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Abstract 

 

A mental model of the another person’s state of mind including their thoughts, 

feelings, and beliefs, otherwise known as Theory of Mind (ToM), can be created to better 

predict their behavior and optimize our own decisions. These representations can be 

explicitly modeled during both the development and presence of stable cooperation via 

communication outcomes, allowing us to understand the sophistication or depth of mental 

coordination, involved in an individual’s social perception and reasoning. Almost all current 

scientific studies of ToM take a spectatorial approach, relying on observation followed by 

evaluation (e.g., the Sally-Anne Task). However given evidence that social cognition 

fundamentally shifts during valuationally significant social encounters with others, this study 

adopts a second-person approach. Each participant’s actions under dynamic uncertainty 

influence the joint reward probabilities of both, favoring cooperation and coordination. Only 

Teachers have knowledge of the correct action-reward contingencies, while Learners must 

ascertain the Teacher’s directive and correctly adjust their actions to obtain the optimal 

reward. The complexity of cooperative behaviors cannot be captured with simple 

reinforcement learning models, however a similarity in valuation exists, probing further 

investigation. 

Keywords: Decision Making, Theory of Mind, Neuroscience  
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Historical Background 

Cooperative success in a dynamically updating world requires transmission, 

acquisition, and application of expertise and knowledge in social settings. By both learning 

another’s thoughts, feelings, and beliefs and being able to distinguish them from one’s own, 

otherwise known as developing Theory of Mind (ToM) or mentalizing, we can create a 

mental model of the Other’s state of mind and ultimately better predict their behavior to 

optimize our own decisions. These mental representations can be explicitly modeled during 

both the development and presence of stable cooperation via communication outcomes, 

allowing us to understand the sophistication, or degree of mental coordination, involved in 

each individual’s social perception and reasoning. We commonly find ourselves in states of 

asymmetric knowledge distribution when we or others have better access to useful 

information, and in situations in which cooperation is advantageous.  

There exists a range of approaches throughout psychology and neuroscience that are 

taken to understand cooperation, Theory of Mind, and the dynamics of updating values based 

on changing signals from the environment. Typically, the approaches typically are used 

independently of one another but could be combined to yield insight beyond the reach of any 

one of them in isolation. Cooperation is often studied using joint action approaches which 

rely on coordination in goal-oriented motor tasks (Sebanz, Bekkering, and Knoblich 2006), 

however joint action approaches do not require modeling another person’s beliefs (cite). 

False belief tasks are commonly used to capture this presence of Theory of Mind in the form 

of a play or cartoon by giving an individual more information than another and establishing 

whether they can then differentiate between their own knowledge and the other’s (e.g. Sally-

Anne task) (Baron-Cohen, Leslie, and Frith 1985; Wimmer 1983). Only answers consistent 
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with the unknowing perspective, not the participant's own, demonstrate the necessary insight. 

These tests rarely incorporate either competitive or cooperative valuationally consequential 

actions and instead impose a spectatorial point of view on participants. Probabilistic 

reinforcement learning tasks permit a vested interest as well as cognitive modeling of 

behavior and learning over time (Rolls, McCabe, and Redoute 2008). The implicit weight, or 

expected value, assigned to a reward can be behaviorally modeled using reinforcement 

learning methods. Inherent values are updated over time via incentive salience and errors in 

prediction of reward. 

By identifying underlying neural processes and networks involved in the computation 

of the self and the other, we can better comprehend the components comprising and perhaps 

necessary for successful cooperation. Recruitment and integration of broad neural regions has 

been found during tasks explicitly requiring ToM (Adolphs 2009; Carrington and Bailey 

2009), notably including the temporoparietal junction (TPJ), medial prefrontal cortex 

(mPFC), superior temporal sulcus (STS), and precuneus (PCUN) (Fig.1). As the mPFC has 

been shown to have greater activation while moderating one’s social behavior and executive 

functioning and the TPJ is believed to have a role in self-other distinction processes, they are 

commonly referred to as areas of a mentalizing network, leading to our focus on their role 

and neural connectivity in integrating Theory of Mind and expected value in cooperative 

learning.  
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Figure 1. Theory of mind regions of interest (ROIs) in the brain. 

 

This work aims to examine individual and shared valuations in relation to a neural 

network of cooperation and Theory of Mind integrating evidence from cognitive psychology, 

social neuroscience, and computer science to apply game theory and reinforcement learning 

research. By investigating the relationship and underlying neural mechanisms, we may better 

our understanding of cooperative dynamics in teamwork settings and the requirements for 

cooperative success. 

Challenges 

ToM and False Belief Tasks 

Social cognition evolved via ongoing interactions and communication between 

individuals in dyads or small groups, producing a collaborative knowledge network (Dunbar, 

1998).  In 1981 Stephan, Frahm, and Baron presented a correlation between neocortex size 

and mean social group size, leading to the creation of social brain hypothesis. It suggested 

that primates’ large brain to body size ratio reflects the computational demands of complex 

structures in their social systems. Then came a proposal by Dunbar about a limiting volume 
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value for visual areas, meaning that once an organism passed a crucial threshold, additional 

space could be dedicated to nonvisual areas of the neocortex and cognitive processing, 

including language. Individuals with more processing capacity were found to have 

proportionately larger social networks (Lewis et al., 2011; Powell et al., 2012, 2014; Kanai et 

al., 2012), meaning that their hypothesis applies not just at the level of the species but also at 

the level of the individual. Communication involves second-order representations in which 

we represent someone else’s representation of our own mental state. Ongoing accumulation 

and contribution of knowledge enables us to make inferences about the beliefs and intentions 

of those we are communicating with. These inferences guide our predictions of appropriate 

behaviors and decisions, leading to more successful interactions. These predictions rely on an 

intentional stance, also known as having a Theory of Mind or mentalizing (the initial 

estimate of the mental state of the person we are interacting with) using long-term 

dispositions, short-term emotional states, desires, beliefs. If the brain can both follow the 

mental state of the person we are interacting with and make predictions about future behavior 

on the basis of that mental state using the same mechanism as Bayesian approaches state, 

there is much more to learn about the brain’s organization. The brain is thought to be 

comprised of social regions (Frith 2007) and this is supported by imaging during mentalizing 

tasks handling communicative intentions and perspective taking, as well as lesion studies. As 

social information processing is modular, there are areas that stand out in these studies 

including the posterior superior temporal sulcus (pSTS), temporoparietal junction (TPJ), and 

anterior rostral medial prefrontal cortex (armPFC), amygdala, orbitofrontal cortex (OFC), 

and insula. The first two deal with success during mentalizing tasks, predicting the trajectory 

of movements where greater activity is associated with prediction errors and understanding 
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that someone has a false belief and therefore different spatial perspectives, respectively. It is 

not clear whether the region is needed to be effective in the tasks, however, as PFC is elicited 

in these situations more research is necessary to understand it’s role. The amygdala, which is 

not specific to social cognition, regulates social behavior and recognizing emotional facial 

expressions, while the orbitofrontal cortex is involved in reward processing, and the insula 

deals with representing states of our own body, feeling empathy for others (Adolphs 2009; 

Dodell-Feder et al. 2011; Koster-Hale et al. 2017).  

It is believed that theory of mind must have preceded any ability to use language in 

the communicative way in which it is used today due to the functional limitations it would 

otherwise experience due to lack of a Broca’s area. Some hypothesize as far back as 6 

million years (Mithen 1996), but recently evolution by degrees as close as 40,000 years ago 

has been argued to be the origin (Baron-Cohen 2012), citing the “social intelligence” of 

monkeys and apes today not being fundamentally the same as the clearly recognize goal 

states found in humans with a full theory of mind. 

Recent advances in technology have spurred unprecedented increases in both the 

speed of information transfer and size of informational social networks. Unfortunately, the 

same pitfall of all oral, written, and behavioral communication plagues this expansion of 

social knowledge networks, unreliable transfer. Whether these networks are between two 

individuals, such as with a teacher and student or a consumer and a customer service 

representative, or on a larger scale like a company, it is necessary for any social system with 

an imbalance of information to quickly and clearly identify the individual with the most 

current and accurate information, better known as an expert. As knowledge is constantly 
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changing, an answer at one point in time may no longer be the “right” answer later. 

Similarly, the title of expert is shifting.  

Current approaches to understanding knowledge transmission and ToM in these 

social networks take a spectatorial approach, relying on observation followed by evaluation, 

such as the case with the classic Sally-Anne Task (Baron-Cohen et al. 1985). In this test a 

cartoon or play is passively presented to a participant where Sally and Anne are in a room 

with a ball, a basket, and a box. Sally puts the ball in the basket and proceeds to leave the 

room. While she is gone, Anne moves the ball to the box. Sally then re-enters the room. The 

participant is then asked where Sally is going to look for the ball. For a participant to pass 

this test and thereby possess ToM capabilities, otherwise known as the ability to attribute 

mental states, they must answer that Sally believes that the doll is in the basket. The 

participant, holding two contrasting belief states in their own mind must temporarily adopt 

Sally's limited perspective and disregard their own omnipresent knowledge. There are two 

separable components of the Theory of Mind mechanism, the Self and the Other. These can 

be distinguished through distinct reaction times and neural signatures. Humans constantly 

process our own perspective regardless of ultimate interaction demands, whereas the Other 

perspective is only processed when explicitly required (Bradford, Jentzsch, and Gomez 

2015). Behaviorally, these ‘perspective-shift’ requirements increase the cognitive load of 

executive functioning processes when attributing beliefs to others and lengthen reaction 

times. In terms of neuroanatomy, medial regions of the prefrontal cortex and precuneus 

respond more when tasks require ToM reasoning in relation to oneself and lateral TPJ 

regions when another person’s behavior violates received information about her thoughts and 

feelings (Thye et al. 2018). 
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False-belief task paradigms like that of the Sally-Anne Task investigate actual, but 

limited domains of social cognition, committed to spectator theories of knowledge using 

“isolation paradigms” (Becchio et al. 2012) to theorize about social interaction and emotional 

engagement. In isolation paradigms participants observe others or think about their mental 

states, but are not required to or are restricted from interacting with the actual individual. The 

social cognition that drives social exchanges and is responsible for social learning 

fundamentally shifts during social encounters with others (Schilbach et al. 2013). When 

participants take an all-knowing, but inconsequential perspective which is not fully emerged 

in the social interaction, such as with spectatorial tasks, they are not actively participating in 

social interactions (Barresi and Moore 1996) as there is no valuational reward or 

consequence for their actions.  

 

Figure 2. Sally-Anne False Belief Test. 
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ToM and Competitive vs Cooperative Cognition: Evolutionary and Developmental 

Considerations 

As humans are a uniquely cooperative species, researchers have sought to understand 

how social interactions may have triggered our cognitive and social evolution. Cooperation is 

known to be difficult due to tempting immediate self-interest seen through challenges in 

sustaining relationships. Constructs of trust, prosociality, reciprocity, culture, norm violation, 

fairness, reputation, learning, adaptation, and reward and punishment all play roles in 

cooperation, making it a difficult area of study (van Dijk, Parks, and van Lange 2013). 

Any in-group or social organization requires some level of cooperation, however we 

do not always choose to coordinate with members of our community. Competitive behavior 

spans conventional aggression including territoriality, dominance, and threats, to physical 

violence. During competitive decision-making, the ACC stores information on whether a 

course of action demands competition, what the intensity of the competition will be, and, 

whether or not the competition is ‘worth it’ to achieve an end reward (Hillman and Bilkey 

2012). 

Evolutionarily, as social groups became larger, more complex, and mutually 

dependent, it was crucial to be able to identify others who cooperated and those who did not. 

Cooperation was previously thought to be either an anomaly or a default mode, however, 

current research suggest that it is best understood as dependent upon traits and states (De 

Dreu 2013). Rather than identifying the mental process to build up cooperation, the necessary 

factors for cooperation are better understood through the moment that cooperation breaks 

down (De Dreu 2013).  
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Unitary ToM? Considerations From Cognitive Science and Neuroscience 

In The Architecture of Cognition a rigorous general theory of mind was proposed that 

mental life has a common set of principles, or essential unity, despite the diversity of its 

component functions (Anderson 1996; Holyoak 1983). Through revision of the ACT 

(Adaptive Control of Thought) system, processing and representation of material in our 

system is determined via an “if, then” matching network. Social interactions can take 

different forms, leading to different requirements of Theory of Mind capabilities. Four types 

have been proposed: shared imaginative play, discourse about inner states, collaborative 

narratives, arguments in disputes, exposure to and engagement in deception (Dunn 1999a). 

Anderson’s theory is strongly founded on goals, meaning the functionality or type of 

interaction can vary the degree of activation in the network. 

 

Computational Cognitive Modeling 

To understand a system as complex and as diverse as the human mind, we need more 

than just simulation tools or programming languages. Proper exploration of the various 

cognitive functionalities underlying human behavior demands development of detailed, 

process-based understanding by identifying computational models of the representations, 

mechanisms, and processes involved (Sun 2008). 

When modeling social exchanges, researchers must keep in mind that the brain must 

both represent the available choices and calculate the differential value of each. This is done 

by developing expectations about the present and future concerning the magnitude of reward 

or punishment resulting from a choice. One approach to finding the neural and psychological 

mechanisms involved in valuation has been through implementation of reward stimuli to map 
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out brain responses by varying the dimension or importance of the rewards. Unfortunately, 

this can only give partial information about neural responses related to valuation. To best 

capture what problems the brain is trying to solve and what mathematical formalisms and 

computational algorithms solution the brain employs under reward, we implement 

reinforcement learning models. These models assume that the seen mechanisms represent 

only one valuation and decision-making system within the brain, and the neuroimaging 

findings regarding valuation in social exchange, decision-making, and learning similarly 

show striking consistency in the set of neural structures that respond to rewards across a 

broad range of domains, conforming to predictions made by formal models of reinforcement 

learning (Montague, King-Casas, and Cohen 2006).  

 

Localizing Neural Substrates 

In order to map the unobservable dynamics of mental processes to the physical 

dynamics in the brain we use both formal cognitive models (discussed below) and 

measurable signals from the brain. Conventional electroencephalography (EEG) 

continuously and passively records electrophysiological activity of neuronal assemblies, or 

local field potentials (LFPs), using electrodes placed on the scalp. The electrodes are held to 

the scalp via a cap, while the data is transferred to an amplifier and ultimately a data 

acquisition computer (Fig. 1). Inferring brain areas responsible for underlying neural activity 

of interest, in this case using scalp potential data, is also known as solving the forward 

problem (Hallez et al. 2007).  
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Figure 3. Field potentials elicited via dendritic ensembles. 

EEG is known to exhibit exceptional temporal resolution of around 1 millisecond, 

however it has difficulty localizing neural activity in space. Compared to microelectrode 

recordings that can reflect the sum of action potentials of cells in a region of 50-350 μm 

(Gray et al. 1995; Legatt, Arezzo, and Vaughan 1980), early EEG could only limit its range 

to approximately 6-9 cm (Nunez et al., 1994; Babiloni et al., 2001). As neuroimaging 

technology improves, standard guidelines as to how researchers approach data, it’s results, 

and what this means for the association are necessary. Cacioppo et al. propose four: 1) we 

already know that brain activation is corresponded to some aspect of social cognition, 

emotion, or behavior, so shallow studies that claim discoveries from covariation of a 

psychological measure, process, or representation and an event in the brain bring little to the 

table; 2) while focusing on regions of interest can be of use and finding localizations of 

information-processing components would provide much simpler answers to our questions, 

the brain needs to be considered a network that requires its total mass to carry out functions; 
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3) erroneous interpretations arise from belief that changes in activation during a certain 

information-processing operation do not necessarily mean that the region is the neural 

substrate for that operation; 4) although neural results can be stunning and colorful, this does 

not mean that they are of psychological significance (Cacioppo et al. 2003). These practices 

help us to move past shallow research questions and practices and look instead at processes, 

consequences, and conditions using all of the power available to us. 

While improvements in EEG acquisition and head modeling are enhancing the spatial 

resolution of scalp EEG (Ferree, Clay, and Tucker 2001), the skull continues to be an 

impediment due to variance in conductivity. Due to physical distance from the neurons and 

potential distortion from the skull and scalp, even the best spatial resolution remains around 

1-2 cm (Ryynanen, Hyttinen, and Malmivuo 2006). Although this approach does not allow 

for single cell recordings, we can measure signal from neurons working in concert. Due to 

similar changes in electrical polarity of cortical pyramidal cells’ postsynaptic dendritic 

currents, the summed electric current flowing from multiple nearby neurons within a small 

volume of nervous tissue can be investigated.  

 

Figure 4. BioSemi ActiveTwo EEG cap with amplifier. 
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Localization of these assemblies, or source reconstruction, requires realistic head 

models of the participants. We can use standardized models of head geometry and brain 

tissues spatially warped to a template brain to reliably identify brain structures and compare 

participants. 

 

Figure 5. EEG components with time series from a single electrode. 

 

 To find patterns or algorithms that can help us make a distinction of categories in the 

mind, we use an encoding  approach. We create a map from the stimuli to a neural response 

by cataloging how neurons respond to a wide variety of stimuli, however this doesn’t provide 

any information about underlying temporal dynamics or patterns (Dayan and Abbott 2005). 

Systematic investigation of the mind and brain in early brain imaging studies 

concentrated on labeling the neural substrates of psychological processes. Theories at this 

time considered the brain as an information processing system where modular neural 

structures were recruited to perform unique cognitive tasks (Fodor 1983). Accordingly, the 

first neuroimaging studies set out to localize cognitive functions to specific brain regions by 

finding significant “blobs”. These brain-mapping studies provided a foundational 
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understanding of the mind’s neural organization and paved the way for modern 

conceptualizations of the mind and brain. Novel research has focused on understanding 

patterns of activation and connectivity over a region rather than mean activation in that 

region localized into blobs. Today, we know that the same neural structures are often 

involved in a diverse array of cognitive processes (Yarkoni et al. 2011). In addition, multiple 

structures are recruited to perform different computational tasks due to dynamic interactions 

between various brain structures. These structures work together or one exerts an influence 

over another in order to perform computations that are greater than the sum of the individual 

subcomponents (Bassett and Gazzaniga 2011), allowing complex higher-order cognitive 

functions to emerge from dynamic interactions between distributed networks of neural 

modules (Strogatz 2003). Evidence is ever increasing that supports this view that different 

cognitive processes result from unique interactions between neural networks (Bullmore and 

Sporns 2012; Davison et al. 2015; Gu et al. 2015; Hermundstad et al. 2013, 2014; Petersen 

and Sporns 2015). When a region of the brain is involved in various cognitive processes in 

conjunction with other areas, mapping of the one region’s average neural activity provides 

limited information about the neural organization of the mind. Investigating how connected 

neural structures interact with one another in order to enable various cognitive processes 

provides clearer associations from neuroimaging data to cognitive theories and computational 

models, which offers a sounder foundation for linking brain activity and mental function 

(Poldrack 2012). Therefore, if we wish to understand how social experiences modulate brain 

states, then we must explore how functional connectivity differs over social interactions 

while acknowledging that structural connectivity permits functional relationships (Huskey 

2016). While the field of neuroscience has seen an increasing focus on connectivity and 
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pattern analysis to assess brain–network connectivity, there remains a residual influence of 

blobology and a resistance to networks. 

 

Shared Cognitive States 

Currently, two main theories for how we infer other people’s mental states and 

understand the actions and emotions of others exist. Simulation Theory, in which simulation 

and empathy reside in the premotor cortex and insula and Theory-Theory which demands 

more deliberate theory-of-mind abilities involving the medial prefrontal cortex and the 

temporoparietal junction (Adolphs 2009).  

The mirror neuron system (MNS) provides evidence for a simulationist account of 

social cognition and is believed to give us a “first-person grasp” of the motor goals and 

intentions of other individuals by internally replicating or simulating observed events through 

a mirror mechanism. While humans can reason about other’s actions and emotions at a 

conceptual, declarative level, this hypothesis argues that explicit reflection is not required to 

directly grasp of the mind of others. As we witness others carrying out similar actions and 

experience similar emotions to ourselves, such as disgust or pain, our brain has the capacity 

to associate these third-person experiences as first-person experiences (Gallese, Keysers, & 

Rizzolatti, 2004). This mechanism was first supported by evidence in macaque monkeys, 

showing a system of F5 neurons in the motor cortex that responded both when monkeys 

observe or performed a goal-directed behavior (Gallese et al. 1996) and reproduced to a 

lesser extent in humans (Rizzolatti et al. 1996). Consequently, when conducting analysis with 

this approach, researchers aims to identify the computations used by shared circuits. Beyond 

individual neuron spiking activity, analysis of mu rhythm using EEG confirms a decrease in 
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amplitude during both action execution and action observation, indicating cortical activity for 

both events (Fox et al. 2016).  

While the Mirror Neuron Theory presents an attractive model of empathy, some 

researchers have noted the flaws in both original macaque experiments (Hickok 2009), as 

well as those involving human participants (Debes 2010) including misapplication of results 

about goal understanding to action understanding. An alternative to the MNS is the ToM or 

mentalizing network (MENT). This theory relates closely to our understanding of imitate 

facial gestures, as neither requires a simulation to construct a third-party’s representation. 

Just as we can tease apart our own proprioceptive experience from the visual perception of 

another person’s face using innate body schema to integrate sensory and motor systems 

(Gallagher and Meltzoff, 1996), conceivably there could be some cognitive schema that 

enables the interactive experience (Gallagher 2001). This instead provides evidence for a 

“Theory-Theory” account of social cognition, believed to give us an inferential, reflective, 

and third-person grasp of others’ mental states due to an intentional schema or inductively 

formed representations of an intentional relation (Goldman 1989, Barresi and Moore 1996). 

 

 

Temporal Dynamics 

Thoughtful experimental design, recording techniques, and accurate detection and 

correction of artifacts, are important precursors to accurate results and their interpretation. 

When analyzing the neural data, it is common to explore the time-domain which shows how 

a signal changes over time. Converting the results of the time-domain using a Fourier 

Transform produces the frequency-domain doamain (Fig. 6) which allows us to see how each 

frequency band contributes to the signal by assuming that a waveform is comprised of 
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oscillations. The frequency domain often an often offers a more intuitive understanding of 

the qualitative behavior of the system. Critiques have been made about not making use of 

frequency domain or in turn abusing it (Luck 2005). For example, contrary to some 

applications, power in a given frequency band is not evidence of an oscillation in that band, 

in fact false oscillations can be distinguished in this domain as the produce a broad band of 

power. These domains can be Fourier transformed again to result in a joint time–frequency 

domain (Fig. 7). 

 

 

Figure 6. Conversion of time domain to frequency domain using the Fourier Transform. 

 
 

 

Figure 7. The time-frequency domain. 
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Proposed Solutions 

 

Interactive Second Person Neuroscience 

  Detached observers of interaction, as seen in implementations of the Sally-Anne task, 

do not capture the complex processes involved in social cognition. To better understand the 

mechanism involved in mentally separating the Self and the Other, each with intentionality, 

joint attention, and goal-directed action (Moore and Paulus 2013) our approach recognizes 

the relationship and recurring transition between first and second-person perspectives of the 

state of the world (Longo and Tsakiris 2013). Interactions produce shared intentions and 

motivations with each joint action having a consequence. This project aims to move toward 

measuring actively engaged participation to generate more ecologically valid data (Schilbach 

et al. 2013), specifically in interpersonal understanding and emotional engagement in 

valuationally consequential decision making.  

Producing controlled experimental conditions in a direct and unrestricted social 

environment generates a multitude of confounding factors. Our solution allows for a 

nondeceptive interaction with a partner that they not only meet, but are seated next to for the 

duration of the task.  

 

Modeling Cognition 

Mathematical psychologists rely on behavioral data to evaluate formal models of 

cognition, whereas cognitive neuroscientists rely on statistical models to understand patterns 

of neural activity. In this study, we utilized a combined brain and behavior approach to 

provide novel insights into the mechanisms underlying human cognition through modeling. 

Model-based cognitive neuroscience decomposes complex behavior into representations and 
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processes and these latent model states can be used to explain the modulation of brain states 

under different experimental conditions both informing cognitive modeling and help to 

interpret neural measures. It attempts to go beyond prior approaches that consider, but not 

connect Marr’s classic three levels of analysis, computational, algorithmic, implementation 

(Palmeri, Love, and Turner 2017). There are many possible paths for integrating theoretical 

modeling and cognitive neuroscience (Turner et al. 2017) as individually tailored, creative 

solutions are often needed to establish compelling links between multi-parameter models and 

complex sets of neural data that bypass the traditional barriers between models and the brain 

(Pratte and Tong 2017). Computational modeling examines latent neurocognitive processes 

and interactions, with their parameters revealing psychologically meaningful individual 

differences, making accurate parameter estimates critical. 

When reasoning about value-based decision-making, we can measure behavior under 

varying reinforcement contingencies, where there is an adjustment of choice behavior in 

response to abrupt reversals in the prevailing reinforcer conditions. Individuals have been 

found to reach an average steady-state of responding after obtaining relatively few 

reinforcers under new conditions(Lau and Glimcher 2005). Reinforcement learning provides 

a computational approach to learning from interaction with our uncertain environment and 

the people within it because it incorporates a participant’s memory of both past reinforcers 

and choice. In order to better understand how we weigh our different options and alter 

decisions response-by-response, we need to first be familiar with the amount of influence 

each past outcome has on our next decision. The weight given to decision outcomes should 

reflect their salience in predicting future outcomes. This salience or representation of reward 

expectation and probability in the brain can be seen behaviorally via the learning rate, a 



Cooperative Success Under Shared Cognitive States and Valuations 

 

 

 

23 

fundamental feature of behavior that determines how agents should make the decisions in the 

face of changing circumstances (Behrens et al. 2007). Exercising this connection produces a 

wealth of information about cause and effect, about the consequences of actions, and about 

what to do in order to achieve goals. Neither exploration of the environment nor exploitation 

of current knowledge can be pursued exclusively without failing at the task. Without direct 

instructions as to what actions to take or where the consequences, or complete models of the 

environment, uncertainty is prevalent. However by introducing the reward signals 

participants can create a policy for action, a reward signal, a value function, and, optionally, a 

model of the environment (Sutton and Barto 1998). Reinforcement learning provides both 

qualitative and quantitative frameworks for understanding and modeling adaptive decision-

making in the face of rewards and punishments, using both model-based and model-free 

strategies.  

 

Underlying Neural Networks  

Real-world data is frequently incomplete, inconsistent, and is likely to be noisy or 

include errors. Large arrays of data often entail relatively small amounts of useful 

information, therefore we must extract information from the dataset to reveal the driving 

forces which underlie a set of observed phenomena.  The phrase "garbage in, garbage out", 

attributed to Stephen ‘Wilf’ Hey, refers to the concept that irrelevant and redundant 

information produces nonsense output or "garbage", making detection of valuable patterns 

challenging. Preprocessing (EEGLAB Wiki - SCNN, Brunner, Delorme, and Makeig 2013; 

Delorme et al. 2011; Delorme and Makeig 2004) is a worthwhile data mining technique to 

enhance the representation and quality of the continuous EEG data. Cleaning, normalizing, 
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and transforming raw data into an understandable format by filling  in missing values, 

smoothing noisy data, identifying or removing outliers, and resolving inconsistencies can 

allow for superior interpretations of the data later on. 

Currently, it is believed that independent component analysis (ICA) is an effective 

method for removing artifacts and separating sources of the brain signals from EEG 

recordings recorded across the scalp and postsynaptic signals from the brain. ICA attempts to 

exploit independence to perform blind source separation mixtures of signals from multiple 

brain generators to find their origins, exact dynamics, and relationship to brain function (Jung 

et al. 2001). Signals from the brain are composed of a linear combo of sinusoidal waves from 

various independent sources similar to auditory signals described in the cocktail party effect 

(Cherry 1953; Cherry and Taylor 1954). Teasing apart signals to identify discrete pieces of 

information can be accomplished through blind source separation. In ICA, the mixture of 

underlying factors or source signals is made statistically independent from each other, where 

one signal provides no information regarding the other signals, assuming that different 

physical processes yield independent outputs (Stone 2004). A commonly used alternative is 

principal component analysis, which find a set of signals which are uncorrelated with each 

other, capturing the most variance from the data in component one and so on (Joliffe and 

Morgan 1992; Jolliffe and Cadima 2016). However, this method assumes orthogonality 

between components and that the data comes from a highly-dimensional Gaussian 

distribution. It is also limited by EEG technology, such that the number of components 

cannot exceed the number of electrodes used.  
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Useful Approaches  

One method of statistical inference, estimating parameters of a statistical model given 

observations, is Bayesian modeling. Bayes’ theorem updates the probability of a hypothesis 

as access to more evidence or information increases. Bayesian inference develops 

the posterior probability from a prior probability and a "likelihood function" derived from 

a statistical model for the observed data. A posterior predictive distribution is used to 

do predictive inference, or predict the distribution of a new, unobserved data point. In 

frequentist inference, conclusions about data are drawn from a set of repetitions of such 

experience, each producing statistically independent results. For a frequentist, a probability 

function would be a simple distribution function, but Bayesian inference computes the 

posterior probability according to Bayes' theorem. In turn, a frequentist approach obtains the 

parameter estimates, maximum likelihood estimates (MLE), by finding the parameter values 

that maximize the likelihood function for each individual separately. These estimates are then 

used to specify the distribution of a data point. However, individual MLE estimates are often 

noisy especially when there is an inadequate quantity of data. A group-level analysis, which 

estimates a single set of parameters for the whole group of individuals, may generate more 

reliable estimates, but ignores individual differences.  
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Figure 8. Bayes Theorem. 

 

 

Bayesian updating is particularly important in the dynamic analysis of ordered data, 

which advantageous in most behavioral studies due to their design. Bayesian decision theory 

is a statistical system that tries to measure the probabilities and costs of decisions (Berger 

1993; Bernardo and Smith 1994). An agent, or estimator, operating under such a decision 

theory uses the concepts of Bayesian statistics to estimate the expected value of its actions, 

and update its expectations based on new information. Due to recent advancements, the 

power of Bayesian analysis in neuroscientific research has grown significantly in the past 

few years. Bayesian inference is merely the reallocation of credibility across a space of 

candidate possibilities, at the same time providing complete information about the credible 

parameter values to assess our uncertainty. When contrasted the Bayesian approach with the 

t-test from Null Hypothesis Significance Testing, the latter falls short. Bayesian estimation 

for two groups provides complete distributions of credible values for the effect size, group 
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means and their difference, standard deviations and their difference, and the normality of the 

data and it is also more intuitive than traditional methods of NHST. Due to Bayesian power 

analysis and the fact that Bayesian methods can accept the null value, there is a relative 

poverty of information provided by the NHST. It has foundational logical problems, such 

that the traditional t test assumes that the data in each group come from a normal distribution, 

which is not appropriate when the data contain outliers, and that NHST is based on sampling 

intentions and different intentions change the interpretation of the data. Bayesian methods 

instead yields an explicit posterior distribution over parameters unaffected by sampling 

intentions and can accommodate realistic data situations: non-normal data distributions, 

censored data, unequal variances, unbalanced sample sizes, nonlinear models, and multiple 

layers of hierarchical structure in a straightforward unified framework, providing the richest, 

most informative, and meaningful results for any set of data (Kruschke 2013).  

The two main theories proposed for explaining the process of ToM development: 

Theory-Theory and simulation theory, are well studied behaviorally and neurally. 

Unfortunately there are few proposed computational models of ToM understanding. Support 

for mixed reasoning strategies has led to the search for a computational model that integrates 

theory-based and simulation-based strategies for false belief reasoning. A causal Bayesian 

framework rationally integrates both theories for false belief reasoning representing the 

internal models and their interactions, predicting that children’s abilities to understand 

diverse beliefs and knowledge access multiplicatively contribute to their ability to understand 

false beliefs (Asakura and Inui 2016). 

Brms is a package to fit models using a Bayesian approach in a multilevel context 

where prior distributions that actually reflect their belief can be applied. A wide range of 
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distributions and link functions are supported and model fit can easily be assessed and 

compared with the Watanabe-Akaike information criterion and leave-one-out cross-

validation. This allows for the modeling of data measured on different levels at the same 

time, thus taking complex dependency structures into account with linear predictors. The 

posterior distributions of more complex models including MLMs could previously not be 

found analytically, however recent advancements, along with the program’s capabilities and 

speed, have allowed researchers to investigate population level, group level, and family 

specific parameter estimation using full Bayesian inference (Bürkner 2017).  

hBayesDM is a user-friendly R package that allows researchers to perform 

hierarchical Bayesian analysis (HBA) of various computational models with a single line of 

coding (Ahn, Haines, and Zhang, 2017). HBA is regarded as the gold standard for parameter 

estimation, especially when the amount of information from each participant is small. 

However, many researchers interested in HBA often find the approach too technical and 

challenging to be implemented. hBayesDM aims to allow researchers with minimal 

knowledge of programming to be able to take advantage of advanced computational 

modeling and HBA.  

 

Figure 9. Hyperparameters of the sample used to estimate individual participant 

parameters.  
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HBA retains individual differences while using information across individuals to 

estimate both individual and group parameter estimates (Ahn et al., 2011), delivering full 

posterior distributions for each participant.  

 

Figure 10. hBayesDM Model Estimation Process. 

As cognitive models become more complex, the demands on the behavioral data and 

empirical tests of predictions derived from quantitative cognitive models increase as well, 

constantly necessitating more precise tests of hypotheses about brain–behavior relationships. 

Recently, mathematical models of cognition in the field of decision making in cognitive 

neuroscience have gained great traction, joining the informational value of behavioral and 

neural data an breaking the traditional barriers between models and the brain (Palmeri et al. 

2017). By allowing both kinds of data to inform model selection researchers can examine 

common denominators underlying both behavioral data and neural data and ultimately relate 

two streams of data with potentially vastly different scales. There has been a steady 

‘‘tightening’’ of the link between neural and behavioral data (de Hollander, Forstmann, and 
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Brown 2016; van Ravenzwaaij, Provost, and Brown 2017). Researchers are striving for the 

tightest possible linking, as this provides the greatest opportunity to investigate the 

underlying linking assumptions and uncover underlying psychological processes that 

simultaneously explain behavioral and neural data. Some methods combine both data sets in 

a single model-based analysis to use neural measurements as a model input in order to 

predict both behavioral measurements and a second set of neural measurements. Others‘, like 

the ‘joint’ model, instead use individual neural and behavioral models which are then joined 

by allowing their parameters to covary (van Ravenzwaaij et al. 2017). Two theoretical 

frameworks underlie the these relationships: composition of discrete latent state either being 

a mixture of discrete latent states or on a continuous dimension. Neurally-informed cognitive 

models more reliably recover under a discrete state representation than a continuous 

dimension representation. Neural data aids the identification of latent states in cognitive 

models, but unsurprisingly different frameworks for quantitatively informing cognitive 

models with neural information have different model recovery efficiencies (Hawkins et al. 

2017). 

Methods 

 

A participant taught the state of the world (“Teacher”) to a partner (“Learner”) 

through their choices while the asymmetric knowledge distribution reversed over time with 

only one partner’s awareness during each shift. Each participant starts with no knowledge 

about which option, either left or right box (Fig. 12), depicted below and during original task 

instruction as jars (Fig. 11A), will provide them with optimal reward and therefore the 

reward contingencies are learned through trial and error. At the beginning of every trial both 
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players makes a prediction about the action of the other player and then their own choice. 

Cooperation is encouraged via a 10-fold payoff structure (Fig. 11B). For example, if both 

participants choose the high reward jar (green) and receive the high reward, their payoff is no 

longer 10 points, but 100. This is also true when both choose the low, 5 point jar (red), each 

receiving 50 points.  

 

Figure 11. Reward structure of the task. Participants have two options or “jars” to choose 

from. Red balls are rewards with utilities of 5, and green balls are rewards with utilities of 10. 

 

 

Figure 12. The standard trial sequence of the Interactive Teacher-Learner False Belief Task. 

The grey boxes represent two figurative jars containing different amounts of reward from 

which the participants can choose. Upon presence of the blue circle in the center of the 

screen, participants must predict the partner’s action. The change to a yellow circle, indicates 

that the participant must make a choice for their own behavior. Choices are made through left 

and right mouse-click. On the outcome screen, numbers in yellow represent the participant’s 

own reward and the blue numbers represent that of their partner. 
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Once we see that both players have been making decisions that indicate they understand the 

state of the world, we notify one player that the jars have been reversed for the other player, 

but that she unaware of this, this is called the reversal trial (Fig. 1). If the notified player, or 

“Teacher” is rational and implementing at least first level ToM, they will consider the 

knowledge and beliefs of the other player and will actually choose the suboptimal jar because 

they recognize that without the new knowledge, the other player is going to continue to 

choose the same jar as before. The Teacher recognizes that the learner is likely to choose the 

previously 10, now 5, valued jar and 1) would prefer to get 50 points rather than 10 and 2) 

needs to communicate that the jars have switched to get back to optimal 100-100 levels. 

Participant predictions, choices, and current role were recorded. Presentation of the 

task (Fig. 12) used the Psychophysics Toolbox in MATLAB. 

 

Self-Report Questionnaires.  

Physical paper questionnaires written in German including the following measures 

were presented to the participants in random order. Open questions were also asked 

following completion of the task (e.g.: “How did you experience the task (impressions, 

thoughts feelings, etc.)” and “What did you think about your partner during the task?”). 

IQ. 

 

 The Leistungsprüfsystem serves as a short intelligence quotient test. 

 

Emotional Intelligence.  
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The Trait Emotional Intelligence Questionnaire–Short Form (EMS) is a seven-point 

scale with 30 items, half being reverse-scored. It was developed to explore the construct of 

trait emotional intelligence. 

Intolerance to Uncertainty.  

 

The Intolerance to Uncertainty Scale (IUS) is a self-report, five-point scale with 27 

items that all fall under the category of either Uncertainty Avoidance and Uncertainty 

Related Unfairness. 

Personality.  

 

The Temperament and Character Inventory Revised (TCI-R) is a psychometric 

questionnaire with 125 yes-or-no questions covering seven subscales: Harm-Avoidance, 

Novelty-Seeking, Reward-Dependence, Persistence, Self-Directedness, Cooperativeness, and 

Self-Transcendence. 

Open-Ended Questions. 

 

Open questions were also asked following completion of the task (e.g.: “How did you 

experience the task (impressions, thoughts feelings, etc.)” and “What did you think about 

your partner during the task?”). 

 

Participants. 

All participants were screened using a test version of the task and were asked to 

answer a questionnaire on task comprehension. Exclusionary criteria included diagnosis of 

autism spectrum disorders and related neurodevelopmental disorders, psychiatric disorders, 

visual impairments, neurological disorders, and traumatic brain injury. We invited 

participants from the student populations throughout the greater Hamburg area. Pairs of 
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participants were matched on gender and similar in age and education. For pilot data 

collection, participants came to the lab for two days of activity. During the first day self-

report questionnaires were completed and the participants received training on the Interactive 

False Belief Teacher-Learner Task (IFBTFT). On the second day, the participants completed 

at least three sessions of the task. In the second study using EEG recordings, participants 

finished the test version of the task, the task itself, and the questionnaires in one day. All 

participants gave written consent and received debriefing after the experiment. 

 

EEG Recording 

Simultaneous, dyadic EEG recordings from both participants used a Biosemi, 128-

electrode, active channel electroencephalographic system, sampled at 1024 Hz. Data from 

both participants were synchronized to one computer with their event codes from MATLAB. 

EEG data analysis used time-frequency decomposition in EEGLAB. Preprocessing consisted 

of separation of data into two participant-specific files, addition of electrode locations using a 

supplied electrode position file, rejection of electrode bridging (eBridge; Delorme et al. 

2011), high pass (1 Hz) and low pass (120 Hz) filtering, removal of line noise using the 

CleanLine algorithm (NeuroImaging Tools & Resources Collaboratory), removal of 

artifactual data epochs and bad channels using Artifact Subspace Resampling, interpolation 

of removed electrodes, re-referencing to the average reference across all 128 electrodes, 

deletion of interpolated electrodes, adaptive mixture independent components analysis 

(AMICA; Palmer, J. A., Kreutz-Delgado, K. & Makeig, S., 2011), putative source 

localization of independent components using the MNI brain and equivalent source dipoles 

(DIPFIT), and selection of brain-related independent components.  
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Cognitive Modeling 

Valuation Modeling 

Two probabilistic reinforcement learning task model algorithms (discussed below) 

that allowed for multiple blocks in the data due to the noncontinuous reversal nature of the 

data were compared using four variations of outcome values (Table 1). Previous discrete 

choice modeling of this data has taken place (Lei, 2018), however models of reinforcement 

learning can provide a more principled approach to assessing behavior, due to freedom from 

external definitions that the subject is unaware of (learning criterion, point of reversal). After 

fitting both models on a trial-by-trial basis to each individual using hBayesDM, model 

comparison of the Leave-One-Out Cross-Validation, pareto-k values, chain conversion plots, 

distribution plots, and parameter rhat values took place. The best fitting model, Model 2, 

provided parameters for valuation. Correspondence between the Teacher’s prediction and 

Learner’s choice was evaluated. 

 

Table 1. Four possible model outcome values (1 = reward, -1 = punishment) 

Model 5 points 10 points 50 points 100 points 

1 -1 -1 -1 1 

2 -1 1 1 1 

3 -1 -1 1 1 

4 -1 1 -1 1 

 

 

1) Fictitious Update Model (Gläscher, Hampton, and O’Doherty 2009)  

Parameters: "eta" (learning rate), "alpha" (indecision point), "beta" (inverse temperature) 

 

FICT is a incorporates knowledge participants have about the value of the chosen and as well 

as their belief, or fictitious prediction error, that the unchosen action will have the 

counterfactual outcome of the current trial (Hampton et al. 2007). 
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2) Reward-Punishment Model (den Ouden et al. 2013 ) 

Parameters: "(αpun)" (punishment learning rate), "(αrew)" (reward learning rate), "beta" 

(inverse temperature) 

 

RP is a standard reinforcement learning model based on the classic Rescorla-Wagner model 

of conditioning that determines whether it is best to separate learning into reward and 

punishment parameters to capture behavioral strategies (Frank et al. 2007).  
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Results 

 

Teacher prediction and choice, as well as Learner prediction and choice were all best-

fitted by a form of Model 2 where only outcomes of 5 were valued negatively. Using Leave-

One-Out Cross-Validation, pareto-k values, consideration of the width and centrality of 

posterior parameter distributions, Teacher prediction and Learner choice were best modeled 

using the fictitious update model, whereas Teacher choice and Learner prediction were best 

characterized by the reward-punishment model.  

 

 
Figure 13. Posterior parameter distributions of the best fitting models for each participant 

state of the group (a) and 14 participants (7 pairs) who had corresponding independent 

components in their EEG (b). 
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However, posterior predictive checks of the models which simulate replicated data 

under the fitted model and then compare these to the observed data to look for systematic 

discrepancies between real and simulated data, showed that none of the Rescorla Wagner 

models provided a reliable representation of the patterns seen in the data.  

 

Figure 14. Posterior Predictive Checks of Best-Fitting Teacher Prediction Model; 

Fictitious Update Model 2. 

 

Expected value and prediction error analyses estimated using the Rescorla-Wagner 

temporal difference learning model showed moderate similarity between Agent A's expected 

values during prediction about Agent B's choices and Agent B's expected values during her 
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own choices. This provides some evidence for shared valuation of the fictitious prediction 

error for the chosen option and the fictitious indecision point (Fig. 15). 

 

Figure 15. Shared Valuation Demonstrated by Time-Series of Individual Parameter Estimates 

Emerging from the Valuational Model. Histograms of 1000 randomized bootstraps with the 

actual r-value showing shared valuation between time series (red lines). Teacher (Ppt) 

Leading Learner (Lag = 1, Ppt + 1). 
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Discussion 

 

Cognitive modeling supports the representation of feedback signals as a positive 

“stay” signal except for 5 points for all participants, independent of role of Teacher or 

Learner, such that both Teachers and Learners are operating under the same valuations. 

While Learners were expected to positively value outcomes of 10 points, which would 

signify that they now understand the arrangements of their probabilistic rewards and will be 

able to receive the optimal 100 points on the following trial, Teachers interestingly  used this 

strategy as well. After reversal, Teachers are expected to aim to receive an optimal 50 points 

until the Learner signifies their understanding of the state of the world by choosing the 

“high” reward, resulting in the Teacher receiving 5 points. A positive value assigned to 10 

points suggests that Teachers are potentially developing insights as to how many trials post-

reversal it will take a Learner to understand the switch in reward contingencies. Teachers 

may become overhasty in an attempt to avoid receiving 5 points from when the Learner first 

understands the change in the reward contingencies. If Teachers are overhasty, they may 

have a mental model that the Learner receiving 5 points is an undeniable signal that the 

Learner will adjust their beliefs, just as with repeated encounters of 50 points.  

However, none of the cognitive models do exceptionally well at defining narrow 

parameter distributions. Failure to yield well-defined parameter distributions to the 

reinforcement learning models implemented in this study indicates a need to consider other 

modeling options (ex. Drift-Diffusion Models, Working Memory Model,  Interactive 

Partially Observable Markov Decision Processes Model (I-POMDP) (cite). In addition, the 

experience‐weighted attraction model (EWA) and reward-punishment fictitious model could 

be modified to operate with data structures in multiple blocks. Further analyses will be 
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needed to determine if greater similarity between the participants' expected values and 

prediction errors is associated with greater cooperative success and with self-reported 

characteristics such as cooperativity and perspective taking. A positive shift in indecision 

points for the Learner’s choice suggests that as Learners are less confident in their decision, 

they become more likely to choose the same choice as the previous trial. 

 This study was conducted with social interaction through a screen in which subjects 

did not actually take part in constant face-to-face social interactions with their partner. We 

believe that our lack of deception an close proximity of partners during the experiment 

controlled for this, but as there is greater activation in several social-cognitive, attention, and 

reward processing brain areas when participants interacted with a live experimenter, as 

compared to a video replays of social interaction (Redcay et al. 2010), we could see 

remaining artifacts in the neural data of ingenuine social interaction. 

To understand what features of the model were producing the behavioral effects, we 

plan to examine how the best fitting cognitive model’s parameters corresponded with the 

EEG results, integrating the computational cognitive modeling and neural information.  
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