moieties, which could be used for the analysis of unknown 

chemical structures. This could be useful in the combinatorial drug development where a 

particular moiety is expected, and the reaction is used for quality control of libraries. It 

could also be useful if a random structure development process is used to form a library 

and the chromogenic reaction is used to either screen for known useful or toxic moieties. 

A review of the· current methods used in lipids analysis was presented. The 

current paradigm was considered and developing methods were described to demonstrate 

the progressive nature of the field of lipoprotein analysis as the best methods are still 

being sought. The review also demonstrates the utility of fatty acid analysis. The 

relationships between PUF A and a variety of diseases are considered and the 

determination and use of PUF A values is described. The review also discussed the 

importance of being able to determine conjugated diene species in the analysis of 

oxidative stress related diseases. Overall the review describes the imperfect routine 
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methods currently used and develops an argument for the importance of a fast, 

economical alternative. 

The components of human blood lipids were among the compounds studied in the 

analysis of model compounds in Chapter I. In Chapter II, combinations of the blood 

lipids in ratios representing human serum were prepared and determined by MLR. 

Results for accurately analyzing the major lipids independently were generally good. 

The ability to determine the minor components was not as good as expected, and is partly 

due to experimental and calculation errors and partly due to the low concentrations of the 

minor serum lipid components. In the future analyses can be improved upon by using 

calculation methods that control the cumulative errors associated with the calculation, or 

possibly by increasing the concentration of the serum analyte in order to gain better 

information about the minor components in the sera. Alternatively, multivariate analysis 

methods capable of taking advantage of the absorbance data collected at 1 minute 

intervals throughout the reaction may increase both the selectivity and sensitivity. The 

analysis in its current form resulted in good data for the concentrations of cholesterol, 

linoleic acid, and elevated levels of conjugated linoleic acid. 

The application to a real patient was of interest as prior research shows an ability 

to cluster diabetics from a group of 100 patients, which included other dyslipidemics. In 

Chapter II, the utilization of the assay to monitor the response of a patient to dietary 

intervention is demonstrated. A 29-year-old obese Caucasian male was monitored as his 

diet was changed resulting in significant lipids lowering and lipoprotein concentration 

ratio alterations. Results indicated that while the LDL-C/HDL-C ratio was not detected 

in the chemical assay, the amounts of linoleic acid and TC were quantitated using the 
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MLR method developed on synthetic mixtures. Also, a linear correlation was shown to 

exist between the TG concentration in mg/dL and the linoleic acid concentration adjusted 

to mg/dL; a relationship that may be quantitative within biological variability. There was 

no evidence for the presence of conjugated linoleic acid in the sera. Future work may 

prove that quantitation of conjugated linoleic acid at serum concentrations is possible. 

This is significant in the study of in vivo oxidative stress. 

The chemical assay discovered in our laboratory is very flexible in its application. 

It shows selectivity to a variety of chemical moieties such as positional and enantiomeric 

isomers, which makes it useful for the analysis of unsaturated systems in quantitative 

analysis and quality control applications. It is novel; its closest rival, the L-B reaction, is 

significantly different in its reactive center e.g. L-B does not react with PUF A. 

Quantitation of blood lipids was conducted in synthetic mixtures and in real sera in order 

to gauge the usefulness of the assay (or sera analysis. Quantitative determinations of 

cholesterol, linoleic acid, and elevated levels of conjugated linoleic acid were possible in 

this first generation analysis. Simple manipulations can increase the detection limits by 

at least three times and improved MLR analysis programming should allow the assay to 

quantitatively determine all blood unsaturated components including conjugated dienes. 

The assay is inexpensive to conduct and is manageable in terms of chemical hazards. 

Overall, it has been demonstrated that the unique selectivity and quantitative ability of 

this reaction has the potential to revolutionize serum lipid .analysis. 
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APPENDIX A 
LSQNONNEG SCRIPT FOR MIXTURES 

load kmat450.txt 
load kmat650.txt 
load lin650.txt 
load chol650.txt 

forN=l:42 
name=['s' int2str(N) '.txt']; 
load(name); 
end 
clearN 
clear name 

forN=l:42 
name=['s' int2str(N)]; 
tn650=eval(name ); 
tn450=tn650( 1 :51 ); 
conc650 = lsqnonneg(kmat650,tn650); 
mlr=kmat650*conc650 
diffmlr=tn650-mlr 
X = conc650(6); 
cholspec650= X*chol650; 
X = conc650(1 ); 
linspec650 = X*lin650; 
totalspec = cholspec650 + linspec650; 
minuscholandlin = tn650 - totalspec; 
resid650 = norm(kmat650*conc650-tn650); 
X =minuscholandlin( 1: 51 ); 
conc450 = lsqnonneg(kmat450,X); 
resid450 = norm(kmat450*conc450-tn450); 
temp=['resid450s' ,int2str(N), ' = resid450']; 
eval(temp); 
temp=['resid650s' ,int2str(N), ' = resid650']; 
eval(temp); 
temp=['minuscholandlin650s' ,int2str(N), '= minuscholandlin']; 
eval(temp); 
temp=['conc650s' ,int2str(N), '= conc650']; 
eval(temp); 
temp=['conc450s' ,int2str(N), '= conc450']; 
eval(temp); 
temp=['cholspec650s' ,int2str(N), ' = cholspec650']; 
eval(temp); 
temp=['linspec650s' ,int2str(N), ' = linspec650']; 
eval(temp); 
temp=['cholandlins' ,int2str(N), '= totalspec']; 
eval(temp); 
temp=['mlr650s' ,int2str(N), ' = mlr']; 
eval(temp); 
temp=['diffmlr650s' ,int2str(N), '= diffmlr']; 
eval(temp); 
clear tn650 
cleartn450 
end 
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clear I 

res450cmpld=zeros( 42, I); 
forN=l:42 
x=['resid450s' int2str(N)]; 
res450cmpld(N)=eval(x); 
end 

clear x 
clearN 

res650cmpld=zeros( 42, 1 ); 
forN=l:42 
x=['resid650s' int2str(N)]; 
res650cmpld(N)=eval(x); 
end 

clear x 
clearN 
clear I 

for I=l:42 
X=['clear resid450s' int2str(I)]; 
eval(X); 
end 

clear I 

for I=l:42 
X=['clear resid650s' int2str(I)]; 
eval(X); 
end 

clear x 
clearN 

clear conc650 
clear conc450 
clear cholspec650 
clear linspec650 
clear totalspec 
clear X 
clear I 
clearN 
clear chol650 
clear kmat450 
clear kmat650 
clear lin650 
clear minuscholandlin 
clear name 
clear temp 
clear resid450 
clear resid650 
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APPENDIXB 
LSQNONNEG SCRIPT FOR SERUMS 

load kmat450.txt 
load kmat650.txt 
load lin650.txt 
load chol650.txt 

forN=l:19 
name=['s' int2str(N) '.txt']; 
load(name); 
end 

clearN 
clear name 

forN=l:19 
name=['s' int2str(N)]; 
conc650 = lsqnonneg(kmat650,eval(name)); 
X = conc650(6); 
cholspec650= X*chol650; 
X = conc650(1 ); 
1inspec650 = X*lin650; 
totalspec = cholspec650 + linspec650; 
minuscholandlin = eval(name) -totalspec; 
X=minuscholandlin(l :51 ); 
conc450 = lsqnonneg(kmat450,X); 
temp=['minuscholandlin650s' ,int2str(N), '= minuscholandlin']; 
eval(temp); 
temp=('conc650s' ,int2str(N), '= conc650']; 
eval(temp); 
temp=['conc450s' ,int2str(N), '= conc450']; 
eval(temp); 
temp=['cholspec650s' ,int2str(N), ' = cholspec650']; 
eval(temp); 
temp=['linspec650s' ,int2str(N), '= linspec650']; 
eval(temp); 
temp=['cholandlins' ,int2str(N), '= totalspec']; 
eval(temp); 
end 

forl=l:14 
X=['clear s' int2str(I)]; 
eval(X); 
end 

clear conc650 
clear conc450 
clear cholspec650 
clear linspec650 
clear totalspec 
clear X 
clear I 
clearN 
clear chol650 
clear kmat450 
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clear kmat650 
clear lin650 
clear minuscholandlin 
clear name 
clear temp 
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OSU WELLl~SS CENTER 
INFORMED CONSENT FORM 

BLOOD TESTING 

Explanation of Test 

· The blood test you are about to undergo is part of the Oklahoma State University 
Wellness Program. T.ne test includes selected blood variables analyzed from the 
fingerstick method or from a venous sample. 

It will be determined, prior to testing, that this test is appropriate and safe for you. 
All testing will be conducted by trained personnel and procedures will be explained to 
your satisfaction at the oUtSCt. 

Possible Risks 

The potential risks associated with the venipuncture/fingerstick are: (1) 
Venipuncture/fingerstick may cause some pain or discomfon. The exact amount, if any 
will be dependent upon individual preconceptions and pain threshold levels. (2) Possible 
hematoma (bruising) at the venipuncture/fingerstick site following the procedure. The 
occurrence or non-occurrence will be dependent upon bleeding/coagulation times and 
adherence to instructions penaining to holding a cotton ball against the 
venipuncture/fingerstick site, with pressure, for five minutes following extraction of the 
needle or following the fingerstick. (3) Slight risk of infection. Any break in the integrity 
of the skin is associated with a small degree of infection risk. However, if directions are 
followed the risk is very small. 

Consent by Subject 

Information. which is obtained in the health screening, will be treated as privileged and 
confidential. IF USED FOR STATISTICAL RESEARCH PURPOSES, INDIVIDUAL 
IDENTITIES WILL NOT BE RELEASED. IF RESULTS FROM THE RESEARCH 
ARE PUBUSHED, NO INDIVIDUALS WlLL BE NAMED m THE ANALYSIS OF 
TIIE DATA DATA will be statistica..lly analyzed in an aggregate manner. The Wellness 
Center professional/medical staff RESERVE THE RIGHT TO contact you if your results 
are outside normal REFERENCE limits for recommendations and educational 
opportunities. In addition, if indicated, a small amount of the blood drawn may be used 
for research in alternative cholesterol testing. 

I have read the foregoing, I understand it, and any questions which may have 
occurred to me have been answered to my satisfaction. 

Date _________ _ 

Subject Signature. _____________ _ 
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