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Abstract

There are many iterative techniques to find a root or zero of a given func-
tion. For any iterative technique, it is often of interest to know which initial
seeds lead to which roots. When the iterative technique used is Newton’s
Method, this is known as Cayley’s Problem. In this thesis, I investigate
two extensions of Cayley’s Problem. In particular, I study generalizations
of Newton’s Method, in both C and IR?, and the associated fractal struc-
tures that arise from using more sophisticated numerical approximation
techniques.
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Chapter 1

Introduction

1.1 The Origins of the Problem

In many contexts and applications, one is faced with the task of finding a
value x such that f(x) = 0 for some function f. Despite being a relatively
easy problem to state, for certain choices of f, this task may be quite dif-
ficult. In the late 17" century, drawing on the newly developed tools of
Calculus, Newton proposed utilizing the iterative method

f(xn)

Xn+1 = Xn — f,(xn)

x, € R

to generate a sequence {x, };_, such that

lim x, =¢

n—oo
where f(¢) = 0. Indeed, for x( sufficiently close to ¢ and sufficient condi-
tions on f, the sequence {x,} converges to the root ¢. This is now known
as Newton’s Method. In 1879 A. Cayley questioned the behavior of New-
ton’s Method in a different setting. Mimicking Newton’s Method, Cayley
considered the sequence generated by

p(zn)

Zpil = Zn — p’(zi) z, € C (1.1)
where p is a complex polynomial. Specifically, Cayley wished to characterize
the global basins of attraction for each root §; of p [2]. More precisely, these
basins of attraction, A(¢;) := {zo € C : z, — ¢;}, are the initial conditions
that Newton’s Method carries to each root. This task of identifying such
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basins for complex polynomials is known as “Cayley’s Problem.” Having
succeeded in characterizing these sets in the case of quadratic polynomials,
Cayley remarked that “the next succeeding case of the cubic equation appears to
present considerable difficulty.” Subsequent work by two French mathemati-
cians would show that Cayley’s difficulty was well justified.

Nearly 40 years later, groundbreaking work by G. Julia and P. Fatou
shed some light on Cayley’s Problem during the course of their respective
research on the iteration of rational functions [7], [6]. The ideas they de-
veloped, including the notion of the Julia set, and were later extended by
Brolin [1] to reveal that Cayley’s Problem was not so trivial to answer as to
pose.

1.2 The Quadratic Case

Let us first consider Cayley’s Problem for the case of the quadratic. Many
characteristics that we will wish to explore in more complicated cases will
be present. In order to describe the behavior of Newton’s Method, a few
simple definitions are in order. Consider an arbitrary function N : C — C.

Definition 1. The set v = {z1,...,zn} is a cycle of order n (or an n-cycle)
provided N(z;) = zj11 and N(z,) = z1.

Definition 2. The multiplier of an n-cycle y is A = N'(vy), where
N'(y) = £N"(z;) for all z; € 7v. We say vy is attracting (repelling) if |A| < 1
(|A| > 1). If || = 1, then A = e*™%. We say vy is rationally indifferent for ¢ € Q

and irrationally indifferent for ¢ ¢ Q.

Note. These definitions for cycles include the special case of fixed points of
N, corresponding to n = 1.

Now, it is possible, through a suitable change of variables to render any
quadratic polynomial equivalent to one of the form p(z) = z? + ¢ for some
¢ € C. For simplicity we will explore p(z) = z? — 1. In this case Newton's

221 _ 2241

method reduces to N(z) = z — %5~ = %5~ and the two attractive fixed

points of N (roots of p), {1 and ¢, are 1 and —1 respectively (There is also
a repelling fixed point at c0). Exactly as one’s intuition would suggest,

A(l) ={z € C:Re(z) >0}
A(=1) ={z € C: Re(z) < 0}.
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Notice that dA(—1) = dA(1) = {z € C : Re(z) = 0}. Thus the two basins of
attraction share a common boundary, namely the imaginary axis. Letting
the “Julia set” be

J :=0A(1) =0A(-1),

then it is clear that | is the imaginary axis. Indeed, consider the Mobius

transformation T(z) = 1 . Notice that T~!(w ) = %*Zj Then
N(w) := ToNo T Y(w ) is the map w — w? (since N and N are conju-

gate maps, we can study N by considering the much simpler map N). A
calculation shows that

T(1) =0
T(—1) =00
T(c0) =1
and
T(J)=T={z:|z2| =1}
T(A(1)) = A(0) = {z: |z < 1}
T(A(=1)) = A(co) = {z: |z < 1}.

Itis now clear that in the w-domain, 1 is a repelling fixed point (IN'(1)] >
1), oo and 0 are the attracting fixed points and that their basins of attraction
are indeed separated by J. Furthermore ] is completely invariant under N
since N(J) = ] = N°1(]). If z = e¥™an for k,n € N then N"(z) = 1. Thus
we see that the set of pre-images of the repelling fixed point is dense in
the Julia set. Now by construction, J is the set of points for which New-
ton’s Method fails to find a root. However, we can now see that on T, the

dynamics of N are rather complex. Similarly the set of (repelling) cycles

{z = 2T for k,n € N} is dense in ] (as is the set of pre-images of this

set). This characteristic of dense inverse orbits leads to the notion that N is
a chaotic map on J. It is important to note that this argument can be altered
to suite any quadratic polynomial and show that in the case of two distinct
roots, the Julia set is the perpendicular bisector of the segment joining the
two roots [3].

1.3 Polynomials of Higher Order

In the case of the cubic polynomial, we would theoretically like to find a
similar conjugation allowing easy classification of the Julia set of N, and



14 Introduction Chapter 1

hence easy classification of the basins of attraction that we seek. In the
simplest case of p(z) = z> — 1, one might expect a simple ternary division
of the plane, such as:

]:{ZEC:z:pemz%l,p>0,k€]N}.

However, in this instance, intuition fails us [11], [14]. As we will discuss,
the basins of attraction A(¢;) for all 3 roots ¢; share a common boundary
(namely the Julia set ). So clearly the Julia set cannot be as simple as “intu-
ition” suggests. Because | bounds each A({;), for any point z € | and any
neighborhood U containing z, U N A(¢;) # @ for all roots ¢; of p. This leads
to the term 3 corner point being used in the case of a cubic p [3]. Numerical
investigations into the basins of attraction A(¢;) and their boundary | for
the cubic polynomial p(z) = z® — 1 have been carried out and pictures of
these sets are well known [3], [14], [12]. Note that the Julia set exhibits a
fractal structure (see Figure 1.1).

The authors of [3], [14] and [12] also investigate in depth the one pa-
rameter family of polynomials p,(z) = z> + (A — 1)z — A, because through
the proper change of variables, any cubic polynomial is equivalent to one
in this family. In this case, since

P
NE="p@e =

we see that the roots of N’(z) (i.e., the critical points of N) are the zeros of
p and p” (namely 0). Now if N were to have an attractive cycle 7 of or-
der d > 2, then by the work of Fatou, one of the critical points must lie
in A(7). Since the zeros of p, ¢; each clearly lie in their respective A(¢;),
one need only track the orbit of the “free” critical point 0 to determine the
existence of an attracting cycle. All three of the references above provide
computer generated images of the set of values A for which no attracting
cycle is present. For these values of A Newton’s Method converges to a
root “almost-everywhere.” Remarkably, this set appears to exhibit an in-
finite amount of self-similarity, bearing a resemblance to the Mandelbrot
set. Numerous figures of other fractal sets generated by varying A are also
included.

It should be noted, however, that in cases where the polynomial p is of
degree d > 3, Newton’s Method is in some sense a “bad” algorithm [14].

Definition 3. Let T : ¥ — X be a rational function, and p(z) be a polynomial.
We say that T(z) is convergent for p if T"(z) — ¢;, where p(G;) = 0, for all z in
an open, dense subset of Z.
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Figure 1.1: Basins of attraction for p(z) = z° — 1.
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Now let T be a rational map from the space of complex polynomials of
degree d to the space of rational functions on X. T is then called a purely
iterative algorithm, and we say that T is generally convergent if T(p(z)) is con-
vergent for p, for all p in an open dense subset of the space of polynomials.

Theorem 1.3.1 (von Haeseler, Peitgen [14]). No generally convergent, purely
iterative algorithm exists for finding roots of complex polynomials of degree d > 4.

We note that if the operation of complex conjugation is allowed, then
generally convergent algorithms exists for polynomials of any degree.

1.4 Damped and Continuous Newton’s Method

If we modify the standard Newton’s Method by introducing a parameter ¢,
we get what is sometimes referred to as the Damped Newton’s Method.

N@z)=z—sPE g5t (1.2)

The method is in fact consistent for any ¢ € C such that || < 2. However,
we will only be concerned with a small, real parameter §. The remarkable
feature of the damped Newton’s Method is that it can realized as an Euler
approximation of a differential equation using a step size At = 4. To see

this, let (=)
7
zin1 = z; — At A
! p'(zi)
Rearranging yields
zin—zi __ pz)
At p'(zi)
Finally, letting At — 0 we have
z
zm:_ﬁ$. (1.3)

Equation (1.3) is known as Continuous Newton’s Method, and can be thought
of as a type of “gradient-flow” [13]. More generally, gradient-flow for a
vector-valued function f(z) is described by the differential equation

2 (1) = 5 VISP
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However, it is true that in the case where f is a complex analytic function,
IVIfI2 = f?l Therefore,

f(z)
f'(z

where p(z) = |f'(z)|?. Thus it can be seen that equation (1.3) is a rescaled
version of gradient-flow.

Returning our attention to (1.3), for zy such that p’(z9) # 0, standard
theory of differential equations guarantees a solution z(t) to the initial value
problem

Z(t) = —p(z)

~—

2 =P ) = 2 (1.4)

on some maximal time interval (w_,w. ). Therefore, the singular set
S = {z € C: p/(z) = 0} presents a problem when analyzing the behavior
of solutions to (1.4). In [9] the author utilizes the initial value problem

p(2)(t) = —p(z(t), z(0) = z. (L.5)

This is a slightly more general formulation of Continuous Newton’s Method,
since a brief calculation shows trajectories z(t) that satisfy (1.4) also satisfy
(1.5). However using (1.5) allows the author to “flow” right through the
singular set S by concatenating trajectories that accumulate on S. A few
key results summarize the behavior of (1.5).

Theorem 1.4.1. If z(t) satisfies (1.5) for all t > 0, then

lim z(t) = ¢;

t—o0
exists, and p(¢;) = 0.

Theorem 1.4.2. If ¢ € C, then ¢ = z(t) for some t € R and some z(t) satisfying
(1.5).

Theorem 1.4.3. If M is the set of c € C such that c belongs to no trajectory that
accumulates on S, then every component M; of M contains just one root ; of p.
Furthermore, if z(t) € M, for some t, then

lim z(t) = ;.

t—o0
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Thus, we see that continuous Newton’s Method does indeed find roots
of a polynomial p. To show this, assume z(t) solves (1.5). Rearranging
terms yields

and integrating with respect to t yields

log p(z(t)) = ~t +log p(2(0)).
Finally, exponentiation shows that

t

p(z(t)) = p(zo)e ",

where zg = z(0). In the case where p(z) = z> — 1, we can explicitly solve

for z = {/(z3 — 1)e~* + 1. Thus we see that solutions decay exponentially

to a root of unity (i.e., a root of p). What’s more, we see that in the case of
p(z) =z — 1, the continuous Newton’s Method reduces to

_23—1

Zl(t) = ?

It is clear then that S = {0} and a phase portrait shows that the trajec-
tories that accumulate on S are exactly the rays that intuition mistakenly
suggested as the Julia set for the conventional Newton’s Method for this
polynomial. This behavior can also be seen by computing pictures of the
Julia set ] for damped Newton’s Method and then allowing ¢ to shrink to-
ward zero [12].

1.5 New Directions

In recent years, research into Newton’s Method has moved into a more
general setting. Since one may simply view a complex polynomial as a
mapping from RR? to IR?, surely there exists a higher dimensional analogue
to (1.1). Specifically, if one wants to find zeros of a function G : R" — IR”,
then Newton’s Method takes the form

Xnp1 = N(xn) = x5 — 6[DG(xn)] 7' G (), (1.6)



Section 1.5 New Directions

19

Figure 1.2: Vector Field and trajectories for Continuous Newton’s Method
when p(z) = 23 — 1.

where DG(x) denotes the Jacobian matrix of the map G. Note that this is
still an Euler step for the differential equation

'(t) = —[DG(x(t))] ' G(x(t)),
{ ’ x(O)x: xX0. ’ (17)

Equations (1.6) and (1.7) are only defined on D = R" \ S, where
Sc := {x € R" : detDG(x) = 0} is the singular set of G. In [10], the au-
thors provide an in-depth case study of (1.6) and (1.7), utilizing throughout
an example G obtained through a 2 point finite difference scheme for the
nonlinear boundary value problem

{ uss+Af(u) =0, 0<s<1,
u(0) =u(l) =0.

Key results show that for xj in certain domains,

26(x(1) = ~Glx(1))
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Therefore, G(x(t)) = e 'G(xp). From this we immediately see that if x(#) is
defined for all t > tg, G(x(t)) — 0. However, in the example investigated
in [10], there also exist domains C such that for xg € C, and the correspond-
ing solution x to (1.7), we have x(f) € S for t < co. That is to say that the
singular set absorbs trajectories in finite time. Numerical simulation of (1.6)
indicates a Julia-like set of fractal nature associated with the system. How-
ever, the structure of this set is not as well understood as the classical Julia
sets. The authors conduct numerous computer experiments investigating
it’s nature. Following in the spirit of [10], sets of this type associated with
approximation of (1.7) will be one of the major topics of this thesis.



Chapter 2

Theory of Rational Mappings

2.1 Rational Complex Functions

To understand the existing work associated with Cayley’s Problem, we
must first introduce some terminology. Also, it will be helpful to consider
the “point” at infinity, therefore we will be treating maps of the extended
complex plane (sometimes known as the Riemann Sphere). It should be
noted that the extended complex plane forms a metric space under the
spherical norm ds, where

2|z — w| da(z,00) = 2
VIEP+ D) (wk+1)" Ve

Definition 4. Let X = C U {oo} be the extended complex plane. A function

R : ¥ — X is said to be a rational function if R(z) = L&) where P and Q are

. Q(z)
complex polynomials.

ds(z,w) = z,w e C.

The degree, d of a rational function, is the maximum of the degrees of P
and Q. For the polynomials such as Cayley considered, Newton’s Method
reduces to a rational mapping on %, allowing the use of the ideas of Brolin,
Fatou, and Julia to solve Cayley’s Problem. However, it will be necessary
to make some definitions before proceeding.

Definition 5. A complex number z € X is a critical point of R provided R'(z) =
0. The set of all critical points will be denoted by S.

The behavior of cycles, fixed points and critical points will be essential
to characterizing the behavior of iterates of R on a global scale. However
one additional construct will also be required.
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Definition 6. A rational mapping R : ¥ — X is said to be normal at a point
z € X if for some neighborhood U of z, the sequence {R"|y} is equicontinuous
with respect to the spherical norm d.

Remark. This is a simpler characterization of normality than Montel origi-
nally formulated, however for our purposes it will suffice [14].

We are now ready to formally define the Julia set which was of such
interest in Chapter 1. In honor of the pioneers of this field, the set of points
where R is not normal is known as the Julia set of R and X\ | is known as
the Fatou set.

Definition 7. 1. | := {z € £ : R is not normal at z}.
2. F:=%\].

The behavior of R on the Julia set is remarkably complex, and it turns
out that | is crucial to understanding the dynamics of Newton’s Method
for complex polynomials. Some basic properties of the Julia set follow, for
verification of these properties, see [1],[14].

Theorem 2.1.1. 1. ] is closed.

2. ] #O.

3. R(J)) =] =R()).

4. ] is perfect (i.e., | is dense in itself).

5. If | contains some open neighborhood U, then | = X.

6. If Pr is the set of repelling periodic points, then Pr C ]. Furthermore,
Pr=].

This final result plays an important role in determining the dynamics of
R on J. This density of repelling cycles leads to the type of chaotic behavior
of R on the Julia set that was mentioned earlier [14].

Theorem 2.1.2. If a(zp) := {z € £ : R"(z) = z9, n € IN} is the set of pre-
images of zo, and zy € |, then a(zp) = J. 1

Thus we see that the behavior witnessed in the example of Chapter 1 is
characteristic of Newton’s method for all complex polynomials.

IClearly in this case a(zg) C J.
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2.2 Applications to Cayley’s Problem

Since R is normal at any attractive fixed point or cycle [1], it is clear | does
not contain these points. In fact, if 7y is an any attractive cycle, and A(7y) :=
{z € £ : vy is the set of limit points of R"(z)} is the basin of attraction for v,
then the following result holds [14].

Theorem 2.2.1. A(y) C Fand 0A(y) = J.

Thus we see that the invariant Julia set necessarily divides the basins of
attraction for the various cycles of R. Furthermore, let us define A*(7y) :=
U Ai (where A; is the maximal connected component of A(-y) that contains
z; for each z; € 7) to be the immediate basin of attraction of +.

Theorem 2.2.2. For each attractive cycle vy, A*(7y) NS # @. In particular, A*(-y)
contains at least one critical point of R. [1]

This means that with knowledge of the Julia set and the orbits of the
critical points, large components of each basin of attraction can be identi-
fied. The difficulty arises in determining which points lay in the Julia set.
None of the results above offer an obvious way to quickly calculate J. The
truth of the matter is that this is inherently difficult, due to the fact that |
will often be a fractal. Under quite general conditions, | consists of an infi-
nite number of Jordan curves and has a well defined tangent line nowhere

[1].






Chapter 3

The Julia set and Capacity
Dimension

3.1 Damped Newton’s Method

We return now to the Damped Newton’s Method (1.2), where p(z) = z3 — 1.

Again, we wish to explore the idea that this is a simple approximation to
the differential equation (1.3). As we have already discussed, in the case
of (1.3), there does not exist a Julia set of fractal dimension bounding the
basins of attraction for the system. However, in the case of (1.2), we know
that a Julia set of fractal dimension exists for all 6 > 0. By visualizing the
basins of attraction for various values of 4, it becomes clear that the step
size of the approximation method affects the Julia set somehow (Fig. 3.1).
Whether the structure of the fractal is somehow altered, or merely scaled is
not immediately apparent. In order to investigate this more thoroughly, we
will wish to examine the fractal dimension of the Julia set as our quantity
of interest. More than just a curiosity, the fractal dimension of the Julia set
has significance in this context of approximating a differential equation.
Recall from Theorem 2.2.1 that the Julia set necessarily bounds all basins
of attraction for the system. Thus, in any neighborhood of | we will find
subsets of each and every basin of attraction. This means that trajectories cor-
responding to arbitrarily close initial conditions will have dissimilar long
term behavior (they will each converge to distinct roots). Consequently, our
approximation algorithm is in a sense unstable at points of . It is for this
reason that we are interested in the dimension of the Julia set: it gives us a
notion of the size of the set where our approximation algorithm is “bad”.
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3.2 Capacity Dimension

Unfortunately, the very definition of fractal dimension has not been stan-
dardized. There exist several various notions of fractal dimension, each
useful in certain circumstances. The Hausdorff and Minkowski-Bouligand
dimensions are both highly applicable to sets of fractal nature, however
due to their abstract definitions, are of limited use in our numerical simu-
lations.! Therefore, we will be computing the capacity dimension of the Julia
set. The notion of capacity dimension stems from the assumption that we
should observe a scaling relation of the type

1
Ne «x —,
€ Gd
where d is the capacity dimension and N is the number of neighborhoods
of radius € needed to cover the set in question. In particular,

log Ne

1
log N o dlogE or dc loge 1"

Thus, we can approximate d by choosing several values of ¢, finding N,
and calculating the slope of the best linear fit to the data set { (log Ne,log 1) } .

A full derivation of the capacity dimension can be found in [8]. We not
that the capacity dimension does not always agree with more rigorous con-
structions such as Hausdorff dimension. The data structures used in our
numerical calculations are well suited to the computation of the capacity
dimension, thus it will be our quantity of interest. Figure 3.2 shows our
calculated capacity dimension d of the Julia set as a function of the step
size ¢ of our solution algorithm (1.2).

At this point it is important to state that during benchmark testing, our
calculated capacity dimensions only agreed with true capacity dimension
within an error of 0.08. Also, we know that values of d corresponding to
6 < 0.2 are unreliable due to computational limitations. For these small
values of J, we find an abundance of trajectories that do not reach an root
within the maximum number of iterations specified by our implementa-
tion. These trajectories give the appearance of a fourth, fictitious basin of
attraction and thus a larger Julia set. This cap was implemented in order
to keep computation times more tractable. Keeping this in mind, Figure
3.2 exhibits some rather unexpected behavior. From a cursory examination

1See [8] or [5] for a more extensive discussion of fractal dimension
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of Figure 3.1, one might expect that the Julia set | is merely scaled by J,
and that the fractal dimension remains unaffected. Our calculations of d
indicate that this is not, in fact, true. The data is not consistent with a con-
stant function. Indeed, it appears that the fractal dimension is a decreasing
function of . Again, this seems completely counter-intuitive. One might
expect the fractal dimension to decrease as 6 — 0 and (1.2) becomes a better
approximation of (1.3). Furthermore, based on knowledge of the behavior
of (1.3), one might expect that

limd = 1.

6—0
This does not appear to be the case at all. This, combined with the large
increase in d for values of 6 < 0.5 suggests that the dimension may not
depend continuously on the step size of the approximation. Furthermore,
a cursory examination of Damped Newton’s Method for other 3" degree
polynomials has produced remarkably similar data, with a characteristic
drop in fractal dimension for values of § > 0.5.

3.3 A More Sophisticated Approximation

All results up to this point suggest that discretization of (1.3) with an Eu-
ler approximation inherently creates a set of fractal nature, upon which
the system exhibits nontrivial dynamics. However, keeping in mind that
Newton’s Method can be derived from a continuous dynamical system,
the question immediately arises: Does this behavior persist under more
sophisticated numerical integration techniques? Specifically, we wish to
investigate the behavior of (1.3) when a 4! order Runge-Kutta method is
employed to approximate trajectories. 2 In particular, the Runge-Kutta
method employs a similar time step to that of the Euler approximation,
which will also be referred to as J, and we wish to explore how the basins
of attraction vary with respect to J.

Figure 3.3 shows the 3 basins of attraction under the Runge-Kutta ap-
proximation for several step sizes . Immediately, we see that these are not
the same Julia sets found when using an Euler approximation. If anything,
these pictures indicate a higher level of complexity than we find using an
Euler approximation. The large connected component of each basin ap-
pears to be smaller, and the radial, braided structures are quite intricate.

2For a derivation of the Runge-Kutta method employed here, see [4].
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Indeed, Figure 3.3 indicates that the Julia set we see with an Euler approx-
imation of (1.3) is less complex (in that it has a lower fractal dimension)
than the Julia set associated with a Runge-Kutta approximation, but only
for larger values of 6. If we interpret this to mean that the Runge-Kutta
algorithm is unstable at a “larger” set of points, then these findings stand
in contrast to the fact that Runge-Kutta is a better approximation scheme
than Euler.
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Figure 3.1: Damped Newton’s Method for the polynomial p(z) = z3 — 1.
The basins of attraction of the 3 roots of unity are shown for (A) 6 =1, (B)
6=32,(C)s=1%and(D)s = 1.
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delta

Figure 3.2: Dimension of the Julia set for (1.2) as a function of é when p(z) =
22 -1
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Figure 3.3: Runge-Kutta approximation of (1.3) for p(z) = z® — 1. The
basins of attraction of the 3 roots of unity are shown for (A) 6 = 1, (B)
6=32,(C)d=1%and(D)s= 1.
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delta

Figure 3.4: Dimension of the Julia set as a function of ¢ for both approxi-
mations of (1.3) when p(z) = z® — 1. The Euler approximation is shown in
blue, while the Runge-Kutta approximation is shown in green. Both curves
contain 20 equally spaced data points.



Chapter 4

Newton’s Method in R”

4.1 Developing an Example

In many contexts, one may be concerned with finding the zeros of some f,
where f is not a complex analytic function. Engineers are often concerned
with finding zeros of functions in IR” for rather large values of n. As we
have discussed, in this case Newton’s Method generalizes to equation (1.6),
and the corresponding continuous method (1.7). In order to investigate the
behavior of (1.7) it is necessary for us to choose an example G. The general
system permits too wide a range of behavior for the analysis to be tractable.
For the time being, we will consider the example G studied in [10]. We
begin by posing the one-dimensional nonlinear boundary value problem

{ uss +Af(u) =0, 0<s<l1,

u(0) =u(1) =0, @1

where A is a real parameter. It may be helpful to think of (4.1) as describing
the steady state of a reaction-diffusion system on the unit interval. In order
to approximate a solution u to (4.1), we discretize the interval (0, 1) using a
uniform mesh of 7 interior points
i
:n——|—l’ 1= 1,...,7’1
1
n+1

5i

x; =u(s;), As = (4.2)

Using a centered difference method, we approximate (4.1) by the system of
n equations,

(n+1)(xj1 — 2%+ x1) +Af(x;) =0, i=1,...,n
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Collecting these equations and multiplying through by a constant yields

G(x) = Mx — uF(x) =0,

where
VRS '
Xn
2 -1 0
-1 2 -1
M=119 -1 2 ,
and
f(x1)
Fx)=|
f(xn)
Thus, a root ¢ of G represents an approximate solution to (4.1). In [10],

the authors investigate two nonlinearities, f(s) = s —s? and f(s) = s — s°,

however we will restrict ourselves to the former case for the time being.
The reason for this choice is that in this case the bifurcation behavior of
solutions to (4.1) is well documented, and consequently the roots of G can
be predicted somewhat. Furthermore, for our experimentation, we will be
utilizing a 2 point interior mesh, and thus using Newton’s Method in R? to
find roots of

2x —pu(x —x?) —y

GO = 2y iy - ) 43

4.2 An Euler Approximation

Now that we have a function G for case study we wish to numerically in-
tegrate (1.7) in order to study the behavior of solutions. The simplest al-
gorithm for doing this is an Euler approximation. The resulting iterative
method is of course (1.6), Newton’s Method for IR”, where ¢ is the time
step of the approximation to (1.7).! Recall that we first encountered the Ju-
lia set as the set of points for which Newton’s Method fails to find a zero.
However, without the aid of complex analysis, it is much more difficult

11t should be noted that this is the technique used in [10].
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to characterize such points. In particular, the mappings are not necessar-
ily complex rational maps, and the the theory of Julia and Fatou need not
apply.

As we mentioned earlier, in the case of (1.7) there exist trajectories that
reach the singular set S in finite time. Thus the authors of [10] propose the
following candidates for generalized Julia sets, or Julia-like sets of (1.6):

o 1 ={xeR%: N¥(x) € S,k >0},

o L ={xeR%: |[NK(x)|| — oo, ask — oo}.

While it is postulated that [, = J;, most of the analysis in [10] deals with J;.
Numerical investigation into the set J; has shown a remarkably complex
structure. For the examples considered here and in [10] it turns out that
while J; exhibits self-similarity and other fractal characteristics, it also con-
tains components that are smooth one-manifolds. Thus, J; is in actuality a
partial fractal.

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1
-1 0.8 0.6 0.4 02 0 02 0.4 06 08 1

Figure 4.1: Damped Newton’s Method for (4.3): u = 2,6 = 1.5.

In another deviation from the Newton’s method for the complex plane,
it is no longer the case that the Julia set bounds the basins of all attrac-
tive cycles. Figure 4.1 shows the basins of attraction when y = 2 and an
Euler step size of 6 = 1.5 is used. For this value of y, G(x) has two dis-
tinct roots, §o = (0,0) corresponding to the trivial solution of (4.1), and
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¢1 = (x1,x1), x1 > 0, corresponding to the positive solution. The cyan re-
gion of the plane represents A((p), while the blue region represents A((1).
The faint red regions are a portion of J;. The remarkable fractal structure
that was present in the setting of the complex plane appears to have been
lost. However, we have reason to believe that this is not the case, and that
higher resolution images in the spirit of Figure 4.1 will reveal more of J;.
In Figure 4.2 the two basins A(p) and A(¢1) have each been divided into
four regions, corresponding to the direction with which the sequence of it-
erates {N"(x)} approaches ¢;. The interfaces between these 8 regions show
a large amount of complexity and suggest a set of fractal nature. Indeed,
this structure appears nearly identical to the set J; investigated in [10]. If
related, this would prove to be a most interesting feature of the Julia-like
set, however at this time a claim to that effect cannot be substantiated.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 08 1

Figure 4.2: Decomposition of the basins of attraction for y =2, = 1.5.

4.3 Runge-Kutta Approximation

As in Chapter 3, we are interested in examining the behavior of (1.7) under
approximation with a Runge-Kutta scheme. Figure 4.3 show the results
of our investigation into the basins of attraction for (1.7) using a Runge-
Kutta method. A(p) and A(G1) are shown in green and red respectively.
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Again, we see evidence of a Julia-like set with fractal properties. Figures 4.4
and 4.5 show the self-similarity of the interface between A(go) and A((1).
Interestingly, these figures indicate behavior similar to that of Newton’s
Method for complex polynomials. It appears that the Julia-like set is again
bounding the various basins of attraction. However, altering the step size ¢
seems to have a more profound impact on the structure of the basins A(¢;)
than we saw in the setting of the complex plane. Variation of é appears to
alter the fractal set’s topology. Exactly how is not clear. Unfortunately, due
to prohibitively large computational demands, were only able to conduct
a cursory investigation into the capacity dimension this Julia-like set. For
the basins of attraction shown in Figure 4.3, we have calculated capacity
dimensions of (A)1.86, (B)1.88, (C)1.80, and (D)1.80. This is in fact a smaller
variation than witnessed for either approximation method in Chapter 3 and
suggests that the capacity dimension may indeed be constant with respect
to 6. Once again we find completely unexpected behavior. Throughout this
project we have learned that visually gauging the complexity of these basin
boundaries is extremely difficult.
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Figure 4.3: Runge-Kutta approximation of (1.7) for (4.3): u = 2. The basins
of attraction of the each fixed point are shown for (A) 6 =1, (B) 6 = %, (@]
o= %,and(D)cS: }1.
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Figure 4.5: Enlarged view of the basins of attraction for y =2, = 1.5.






Chapter 5

Conclusion

Our investigation into generalizations of Cayley’s Problem has uncovered a
wealth of unexpected behavior. Perhaps most startling, is the evidence that
with respect to the capacity dimension of the associated Julia set, a 4" order
Runge-Kutta scheme is actually a less stable algorithm for approximating
(1.3) than a simple Euler scheme (in some cases). This seems completely
counter-intuitive in light of the fact that the Runge-Kutta scheme can be
shown to have a much higher rate of convergence. Furthermore, in the
case of (1.7), Runge-Kutta approximation yields basin boundaries with an
apparently fractal structure, while an Euler approximation does not. We
are currently unable to suitably explain either of these phenomenon, and
are of the opinion that this should be a major goal of any future research
in this area. Also, it would be interesting to investigate, in more depth,
the basin boundaries seen in Figure 4.3. The notion of capacity dimension
does not seem to capture the variation with respect to J that these pictures
indicate. Perhaps there is some better way to quantify this.

Finally, we feel our experimentation to this point has suggested a pro-
found question. Motivated by what we have seen in our work with Contin-
uous Newton’s Method, one might ask if discretization of (1.7) will always
result in a generalized Julia set. The existence of a Julia-like set for these
two methods of numerical integration by no means implies that this will
always be the case. However, it is entirely possible that Julia-like sets exist
for a large family of approximation techniques. Such a finding would open
a wide range of research possibilities.






Chapter 6

Appendix

6.1 EULERDbasin

The majority of the numerical simulation used in this thesis was done us-
ing Matlab®. The standard routine used to do this was EULERbasin or a
variant there-of. EULERbasin creates an array corresponding to a grid of
points imposed on IR?, as well as two vectors defining the axes of the grid.
The entries of the array are filled with values corresponding to the zero of
the given function that Newton’s Method carries each point to.

%% Eulerbasin

%% Owen Lewis

%% Takes in a symbolic function of 2 variables, axis limits,
%% resolution and step size. Returns Matrix corresponding to
%% basins of attraction for Newton’s Method in R"2 applied

%% to func.

function [u,Xaxis,Yaxis] = EULERbasin(func,xmin,xmax,ymin,ymax,res,delta)

%Create vectors to define the X and Y axis as well as a vector to
%hold fixed points as they are found.

Xaxis = xmin:1/res:xmax;

Yaxis = ymin:1/res:ymax;

fixed [inf, -inf;0,0];

% minimum threshold at which two numbers are considered equal

eps = 0.0000000001;

%fixed(n) = inf;

tic
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%Paint is the matrix that will hold a integer corresponding to
hone of the fixed points found by EULER2v1.m

Xsiz = length(Xaxis);

Ysiz = length(Yaxis);

Paint = zeros(length(Yaxis),length(Xaxis));
% Here we define the D.E. that Euler’s meth will be applied to

% This DE is continuous newton’s method for the function
syms x y D F;

fx = diff(func,x);
fy = diff(func,y);
D = [fx,fyl;

F = -D”-1xfunc;

h

waitbar (0, ’Please wait’);

%For each of the rows and columns, EULER2vl.m is run,
%then a check is performed to see if the fixed point found is
halready in ’fixed’. If it is, the corresponding entry in ’Paint’
%is changed to reflect the fixed point. If not, the
%final is added to fixed.
for k = 1:Xsiz

for j = 1:Ysiz

waitbar( ((k-1)*Ysiz + j)/(Ysiz*Xsiz),h);

start = [Xaxis(k) ; Yaxis(j)];
final = EULER2v1(F,start,delta);
found = false;

%% check to see if the fixed point calculated is already known
for n = 1:size(fixed,2)
if ( norm(fixed(:,n) - final) < eps || isequal(fixed(:,n),final))
found = true;
Paint(j,k) = n;
end
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end

% in the case of a new fixed point, the new point is added to
% fixed, then fixed is reordered, then the indices in Paint
% are changed to match foo. Finally, fixed is changed to match foo
if (found == false)
fixed = [fixed,finall];
foo = mysort2(fixed);

for a = 1:size(fo00,2)

for b = 1:size(fixed,?2)

if (fixed(:,b) == foo(:,a))
01d = find(Paint == b);
Paint(01d) = a;

end

end

end
fixed = foo
end

end
end

close(h);
u = Paint;
toc
end

6.2 EULER2v1

EULERbasin.m utilizes an auxiliary routine named EULER2v1.m to iterate
the Newton map (1.6) in R2.

%% EULER2v1
%% Owen Lewis
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%% returns the fixed point obtained if Newton’s Method for ’func’
%% is iterated using seed value ’start’ and step size ’delta’

function fixed = EULER2v1(func,start,delta)
#Method takes in a symbolic function, a starting
%position for the method, and a step size ’epsilon’

%Several variables are initialized including the current
%iposition of the method (Xpos,Ypos)

n=2;

Xpos = start(1);
Ypos = start(2);
syms X y;

F = func;

ticker = 0;

run true;

% max number of iterations

max

floor (40/delta)*(10%*n) ~2;

% Threshold at which two points are considered equal
eps = 0.0000000000001;

%Euler method is run until a forced ’return’ or the iteration
%limiter is reached

while ( ticker < max )

X
y

Xpos;
Ypos;

Step = deltaxeval(F);

% this is a check to see if the method has reached a singular pt
if (isnan(norm(Step)))

’Singularity’
fixed = [inf;0];
return

end
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% This is a check to see if the method has reached an equilibrium
if ( norm(Step) < eps )

%fixed = roundoffn([Xpos;Ypos],8);

fixed = [Xpos;Ypos];

return
end

% This is a check to see if the method has failed to reach
% and equilibrium before the iteration limiter is reached.
if ( ticker == max - 1 )

’Transient Orbit’

fixed = [-inf; 0];

return
end

Next = [Xpos;Ypos] + Step;
Xpos = Next(1);

Ypos = Next(2);

ticker = ticker + 1;

end
return;
6.3 RK2vl1

RK2v1.m is a routine much like EULER2v1, used to calculate the fixed point
of (1.7) when utilizing a Runge-Kutta approximation. It takes inputs iden-
tical to those of EULER2v1 and returns the same output type, thus the two
routines are substitutable.

%/ RK2v1

%% Owen Lewis

%% returns the fixed point obtained if an RK approx.of Newton’s
%% Method for ’func’ is iterated using seed value ’start’

%% and step size ’delta’

function fixed = RK2v1(func,start,delta)
#Method takes in a symbolic function, a starting
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%position for the method, and a step size ’delta’

%Several variables are initialized including the current
%position of the method (Xpos,Ypos)

n=2;

Xpos
Ypos

start (1) ;
start(2);

sSyms X y;

F = func;

ticker = 0;

% max number of iterations

max = floor(40/delta)*(10*n)"2;

% Threshold at which two points are considered equal
eps = 0.00000000001;

%Runga-Kutta method is run until a forced ’return’ or the iteration
%limiter is reached
while ( ticker < max )

x = Xpos;
Ypos;

<
n

k1 = deltax*eval(F);

Xpos + k1(1)/2;
Ypos + k1(2)/2;

™
n

<
I

k2 = deltaxeval(F);

Xpos + k2(1)/2;
Xpos + k2(2)/2;

< ™
o

k3 = deltaxeval(F);

Xpos + k3(1)/2;
Ypos + k3(2)/2;

< M
o
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end

return;

k4 = deltaxeval(F);
Step = (k1 + 2xk2 + 2%k3

% this is a check to see
if (isnan(norm(Step)))

’Singularity’
fixed = [inf;0];
return

end

% This is a check to see

if ( norm(Step) < eps )
fixed = [Xpos;Ypos];
return

% This is a check to see

% and equilibrium before

elseif ( ticker == max -
’Transient Orbit’
fixed = [-inf; 0];

+ k4)/6;

if the method has reached a singular pt

if the method has reached an equilibrium

if the method has failed to reach
the iteration limiter is reached.
1)

return
end
Next = [Xpos;Ypos] + Step;
Xpos = Next(1);
Ypos = Next(2);

ticker = ticker + 1;

6.4 boxcounter

The routine boxcounter.m recursively cuts the input array into 4 sub-arrays,
and checks to see if each is constant. The vectors returned reflect the radius
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of a neighborhood circumscribing the sub-array, and the number of sub-
arrays needed to cover the Julia set at each level of recursion.

%% boxcounter

%% Owen Lewis

%% Calculates the number of squares N(i) with radius S(i)

%% needed to cover the set of points at which Uin changes value.
%% N and S will be ’n’x1 vectors.

function [N,S] = boxcounter(Uin,Xin,Yin,n)

dims = size(Uin);

proc = find(dims < 2);
Xsiz = length(Xin);
Ysiz = length(Yin);

rad = sqrt((Xin(Xsiz) - Xin(1))"2 + (Yin(Ysiz)-Yin(1))"2)/2;

ifn>1

%% First, we calculate where to divide Uin
diff = find(Uin “= Uin(1));
BreakX = floor(Xsiz/2);
BreakY = floor(Ysiz/2);

%% and break the Uin as well as the

%% axis in half (as nearly as possible)
X1 = Xin(1:BreakX);
Y1 = Xin(1:BreakY);
Ul = Uin(1:BreakY,1:BreakX);

X2 = Xin(1:BreakX);
Y2 = Yin(BreakY+1:Ysiz);
U2 = Uin(BreakY+1:Ysiz,1:BreakX);

X3 = Xin(BreakX + 1:Xsiz);
Y3 = Yin(1:BreakY);
U3 = Uin(1:BreakY,BreakX + 1:Xsiz);

X4 = Xin(BreakX + 1:Xsiz);
Y4 = Yin(BreakY + 1:Ysiz);
U4 = Uin(BreakY + 1:Ysiz,BreakX + 1:Xsiz);
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%/ Boxcounter is run recusively on each of the
%% 4 sub matrices

[N1,81] = boxcounter(U1,X1,Y1,n-1);
[N2,S2] = boxcounter(U2,X2,Y2,n-1);
[N3,83] = boxcounter(U3,X3,Y3,n-1);
[N4,S4] = boxcounter(U4,X4,Y4,n-1);

%% Results are truncated to make sure vector dimensions agree
short = min([length(S1),length(S2),length(S3),length(S4)]1);
N1 = Ni(1:short);
N2 = N2(1:short);
N3 = N3(1:short);
N4 = N4(1:short);
S1 = S1(1:short);
S2 = S2(1:short);
S3 = S3(1:short);
S4 = S4(1:short);

%% Results for 4 submatrices are combined
Nrec = N1 + N2 + N3 + N4;
Srec = (S1 + S2 + S3 + S84)/4;

%% N(1) is maked O if Uin is constant, 1 otherwise
%% S is the size of Uin

N = [“isempty(diff);Nrec];

S = [rad;Srec];

%% Base case (n = 0)

else
diff = find(Uin “= Uin(1));
N = “isempty(diff);
S = rad;

end
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6.5 Mex routines

Because the run-time of EULERbasin.m and it’s variants became prohibitive
when attempting to run large-scale parameter studies, we felt the need
to find more efficient means to produce basins of attraction. In order to
speed up computation, we utilized the Mex functionality of Matlab®. eu-
lerbasins.c is a C++ class that generates the same array as EULERbasin.m and
returns it to Matlab®).

eulerbasins.C

*
*

* This file generates a matrix indicating the root of convergence
* for initial points on the grid and passes it back to matlab
*
*
*

Written by Owen Lewis

April, 2005

#include <math.h>
#include <stdio.h>
#include "mex.h"

/* n_IN is the input double from matlab
1%
y_out is the matrix returned to matlab */

#define n_IN prhs[0]
#define y_OUT plhs[0]

using namespace std;
using namespace std;

double DELTA = 1;

double XMIN = -1.0;
double XMAX = 1.0;
double YMIN = -1.0;
double YMAX = 1.0;
double TICK = 0.002;

double TOL = 0.0000000001;
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int MAXITS = 1000;
int NUMROOTS = 10;

/* Calculates the real and imaginary parts of p and p’ */

double re_f(double a, double b) {
return (a*a*a - 3*axbxb - 1);

3

double im_f(double a, double b) {
return (3*a*a*b - bxbxb);

}

double re_fp(double a, double b) {
return (3*axa — 3*bx*b);

}
double im_fp(double a, double b) {
return (6*ax*b);

}

/* The iteration of newton’s method */

void newton(double #*point, double del) {

int cnt = 0;
double a = point[0];

/* Components of the input */

double b = point[1];

double ¢ = 1; /* Components of the search */
double d = 1; /* direction */

double ref,imf,rfp,ifp; /* real and imaginary parts of */

/* f and f’ evaluated at (a,b) */

while ((cnt < MAXITS) && (cxc+dxd > TOL*TOL)) {

cnt++;

ref = re_f(a,b);
imf = im_f(a,b);
rfp = re_fp(a,b);

ifp = im_fp(a,b);
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}

/* T

void

root
root
root

¢ = (refxrfp + imfxifp) / (rfp*rfp + ifp*ifp);
d = (rfpximf - refxifp) / (rfp*rfp + ifpx*ifp);
a —= delx*c;

b —= delx*d;

if (cxc+d*d <= TOL*TOL){

point [0]
point[1]

a;
b;

uns newton’s method for each point of the grid */
basin(double delta, double matrix[]) {

double *z = new double[2];

double *roots = new double[2*xNUMROOTS] ;
int rootcnt = O;

int root = -1;

double j
double i

YMIN;
XMIN;

for (int row = 1000; row > -1;row--) {

i = XMIN;

for ( int col = 0; col < 1001;col++) {
z[0] = i; /* Set our initial guess */
z[1] js

newton(z,delta); /* Run newtons method */

if (rootcnt == 0) {
roots[2*rootcnt] = z[0];

s[2*rootcnt+1] = z[1];

cnt++;

= 0;
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}
else {
root = -1;
for (int k=0; k<NUMROOTS; k++) {
double xdiff = z[0] - roots[2xk];
double ydiff = z[1] - roots[2xk+1];

if (xdiff*xdiff+ydiffrydiff < TOL*TOL) {

root = k;
break;
}
}
if (root == -1) {
roots[2*rootcnt] = z[0];
roots[2*rootcnt+1] = z[1];
root = rootcnt;
rootcnt++;
}
}
matrix[(col)*1001+row] = root;
i+=TICK,;
}
j+=TICK;
+
return;
}

/*********************************************************/

/*(program crashes if number if input arguments is wrong)*/

/*(program crashes if output is not saved to variable)

/* THIS IS A MANDATORY SUBROUTINE
/* sets up MATLAB <-> ¢ parameter passing

*/
*/
*/

/*********************************************************/

void
mexFunction(int nlhs,
mxArray *plhs[],
int nrhs,
const mxArray *prhs[])
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double *y, #*n; /* why can’t n be an int and must be cast? */
int mm;

double m;

double *z;

/* check if number of params is right, for what little good it does */
if (nrhs != 1) {
mexErrMsgTxt ("One input arguments required.");
}
if (nlhs != 1) {
mexErrMsgTxt ("One output argument required.");

mxGetPr(n_IN);
(double) *n;

g8 B
o

y_0UT = mxCreateDoubleMatrix (1001, 1001, mxREAL);
z = mxGetPr (y_0UT);

/* make the actual subroutine call */
basin(m,z);

return;

6.6 Graphic User Interface

To simplify the investigation of Julia-like sets for Newton’s Method in R?,
we have developed a simple user interface for Matlab®. The necessary
tiles are FNewtonGUIv1.m and FNewtonGUIv1.fig. Both can be found at
http:/fwww.math.hmc.edu/ olewis/thesis/ along with a brief explanation of the
interface.
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