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Ahmed Bilal
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Abstract
The Backward Induction strategy for the Centipede Game leads us to a coun-

terfactual reasoning paradox, The Centipede Game paradox. The counterfac-

tual reasoning proving the backward induction strategy for the game appears

to rely on the players in the game not choosing that very same backward in-

duction strategy. The paradox is a general paradox that applies to backward

induction reasoning in sequential, perfect information games. The Centipede

Game is a prime illustration of this paradox in counterfactual reasoning. As

a result, this paper will use a material versus subjunctive/counterfactual con-

ditional analysis to provide a theoretical and empirical resolution to the Cen-

tipede Game, with the hope that a similar solution can be applied to other ar-

eas where this paradox may appear. The solution involves delineating between

the epistemic systems of the players and the game theorists.
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1 Introduction

The Centipede Game was first introduced by Robert Rosenthal in 1981. It is

a finite n-person extensive form game with perfect information. In its basic

form, two players sequentially chose to either “Take” the larger share of an

increasing pot which ends the game, or “Pass” on the pot to the opponent.

Each time a player gets to chose either Take or Pass, they are at one of the

terminal nodes of the game.

The payoffs of the game are configured in such a that, upon a player choosing

Pass at her node, if her opponent chooses Take at the subsequent node, then

the original player will receive less than the payoff she would have received,

had she chosen Take. Since there is Perfect Information in the game, ”Com-

mon Knowledge of Rationality” is at play in the game.

1.1 Research Questions

This paper will focus on two main research questions:

1. Theoretical solution to the Centipede Game Paradox

The Backward Induction theory for the Centipede Game leads us to a

counterfactual reasoning paradox that is discussed at length later in the

paper. The paradox can be summarized in the following way. Consider

the following game:
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Assume player 1 is at node c, where she knows that she gets a higher

conditional payoff by choosing Take. Player 2 knows this; hence, player

2 will chose Take at node b. Inductively proceeding, player 1 will chose

backward induction reasoning to chose Take at node a and end the game

on the first move. The problem is that this reasoning assumes player 1

will reach the last node, c, which is only possible if both players deviate

from the backward induction equilibrium path i.e player 1 and 2 choose

Pass instead of Take on the initial nodes. Therefore, the counterfactual

reasoning proving the backward induction strategy seems to rely on the

players not choosing the backward induction strategy.

The paradox is a general paradox that applies to backward induction

reasoning in sequential, perfect information games. Therefore, the para-

dox is not only problematic for the Centipede Game, but affects coun-

terfactual reasoning solutions in games similar to the Centipede Game.

The Centipede Game is a prime illustration of this paradox in counter-

factual reasoning. As a result, this paper will attempt to provide a the-

oretical solution to the Centipede Game, with the hope that a similar

solution can be applied to other areas where this paradox appears.

The solution involves delineating between the epistemic (relating to

knowledge) systems of the players and the game theorists. The play-

ers in the game are allotted a distributed knowledge system, just enough

knowledge at each node to compute the backward induction equilibrium

solution for that node. This retains the players’ ability to use backward

induction reasoning to calculate the move with the highest conditional

payoff for their respective node in all situations, in cases of deviations

and in cases without. Therefore, in response to a deviation, the solution

is not contradicted and in need of revision at the players’ level. Instead,
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in response to a deviation, the revision to the solution happens at the

meta-game level, at the level of the game theorists’. The game theorists

can then use counterfactual conditional analysis to reveal the true game

tree that is appropriate; hence, revise their theory of the game after ev-

ery move that the players make.

Currently it is generally accepted that there is no clear consensus on

resolving the paradox. Robert Aumann and Kenneth Binmore are the

two main theorists on opposing camps in the debate. Both often contest

that the other is misunderstanding their theory. There have been several

individual attempts to solve the paradox, but it is hard to see how they

all fit together towards explaining why the paradox exists and how to

solve it.

In regards to this question, the purpose of this paper will be to:

(a) Explain Aumann’s main proof supporting the backward induction

outcome in the game, present an objection to it and then present a

modified version of the proof in response

(b) Revisit the Aumann and Binmore debate and illustrate how the

debate reduces to a problem of modelling material versus subjunc-

tive/counterfactual conditionals. We will then employ a game tree

analysis to clarify why the paradox exists

(c) Illustrate how epistemic system delineation solves the paradox

2. How well do the Centipede Game backward induction theoret-

ical results predict the empirical results?

The Centipede Game’s theoretical solution is built upon backward in-

duction reasoning, an instrumental tool in Game Theory. Hence, it is

important to ask if such theoretical solutions predict human behavior or

are they simply, theoretical tools, with no empirical bearing.
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The general consensus tends to be that the empirical results of the Cen-

tipede Game deviate significantly from the theory. Therefore, it is gen-

erally believed that the theoretical project of the Centipede Game has

little bearing on predicting human behavior, making it a weak economic

theory. Recently, more empirical literature has come out supporting re-

sults that are different from the initial studies. However, it is unclear

how all the empirical literature fits together, due to the different spec-

ifications of each of the experiments. Therefore, it is hard to draw any

main conclusions from the empirical literature.

In regards to this question, the purpose of this paper will be to:

(a) Analyze the main Centipede Game empirical studies and illustrate

how the particular specifications of each of the experiments affect

their respective results

(b) Explain how Aumann’s distinction between Rationality and Com-

mon Knowledge of Rationality shows up in the empirical literature

and interpret experimental results in light of this distinction

(c) Present a statistical model that accounts for most of the empirical

results of the game and illustrate how the model incorporates the

main theoretical intuitions of both, Aumann and Binmore.

2 Common Knowledge of Rationality

In this section, we will start by revisiting Aumann’s proof of how Com-

mon Knowledge of Rationality (CKR) leads to the Backward Induction

(BI) equilibrium outcome in Perfect Information games. This will allow

us to further infer how CKR leads to the BI equilibrium outcome in the

Centipede Game.
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Aumann sheds light on the concept of CKR in Perfect Information (PI)

games in his seminal paper, Backward Induction and Common Knowl-

edge of Rationality. Aumann (1995) aims to prove :

Theorem A: CKR ⊂ I {I: Backward Induction outcome}

In order to understand Aumann’s proof for Theorem A, it is important

to outline some initial definitions, axioms and lemmas that will prove

relevant later on.

2.1 Definitions

Knowledge (K) stands in contrast to Beliefs, which are often modelled

as Bayesian probability functions. Knowledge, instead, can be under-

stood as true belief. Knowledge is a belief with probability 1. This means

that Knowledge is a belief that is necessarily true of the world inhab-

ited by the believer. Therefore, a player i’s Knowledge of an event (E)

implies that (E is true ∩ i is certain that E is true in the world). As

Aumann puts it, it requires “absolute certainty”. Aumann also defines

“time of the players’ knowledge” (Aumann 1995, 8) to the start of the

play.

E is a set of the states of the world. Common Knowledge of an E is de-

fined as

CKE = KE ∩ KKE ∩ KKKE ∩ ...

An important feature of the Knowledge operator K is that it can quan-

tify over itself. This is because Knowledge of an Event counts as an

event itself. Therefore, it is appropriate to use the K operator in the

following way: KKEi. Let b be “the strategy profile” that assigns the
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inductive choice (I) to each node v. Then for each node v of each player

i, the following equation holds:

hv
i (b) ≥ hv

i (b; a
v)

for all actions av at v.

This equation means that the conditional payoff at node v of playing

the inductive choice action (I) strategy profile is greater or equal to the

conditional payoff from playing any other strategy profile, bv at v.

For example, if player i is at node v, then the move prescribed at v by

the inductive choice strategy yields i a conditional payoff at v, greater or

equal to the conditional payoff i would have received from playing any

other move at v.

Rationality for i is defined as following:

Ri =
∩
v∈Vi

∩
ti∈Si

(∼ Ki[h
v
i (s; ti) > hv

i (s)])

for all of i’s nodes, it is not the case that i Knows that there exists an

action at that node (from the set of all available actions on the node)

that will yield i a conditional payoff greater than the one that i receives

due to the action performed by i, as prescribed by the strategy played

by i.

For example, if i is at node v and plays Take, then if i is rational, then

it is the case that i does not Knows of any strategies at v and the nodes

after v, that would have yielded i a higher conditional payoff than the

one i receives from playing Take at v.
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2.2 Lemmas:

(a) CKE = KiCKE

This means that if E is Common Knowledge, then i not only Knows

E, but also, Knows that she Knows E is Common Knowledge.

(b) If E ⊂ F, then KiE ⊂ KiF

This means that if it is the case that E entails F, then if i Knows

E, then i must Know F as well. For example, assume i is at node

v. Since reaching v requires i to have traversed all {<v}: the set of

nodes before v that are necessary to reach v. If Knows that i is at

v, i must Know that i has traversed {<v} nodes.

(c) KiE ∩ KiF = Ki(E∩F)

(i Knows E and i Knows F) is equivalent to i Knows (E and F), or

that i Knows Event G : (G = E ∩ F). This means that events sep-

arately Known to i can always be jointly Known. This Lemma is

instrumental for Common Knowledge. Jointly Knowing separately

Known Events is what makes the CKE definition involving the in-

tersections of Knowledge Events possible.

(d) CKE ⊂ E

If it is the case that an event E is Common Knowledge, then it is

the case that E is true. This follows directly from the definition

of Common Knowledge. Knowledge of an event cannot be a false

belief.

(e) Ki∼KiE = ∼KiE

If it is not the case that i Knows E, then it is also true that i Knows

that i does not Know E.

(f) KiE ⊂ E
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This follows directly from the definition of Knowledge operator, K.

K is a probability 1 belief.

(g) Iv⊂KiI
v

For Lemma 7, the following definitions and axioms are necessary

for its proof:

i. Iv:= [sv=bv]

Iv is defined recursively. Iv, the inductive choice at v, is the

Event that i chooses the “action that maximizes i’s payoff” in

the case that all players make the inductive choices at all nodes

after v.

ii. Axiom A: [si = si] ⊂ Ki [si = si] for all si ∈ Si

for ∀ vi : if i actually did chose Iv at v, then i Knows that i

chose Iv.

This means that for all strategies available to i (for all elements

part of i’s strategy profile, Si), if it is the case that i chose si,

then i Knows that the strategy chosen by i is si. There is no

possibility of false Knowledge. In other words, i cannot be mis-

taken about the strategy that she chose. This again, follows

from the definition of the Knowledge operator, K.

2.2.1 Lemma 7 Proof:

Let Bv
i denote the set of those strategies si of i for which svi =

bv. Then by (2) and Lemma 5,

Iv = [svi = bv] =
∪

si∈Bv
i
[si = si] ⊂

∪
si∈Bv

i
Ki[si = si] ⊂∪

si∈Bv
i
Ki[svi = bv] ⊂

∪
si∈Bv

i
KiI

v = KiI
v
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2.2.2 Lemma 7 Proof summary:

By definition, Iv is the event that the inductive choice, bv is

made at v. Therefore, Iv implies that i chooses a strategy si

that prescribes bv at v from the set of all such strategies, Bv.

As a result, if i Knows that Iv, it entails that i Knows that i

chose bv at v, as prescribed by the si, from the set Bv. Follow-

ing axiom A, we Know that since i Knows that i chose bv at v,

i actually did choose the inductive choice bv at v. Hence, Iv ⊂

KiI
v

These definitions, axioms, and Lemmas allow us to prove Theo-

rem A: CKR ⊂ Iv:

2.3 Theorem A Proof:

CKR ⊂ Ki[s
>v = b>v]∩ ∼ Ki[h

v
i (s; bi) > hv

i (s)] ⊂∼ Ki[h
v
i (b) >

hv
i (s

v)] =∼ Ki[s
v ̸= bv] =∼ Ki ∼ Iv =∼ Ki ∼ KiI

v =∼∼

KiI
v = KiI

v ⊂ Iv

2.4 Theorem A proof Explanation:

Assume player i is at v, CKR entails that, for all nodes after v

: {>v}, i Knows that i chooses b>v at all {>v} nodes (Lemma

1) and i does not Know that i’s conditional payoff would have

been higher had she chosen some strategy other than the one

that she actually chooses, as prescribed by the strategy that

she actually chooses (Rationality principle). This entails that

i does not Know that she chose an action other than the in-

ductive choice, bv at v. Hence, i does not Know that Iv did

not occur (Lemma3 and Lemma 5). This implies that it is not
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the case that (i does not know Iv occurred). In other words,

i does not know that any event other than Iv occurred. Fol-

lowing Lemma 5, this further means that i Knows that i does

not Know that any event other than Iv occurred (Lemma 2).

Therefore, I Knows that Iv must have occurred (Lemma 6).

Following Lemma 6, since i Knows that Iv occurred, Iv must

have occurred. Hence, CKR ⊂ Iv (Lemma 7).

2.5 Objection:

Aumann’s proof seems to depend on lemma 6. It can be ar-

gued that it is odd to claim that Knowledge of an E actually

entails E, since it seems like it is E that entails Knowledge of

E, not the other way around. This objection can be circum-

vented by replacing Lemma 6 by the much more intuitive, Ax-

iom A:

2.6 Solution:

Let Av
i denote the set of those strategies such that svx ̸= bv. In

words, sx is a strategy that does not prescribe bv at v. More-

over, as shown above, CKR ⊂∼ Ki ∼ Iv). ∼ Iv means that i

picked a strategy that does not prescribe bv at v. We can write

this as the following proposition:

Bi : for all svx ∈ Av
i , CKR � (i does not Know that i picked svx)

Axiom A states that if i picked strategy si, then i Knows that

he picked strategy si. The contrapositive of A is:

Axiom -A: if i does not Know that i picked strategy si then i

did not choose si.
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Using Bi and axiom -A: CKR ⊂ (forallsx ∈ Av
i , i does not

Know that i chose svx ). Therefore, i did not chose svx, for all svx
∈ Av

i . Hence, Iv: i chose a strategy that prescribes bv at v.

3 Conditionals

As Aumann notes, a crucial role in this paper is played by condi-

tionals. Aumann briefly discusses the three different types of condi-

tionals, material, subjunctive and counterfactuals:

“Consider, for example, the statement ”If White pushes his pawn,

Black’s queen is trapped.” For this to hold in the material [condi-

tional] sense, it is sufficient that White does not, in fact, push his

pawn. For the substantive [conditional] sense, we ignore White’s

actual move, and imagine that he pushes his pawn. If Black’s queen

is then trapped, the substantive conditional is true; if not, then not.

If White did not push his pawn, we may still say ”If he had pushed

his pawn, Black’s Queen would have been trapped...This is a coun-

terfactual [conditional].” (Aumann 1995, 14)

Aumann claims that substantive/subjunctive conditionals and counter-

factual conditionals “are important in interpreting four key concepts

that were formally defined in Section 2: strategy, conditional payoff, ra-

tionality at a vertex, and rationality” Aumann 1995, 16). Substantive

conditionals are especially needed to define rationality. For i to be ra-

tional at v, “means that he cannot knowingly increase his payoff if v is

reached” (Aumann 1995, 16). Similarly, the substantive conditional is

needed to define rationality at all of i’ nodes. The importance of sub-
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stantive conditionals is seen by the fact that material rationality (ratio-

nality at reached nodes only), does not imply Backward Induction, Iv.

This means that Theorem A fails without substantive and counterfac-

tual conditionals.

A good illustration of the need for substantive and counterfactual con-

ditionals for Theorem A is players’ judgments of conditional payoffs at

each node. For Aumann’s proof, a player is expected to occupy a very

peculiar epistemic state in order to assess his conditional payoff at his

nodes, “when evaluating his conditional payoff at v, the player must as-

sume that v is reached, even when he knows that it is not” (Aumann

1995, 17). The reason such an epistemic state cannot be modelled with

a regular material conditional is that a material conditional considers

all “if” statements with a false antecedent to be true. This leads to the

following problem: player i Knows the following proposition:

P : node v will not be reached.

This means KiP . Applying Lemma 6, KiP ⊂ P. In other words, since

i Knows P and Knowing is a probability 1 belief, P is the case, Since

P, any statement of the form “if node v is reached, strategy sx is ratio-

nal” will be true since the antecedent (node v is reached) is false. If all

strategies, regardless of their conditional payoffs at v are equally ratio-

nal, this violates the Rationality definition and Theorem A fails. As Au-

mann puts it, player i “cannot say ”since I know that v is not reached,

whatever I do there is rational.”” (Aumann 1995, 16). As a result, there

is a need for defining conditionals that can model the conditional pay-

off at v as needed. Analysis of substantive/counterfactual conditionals

will become the central point of dispute in theoretical modelling of the

Centipede Game.
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4 Centipede Game

Aumann (1998) starts by referring to Theorem A, “in perfect informa-

tion PI games, common knowledge of rationality implies that the back-

ward induction outcome is reached (Aumann, 1995; henceforth [A])” .

He is quick to mention that “conceptually, this result depends on the

notion of counterfactual conditional”, along with the notion of substan-

tive rationality as opposed to material rationality. With these, he aims

to show in this paper “that in Rosenthal’s centipede game, if at the

start of play there is common knowledge of rationality, then the back-

ward induction outcome results:the first player ‘‘goes out’’ immediately”

(Aumann 1998, 1).

4.1 New Vocabulary for Aumann (1998) Proof

(a) Ωv: the event that “v is reached”

(b) Kv
i : represents i’s information when he “learns whether v is reached;

that is, the information he had at the start of play, updated by the

information that v is or isn’t reached.”

(c) Kv
i E: i Knows E at v

(d) KiE: i knows E at the start of play

In order to circumvent criticism of using subjunctive conditionals in his

proof, Aumann modified his definition of Rationality from [A] to make

use of only material conditionals.

“In a given state ω, call i ex post rational at v if there is no strategy

that i knows at v would have yielded him a conditional payoff at v larger

than that which in fact he gets; call i ex post materially rational if he is

ex post rational at each of his reached vertices. Denote by Rv
i the event
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‘i is ex i post rational at v;’’ then the event ‘‘i is ex post materially ra-

tional,’’ denoted RM
i , is given by:” (Aumann 1998, 99)

RM
i =

∩
v∈Vi

(∼ Ωv ∩Rv
i )

This means that assuming Common Knowledge of ex post material ra-

tionality (CKRM ) holds,Iv will occur in Rosenthal’s PI Centipede Game

with N nodes or a game of the same type. The Iv in this game is Player

1 “‘‘goes out’’ (chooses Take) at the first move”. Reductio arguments

can only be made with material conditionals. Since [A] relied on sub-

junctive/counterfactual conditionals, [A] was not a reductio argument.

Since Aumann is making use of material conditionals here, he can make

use of a reductio proof that relies of [A], but is different.

4.2 Centipede Game Iv proof:

Assume Ωm: {m is the last node}, that is, the last node, m is reached

in the game by player i (w.l.o.g since CKRM holds at the start of the

game, KiR
M : i Knows that RM holds. Hence, RM (material rationality)

holds. Therefore, RM holds at the reached m node and it is “is com-

monly known that no vertex beyond m is reached.”

(a) If m is the first node, following RM , i will play Take rather than

Pass and the game will be finished.

(b) If m is not the first node, i will still play Take at m since RM still

holds. However, since m-1 node exists, player y at m-1 will have

already anticipated i’s move at m because CKRM still holds. It

is clear than playing Take increases y’s conditional payoff at m-1.

Therefore, y plays Take at m-1. However, i could have only reached
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m had y played Pass instead of Take at m-1. This leads to a contra-

diction.

As a result, following CKRM , w.l.o.g player i will play Take at the

first node.

The reason for switching his proof from [A], was that Aumann antici-

pated the following subjunctive mode critique of [A] for the Centipede

Game, “on the one hand, we are told that under common knowledge of

rationality CKR., Ann [player x] must go out at her first move. On the

other hand, the backward induction argument for this is based on what

the players would do if Ann stayed in. But, if she did stay in, then CKR

is violated, so the argument that she will go out no longer has a basis”

(Aumann 1998, 103). Aumann claims that it is not necessary to make

use of the subjunctive mood; the proof in this note refers only to ratio-

nality at nodes that are actually reached (material condition), not to

whether players ‘‘would’’ play rationally if their nodes ‘‘were’’ reached

(subjunctive condition).” The principle difference from the proof in [A]

is that rather than reasoning from what happens after a given vertex is

reached, it reasons from what happens before it is reached. This means

that “if some vertex is the last that can possibly be reached, then al-

ready the one before it should have been the last” (Aumann 1989, 103).

5 Deviations

Binmore (1994) starts by attacking Aumann’s [A] proof by claiming that Au-

mann is wrong to argue that prior common knowledge of rationality implies

backward induction. Binmore agrees with Aumann that it is the case that

a rational player will begin the Centipede Game by playing Take under the
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conditions that Aumann specifies. However, Binmore believes that Aumann’s

setup does not model the game fully. The problem with Aumann’s proofs is

that it cannot explain the case of deviations from Iv path.

Binmore argues that “to assess the rationality of a ’rational player’ who plays

down [Take] at the opening move, we need to ask what payoff he would get if

he were to play across [Pass].” Hence, we need to ask ourselves, within what

possible world should we interpret a subjunctive conditional that begins with,

“If a ’rational player’ were to play across [Pass] ... ”?”

Binmore is asking how are we supposed to judge a subjunctive conditional in

which a player who should play “down”[Take] (following Aumann’s proof), due

to some error, plays “across” [Pass]. Binmore criticizes Aumann’s model for

not incorporating a “theory of mistakes.” Binmore claims that Aumann fails

to outline the kind of possible world we should conceive in order to analyze

the consequent of a rational player erroneously playing an irrational move.

“In brief, I believe that the rationality of a ’rational player’ must necessarily

remain open as long as we have no idea what would be believed about him

if he were to make an ’irrational’ move. In consequence, we have no grounds

for claiming that we know the ’solution’ to games like the Centipede or the

finitely repeated Prisoners’ Dilemma” (Binmore 1994, 155). It is important

to note that Binmore’s critique that Aumann fails to account for a ”theory

of mistakes” (erroneous deviations from Iv) is not only problematic for [A],

but also for Aumann’s reductio proof. One might accept the reductio proof

claiming that player 1 should play Take on the first move. However, in the

case, that player 1 actually erroneously plays Pass instead, which is common

in experimental findings, the reductio proof does not hold any longer, since

it cannot accommodate deviations. In summary, consider the following game

again,
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We accept Aumann’s proof that player 1 should chose Take at node a. Bin-

more asks us to consider the case of a deviation, player 1 makes the mistake

of choosing Pass at node a instead. Aumann’s theory is no longer helpful in

determining the optimal move for player 2 at node b, since player 1 contra-

dicted it. Hence, Aumann’s theory fails.

5.1 Aumann’s Reply

Aumann (1996) raises two issues with Binmore’ reply ([B] from hereafter):

Rationality versus Common Knowledge of Rationality There is a difference

between Rationality and Common Knowledge of Rationality. This distinction

is instrumental for Aumann’s analysis. Aumann claims that it can be perfectly

rational for a player to not play the backward induction solution. “Indeed,

we go further: even if there has been no deviation from the backward induc-

tion path up to some point, a rational player may well deviate at that point”

(Aumann 1996, 139). He criticizes [B] for conflating Rationality with CKR.

Rationality is only a requirement that player i plays the move at each of his

nodes that maximizes his conditional payoff at that node relative to his epis-

temic state or belief system. Player i’s belief system can be composed of any

belief about the opponent’s strategy, in forming her beliefs at v, the player

can take into account whatever she chooses to. If i believes her opponent will

irrationally choose Pass for several nodes, then it would be “incumbent on ra-

tional players to ‘‘stay in’’ until quite late in the game” (Aumann 1996, 139).
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This means that if player i believes that his opponent will erroneously chose

Pass, then the rational move for i is to deviate from BI path, and chose Pass.

It is only when CKR is at play that Iv has to occur. Since when CKR is present,

P1 Knows that “if P2’s last vertex were reached, he would play down”. This

necessarily implies that if “P1’s last vertex were reached, she would play down”

(Aumann 1996, 141). [B] is wrong to even question what would happen (what

possible world we would be in) if the opponent played a particular move at

any of the nodes. This is because unlike Rationality alone, CKR already as-

sumes that each of the players Knows “without a shadow of a doubt” the

move that the other player will play at each of the nodes. Therefore, when-

ever a deviation occurs, CKR must not be at play, and Aumann’s theory has

nothing to do with those situations.

In summary, if player 1 chooses Pass at node a, CKR is automatically not at

play. CKR by definition, ensures that there are no mistakes. Hence, as soon

as mistakes (deviations) are involved, CKR is absent. When CKR is absent,

it may be perfectly rational for Player 1 and Player 2 to choose Pass at nodes

a,b and c, depending on what they believe about their opponent’s level of ra-

tionality. Hence, player 1’s choice to play Pass at node a does not dispute Au-

mann’s theory since Aumann’s proof only involves CKR game play settings.

5.1.1 [B]’s methodological error

Aumann argues that [B]’s method of finding a flaw with [A] is flawed. Au-

mann characterizes [B] as first accepting CKR ⊂ Iv (CKR implies P1 will

will play Take on the first node), but then claiming ”what if P1 does not play

Take on the first node?” i.e a deviation occurs, ∼ Iv . Now since CKR ⊂ Iv,

and ∼ Iv, CKR must be false. Aumann claims that this method of proving

∼ CKR is absurd. He characterizes this method as the following to showcase

its absurdity.
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“Suppose we have proved a theorem of the form ‘‘p implies q.’’ But our

hypothetical reader is skeptical. ‘‘The proof sounds right,’’ he says, ‘‘but let’s

look again. Assume p. Perhaps, after all, this could jibe with ‘not q.’ So

suppose that it does”i.e., that q does not obtain. But then, since we have

proved that p implies q, it cannot be that p obtains. So we conclude that

after all, p doesn’t obtain...Clearly, this argument is absurd” (Aumann 1996,

143).

5.2 Reply to Aumann

Binmore (1997) points out that the principle problem with Aumann’s ac-

count is that it fails to account for any deviations from the IV path. “Au-

mann (1995, sect. 5c), for example, is insistent that his conclusions say noth-

ing whatever about what players would do if vertices of the game tree off

the backward induction path were to be reached”. The issue then persists,

“if nothing can be said about what would happen off the backward-induction

path, then it seems obvious that nothing can be said about the rationality of

remaining on the backward induction path” (Binmore 1997, 24).

Binmore claims that it is not the case that he accepts CKR ⊂ Iv, and then

asks “what if ∼ Iv?”. Instead, Binmore is making the claim that if Aumann’s

theory has no account for deviations (choosing Pass, instead of Take), which

are the only way of reaching the last node in a > 1 node Centipede Game,

then how can Aumann assume that the last node is reached, and then use

backward induction to arrive at Iv. Similarly, Reny (1988) and Bicchieri (1989,

1992) argue that since CKR fails to account for any deviations, in the case of

actual deviations in the Centipede Game, players will be unable to determine

their optimal strategy at subsequent nodes.

In summary, Binmore is making the claim that it is not just the case that Au-

20



mann’s theory fails after a deviation at node a. Instead, if Aumann’s theory

cannot say anything about the games when player 1 chooses Pass at node a,

then how can Aumann inductively reason backwards from player 1 choosing

at node c. Node c could have only been reached, had a deviation occurred at

node a (Pass was chosen at a) and a deviation occurred at node b (Pass was

chosen at b). Aumann claims that when Pass is chosen at a, CKR is not ac-

tive; hence, his theory does not operate in such situations. Then Aumann can-

not assume player 1 playing at c as the first premise of his proof. If Aumann’s

theory is fully inconsistent with gameplay involving any deviation, then how

can his proof rely on deviations at node a and b, in order to reach c.

The Centipede Game Paradox can be summarized in the following way: it is

initially true that under CKR conditions, Iv should result. However, if there

were to actually be a deviation, we no longer have any tools to predict the op-

timal strategy. Moreover, now that we cannot explain the case of deviations,

it casts doubt on our initial belief in CKR ⊂ Iv. This paradox is further re-

flected in the empirical findings of the Centipede Game.

6 Empirical

The following empirical studies assume homogeneity in player personality

types. Hence, there is no heterogeneous player modelling based on their in-

dividual personality types.

6.1 M/P study

The first experimental study of the Centipede Game was conducted by Richard

D. McKelvey and Thomas R. Palfrey (M/P from hereafter), and presented in

An Experimental Study of the Centipede Game. M/P conducted 662 games,

with two versions of the games, the four move and the six move centipede
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game. The payoffs in US $ amounts are shown below.

Game.png Game.bb

6.1.1 Experimental Design

A total of seven experimental sessions were conducted on students. In each

session, twenty students, without any prior experience of the game, partici-

pated. At the beginning of each session, the subjects were divided into two

groups, Red and Blue. The Red player moves first, while Blue makes the sec-

ond move. Moreover, subjects did not communicate with other subjects ex-

cept through the strategy choices they made. It was also Common Knowledge

that no subject matched with another more than once. Further, a rotating

machine was used to make sure that “no player i ever plays against a player

who has previously played someone who has played someone that i has al-

ready played” (M/P, 807). The purpose of these matching procedures was to

eliminate potential supergame or cooperative behavior, yet at the same time

allow us to obtain multiple observations on each individual’s behavior.

6.1.2 Results

The results indicated that an “Always Take” model; namely, P1 picking Take

on the first node, could easily be rejected. This is because only 7 % of the

four move games and 1 % of the six move game ended with Iv, the first player

choosing Take on the first node. Moreover, the results illustrated that the
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probability of playing Take “increases as we get closer to the last move”. Even

though, an “Always Take” model should be outright rejected, any theory of

the data would have to account for the fact that the probability of Take per

each node is changing.

Zauner (1999) finds similar evidence against the ”Always Take” model. His

data illustrated that “the game theoretic prediction of taking is rarely the

outcome of the experiments”. Nagel and Tang (1995) conclude that subjects

deviate substantially from subgame-perfection when the number of stages is

sufficiently large.

6.2 A.Rapoport et al.

6.2.1 Experimental Design

Rapoport et al. in contrast to M/P, use a 3-person centipede game, instead of

a 2-person game. The underlying belief is that increasing the number of play-

ers in the game would make collusion harder (Dawes, 1980). The game then

“includes three “innings” or rounds of play, each consisting of three moves

(one per player) for a total of nine moves” (Rapoport et al., 242).

Empirical studies so far have shown that it is often the case that conditions

for CKR are not met in experimental settings. Binmore at al. (2001) made

the claim that if players do arrive at Iv, in most cases it will be for evolu-

tive reasons, “If they find their way to an equilibrium, it is therefore by some

process of trial-and-error adjustment” (Rapoport et al., 242). Since Com-

mon Knowledge of Rationality is posited as a requirement for BI outcome,

it can be claimed that repeated iterations of the game would contribute to a

stronger belief for each player in the rationality of the other player. However,

there is also a reason to be skeptical about any learning effects towards Iv.

Nagel and Tang (1998) give evidence that they found no convergence towards
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Iv “within 100 periods as he [Zauner] hypothesized”. Therefore, it is impor-

tant to account for the learning patterns of players across games. As a result,

Rapoport et al. attempt to better catch learning by increasing number of tri-

als to 60.

Further, (Rapoport and Chammah, 1965)) present evidence of “lock in” on

the joint “cooperate” responses. In order to counteract this collusive effect,

they opted to increase the number of players and rotate players in the game.

The study included 60 trials ”thereby allowing for more learning.” The study

was again conducted on college students. In order to further reduce chances

of collusion, the study opted to continually change group composition in each

iteration of the game by randomly assigning player 1, 2 and 3 roles randomly

in each iteration.

Most strikingly, the amount of payoffs in this study was much higher than

previous experiments. The maximum payoff in Rapoport et al. studies is 200

times higher than the one in M/P 4-move game and 50 times higher than the

M/P 6-move game.

The goal of this study is measure the effect of the following four changes to

the M/P study:

1. the number of players is increased from two to three

2. the game is played for unusually high stakes

3. the stage game is repeated for multiple periods

4. player roles are assigned randomly

Two experiments were conducted. Experiment 1 included changes 1-4, listed

above. Experiment 2 mirrored Experiment 1 in all details “except the payoffs

that were chosen to be of the same order of magnitude as in the 6-move 2-

person centipede game of M/P.”
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6.2.2 Limitations

This study has several limitations. Not only is the sample size limited, but

also, confounding errors are present in their results. Confounding variable is

when a variable influences the dependent variable and the independent vari-

able. Hence, the presence of confounding variables means that confounding

errors exist. The confounding errors make it harder to ascertain the exact af-

fect of each of the dependent variables on the independent variable, with the

exception of the ”the size of stakes” variable.

The most important variable,”the size of stakes” was specifically tested for,

keeping other variables constant; hence, it is the only variable that does not

suffer from confounding errors. The Rapoport et al. study conducted two ex-

periments. Experiment 1 was the experiment that was conducted with higher

number of players, rotating order of players, multiple stage game periods and

higher monetary returns. Experiment 2 was the experiment with all of these

variables, except high monetary returns. Hence, comparison of Experiment 1

and Experiment 2 illustrates the specific impact of higher monetary returns

(”the size of stakes” variable).

The writers note the presence of these limitations were due to financial con-

straints. It is important to highlight that this study was not meant to provide

a precise theory of the exact effects of all four variables in the centipede game

outcome. It aimed at outlining the exact effect of higher monetary returns,

and the aggregated impact of the four dependent variables outlined above.

The study presents new evidence showing that it is not that case that past

empirical studies such as M/P contradicted Aumann’s theoretical results, but

instead, they did not account for these four variables that are instrumental for

CKR to operate. Aumann makes it clear that his theory only concerns CKR

situations, and not rationality situations, no matter how high the degree of
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mutual rationality is. Only when CKR operates in the empirical settings, can

we test Aumann’s theory. Hence, past empirical literature failed to test Au-

mann’s theoretical results for the game.

6.2.3 Results: Experiment 1 vs. Experiment 2

From the two experiments conducted, there is considerable difference in the

results. In Experiment 2, with the lower monetary returns, across the 60 tri-

als, the equilibrium outcome Iv was reached “on only 2.7%, 2.3%, 1.3%, and

4.0% of the times in sessions 1, 2, 3, and 4, respectively (with an average of

2.6%), compared to an average of 39.2% in Experiment 1.” This difference

is clearly statistically significant. Compared to Experiment 2, Experiment 1

shows considerable evidence of the games approaching equilibrium outcome.

Moreover, while the “proportions of games that terminated at end-node j are

seen to decrease monotonically in j throughout Experiment 1” (Rapoport et

al., 262), meaning players are more likely to chose Take as they move forward

in the game; in Experiment 2 they increase up to the sixth or seventh decision

node and only then decrease quickly.

This gives us evidence that, keeping in mind the limitations of the study,

higher monetary benefits result in a shift towards the equilibrium outcome.

A possible explanation is that unless players value the returns enough, they

are more willing to make erroneous moves, as we have seen in prior experi-

mental literature such as in M/P. This gives some evidence to believe that

CKR assumes that players value the gains from the game. CKR will only be

a tool employed by each player in the game if they deem the returns of the

game valuable enough to pursue.
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6.2.4 Results: Learning Models

The experimental results showed that dynamic learning models, those that in-

corporated player learning across successive trials explained the data better

than static models. An individual updating learning (IUL) model that up-

dates player learning individually rather than on a population level (PUL),

fared better. Therefore, increasing conditional probabilities of moving Down

with successive iterations of the game, taking into account the ”type” of each

player in the game explained the results better.

6.2.5 Results: Comparison with M/P

The 6-move 2-person M/P centipede game and the 9-move Rapoport at el.

Experiment 2 (with low monetary returns) give very similar results, “the pro-

portion of games that ended in the first decision node was 0.7% in the M/P

study compared to 2.6% in Experiment 2”. This illustrates that the control

experiment worked as expected, mirroring M/P results.

Therefore, results from Experiment 1, approaching equilibrium outcome, can

largely be attributed to higher monetary returns. Hence, even with increas-

ing number of players, assigning player roles randomly and high number of

repeated stage games, but low monetary returns, the results were not signif-

icantly different from M/P results. Moreover, setting aside the confounding

errors, there is evidence to suggest that, when changes 1-4, as stated above,

are made to the M/P study, then players seem to approach equilibrium play.

This result gives us limited empirical evidence to suggest that Aumann is

right in claiming that given the right conditions approaching CKR in the Cen-

tipede Game, players start to approach Iv. Hence, there is some reason to

believe that if the right factors for CKR are provided in empirical settings,

players will tend to approach Iv. Aumann (1995) expressed that CKR is an
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ideal limit, that can generally be hoped to be approached in most empirical

settings.

6.3 Palacios-Huerta and Volij

Palacios-Huerta et al. (2009) ((P/V) from hereafter) provide more empirical

evidence to suggest that CKR ⊂ Iv. P/V start be espousing the claim in Au-

mann (1998) that in the Centipede Game, it is fully consistent for rationality

to be mutually known to a high degree, but still for it to be the case that the

players continue playing Pass for a few rounds before choosing Take. This is

because extremely high mutual knowledge of rationality is still not equiva-

lent to Common Knowledge of Rationality. (Elhanan BenPorath (1997) shows

that several rounds of “continuation” are consistent with common certainty of

rationality).

Keeping in mind Aumann (1995) claim that “even the smallest departure

from common knowledge of rationality may induce rational players to depart

significantly from equilibrium play” (P/V, 2). P/V attempt to mirror CKR

conditions. As a result, instead of college student participants, they choose

players who are characterized by a high degree of rationality, proficient chess

players. Not only are these players known to exhibit really high degree of ra-

tionality, and to regularly employ backward induction reasoning in strategic

form games, but also, these players are commonly known to do so as well.

The study was conducted on four types of chess players: Grandmasters [GM],

International Masters [IM], Federation Masters [FM], proficient chess players

with no titles. The sample consists of 422 chess players: 41 GMs, 45 IMs, 29

FMs, 307 players with no chess title.

The P/V study Experiment 1 takes place in field settings, at high-ranked

chess tournaments. In order to fully minimize any collusive effects, each chess
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player participated in the experiment only once. Experiment 2 was a lab ex-

periment conducted with chess players and college students. In Experiment 2,

while each subject plays 10 rounds of the game, no subject plays against the

same opponent more than once.

6.3.1 The Field Experiment

The reason for preferring the field setting, chess tournaments, is that it al-

lows easy access to high ranked chess players. Moreover, P/V hypothesize

that “ a chess tournament may represent a more familiar and comfortable

environment for chess players” (P/V, 6). However, the field setting greatly

reduces the chances of a conducting a carefully designed experiment with

repetitions. Hence, P/V focused on recording initial responses of the play-

ers. Even though, this eliminates any chances for observing learning patterns

across games, chances of collusive behavior are severely limited.

Three rounds of the game were played with college student groups and chess

player groups, where experimenters read the instructions to each player sep-

arately in separate rooms. Moreover, each player was placed in a separate

room during game play and ”the games were conducted through SMS mes-

sages” where each player ”sent their decisions to the opponent, and received

information on the decisions of the opponent.” The goal of maintaining such

a distance between the players was to completely minimize any collusive or

altruistic behavior. The hypothesis was that if the players could not even see

each other, it was likely that there would be no chance of any cooperative un-

derstanding being established between them.

6.3.2 The Laboratory Experiment

The goal of the lab experiment was to ascertain if players altered their game

play based on their assessment of other players’ level rationality. There were
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two sessions of ten repetitions of the game. In each session, 20 subjects, none

of whom had previously played this game, were split into two equal groups,

black and white. Each player from each group (white/black), played each

member of the other group, only once, without knowing their identity.

There were four treatments composed of different white and black groups,

where a player of the white group played against a member of the black group

and vice versa.

1. Treatment 1: both groups consisted of college students

2. Treatment 2: white group: college students, black group: chess players

3. Treatment 3: white group: chess players, black group : college students

4. Treatment 4: both groups consisted of chess players

The goal of Treatment 1 was to act as a control. It was supposed to mirror

M/P results as closely as possible. Treatment 4 was meant to provide empiri-

cal support for the results from the field experiment. Treatment 2 and 3 were

of primary concern in this experiment. The four treatments were meant to en-

sure that the only significant feature that differentiates the four experiments

is the type of the subjects in the pool. Moreover, just like the field experi-

ment, players sent in their choices through SMS messages.

6.3.3 Results

6.3.3.1 Field Experiment Results

The results from the students lab experiments were very similar to the results

from the student experiment in M/P experiment. Only 3 of the 40 players

who played the role of Player 1 chose to stop in the first node, while close to

two-thirds of the games ended in nodes 3 and 4. This shows that the exper-

imental features of this study did not differ by much compared to MP. If a
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statistically significant difference is found in the experimental results with the

chess player, it has to be attributed to the players themselves.

The chess players approached the equilibrium outcome in significantly more

games than college students did. The proportion of total games that resulted

in the equilibrium outcome is 69 percent.

Further, for the participants holding no chess titles, the proportion is 61 per-

cent. For Federation Masters and International Masters the proportions are

73 percent and 76 percent, respectively. If we restrict our attention to Grand-

masters, the proportion is a remarkable 100 percent. It is interesting to note

that these proportions increase with the Elo rating of the players. The Elo

rating is the official method according to which chess players are ranked. The

graphs below illustrate the start difference between the results from college

students versus chess players, according to rank.

31



6.3.3.2 Laboratory Experiment Results

In Treatment 1: students against students, the results were similar to those

from M/P. However, the students exhibit drastic changes in their play, when

made aware that they are playing against chess players (Treatment 2 and 3).

Especially when college students in Treatment 1, play as player 1, they chose

the equilibrium outcome around 10 times more frequently than when they

play against students. As a result, “the main observation one can infer from
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these results is that students’ behavior depends on whether they face a highly

rational opponent or a fellow student” (P/V, 12). This gives evidence to sug-

gest that knowledge of the opponent’s level of rationality plays a major role in

determining the moves a player plays.

In Treatment 4, the results corroborated the field experiment findings. In the

lab settings, when chess players played ten repetitions of the centipede game

against each other, more than 70 percent of the games ended at the first node.

Most significantly, at the fifth repetition, every chess player converges to equi-

librium. This provides significant empirical evidence so far that supporting

the claim that there are settings when CKR is approached to such an extent,

that the equilibrium outcome does result. Hence, there is now significant evi-

dence to believe Aumann’s Theorem A: CKR ⊂ Iv.

6.3.4 Main Results

The two experiments so far have shown that chess players on average play

very differently from the way students do. Moreover, “a significant majority

of chess players chose the only action that is consistent with equilibrium”.

This supports the ”theory that gives a central role to the principles of self-

interested rational economic agents” (P/V, 10). However, it is still unclear if

Common Knowledge of the opponent’s rationality plays a part in the results

from the experiment with chess players. It is unclear whether the results can

be attributed to just the higher level of individual rationality of the players or

common knowledge of the opponent’s rationality.

7 Models

We have seen that given the right empirical settings, there is evidence sup-

porting Aumann’s theorem. Now we will move on to providing a statisti-
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cal model that can best represent the results commonly obtained from the

game experiments. The goal is to have a general model that can not only

model results from games with CKR active such as The Field Experiment,

but also, games with CKR absent, such as M/P. Moreover, we will illustrate

how the model is built in such a way, as to incorporate intuitions from both,

Aumann’s Theorem A and Binmore’s case of deviations.

Fey et al. (1996) conduct a series of constant-sum centipede games to test

statistical models that best explain the results from the game. Constant-sum

games are games in which the total amount of money that the two players

can receive at any time during the game remains constant. Since there are

no Pareto improvements during the game due to the constant-sum nature of

the games, the results cannot be explained by altruistic behavior, as was the

case in M/P. As expected, the results from the experiments are very similar to

M/P, with subjects frequently not playing the equilibrium outcome. Now Fey

et al. attempt to best model these results.

The “Always Take” model and the “Random” model were readily dismissed

after they failed to model the results. The “Learning” model is a modified

Always Take Model. The model assumes that players do not start off with

the Always Take model. As we have seen, this is because CKR is generally

not active in most experimental settings at this stage. The players start off

with the Random model and with experience playing the game, they start

to approach the Always Take model. This learning is caused by the players

slowly building trust in the opponent’s level of rationality with experience;

hence, they start to approach CKR.

For the Learning model, Fey et al. define Pt as the probability that a player

will choose Take at any node of the match she plays in match number t. There-

fore, Pt changes over time, with experience of playing the game. However, the
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Pt does not change during a game.

pt = 1− (1− p0)e
−αt

The equation above illustrates how inter-game learning affects the probability

of Pt at game t, with P0 and α being parameters to be estimated. The expo-

nential function allows us to code non-linear learning rate across games. The

”Always Take” model is obtained when P0 = 1, while the Random model is

obtained with α = 0. The following log likelihood function is used to estimate

P0 and α of the data.

LogL =

M∑
i=1

log(1− (1− p0)e
−αti) +

M∑
i=1

nilog((1− p0)e
−αti

Fey et al. then compare the Learning model to theQuantal Response Equi-

librium Model (QREM). QREM assumes that sophisticated players Know

that ideally they would adopt the ”Always Take” strategy. However, they

play ”mutually consistent strategies with the knowledge that other players

may make mistakes.” Further, there is additional Knowledge that the oppo-

nent is less likely to make ”costlier” (in terms of expected payoff) mistakes.

Hence, there is a changing probability of choosing Take at different nodes in

the game. Therefore, instead of a constant Pt for all nodes in game t, P j
t rep-

resent the probability of choosing Take at node j. For example, a player at

node j in match t, with payoff uT for choosing Take and uP for choosing Pass,

will have the following logistic response function:

P j
t =

eλuT

eλuT + eλuP
=

where λ ≥ 0. When λ = 0, the player is randomizing between Take and Pass,
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while λ = ∞ means the player’s choice “is perfectly rational and exhibits no

error; the highest expected payoff choice will be played with certainty.” Such

a specification allows the probability to chose Take to increase with expected

payoff. Hence, the more costly a mistake would be (in expected payoff), the

less likely a player is to make that mistake. Starting from the last node N, we

can go backwards to get a vector probability for the game: Pt = {P 1
t ...PN

t }.

The likelihood function for QREM is given by:

LogL =
M∑
i=1

log[f̂ni
t (λ0, β)

where f̂ni
t is defined recursively. For example, f̂1

t = p1t , f̂2
t = (1-p1t )p2t , f̂3

t

= (1-p2t )(1-p2t )p2t , and so on. Moreover, not only does QREM account for

varying probability of choosing Take intra-game, but it can also incorporate

inter-game varying Pt. We can do this by “by supposing that the (common) λ

value changes over time”, through the following equation:

λt = λ0 + βt

QREM performs better than the Learning model, especially since it models

the changing probability of playing Take at every node, which the Learning

Model is unable to do. As illustrated above, the inclusion of varying levels of

probability at each node in QREM allows us to mirror Theorem A results by

supposing that the probability of playing Take increases at successive nodes.

Moreover, our ability to model the erroneous moves of each player and their

opponent allows us to fulfill the Binmore criteria of including erroneous moves

(deviations) in the model. As a result, this model incorporates both Binmore

and Aumann intuitions. Hence, it does justice to both sides of the argument

in the paradox and presents a solution that includes the main findings of each
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view. Doing so, allows it to best explain the results from the game. Hence,

QREM is the statistical solution to the Centipede Game Paradox. Now that

we have a statistical model that explains empirical results from the game, all

that is needed is a theoretical resolution of the initial Centipede Game para-

dox.

8 Solving the paradox

Contrary to prevailing views, it is not the case that experimental results fail

to show evidence for the equilibrium outcome. Instead, experimental results

have given us considerable evidence to suggest that when the conditions for

CKR are fulfilled, equilibrium outcome is often reached. The problem is that

even in the face of evidential results supporting equilibrium outcome, there is

no clear theory that supports the equilibrium outcome in the Centipede Game

while not getting undone with a deviation from the BI path in the game.

Since we have seen that Theorem A has significant empirical backing, we have

reason to insist on retaining it. Therefore, any successful theory of the Cen-

tipede Game must reconcile Theorem A with the problem of deviations, just

like our statistical model does. In order to provide a successful theoretical so-

lution to the paradox, we will first use a conditional analysis to explain why

the theoretical impasse was reached between Aumann and Binmore. After re-

alizing why the paradox exists, we will present a solution to it.

8.0.1 Explaining the problem of conditionals

Brian Skyrms (1998) analyzes the case of subjunctive/counterfactual and ma-

terial conditionals to explain the paradox that is encountered when reconciling

Theorem A with case of deviations. Only if the case of these two conditionals

is better analyzed, will the debate between Aumann and Binmore be better
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understood.

Skyrms begins by demarking cases where subjunctive/counterfactuals are

actually involved from cases where only material conditionals are. Skyrms

claims that the issue is that often times material conditionals are expressed

as subjunctive/counterfactual conditionals - ”If Column were to play Up”, ”If

Column had played Up”. This gives the illusion that even a reductio argument

makes use of subjunctive/counterfactual conditionals. However, this is not

true. Reductio arguments only make use of material conditionals.

What distinguishes Centipede Game reductio arguments (Theorem A) from

those that involve subjunctive/counterfactual conditionals involving deviations

is that the reductio arguments assume the following two premises.

(1) Complete Information: Payoffs (+ structure) individuate the game.

(2) Revealed Preference: Payoffs are in terms of utilities (interpreted as

dispositions to choose).

Skyrms illustrates that when (1) and (2) are operational for any game tree

with depth greater than 1, “there is associated a unique backward induction

reduced tree gotten from the original tree.” This reduced tree is reached by

Skyrms’ marking function. In a single choice node, “the edge leading to the

leaf which maximizes payoff to the chooser is marked and the other edges

are unmarked”. While for a tree with depth n+1, “all the edges which are

marked in the reduced tree are marked and for each terminal choice node, the

edge leading to the leaf associated with the greatest payoff for the chooser is

marked” (Skyrm, 556). Skyrm then presents a short reductio proof that states

that after assuming (1) and (2) in games of PI, one can inductively show for

n node games that BI path is the only possible path. In other words, there is

therefore no possible world at which player II reaches her first decision node.

The proof is very similar to Aumann’s original reductio argument for BI so-
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lution to the Centipede Game. Since it is now apparent, that reductio shows

that BI is the only path when (1) and (2) are assumed, the marking function

picks out the BI path. This marked path picks out the reduced tree. The fol-

lowing diagram illustrates how the marking function reduces the original game

tree to the reduced tree allowed for by (1) and (2) .
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The reduced tree is the only tree allowed under (1) and (2). It is only the il-

lusion of the original tree that makes it seem like subjunctive/counterfactual

conditional is needed. The reductio argument has successfully shown that the

unmarked edges in the tree are not possible. Therefore, only the reduced tree

is allowed. The marking function illustrates that under (1) and (2), the real

game tree is the reduced tree and not the original tree. Hence, when Aumann
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makes his case for Theorem A, he is actually making the case for the reduced

tree and not the original tree.

In the real world, (1) and (2) are often times relaxed, resulting in deviations.

After a deviation, the original theory is no longer valid and in need of revi-

sion. In the presence of deviations, the reductio argument is no longer valid.

Hence, the marking function cannot reduce the original game tree then. As

a result, only having material conditionals does not work. The case of devia-

tions is the only time when it seems a subjunctive/counterfactual conditional

analysis is needed.

It is now clear that the theoretical impasse is reached because Aumann and

Binmore are actually talking about different Centipede Game trees to begin

with. Aumann’s tree is a shrunken version of the game tree that Binmore is

talking about, the original tree. Both of them are theorizing about different

game trees, while believing that they are talking about the same tree. As a

result, both are making valid claims about their respective trees, Aumann

about the reduced tree, and Binmore about the original tree. Hence, there

is no contradiction between the two views since they are referring to different

trees. Therefore, the paradox unravels when we clarify which game tree each

theory applies to. Since, there is no contradiction between the two views, and

both are making valid statements about their respective trees, we need a the-

ory of Centipede Game that incorporates both the intuition from Aumann’s

and Binmore’ theories about their respective trees.

8.0.2 Solving the problem of conditionals

Bicchieri et al. (1995) ((B/G) from hereafter) distinguish between game the-

orist’s and the players’ own ”theory of the game”. The players’ own theory of

the game refers to a minimal set of axioms available to a player at a node,

that allows the player to compute the BI equilibrium move for that node.
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Therefore, the players’ own theory of the game makes use of two notions, ”ra-

tionality at a node” and ”knowledge at a node”. The game theorist’s theory

of the game is supposed to be the justification the sequence of moves. B/G

argue that the reason that a paradox arises is because we have been attribut-

ing the Theorem A to the players themselves, instead of attributing it to the

game theorists.

The B/G solution involves modelling players as “automatic theorem provers”.

This means that they can be thought of as computational bots that, when

given a set of axioms at a node, the players will be able to compute the solu-

tion (Take or Pass) at that node. Theories that attempt to justify a series of

moves by players in the game such as Backward Induction, fall into the game

theorists’ theory and not the players’ theory of the game.

Instead of complete game CKR at the begining of the game, the authors em-

ploy the notion of ”CKR at a node”. The Knowledge possessed by the players

is a ””distributed” knowledge of the theory of the game.” Distributed knowl-

edge means that “whereas the first player to move has information about

all subsequent nodes - the second player has slightly less information. She

will have full information about all subsequent nodes, but not about the first

node” (B/G, 147). Then, ”at every node, the player who chooses at that node

has a minimal theory that is just sufficient to infer an optimal move at that

node, but does not imply anything about the preceding nodes.”

B/G argue that the paradox only occurs when we rely on a complete game

CKR that involves ”group-knowledge (i.e., each player knows the theory of

the whole game). Then when a deviation occurs, it makes the original Theo-

rem A theory inconsistent and forces a revision. Instead, B/G propose a mod-

ular theory of Knowledge. In the modular theory of Knowledge, for each sub-

game, G’ of game, G, a player must contain just enough information to infer
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an equilibrium for G’. As a result, the level of Knowledge relative to G’ must

be a proper subset of the level of Knowledge relative to G. Hence, B/G claim

that the players have a distributed Knowledge of the game.

A central point made by B/G is that “to compute a solution is a different

task than justifying it” (B/G, 150). A justification makes use of contrary-

to-fact situations as to why a player should play the game according to a set

of axioms. Then at the player level, the players simply need to compute the

move at their axiom according to those axioms. In conditional terms, a jus-

tification makes use of counterfactual conditionals, while computing a solu-

tion only requires material conditionals when given a set of axioms required to

computer the solution at each node.

B/G explain deviation from the point of view of the players as “contrary-to-

fact event”. Hence, a deviation must be explained with counterfactual con-

ditionals. A contrary-to-fact analysis can only occur at the meta-theoretic

level. This is because at the players level, only the actual (factual) is occur-

ring. Hence, any counterfactual analysis cannot occur at the players’ level.

Moreover, this is why no counterfactuals are needed at the players’ level to

compute the optimum solution at their node.

The following example will illustrate the difference between a modular and a

non-modular theory of Knowledge in gameplay. Consider the following game

again,

Assume player 1 and 2 are at node a. Following our traditional views, player 2
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had complete Knowledge of the game at node a. As a result, player 2 follows

Theorem A reasoning to reduce the original game tree to a single reduced

game tree for the entire game. However, player 1, due to some error chooses

Pass at a. The reduced tree simply cannot accommodate this deviation. Fol-

lowing the reduced tree, it is a contradiction to play Pass at a; hence player

2’s epistemic system consisting of the reduced game tree cannot accommodate

the deviation.

B/G’s solution involves a modular theory of Knowledge for each player in-

stead of complete game Knowledge at the beginning of the game, which led to

the above problem. Now player 2 has partial Knowledge of the game that has

just enough information to compute the solution at a particular node. There-

fore, following B/G, each player’s epistemic system is updated with only node-

specific partial information. This means that at no point does any player have

a single reduced game tree for the entire game. Instead, each player uses their

partial Knowledge to have only node-specific sub-game reduced game trees.

As a result, when the deviation happens at a, player 2’s epistemic system is

automatically updated to have just enough information to infer the sub-game

optimal move at b, and so on. The benefit of this is that at no point in the

game does any player’s epistemic system contain a single reduced tree for the

entire game, which is contradicted in the case of a deviation. Instead, each

player’s epistemic system is constantly updated to contain just enough infor-

mation for node a, b and c.

The benefit of modular Knowledge is that in the case of deviations, there is

no need of a theory revision at the level of the players. This is because the lo-

cal theory allowed to players infers an optimal move at their node alone. This

is not the case when the general from CKR is assumed, “when the theory of

the game is common knowledge, a deviation at any node forces an extensive
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revision of the whole theory” (B/G, 150). Moreover, even in the cases of a

much lesser degree of CKR, a deviation still forces an revision (albeit less ex-

tensive). This is because a player still has to consider whether she believes the

deviating player to be rational or not. Only in the case of modular knowledge

is a theory revision not required at the level of the players.

The following is a more specific version of the B/G solution to the above game.

In the case of a non-modular theory of Knowledge, similar to the ones being

discussed up until now, if player 1 finds herself at node c, a major theory re-

vision is required. Following CKR, each node is attributed the non-modular

unified game (G) group theory, ΦG: Φa ∩ Φb ∩ Φc. However, since player 1 is

actually present at c, it is understood that Φa which calculates π*(a) at a and

prescribes the equilibrium move 1, is false, since player 1 must have made r1

move instead i1 to reach c. Since Φa is false, ΦG must be false as well. Hence,

ΦG must be revised; otherwise, the move to make at c remains undetermined.

Now theory revision naturally brings the problem of counterfactual condition-

als, that is hard to resolve.

B/G’s modular theory of Knowledge for the game that avoids any theory revi-

sion in the face of deviations, such as player 1 finding herself at node c. Each

node: n ∈ G is assigned a theory Φn. Φn is a minimal set of axioms that is

”sufficient to infer an equilibrium for the corresponding subgame.” For exam-

ple, in the above game, if player 1 finds herself at node c, she will use Φc to

infer her optimal BI solution π*(c) at c. Although, Φa is inconsistent, since

a deviation has taken place resulting in player 1 being at c, Φc is still suffi-

cient for player 1 computing r2 at c. When the theory of the game is modular,

knowledge is ”distributed” across Φn, instead of unified group knowledge ΦG

at each node. This avoids the need for any theory revision. Hence, this fur-

ther avoids the need for the controversial counterfactual conditional analysis.
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Such a minimal modular theory for the players, maintains their ability to in-

fer the BI solution situation at every node, even in the face of any deviations.

The theoretical revision after a deviation can now occur at the level of the

game theorists who can reformulate the general theory of the game in the case

of a deviation by using theoretical tools such as the QREM equation, which

allows us to tweak several variables in order to better model the game. There-

fore, upon a deviation at a, player 2 will be able to calculate her next optimal

solution and the game theorist will take the deviation into consideration to

reformulate the QREM model for the game by increasing the error margin in

the model.

9 Conclusion

The Centipede Game Paradox collapses to a distinction of material and coun-

terfactual conditionals. These conditionals then help us determine the respec-

tive game trees that theories of Aumann and Binmore are operating on. Once

we understand the distinct game trees that each theory is operating on, there

is no contradiction that gives rise to the initial paradox. If we introduce a

modular theory of Knowledge, instead of a complete game CKR at the start

of the game, we can not only, employ Aumann’s Theorem A reasoning to in-

fer the optimal move at each node, but also, update each player’s modular

epistemic system in the case of deviations to accommodate Binmore’s case

of deviations. The theory revision can now occur at the game theorist’s level

where QREM can be tweaked with each deviation to better model the game

at hand. A topic of further research is formalizing a more sophisticated the-

ory of split epistemic systems of the players’ and the game theorists’. This is

important so we can be more precise in delineating the exact specifications of

the information sets the players and the game theorists are supposed to oper-
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ate with.

The empirical findings illustrated that some of the most famous Centipede

Game experiments such as M/P did not respect the distinction between CKR

and Rationality. As such, they did not control well for four dependent vari-

ables such as monetary gains, number of players, number of iterations of the

stage game and player role assignments. Moreover, we saw that when CKR

settings are actually emulated, like in the case of the chess player experi-

ments, the Ivoutcome does follow. After presenting the empirical evidence

supporting Aumann’s Theorem A, we presented the QREM that best models

the data. A topic of further research would be to conduct the Palacios-Huerta

et al. chess player experiments while altering the four dependent variables

highlighted above. Each of the four variables should be tested separately to

gauge its exact impact, which will further allow us to better the specifications

of QREM.
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