
A MASSIVELY PARALLEL APPROACH

TO MODELING 3D OBJECTS

IN MACIIlNE VISION

By

RONALD ELLISON DANIEL JR

Bachelor of Science in Electrical Engineering
Oklahoma State University

Stillwater, Oklahoma
1985

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1987

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
DOCTOR OF PHILOSOPHY

May, 1993

OKLAHOMA STATE UNIVERSITY

A MASSNELY PARALLEL APPROACH

TO MODELING 30 OBJECTS

IN MACIIlNE VISION

Thesis Approved:

0
o~~~c.~

Dean of the Graduate College

ii

ACKNOWLEDGEMENTS

Superquadric Description is an interesting technique for modeling 3D objects in

machine vision tasks. It was first proposed by Dr. Alex Pentland, whom I would like to

thank for his encouragement and ready supply of references. An improved approach to

computing the description was developed by Dr. Franc Solina, whom I would like to thank

for the copy of his dissertation that started this line of research.

My first thanks go to Dr. Keith Teague, my principal advisor, for his constant

attention, proposal-writing skills, and friendship.Dr. James Baker, Head of the School of

Electrical and Computer Engineering, deserves thanks for the constant employment that

made my course of study possible. Additional thanks in this area go to Bill Harland of

Texas Instruments for supervising the contract which supported two years of this research.

Prof. Frank Fallside and Dr. Richard Prager of Cambridge University Engineering Dept.

also have my thanks for giving me considerable time away from my work so that I could

finish this study. I would also like to thank the Office of Naval Research, the University

Center for Energy Research, and the Defense Advanced Research Projects Agency for their

support of earlier stages of the research.

Special thanks go to Mike Carter for all the code we wrote and all he taught me

during the process. Dr. Charles Bacon, Chairman of my Advisory Committee, deserves

special mention for his support, faith, and example. Finally, this dissertation is dedicated to

my wife, Laura, and my daughter, Fiona. It has been a long, hard slog to reach this stage,

but we made it through together.

Ill

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 1

Object Modeling Techniques "...................................... 2

II. SUPERQUADRICS AND SUPERQUADRIC DESCRIPTION.................. 8

Superquadrics. 8
Superquadric Parameter Estimation . 11

III. NEURAL NETWORKS 20

Neural Network Characterization.. 21
Supervised Learning Networks ,........... 22
Unsupervised Learning Networks... 25
Hopfield Network 28
Koch Network... 30

IV. INITIAL SUPERQUADRIC NETWORK... 34

General Organization of the SQ Network :... 35
SQ ,Network Objective Function... 37
SQNETl Simulations and Results.,... 41
Hybrid Algorithm.. 43
Preprocessing and Postprocessing .. 47
Results . 49

V. TWO-DIMENSIONAL SUPERQUADRIC NETWORK.......................... 63

General Organization of SQNET2 ... 65
Preprocessing and Postprocessing . 67
Results . 69

VI. CONCLUSIONS .. 79

Summary... 79
Suitability of Koch Network Approach... 80
Suitability of Hybrid Method... 80
Comparison with Solina's Technique ... 82
Guidelines for Future Research.. 84

BIBLIOGRAPHY ... 86

lV

LIST OF TABLES

Table Page

1. Best Performing Constants for SQNETl . 50

2. Input 'Parameters, Estimated Parameters, and Estimation Error for
SQNETl .. 52

3. Best Performing Constants for SQNET2... 70

V

Figure

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

LIST OF FIGURES

Page

Simple Object and its CSG Representation . 5

Unit Superquadrics vs. e1 and e2 . 9

Deformed Superquadrics.. 10

ARTl Network... 26

4-Unit Hopfield Network... 29

lD Least-Squares Network Results.. 32

Results from 2D Koch Network . 32

Local View of the Organization of the SQ Network . 36

SQNETl Organization... 39

E vs. a2 (y-size) and YO (y-position) ... 42

Cause of Correlation between yo and a2.. 43

Initial Parameter Estimation.. 48

SSEN vs. Interpolation and Discontinuity Costs................................... 51

SSEN vs. p and LM_iters........... 51

Input Data and Estimated Superquadrics . 52

SSEN vs. Position ... : 53

Data and Estimated SQs for xo = 4.0 . 54

SSEN vs. Sampling Density.. 55

SSEN vs. Aspect Ratio . 56

SSEN vs. SQ Shape . .. 57

Data and Estimated SQ for e1 = 0.2.. 58

V1

Figure

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Page

SSEN vs. Number of Superquadrics in Data . 59

Data and Six Estimated SQs . 60

SSEN vs. SNR and p .. 61

SSEN vs. Separation of SQs .. 62

Organization of 2D SQNET (a) Top View (b) Orthographic View 65

SSEN vs. Position 71

SSENvs. Neighborhood Size and Sampling Density 73

SSEN vs. Aspect Ratio.. 75

Appearance of SQs in Aspect Ratio Test. 7 5

SSEN vs. SQ Shape Parameters .. 76

SSEN vs. Viewing Angle and Shape Parameters 78

vii

LIST OF ALGORITHMS

Algorithm Page

1. Solina's Multiple Object Recovery Method... 15

2. Hybrid Minimization Algorithm for SQNETl...................................... 45

viii

CHAPTER I

INTRODUCTION

Mankind has long used machines to help carry out tasks which we find boring or

dangerous. As our machines have become more capable, the range of tasks they can handle

has increased. Many of the remaining tasks we would like to automate will require the

machines to sense their environment and to respond to it in what we consider an intelligent

fashion. One of the most useful senses for humans is sight. With it we can recognize

objects from a distance, as well as determine their location and velocity. Even unfamiliar

objects can be described and their likely properties, behavior, and purpose inferred. The

apparent ease with which we determine the identity, position, and velocity of objects belies

the extreme difficulty of the problem. Despite three decades of research, progress in

machine vision has been disappointing [44].

Machine vision processing is typically divided into several stages. The first stage,

sometimes referred to as the signals domain, operates on images and produces other

images as output. Contrast enhancement, edge finding, optic flow, etc. are typical

operations in this domain. Later processing is carried out in the symbols domain. In this

domain, objects are recognized and their behavioral properties inferred. A transformation

must be made to go from the signals domain to the symbols domain. This signals to

symbols transformation is the object modeling process.

The rest of this chapter provides a brief survey of object modeling techniques in

machine vision. Chapter II describes a particular object modeling technique known as

Superquadric Description (SQD), its promise, and the problems with its current

implementation. Chapter III describes neural networks, an area that has been the focus of a

1

2

great deal of recent research interest. The goal of the research described in this dissertation

was to see if an approach inspired by a particular neural network, the Koch network [35],

could overcome some of the problems with previous implementations of SQD. Chapter IV

describes the first network developed to test this possibility. For simplicity, the initial

network operated on I -dimensional data rather than 2 dimensional images. Chapter V

describes the extension to 2D data, while Chapter VI presents my conclusions.

Object Modeling Techniques

As mentioned earlier, Machine Vision (MV) processing is typically divided into two

domains: signals and symbols. This simple two-level characterization leaves us with the

difficult problem of the transformation from the signals domain to the symbols domain.

This transformation is the object modeling process, which is not to be confused with object

recognition. We presume that at least a partial model of the object must be built before it is

possible to recognize it. The type of model that will be assumed throughout the rest of this

paper is similar to 3D mechanical Computer Aided Design (CAD) models. While this model

provides the strongest basis for reasoning about the spatial properties of objects, not all

vision researchers assume that this sort of model is needed, or even desirable. For

example, [67] describes work where objects are recognized from linear combinations of 2D

views without ever constructing 3D information. Their approach seems to give very good

results, but it is inherently limited to recognition of known objects. While more difficult to

obtain, a full 3D object model would be necessary to support inferences into the function

and behavior of novel objects.

Many ways have been proposed to model objects in MV. See [6, 16] for surveys of

these techniques. Simple methods are rarely useful except for very limited problem

domains. An example of such a domain is a simple industrial inspection system where the

lighting and background can be strictly controlled, the objects to be recognized are few and

have dissimilar appearances, and the objects do not touch or overlap. In such a restricted

environment, a vision system might be able to use an object model that is merely the

position, orientation, and area/perimeter ratio of "blobs" in a thresholded image. The gulf

between such a restricted environment and the rich environment of the real world is

immense, making such an impoverished representation totally unsuitable for general use.

3

The complex and uncontrollable environment of the real world requires much more

powerful object modeling techniques. A few of these more powerful object modeling

techniques are surveyed in the rest of this chapter. This chapter does not attempt to survey

the large body of MV literature. The interested or naive reader is referred to [3] and [16] for

an introduction to the field. More detailed treatments of a smaller number of topics are

given in [30] and [45]. A useful survey of 3D object modeling is given in [6].

Object modeling techniques can be characterized by the representation they use for

the object, and the method of determining the representation from the image.

Representations for the shape of 3D solids can be divided into three classes: surfaces,

volumes, and sweeps [3]. Surface representations model the visible portions of curved

objects by using parametric patches, such as those used in computer graphics. For

polyhedral objects, a planar polygon representation can be used. A great deal of work has

been done with polyhedra, starting with the seminal work of Roberts [54], and the

relaxation labeling algorithm of Waltz [68]. However, since objects frequently have curved

surfaces, a polyhedral representation is not broadly applicable. A natural extension is to

use curved surface patches. As noted in [6], this is a much more difficult problem, since

the occluding contours of curved surfaces vary continuously as the viewpoint changes.

Aspect graphs [36] are an approach which has been developed to reduce this problem. An

aspect graph represents those features of an object which appear and disappear from view

as the object is viewed from different angles. These different sets of visible features are

called aspects. While these aspects can be obtained from a CAD model, it is only possible

to obtain them analytically from a relatively limited class of shapes, such as solids of

revolution [38]. Another problem with surface-based representations is that they do not

4

provide any information to support "guesses" as to the shape of the hidden side of the

object. While this is safe, humans do make such guesses, using principles of perceptual

organization such as symmetry.

The second class of object representation is volumes. Geometric solids such as

superquadrics [4] and spherical harmonics [3] fall into this class. Since superquadrics are

the representation used in this study, we postpone a discussion of them until the next

chapter. Voxels (Volume Elements) are another of these representations. Voxels represent

volumes as 3D arrays of small cells, each of which is marked as filled or empty [3]. This

representation is popular for medical imaging. In these applications the voxel might contain

an index of the transparency to X-rays, rather than a simple filled/empty indication.

The disadvantage of this approach is that the voxel must be very small to represent

curved surfaces closely. This makes the storage requirement very large. Octrees can be

used to reduce this storage requirement. If 8 voxels form a 2 x 2 x 2 array, and all of them

have the same state (filled or empty), they are replaced by a single, larger, voxel that is

filled or empty. Nonhomogeneous arrays are marked as such, and the smallervoxels are

retained as children of the node. This process is repeated hierarchically until the object is

represented by a spatial occupancy tree. The size of the volume covered by a leaf in the tree

depends on its level in the tree. This can achieve significant compression, but at the cost of

more complex algorithms to determine what shape is represented by a particular tree.

The third class of representations is known as sweeps. Generalized cylinders [8]

are by far the most popular representation in this class. These represent a volume by

sweeping a closed two-dimensional curve along a (possibly open) three-dimensional curve.

The shape of the two-dimensional curve can vary as a function of its position along the

axis. Quite elaborate shapes may be described by this representation, but recovery can be

very difficult because there are few constraints. Because of this problem, generalized

cylinders with particular constraints are frequently used [41].

5

Whichever technique is used to model primitive objects, there will always be

objects in a scene too complex to model with a single primitive. The natural solution is to

use multiple primitives to describe the shape. There are two main approaches to this

problem. The first, and simplest, is composition. In this scheme a complex object is

represented as the union of the primitive chosen as the basis for modeling shapes. This

allows a much larger class of objects to be modeled, but it has limitations. Relatively simple

objects with holes are difficult to describe without large numbers of primitives. A more

general technique for representing complex objects is Constructive Solid Geometry (CSG)

[10, 53, 64]. Primitives are combined using the set operations of union, intersection, and

difference. The model of an object is a CSG tree whose leaves are primitives and whose

internal nodes are the set operators. This is shown below in figure 1. Nodes of the CSG

tree may also be transformations which scale, translate, or rotate the subtree of that node.

Given an adequate set of primitives, almost any object can be modeled using CSG, but

there are still difficulties. CSG representations are not unique, i.e., a particular object can

be modeled using several different CSG trees. Another problem is concerned with

recovery. CSG allows the difference and intersection operators. Thus, we must recover the

shapes of primitives that, in some sense, are not really in the image.

--

f"-L-?1 1 V

Figure 1: Simple Object and its CSG Representation

6

Whatever object representation is chosen, a procedure must be developed for

recovering the parameters describing the object from an image. This recovery procedure is

quite difficult, as it forces a compromise between the generality of the models and the ease

of extracting the necessary information from the image. Early methods used high-pass

filters to extract edges from the images. These were then used to try to model objects using

a wire-frame representation [54, 68]. The deficiencies of wire frame representations soon

became evident, as did the difficulty in extracting high-quality edge information from real

images. However, work still continues in this area. Advances in edge operators have made

these more robust, although still far from perfect. Wireframe representations are no longer

used in any but the simplest systems. Instead, the edges are grouped using principles of

perceptual organization such as adjacency, co-linearity, and parallelism. Constraints are

applied to these groupings, such as the viewpoint consistency constraint [41], or

constraints on likely shapes [7, 31]. These researchers are attempting to extract generalized

cylinders which have various constraints on their shapes, rather than wireframe

representations of polyhedra.

Edges are not the only information that can be extracted from images. There is a

large family of algorithms, collectively known as Shape-From-X techniques, which

estimate the shape (surface normals) or depth (distance to) imaged objects. Binocular

disparity is the best known of these techniques, but there are a host of others that use clues

such as shading [32, 39], texture [33], specular reflections [25], focal gradients [48], or

motion [66]. These techniques do not provide the quality of information that is obtainable

from edges, so research is underway on combining the output of multiple shape-from-x

techniques [46]. While this work is underway, researchers are also using laserrangefinder

images. These provide much more accurate depth information, but still confront their users

with the problems associated with image processing.

Given depth or shape information, it should be possible to estimate the size, shape,

and position of objects in the image. Edge-based approaches can operate on depth images,

7

and are frequently used as a pre-processing step in other approaches. If an object model

with a simple analytical representation is used, there are several ways to recover the

parameters controlling its shape, size, and position. One is to iteratively adjust the

parameter estimates so as to minimize the difference between the measured values and those

predicted by the ~urrent parameter estimates. This is the approach used in this paper. A

second approach is to use a linear (or non-linear) regression, where the parameters can

potentially be estimated by the use of direct matrix operations rather than an iterative

procedure. A third technique is based on solving the differential equations for Lagrangian

dynamics, where the image data exerts simulated forces on the estimated objects to pull

them into position and shape [63].

CHAPTER II

SUPERQUADRICS AND SUPERQUADRIC

DESCRIPTION

Superquadrics

The superquadric (SQ) is an interesting geometric primitive that has been proposed

for modeling objects in machine vision, as well as in CAD/CAM (Computer Aided Design/

Computer Aided Manufacturing) [4, 5, 47, 49, 13]. Unit SQs are a 2-parameter family of

geometric solids which include spheres, cubes, cylinders, and octahedrons as special

cases. The two parameters, e1 and e2, control the roundness vs. squareness of the

longitudinal and latitudinal cross-sections. Figure 2 shows unit SQ solids for e1 and e2 =

0.2, 1.0, and 2.0.

There are implicit and explicit forms for the equations that define SQs. The explicit

equation (1) gives the x, y, and z coordinates of points on the surface of the SQ as a

function of the latitude and longitude, 11 and ro. The notation eqe1 S,l2 means cosel (11)

sine2 (ro). Equation (2) gives the x, y, and z components of the surface normal of the SQ as

a function of ,i and ro. Note that a dual relationship exists between (1) and (2).

The implicit form (3) tells if an x, y, z point is outside, inside, or on the surface of

a SQ defined by particular parameter values of .a,, x_, and~. If F = 1, the point is on the

surface. If it is less than 1, the point is inside, if greater than 1 the point is outside. For this

reason, the implicit equation is also known as the inside/outside function. Equations (1 - 3)

explicitly show the correct treatment of signs that is implicit in [4, 47, 58, 14]. The sgn(x)

function returns the sign of its argument.

8

2.0

e2

1.0

0.2

0.2 1.0
e1

2.0

Figure 2: Unit Superquadrics vs. e1 and e2

9

Unit SQs centered at the origin are not particularly useful, so both the explicit and

implicit equations show the additional parameters needed to place the center of the SQ at an

arbitrary position xo, YO, zo. The size of the SQ is given by a1, a2, and a3, which are scale

factors in the x, y, and z directions. SQs may be given arbitrary orientations through the

use of the standard rotation matrices used in computer graphics [20], however, we will not

be considering rotations in this study.

(
1/a1 C 2-el C 2-e2J

N(T1,0>) = 1/a2 c;2-e1 s:2-e2

l/a3 STJ 2-el

(
2 . 2)ei 2

F(x· W = (lx-xol) e-.z (ly-yol) ei e1 (lz-zol) e1 x, 11, ~o. e a1 + a2 + a3

(1)

(2)

(3)

Figure 2 and equations (1 - 3) describe what are actually known as SQ ellipsoids.

SQ toroids and SQ hyperboloids of one and two sheets also exist [4], but are not

considered in this study. Whenever we refer to a SQ, we are actually discussing SQ

ellipsoids.

10

An important advantage of using SQs to model objects is that a single equation can

be used to express a wide variety of shapes simply by varying a few parameters. This

should make recovery easier since we don't have to know if the object we are attempting to

model is a sphere, cube, cylinder, etc. before we try to model it. This "chicken and egg"

problem is one of the major difficulties in image segmentation, so the potential for avoiding

it makes SQs especially attractive.

The expressive range of SQs can be considerably extended by introducing

deformations such as bending, tapering, or twisting [5; 58]. These deformations could also

vary with time [62, 42]. Figure 3 shows some deformed SQs, however, this study will not

attempt to recover deformed SQs.

Figure 3: Deformed Superquadrics

11

An important disadvantage of SQs is the non-uniqueness of descriptions. By

rotating and scaling, two different sets of SQ parameters can describe the same object. This

can be seen in the first and last columns of figure 2.

Superquadric Description (SQD) is a technique to describe physical objects as CSG

combinations of SQ primitives [13]. One of the biggest advantages of SQD is that its

models, while very expressive, are compact. Only a few parameters are needed to represent

quite complex shapes. This eases the job of matching recovered models with known

models for the purpose of recognition. A second advantage to SQD is that the parameters

control the shape in a very obvious manner. This is in contrast to spherical harmonics, a

volumetric primitive mentioned in the previous chapter. While this is not very important for

recovery of models, it is an important advantage for the humans who must construct the

models to be recognized. A third advantage of SQD is that it naturally decomposes complex

objects into parts. Furthermore, this decomposition seems very similar to those that

humans naturally make [47].

While SQD has several important advantages, it also has several disadvantages.

Even deformed SQs are only a subset of the models that can be expressed by generalized

cylinders. This disadvantage is mitigated by two factors. First, SQs form a very useful

subset of generalized cylinders. Second, as was mentioned in the previous chapter, the full

power of generalized cylinders is rarely exploited. Another disadvantage of SQD is that

CSG shares the non-uniqueness problem of SQs. While the non-uniqueness problem of

SQs can be mitigated by constraining the acceptable values of the shape exponents,

overcoming the non-uniqueness of CSG is still a topic of research.

Superquadric Parameter Estimation

Assuming we wish to model the objects in an image using combinations of SQ

primitives, how do we recover the parameters controlling the size, shape, position, and

orientation of these SQs from an image? The original method was suggested by Pentland in

12

[47]. This utilized the dual relation between the explicit equations (1) and (2). Surface

normals for objects in images were estimated using shape-from-X procedures [30, 32,

39]. The dual relation between (1) and (2) was then used to formulate a linear regression to

solve for the size, orientation, and shape parameters of the underlying SQ shapes.

However, this technique proved too difficult to extend to deformed objects in general

position. Pentland later suggested another technique which was analytically more tractable,

but involved a computationally expensive search of the SQ parameter space [50].

A more promising approach was suggested in [9]. This utilized the implicit equation

(3). Recall that if an xyz point lies on the surface of the SQ described by the parameters .a.

K, ~. then F = 1. If the point is outside the SQ, F > 1, while if it is inside, F < 1. Boult and

Gross used the square of the inside/outside function in a minimization procedure where all

the parameters were iteratively adjusted to achieve the best fit to the 3-D data points. The

3D data points can be obtained from an intensity image by integrating the output of Shape­

From-X procedures, but will usually be obtained from laser rangefinder data or other active

sensors. This technique proved quite promising, although they reported problems

recovering cylindrical objects.

Solina was responsible for two important changes to the minimization-based

approach to estimating the SQ parameters. First, and most importantly, he modified the

inside/outside function to achieve much better recovery of cylindrical objects [58, 59]. His

version of the inside/outside function is given below in equation (4). Note that he has

added the outermost exponent e1.

Solina explains that the

... additional exponent e1 does not change the shape of the
superquadric surface itself but is necessary if the function is used for
shape recovery with a least-squares minimization method. The
additional exponent ensures that, independent of the current value of
e1, points at the same distance from the superquadric surface have

(4)

the same value of FW. Consider, for example, a cylindrically
shaped object where e1 = 0.1 and e2 = 1. Then the third term in (4)
is ,

(z)1. (z)20 a;- e1 = a;-

Because of the large exponent, very small deviations of z from a3
will be greatly amplified. The outermost exponent e1 in (4) cancels
out e1 in (3) and ensures that deviations always have a quadratic
weight Minimizing the inside/outside function without this
correction does not give consistent solutions [58, pp. 19-20].

13

(5)

Later work by Solina's colleagues at the University of Pennsylvania [24] provided a

mathematical justification for Solina' s intuitive understanding of the need for the outermost

exponent.

The actual objective function used by Solina incorporates rotations and

deformations. It also incorporates a term that insures that the recovered model tightly fits

the data points. Consider viewing a cylinder from an angle where one end and part of the

shaft is visible. Data points for the other end will not be available, so the size parameter that

gives its length could assume any value greater than or equal to the actual length. To avoid

this problem, Solina added the term "a 1 a2 a3 to the objective function. This penalizes the

recovery of volumes larger than the data actually supports. This also introduces the trivial

solution where .§! = 0, so the .!!.... must be constrained to be greater than 0. The cost function

he used was

N

min L [.../a1 a2 a3 (1 - Fs (xwi• a, :K.Q., ~. ft.))]2
i=l

(6)

where ~wi are the N 30 points in world coordinates, and l!, ~O, ~. _e. are the parameter

vectors for the scaling factors, position, shape, and orientation, respectively, of the SQ.

The modification of the inside/outside function for rotations has not been shown, since it is

not considered further in this study.

14

The problem of recovering the parameters of a SQ in general position is cast as a

minimization problem where we must estimate the values of the 8 parameters (3 for

position, 3 for size, and 2 for shape) that best fit the N 3-D data points. Although

techniques exist to estimate the 3-D coordinates of points on the surface of objects in

intensity images [32, 39, 30], laser rangefinder data is being used by almost all researchers

in this area due to its higher quality.

Solina's second major contribution to estimating the SQ parameters was to allow

his minimization to perform segmentation at the same time it was estimating the SQ

parameters. In other words, the data points that make make up a particular object, and the

parameters describing that object, are determined simultaneously. For scenes with multiple

objects, Solina's minimization proceeds by trying to fit all the points to a single set of

parameters. Those data points which fit poorly are temporarily discarded. If the data points

fit reasonably well once the parameter estimates have been changed, they are restored to the

set of points that are considered to be accounted for by one SQ. Once the minimization

succeeds for a single object, it is started again on the rejected points. This approach is

detailed below in Algorithm 1.

15

ALGORITBM 1

SOLINA'S MULTIPLE OBJECT RECOVERY METHOD

1 INPUT data points x1 ... Xn, initial parameter estimates AO
2 set Mo = 0, Nace = N

3 FORj = 1 toN

4 Mo = Mo + (R(xj, A0))2

5 FOR k = 0, 1, ... REPEAT
6 compute Ak+l

7 set threshold T = f(Mk)

8 00
9 set P = 0, Mk+l = 0
10 FOR j = 1 to N

11 IF (R(xj, Ak))2 > T THEN

12 Mk+l = Mk+l + (R(Xj, Ak))2

13 P=P+ 1

14 T= 2 T
15 UNTIL P > 0.75 Nace

16 set Mk+l = Mk+l / P

17 IF Mk+l < Mk THEN

18 accept Ak+l

19 set Nace= P

20 ELSE MK+l = Mk

21 END UNTIL (Mk small enough or changes are statistically meaningless)

This element of data selection is very important because it offers a means of

escaping from the "chicken and egg" dilemma that is posed by segmentation. Other

researchers typically determine the data points that are believed to come from a single

object, then fit a geometric model to them, taking no account of the possibility of outliers or

multiple objects [19]. Once the preprocessing step has made a decision, there is no way to

reverse it, even if the modeling stage is capable of indicating a problem.

The potential of SQD is quite exciting, but there are several problems with Solina's

implementation. One is speed Solina used a serial minimization technique (multigrid

Levenberg-Marquardt). He reports execution times of about 20 sec. on a VAX 11n85 for

relatively small data sets (N = 250). Since typical image sizes are 2562 or 5122, this

technique is somewhat limited. Solina suggested that the minimization technique could

16

easily be implemented in parallel. As part of the research described in this dissertation, a

parallel version of Solina's algorithm was implemented [14]. This work, which is believed

to be unique, experimentally verified Solina's speculation about the potential parallelism of

the method. It confirmed that the evaluation of the objective function and its partial

derivatives for each data point can be carried out in parallel. It also noted that, for typical

numbers of data points relative to the number of parameters, the repeated evaluation of the

objective function and its partial derivatives dominates the cost of the computation.

Evaluating them in parallel will exhibit almost perfectly linear speedup, even if the linear

system solution required elsewhere in the Levenberg-Marquardt algorithm is carried out

serially.

A more important limitation of Solina's method is that his approach for handling

multiple objects in a scene suffers from two disadvantages. One is that it makes execution

time proportional to the number of objects in a scene. More importantly, it severely limits

the number of objects that can be modeled in a scene. This is quite a handicap. Early in this

course ofresearch I implemented Solina's algorithm and tested its discriminatory

capability. For the cases tested, it modeled one object well, but could only occasionally

disambiguate two objects and model them correctly. I was never able to get it to correctly

model 3 objects, but did not test it on as many cases as Solina, whose thesis displays some

scenes with three objects being modeled.

An important limitation of Solina's algorithm is that it does not exploit the very

powerful property of coherence in the image data. If a data point is on the surface of a

particular SQ, it is quite likely that its neighboring points will also be on the same SQ.

However, Solina's technique treats all the data points as if they were independent. If a way

could be found to exploit the powerful property of image coherence, it should be possible

to extend SQD to scenes with very large numbers of objects. This was a major goal of this

study, which investigated using a neural network technique to exploit image coherence.

17

During the time the research described in this paper was conducted, other

researchers continued looking into the problem of recovering SQ parameters from images.

Two camps reported their results in the literature. Interestingly, neither camp extended the

function minimiz.ation approach of Solina. Instead they both based their procedures on

Lagrangian dynamics, inspired by the work presented in [63]. The first group was led by

Dimitri Terzopoulos, primary author of [63], the second group was led by Alex Pentland.

We will examine the approach taken by Terzopoulos' group first, then briefly note how

Pentland's method differs.

The first technique, deformable superquadrics, was developed by Demetri Metaxas

and Dimitri Terzopoulos [61, 62, 42]. It represents the shape of the object, p(t), as the sum

of a reference shape, s(t), and local deformations from that shape, d(t). For deformable

superquadrics, sis a SQ and dis represented using finite element techniques. The

parameters controlling the size and shape of the SQ, along with any parameters controlling

global deformations such as bending, tapering, or twisting, are collected into a parameter

vector q8• The local deformations are represented using finite element basis functions. The

SQ is tessellated and a displacement vector, qi, is associated with each node i at the comers

of the elements. Collecting all the displacements into a vector qd =(... ,qi, ...)T, the local

displacement can then be expressed as d = Sqd, where S is the shape matrix whose entries

are the finite element basis functions.

The shape of the deformable SQ, p, is in model-centered coordinates. For machine

vision problems, the objects will be specified in a different, world, coordinate system. The

set of x,y ,z points on the surf ace of the deformable superquadric are denoted by p in

model-centered coordinates, and by x in world coordinates. The two systems are related by

the equation

X = C + Rp, (7)

where c(t) is the position of the center of the SQ over time, and R(t) is the rotation matrix.

18

The SQ parameters, the local deformation parameters, and the coordinate system

transformation parameters are collected into a vector of degrees of freedom q = (qc T, qe T,

q8 T, qd T) T, where qc is c and qe is the vector of rotational coordinates of the model. The

goal of fitting the image data to the deformable SQ model is to recover this vector of

parameter estimates. Metaxas and Terzopoulos carry out this recovery in a physically based

way by introducing mass, damping, and a deformation strain energy through the

mechanism of Lagrangian dynamics. The equations of motion take the form:

Mij_ + Dq + Kq = gq + f q, (8)

where M, D, and Kare, respectively, the mass, damping, and stiffness matrices, gq are

inertial forces from the coupling between the local and global degrees of freedom, and fq(t)

are the forces arising from the degrees of freedom of the model. For machine vision, the

force vector f q is derived from the image data. For this application, M can be discarded

since we are modeling image regions, not masses, and D can be assumed diagonal and

constant over time. This decouples the equations, so gq also vanishes. Using a simple first­

order Euler method to integrate (8), the update step becomes:

(9)

The stiffness matrix K determines the elastic properties of the model, which arise

from a spline deformation energy. The derivation of K is not germane to this presentation,

but can be found in [61, 62]. We merely note in passing that during the solution of (9) is is

not necessary to assemble Kin its entirety. Instead, it is possible to compute Lliiqdj for

each node i in an element-by-element fashion.

The forces f q which drive the dynamic system of (8) are obtained from the visual

images. Techniques for generating these forces from different types of imagery have been

described in [63]. As an example, for 3D data points such as those from a laser

rangefinder, we can define a long-range force

(10)

19

based on the separation between a datapoint r in space and the point of influence Ur of the

force on the model's surface, and where ~ controls the strength of the attraction. The point

of influence needs to be the model point nearest to the datapoint. There is no closed form

solution to determine the point u0 on the surface of a deformable SQ that is closest to an

arbitrary point r in space. While Metaxas and Terzopoulos describe several procedures for

determining which node on the model is closest to r, their reported experimental results are

from algorithms ~here the matching is done by exhaustive search. This has a high order of

complexity, O(mn) where m is the number of data points and n is the number of nodes, but

it is simple and robust.

Pentland's method [51] was also based on the research reported in [63]. Rather

than representing a shape as the sum of a reference SQ and local deformations, Pentland's

work models non-rigid SQs that are subjected to periodic forcing functions which induce

modal deformations. While this may ease recovery of symmetrically deformed objects, the

modal deformations are global, which will limit their utility.

CHAPTER ill

NEURAL NETWORKS

The current implementation of SQD is not the only machine vision technique with

significant limitations. Progress in machine perception has been disappointing, given the

amount of effort put into the problem over the last three decades. Recently, there has been

an explosion of r~search interest in the area known as neural networks. These networks

have demonstrated surprising capabilities in pattern recognition tasks. Inspired by the

organization of the central nervous system, neural networks consist of many units with

dense interconnections between neighboring units. While each unit performs a simple

computation, the whole ensemble performs a complex computation which emerges from

the interactions of all the units. The complex computation performed depends upon the

topology and strength (weight) of the interconnections, as well as the function computed at

each unit. The connection weights can either be designed in advance or learned from

representative data samples.

The field of neural networks actually began over 20 years ago under the name of

perceptrons. Interest died in the field after a critical review of the capabilities of perceptrons

was published [43]. The reawakening was due, in large measure, to a new learning

algorithm that overcame the problems so effectively exposed by Minsky and Papert. This

algorithm, the backward error propagation algorithm [55], allows networks of perceptrons

to be extended from single layers to multiple layers. Single layers of perceptrons can only

classify linearly separable problems. Extending them to multiple layers allows the linear

decision boundaries to be combined and used as higher-order decision boundaries.

20

21

A neural network has two components - its architecture (or topology) and its

learning algorithm. These are usually intimately related, so the ensemble is frequently

referred to as a particular type of network without confusion. For instance, a multiple layer

perceptron architecture trained by the backward error propagation algorithm is known as a

backpropagation network. Other learning algorithms have been developed for multiple layer

perceptrons [17, 34], since the backward error propagation algorithm is slow to learn.

However, these learning algorithms will sometimes fail to learn a classification that can be

learned by the backward error propagation algorithm, so the simple backpropagation

net\Jv'.Ork remains the most commonly used neural network at this time.

Multiple layer perceptrons are not the only network architecture capable of learning.

Some of the other major ones at this time are ART (Adaptive Resonance Theory) [12, 23],

Kohonen's Self-Organizing Maps [37], and some varieties of Hopfield nets [26, 27, 28].

Not all networks learn, several have all their weights set in advance. The major networks

with weights designed in advance are other varieties of Hopfield nets [29, 60].

While neural networks have only recently regained widespread popularity, the

literature has already become too large for a survey of the entire field. Instead, we will look

at the general classes of neural networks and at a representative network from each of these

classes. The interested reader should consult [40] or [56] for an more detailed introduction

to the field. After this broad introduction, we will pay particular attention to one particular

network, the Koch network [35], that was the inspiration for the research in this study.

Neural Network Characterization

As mentioned above, networks can be characterized by whether their weights are

learned or fixed. Within the class of learning networks there are two subclasses, supervised

and unsupervised. Networks can also be characterized by the type of problem they are

intended to solve. The most common problems are classification, associative memory, and

optimization. These problems are very similar. To show this similarity, we must first

define what is meant by a classification problem.

22

A pattern vector, A, is a vector of measurements, Xi, which contain all the measured

information available about the underlying pattern.

K = (x1, x2, ... , x0)T (11)

A pattern class is a category determined by some given common attributes of a set of

pattern vectors [65]. Classification is the problem of assigning a new pattern vector to an

existing pattern class. Determining the pattern classes given a representative set of pattern

vectors is another problem, known as clustering.

Associative memory is the problem of retrieving the stored memory that most

closely matches a partial memory, which is presented as a search key. This can be viewed

as a classification problem where the classes are a complete memory, and the pattern

vectors presented for classification are the partial memories.

In neural networks, both classification and associative memory tasks are usually

performed by minimizing an error measure between the input pattern vector and the output

pattern class. This minimum seeking property can be used directly to solve minimization

problems. The rest of this chapter discusses the three general classes of neural networks

mentioned above. Unless mentioned otherwise, we will assume that the network will be

used to solve a classification problem.

Supervised Leaming Networks

The most popular class of neural networks are those whose weights are trained by a

supervised learning procedure. A supervised network is trained by repeatedly presenting

input patterns and the desired output. The network learns the mapping between inputs and

outputs. This is called supervised learning because the correct output for each input pattern

in the training set is known. The backpropagation network [55] is the dominant network in

this class, so we will look at its operation as an example of this class of network.

23

A backpropagation network is constructed of layers of units. A network will have

input, output, and some number of hidden layers. Networks with more hidden layers can

model more complex regions, but will have a longer training time than a network with

fewer hidden layers and the same number of hidden units. Networks with more than 2

hidden layers are rare, because networks with 2 hidden layers are capable of performing

any desired input-output mapping. Unfortunately, the number of hidden units required may

tend towards infinity. Also, there is no guarantee that the input-output mapping can be

learned.

Each unit in a layer has weighted connections to all the units in the previous layer.

A unit has an internal state, known as its activation, a. The activation is the weighted sum

of the outputs, Oj, from the previous layer:

ai = L, Oj Wij
j

The output of a unit is a function of its activation, usually the nonlinear sigmoid

function:

fi(x)--1-
1 + e·X

(12)

(13)

Input and output units may use a linear activation function, but it is important that

at least the units in the hidden layer(s) use a non-linear function [55]. If all the layers use a

linear activation function, then superposition applies and all the layers can be reduced to

one linear layer. This means that the network will only be able to classify linearly separable

patterns.

The discussion above describes how an output pattern is generated from an input

pattern. This procedure, known as the forward pass, is essentially the same for a very wide

range of neural networks. It did not describe how the weights are modified, which is how

the network learns the desired mapping between input and output patterns. To train a

backpropagation network, an input pattern from the training set is presented to the network,

24

and an output pattern generated. The desired output is then presented to the output units.

Each unit computes an error signal, 6j=

(14)

where j is the index of the unit in the output layer, Oj and tj are the output and target values,

fi is the derivative of that unit's activation function, and aj is the activation of that unit (12).

The weights between the last hidden layer and the output layer are updated according to the

rule:

(15)

where AWij is the change in the weight between unit i in the previous layer and unitj in the

output layer, and 11 is a positive scalar constant less than 1.0 known as the learning rate.

The larger the value for 11, the faster the network learns, but excessive values for 11 will

make the learning procedure fail to converge.

The weights between hidden layers, or between the input layer and the first hidden

layer, are modified by a similar procedure. However, the determination of the error signal

is different, since we do not have a target value for the outputs of the hidden units. Instead,

equation (16) is used for the error signal:

Bj = fj 1 (aj) ~)k Wkj
k

(16)

where the index k ranges over all the units in the subsequent layer. The update rule remains

the same as (15).

The learning procedure described by equations (14 - 16) implements a simple

gradient descent algorithm that minimizes the squared error between the output and target

patterns in the training set. This simple minimization algorithm leads to long training times.

Therefore, a considerable amount of research has been devoted to incorporating more

sophisticated minimization techniques into the layered structure of the network. The

technique that is receiving the most interest at this time is conjugate-gradients [34],

25

although other techniques certainly have their adherents [17]. Another problem with the

simple backpropagation network is that there is no way to determine in advance how many

units should appear in each hidden layer. Network architectures that add new units during

learning are being studied in order to overcome this problem [18].

Unsupervised Learning Networks

In contrast to supervised learning, unsupervised networks are not presented with

the desired output for each input pattern. Instead, the network is expected to penonn a self­

organization in order to classify patterns into a number of categories. The Adaptive

Resonance Theory networks (ARTl, ART2, ART3) [12, 23] and Kohonen's Self­

Organizing Maps [37] are the dominant networks in this class. We will examine the

operation of the ARTl network as an example of this class of neural network. The structure

of this network is shown below in figure 4.

The ARTl network is described by a set of differential equations. It has a

moderately large number of parameters, as well as fast and slow learning modes.

However, by fixing some of the parameters and using the fast learning mode, the behavior

of the network is considerably simplified. The explanation of the network given below

follows that presented in [40]. The interested reader is referred to [12] and [23] for the full

details of the network.

The network is composed of two layers, or fields. These are indicated in figure 4

by the boxes labeled F1 and F2. The number of units, N, in F1 is set by the size of the

input pattern vectors. The number of units, M, in F2 is the number of pattern classes. For

the ARTl network, the input and output vectors are binary. This restriction on the input

vector is removed in ART2.

The units Xi in F1 are fully interconnected to the units Yj in F2 through two

interconnection matrices, B and T, which are not shown in the figure. B holds the weights

26

used in the bottom-up pass, while T holds those used in the top-down pass. At time t = 0,

these are initialized to:

Tij (0) = 1

1
Bij (0) = l + N

(17)

(18)

Their values will be updated as the network begins to learn its classifications. The T matrix

encodes the exemplars for the pattern classes. This is known as the Long Term Memory

(L TM) of the network. The Short Term Memory (STM) is the pattern of activation in the

two layers.

Gain
Control

Gain
Control

Attentional
Subsytem

L'IM

Input
Pattern I

Orienting
Subsystem

Figure 4: ARTl Network (from [12]).

When an input pattern, I, is presented to an ARTl network, the units in F1 assume

an initial pattern of activations, X, which is equal to I. Recall that the input pattern is

binary, so the activations Xi are too. The activations of the output nodes are set to the

weighted sum of the activations in F 1:

N
Yj = L Bij(t) Xi , 1 ::;; j ::;; M

i=l

27

(19)

The maximum element in F2 is then chosen through lateral inhibition. Ties are broken in

favor of the unit with the lowest index j. This leaves a single output unit, Yj, active.

The maximum element identifies the class to which the pattern is assigned. The next

step in the operation of the network is to test if the input pattern matches the class exemplar

well enough to be considered as a member of the class, or if a new classification should

take place. This decision is governed by the vigilance parameter, p. Recall that the T matrix

encodes the class exemplars. We compute the ratio, q, of the number of active elements in

the exemplar to the number of active elements in the input pattern:

N
IIXII= LXi

i=l

N
IITXII = L Tij Xi

i=l

IITXII
q= IIXII

(20)

(21)

(22)

In the equations above, j is the index of the active unit in F2. The ratio, q, is compared to

the vigilance parameter, p. If q > p, the input is considered close enough to the exemplar.

The class exemplar is then modified to account for the new member of the class, according

to equation (23). The bottom up weights are also modified to enhance the classification of

the input pattern; I, to the same class, j, according to (24).

Tij (t + 1) = Tij (t) Xi (23)

T .. (t) x·
Bij (t + 1) = i 1

! + ~ T·· (t) x· 2 £.J lJ 1
i=l

28

(24)

If, on the other hand, q S p, the input pattern is considered to be too far from the

exemplar. The active unit in F2 is disabled and the input pattern is presented again. This is

the S1M Reset Wave in figure 4. The process repeats until the pattern matches an existing

exemplar, or a new exemplar is created The new exemplar is identical to the input pattern.

The ARTl network is limited to binary patterns, and is rather sensitive to noise.

These problems have been reduced, though not eliminated, in later versions of the network.

Hopfield Network

The Hopfield network [26, 28] was one of the first and simplest neural networks

other than the perceptron. Hopfield networks can be classified along two major axes. The

first axis distinguishes between networks that have units, or 'neurons', that compute a

threshold function [26] and those that use a sigmoid nonlinearity [28]. The second axis

distinguishes between units whose weights are learned and those whose weights are

designed in advance.

The Hopfield network is a single layer network where each unit is (potentially)

connected to every other unit In the initial Hopfield model, connection strengths were

symmetric, and direct feedback from a unit to itself was not allowed. Both of these

conditions have been relaxed in subsequent work [11]. The basic topology of a Hopfield

network is shown below in figure 5. This is a 4-unit network. The units are the circles at

the bottom. The outputs of the net are the four lines labeled 01 .. 04. The outputs are fed

back to the inputs of all the other units through the connection matrix. The connections are

the small black boxes. A connection from unit i to unit j is denoted by Tij, The connections

are conductances, and negative values are allowed. For electronic implementation this

would be accomplished by providing inverting and non-inverting outputs from the units

and connecting the appropriate one. The external inputs, I, to the network also appear at

the top of the figure.

'

Figure 5: 4-Unit Hopfield Network

Another addition to the model is the introduction of dynamics to model the

capacitive delays of real neurons. Each unit in the network has its input grounded by a

parallel RC network. We can now model the instantaneous output voltage of unit i, Vi, in

terms of its instantaneous input voltage, Ui, and its RC loading. Ui is the sum of the

products of the n~ighboring units' output voltages, Vj, and the strength of the

interconnections, Tij. Due to the RC time constant, Ui will lag behind the instantaneous

values of the neighboring vj's. The equations describing the behavior of unit i are:

29

(25)

(26)

(27)

30

Hopfield [28] showed that for certain conditions on the interconnection network,

the update rule for the units, equation (27), will cause the entire ensemble to seek the

nearest minimum in the energy landscape. Because of this property, it is possible to use

Hopfield networks to solve minimization problems. A procedure for designing networks of

this type is developed in [60].

Koch Network

Several people have followed the procedure outlined in [60] to develop Hopfield

networks for problems of interest to them. Koch, Marroquin, and Yuille [35] looked at

using it for data smoothing. Least squares data smoothing can be cast as a minimization

problem with the function to be minimized (in one dimension):

E(f) = L(fi+l - fi)2 + C(i L(fi - di)2

i

(28)

where di is the input data, fi is the smoothed output, and Cd adjusts the conflicting

requirements of smoothness vs. fidelity to the data. Hopfield noted that this function can be

minimized by an analog network of N nodes, each connected to its two neighboring nodes.

Each unit is grounded by a parallel RC network. The input data is provided by a current

into each node, the output is the voltage at each node. Such a network can be simulated by

having N elements, each of which is updated by the rule

(29)

where Rij is the resistance between nodes i and j, Ri and Ci are resistance and capacitance

to ground, Ii is the input current to each node, and fi is the output function (voltage) at each

node.

The problem with this model, and least-squares smoothing in general, is that it

blurs discontinuities. Since discontinuities in images are usually very informative, this is

quite a problem. Inspired by the seminal paper of the Geman brothers [22], Koch and his

31

colleagues extended this model to preserve large discontinuities by introducing 'breakpoint'

terms, across which no smoothing is performed. Their objective function (in one

dimension) is:

E (f) = L (1-hi) (fi+l - fi) 2 + Cd L (fi - di)2 + Cc L hi (30)
i i i

where hi is a 0 .. 1 variable indicating the presence of a break between data points i and i + 1.

Cc is the cost of inserting a breakpoint. The hi can be considered as learned weights whose

update rule is:

oE
(31)

Koch also provides a formulation of this network to smooth 2D datasets [35]. The

interpolation term has both horizontal and vertical breakpoints. He also extends the simple

cost for inserting a breakpoint to an expression involving neighboring breakpoints in order

to encourage straight lines and penalize adjacent, parallel lines [35].

Results from one and two-dimensional Koch networks are shown below in figures

6 and 7. Figure 6 shows the least-squares solution for two different values of smoothing.

The input data is a pulse corrupted with 20% uniformly-distributed noise. The Dl:S5 and

D5:S 1 entries in the legend indicate the relative weights of the data (D) and smoothing (S)

terms of the equation. Figure 7 is for a 2D Koch network implemented at the beginning of

this study. The top two illustrations show the input and output for a two-dimensional

pulse, while the bottom two are for a truncated ramp. As can be seen in the figures below,

the data smoothing network performs well. It smooths small errors while preserving large

discontinuities. In addition to smoothing the output data, edge maps can be obtained by

examining the breakpoints. These are not shown, but accurately identify edges in the

image.

32

A~~
0.6 rZ~ 1
0.6 ... D11t11

,o. D 1 : 55

0.4

,A
,a. OS : S 1

0.2 \~.~ _,~~:..
-,,,rJ Y°'y9'<> -.--io

0 a

6 11 16

Figure 6: lD Least-Squares Network Results

Figure 7: Results from 2D Koch Network

33

While the Koch network performs well, it is certainly no miracle algorithm. It

should be noted that Figure 7 depicts the best results I was able to obtain from the 2D Koch

network. Midway through this course of research I developed parallel implementations of

the 2D Koch network and the median filter in order to compare their performance on an

image smoothing task. That comparison, which is believed unique, is detailed elsewhere

[15]. In brief, its findings were that the median filter was faster, usually gave better noise

reduction while preserving image edges, and was easier to use since it did not suffer from

the need to determine the convergence criteria and other free parameters in the Koch

network.

CHAPTER IV

INITIAL SUPERQUADRIC NETWORK

Three problems with Solina's SQ recovery algorithm were listed earlier in this

thesis: the slowness of the serial minimization algorithm, difficulty in recovering

parameters from scenes with multiple SQs, and recovery time serialized in the number of

estimated SQs. We saw that the speed of the method could be addressed by a parallel

implementation. The other two problems arose from his method for handling scenes with

multiple objects. Despite these problems, the data selection aspect of the multiple object

recovery method offers potential benefits for segmentation. These benefits seem great

enough that it would be worthwhile to try and find a better method for implementing the

data selection. We also indicated that these problems might be ameliorated if we were to

take advantage of image coherence.

Koch's network, which smooths data at the same time as it discovers image edges,

seems to provide a reasonable framework for trying to exploit image coherence. The goal

of this project was to see if a modified Koch network might be able to overcome the

problems we noted in Solina's recovery procedure. The next section informally describes

the organization of such a modified Koch network, and discusses how it might be able to

overcome the problems noted above. For initial investigations the network was simplified

by modeling 2D superellipses rather than the full 3D superellipsoids that are ultimately of

interest. The subsequent section details the objective function used for the simpler network

and discusses the design decisions that led to the network's organization. The following

two sections discuss the initial simulations of this network and a hybrid minimization

technique that was developed to overcome the problems found during the initial

34

35

simulations. The final section in this chapter presents the results of several experiments that

were run to investigate the capabilities of the hybrid approach.

General Organization of the SQ Network

Recall that the Koch network was used for smoothing data that could be regarded as

a surface. At each data site, the Koch network has a single unit to encode the height of the

surface at that site. Between the sites there are breakpoint units to indicate discontinuities in

the surface. How can this scheme be changed to model SQs? First, we will want to retain

the breakpoint units between each site, as they could be used to locate the borders of the

SQs. Second, the single unit at each site which encoded the estimated surface value will be

replaced by a vector containing the estimates of the size (a1, a2, a3), position (xo, YO, zo),

and shape (e1, e2) parameters for the SQ shape underlying the particular data point. Third,

the model term of the objective function will need to be a function of the data values in a

small neighborhood centered around the site of the parameter vector. This is because an

infinite number of parameter vectors could fit a single data point, in contrast to the Koch

network's simple (fi - di)2 model. The breakpoint units can play two roles in the parameter

estimation. Like the Koch network, adjacent sites without an intervening breakpoint should

have similar parameter values while adjacent sites with one should not. Additionally, the

breakpoints will be used to determine if data points in a local neighborhood should be

excluded from the minimization. This vector extension of Koch's network is one of the

unique results of this thesis.

This network organization is illustrated in figure 8. The large square at the bottom

represents the neighborhood from which the data points are drawn. In this figure, the

neighborhood is 7x7. The central column represents the parameter vector associated with

the data point at the center of the neighborhood. The short, thick, black lines between the

data points represent the horizontal and vertical breakpoints.

36

Figure 8: Local View of the Organization of the SQ Network

How might this organization overcome the three disadvantages noted for Solina's

approach? By fitting the parameters to local neighborhoods, and by using the breakpoint

terms to exclude points from the neighborhood, the network exploits image coherence in a

very direct and natural fashion. As shown in figure 8, a parameter vector is associated with

each pixel and only needs data from a small area of the image that surrounds the associated

pixel. Given a computer with enough processors, all of the minimizations could be carried

out in parallel. This would allow us to model scenes with large numbers of shapes, which

was a problem with Solina's method.

The organization described above is not the only way that things could be arranged.

A problem with the arrangement described above is that associating a parameter vector with

each pixel yields an enormous number of parameters to estimate. Another problem is that

the computational complexity of this approach is greater than that of Solina's method. Each

parameter vector is estimated from a local neighborhood of data. If there are M active data

points, the SQ network would have to estimate M parameter vectors. If each of these would

be determined from an N element local neighborhood, we must evaluate the fit and partial

derivatives for the SQ term MN times for each step. Solina's technique would only evaluate

37

the fit and partials M times, since it tries to fit all the available data to a single parameter

vector.

These problems could be reduced by having one parameter vector for relatively

small image regions, but what would happen when a SQ boundary bisected such a region?

Handling this case would require the regions associated with each parameter vector to

overlap, and it was decided that the job of determining what each breakpoint meant to each

parameter vector region was just too complex, especially for an initial investigation into the

feasibility of the technique.

SQ Network Objective Function

Once the general structure of the SQ network was decided upon, an objective

function had to be found to make these ideas explicit. The objective function needed to

incorporate the SQ fitting term. It also needed to ensure that neighboring parameter vectors

without intervening breakpoints would converge to similar values, and finally it needed to

promote the formation of good object boundaries without excessive breakpoint terms. To

simplify initial investigations of the objective function, I decided to look at a 1-D network

(SQNETl) that would estimate the parameters for 2D superellipses, rather than the 2D

organization for estimating 3D superellipsoids that was shown above in figure 8. The

objective function of SQNETl is:

N-p-1

E = C1 L, (2i..i.+1 - 2i..i.) 2 (1-hi)
i=p

N-p i+p fi-l,j-11

+ L, L,(1-F(2..i, Xj))2 II (1-hk)
i=p j=i-p k=Li,jJ

+ Cc L, hi + Cp L, hi hi+ 1 (32)

i

where 2.i is the vector of parameter estimates at pixel i, hi is the breakpoint between sites i

and i+ 1, 2ij are the x, y coordinates of the part of the object imaged on pixel j, and F<2.i, ~j)

38

is a slightly modified version (see eq. 34) of the SQ inside/outside function which

measures the fit of the data from pixel j to the parameters at pixel i. C1 weights the

interpolation term relative to the unit weight of the model term. The Cc term penalizes each

discontinuity inserted, while the Cp term penalizes adjacent discontinuities. Equation (32)

extends Koch's objective function (30) to the vector domain. It also incorporates the SQ

model and utilizes data coherence. This objective function is one of the unique results of

this research.

How does it solve the problem of modeling SQs? The first term in (32) penalizes

adjacent parameter vectors that have different values in the absence of an intervening

discontinuity. The second term implements the SQ fitting, while the third term introduces a

constant cost for every breakpoint inserted. The fourth term penalizes the formation of

adjacent breakpoints. Since we have more parameters to estimate than in the data smoothing

example, we must look at more data. The index i selects the parameter vector under

consideration. The index j selects the data points from sites i-p to i+p that will be used in

the minimization of parameter vector i. Finally, the index k selects the discontinuities

between sites i and j. The product term removes data points from consideration in the

parameter estimation if a discontinuity lies between the parameter vector at pixel i and the

data point at pixel j. The L J and r l operators in the summation indices of the product term

indicate the minimum and maximum operations, :i;espectively. Edge conditions are handled

by not running the minimization closer to the boundary than the size of 1/2 the

neighborhood.

The layout of SQNETl is shown below in figure 9. The figure is composed of

three main blocks. The top one is the input data, N x-y pairs. The middle block is the

breakpoints. The bottom block is the parameter vector associated with each data point. Note

that the blocks are not the same size. Since the breakpoints indicate a discontinuity between

adjacent data points, one fewer breakpoint is needed than the number of data points. The

variable p is the neighborhood size parameter that is used in the indices of summation of

39

the cost function., Since we do not want the parameter vectors accessing nonexistent data,

the edge conditions are handled by not having any parameter vectors associated with the

first and last p data points.

Input
Data

Breakpoints

Parameter
Vectors

0

X

y

N-1

p N-1-p

Figure 9: SQNETl Organization

Now consider the highlighted parameter vector, .t.:i. The parameters in this vector

are estimated from the data points in a 2p+ 1 local neighborhood. The data neighborhood is

also highlighted, and lines are drawn from &i to the data points. Note that these lines go

through the breakpoints. If a breakpoint develops somewhere in the neighborhood, all

points further away from the parameter vector than that breakpoint should not be

considered. This is shown in the figure by the black breakpoint, and by the crosshatched

highlighting on the data points that are not used to estimate the parameters for &i.

40

Ai also depends on Ai+l and Ai-1, because of the interpolation term in the cost

function which tries to force adjacent parameter vectors to have similar values in the

absence of an intervening breakpoint. The dependence of Ai on Ai+l and Ai-1 is shown by

highlighting, and, by the lines connecting the parameter vectors through the breakpoints.

The vector that has the intervening discontinuity is give the same shading as the discarded

data points, while the one that is used has shading similar to Ai , although a lighter shade.

The elements of the parameter vector are a1 and a2, the size of the SQ in the x and y

directions, e 1, the SQ shape parameter, and xo and YO, the position of the center of the SQ

in the x and y directions. Although the breakpoint terms, hi, are also estimated parameters,

they are not considered as part of the parameter vector Ai· This is because their interactions

are more complex than the simple smoothness requirement (A i+l·· ~ i)2.

Every data point in the image has a parameter vector associated with it. The

parameters describe the object on which the data point lies. The interpolation term of (32)

should force neighboring parameter vectors, which describe the same object, to similar

values. Once the minimization is complete, a postprocessing step would label regions of

similar parameter estimates ~ a single object.

Solina's modified inside/outside function, (4), was first presented in [58]. The only

modification to the standard SQ inside/outside function is the outermost exponent e1. This

modification is necessary to allow accurate recovery of cylindrical objects, as was

explained in Chapter II. Equation (33) is a very slightly rewritten form of (4), where~ is

the parameter vector, while ~ is the xyz triplet giving the coordinates of a point on an

object.

(33)

41

Equation (33) would form the basis for a 2D network to estimate the parameters for

3D SQs. The function used for the lD network (34) is simpler, since it has no z term and

only a single shape parameter, e1.

(34)

SQNETl Simulations and Results

To test the feasibility of a network-based minimization of the SQ function, I began

looking at the lD network just described. This network simulation, using the state-variable

approach for the hi, was written in C. MACSYMA was used to compute the partial

derivatives of the objective function with respect to the elements in the parameter vector.

The update rule applied at each unit was the negative of this partial derivative, i.e., a simple

crawl down the gradient.

The objective function minimized rapidly. However, a significant residual error

remained, and the parameter estimates never varied significantly from their initial values.

Many values for the adjustable constants (Cb, Cct, A, etc.) were tried with no appreciable

improvement in performance. The explanation found for this behavior was that the

discontinuity terms rapidly assumed their correct values. These terms pervade the objective

function, explaining the rapid decrease in E. The interpolation and the (1-F<li.i, Kj))2 terms

had very limited effect relative to that of the discontinuities.

To discover the reason for this problem, the discontinuities were fixed at their

correct values and the minimization restarted. Again, the objective function decreased,

although not as rapidly. However, the residual error and the lack of significant change in

the parameters remained. This time, the interpolation term was enforcing similarity between

neighboring sets of parameters, but the (1-F<1i, Kj))2 term was still not having a significant

effect on the objective function.

42

Further investigation revealed the source of the problem. Figure 10 shows the value

of E vs. various values of YO (they position parameter) and a2 (they scale parameter). This

long shallow valley is the classic case where gradient descent fails. Since the Koch network

implements gradient descent (using a fixed step size rather than the more common line

search) it is not surprising that it fails to make significant progress in this case. This valley

arises because of the negative correlation between the yo and a2 parameters that occurs

because only the top half of the ellipse can be sampled. This is illustrated below in figure

11. The figure contains three ellipses, each with the same x-size and x-position. The y-size

and y-position differ for each. The surf ace of the mid-sized ellipse is periodically sampled

to give y values vs. x. These tuples are the input data for the network. Notice that the other

two ellipses fit the data equally well, and almost as well as the true data

Figure 10: E vs. a2 (y-size) and YO (y-position)

43

Figure 11: Cause of Correlation between YO and a2

Hybrid Algorithm

Recall that the goal of this project was to see if a minimization based on the Koch

network could overcome some of the problems with Solina's SQ parameter estimation

technique. However, we have just seen that the Koch network's simple gradient descent is

not capable of minimizing the most important part of the objective function. Nevertheless,

the network organization and the objective function (32) were intuitively appealing to me.

They seemed to express a natural way of exploiting image coherence to find regional

estimates of SQ parameters while simultaneously discovering their borders. If successful,

this could significantly ease the "chicken and egg" nature of the segmentation problem that

has plagued machine vision for so long. Therefore, to continue investigating the capabilities

of the network, other minimization techniques were tried. A line search version of gradient

descent, a conjugate-gradient method, and the Levenberg-Marquardt (LM) algorithm were

tried [57, 52]. The first two were not successful, but the LM method did succeed in

minimizing the (1-F<Ai, Xj))2 term.

Having found an algorithm that could minimize the most difficult portion, it was

now time to rebuild to the complete version of the objective function. However, practical

44

considerations prevent us from simply using the LM algorithm to minimize the entire

objective function. The LM algorithm achieves its speed and performance by approximating

the Hessian matrix, which is NxN where N is the number of parameters to be estimated.

Recall that normal images will have on the order of 250,000 pixels, and that each of those

pixels would have approximately 10 parameters to be estimated. This means that the

Hessian matrix would require 100 Gigabytes of working storage!

Because of this problem, and because of a desire to remain as close as possible to

the spirit of the Koch network, a hybrid minimization algorithm was developed to minimize

(32). First, the minimization of the interpolation term was restored. The gradient descent

network was retained for this, while the LM method was used to minimize the (1-F<Ai,

Aj))2 term. The discontinuity terms were initially set to their correct values and not allowed

to change. This minimization was successful.

The breakpoint terms were then restored to the minimization. The gradient descent

algorithm was also used for their update. This algorithm was not successful. The behavior

noted was that the overall cost would decrease for a time, then begin to increase. To see

why this behavior was observed, recall that the breakpoint terms are a non-linear function

of an underlying state variable. The particular non-linearity used was the sigmoid (13),

which is only asymptotic to O and 1. Therefore, the breakpoint terms do not provide perfect

isolation. Also recall that if the data are perfectly modeled by the SQ term, the cost of that

term goes to zero. Now consider a parameter vector and its associated data neighborhood.

Assume there is a breakpoint set that removes some of the data points from consideration.

Given the two facts mentioned above, it is easy to see that when the parameters at the site

are adjusted to correctly account for the data in the neighborhood, the data outside the

breakpoint begins to dominate the cost function. At this time the parameters begin to

diverge from their best values in order to account for the data they should not be

considering.

The only solution that I can see for this problem is to make sure that the

discontinuity terms adopt binary values. The sigmoid nonlinearity was replaced by a

threshold function. The update rule for the underlying state variable remains the negative

partial derivative of the cost w .r. t. the discontinuity. With this change, the minimizations

succeeded. The hybrid minimization algorithm used for SQNETl is presented below as

Algorithm 2.

ALGORITHM2

HYBRID MINIMIZATION ALGORITHM FOR SQNETl

declare 2i. and X as N element arrays of floats
declare 4 and s. as 2p+ 1 element arrays of floats
declare l2 as a 5 element array of floats
declare y as N element array of Booleans
declare h as an N-1 element array of Booleans
declare XX as an Nx2 element matrix of floats
declare PP as an NxS element matrix of floats
declare h_freq, lm_iters, iter_limit as integers
declare chi_tol as a float

Get data and initial estimates of parameters and discontinuities. Also get control values for
minimization procedure.
input XX, PPt=O, Il.t=O
input h_freq, lm_iters, iter_limit, chi_tol, mag_tol

iter= 0
y=O Set all sites to "unconverged"
do {

iter = iter + 1
x=O
all_converged = 1

Clear z2 at all sites
Be optimistic

For each non-border data point
for i = p, N-p {

Skip sentinels and converged sites
if XXi is a sentinel or Yi = 1

continue to next i

Extract site i's parameters and local data neighborhood into
working variables. Compute the s. vector which temporarily
marks local neighborhood points as sentinel points if they

45

are on the other side of a discontinuity.
K = xxi-p ... XXi+p
I!.= PPi

fi,jl
£i = II(l-hk)

k=Lj,iJ

Do a few iterations of the mode/abased minimization
for n = 0, lm_iters

lm_minimization_step (x, ~. 12., Ai, x_i)

Insert the new parameters for site i into the network
PPi = I!.

Do the interpolation, adding to the r vector
fori= p,N-p {

if XXi is a sentinel or PPi has converged
continue to next i

PPit+l = ss * ((1-hi-l)*PPi-lt - 2 * PPit + (1-hi)*PPi+lt)

X.i = Ci * ((1-hi-1)*PPi-lt - 2 * PPit + (1-hi)*PPi+lt)

Update the discontinuities if it is time to do so, and add to
the r vector
if iter MOD h_freq = 0 {

update_discontinuities(PP, h)

for i = p, N-p-1

Xi= Cc* hi+ Cp * (hi* hi+l)

Test for convergence
for i = p, N-p {

ih~i = 1
continue to next i

if X.i < chi_tol
Yi= 1

else
all_converged = .Yi = 0

} until (all_converged OR iter > ilimit)

46

47

Preprocessing and Postprocessing

Since the recovery procedure is an iterative algorithm, its behavior is dependent

upon the initial parameter estimates. Therefore, before we can discuss the performance of

the network we must first discuss the procedure for obtaining the initial parameter

estimates. This section first discusses the form of the input data, then discusses the

preprocessing performed to obtain the initial parameter estimates. The region-growing

procedure used as a post-processing step is discussed next, followed by the performance

measure that is be used to evaluate the network's performance.

The input data to the network is a vector of xy pairs. The x values are uniformly

spaced on an interval, typically 20 data points from 0.0 to 10.0. The y values can either be

they-coordinate of a point on the top half of a SQ ellipse (see figure 11) or a sentinel value

indicating a background pixel. This assumes that a figure-ground segmentation has already

been performed.

A finite-state machine was used to implement the lD preprocessing. The input is

scanned in left-to-right order, looking for transitions between sentinel and non-sentinel

values, or large discontinuities in the non-sentinel values. These transitions are assumed to

mark the edges of the superquadric shapes in the input data. The initial discontinuity

estimates are set to 1 at the transitions, and O elsewhere. Between the transitions, the

minimum and maximum values of x and y are recorded. This essentially sets up a bounding

box for the top half of the underlying superquadric, as shown by the bold boxes in figure

12. They-position is set to the minimum y value, they-size is set to (Ymax - Ymin). The x­

position is set to (xmax + Xmin) / 2, and the x-size is set to (Xmax - Xmin) / 2. These are

shown by the crosses in figure 12. The shape parameter, e1, is always set to 1.0. This

yields an initial estimate of the shape as an ellipsoid that fits within the larger boxes shown

in the figure. The accuracy of the estimate depends upon how closely the SQ is sampled to

its extrema in the x direction, and on the true value of its e1 shape parameter.

48

• • • • •
Figure 12: Initial Parameter Estimation

Some postprocessing is performed on the output of SQNETl. Because the network

outputs discontinuities estimating the borders of the SQs, the region growing algorithm

used for post-processing the parameter estimated was very simple. The vector of

discontinuities was scanned from left-to-right, looking for runs of non-discontinuities. The

parameter estimates within these runs were collected and the median of each component

computed. The median value was found to be a more accurate estimator than the mean, so

that is what is reported as the vector of parameter estimates for a particular region. The

output of the procedure is a parameter vector for each region bounded by discontinuities.

Finally, we need to define a performance measure. Some of the experiments we

will be running with SQNETl will be varying the adjustable constants C1, Cc, etc. We

cannot use the x} values computed inside the minimization technique to compare the effects

of changing these constants, since it would be possible for identical parameter estimates to

have different x2 values depending on the values for the weights. The performance

measure used in the following experiments is denoted SSEN, It is defined as:

R N· 1 1

'SSEN = NL L (1 - F(1.i, Kj))2 + I Nest - Nin I
i=l j=l

49

(35)

where N is the number of sites inside the labeled regions, i indexes the regions, R is the

number of regions, j indexes the data points within each region, from 1 to Ni, Fis the SQ

fitting term from (34), Nest is the number of SQs estimated from the data, and Nin are the

number of SQs that actually generated the input data. The first term is normalized to prevent

penalizing larger regions. This form was chosen over the more obvious (y - y(1., ~))2

because near the edge of recovered shapes there are frequently points with an imaginary

discriminant.

Results

This section discusses the performance of SQNETl. We need to know many of the

properties of the network in order to adequately evaluate its capabilities. For example, it is

position invariant? Is the accuracy of the parameter estimates sensitive to the shape of the

SQ being modeled? How densely do we need to sample a SQ in order to be reasonably

certain of being able to model it? Is the method robust when the input data is noisy? Several

experiments were designed and run in order to answer these, and other, questions.

Before we could run the experiments, we had to determine values for the constants

that weight the various terms in the objective function and control the operation of the

minimization procedure. There is no method of determining, a-priori, the best set of values

for these constants. Therefore, a search procedure was written that would vary these over a

range and record SSEN for each set. The best performing values were identified, tighter

bounds were set on the parameters, and the procedure repeated. Best performing in this

case means most reliable over a range of noise values. The most reliable set of values found

are given below in Table 1.

TABLE 1

BEST PERFORMING CONSTANTS
FORSQNETl

Parameter Value
C1 2.0
Cc 10.0
Cp 1.0
p 3

ss 0.1
chi_tol 1.0
lm_iters 3

ilimit 3
h freq 1

50

Unless stated otherwise, all the experiments were run with these figures. There are

too many parameters to plot a meaningful figure showing the results of this process, but we

can use surface plots to show the behavior as two parameters are varied and the rest held

constant. Examples of the behavior are shown in figures 13 and 14. The first shows that if

the interpolation term is not given enough weight, the cost of inserting a discontinuity

becomes too expensive and a single SQ is fit to the data. The consequent poor fit is the high

plateau at the back of figure 13. On the other hand, if C1 is too big, extra discontinuities

will be inserted to ensure closer and closer fits to noise in the data. This is the relatively

small rise at the front of the figure. Figure 14 shows that having too small a neighborhood,

or running the minimization too long can lead to estimating too many SQs in an attempt to

fit the noise. Figure 15 plots the input data and the recovered superquadrics for a run using

the most reliable parameters listed above. As you can see, the fit is quite close. This is

confirmed by looking at the input and estimated parameter vectors, which are given below

in Table 2. All these figures illustrate another problem - the reader must be aware of the

axes scales. The ~llipses in figure 15 are actually circles. In surface plots, automatic scaling

can make mountains out of molehills.

51

45

40
4S

S5
4o
as ~ ~

ao 85
Cl:

so

<S '/.

25

~
<O (lj

20

15

7S :& -~
10 ~

§

10

s ;g
5

....,'b

......._'"l.,. ·~

........... ~~
........ ~ ~<::S"'-

~
'o ,-«-..,¢-

,d-
c?

Figun, 13: SSEN vs. Interpolation & Diseontinuity Costs

Figure 14: SSEN vs. p & LM_iters

52

15 - - .

10 - - - -

0 . . .

Figure 15: Input Data and Estimated Superquadrics

TABLE2

INPUT PARAMETERS, ESTIMATED PARAMETERS, AND
ESTIMATION ERROR FOR SQNETl

a1 a2 XO 0 e1
Input SQl 2.5 2.5 3.0 5.0 1.0

Estimated SQ 1 2.227 2.204 2.806 5.288 1.008
ErrorSQl -0.273 -0.296 -0.194 0.288 0.008

InputSQ2 2.5 2.5 7.0 15.0 1.0
Estimated SQ2 2.388 2.167 7.006 15.330 1.032

ErrorSQ2 -0.112 -0.333 0.006 0.330 0.032

53

EXPeriment ~ Position Invariance

The first property of the network we would like to verify is its position invariance.

Since the position of the SQ is explicitly modeled in the objective function (32) we would

not expect the quality of the estimated parameters to depend upon the object's position. To

verify this, a simple experiment was run. The dataset for this experiment was a single SQ

whose xo and yo parameters were both varied 11 times over the range 4.0 to 5.0. As

expected, the technique was insensitive to changes in yo. However, it did show some slight

variations in SSEN when xo was varied. Figure 16 shows this variation for a fixed yo. The

changes in SSEN, are relatively minor, even the worst score has very reasonable parameter

estimates, as can be seen in Figure 17. The differences in SSEN are attributed to small

numerical differences due to the object being sampled at slightly different places.

0.003...,...,..,....... _______________ ~

0.0025

m 0.002
U)

"O

-~ 0.0015
cu
E
~ 0.001

0.0005

O--t---,---..,....-..---...---.---,,-.....,.--..---,----,---1
4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5

Position of Center of SQ

Figure 16: SSENVS. Position

54

10

5 -0
0

)l(XX XXXXXX)I(

Figure 17:Data and Estimated SQs for xo = 4.0

Experiment 2: Size Invariance

Another important property that we wish to verify is size invariance. In other

words, is the quality of the parameter estimates invariant to the size of the SQs we are

modeling? This is equivalent to asking how many samples of the SQ are needed to

accurately model it. The data set for this experiment has a single SQ, and the number of

data points which sample the SQ are varied from 7 to 23. The size of the local

neighborhood was also varied to see if this has an effect on the number of samples needed

for accurate estimation. Figure 18 shows the effect these have on SSEN. We see that the

size of the neighborhood does not have a strong effect. The behavior with respect to the

number of samples is more complex, although generally the more samples the better. The

55

graph below is somewhat deceptive because of the scaling. Even the worst-performing data

point has made very reasonable estimates of the parameters. Given the small number of

samples available, this seems like a very good result.

r!fl' o.

o.rlfl

rJil.' o.

o.rJil.

o01' o.
o.o01

o . ooO'
.>

Figure 18: SSEN vs. Sampling Density

E:x;periment 3: Shape Invariance:. Aspect Ratio

o.aoas
o.0o3

A third important invariance property is shape invariance. In other words, is the

quality of the parameter estimates is affected by the shape of the SQ we are trying to model?

There are two ways we can change the shape of a SQ ellipse. The first, which is the subject

of this experiment, is to change its aspect ratio by use of the a 1 and a2 parameters. The

second, which is the subject of the next experiment, is to change the SQ shape parameter

56

The data set for this experiment is a single SQ whose aspect ratio is changed by

varying a2fal from 1/4 to 4/1. This changes the shape of the SQ from a short, broad

ellipse, through a sphere, to a tall, thin ellipse. In each run the SQ was sampled 10 times.

Figure 19 shows that the technique is relatively insensitive to changes in aspect ratio, at

least over the range tested.

0.003--.--------------------.

>- 0.0025 -<tS
C

8!_ 0.002
+
w
~ 0.0015
"C
Q)
N

·cu 0.001
E
0

z 0.0005

B---------------------------

0----------------------
0.25 0.33 0.5 0.66 0. 75 1 1.33 1.5 2 3 4

Aspect Ratio (a2/a1)

Figure 19: SSENVS. Aspect Ratio

Experiment 4: Shape Invariance :. SQ Shape Parameter

The previous experiment mentioned that changing the aspect ratio and the shape

parameter were the two ways of changing the shape of the SQ. This experiment was

designed to see if SQNETl 's performance is invariant to changes in the shape parameter.

57

Up to now, all the experiments have been run with SQs whose shape parameter was equal

to 1.0, i.e., circles or ellipses.

The dataset for this experiment consisted of a single SQ whose e1 parameter is

varied over the range 0.2 to 2.0. This changes its shape from roughly square, through a

sphere, to a diamond. Figure 20 shows the effect this has on SSEN. Generally, the results

are good until the shape becomes very close to a square. This result is expected, given the

way we are sampling the SQ. Figure 21 shows the data and estimated SQ for the case

where e1 = 0.2. Note that we have essentially no information from the sides of the square,

therefore we have no information about the size of the SQ or the location of its center.

Given that lack of information, the estimated parameters explain the data about as well as

can be expected.

0.06--T-B---------------------.

0.05

~ 0.04
Cf)

"O

-~ 0.03
cu
E
lo..

~ 0.02

0.01

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
SQ Shape Parameter (E1)

Figure 20: SSEN vs. SQ Shape

58

15

10
c:: X ,c >E • >E x ><)E •)E >< X >

5

0 - r
X X X .>< ~ X X X

Figure 21: Data and Estimated SQ for e1 = 0.2

Experiment 5: Sensitivity to Number of SQs.

One of the motivations for the development of this technique was the inability of

Solina's technique to handle data sets with more than a few superquadrics. To see if

SQNETl overcomes this problem, data sets with varying numbers of SQs were generated.

Figure 22 shows the effect on SSEN as the number of SQs in the data set is varied from 1

to 15. The SQs have identical size and shape parameters (a1 = a2 = 2.5, e1 = 1.0). The

position of each SQ is set so that the SQs usually, but not always, have a slight overlap in

the x-direction. The yo parameter is increased by 5 for each SQ. The number of data points

is increased in each set, so that each SQ is sampled approximately 10 times. Each time the

correct number of SQs was estimated, and the variations in SSEN are at a level attributable

to sampling differences. The worst performance was for 6 SQs, that case is displayed in

figure 23.

w en

0.004

en 0.003
"C
Q)
N

ca
E 0.002
0 z

0.001

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of SQs in Data

Figure 22: SSEN vs. Number of Superquadrics in Data

59

30

20

10 ·-~­

~
(... ,

' ,.

-~-
'

Figure 23: Data and Six Estimated SQs

Experiment 6: Noise Immunity

60

It is important to know how robust any machine vision algorithm is to noise in its

input data. For SQNETl, increasing the neighborhood size as the data becomes noisier

may offer some immunity. The purpose of this experiment was to test this hypothesis. The

data set for this experiment was the same as that in figure 15, except that it was corrupted

with different levels of uniform noise. Several runs were made at each noise level in order

to measure the effect of different neighborhood sizes. Figure 24 shows the effect these had

on SSEN. We can see that performance falls off for moderately noisy data, but that a larger

neighborhood size can help to overcome this. For very clean data the larger neighborhood

size hurts performance slightly. This effect is believed to be due to a poor choice of

convergence criteria.

O,Os

0.05

0.04 ~
CJ)

0.03 l -.;

o.oc! ~
~

o.o,

Figure 24: SSEN vs. SNR and p

Experiment ~ Ability tQ Discriminate Overlap_pin~ fil2s.

61

The primary reason for choosing the Koch network as a basis for SQNETl was its

ability to form breakpoints to separate image regions. It was believed that these would

allow the network to discriminate SQs which touched in the image, but were still best

modeled as separate objects. Naturally, there is a tradeoff between this discriminatory

capability and the noise tolerance. An experiment was designed to determine the

discriminatory c~pability of the network given a reasonable degree of noise immunity. The

dataset is similar to that of figure 15, but for each run the difference in y-position of the two

62

SQs was reduced. Figure 25 shows the results for differences of 10.0 to 0.0. The network

performs well until the separation becomes less than 4. At a separation of 3 the

preprocessing step is still able to distinguish the SQs, but SQNETl discards the

discontinuity between the two SQs. The preprocessing step cannot distinguish the next two

datasets, nor can SQNETl.

>. -CtS
C: 2
Q)
a..
+
w 1.5
en en
~ 1
N

CtS
E
0 0.5
z

10 9 8 7 6 5 4 3 2 1 0
Difference in Y-Position

Figure 25: SSEN vs. Separation of SQs

CHAPTERV

TWO-DIMENSIONAL SUPERQUADRIC NETWORK

The results from SQNETl were encouraging enough to investigate extending it to a

2D network for the estimation of 3D SQs (SQNET2). Once again, Koch's lead was

followed and a vector version of his objective function was created that included the SQ

model and the larger local neighborhood. This new objective function (36) is one of the

unique contributions of this course of research, and was one of its primary goals.

However, extending (32) to two dimensions is not as simple as the extension for Koch's

data smoothing network. As with his network, the breakpoint terms must be extended to

encourage straight lines and penalize adjacent parallel edges. Intersecting lines should also

be accounted for. This extension is discussed in [35] and was adopted unchanged for

SQNET2. A more difficult problem was the need to reformulate the product term which

removes data points from the parameter estimation if there is an intervening discontinuity.

The difficulty of doing this for all pixels in the small neighborhood around the parameter

vector of interest led me to a simpler formulation. Instead of using all the pixels, only those

in the cross-shaped section centered on the parameter vector are used (see figure 26). This

allows a much simpler determination of the effect of intervening discontinuities when

deciding if a data point should be included or excluded from the minimization.

63

Nrp-1 Nc-p-1

x2 = c1 L L (2i..i+1.j - 2i..i,j)2 (1-hi,j) + C2i..i.j+1 - 2i..i,j)2 (1-vi,j)
i=p j=p

Nrp-1 Nc-P-1 (i+p fi-1,s-ll
+ L L L0-F(2i..ij,&,j))2 IT (1-Vk,j)

i=p j=p S=i-p k=l._i,sJ

j+p,t:;ej fj-1,t-ll J
+ L0-F(2i..i,j,Ki,t))2 IT (1-hi,k)

t=j-p k=l._j. t J

+'Cc L (hi,j + Vi,j) + Cp L (hi,j hi,j+l + Vi,j Vi+l,j)
i,j i,j

+ CL L hi,j[(1-hi+l,j-Vi,j-Vij+I)2 + (l-hi-Ij-Vi-Ij-Vi-lj+1>2]
i,j

64

+ Vi,j [(1-Vi,j+t-hi,j-hi+l,j)2 + (1-Vi,j-I-hij-I-hi+l,j-1)2] (36)

This mildly hideous expression is the 2D analog of (32). Nr and Ne are the number of rows

and columns in the image, respectively. The vector of parameter estimates at pixel (i,j) is

Aij· The breakpoint between pixels (i,j) and (i+ 1,j) is hij, while Vi,j is the breakpoint

between sites (i,j) and (i,j+ 1). Because of the results of the previous chapter, hij and Vi,j

are thresholded versions of underlying state variables. If pixel (i,j) projects onto an object,

the xyz coordinates of that patch of the object are in .2ilj. This is set to a sentinel value if the

pixel projects onto the background. F(Aij, &,Vis the SQ inside/outside function which

measures the fit of the data from pixel (s,t) to the parameters at pixel (i,j). The product

terms exclude data points from contributing to the SQ model-based fit if there is a

discontinuity between them and the parameter vector of interest. The C1 constant weights

the importance of the interpolation term relative to that of the model-based term. The Cc

term imposes a constant cost for each discontinuity, while the Cp term penalizes parallel

discontinuities at adjacent sites. Finally, the CL term promotes the formation of continuous

lines and discourages intersections and discontinuous line segments.

65

General Organization of SQNETI

The organization of SQNETI is illustrated in figure 26. Two views, top and

orthographic, are given. Both show a single parameter vector, its associated data

neighborhood, and the breakpoints that go with the data neighborhood. The rest of the

network is the obvious extension, with a parameter vector for every pixel except for the p

pixel border at each edge. A horizontal breakpoint is placed between every pixel on the

same row, while vertical breakpoints are placed between all pixels in the same column. The

data neighborhood is 2p+ 1 by 2p+ 1, but as mentioned earlier, not all the pixels within the

neighborhood are used. Only the pixels in the same row or column as the parameter vector

are used in the data neighborhood. This is illustrated by the highlighting of those data

points.

Figure 26: Organization of 2D SQNET (a) Top View (b) Orthographic View

66

Important discontinuities in the 2D image correspond to the borders of objects. The

line of highlighted breakpoints illustrates this. Two of the breakpoints are highlighted with

a slightly lighter pattern. These breakpoints, which lie on the cross-shaped region, are the

ones actually used in the parameter estimation. The data points that are excluded from the

estimation are highlighted with a lighter pattern than the data points that are used in the

estimation.

The 2D network also uses an interpolation term, although the neighboring

parameter vectors are not shown in figure 26. The parameter vectors used are the 4 nearest

neighboring vectors. No interpolation is performed if the intervening breakpoint is set. As

with SQNETl, a hybrid minimization algorithm is used where the SQ model term is

minimized by a LM technique, while simple gradient descent was used to do the parameter

interpolation and discontinuity updates.

This network organization has the disadvantage of using large numbers of

parameters, a 5122 image would have to estimate over 2 million parameters! However, the

hybrid technique means that each pixel has a separate minimization, so we are running 5122

separate minimizations, each estimating 8 parameters, not one minimization with more than

2 million parameters. Also, background pixels do not participate in the estimation. The

approach has the advantage of simplicity. Using fewer parameter vectors would force us to

deal with the issue of how to handle object boundaries that intersected the region of the

images described by a single parameter vector. As with the ID network, it was judged that

this would be an unnecessary complication for the initial investigation into the technique.

The objective function for SQNET2 proved more difficult to minimize than that of

SQNETl. The main problem was that much greater attention had to be paid to the

numerical aspects of the SQ model term, specifically to the (x-xo), (y-yo), and (z-zo)

factors. Because we can view the SQs from any orientation, we will frequently see the

intersection of the SQ with the planes where those factors vanish. Those intersections

would frequently blow up due to trying to take the log of zero. To combat this, the SQ

67

portion of the minimization was special cased to deal with the possibility of these factors

going to zero. Anytime one of those factors became less than a certain tolerance (0.1), a

special cased version of the model and its partials was used that assumed the factor was 0.

This avoided the numerical problems.

Preprocessing and Postprocessing

SQNET2, like SQNETl, uses an iterative minimization algorithm. Therefore, its

speed and accuracy are dependant upon the initial parameter estimates. This section

describes the input data, the preprocessing performed to obtain the initial parameter

estimates, and the postprocessing performed to convert regions of parameter estimates into

the vectors of parameter estimates that are the desired output of the technique.

All of the images used in this study were synthetic. A freely-available graphics

package, SIPP [69], was modified to produce range images such as those from laser

rangefinders. Pixels that project onto an object are assigned a depth value equal to the

distance from the eyepoint to that patch on the imaged object. Pixels that do not project onto

objects are assigned a sentinel depth value. The SQs in the images are actually fairly coarse

polyhedral approximations to SQs, with 16 divisions around the equator and 9 lines of

latitude.

The first step in preprocessing the data for SQNET2 uses an inverse perspective

projection to convert the range information in each pixel into an xyz triple, based on the

pixel's row and column indices, the depth value in the pixel, and an eye position. The

resulting three-band image is referred to as the triples image. Sentinel pixels are assigned a

sentinel triple.

The triples image is scanned by a region labelling procedure. An edge-detection

filter is run over the triples image in order to find region boundaries. These boundaries

form closed curves. The 4-connected regions within those curves are marked as regions.

The output is a single band image where all pixels within these regions are assigned a

68

region label. The labels are small integers in the range from one to the number of regions.

Sentinel pixels are assigned a region label of zero.

The algorithm for the initial parameter estimation uses the regions and triples images

as input, and produces two output images. The first output image has eight bands, the

second has two bands. The eight bands correspond to the eight parameters that need to be

estimated at each non-sentinel pixel (three for position, three for size, and two for the SQ

shape parameters). The two-band image contains the horizontal and vertical discontinuity

estimates. The triples and regions image are scanned twice in raster order. During the first

pass, the elements in the discontinuity image are set as region borders are encountered.

Sentinel pixels have all their surrounding discontinuity elements set Within regions, a

lookup table of the minimum and maximum x, y, and z values is built. These are used to

form a 3D version of the bounding box described in the preprocessing for SQNETl (see

figure 12). At the end of the first pass, the bounding box information in the lookup table is

used to compute the initial parameter estimates. The size parameters, a1, a2, and a3 are set

to 1/2 the size of the box in the respective directions. The position parameters, xo, YO, and

zo are set to the center of the box. The shape parameters, e1 and e2 are always set to 1.0,

which means that objects are assumed to be ellipsoids. These parameter estimates are kept

in a lookup table indexed by the region label. During the second pass, each non-sentinel

pixel looks up its parameter vector in the lookup table, using its region label as the index.

Pixels outside the regions are set to sentinel values.

The output of SQNET2 are refined estimates of the SQ parameters and

discontinuities for each pixel. These must be post-processed to yield a list of parameter

vectors, with one parameter vector for each SQ found in the image. The first step in

postprocessing is to run the region detector over the parameter estimates image in order to

find any new SQs discovered in the image. The median of the parameters within each of

these regions is then found, and is output as the estimate for that region.

69

Performance was evaluated using a technique exactly analogous to that for

SQNETl. The scoring program read the final regions image, the final parameter estimate

vectors, and the triples image. The estimates for a region were propagated to all pixels in

the region. The triples data for that pixel was then used in the expression (1 - F<Aij, Aij))2,

and the squared errors summed This SSE was normalized by the number of active pixels.

A penalty was added if the number of SQs discovered differed from the number of SQs

used to generate the input image.

Results

After determining a likely set of constants for the various costs and minimization

controls, several experiments were run to test the ability of SQNET2 to estimate the SQ

parameters. As for SQNETl, there is no a-priori method for determining the best values for

the weights in the objective function and the various iteration limits, convergence

tolerances, and update frequencies in the minimization procedure. The simple search

procedure was repeated in order to find a set of constants that would successfully estimate

the parameters for a range of noise levels. The best performing constants found are given

below in Table 3. These values were used in all subsequent experiments unless mentioned

otherwise.

TABLE3

BEST PERFORMING CONSTANTS
FORSQNET2

Parameter Value
C1 1.0
Cc 7.0
Cp 1.0
CL 1.0
p 3
ss 0.1

chi_tol 0.1
lm_iters 3

iters 2
h freq 1

As with SQNETl, a range of experiments were devised to test various invariance

properties of SQNET2. However, because of the results from SQNETl, not all the

experiments were repeated. Specifically, because SQNETl was not able to discriminate

overlapping SQs that the preprocessing could not discriminate, no attempt was made to

have SQNET2 discriminate overlapping SQs.

70

71

Experiment 1: Position Invariance

The first experiment was to verify the position invariance of SQNET2. The data set

for this experimep.t consisted of a unit sphere moved in ten steps along a line through the

origin, perpendicular to the viewing axis. Figure 27 shows the results of this experiment.

As for SQNETl, there are some differences in SSEN, but they are at a level that can

adequately be accounted for by the interaction between sampling points and the coarse

polygonal approximation to a SQ in for the input data.

0.008

0.006

0.004

0.002

0-t--.....----------..-------,.---,---,-...------f
0.1 0.2 0.3 0.4 0.5 0.6 0. 7 0.8 0.9 1

Figure 27: SSEN vs. Position

72

Experiment~~ Invariance

\

In this experiment the size invariance of SQNET2 was investigated. Varying the

size of the SQ for a fixed sampling density is equivalent to varying the sampling density for

a fixed size SQ, so this experiment also provides information on how densely we must

sample the SQ in order to ensure adequate recovery. The data set for this experiment

consisted of a singe SQ ellipse placed at the origin. Its size was varied from covering 45 to

4096 pixels.The local neighborhood size was also varied. Figure 28 shows that the quality

of the fit is good until the SQ becomes quite large. At this point the SQ fills the 4096 pixel

image used in this test, therefore portions of the SQ are outside of the picture. The loss of

these areas of high curvature is believed to be the main contributor to the poor fit. The

neighborhood size has only a minor effect on the fit. We see that the recovery works quite

well for small numbers of data points, at the smallest size the SQ is contained in a 7x7

neighborhood.

o.\6

ol
o.\Z

o.~

096

0.06

13

74

Experiment .l;, ~ Invariance :. Aspect RfiliQ

This experiment was designed to test the invariance of SQNET2 to changes in the

aspect ratio of the SQs it is trying to model. Two sets of experiments were run. The first,

shown in Figure 29 A, varied the a1 and a2 parameters between 0.2 and 4.0 while holding

a3 at 1.0. The second, shown in figure 29 B,varied a1 and a3 between 0.2 and 4.0 while

holding a2 at 1.0. In order to keep the number of pixels covered by the differently shaped

SQs roughly constant, the size parameters were actually normalized so that <a1, a2, a3>

was unit length.

We see that the aspect ratio does have an effect Generally, the recovery is less

accurate as the SQ gets further away from a sphere. This is especially true for the very high

aspect ratios of approximately 20: 1. However, the explanation for this effect is more

involved than a simple lack of invariance to changes in aspect ratio. The three worst­

performing cases in figure 29 are for highly elongated ellipsoids. Those three ellipsoids are

aligned with the axes of the world coordinate system, and are viewed from a position along

the direction vector <l, 1, 1>. This is illustrated below in figure 30. Recall that the

parameters are fit to data from a cross-shaped region. This is the worst choice give the

orientation of the SQs in the image, since only a few pixels at the center of the cross will lie

on the object

75

0,f>
O,oa 0.1a

0.07
0,12

0,01 o.,
O,Qs 0,1

0,rfJ !II O,Qa ~ . . 0.05 ~ o.r>
0,1/J Cl) . . . 0.04 °2

. . .
O,oa °2 . . .

o.04 . . ~ 0,fP . ~ .
0.03 ~

. . .
o.04 i .

o.~ .
0,Qa ~ o.04 . . ~

o.o2
O.o,

O,Qa

0,01 o.o2

Figure 29: SSEN vs. Aspect Ratio

z

X X

Figure 30:Appearance of SQs in Aspect Ratio Test

76

Experiment 4: fillm Invariance :: .s..Q Shape Parameters

The previous experiment measured the effects of aspect ratio on the accuracy of

SQNET2's estimates. We also need to know if the technique displays any significant

sensitivity to the shape parameters of the SQs it is trying to model. The input data for this

experiment was a single unit SQ positioned at the origin. Both e1 and e2 were varied from

0.2 to 2.0 for a total of 25 runs. The results, presented in figure 31, again show that the

estimation error increases as the SQ shape gets further away from spherical. The errors are

greater than those for high aspect ratios. The most probable cause for these errors was also

mentioned in the previous chapter, namely the lack of information provided by flat faces.

All four comers of the figure below correspond to objects with flat faces.

o.26
0.25

o.2
0.2

0.,5 ~
o.16

Cl)

'2
o., -~ (ij

o.1 ~

0.05
~

0.06

.......

Figure 31: SSEN vs. SQ Shape Parameters

77

Experiment .5.;. Viewoint Invariance

For SQNETl, the viewing direction was always down the y-axis. SQNET2 was

run on datasets that did not have this restriction. Therefore, this experiment was designed

to measure any sensitivity the technique might have to viewpoint. The dataset for this

experiment consisted of a single SQ at the origin whose shape parameters were varied from

0.2 to 2.0. This means its shape varied from approximately cubical, through spherical, to

an octahedron. Each shape was viewed from seven positions in the first octant whose

longitude and latitude were both equal to the viewing angle specified in figure 32. Since the

SQs are symmetric, this is considered to be adequate coverage. Viewing directions directly

along axes are avoided because of the principle of general position. The results of the

experiment show that there is a sensitivity to viewing position, especially for cubical and

octahedral shapes. This is expected due to the results of the previous experiment. The

smaller sensitivity to viewpoint noted for the spherical shape is attributed to the coarse

polyhedral approximation to a sphere actually used.

78

o.'
0.4

o.s5
0.35

0,3
o.s

~
o.2'

0.25 (/)

0.2 -g
o.2 -~

0.15 "iij

o.15 ~
0.1 ~ o.1

o.os
0.05

.......
.s-

~<&""'

._ --..t,.""
~

c:::,"? ,,/

.s::s- <:::,<"),,

Figure 32: SSEN vs. Viewing Angle and Shape Parameters

CHAPTER VI

CONCLUSIONS

Summary

This dissertation began by mentioning some of the motivations for machine vision

and briefly reviewing some of the 3D object modeling techniques used in the field. In

Chapter II we described an interesting geometric solid, the superquadric (SQ), and

reviewed the work done using it as a modeling primitive in machine vision. Special

attention was paid to the work of Solina [58], and several advantages and disadvantages of

his technique were noted. We cited a unique parallel implementation of his method [14] to

show that one of,the disadvantages, speed, could be overcome. We also noted that he was

not exploiting the very powerful property of image coherence. Chapter III reviewed the

basics of neural networks, giving details on the operation of a few example networks.

Close attention was paid to a neural network developed by Christof Koch and his

colleagues [35]. Its operation was discussed and results presented. We also noted the

results of a unique comparison between his network and a median filter [15].

The remainder of the dissertation described attempts to use a modified Koch

network to exploit image coherence in an attempt to overcome the problems noted with

Solina's approach to SQD. Chapter IV described initial efforts which used a new vector

extension to Koch's ID network. The objective function of this network (SQNETl), which

incorporates a term to model 2D superellipses, was another of the unique developments in

this thesis. The objective function proved too difficult to minimize by the simple gradient

crawl of the Koch network, so a hybrid minimization algorithm was developed. This new

minimization algorithm was able to minimize the objective function, although certain

79

80

limitations were noted. One of these limitations, recovery of squares, was expected. The

other, an inability to find the boundary between nearby SQs, was disappointing since it

was a major motivation for the technique. Chapter V described the extension of SQNETl to

a 2D network (SQNET2) for modeling 3D superellipsoids. This unique network, which

was the goal of the thesis, was also successful in estimating the SQ parameters in most

cases. However, the problems evident in SQNETl were even more noticeable in SQNET2.

Suitability of Koch Network Approach

As was noted in Chapter IV, a straightforward modification of the Koch network

was not able to minimize the portion of the objective function that was based on the SQ

inside/outside function (3). Recent discussions with neural network researchers at

Cambridge have shed additional light on the difficulties experienced [l, 2, 21]. Hopfield

networks can be analyzed in terms of the subspaces generated by the eigenvectors of their

connection matricies. These subspaces take the form of hyperplanes within the N­

dimensional hypercube of possible solutions, where N is the number of units in the

network. If the network is attempting to solve a combinatorial problem, the solution is

further constrained to lie at one comer of the hypercube. This additional constraint is quite

powerful, and can be used to markedly improve the performance of the network. Without

this extra constraint, Hopfield networks are poorly suited to non-quadratic, non­

combinatorial optimization problems. Its simple gradient crawl leaves it open to the classic

problem of long shallow valleys.

Suitability of Hybrid Method

While the Koch network was not capable of minimizing the SQ portion of the

objective function, I still thought that the Koch network's approach to simultaneously

discovering image regions and image edges was interesting. I also thought that the

objective function it had inspired (32) was a natural way for exploiting image locality in

81

order to overcome the problems noted with Solina's network. Therefore I investigated an

approach as close as possible to the spirit of the Koch network, but used the more powerful

Levenberg-Marquardt (LM) minimization technique to handle the SQ portion of the

objective function. By exploiting the natural parallelism in the problem, the hybrid

approach also addresses the storage problem associated with minimization algorithms that

compute or approximate the Hessian matrix. While neural network researches would like to

use such methods to minimize their objective functions, they frequently have so many

parameters to estimate that such methods are impractical.

The hybrid method proved that it was capable of minimizing the objective function

and obtaining good parameter estimates. The characteristics of SQNETl were tested to find

out its sensitivity to noise in the data, sampling density, aspect ratio, etc. The technique

was usually successful in finding quite good estimates for the underlying superquadrics.

Some problems were noted as shapes tended toward squares, due to the loss of information

from the sides of the SQ. We also saw that the technique was not able to discriminate SQs

if they were positioned very close together. This was disappointing, since it was one of the

main motivations for investigating the technique.

Despite these problems, SQNETl appeared promising enough to warrant

investigating its extension to recovering the parameters for 3-D SQs. SQNET2 was

implemented and tested to discover its invariance to position, size, aspect ratio, shape

parameters and viewing position. SQNET2 was also successful in estimating the SQ

parameters under most conditions, but exhibited greater sensitivity to the situations which

gave SQNETl trouble. Basically, the performance fell off as the SQ shape got further away

from a sphere. There were two causes for this. The first was that the cross-shaped

neighborhood performed poorly if the orientation of the SQ avoided most of the pixels in

the neighborhood. This is natural, but it does indicate that the cross-shaped neighborhood

is not a good choice for general purpose use. The second problem was that SQs with flat

rather than curved faces were more difficult to recover. Most of this difficulty was ascribed

82

to a lack of curvature information. This network's sensitivity to viewing position is related

to this lack of information. Performance is best from viewpoints that show as many faces

as possible. The rest of the difficulty was ascribed to an increasingly non-quadratic error

function as the SQ exponents were moved away from 1.0. These exponents make the SQ

function difficult to minimize. Careful handling of the x = xo, y = YO, and z = zo planes

was necessary in order to avoid numerical difficulties.

Within the limitations noted above, the hybrid technique worked well. However,

this is mostly because of the capabilities of the LM algorithm. The difference in

convergence order between the LM algorithm and the gradient crawl algorithm means that

the interpolation term does not have enough time enforce smoothness of the parameter

estimates before the LM algorithm begins to overfit.

Comparison with Solina's Technique

The goal of the research was to improve Solina's method by using Koch's network

as a framework to take advantage of image coherence. Earlier we noted three particular

problems with Solina's method. The first was speed, the second was the limited number of

SQs that could be recovered, and the third was that the recovery time was serial in the

number of SQs recovered. How well did the hybrid approach meet the goals of the project?

Let us examine the problems in order.

First, speed. The hybrid network is not faster then Solina's technique, in fact it's

computational complexity is greater. As mentioned earlier, for each iteration of the LM

algorithm, the network requires MN evaluations of the objective function and its partial

derivatives, where M is the number of active data points and N is the size of the local

neighborhood. Solina's only requires M evaluations per LM step. The hybrid approach

also has the expense of the interpolation and discontinuity terms. However, both

approaches are very amenable to parallel implementation, so the problems with speed are

not serious.

83

The second problem with Salina's method was that his multiple object recovery

technique severely limited the number of SQs that could be estimated. The SQ network

approach can handle large numbers of SQs in an image. However, this is not the large

improvement it initially appears to be. Salina's technique can sometimes disambiguate SQs

that overlap in image space, or even interpenetrate in object space. The hybrid technique

has not ever managed to form the continuous line of discontinuity elements needed to

separate SQs that touch. While the hybrid approach can handle many more objects than

Salina's technique, they must be surrounded by a border of background pixels, or very

easy to separate in a preprocessing step.

The third problem with Salina's approach was that it recovered the SQs serially,

with the largest one being estimated first. The hybrid approach can recover all the SQs in

parallel, but again, this is a minor improvement. If the regions had been separated in a

preprocessing step, Salina's method could be extended to recover them in parallel.

However, this preprocessing step could well be a mixed blessing. While Salina's technique

would be able to discover if the preprocessing step had incorrectly grouped the data from

two SQs into one region, it would not be able to do the converse.

In summary, the SQNET2 technique works, but not as well as I had initially hoped.

It does exploit image coherence, which gives it some advantages over Salina's approach.

However, these advantages could be matched and exceeded if Salina's approach were

developed further to use pre-segmented range data while not excluding the possibility of

merging regions. The actual SQ parameter estimation of SQNET2 works quite well for

many situations, but appears inferior to that of Salina's for objects with flat faces. The

small neighborhood size limits the information available to estimate any one parameter

vector. This means that pixels in the middle of a face do not have enough information to

make reliable estimates. The difference in convergence order between the LM and the

gradient crawl algorithms means that there is not enough time for information to propagate

across regions and improve those estimates before the LM technique begins to overfit.

84

Guidelines for Future Research

Several simplifying assumptions were made in the course of this research. For

example, the objective functions in this study do not attempt to model rotated or deformed

SQs. Removing these restrictions would be a subject for a straightforward extension of the

present research. However, they served their purpose in allowing an examination of the

suitability of an approach to object modeling before getting bogged down in a mass of

details. Another obvious extension would be to use real rangefinder data rather than the

artificial data used in this study.

Another possible course of research which closely follows this one would be to pull

the interpolation term into the LM minimization algorithm, while still using a different

method to estimate the breakpoints. This would overccme any problems due to the

difference in convergence order between the LM and gradient crawl methods. The product

terms which exclude data points could also be reformulated to use other than cross-shaped

neighborhoods.

Only slightly further afield from this study would be to investigate network

organizations other than one parameter vector per pixel. Other spatially organized neural

networks, such as Kohonen's Self-Organizing Map [37], might provide a better model for

this purpose. Certainly, spatial coherence should be used in the preprocessing stages.

However, the object modeling stage should be able to overcome errors in the preprocessing

algorithm's assignment of points to candidate SQs. Extensions to Solina's method are a

topic that might prove fruitful.

A topic of more general interest, and one that I think will be pursued by may people

who will never know of this thesis, is the development of minimization algorithms that can

handle large numbers of parameters while not sacrificing all the benefits of methods that

approximate the Hessian matrix. The hybrid network developed during this study was able

to do so by taking advantage of parallelism inherent in the problem, parallelism that was

85

due to image coherence. The search for general methods should keep many researchers

busy for several years, and a successful method would prove a great benefit to many fields.

Finally, as a more general guideline to vision researchers, it appears that attempting

to have an object modelling technique simultaneously perform data segmentation is a bad

idea. While it is an attractive idea to avoid the "chicken and egg" problem that has bedeviled

segmentation for so long, this does not appear to be the way to do it. However, the

limitations of the standard low level to medium level to high level pipeline remain. The

object modeling phase must be able to overcome bad decisions made in preprocessing

stages. Pavlidis [44] believes that this layered approach is one of the main impediments to

progress in machine vision. Finding algorithms to overcome it is therefore crucial to

significant advances in this field.

BIBLIOGRAPHY

[l] Aiyer, S.V.B., Niranjan, M., and Fallside, F., "Theoretical Investigation into the
Performance of the Hopfield Model," Tech. Rep., CUED/F-INFENG(fR 36,
1990.

[2] Balakrishnan, S.V., personal communication.

[3] Ballard, D.H. and Brown, C.M., Computer Vision. Englewood Cliffs, N.J.:
Prentice-Hall, 1982.

[4] Barr, A.H., "Superquadrics and Angle-Preserving Transformations," IEEE Comp.
Graphics and Applications, vol. 1, no. 1, pp. 11-23, Jan. 1981.

[5] Barr, A.H., "Global and Local Deformations of Solid Primitives," Computer
Graphics, vol. 18, no. 3, pp. 21-30, July 1984.

[6] Besl, P.J. and Jain, R.C., "Three-Dimensional Object Recognition," Computing
Surveys, vol. 17, no. 1, pp. 75-145, March 1985.

[7] Biederman, I., "Recognition-by-components: A theory of human image
understanding," Psychological Review, vol. 94, no. 2, pp. 115-147, 1987.

[8] Binford, T.O., "Visual Perception by Computer," in Proceedings IEEE Conf on
Systems and Control, Miami, FL, 1971.

[9] Boult, T.E. and Gross, A.D., "Recovery of Superquadrics from Depth
Information," in Proceedings of Spatial Reasoning and Multi-Sensor Fusion
Workshop, pp. 128-137, 1987.

[10] Braid, LC., "The Synthesis of Solids Bounded by Many Faces," Communications
of the ACM, vol. 18, no. 4, pp. 209-217, April 1975.

[11] Carpenter, .G.A., Cohen, M.A., and Grossberg, S., "Computing with Neural
Networks: Technical Comments," Science, vol. 235, pp. 1226-1227, March 1987.

[12] Carpenter, G.A. and Grossberg, S., "A Massively Parallel Architecture for a Self­
Organizing Pattern Recognition Machine," in Neural Networks and Natural
Intelligence, Grossberg, S., .Ed. MIT Press, 1988.

[13] Daniel, Jr., R.E.,' "Superquadric Description on Large Arrays of Bit-Serial
Processors," Master's thesis, K. Teague, Advisor, Okla. State Univ., July 1987.

[14] Daniel, Jr., R.E., "Parallel Nonlinear Optimization," in Proceedings of the Fifth
Distributed Memory Computing Conference, 1990.

86

87

[15] Daniel, R.J. and Teague, K., "A Connectionist Technique for Data Smoothing,." in
Proceedi1:gs of the Fifth Distributed Memory Computer Conj., 1990.

[16] Davies, E.R., Machine Vision: Theory, Algorithms, Practicalities. San Diego, CA:
Academic Press, 1990.

[17] Fahlman, S.E., "An Empirical Study of Learning Speed in Back-Propagation
Networks," Carnegie-Mellon University Tech. Rep., CMU-CS-88-162, 1988.

[18] Fahlman, S., "The Cascade-Corellation Model," Carnegie-Mellon University Tech.
Rep., CMU-CS-90-100, 1990.

[19] Ferrie, F.P., Lagarde, J., and Whaite, P., "Darboux Frames, Snakes, and Super­
Quardics: Geometry from the Bottum-Up," in Proceedings Workshop on
Interpretation of 3D Scenes, IEEE Comp. Soc. Press, 1989, pp. 170-176.

[20] Foley, J.D. and van Dam, A., Fundamentals of Interative Computer Graphics.
Reading, Ma: Addison-Wesely Publishing Co., 1985.

[21] Gee, A., personal communication.

[22] Geman, S. and Geman, D., "Stochastic Relaxation, Gibbs Distribution, and the
Bayesian Restoration of Images," IEEE Trans. Patt. Anal. and Mach. Intell., vol.
PAMI-6, no. 6, pp. 721-741, Nov. 1984.

[23] Grossberg, S., "Competitive Learning: From Interactive Activation to Adaptive
Resonance," in Neural Networks and Natural Intelligence, Grossberg, S., Ed.
MIT Press, 1988.

[24] Gupta, A., Bogoni, L., and Bajcsy, R., "Quantitative and Qualitative Measures for
the Evaluation ot the Superquadric Models," in Proceedings Workshop on
Interpretation of 3D Scenes, IEEE Comp. Soc. Press, 1989, pp. 162-169.

[25] Healey, G. and Binford, T.O., "Local Shape from Specularity," Computer Vision,
Graphics, and Image Processing, vol. 42, pp. 62-86, 1988.

[26] Hopfield, J.J., "Neural networks and physical systems with emergent collective
computational abilities," Proc. Nat. Acad. Sci. USA, vol. 79, pp. 2554-2558,
April 1982.

[27] Hopfield, J.J., '"Unlearning' has a stabilizing effect in collective memories,"
Nature, vol. 304, pp. 158-159, July 1983.

[28] Hopfield, J.J., "Neurons with graded response have collective computational
properties like those of two-state neurons," Proc. Nat. Acad. Sci. USA, vol. 81,
pp. 3088-3092, May 1984.

[29] Hopfield, J.J. and Tank, D.W., "Neural Computation of Decisions in Optimization
Problems," Biological Cybernetics, vol. 52, pp. 141-152, 1985.

[30] Hom, B.K.P., Robot Vision. MIT Press, 1989.

88

[31] Hummel, J.E. and Biederman, I., "Dynamic Binding in a Neural Network for
Shape Recognition," Univ. of Minnesot Dept. of Psychology, Image
Understanding Lab Tech. Rep., 90-5, August 1990.

[32] Ik:euchi, K. and Horn, B.K.P., "Numerical Shape from Shading and Occluding
Boundaries," Artificial Intelligence, vol. 17, pp. 141-184, 1981.

[33] Ik:euchi, K., "Shape from Regular Patterns," Artificial Intelligence, vol. 22, pp. 49-
75, 1984.

[34] Johansson, E.M., Dowla, F.V., and Goodman, D.M., "Backpropagation Learning
for Multi-Layer Feed-Forward Neural Networks Using the Conjugate Gradient
Method," Lawrence Livermore Natl. Lab, Preprint UCRC-JC-104850, 1990.

[35] Koch, C., Marroquin, J., and Yuille, A., "Analog 'neuronal' networks in early
vision," Proc. Nat. Acad. Sci. USA, vol. 83, pp. 4263-4267, June 1986.

[36] Koenderink, J.J. and Van Doorne, A.J., "The Internal Representation of Solid
Shape with respect to Vision," Biological Cybernetics, vol. 32, pp. 211-216, 1979.

[37] Kohonen, T., Self-Organization and Associative Memory. Berlin: Springer­
Verlag, 1984.

[38] Kriegman, D.J. and Ponce, J., "Computing Exact Aspect Graphs of Curved
Objects: Solids of Revolution," in Proceedings of the Workshop on Interpretation
of 3D Scenes, IEEE Computer Society Press, 1989, pp. 116-122.

[39] Lee, C.H. and Rosenfeld, A., "Improved Methods of Estimating Shape from
Shading Using the Light Source Coordinate System," Artificial Intelligence, vol.
26, pp. 125-143, 1985.

[40] Lippmann, R.P., "An Introduction to Computing with Neural Nets," IEEE ASSP
Magazine, pp. 4-22, April 1987.

[41] Lowe, D.G., "The Viewpoint Consistency Constraint," International Journal of
Computer Vision, vol. 1, no. 1, pp. 57-72, 1987.

[42] Metaxas, D. and Terzopoulos, D., "Constrained Deformable Superquadrics and
Nonrigid Motion Tracking," in Proceedings Interna.tional Conference on Computer
Vision and Pattern Recognition (CVPR'91), 1991, pp. 337-343.

[43] Minsky, M. and Papert, S., Perceptrons. Cambridge, MA: MIT Press, 1969.

[44] Pavlidis, T., "Why progress in machine vision is so slow," Pattern Recognition
Letters, vol. 13, pp. 221-225, April 1992, North-Holland.

[45] Pentland, A.P., From Pixels to Predicates: Recent Advances in Computationa.l and
Robotic Vision. Norwood, N.J.: Ablex, 1986.

[46] Pentland, A.P., "Shading into Texture," Artificial Intelligence, vol. 29, pp. 147-
170, 1986.

[47] Pentland, A.P., "Perceptual Organization and the Representation of Natural Form,"
SRI Intl. Tech. Rep., 357 (Revised), July 29 1986.

89

[48] Pentland, A.P., "A New Sense for Depth of Field," IEEE Trans. Patt. Anal. and
Mach. Intell., vol. PAMI-9, no. 4, pp. 523-531, 1987.

[49] Pentland, A.P., "Toward an Ideal 3-D CAD System," in SPIE Conf on Mach.
Vision and the Man-Machine Interface, 1987.

[50] Pentland, A.P. and Bolles, R., "Learning and Recognition in Natural
Environments," SRI Intl. Tech. Note 421, 1987.

[51] Pentland, A.P. and Williams, J., "Perception of Non-Rigid Motion:'Inference of
Shape, Material, and Force," in Proceedings International Joint Conference on
Artificial Intelligence (/JCAI '89), 1989.

[52] Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical
Recipes in C: The Art of Scientific Computing. Cambridge, England: Cambridge
University Press, 1988.

[53] Requicha, A.A.G.V.H.B. and Voelcker, H.B., "Boolean Operations in Solid
Modeling: Boundry Evaluation and Merging Algorithms," Proceedings of the
IEEE, vol. 73, no. 1, pp. 30-44, Jan. 1985.

[54] Roberts, L.G., "Machine Perception of three-dimensional solids," in Optical and
Electro-optical Information Processing, Tippet, J.P. et al, Eds. Cambridge, MA:
MIT Press, 1965.

[55] Rumelhart, D.E., Hinton, G.E., and Williams, R.J., "Learning Internal
Representations by Error Propagation," in Parallel and Distributed Processing:
Explorations in the Microstructure of Cognition, Rumelhart, D.E. and Hinton,
G.E., Eds. Cambridge, MA: MIT Press, 1986.

[56] Rumelhart, D.E., Hinton, G.E., and Group, P.P.R., Parallel and Distributed
Processing: Explorations in the Microstructure of Cognition. Cambridge, MA: MIT
Press, 1986.

[57] Scales, L.E., Introduction to Non-Linear Optimization. New York: Springer,
1985.

[58] Solina, F., "Shape Recovery and Segmentation with Deformable Part Models,"
Ph.D. thesis, also published as U. Penn. Dept. Comp. and Info. Sci. GRASP Lab
Tech. Rept. 128, Univ. of Penn., Dec. 1987.

[59] Solina, F. and Bajcsy, R., "Recovery of Parametric Models from Range Images:
The Case for Superquadrics with Global Deformations," IEEE Trans. Patt. Anal.
and Mach. Intel/., vol. PAMI-12, no. 2, pp. 131-147, Feb. 1990.

[60] Tank, D.W. and Hopfield, J.J., "Simple 'Neural' Optimization Networks: An ND
Converter, Signal Decision Circuit, and a LinearProgramming Circuit," IEEE
Trans. Circuits and Systems, vol. 33, no. 5, pp. 533-541, May 1986.

[61] Terzopoulos, D. and Metaxas, D., "Dynamic 3D Models with Local and Global
Deformations: Deformable Superquadrics," in Proceedings of the Third
International Conference on Computer Vision (ICCV'90), 1990, pp. 606- 615.

90

[62] Terzopoulos, D. and Metaxas, D., "Dynamic 3D Models with Local and Global
Deformations: Dynamic Superquadrics," IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 13, no. 7, pp. 703-714, July 1991.

[63] Terzopoulous, D., Witkin, A., and Kass, M., "Energy Constraints on Deformable
Models: Recovering Shape and Non-Rigid Motion," in Proceedings American
Assoc. Artif. Intell. (AAAl-87), 1987, pp. 755-760.

[64] Tilove, R.B., "Set Membership Classification: A Unified Approach to Geometric
Intersection Problems," IEEE Trans. Computers, vol. C-29, no. 10, pp. 874-883,
Oct. 1980.

[65] Tou, J.T. and Gonzalez, R.C., Pattern Recognition Principles. Reading, MA.:
Addison-Wesley, 1974.

[66] Ullman, S., The Interpretation of Visual Motion. MIT Press, 1979.

[67] Ullman, S. and Basri, R., "Recognition by Linear Combinations of Models," A.I.
Memo 1152, MIT AI Lab, Cambridge, MA., August 1989.

[68] Waltz, D., "Understanding Line Drawings of Scenes with Shadows," in The
Psychology of Computer Vision, Winston, P.H., Ed. New York: McGraw-Hill,
1975.

[69] Yngvesson, J. and Wallin, I., SIPP 2.0 -A 3d Rendering Package, available on
comp.sources.misc archive sites.

VITA

Ronald Ellison Daniel Jr.

Candidate for the Degree of

Doctor of Philosophy

Thesis: A MASSIVELY PARALLEL APPROACH TO MODELING 3D OBJECTS IN
MACHINE VISION

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in Springfield, Missouri, September 8, 1960, the son of
Ronald E. and Barbara L. Daniel.

Education: Graduated from Putnam City High School, Oklahoma City,
Oklahoma, in May 1978; received Bachelor of Science Degree in
Electrical and Computer Engineering from Oklahoma State University in
May, 1985; received Master of Science Degree from Oklahoma State
University in July, 1987; completed requirements for Doctor of
Philosophy degree at Oklahoma State University in May, 1993: Member
of Eta Kappa Nu, Tau Beta Pi. Life Member of the Cambridge University
Cognitive Science Society.

Professional Experience: Teaching Assistant, Department of Electrical and
Computer Engineering, Oklahoma State University, August 1984 to
December 1985; Graduate Research Assistant, Department of Electrical
and Computer Engineering, Oklahoma State University, August 1985 to
August 1986; Teaching Assistant, Department of Electrical and Computer
Engineering, Oklahoma State University, August 1986 to May 1987;
Graduate Research Associate, Department of Electrical and Computer
Engineering, Oklahoma State University, May 1987 to September 1990;
Research Associate, Department of Engineering, Cambridge University,
October 1990 to present.

