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CHAPTER I 

INTRODUCTION 

Mankind has long used machines to help carry out tasks which we find boring or 

dangerous. As our machines have become more capable, the range of tasks they can handle 

has increased. Many of the remaining tasks we would like to automate will require the 

machines to sense their environment and to respond to it in what we consider an intelligent 

fashion. One of the most useful senses for humans is sight. With it we can recognize 

objects from a distance, as well as determine their location and velocity. Even unfamiliar 

objects can be described and their likely properties, behavior, and purpose inferred. The 

apparent ease with which we determine the identity, position, and velocity of objects belies 

the extreme difficulty of the problem. Despite three decades of research, progress in 

machine vision has been disappointing [ 44]. 

Machine vision processing is typically divided into several stages. The first stage, 

sometimes referred to as the signals domain, operates on images and produces other 

images as output. Contrast enhancement, edge finding, optic flow, etc. are typical 

operations in this domain. Later processing is carried out in the symbols domain. In this 

domain, objects are recognized and their behavioral properties inferred. A transformation 

must be made to go from the signals domain to the symbols domain. This signals to 

symbols transformation is the object modeling process. 

The rest of this chapter provides a brief survey of object modeling techniques in 

machine vision. Chapter II describes a particular object modeling technique known as 

Superquadric Description (SQD), its promise, and the problems with its current 

implementation. Chapter III describes neural networks, an area that has been the focus of a 

1 
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great deal of recent research interest. The goal of the research described in this dissertation 

was to see if an approach inspired by a particular neural network, the Koch network [35], 

could overcome some of the problems with previous implementations of SQD. Chapter IV 

describes the first network developed to test this possibility. For simplicity, the initial 

network operated on I -dimensional data rather than 2 dimensional images. Chapter V 

describes the extension to 2D data, while Chapter VI presents my conclusions. 

Object Modeling Techniques 

As mentioned earlier, Machine Vision (MV) processing is typically divided into two 

domains: signals and symbols. This simple two-level characterization leaves us with the 

difficult problem of the transformation from the signals domain to the symbols domain. 

This transformation is the object modeling process, which is not to be confused with object 

recognition. We presume that at least a partial model of the object must be built before it is 

possible to recognize it. The type of model that will be assumed throughout the rest of this 

paper is similar to 3D mechanical Computer Aided Design (CAD) models. While this model 

provides the strongest basis for reasoning about the spatial properties of objects, not all 

vision researchers assume that this sort of model is needed, or even desirable. For 

example, [67] describes work where objects are recognized from linear combinations of 2D 

views without ever constructing 3D information. Their approach seems to give very good 

results, but it is inherently limited to recognition of known objects. While more difficult to 

obtain, a full 3D object model would be necessary to support inferences into the function 

and behavior of novel objects. 

Many ways have been proposed to model objects in MV. See [6, 16] for surveys of 

these techniques. Simple methods are rarely useful except for very limited problem 

domains. An example of such a domain is a simple industrial inspection system where the 

lighting and background can be strictly controlled, the objects to be recognized are few and 

have dissimilar appearances, and the objects do not touch or overlap. In such a restricted 



environment, a vision system might be able to use an object model that is merely the 

position, orientation, and area/perimeter ratio of "blobs" in a thresholded image. The gulf 

between such a restricted environment and the rich environment of the real world is 

immense, making such an impoverished representation totally unsuitable for general use. 

3 

The complex and uncontrollable environment of the real world requires much more 

powerful object modeling techniques. A few of these more powerful object modeling 

techniques are surveyed in the rest of this chapter. This chapter does not attempt to survey 

the large body of MV literature. The interested or naive reader is referred to [3] and [16] for 

an introduction to the field. More detailed treatments of a smaller number of topics are 

given in [30] and [45]. A useful survey of 3D object modeling is given in [6]. 

Object modeling techniques can be characterized by the representation they use for 

the object, and the method of determining the representation from the image. 

Representations for the shape of 3D solids can be divided into three classes: surfaces, 

volumes, and sweeps [3]. Surface representations model the visible portions of curved 

objects by using parametric patches, such as those used in computer graphics. For 

polyhedral objects, a planar polygon representation can be used. A great deal of work has 

been done with polyhedra, starting with the seminal work of Roberts [54], and the 

relaxation labeling algorithm of Waltz [68]. However, since objects frequently have curved 

surfaces, a polyhedral representation is not broadly applicable. A natural extension is to 

use curved surface patches. As noted in [6], this is a much more difficult problem, since 

the occluding contours of curved surfaces vary continuously as the viewpoint changes. 

Aspect graphs [36] are an approach which has been developed to reduce this problem. An 

aspect graph represents those features of an object which appear and disappear from view 

as the object is viewed from different angles. These different sets of visible features are 

called aspects. While these aspects can be obtained from a CAD model, it is only possible 

to obtain them analytically from a relatively limited class of shapes, such as solids of 

revolution [38]. Another problem with surface-based representations is that they do not 
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provide any information to support "guesses" as to the shape of the hidden side of the 

object. While this is safe, humans do make such guesses, using principles of perceptual 

organization such as symmetry. 

The second class of object representation is volumes. Geometric solids such as 

superquadrics [4] and spherical harmonics [3] fall into this class. Since superquadrics are 

the representation used in this study, we postpone a discussion of them until the next 

chapter. Voxels (Volume Elements) are another of these representations. Voxels represent 

volumes as 3D arrays of small cells, each of which is marked as filled or empty [3]. This 

representation is popular for medical imaging. In these applications the voxel might contain 

an index of the transparency to X-rays, rather than a simple filled/empty indication. 

The disadvantage of this approach is that the voxel must be very small to represent 

curved surfaces closely. This makes the storage requirement very large. Octrees can be 

used to reduce this storage requirement. If 8 voxels form a 2 x 2 x 2 array, and all of them 

have the same state (filled or empty), they are replaced by a single, larger, voxel that is 

filled or empty. Nonhomogeneous arrays are marked as such, and the smallervoxels are 

retained as children of the node. This process is repeated hierarchically until the object is 

represented by a spatial occupancy tree. The size of the volume covered by a leaf in the tree 

depends on its level in the tree. This can achieve significant compression, but at the cost of 

more complex algorithms to determine what shape is represented by a particular tree. 

The third class of representations is known as sweeps. Generalized cylinders [8] 

are by far the most popular representation in this class. These represent a volume by 

sweeping a closed two-dimensional curve along a (possibly open) three-dimensional curve. 

The shape of the two-dimensional curve can vary as a function of its position along the 

axis. Quite elaborate shapes may be described by this representation, but recovery can be 

very difficult because there are few constraints. Because of this problem, generalized 

cylinders with particular constraints are frequently used [41]. 
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Whichever technique is used to model primitive objects, there will always be 

objects in a scene too complex to model with a single primitive. The natural solution is to 

use multiple primitives to describe the shape. There are two main approaches to this 

problem. The first, and simplest, is composition. In this scheme a complex object is 

represented as the union of the primitive chosen as the basis for modeling shapes. This 

allows a much larger class of objects to be modeled, but it has limitations. Relatively simple 

objects with holes are difficult to describe without large numbers of primitives. A more 

general technique for representing complex objects is Constructive Solid Geometry (CSG) 

[10, 53, 64]. Primitives are combined using the set operations of union, intersection, and 

difference. The model of an object is a CSG tree whose leaves are primitives and whose 

internal nodes are the set operators. This is shown below in figure 1. Nodes of the CSG 

tree may also be transformations which scale, translate, or rotate the subtree of that node. 

Given an adequate set of primitives, almost any object can be modeled using CSG, but 

there are still difficulties. CSG representations are not unique, i.e., a particular object can 

be modeled using several different CSG trees. Another problem is concerned with 

recovery. CSG allows the difference and intersection operators. Thus, we must recover the 

shapes of primitives that, in some sense, are not really in the image. 

--

f"-L-?1 1 V 

Figure 1: Simple Object and its CSG Representation 



6 

Whatever object representation is chosen, a procedure must be developed for 

recovering the parameters describing the object from an image. This recovery procedure is 

quite difficult, as it forces a compromise between the generality of the models and the ease 

of extracting the necessary information from the image. Early methods used high-pass 

filters to extract edges from the images. These were then used to try to model objects using 

a wire-frame representation [54, 68]. The deficiencies of wire frame representations soon 

became evident, as did the difficulty in extracting high-quality edge information from real 

images. However, work still continues in this area. Advances in edge operators have made 

these more robust, although still far from perfect. Wireframe representations are no longer 

used in any but the simplest systems. Instead, the edges are grouped using principles of 

perceptual organization such as adjacency, co-linearity, and parallelism. Constraints are 

applied to these groupings, such as the viewpoint consistency constraint [41], or 

constraints on likely shapes [7, 31]. These researchers are attempting to extract generalized 

cylinders which have various constraints on their shapes, rather than wireframe 

representations of polyhedra. 

Edges are not the only information that can be extracted from images. There is a 

large family of algorithms, collectively known as Shape-From-X techniques, which 

estimate the shape (surface normals) or depth (distance to) imaged objects. Binocular 

disparity is the best known of these techniques, but there are a host of others that use clues 

such as shading [32, 39], texture [33], specular reflections [25], focal gradients [48], or 

motion [66]. These techniques do not provide the quality of information that is obtainable 

from edges, so research is underway on combining the output of multiple shape-from-x 

techniques [46]. While this work is underway, researchers are also using laserrangefinder 

images. These provide much more accurate depth information, but still confront their users 

with the problems associated with image processing. 

Given depth or shape information, it should be possible to estimate the size, shape, 

and position of objects in the image. Edge-based approaches can operate on depth images, 
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and are frequently used as a pre-processing step in other approaches. If an object model 

with a simple analytical representation is used, there are several ways to recover the 

parameters controlling its shape, size, and position. One is to iteratively adjust the 

parameter estimates so as to minimize the difference between the measured values and those 

predicted by the ~urrent parameter estimates. This is the approach used in this paper. A 

second approach is to use a linear (or non-linear) regression, where the parameters can 

potentially be estimated by the use of direct matrix operations rather than an iterative 

procedure. A third technique is based on solving the differential equations for Lagrangian 

dynamics, where the image data exerts simulated forces on the estimated objects to pull 

them into position and shape [63]. 



CHAPTER II 

SUPERQUADRICS AND SUPERQUADRIC 

DESCRIPTION 

Superquadrics 

The superquadric (SQ) is an interesting geometric primitive that has been proposed 

for modeling objects in machine vision, as well as in CAD/CAM (Computer Aided Design/ 

Computer Aided Manufacturing) [4, 5, 47, 49, 13]. Unit SQs are a 2-parameter family of 

geometric solids which include spheres, cubes, cylinders, and octahedrons as special 

cases. The two parameters, e1 and e2, control the roundness vs. squareness of the 

longitudinal and latitudinal cross-sections. Figure 2 shows unit SQ solids for e1 and e2 = 

0.2, 1.0, and 2.0. 

There are implicit and explicit forms for the equations that define SQs. The explicit 

equation (1) gives the x, y, and z coordinates of points on the surface of the SQ as a 

function of the latitude and longitude, 11 and ro. The notation eqe1 S,l2 means cosel (11) 

sine2 (ro). Equation (2) gives the x, y, and z components of the surface normal of the SQ as 

a function of ,i and ro. Note that a dual relationship exists between (1) and (2). 

The implicit form (3) tells if an x, y, z point is outside, inside, or on the surface of 

a SQ defined by particular parameter values of .a,, x_, and~. If F = 1, the point is on the 

surface. If it is less than 1, the point is inside, if greater than 1 the point is outside. For this 

reason, the implicit equation is also known as the inside/outside function. Equations (1 - 3) 

explicitly show the correct treatment of signs that is implicit in [4, 47, 58, 14]. The sgn(x) 

function returns the sign of its argument. 

8 



2.0 

e2 
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0.2 

0.2 1.0 
e1 

2.0 

Figure 2: Unit Superquadrics vs. e1 and e2 
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Unit SQs centered at the origin are not particularly useful, so both the explicit and 

implicit equations show the additional parameters needed to place the center of the SQ at an 

arbitrary position xo, YO, zo. The size of the SQ is given by a1, a2, and a3, which are scale 

factors in the x, y, and z directions. SQs may be given arbitrary orientations through the 

use of the standard rotation matrices used in computer graphics [20], however, we will not 

be considering rotations in this study. 

(
1/a1 C 2-el C 2-e2J 

N(T1,0>) = 1/a2 c;2-e1 s:2-e2 

l/a3 STJ 2-el 

( 
2 . 2 )ei 2 

F(x· W = ( lx-xol ) e-.z ( ly-yol ) ei e1 ( lz-zol ) e1 x, 11, ~o. e a1 + a2 + a3 

(1) 

(2) 

(3) 



Figure 2 and equations (1 - 3) describe what are actually known as SQ ellipsoids. 

SQ toroids and SQ hyperboloids of one and two sheets also exist [4], but are not 

considered in this study. Whenever we refer to a SQ, we are actually discussing SQ 

ellipsoids. 
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An important advantage of using SQs to model objects is that a single equation can 

be used to express a wide variety of shapes simply by varying a few parameters. This 

should make recovery easier since we don't have to know if the object we are attempting to 

model is a sphere, cube, cylinder, etc. before we try to model it. This "chicken and egg" 

problem is one of the major difficulties in image segmentation, so the potential for avoiding 

it makes SQs especially attractive. 

The expressive range of SQs can be considerably extended by introducing 

deformations such as bending, tapering, or twisting [5; 58]. These deformations could also 

vary with time [62, 42]. Figure 3 shows some deformed SQs, however, this study will not 

attempt to recover deformed SQs. 

Figure 3: Deformed Superquadrics 
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An important disadvantage of SQs is the non-uniqueness of descriptions. By 

rotating and scaling, two different sets of SQ parameters can describe the same object. This 

can be seen in the first and last columns of figure 2. 

Superquadric Description (SQD) is a technique to describe physical objects as CSG 

combinations of SQ primitives [13]. One of the biggest advantages of SQD is that its 

models, while very expressive, are compact. Only a few parameters are needed to represent 

quite complex shapes. This eases the job of matching recovered models with known 

models for the purpose of recognition. A second advantage to SQD is that the parameters 

control the shape in a very obvious manner. This is in contrast to spherical harmonics, a 

volumetric primitive mentioned in the previous chapter. While this is not very important for 

recovery of models, it is an important advantage for the humans who must construct the 

models to be recognized. A third advantage of SQD is that it naturally decomposes complex 

objects into parts. Furthermore, this decomposition seems very similar to those that 

humans naturally make [47]. 

While SQD has several important advantages, it also has several disadvantages. 

Even deformed SQs are only a subset of the models that can be expressed by generalized 

cylinders. This disadvantage is mitigated by two factors. First, SQs form a very useful 

subset of generalized cylinders. Second, as was mentioned in the previous chapter, the full 

power of generalized cylinders is rarely exploited. Another disadvantage of SQD is that 

CSG shares the non-uniqueness problem of SQs. While the non-uniqueness problem of 

SQs can be mitigated by constraining the acceptable values of the shape exponents, 

overcoming the non-uniqueness of CSG is still a topic of research. 

Superquadric Parameter Estimation 

Assuming we wish to model the objects in an image using combinations of SQ 

primitives, how do we recover the parameters controlling the size, shape, position, and 

orientation of these SQs from an image? The original method was suggested by Pentland in 
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[47]. This utilized the dual relation between the explicit equations (1) and (2). Surface 

normals for objects in images were estimated using shape-from-X procedures [ 30, 32, 

39]. The dual relation between (1) and (2) was then used to formulate a linear regression to 

solve for the size, orientation, and shape parameters of the underlying SQ shapes. 

However, this technique proved too difficult to extend to deformed objects in general 

position. Pentland later suggested another technique which was analytically more tractable, 

but involved a computationally expensive search of the SQ parameter space [50]. 

A more promising approach was suggested in [9]. This utilized the implicit equation 

(3). Recall that if an xyz point lies on the surface of the SQ described by the parameters .a. 

K, ~. then F = 1. If the point is outside the SQ, F > 1, while if it is inside, F < 1. Boult and 

Gross used the square of the inside/outside function in a minimization procedure where all 

the parameters were iteratively adjusted to achieve the best fit to the 3-D data points. The 

3D data points can be obtained from an intensity image by integrating the output of Shape­

From-X procedures, but will usually be obtained from laser rangefinder data or other active 

sensors. This technique proved quite promising, although they reported problems 

recovering cylindrical objects. 

Solina was responsible for two important changes to the minimization-based 

approach to estimating the SQ parameters. First, and most importantly, he modified the 

inside/outside function to achieve much better recovery of cylindrical objects [58, 59]. His 

version of the inside/outside function is given below in equation (4). Note that he has 

added the outermost exponent e1. 

Solina explains that the 

... additional exponent e1 does not change the shape of the 
superquadric surface itself but is necessary if the function is used for 
shape recovery with a least-squares minimization method. The 
additional exponent ensures that, independent of the current value of 
e1, points at the same distance from the superquadric surface have 

(4) 



the same value of FW. Consider, for example, a cylindrically 
shaped object where e1 = 0.1 and e2 = 1. Then the third term in (4) 
is , 

( z )1. ( z )20 a;- e1 = a;-

Because of the large exponent, very small deviations of z from a3 
will be greatly amplified. The outermost exponent e1 in (4) cancels 
out e1 in (3) and ensures that deviations always have a quadratic 
weight Minimizing the inside/outside function without this 
correction does not give consistent solutions [58, pp. 19-20]. 
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(5) 

Later work by Solina's colleagues at the University of Pennsylvania [24] provided a 

mathematical justification for Solina' s intuitive understanding of the need for the outermost 

exponent. 

The actual objective function used by Solina incorporates rotations and 

deformations. It also incorporates a term that insures that the recovered model tightly fits 

the data points. Consider viewing a cylinder from an angle where one end and part of the 

shaft is visible. Data points for the other end will not be available, so the size parameter that 

gives its length could assume any value greater than or equal to the actual length. To avoid 

this problem, Solina added the term "a 1 a2 a3 to the objective function. This penalizes the 

recovery of volumes larger than the data actually supports. This also introduces the trivial 

solution where .§! = 0, so the .!!.... must be constrained to be greater than 0. The cost function 

he used was 

N 

min L [ .../a1 a2 a3 (1 - Fs (xwi• a, :K.Q., ~. ft. ))]2 
i=l 

(6) 

where ~wi are the N 30 points in world coordinates, and l!, ~O, ~. _e. are the parameter 

vectors for the scaling factors, position, shape, and orientation, respectively, of the SQ. 

The modification of the inside/outside function for rotations has not been shown, since it is 

not considered further in this study. 
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The problem of recovering the parameters of a SQ in general position is cast as a 

minimization problem where we must estimate the values of the 8 parameters (3 for 

position, 3 for size, and 2 for shape) that best fit the N 3-D data points. Although 

techniques exist to estimate the 3-D coordinates of points on the surface of objects in 

intensity images [32, 39, 30], laser rangefinder data is being used by almost all researchers 

in this area due to its higher quality. 

Solina's second major contribution to estimating the SQ parameters was to allow 

his minimization to perform segmentation at the same time it was estimating the SQ 

parameters. In other words, the data points that make make up a particular object, and the 

parameters describing that object, are determined simultaneously. For scenes with multiple 

objects, Solina's minimization proceeds by trying to fit all the points to a single set of 

parameters. Those data points which fit poorly are temporarily discarded. If the data points 

fit reasonably well once the parameter estimates have been changed, they are restored to the 

set of points that are considered to be accounted for by one SQ. Once the minimization 

succeeds for a single object, it is started again on the rejected points. This approach is 

detailed below in Algorithm 1. 
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ALGORITBM 1 

SOLINA'S MULTIPLE OBJECT RECOVERY METHOD 

1 INPUT data points x1 ... Xn, initial parameter estimates AO 
2 set Mo = 0, Nace = N 

3 FORj = 1 toN 

4 Mo = Mo + (R(xj, A0))2 

5 FOR k = 0, 1, ... REPEAT 
6 compute Ak+l 

7 set threshold T = f(Mk) 

8 00 
9 set P = 0, Mk+l = 0 
10 FOR j = 1 to N 

11 IF (R(xj, Ak))2 > T THEN 

12 Mk+l = Mk+l + (R(Xj, Ak))2 

13 P=P+ 1 

14 T= 2 T 
15 UNTIL P > 0.75 Nace 

16 set Mk+l = Mk+l / P 

17 IF Mk+l < Mk THEN 

18 accept Ak+l 

19 set Nace= P 

20 ELSE MK+l = Mk 

21 END UNTIL (Mk small enough or changes are statistically meaningless) 

This element of data selection is very important because it offers a means of 

escaping from the "chicken and egg" dilemma that is posed by segmentation. Other 

researchers typically determine the data points that are believed to come from a single 

object, then fit a geometric model to them, taking no account of the possibility of outliers or 

multiple objects [19]. Once the preprocessing step has made a decision, there is no way to 

reverse it, even if the modeling stage is capable of indicating a problem. 

The potential of SQD is quite exciting, but there are several problems with Solina's 

implementation. One is speed Solina used a serial minimization technique (multigrid 

Levenberg-Marquardt). He reports execution times of about 20 sec. on a VAX 11n85 for 

relatively small data sets (N = 250). Since typical image sizes are 2562 or 5122, this 

technique is somewhat limited. Solina suggested that the minimization technique could 
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easily be implemented in parallel. As part of the research described in this dissertation, a 

parallel version of Solina's algorithm was implemented [14]. This work, which is believed 

to be unique, experimentally verified Solina's speculation about the potential parallelism of 

the method. It confirmed that the evaluation of the objective function and its partial 

derivatives for each data point can be carried out in parallel. It also noted that, for typical 

numbers of data points relative to the number of parameters, the repeated evaluation of the 

objective function and its partial derivatives dominates the cost of the computation. 

Evaluating them in parallel will exhibit almost perfectly linear speedup, even if the linear 

system solution required elsewhere in the Levenberg-Marquardt algorithm is carried out 

serially. 

A more important limitation of Solina's method is that his approach for handling 

multiple objects in a scene suffers from two disadvantages. One is that it makes execution 

time proportional to the number of objects in a scene. More importantly, it severely limits 

the number of objects that can be modeled in a scene. This is quite a handicap. Early in this 

course ofresearch I implemented Solina's algorithm and tested its discriminatory 

capability. For the cases tested, it modeled one object well, but could only occasionally 

disambiguate two objects and model them correctly. I was never able to get it to correctly 

model 3 objects, but did not test it on as many cases as Solina, whose thesis displays some 

scenes with three objects being modeled. 

An important limitation of Solina's algorithm is that it does not exploit the very 

powerful property of coherence in the image data. If a data point is on the surface of a 

particular SQ, it is quite likely that its neighboring points will also be on the same SQ. 

However, Solina's technique treats all the data points as if they were independent. If a way 

could be found to exploit the powerful property of image coherence, it should be possible 

to extend SQD to scenes with very large numbers of objects. This was a major goal of this 

study, which investigated using a neural network technique to exploit image coherence. 
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During the time the research described in this paper was conducted, other 

researchers continued looking into the problem of recovering SQ parameters from images. 

Two camps reported their results in the literature. Interestingly, neither camp extended the 

function minimiz.ation approach of Solina. Instead they both based their procedures on 

Lagrangian dynamics, inspired by the work presented in [63]. The first group was led by 

Dimitri Terzopoulos, primary author of [63], the second group was led by Alex Pentland. 

We will examine the approach taken by Terzopoulos' group first, then briefly note how 

Pentland's method differs. 

The first technique, deformable superquadrics, was developed by Demetri Metaxas 

and Dimitri Terzopoulos [61, 62, 42]. It represents the shape of the object, p(t), as the sum 

of a reference shape, s(t), and local deformations from that shape, d(t). For deformable 

superquadrics, sis a SQ and dis represented using finite element techniques. The 

parameters controlling the size and shape of the SQ, along with any parameters controlling 

global deformations such as bending, tapering, or twisting, are collected into a parameter 

vector q8• The local deformations are represented using finite element basis functions. The 

SQ is tessellated and a displacement vector, qi, is associated with each node i at the comers 

of the elements. Collecting all the displacements into a vector qd =( ... ,qi, ... )T, the local 

displacement can then be expressed as d = Sqd, where S is the shape matrix whose entries 

are the finite element basis functions. 

The shape of the deformable SQ, p, is in model-centered coordinates. For machine 

vision problems, the objects will be specified in a different, world, coordinate system. The 

set of x,y ,z points on the surf ace of the deformable superquadric are denoted by p in 

model-centered coordinates, and by x in world coordinates. The two systems are related by 

the equation 

X = C + Rp, (7) 

where c(t) is the position of the center of the SQ over time, and R(t) is the rotation matrix. 
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The SQ parameters, the local deformation parameters, and the coordinate system 

transformation parameters are collected into a vector of degrees of freedom q = ( qc T, qe T, 

q8 T, qd T) T, where qc is c and qe is the vector of rotational coordinates of the model. The 

goal of fitting the image data to the deformable SQ model is to recover this vector of 

parameter estimates. Metaxas and Terzopoulos carry out this recovery in a physically based 

way by introducing mass, damping, and a deformation strain energy through the 

mechanism of Lagrangian dynamics. The equations of motion take the form: 

Mij_ + Dq + Kq = gq + f q, (8) 

where M, D, and Kare, respectively, the mass, damping, and stiffness matrices, gq are 

inertial forces from the coupling between the local and global degrees of freedom, and fq(t) 

are the forces arising from the degrees of freedom of the model. For machine vision, the 

force vector f q is derived from the image data. For this application, M can be discarded 

since we are modeling image regions, not masses, and D can be assumed diagonal and 

constant over time. This decouples the equations, so gq also vanishes. Using a simple first­

order Euler method to integrate (8), the update step becomes: 

(9) 

The stiffness matrix K determines the elastic properties of the model, which arise 

from a spline deformation energy. The derivation of K is not germane to this presentation, 

but can be found in [61, 62]. We merely note in passing that during the solution of (9) is is 

not necessary to assemble Kin its entirety. Instead, it is possible to compute Lliiqdj for 

each node i in an element-by-element fashion. 

The forces f q which drive the dynamic system of (8) are obtained from the visual 

images. Techniques for generating these forces from different types of imagery have been 

described in [63]. As an example, for 3D data points such as those from a laser 

rangefinder, we can define a long-range force 

(10) 
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based on the separation between a datapoint r in space and the point of influence Ur of the 

force on the model's surface, and where ~ controls the strength of the attraction. The point 

of influence needs to be the model point nearest to the datapoint. There is no closed form 

solution to determine the point u0 on the surface of a deformable SQ that is closest to an 

arbitrary point r in space. While Metaxas and Terzopoulos describe several procedures for 

determining which node on the model is closest to r, their reported experimental results are 

from algorithms ~here the matching is done by exhaustive search. This has a high order of 

complexity, O(mn) where m is the number of data points and n is the number of nodes, but 

it is simple and robust. 

Pentland's method [51] was also based on the research reported in [63]. Rather 

than representing a shape as the sum of a reference SQ and local deformations, Pentland's 

work models non-rigid SQs that are subjected to periodic forcing functions which induce 

modal deformations. While this may ease recovery of symmetrically deformed objects, the 

modal deformations are global, which will limit their utility. 



CHAPTER ill 

NEURAL NETWORKS 

The current implementation of SQD is not the only machine vision technique with 

significant limitations. Progress in machine perception has been disappointing, given the 

amount of effort put into the problem over the last three decades. Recently, there has been 

an explosion of r~search interest in the area known as neural networks. These networks 

have demonstrated surprising capabilities in pattern recognition tasks. Inspired by the 

organization of the central nervous system, neural networks consist of many units with 

dense interconnections between neighboring units. While each unit performs a simple 

computation, the whole ensemble performs a complex computation which emerges from 

the interactions of all the units. The complex computation performed depends upon the 

topology and strength (weight) of the interconnections, as well as the function computed at 

each unit. The connection weights can either be designed in advance or learned from 

representative data samples. 

The field of neural networks actually began over 20 years ago under the name of 

perceptrons. Interest died in the field after a critical review of the capabilities of perceptrons 

was published [43]. The reawakening was due, in large measure, to a new learning 

algorithm that overcame the problems so effectively exposed by Minsky and Papert. This 

algorithm, the backward error propagation algorithm [55], allows networks of perceptrons 

to be extended from single layers to multiple layers. Single layers of perceptrons can only 

classify linearly separable problems. Extending them to multiple layers allows the linear 

decision boundaries to be combined and used as higher-order decision boundaries. 

20 
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A neural network has two components - its architecture (or topology) and its 

learning algorithm. These are usually intimately related, so the ensemble is frequently 

referred to as a particular type of network without confusion. For instance, a multiple layer 

perceptron architecture trained by the backward error propagation algorithm is known as a 

backpropagation network. Other learning algorithms have been developed for multiple layer 

perceptrons [17, 34], since the backward error propagation algorithm is slow to learn. 

However, these learning algorithms will sometimes fail to learn a classification that can be 

learned by the backward error propagation algorithm, so the simple backpropagation 

net\Jv'.Ork remains the most commonly used neural network at this time. 

Multiple layer perceptrons are not the only network architecture capable of learning. 

Some of the other major ones at this time are ART (Adaptive Resonance Theory) [12, 23], 

Kohonen's Self-Organizing Maps [37], and some varieties of Hopfield nets [26, 27, 28]. 

Not all networks learn, several have all their weights set in advance. The major networks 

with weights designed in advance are other varieties of Hopfield nets [29, 60]. 

While neural networks have only recently regained widespread popularity, the 

literature has already become too large for a survey of the entire field. Instead, we will look 

at the general classes of neural networks and at a representative network from each of these 

classes. The interested reader should consult [ 40] or [56] for an more detailed introduction 

to the field. After this broad introduction, we will pay particular attention to one particular 

network, the Koch network [35], that was the inspiration for the research in this study. 

Neural Network Characterization 

As mentioned above, networks can be characterized by whether their weights are 

learned or fixed. Within the class of learning networks there are two subclasses, supervised 

and unsupervised. Networks can also be characterized by the type of problem they are 

intended to solve. The most common problems are classification, associative memory, and 



optimization. These problems are very similar. To show this similarity, we must first 

define what is meant by a classification problem. 
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A pattern vector, A, is a vector of measurements, Xi, which contain all the measured 

information available about the underlying pattern. 

K = (x1, x2, ... , x0 )T (11) 

A pattern class is a category determined by some given common attributes of a set of 

pattern vectors [65]. Classification is the problem of assigning a new pattern vector to an 

existing pattern class. Determining the pattern classes given a representative set of pattern 

vectors is another problem, known as clustering. 

Associative memory is the problem of retrieving the stored memory that most 

closely matches a partial memory, which is presented as a search key. This can be viewed 

as a classification problem where the classes are a complete memory, and the pattern 

vectors presented for classification are the partial memories. 

In neural networks, both classification and associative memory tasks are usually 

performed by minimizing an error measure between the input pattern vector and the output 

pattern class. This minimum seeking property can be used directly to solve minimization 

problems. The rest of this chapter discusses the three general classes of neural networks 

mentioned above. Unless mentioned otherwise, we will assume that the network will be 

used to solve a classification problem. 

Supervised Leaming Networks 

The most popular class of neural networks are those whose weights are trained by a 

supervised learning procedure. A supervised network is trained by repeatedly presenting 

input patterns and the desired output. The network learns the mapping between inputs and 

outputs. This is called supervised learning because the correct output for each input pattern 

in the training set is known. The backpropagation network [55] is the dominant network in 

this class, so we will look at its operation as an example of this class of network. 
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A backpropagation network is constructed of layers of units. A network will have 

input, output, and some number of hidden layers. Networks with more hidden layers can 

model more complex regions, but will have a longer training time than a network with 

fewer hidden layers and the same number of hidden units. Networks with more than 2 

hidden layers are rare, because networks with 2 hidden layers are capable of performing 

any desired input-output mapping. Unfortunately, the number of hidden units required may 

tend towards infinity. Also, there is no guarantee that the input-output mapping can be 

learned. 

Each unit in a layer has weighted connections to all the units in the previous layer. 

A unit has an internal state, known as its activation, a. The activation is the weighted sum 

of the outputs, Oj, from the previous layer: 

ai = L, Oj Wij 
j 

The output of a unit is a function of its activation, usually the nonlinear sigmoid 

function: 

fi(x)--1-
1 + e·X 

(12) 

(13) 

Input and output units may use a linear activation function, but it is important that 

at least the units in the hidden layer(s) use a non-linear function [55]. If all the layers use a 

linear activation function, then superposition applies and all the layers can be reduced to 

one linear layer. This means that the network will only be able to classify linearly separable 

patterns. 

The discussion above describes how an output pattern is generated from an input 

pattern. This procedure, known as the forward pass, is essentially the same for a very wide 

range of neural networks. It did not describe how the weights are modified, which is how 

the network learns the desired mapping between input and output patterns. To train a 

backpropagation network, an input pattern from the training set is presented to the network, 
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and an output pattern generated. The desired output is then presented to the output units. 

Each unit computes an error signal, 6j= 

(14) 

where j is the index of the unit in the output layer, Oj and tj are the output and target values, 

fi is the derivative of that unit's activation function, and aj is the activation of that unit (12). 

The weights between the last hidden layer and the output layer are updated according to the 

rule: 

(15) 

where AWij is the change in the weight between unit i in the previous layer and unitj in the 

output layer, and 11 is a positive scalar constant less than 1.0 known as the learning rate. 

The larger the value for 11, the faster the network learns, but excessive values for 11 will 

make the learning procedure fail to converge. 

The weights between hidden layers, or between the input layer and the first hidden 

layer, are modified by a similar procedure. However, the determination of the error signal 

is different, since we do not have a target value for the outputs of the hidden units. Instead, 

equation (16) is used for the error signal: 

Bj = fj 1 (aj) ~)k Wkj 
k 

(16) 

where the index k ranges over all the units in the subsequent layer. The update rule remains 

the same as (15). 

The learning procedure described by equations (14 - 16) implements a simple 

gradient descent algorithm that minimizes the squared error between the output and target 

patterns in the training set. This simple minimization algorithm leads to long training times. 

Therefore, a considerable amount of research has been devoted to incorporating more 

sophisticated minimization techniques into the layered structure of the network. The 

technique that is receiving the most interest at this time is conjugate-gradients [34], 
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although other techniques certainly have their adherents [17]. Another problem with the 

simple backpropagation network is that there is no way to determine in advance how many 

units should appear in each hidden layer. Network architectures that add new units during 

learning are being studied in order to overcome this problem [ 18]. 

Unsupervised Learning Networks 

In contrast to supervised learning, unsupervised networks are not presented with 

the desired output for each input pattern. Instead, the network is expected to penonn a self­

organization in order to classify patterns into a number of categories. The Adaptive 

Resonance Theory networks (ARTl, ART2, ART3) [12, 23] and Kohonen's Self­

Organizing Maps [37] are the dominant networks in this class. We will examine the 

operation of the ARTl network as an example of this class of neural network. The structure 

of this network is shown below in figure 4. 

The ARTl network is described by a set of differential equations. It has a 

moderately large number of parameters, as well as fast and slow learning modes. 

However, by fixing some of the parameters and using the fast learning mode, the behavior 

of the network is considerably simplified. The explanation of the network given below 

follows that presented in [40]. The interested reader is referred to [12] and [23] for the full 

details of the network. 

The network is composed of two layers, or fields. These are indicated in figure 4 

by the boxes labeled F1 and F2. The number of units, N, in F1 is set by the size of the 

input pattern vectors. The number of units, M, in F2 is the number of pattern classes. For 

the ARTl network, the input and output vectors are binary. This restriction on the input 

vector is removed in ART2. 

The units Xi in F1 are fully interconnected to the units Yj in F2 through two 

interconnection matrices, B and T, which are not shown in the figure. B holds the weights 
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used in the bottom-up pass, while T holds those used in the top-down pass. At time t = 0, 

these are initialized to: 

Tij (0) = 1 

1 
Bij (0) = l + N 

(17) 

(18) 

Their values will be updated as the network begins to learn its classifications. The T matrix 

encodes the exemplars for the pattern classes. This is known as the Long Term Memory 

(L TM) of the network. The Short Term Memory (STM) is the pattern of activation in the 

two layers. 

Gain 
Control 

Gain 
Control 

Attentional 
Subsytem 

L'IM 

Input 
Pattern I 

Orienting 
Subsystem 

Figure 4: ARTl Network (from [12]). 

When an input pattern, I, is presented to an ARTl network, the units in F1 assume 

an initial pattern of activations, X, which is equal to I. Recall that the input pattern is 



binary, so the activations Xi are too. The activations of the output nodes are set to the 

weighted sum of the activations in F 1: 

N 
Yj = L Bij(t) Xi , 1 ::;; j ::;; M 

i=l 
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(19) 

The maximum element in F2 is then chosen through lateral inhibition. Ties are broken in 

favor of the unit with the lowest index j. This leaves a single output unit, Yj, active. 

The maximum element identifies the class to which the pattern is assigned. The next 

step in the operation of the network is to test if the input pattern matches the class exemplar 

well enough to be considered as a member of the class, or if a new classification should 

take place. This decision is governed by the vigilance parameter, p. Recall that the T matrix 

encodes the class exemplars. We compute the ratio, q, of the number of active elements in 

the exemplar to the number of active elements in the input pattern: 

N 
IIXII= LXi 

i=l 

N 
IITXII = L Tij Xi 

i=l 

IITXII 
q= IIXII 

(20) 

(21) 

(22) 

In the equations above, j is the index of the active unit in F2. The ratio, q, is compared to 

the vigilance parameter, p. If q > p, the input is considered close enough to the exemplar. 

The class exemplar is then modified to account for the new member of the class, according 

to equation (23). The bottom up weights are also modified to enhance the classification of 

the input pattern; I, to the same class, j, according to (24). 

Tij (t + 1) = Tij (t) Xi (23) 



T .. (t) x· 
Bij (t + 1) = i 1 

! + ~ T·· (t) x· 2 £.J lJ 1 
i=l 
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(24) 

If, on the other hand, q S p, the input pattern is considered to be too far from the 

exemplar. The active unit in F2 is disabled and the input pattern is presented again. This is 

the S1M Reset Wave in figure 4. The process repeats until the pattern matches an existing 

exemplar, or a new exemplar is created The new exemplar is identical to the input pattern. 

The ARTl network is limited to binary patterns, and is rather sensitive to noise. 

These problems have been reduced, though not eliminated, in later versions of the network. 

Hopfield Network 

The Hopfield network [26, 28] was one of the first and simplest neural networks 

other than the perceptron. Hopfield networks can be classified along two major axes. The 

first axis distinguishes between networks that have units, or 'neurons', that compute a 

threshold function [26] and those that use a sigmoid nonlinearity [28]. The second axis 

distinguishes between units whose weights are learned and those whose weights are 

designed in advance. 

The Hopfield network is a single layer network where each unit is (potentially) 

connected to every other unit In the initial Hopfield model, connection strengths were 

symmetric, and direct feedback from a unit to itself was not allowed. Both of these 

conditions have been relaxed in subsequent work [11]. The basic topology of a Hopfield 

network is shown below in figure 5. This is a 4-unit network. The units are the circles at 

the bottom. The outputs of the net are the four lines labeled 01 .. 04. The outputs are fed 

back to the inputs of all the other units through the connection matrix. The connections are 

the small black boxes. A connection from unit i to unit j is denoted by Tij, The connections 

are conductances, and negative values are allowed. For electronic implementation this 

would be accomplished by providing inverting and non-inverting outputs from the units 



and connecting the appropriate one. The external inputs, I, to the network also appear at 

the top of the figure. 

' 

Figure 5: 4-Unit Hopfield Network 

Another addition to the model is the introduction of dynamics to model the 

capacitive delays of real neurons. Each unit in the network has its input grounded by a 

parallel RC network. We can now model the instantaneous output voltage of unit i, Vi, in 

terms of its instantaneous input voltage, Ui, and its RC loading. Ui is the sum of the 

products of the n~ighboring units' output voltages, Vj, and the strength of the 

interconnections, Tij. Due to the RC time constant, Ui will lag behind the instantaneous 

values of the neighboring vj's. The equations describing the behavior of unit i are: 

29 

(25) 

(26) 

(27) 
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Hopfield [28] showed that for certain conditions on the interconnection network, 

the update rule for the units, equation (27), will cause the entire ensemble to seek the 

nearest minimum in the energy landscape. Because of this property, it is possible to use 

Hopfield networks to solve minimization problems. A procedure for designing networks of 

this type is developed in [60]. 

Koch Network 

Several people have followed the procedure outlined in [60] to develop Hopfield 

networks for problems of interest to them. Koch, Marroquin, and Yuille [35] looked at 

using it for data smoothing. Least squares data smoothing can be cast as a minimization 

problem with the function to be minimized (in one dimension): 

E(f) = L(fi+l - fi)2 + C(i L(fi - di)2 

i 

(28) 

where di is the input data, fi is the smoothed output, and Cd adjusts the conflicting 

requirements of smoothness vs. fidelity to the data. Hopfield noted that this function can be 

minimized by an analog network of N nodes, each connected to its two neighboring nodes. 

Each unit is grounded by a parallel RC network. The input data is provided by a current 

into each node, the output is the voltage at each node. Such a network can be simulated by 

having N elements, each of which is updated by the rule 

(29) 

where Rij is the resistance between nodes i and j, Ri and Ci are resistance and capacitance 

to ground, Ii is the input current to each node, and fi is the output function (voltage) at each 

node. 

The problem with this model, and least-squares smoothing in general, is that it 

blurs discontinuities. Since discontinuities in images are usually very informative, this is 

quite a problem. Inspired by the seminal paper of the Geman brothers [22], Koch and his 
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colleagues extended this model to preserve large discontinuities by introducing 'breakpoint' 

terms, across which no smoothing is performed. Their objective function (in one 

dimension) is: 

E ( f) = L (1-hi) (fi+l - fi) 2 + Cd L (fi - di)2 + Cc L hi (30) 
i i i 

where hi is a 0 .. 1 variable indicating the presence of a break between data points i and i + 1. 

Cc is the cost of inserting a breakpoint. The hi can be considered as learned weights whose 

update rule is: 

oE 
(31) 

Koch also provides a formulation of this network to smooth 2D datasets [35]. The 

interpolation term has both horizontal and vertical breakpoints. He also extends the simple 

cost for inserting a breakpoint to an expression involving neighboring breakpoints in order 

to encourage straight lines and penalize adjacent, parallel lines [35]. 

Results from one and two-dimensional Koch networks are shown below in figures 

6 and 7. Figure 6 shows the least-squares solution for two different values of smoothing. 

The input data is a pulse corrupted with 20% uniformly-distributed noise. The Dl:S5 and 

D5:S 1 entries in the legend indicate the relative weights of the data (D) and smoothing (S) 

terms of the equation. Figure 7 is for a 2D Koch network implemented at the beginning of 

this study. The top two illustrations show the input and output for a two-dimensional 

pulse, while the bottom two are for a truncated ramp. As can be seen in the figures below, 

the data smoothing network performs well. It smooths small errors while preserving large 

discontinuities. In addition to smoothing the output data, edge maps can be obtained by 

examining the breakpoints. These are not shown, but accurately identify edges in the 

image. 



32 

A~~ 
0.6 rZ~ 1 
0.6 ... D11t11 

,o. D 1 : 55 

0.4 

,A 
,a. OS : S 1 

0.2 \~.~ _,~~:.. 
-,,,rJ Y°'y9'<> -.--io 

0 a 

6 11 16 

Figure 6: lD Least-Squares Network Results 

Figure 7: Results from 2D Koch Network 
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While the Koch network performs well, it is certainly no miracle algorithm. It 

should be noted that Figure 7 depicts the best results I was able to obtain from the 2D Koch 

network. Midway through this course of research I developed parallel implementations of 

the 2D Koch network and the median filter in order to compare their performance on an 

image smoothing task. That comparison, which is believed unique, is detailed elsewhere 

[15]. In brief, its findings were that the median filter was faster, usually gave better noise 

reduction while preserving image edges, and was easier to use since it did not suffer from 

the need to determine the convergence criteria and other free parameters in the Koch 

network. 



CHAPTER IV 

INITIAL SUPERQUADRIC NETWORK 

Three problems with Solina's SQ recovery algorithm were listed earlier in this 

thesis: the slowness of the serial minimization algorithm, difficulty in recovering 

parameters from scenes with multiple SQs, and recovery time serialized in the number of 

estimated SQs. We saw that the speed of the method could be addressed by a parallel 

implementation. The other two problems arose from his method for handling scenes with 

multiple objects. Despite these problems, the data selection aspect of the multiple object 

recovery method offers potential benefits for segmentation. These benefits seem great 

enough that it would be worthwhile to try and find a better method for implementing the 

data selection. We also indicated that these problems might be ameliorated if we were to 

take advantage of image coherence. 

Koch's network, which smooths data at the same time as it discovers image edges, 

seems to provide a reasonable framework for trying to exploit image coherence. The goal 

of this project was to see if a modified Koch network might be able to overcome the 

problems we noted in Solina's recovery procedure. The next section informally describes 

the organization of such a modified Koch network, and discusses how it might be able to 

overcome the problems noted above. For initial investigations the network was simplified 

by modeling 2D superellipses rather than the full 3D superellipsoids that are ultimately of 

interest. The subsequent section details the objective function used for the simpler network 

and discusses the design decisions that led to the network's organization. The following 

two sections discuss the initial simulations of this network and a hybrid minimization 

technique that was developed to overcome the problems found during the initial 
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simulations. The final section in this chapter presents the results of several experiments that 

were run to investigate the capabilities of the hybrid approach. 

General Organization of the SQ Network 

Recall that the Koch network was used for smoothing data that could be regarded as 

a surface. At each data site, the Koch network has a single unit to encode the height of the 

surface at that site. Between the sites there are breakpoint units to indicate discontinuities in 

the surface. How can this scheme be changed to model SQs? First, we will want to retain 

the breakpoint units between each site, as they could be used to locate the borders of the 

SQs. Second, the single unit at each site which encoded the estimated surface value will be 

replaced by a vector containing the estimates of the size (a1, a2, a3), position (xo, YO, zo), 

and shape (e1, e2) parameters for the SQ shape underlying the particular data point. Third, 

the model term of the objective function will need to be a function of the data values in a 

small neighborhood centered around the site of the parameter vector. This is because an 

infinite number of parameter vectors could fit a single data point, in contrast to the Koch 

network's simple (fi - di)2 model. The breakpoint units can play two roles in the parameter 

estimation. Like the Koch network, adjacent sites without an intervening breakpoint should 

have similar parameter values while adjacent sites with one should not. Additionally, the 

breakpoints will be used to determine if data points in a local neighborhood should be 

excluded from the minimization. This vector extension of Koch's network is one of the 

unique results of this thesis. 

This network organization is illustrated in figure 8. The large square at the bottom 

represents the neighborhood from which the data points are drawn. In this figure, the 

neighborhood is 7x7. The central column represents the parameter vector associated with 

the data point at the center of the neighborhood. The short, thick, black lines between the 

data points represent the horizontal and vertical breakpoints. 
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Figure 8: Local View of the Organization of the SQ Network 

How might this organization overcome the three disadvantages noted for Solina's 

approach? By fitting the parameters to local neighborhoods, and by using the breakpoint 

terms to exclude points from the neighborhood, the network exploits image coherence in a 

very direct and natural fashion. As shown in figure 8, a parameter vector is associated with 

each pixel and only needs data from a small area of the image that surrounds the associated 

pixel. Given a computer with enough processors, all of the minimizations could be carried 

out in parallel. This would allow us to model scenes with large numbers of shapes, which 

was a problem with Solina's method. 

The organization described above is not the only way that things could be arranged. 

A problem with the arrangement described above is that associating a parameter vector with 

each pixel yields an enormous number of parameters to estimate. Another problem is that 

the computational complexity of this approach is greater than that of Solina's method. Each 

parameter vector is estimated from a local neighborhood of data. If there are M active data 

points, the SQ network would have to estimate M parameter vectors. If each of these would 

be determined from an N element local neighborhood, we must evaluate the fit and partial 

derivatives for the SQ term MN times for each step. Solina's technique would only evaluate 
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the fit and partials M times, since it tries to fit all the available data to a single parameter 

vector. 

These problems could be reduced by having one parameter vector for relatively 

small image regions, but what would happen when a SQ boundary bisected such a region? 

Handling this case would require the regions associated with each parameter vector to 

overlap, and it was decided that the job of determining what each breakpoint meant to each 

parameter vector region was just too complex, especially for an initial investigation into the 

feasibility of the technique. 

SQ Network Objective Function 

Once the general structure of the SQ network was decided upon, an objective 

function had to be found to make these ideas explicit. The objective function needed to 

incorporate the SQ fitting term. It also needed to ensure that neighboring parameter vectors 

without intervening breakpoints would converge to similar values, and finally it needed to 

promote the formation of good object boundaries without excessive breakpoint terms. To 

simplify initial investigations of the objective function, I decided to look at a 1-D network 

(SQNETl) that would estimate the parameters for 2D superellipses, rather than the 2D 

organization for estimating 3D superellipsoids that was shown above in figure 8. The 

objective function of SQNETl is: 

N-p-1 

E = C1 L, (2i..i.+1 - 2i..i.) 2 (1-hi) 
i=p 

N-p i+p fi-l,j-11 

+ L, L,(1-F(2..i, Xj))2 II (1-hk) 
i=p j=i-p k=Li,jJ 

+ Cc L, hi + Cp L, hi hi+ 1 (32) 

i 

where 2.i is the vector of parameter estimates at pixel i, hi is the breakpoint between sites i 

and i+ 1, 2ij are the x, y coordinates of the part of the object imaged on pixel j, and F<2.i, ~j) 
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is a slightly modified version (see eq. 34) of the SQ inside/outside function which 

measures the fit of the data from pixel j to the parameters at pixel i. C1 weights the 

interpolation term relative to the unit weight of the model term. The Cc term penalizes each 

discontinuity inserted, while the Cp term penalizes adjacent discontinuities. Equation (32) 

extends Koch's objective function (30) to the vector domain. It also incorporates the SQ 

model and utilizes data coherence. This objective function is one of the unique results of 

this research. 

How does it solve the problem of modeling SQs? The first term in (32) penalizes 

adjacent parameter vectors that have different values in the absence of an intervening 

discontinuity. The second term implements the SQ fitting, while the third term introduces a 

constant cost for every breakpoint inserted. The fourth term penalizes the formation of 

adjacent breakpoints. Since we have more parameters to estimate than in the data smoothing 

example, we must look at more data. The index i selects the parameter vector under 

consideration. The index j selects the data points from sites i-p to i+p that will be used in 

the minimization of parameter vector i. Finally, the index k selects the discontinuities 

between sites i and j. The product term removes data points from consideration in the 

parameter estimation if a discontinuity lies between the parameter vector at pixel i and the 

data point at pixel j. The L J and r l operators in the summation indices of the product term 

indicate the minimum and maximum operations, :i;espectively. Edge conditions are handled 

by not running the minimization closer to the boundary than the size of 1/2 the 

neighborhood. 

The layout of SQNETl is shown below in figure 9. The figure is composed of 

three main blocks. The top one is the input data, N x-y pairs. The middle block is the 

breakpoints. The bottom block is the parameter vector associated with each data point. Note 

that the blocks are not the same size. Since the breakpoints indicate a discontinuity between 

adjacent data points, one fewer breakpoint is needed than the number of data points. The 

variable p is the neighborhood size parameter that is used in the indices of summation of 
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the cost function., Since we do not want the parameter vectors accessing nonexistent data, 

the edge conditions are handled by not having any parameter vectors associated with the 

first and last p data points. 

Input 
Data 

Breakpoints 

Parameter 
Vectors 

0 

X 

y 

N-1 

p N-1-p 

Figure 9: SQNETl Organization 

Now consider the highlighted parameter vector, .t.:i. The parameters in this vector 

are estimated from the data points in a 2p+ 1 local neighborhood. The data neighborhood is 

also highlighted, and lines are drawn from &i to the data points. Note that these lines go 

through the breakpoints. If a breakpoint develops somewhere in the neighborhood, all 

points further away from the parameter vector than that breakpoint should not be 

considered. This is shown in the figure by the black breakpoint, and by the crosshatched 

highlighting on the data points that are not used to estimate the parameters for &i. 
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Ai also depends on Ai+l and Ai-1, because of the interpolation term in the cost 

function which tries to force adjacent parameter vectors to have similar values in the 

absence of an intervening breakpoint. The dependence of Ai on Ai+l and Ai-1 is shown by 

highlighting, and, by the lines connecting the parameter vectors through the breakpoints. 

The vector that has the intervening discontinuity is give the same shading as the discarded 

data points, while the one that is used has shading similar to Ai , although a lighter shade. 

The elements of the parameter vector are a1 and a2, the size of the SQ in the x and y 

directions, e 1, the SQ shape parameter, and xo and YO, the position of the center of the SQ 

in the x and y directions. Although the breakpoint terms, hi, are also estimated parameters, 

they are not considered as part of the parameter vector Ai· This is because their interactions 

are more complex than the simple smoothness requirement (A i+l·· ~ i)2. 

Every data point in the image has a parameter vector associated with it. The 

parameters describe the object on which the data point lies. The interpolation term of (32) 

should force neighboring parameter vectors, which describe the same object, to similar 

values. Once the minimization is complete, a postprocessing step would label regions of 

similar parameter estimates ~ a single object. 

Solina's modified inside/outside function, (4), was first presented in [58]. The only 

modification to the standard SQ inside/outside function is the outermost exponent e1. This 

modification is necessary to allow accurate recovery of cylindrical objects, as was 

explained in Chapter II. Equation (33) is a very slightly rewritten form of (4), where~ is 

the parameter vector, while ~ is the xyz triplet giving the coordinates of a point on an 

object. 

(33) 
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Equation (33) would form the basis for a 2D network to estimate the parameters for 

3D SQs. The function used for the lD network (34) is simpler, since it has no z term and 

only a single shape parameter, e1. 

(34) 

SQNETl Simulations and Results 

To test the feasibility of a network-based minimization of the SQ function, I began 

looking at the lD network just described. This network simulation, using the state-variable 

approach for the hi, was written in C. MACSYMA was used to compute the partial 

derivatives of the objective function with respect to the elements in the parameter vector. 

The update rule applied at each unit was the negative of this partial derivative, i.e., a simple 

crawl down the gradient. 

The objective function minimized rapidly. However, a significant residual error 

remained, and the parameter estimates never varied significantly from their initial values. 

Many values for the adjustable constants (Cb, Cct, A, etc.) were tried with no appreciable 

improvement in performance. The explanation found for this behavior was that the 

discontinuity terms rapidly assumed their correct values. These terms pervade the objective 

function, explaining the rapid decrease in E. The interpolation and the (1-F<li.i, Kj))2 terms 

had very limited effect relative to that of the discontinuities. 

To discover the reason for this problem, the discontinuities were fixed at their 

correct values and the minimization restarted. Again, the objective function decreased, 

although not as rapidly. However, the residual error and the lack of significant change in 

the parameters remained. This time, the interpolation term was enforcing similarity between 

neighboring sets of parameters, but the (1-F<1i, Kj))2 term was still not having a significant 

effect on the objective function. 
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Further investigation revealed the source of the problem. Figure 10 shows the value 

of E vs. various values of YO (they position parameter) and a2 (they scale parameter). This 

long shallow valley is the classic case where gradient descent fails. Since the Koch network 

implements gradient descent (using a fixed step size rather than the more common line 

search) it is not surprising that it fails to make significant progress in this case. This valley 

arises because of the negative correlation between the yo and a2 parameters that occurs 

because only the top half of the ellipse can be sampled. This is illustrated below in figure 

11. The figure contains three ellipses, each with the same x-size and x-position. The y-size 

and y-position differ for each. The surf ace of the mid-sized ellipse is periodically sampled 

to give y values vs. x. These tuples are the input data for the network. Notice that the other 

two ellipses fit the data equally well, and almost as well as the true data 

Figure 10: E vs. a2 (y-size) and YO (y-position) 
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Figure 11: Cause of Correlation between YO and a2 

Hybrid Algorithm 

Recall that the goal of this project was to see if a minimization based on the Koch 

network could overcome some of the problems with Solina's SQ parameter estimation 

technique. However, we have just seen that the Koch network's simple gradient descent is 

not capable of minimizing the most important part of the objective function. Nevertheless, 

the network organization and the objective function (32) were intuitively appealing to me. 

They seemed to express a natural way of exploiting image coherence to find regional 

estimates of SQ parameters while simultaneously discovering their borders. If successful, 

this could significantly ease the "chicken and egg" nature of the segmentation problem that 

has plagued machine vision for so long. Therefore, to continue investigating the capabilities 

of the network, other minimization techniques were tried. A line search version of gradient 

descent, a conjugate-gradient method, and the Levenberg-Marquardt (LM) algorithm were 

tried [57, 52]. The first two were not successful, but the LM method did succeed in 

minimizing the (1-F<Ai, Xj))2 term. 

Having found an algorithm that could minimize the most difficult portion, it was 

now time to rebuild to the complete version of the objective function. However, practical 
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considerations prevent us from simply using the LM algorithm to minimize the entire 

objective function. The LM algorithm achieves its speed and performance by approximating 

the Hessian matrix, which is NxN where N is the number of parameters to be estimated. 

Recall that normal images will have on the order of 250,000 pixels, and that each of those 

pixels would have approximately 10 parameters to be estimated. This means that the 

Hessian matrix would require 100 Gigabytes of working storage! 

Because of this problem, and because of a desire to remain as close as possible to 

the spirit of the Koch network, a hybrid minimization algorithm was developed to minimize 

(32). First, the minimization of the interpolation term was restored. The gradient descent 

network was retained for this, while the LM method was used to minimize the (1-F<Ai, 

Aj))2 term. The discontinuity terms were initially set to their correct values and not allowed 

to change. This minimization was successful. 

The breakpoint terms were then restored to the minimization. The gradient descent 

algorithm was also used for their update. This algorithm was not successful. The behavior 

noted was that the overall cost would decrease for a time, then begin to increase. To see 

why this behavior was observed, recall that the breakpoint terms are a non-linear function 

of an underlying state variable. The particular non-linearity used was the sigmoid (13), 

which is only asymptotic to O and 1. Therefore, the breakpoint terms do not provide perfect 

isolation. Also recall that if the data are perfectly modeled by the SQ term, the cost of that 

term goes to zero. Now consider a parameter vector and its associated data neighborhood. 

Assume there is a breakpoint set that removes some of the data points from consideration. 

Given the two facts mentioned above, it is easy to see that when the parameters at the site 

are adjusted to correctly account for the data in the neighborhood, the data outside the 

breakpoint begins to dominate the cost function. At this time the parameters begin to 

diverge from their best values in order to account for the data they should not be 

considering. 



The only solution that I can see for this problem is to make sure that the 

discontinuity terms adopt binary values. The sigmoid nonlinearity was replaced by a 

threshold function. The update rule for the underlying state variable remains the negative 

partial derivative of the cost w .r. t. the discontinuity. With this change, the minimizations 

succeeded. The hybrid minimization algorithm used for SQNETl is presented below as 

Algorithm 2. 

ALGORITHM2 

HYBRID MINIMIZATION ALGORITHM FOR SQNETl 

declare 2i. and X as N element arrays of floats 
declare 4 and s. as 2p+ 1 element arrays of floats 
declare l2 as a 5 element array of floats 
declare y as N element array of Booleans 
declare h as an N-1 element array of Booleans 
declare XX as an Nx2 element matrix of floats 
declare PP as an NxS element matrix of floats 
declare h_freq, lm_iters, iter_limit as integers 
declare chi_tol as a float 

Get data and initial estimates of parameters and discontinuities. Also get control values for 
minimization procedure. 
input XX, PPt=O, Il.t=O 
input h_freq, lm_iters, iter_limit, chi_tol, mag_tol 

iter= 0 
y=O Set all sites to "unconverged" 
do { 

iter = iter + 1 
x=O 
all_converged = 1 

Clear z2 at all sites 
Be optimistic 

For each non-border data point 
for i = p, N-p { 

Skip sentinels and converged sites 
if XXi is a sentinel or Yi = 1 

continue to next i 

Extract site i's parameters and local data neighborhood into 
working variables. Compute the s. vector which temporarily 
marks local neighborhood points as sentinel points if they 
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are on the other side of a discontinuity. 
K = xxi-p ... XXi+p 
I!.= PPi 

fi,jl 
£i = II(l-hk) 

k=Lj,iJ 

Do a few iterations of the mode/abased minimization 
for n = 0, lm_iters 

lm_minimization_step (x, ~. 12., Ai, x_i) 

Insert the new parameters for site i into the network 
PPi = I!. 

Do the interpolation, adding to the r vector 
fori= p,N-p { 

if XXi is a sentinel or PPi has converged 
continue to next i 

PPit+l = ss * ((1-hi-l)*PPi-lt - 2 * PPit + (1-hi)*PPi+lt) 

X.i = Ci * ((1-hi-1)*PPi-lt - 2 * PPit + (1-hi)*PPi+lt) 

Update the discontinuities if it is time to do so, and add to 
the r vector 
if iter MOD h_freq = 0 { 

update_discontinuities(PP, h) 

for i = p, N-p-1 

Xi= Cc* hi+ Cp * (hi* hi+l) 

Test for convergence 
for i = p, N-p { 

ih~i = 1 
continue to next i 

if X.i < chi_tol 
Yi= 1 

else 
all_converged = .Yi = 0 

} until (all_converged OR iter > ilimit) 

46 



47 

Preprocessing and Postprocessing 

Since the recovery procedure is an iterative algorithm, its behavior is dependent 

upon the initial parameter estimates. Therefore, before we can discuss the performance of 

the network we must first discuss the procedure for obtaining the initial parameter 

estimates. This section first discusses the form of the input data, then discusses the 

preprocessing performed to obtain the initial parameter estimates. The region-growing 

procedure used as a post-processing step is discussed next, followed by the performance 

measure that is be used to evaluate the network's performance. 

The input data to the network is a vector of xy pairs. The x values are uniformly 

spaced on an interval, typically 20 data points from 0.0 to 10.0. The y values can either be 

they-coordinate of a point on the top half of a SQ ellipse (see figure 11) or a sentinel value 

indicating a background pixel. This assumes that a figure-ground segmentation has already 

been performed. 

A finite-state machine was used to implement the lD preprocessing. The input is 

scanned in left-to-right order, looking for transitions between sentinel and non-sentinel 

values, or large discontinuities in the non-sentinel values. These transitions are assumed to 

mark the edges of the superquadric shapes in the input data. The initial discontinuity 

estimates are set to 1 at the transitions, and O elsewhere. Between the transitions, the 

minimum and maximum values of x and y are recorded. This essentially sets up a bounding 

box for the top half of the underlying superquadric, as shown by the bold boxes in figure 

12. They-position is set to the minimum y value, they-size is set to (Ymax - Ymin). The x­

position is set to (xmax + Xmin) / 2, and the x-size is set to (Xmax - Xmin) / 2. These are 

shown by the crosses in figure 12. The shape parameter, e1, is always set to 1.0. This 

yields an initial estimate of the shape as an ellipsoid that fits within the larger boxes shown 

in the figure. The accuracy of the estimate depends upon how closely the SQ is sampled to 

its extrema in the x direction, and on the true value of its e1 shape parameter. 
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• • • • • 
Figure 12: Initial Parameter Estimation 

Some postprocessing is performed on the output of SQNETl. Because the network 

outputs discontinuities estimating the borders of the SQs, the region growing algorithm 

used for post-processing the parameter estimated was very simple. The vector of 

discontinuities was scanned from left-to-right, looking for runs of non-discontinuities. The 

parameter estimates within these runs were collected and the median of each component 

computed. The median value was found to be a more accurate estimator than the mean, so 

that is what is reported as the vector of parameter estimates for a particular region. The 

output of the procedure is a parameter vector for each region bounded by discontinuities. 

Finally, we need to define a performance measure. Some of the experiments we 

will be running with SQNETl will be varying the adjustable constants C1, Cc, etc. We 

cannot use the x} values computed inside the minimization technique to compare the effects 

of changing these constants, since it would be possible for identical parameter estimates to 

have different x2 values depending on the values for the weights. The performance 

measure used in the following experiments is denoted SSEN, It is defined as: 



R N· 1 1 

'SSEN = NL L (1 - F(1.i, Kj))2 + I Nest - Nin I 
i=l j=l 
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(35) 

where N is the number of sites inside the labeled regions, i indexes the regions, R is the 

number of regions, j indexes the data points within each region, from 1 to Ni, Fis the SQ 

fitting term from (34), Nest is the number of SQs estimated from the data, and Nin are the 

number of SQs that actually generated the input data. The first term is normalized to prevent 

penalizing larger regions. This form was chosen over the more obvious (y - y(1., ~))2 

because near the edge of recovered shapes there are frequently points with an imaginary 

discriminant. 

Results 

This section discusses the performance of SQNETl. We need to know many of the 

properties of the network in order to adequately evaluate its capabilities. For example, it is 

position invariant? Is the accuracy of the parameter estimates sensitive to the shape of the 

SQ being modeled? How densely do we need to sample a SQ in order to be reasonably 

certain of being able to model it? Is the method robust when the input data is noisy? Several 

experiments were designed and run in order to answer these, and other, questions. 

Before we could run the experiments, we had to determine values for the constants 

that weight the various terms in the objective function and control the operation of the 

minimization procedure. There is no method of determining, a-priori, the best set of values 

for these constants. Therefore, a search procedure was written that would vary these over a 

range and record SSEN for each set. The best performing values were identified, tighter 

bounds were set on the parameters, and the procedure repeated. Best performing in this 

case means most reliable over a range of noise values. The most reliable set of values found 

are given below in Table 1. 



TABLE 1 

BEST PERFORMING CONSTANTS 
FORSQNETl 

Parameter Value 
C1 2.0 
Cc 10.0 
Cp 1.0 
p 3 

ss 0.1 
chi_tol 1.0 
lm_iters 3 

ilimit 3 
h freq 1 
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Unless stated otherwise, all the experiments were run with these figures. There are 

too many parameters to plot a meaningful figure showing the results of this process, but we 

can use surface plots to show the behavior as two parameters are varied and the rest held 

constant. Examples of the behavior are shown in figures 13 and 14. The first shows that if 

the interpolation term is not given enough weight, the cost of inserting a discontinuity 

becomes too expensive and a single SQ is fit to the data. The consequent poor fit is the high 

plateau at the back of figure 13. On the other hand, if C1 is too big, extra discontinuities 

will be inserted to ensure closer and closer fits to noise in the data. This is the relatively 

small rise at the front of the figure. Figure 14 shows that having too small a neighborhood, 

or running the minimization too long can lead to estimating too many SQs in an attempt to 

fit the noise. Figure 15 plots the input data and the recovered superquadrics for a run using 

the most reliable parameters listed above. As you can see, the fit is quite close. This is 

confirmed by looking at the input and estimated parameter vectors, which are given below 

in Table 2. All these figures illustrate another problem - the reader must be aware of the 

axes scales. The ~llipses in figure 15 are actually circles. In surface plots, automatic scaling 

can make mountains out of molehills. 
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Figure 15: Input Data and Estimated Superquadrics 

TABLE2 

INPUT PARAMETERS, ESTIMATED PARAMETERS, AND 
ESTIMATION ERROR FOR SQNETl 

a1 a2 XO 0 e1 
Input SQl 2.5 2.5 3.0 5.0 1.0 

Estimated SQ 1 2.227 2.204 2.806 5.288 1.008 
ErrorSQl -0.273 -0.296 -0.194 0.288 0.008 

InputSQ2 2.5 2.5 7.0 15.0 1.0 
Estimated SQ2 2.388 2.167 7.006 15.330 1.032 

ErrorSQ2 -0.112 -0.333 0.006 0.330 0.032 
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EXPeriment ~ Position Invariance 

The first property of the network we would like to verify is its position invariance. 

Since the position of the SQ is explicitly modeled in the objective function (32) we would 

not expect the quality of the estimated parameters to depend upon the object's position. To 

verify this, a simple experiment was run. The dataset for this experiment was a single SQ 

whose xo and yo parameters were both varied 11 times over the range 4.0 to 5.0. As 

expected, the technique was insensitive to changes in yo. However, it did show some slight 

variations in SSEN when xo was varied. Figure 16 shows this variation for a fixed yo. The 

changes in SSEN, are relatively minor, even the worst score has very reasonable parameter 

estimates, as can be seen in Figure 17. The differences in SSEN are attributed to small 

numerical differences due to the object being sampled at slightly different places. 
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Figure 16: SSENVS. Position 
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Figure 17:Data and Estimated SQs for xo = 4.0 

Experiment 2: Size Invariance 

Another important property that we wish to verify is size invariance. In other 

words, is the quality of the parameter estimates invariant to the size of the SQs we are 

modeling? This is equivalent to asking how many samples of the SQ are needed to 

accurately model it. The data set for this experiment has a single SQ, and the number of 

data points which sample the SQ are varied from 7 to 23. The size of the local 

neighborhood was also varied to see if this has an effect on the number of samples needed 

for accurate estimation. Figure 18 shows the effect these have on SSEN. We see that the 

size of the neighborhood does not have a strong effect. The behavior with respect to the 

number of samples is more complex, although generally the more samples the better. The 
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graph below is somewhat deceptive because of the scaling. Even the worst-performing data 

point has made very reasonable estimates of the parameters. Given the small number of 

samples available, this seems like a very good result. 
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Figure 18: SSEN vs. Sampling Density 

E:x;periment 3: Shape Invariance:. Aspect Ratio 
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A third important invariance property is shape invariance. In other words, is the 

quality of the parameter estimates is affected by the shape of the SQ we are trying to model? 

There are two ways we can change the shape of a SQ ellipse. The first, which is the subject 

of this experiment, is to change its aspect ratio by use of the a 1 and a2 parameters. The 

second, which is the subject of the next experiment, is to change the SQ shape parameter 
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The data set for this experiment is a single SQ whose aspect ratio is changed by 

varying a2fal from 1/4 to 4/1. This changes the shape of the SQ from a short, broad 

ellipse, through a sphere, to a tall, thin ellipse. In each run the SQ was sampled 10 times. 

Figure 19 shows that the technique is relatively insensitive to changes in aspect ratio, at 

least over the range tested. 
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Figure 19: SSENVS. Aspect Ratio 

Experiment 4: Shape Invariance :. SQ Shape Parameter 

The previous experiment mentioned that changing the aspect ratio and the shape 

parameter were the two ways of changing the shape of the SQ. This experiment was 

designed to see if SQNETl 's performance is invariant to changes in the shape parameter. 
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Up to now, all the experiments have been run with SQs whose shape parameter was equal 

to 1.0, i.e., circles or ellipses. 

The dataset for this experiment consisted of a single SQ whose e1 parameter is 

varied over the range 0.2 to 2.0. This changes its shape from roughly square, through a 

sphere, to a diamond. Figure 20 shows the effect this has on SSEN. Generally, the results 

are good until the shape becomes very close to a square. This result is expected, given the 

way we are sampling the SQ. Figure 21 shows the data and estimated SQ for the case 

where e1 = 0.2. Note that we have essentially no information from the sides of the square, 

therefore we have no information about the size of the SQ or the location of its center. 

Given that lack of information, the estimated parameters explain the data about as well as 

can be expected. 
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Figure 20: SSEN vs. SQ Shape 
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Figure 21: Data and Estimated SQ for e1 = 0.2 

Experiment 5: Sensitivity to Number of SQs. 

One of the motivations for the development of this technique was the inability of 

Solina's technique to handle data sets with more than a few superquadrics. To see if 

SQNETl overcomes this problem, data sets with varying numbers of SQs were generated. 

Figure 22 shows the effect on SSEN as the number of SQs in the data set is varied from 1 

to 15. The SQs have identical size and shape parameters (a1 = a2 = 2.5, e1 = 1.0). The 

position of each SQ is set so that the SQs usually, but not always, have a slight overlap in 

the x-direction. The yo parameter is increased by 5 for each SQ. The number of data points 

is increased in each set, so that each SQ is sampled approximately 10 times. Each time the 

correct number of SQs was estimated, and the variations in SSEN are at a level attributable 



to sampling differences. The worst performance was for 6 SQs, that case is displayed in 

figure 23. 
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Figure 22: SSEN vs. Number of Superquadrics in Data 
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Figure 23: Data and Six Estimated SQs 

Experiment 6: Noise Immunity 
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It is important to know how robust any machine vision algorithm is to noise in its 

input data. For SQNETl, increasing the neighborhood size as the data becomes noisier 

may offer some immunity. The purpose of this experiment was to test this hypothesis. The 

data set for this experiment was the same as that in figure 15, except that it was corrupted 

with different levels of uniform noise. Several runs were made at each noise level in order 

to measure the effect of different neighborhood sizes. Figure 24 shows the effect these had 

on SSEN. We can see that performance falls off for moderately noisy data, but that a larger 

neighborhood size can help to overcome this. For very clean data the larger neighborhood 



size hurts performance slightly. This effect is believed to be due to a poor choice of 

convergence criteria. 
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Experiment ~ Ability tQ Discriminate Overlap_pin~ fil2s. 
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The primary reason for choosing the Koch network as a basis for SQNETl was its 

ability to form breakpoints to separate image regions. It was believed that these would 

allow the network to discriminate SQs which touched in the image, but were still best 

modeled as separate objects. Naturally, there is a tradeoff between this discriminatory 

capability and the noise tolerance. An experiment was designed to determine the 

discriminatory c~pability of the network given a reasonable degree of noise immunity. The 

dataset is similar to that of figure 15, but for each run the difference in y-position of the two 
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SQs was reduced. Figure 25 shows the results for differences of 10.0 to 0.0. The network 

performs well until the separation becomes less than 4. At a separation of 3 the 

preprocessing step is still able to distinguish the SQs, but SQNETl discards the 

discontinuity between the two SQs. The preprocessing step cannot distinguish the next two 

datasets, nor can SQNETl. 
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Figure 25: SSEN vs. Separation of SQs 



CHAPTERV 

TWO-DIMENSIONAL SUPERQUADRIC NETWORK 

The results from SQNETl were encouraging enough to investigate extending it to a 

2D network for the estimation of 3D SQs (SQNET2). Once again, Koch's lead was 

followed and a vector version of his objective function was created that included the SQ 

model and the larger local neighborhood. This new objective function (36) is one of the 

unique contributions of this course of research, and was one of its primary goals. 

However, extending (32) to two dimensions is not as simple as the extension for Koch's 

data smoothing network. As with his network, the breakpoint terms must be extended to 

encourage straight lines and penalize adjacent parallel edges. Intersecting lines should also 

be accounted for. This extension is discussed in [35] and was adopted unchanged for 

SQNET2. A more difficult problem was the need to reformulate the product term which 

removes data points from the parameter estimation if there is an intervening discontinuity. 

The difficulty of doing this for all pixels in the small neighborhood around the parameter 

vector of interest led me to a simpler formulation. Instead of using all the pixels, only those 

in the cross-shaped section centered on the parameter vector are used (see figure 26). This 

allows a much simpler determination of the effect of intervening discontinuities when 

deciding if a data point should be included or excluded from the minimization. 
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+ Vi,j [(1-Vi,j+t-hi,j-hi+l,j)2 + (1-Vi,j-I-hij-I-hi+l,j-1)2] (36) 

This mildly hideous expression is the 2D analog of (32). Nr and Ne are the number of rows 

and columns in the image, respectively. The vector of parameter estimates at pixel (i,j) is 

Aij· The breakpoint between pixels (i,j) and (i+ 1,j) is hij, while Vi,j is the breakpoint 

between sites (i,j) and (i,j+ 1). Because of the results of the previous chapter, hij and Vi,j 

are thresholded versions of underlying state variables. If pixel (i,j) projects onto an object, 

the xyz coordinates of that patch of the object are in .2ilj. This is set to a sentinel value if the 

pixel projects onto the background. F(Aij, &,Vis the SQ inside/outside function which 

measures the fit of the data from pixel (s,t) to the parameters at pixel (i,j). The product 

terms exclude data points from contributing to the SQ model-based fit if there is a 

discontinuity between them and the parameter vector of interest. The C1 constant weights 

the importance of the interpolation term relative to that of the model-based term. The Cc 

term imposes a constant cost for each discontinuity, while the Cp term penalizes parallel 

discontinuities at adjacent sites. Finally, the CL term promotes the formation of continuous 

lines and discourages intersections and discontinuous line segments. 
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General Organization of SQNETI 

The organization of SQNETI is illustrated in figure 26. Two views, top and 

orthographic, are given. Both show a single parameter vector, its associated data 

neighborhood, and the breakpoints that go with the data neighborhood. The rest of the 

network is the obvious extension, with a parameter vector for every pixel except for the p 

pixel border at each edge. A horizontal breakpoint is placed between every pixel on the 

same row, while vertical breakpoints are placed between all pixels in the same column. The 

data neighborhood is 2p+ 1 by 2p+ 1, but as mentioned earlier, not all the pixels within the 

neighborhood are used. Only the pixels in the same row or column as the parameter vector 

are used in the data neighborhood. This is illustrated by the highlighting of those data 

points. 

Figure 26: Organization of 2D SQNET (a) Top View (b) Orthographic View 
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Important discontinuities in the 2D image correspond to the borders of objects. The 

line of highlighted breakpoints illustrates this. Two of the breakpoints are highlighted with 

a slightly lighter pattern. These breakpoints, which lie on the cross-shaped region, are the 

ones actually used in the parameter estimation. The data points that are excluded from the 

estimation are highlighted with a lighter pattern than the data points that are used in the 

estimation. 

The 2D network also uses an interpolation term, although the neighboring 

parameter vectors are not shown in figure 26. The parameter vectors used are the 4 nearest 

neighboring vectors. No interpolation is performed if the intervening breakpoint is set. As 

with SQNETl, a hybrid minimization algorithm is used where the SQ model term is 

minimized by a LM technique, while simple gradient descent was used to do the parameter 

interpolation and discontinuity updates. 

This network organization has the disadvantage of using large numbers of 

parameters, a 5122 image would have to estimate over 2 million parameters! However, the 

hybrid technique means that each pixel has a separate minimization, so we are running 5122 

separate minimizations, each estimating 8 parameters, not one minimization with more than 

2 million parameters. Also, background pixels do not participate in the estimation. The 

approach has the advantage of simplicity. Using fewer parameter vectors would force us to 

deal with the issue of how to handle object boundaries that intersected the region of the 

images described by a single parameter vector. As with the ID network, it was judged that 

this would be an unnecessary complication for the initial investigation into the technique. 

The objective function for SQNET2 proved more difficult to minimize than that of 

SQNETl. The main problem was that much greater attention had to be paid to the 

numerical aspects of the SQ model term, specifically to the (x-xo), (y-yo), and (z-zo) 

factors. Because we can view the SQs from any orientation, we will frequently see the 

intersection of the SQ with the planes where those factors vanish. Those intersections 

would frequently blow up due to trying to take the log of zero. To combat this, the SQ 
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portion of the minimization was special cased to deal with the possibility of these factors 

going to zero. Anytime one of those factors became less than a certain tolerance (0.1), a 

special cased version of the model and its partials was used that assumed the factor was 0. 

This avoided the numerical problems. 

Preprocessing and Postprocessing 

SQNET2, like SQNETl, uses an iterative minimization algorithm. Therefore, its 

speed and accuracy are dependant upon the initial parameter estimates. This section 

describes the input data, the preprocessing performed to obtain the initial parameter 

estimates, and the postprocessing performed to convert regions of parameter estimates into 

the vectors of parameter estimates that are the desired output of the technique. 

All of the images used in this study were synthetic. A freely-available graphics 

package, SIPP [69], was modified to produce range images such as those from laser 

rangefinders. Pixels that project onto an object are assigned a depth value equal to the 

distance from the eyepoint to that patch on the imaged object. Pixels that do not project onto 

objects are assigned a sentinel depth value. The SQs in the images are actually fairly coarse 

polyhedral approximations to SQs, with 16 divisions around the equator and 9 lines of 

latitude. 

The first step in preprocessing the data for SQNET2 uses an inverse perspective 

projection to convert the range information in each pixel into an xyz triple, based on the 

pixel's row and column indices, the depth value in the pixel, and an eye position. The 

resulting three-band image is referred to as the triples image. Sentinel pixels are assigned a 

sentinel triple. 

The triples image is scanned by a region labelling procedure. An edge-detection 

filter is run over the triples image in order to find region boundaries. These boundaries 

form closed curves. The 4-connected regions within those curves are marked as regions. 

The output is a single band image where all pixels within these regions are assigned a 



68 

region label. The labels are small integers in the range from one to the number of regions. 

Sentinel pixels are assigned a region label of zero. 

The algorithm for the initial parameter estimation uses the regions and triples images 

as input, and produces two output images. The first output image has eight bands, the 

second has two bands. The eight bands correspond to the eight parameters that need to be 

estimated at each non-sentinel pixel (three for position, three for size, and two for the SQ 

shape parameters). The two-band image contains the horizontal and vertical discontinuity 

estimates. The triples and regions image are scanned twice in raster order. During the first 

pass, the elements in the discontinuity image are set as region borders are encountered. 

Sentinel pixels have all their surrounding discontinuity elements set Within regions, a 

lookup table of the minimum and maximum x, y, and z values is built. These are used to 

form a 3D version of the bounding box described in the preprocessing for SQNETl (see 

figure 12). At the end of the first pass, the bounding box information in the lookup table is 

used to compute the initial parameter estimates. The size parameters, a1, a2, and a3 are set 

to 1/2 the size of the box in the respective directions. The position parameters, xo, YO, and 

zo are set to the center of the box. The shape parameters, e1 and e2 are always set to 1.0, 

which means that objects are assumed to be ellipsoids. These parameter estimates are kept 

in a lookup table indexed by the region label. During the second pass, each non-sentinel 

pixel looks up its parameter vector in the lookup table, using its region label as the index. 

Pixels outside the regions are set to sentinel values. 

The output of SQNET2 are refined estimates of the SQ parameters and 

discontinuities for each pixel. These must be post-processed to yield a list of parameter 

vectors, with one parameter vector for each SQ found in the image. The first step in 

postprocessing is to run the region detector over the parameter estimates image in order to 

find any new SQs discovered in the image. The median of the parameters within each of 

these regions is then found, and is output as the estimate for that region. 
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Performance was evaluated using a technique exactly analogous to that for 

SQNETl. The scoring program read the final regions image, the final parameter estimate 

vectors, and the triples image. The estimates for a region were propagated to all pixels in 

the region. The triples data for that pixel was then used in the expression (1 - F<Aij, Aij))2, 

and the squared errors summed This SSE was normalized by the number of active pixels. 

A penalty was added if the number of SQs discovered differed from the number of SQs 

used to generate the input image. 

Results 

After determining a likely set of constants for the various costs and minimization 

controls, several experiments were run to test the ability of SQNET2 to estimate the SQ 

parameters. As for SQNETl, there is no a-priori method for determining the best values for 

the weights in the objective function and the various iteration limits, convergence 

tolerances, and update frequencies in the minimization procedure. The simple search 

procedure was repeated in order to find a set of constants that would successfully estimate 

the parameters for a range of noise levels. The best performing constants found are given 

below in Table 3. These values were used in all subsequent experiments unless mentioned 

otherwise. 



TABLE3 

BEST PERFORMING CONSTANTS 
FORSQNET2 

Parameter Value 
C1 1.0 
Cc 7.0 
Cp 1.0 
CL 1.0 
p 3 
ss 0.1 

chi_tol 0.1 
lm_iters 3 

iters 2 
h freq 1 

As with SQNETl, a range of experiments were devised to test various invariance 

properties of SQNET2. However, because of the results from SQNETl, not all the 

experiments were repeated. Specifically, because SQNETl was not able to discriminate 

overlapping SQs that the preprocessing could not discriminate, no attempt was made to 

have SQNET2 discriminate overlapping SQs. 
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Experiment 1: Position Invariance 

The first experiment was to verify the position invariance of SQNET2. The data set 

for this experimep.t consisted of a unit sphere moved in ten steps along a line through the 

origin, perpendicular to the viewing axis. Figure 27 shows the results of this experiment. 

As for SQNETl, there are some differences in SSEN, but they are at a level that can 

adequately be accounted for by the interaction between sampling points and the coarse 

polygonal approximation to a SQ in for the input data. 
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Figure 27: SSEN vs. Position 
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Experiment~~ Invariance 

\ 

In this experiment the size invariance of SQNET2 was investigated. Varying the 

size of the SQ for a fixed sampling density is equivalent to varying the sampling density for 

a fixed size SQ, so this experiment also provides information on how densely we must 

sample the SQ in order to ensure adequate recovery. The data set for this experiment 

consisted of a singe SQ ellipse placed at the origin. Its size was varied from covering 45 to 

4096 pixels.The local neighborhood size was also varied. Figure 28 shows that the quality 

of the fit is good until the SQ becomes quite large. At this point the SQ fills the 4096 pixel 

image used in this test, therefore portions of the SQ are outside of the picture. The loss of 

these areas of high curvature is believed to be the main contributor to the poor fit. The 

neighborhood size has only a minor effect on the fit. We see that the recovery works quite 

well for small numbers of data points, at the smallest size the SQ is contained in a 7x7 

neighborhood. 
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Experiment .l;, ~ Invariance :. Aspect RfiliQ 

This experiment was designed to test the invariance of SQNET2 to changes in the 

aspect ratio of the SQs it is trying to model. Two sets of experiments were run. The first, 

shown in Figure 29 A, varied the a1 and a2 parameters between 0.2 and 4.0 while holding 

a3 at 1.0. The second, shown in figure 29 B,varied a1 and a3 between 0.2 and 4.0 while 

holding a2 at 1.0. In order to keep the number of pixels covered by the differently shaped 

SQs roughly constant, the size parameters were actually normalized so that <a1, a2, a3> 

was unit length. 

We see that the aspect ratio does have an effect Generally, the recovery is less 

accurate as the SQ gets further away from a sphere. This is especially true for the very high 

aspect ratios of approximately 20: 1. However, the explanation for this effect is more 

involved than a simple lack of invariance to changes in aspect ratio. The three worst­

performing cases in figure 29 are for highly elongated ellipsoids. Those three ellipsoids are 

aligned with the axes of the world coordinate system, and are viewed from a position along 

the direction vector <l, 1, 1>. This is illustrated below in figure 30. Recall that the 

parameters are fit to data from a cross-shaped region. This is the worst choice give the 

orientation of the SQs in the image, since only a few pixels at the center of the cross will lie 

on the object 
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Experiment 4: fillm Invariance :: .s..Q Shape Parameters 

The previous experiment measured the effects of aspect ratio on the accuracy of 

SQNET2's estimates. We also need to know if the technique displays any significant 

sensitivity to the shape parameters of the SQs it is trying to model. The input data for this 

experiment was a single unit SQ positioned at the origin. Both e1 and e2 were varied from 

0.2 to 2.0 for a total of 25 runs. The results, presented in figure 31, again show that the 

estimation error increases as the SQ shape gets further away from spherical. The errors are 

greater than those for high aspect ratios. The most probable cause for these errors was also 

mentioned in the previous chapter, namely the lack of information provided by flat faces. 

All four comers of the figure below correspond to objects with flat faces. 
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Figure 31: SSEN vs. SQ Shape Parameters 
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Experiment .5.;. Viewoint Invariance 

For SQNETl, the viewing direction was always down the y-axis. SQNET2 was 

run on datasets that did not have this restriction. Therefore, this experiment was designed 

to measure any sensitivity the technique might have to viewpoint. The dataset for this 

experiment consisted of a single SQ at the origin whose shape parameters were varied from 

0.2 to 2.0. This means its shape varied from approximately cubical, through spherical, to 

an octahedron. Each shape was viewed from seven positions in the first octant whose 

longitude and latitude were both equal to the viewing angle specified in figure 32. Since the 

SQs are symmetric, this is considered to be adequate coverage. Viewing directions directly 

along axes are avoided because of the principle of general position. The results of the 

experiment show that there is a sensitivity to viewing position, especially for cubical and 

octahedral shapes. This is expected due to the results of the previous experiment. The 

smaller sensitivity to viewpoint noted for the spherical shape is attributed to the coarse 

polyhedral approximation to a sphere actually used. 
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CHAPTER VI 

CONCLUSIONS 

Summary 

This dissertation began by mentioning some of the motivations for machine vision 

and briefly reviewing some of the 3D object modeling techniques used in the field. In 

Chapter II we described an interesting geometric solid, the superquadric (SQ), and 

reviewed the work done using it as a modeling primitive in machine vision. Special 

attention was paid to the work of Solina [58], and several advantages and disadvantages of 

his technique were noted. We cited a unique parallel implementation of his method [14] to 

show that one of,the disadvantages, speed, could be overcome. We also noted that he was 

not exploiting the very powerful property of image coherence. Chapter III reviewed the 

basics of neural networks, giving details on the operation of a few example networks. 

Close attention was paid to a neural network developed by Christof Koch and his 

colleagues [35]. Its operation was discussed and results presented. We also noted the 

results of a unique comparison between his network and a median filter [15]. 

The remainder of the dissertation described attempts to use a modified Koch 

network to exploit image coherence in an attempt to overcome the problems noted with 

Solina's approach to SQD. Chapter IV described initial efforts which used a new vector 

extension to Koch's ID network. The objective function of this network (SQNETl), which 

incorporates a term to model 2D superellipses, was another of the unique developments in 

this thesis. The objective function proved too difficult to minimize by the simple gradient 

crawl of the Koch network, so a hybrid minimization algorithm was developed. This new 

minimization algorithm was able to minimize the objective function, although certain 
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limitations were noted. One of these limitations, recovery of squares, was expected. The 

other, an inability to find the boundary between nearby SQs, was disappointing since it 

was a major motivation for the technique. Chapter V described the extension of SQNETl to 

a 2D network (SQNET2) for modeling 3D superellipsoids. This unique network, which 

was the goal of the thesis, was also successful in estimating the SQ parameters in most 

cases. However, the problems evident in SQNETl were even more noticeable in SQNET2. 

Suitability of Koch Network Approach 

As was noted in Chapter IV, a straightforward modification of the Koch network 

was not able to minimize the portion of the objective function that was based on the SQ 

inside/outside function (3). Recent discussions with neural network researchers at 

Cambridge have shed additional light on the difficulties experienced [l, 2, 21]. Hopfield 

networks can be analyzed in terms of the subspaces generated by the eigenvectors of their 

connection matricies. These subspaces take the form of hyperplanes within the N­

dimensional hypercube of possible solutions, where N is the number of units in the 

network. If the network is attempting to solve a combinatorial problem, the solution is 

further constrained to lie at one comer of the hypercube. This additional constraint is quite 

powerful, and can be used to markedly improve the performance of the network. Without 

this extra constraint, Hopfield networks are poorly suited to non-quadratic, non­

combinatorial optimization problems. Its simple gradient crawl leaves it open to the classic 

problem of long shallow valleys. 

Suitability of Hybrid Method 

While the Koch network was not capable of minimizing the SQ portion of the 

objective function, I still thought that the Koch network's approach to simultaneously 

discovering image regions and image edges was interesting. I also thought that the 

objective function it had inspired (32) was a natural way for exploiting image locality in 
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order to overcome the problems noted with Solina's network. Therefore I investigated an 

approach as close as possible to the spirit of the Koch network, but used the more powerful 

Levenberg-Marquardt (LM) minimization technique to handle the SQ portion of the 

objective function. By exploiting the natural parallelism in the problem, the hybrid 

approach also addresses the storage problem associated with minimization algorithms that 

compute or approximate the Hessian matrix. While neural network researches would like to 

use such methods to minimize their objective functions, they frequently have so many 

parameters to estimate that such methods are impractical. 

The hybrid method proved that it was capable of minimizing the objective function 

and obtaining good parameter estimates. The characteristics of SQNETl were tested to find 

out its sensitivity to noise in the data, sampling density, aspect ratio, etc. The technique 

was usually successful in finding quite good estimates for the underlying superquadrics. 

Some problems were noted as shapes tended toward squares, due to the loss of information 

from the sides of the SQ. We also saw that the technique was not able to discriminate SQs 

if they were positioned very close together. This was disappointing, since it was one of the 

main motivations for investigating the technique. 

Despite these problems, SQNETl appeared promising enough to warrant 

investigating its extension to recovering the parameters for 3-D SQs. SQNET2 was 

implemented and tested to discover its invariance to position, size, aspect ratio, shape 

parameters and viewing position. SQNET2 was also successful in estimating the SQ 

parameters under most conditions, but exhibited greater sensitivity to the situations which 

gave SQNETl trouble. Basically, the performance fell off as the SQ shape got further away 

from a sphere. There were two causes for this. The first was that the cross-shaped 

neighborhood performed poorly if the orientation of the SQ avoided most of the pixels in 

the neighborhood. This is natural, but it does indicate that the cross-shaped neighborhood 

is not a good choice for general purpose use. The second problem was that SQs with flat 

rather than curved faces were more difficult to recover. Most of this difficulty was ascribed 
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to a lack of curvature information. This network's sensitivity to viewing position is related 

to this lack of information. Performance is best from viewpoints that show as many faces 

as possible. The rest of the difficulty was ascribed to an increasingly non-quadratic error 

function as the SQ exponents were moved away from 1.0. These exponents make the SQ 

function difficult to minimize. Careful handling of the x = xo, y = YO, and z = zo planes 

was necessary in order to avoid numerical difficulties. 

Within the limitations noted above, the hybrid technique worked well. However, 

this is mostly because of the capabilities of the LM algorithm. The difference in 

convergence order between the LM algorithm and the gradient crawl algorithm means that 

the interpolation term does not have enough time enforce smoothness of the parameter 

estimates before the LM algorithm begins to overfit. 

Comparison with Solina's Technique 

The goal of the research was to improve Solina's method by using Koch's network 

as a framework to take advantage of image coherence. Earlier we noted three particular 

problems with Solina's method. The first was speed, the second was the limited number of 

SQs that could be recovered, and the third was that the recovery time was serial in the 

number of SQs recovered. How well did the hybrid approach meet the goals of the project? 

Let us examine the problems in order. 

First, speed. The hybrid network is not faster then Solina's technique, in fact it's 

computational complexity is greater. As mentioned earlier, for each iteration of the LM 

algorithm, the network requires MN evaluations of the objective function and its partial 

derivatives, where M is the number of active data points and N is the size of the local 

neighborhood. Solina's only requires M evaluations per LM step. The hybrid approach 

also has the expense of the interpolation and discontinuity terms. However, both 

approaches are very amenable to parallel implementation, so the problems with speed are 

not serious. 
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The second problem with Salina's method was that his multiple object recovery 

technique severely limited the number of SQs that could be estimated. The SQ network 

approach can handle large numbers of SQs in an image. However, this is not the large 

improvement it initially appears to be. Salina's technique can sometimes disambiguate SQs 

that overlap in image space, or even interpenetrate in object space. The hybrid technique 

has not ever managed to form the continuous line of discontinuity elements needed to 

separate SQs that touch. While the hybrid approach can handle many more objects than 

Salina's technique, they must be surrounded by a border of background pixels, or very 

easy to separate in a preprocessing step. 

The third problem with Salina's approach was that it recovered the SQs serially, 

with the largest one being estimated first. The hybrid approach can recover all the SQs in 

parallel, but again, this is a minor improvement. If the regions had been separated in a 

preprocessing step, Salina's method could be extended to recover them in parallel. 

However, this preprocessing step could well be a mixed blessing. While Salina's technique 

would be able to discover if the preprocessing step had incorrectly grouped the data from 

two SQs into one region, it would not be able to do the converse. 

In summary, the SQNET2 technique works, but not as well as I had initially hoped. 

It does exploit image coherence, which gives it some advantages over Salina's approach. 

However, these advantages could be matched and exceeded if Salina's approach were 

developed further to use pre-segmented range data while not excluding the possibility of 

merging regions. The actual SQ parameter estimation of SQNET2 works quite well for 

many situations, but appears inferior to that of Salina's for objects with flat faces. The 

small neighborhood size limits the information available to estimate any one parameter 

vector. This means that pixels in the middle of a face do not have enough information to 

make reliable estimates. The difference in convergence order between the LM and the 

gradient crawl algorithms means that there is not enough time for information to propagate 

across regions and improve those estimates before the LM technique begins to overfit. 
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Guidelines for Future Research 

Several simplifying assumptions were made in the course of this research. For 

example, the objective functions in this study do not attempt to model rotated or deformed 

SQs. Removing these restrictions would be a subject for a straightforward extension of the 

present research. However, they served their purpose in allowing an examination of the 

suitability of an approach to object modeling before getting bogged down in a mass of 

details. Another obvious extension would be to use real rangefinder data rather than the 

artificial data used in this study. 

Another possible course of research which closely follows this one would be to pull 

the interpolation term into the LM minimization algorithm, while still using a different 

method to estimate the breakpoints. This would overccme any problems due to the 

difference in convergence order between the LM and gradient crawl methods. The product 

terms which exclude data points could also be reformulated to use other than cross-shaped 

neighborhoods. 

Only slightly further afield from this study would be to investigate network 

organizations other than one parameter vector per pixel. Other spatially organized neural 

networks, such as Kohonen's Self-Organizing Map [37], might provide a better model for 

this purpose. Certainly, spatial coherence should be used in the preprocessing stages. 

However, the object modeling stage should be able to overcome errors in the preprocessing 

algorithm's assignment of points to candidate SQs. Extensions to Solina's method are a 

topic that might prove fruitful. 

A topic of more general interest, and one that I think will be pursued by may people 

who will never know of this thesis, is the development of minimization algorithms that can 

handle large numbers of parameters while not sacrificing all the benefits of methods that 

approximate the Hessian matrix. The hybrid network developed during this study was able 

to do so by taking advantage of parallelism inherent in the problem, parallelism that was 
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due to image coherence. The search for general methods should keep many researchers 

busy for several years, and a successful method would prove a great benefit to many fields. 

Finally, as a more general guideline to vision researchers, it appears that attempting 

to have an object modelling technique simultaneously perform data segmentation is a bad 

idea. While it is an attractive idea to avoid the "chicken and egg" problem that has bedeviled 

segmentation for so long, this does not appear to be the way to do it. However, the 

limitations of the standard low level to medium level to high level pipeline remain. The 

object modeling phase must be able to overcome bad decisions made in preprocessing 

stages. Pavlidis [44] believes that this layered approach is one of the main impediments to 

progress in machine vision. Finding algorithms to overcome it is therefore crucial to 

significant advances in this field. 
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