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ABSTRACT

The standard genetic algorithm has been modified to address the job shop problem by 

constraining the genes in the chromosomes during the genetic operators implementations to match 

general theoretical sequencing constraints.

When comparing the deterministic constrained and unconstrained genetic algorithms to 

minimize makespan, the constrained algorithm improved the average percentage errors by 27.44%. 

Also, when the deterministic constrained and unconstrained genetic algorithms to minimize total 

tardiness were compared, the constrained algorithm improved the average percentage errors by 

248.77%.

The stochastic job shop problem was solved using two genetic algorithms. The first was a 

stochastic constrained genetic algorithm to minimize total tardiness and to evaluate chromosomes 

using probability Gantt charting. The second was a stochastic constrained genetic algorithm to 

minimize total tardiness and to evaluate chromosomes using simulation. In these two algorithms, 

the fitness function was altered to a utility function defined as follows: Probability {total tardiness 

of a chromosome < target total tardiness}. When comparing the two chromosome evaluation 

methods, the probability Gantt charting deviated from the true mean for both the makespan and the 

average flow time by 3% and 1.7% respectively. Also, all averages estimated for both the 

makespan and the average flow time fall within the 90% confidence interval. Furthermore, using 

probability Gantt charting reduced the CPU time needed by 554.9% when compared to the CPU 

time needed by simulation. When the results obtained by the two stochastic constrained genetic 

algorithms were compared, the second algorithm reduced the actual expected total tardiness, the 

actual worst case total tardiness, and the risk by 30.3%, 56%, and 18% respectively.

xii



ON MERGING SEQUENCING AND SCHEDULING THEORY WITH GENETIC 

ALGORITHMS TO SOLVE STOCHASTIC JOB SHOPS 

CHAPTER I 

THE GENERAL SEQUENCING AND SCHEDULING PROBLEM 

Introduction

The problem that motivated this study is as follows: suppose there are a number of jobs to 

be performed. Each job consists of a given sequence of operations which needs to be performed 

using a number of machines. All operations for each job must be performed in the order given by 

the sequence. Each operation demands the use of a particular machine for a given time. Each 

machine can process only one operation at a time. Therefore, given a cost function by which each 

sequence can be evaluated, the order of operations on each machine that minimizes the cost 

function needs to be found.

The problem described above is known as a production sequencing and scheduling 

problem. Sequencing and scheduling problems occur in different industries and circumstances, 

even though the description of the problem above suggests a manufacturing industry problem. The 

following are some examples of different situations which need sequencing or scheduling: 1) parts 

waiting for processing in a manufacturing plant; 2) aircraft waiting for landing clearance at an 

airport; 3) computer programs running at a computing center; 4) class scheduling in a school, 5) 

patients waiting in a Doctor’s ofBce; 6) ships to be anchored in a harbor, and 7) Saturday 

afternoon chores at home.



Definitions

Production sequencing and scheduling is one of the most important activities in production

planning and control. Morton and Pentico discussed how important the sequencing and scheduling

role is, stating that “it pervades all economic activity” (Morton and Pentico 1993, 5). Pinedo

further discussed the importance of the sequencing and scheduling problem:

...Sequencing and scheduling are forms of decision-making which play a crucial role in 
manu6cturing as well as in service industries. In the current competitive environment, 
effective sequencing and scheduling has become a necessity for survival in the marketplace. 
Companies have to meet shipping dates committed to the customers, as feilure to do so may 
result in a significant loss of good will. They also have to schedule activities in such a way as 
to use the resources available in an efficient manner. (Pinedo 1995, xiii)

The definition of sequencing among researchers is common. Sequencing is defined as the order in 

which the jobs (tasks) are processed through the machines (resources). Scheduling was defined by 

Baker as follows:

...Scheduling is the allocation o f resources over time to perform a collection of tasks. .. 
Scheduling is a decision-making function: it is the process of determining a schedule. .. 
Scheduling is a body of theory: it is a collection of principles, models, techniques, and logical 
conclusions that provide insight into the scheduling fiinction. (Baker 1974, 2)

Also, Morton and Pentico defined scheduling as follows:

...Scheduling is the process of organizing, choosing, and timing resource usage to carry out all 
the activities necessary to produce the desired outputs at the desired times, while satisfying a 
large number of time and relationship constraints among the activities and the resources. 
(Morton and Pentico 1993, 5)

Therefore, from the above two definitions, scheduling can be defined as a decision-making 

process that is concerned with the allocation of limited machines (resources) over time to perform a 

collection of jobs (tasks) in which one or several objectives have to be optimized.

The general definition of the sequencing problem can be stated as follows: there are m 

machines {Mi, M%,..., M^} available and n jobs {J|, Jz,..., to be processed. A subset of these 

machines is required to complete the processing of each job. The flow pattern (process plan) for 

some or all jobs may or may not be fixed. Each job should be processed through the machines in a 

particular order that satisfies the job’s technological constraints. The processing of job i on



machine j is called an operation denoted by Oy Associated with each operation is a processing 

time denoted by P,j, and a setup time denoted by Sy. Also, associated with each job is a weight, w„ 

a ready (release or arrival) time, r„ and a due date, dj. Finally, each job has an allowance time to 

be in the shop, ai.

Thus, the general problem is to generate a sequence that satisfies the following conditions;

1) all jobs are processed; 2) all technological constraints are met for all jobs (feasibility condition), 

and 3) all criteria that were selected are optimized.

Levels of the Sequencing and Scheduling Problem

Sequencing and scheduling are involved in planning and controlling the decision-making 

process of manufacturing and service industries in several stages. According to several researchers 

(Baker 1974; Browne, Harhen, and Shivnan 1988; Muchnik 1992; and Morton and Pentico 1993), 

sequencing and scheduling exist at several levels of the decision-making process. These levels are 

as follows:

1) Long-term planning which has a horizon of 2 to S years. Some examples are: plant 

layout, plant design, and plant expansion.

2) Middle-term planning such as production smoothing and logistics which can be done in a 

period of I to 2 years.

3) Short-term planning which is done every 3 or 6 months. Examples include: requirements 

plan, shop bidding, and due date setting.

4) Predictive scheduling which is performed in a range of 2 to 6 weeks. Job shop routing, 

assembly line balancing, and process batch sizing qualify as predictive.

5) Reactive scheduling or control which is performed every day or every three days. A few 

examples are: hot jobs, down machines, and late material.



Level four is the concern of this research, and therefore, sequencing and scheduling 

methodologies for only this level will be discussed. Specifically, environments, general 

assumptions, categories, criteria, decision-making goals, and solution methods for the sequencing 

and scheduling problems will be explained.

Environments of the Sequencing and Scheduling Problem

According to Conway, Maxwell, and Miller (1967), sequencing and scheduling 

environments are classified according to four types of information: the jobs and operations to be 

processed; the number and types of machines that comprise the shop; the disciplines that restrict 

the manner in which assignment can be made, and the criteria by which a schedule will be 

evaluated. The sequencing and scheduling environments are as follows:

1 ) Single machine shop: one machine and n jobs to be processed.

2) Flow shop: there are m machines in series and jobs can be processed in one of the 

following ways: a) permutational: jobs are processed by a series of m machines in exactly 

the same order, or b) non-permutational: jobs are processed by a series of m machines not 

in the same order.

3) Job shop: each job has its flow pattern and a subset of these jobs can visit each machine 

twice or more often. Multiple entries and exits.

4) Assembly job shop: a job shop with jobs that have at least two component items and at 

least one assembly operation.

5) Hybrid Job shop: the precedence ordering of the operations of some jobs is the same.

6) Hybrid assembly job shop: combines the features of both the assembly and hybrid job 

shop.

7) Open shop: there are m machines and there is no restriction in the routing of each job 

through the machines. In other words, there is no specified flow pattern for any job.



8) Closed shop: it is a job shop; however, all production orders are generated as a result of 

inventory replenishment decisions. In other words, the production is not affected by the 

customer order.

Assumptions of the Sequencing and Scheduling Problem

The different sequencing and scheduling problem environments have been solved under 

several assumptions. These assumptions were used to make the scheduling problem tractable and 

easier. Some of these assumptions are: I) the set of the jobs and the set of the machines are known 

and fixed; 2) all jobs and all machines are available at the same time and are independent; 3) all 

jobs and machines remain available during an unlimited period; 4) the processing time for each job 

on all machines is fixed, has a known probability distribution function, and sequence independent;

5) setup times are included in processing times; 6) a basic batch size is fixed for all jobs; 7) all jobs 

and all machines are equally weighted; 8) no preemption is allowed; 9) a definite due date is 

assigned to each job; 10) each job is processed by all the machines assigned to it; 11) each machine 

processes all the jobs assigned to it, and 12) the process plan for each job is known and fixed.

For additional constraints that have been used when solving sequencing and scheduling 

problems, consult Conway, Maxwell, and Miller (1967), Baker (1974), Rinnooy Kan (1976), 

Bellman, Esogbue, and Nabeshima (1982), French (1982), and Morton and Pentico (1993).

Categories of the Sequencing and Scheduling Problem

When none, one, or more of the assumptions used is/are relaxed, then the sequencing and 

scheduling problem is categorized into one of the following categories:

1) Detenninistic sequencing and scheduling problems: when all elements of the problem, 

such as the state of the arrival of the jobs to the shop, due-dates of jobs, ordering, 

processing times and availability of machines, do not include stochastic Actors and are



determined in advance.

2) Static sequencing and scheduling problems: the same as deterministic problems except 

that the nature of the job arrival is different. The set of jobs over time does not change, 

and it is available beforehand.

3) Dynamic sequencing and scheduling problems: the set of jobs changes over time and 

jobs arrive at different times.

4) Stochastic sequencing and scheduling problems: at least one of the problem elements 

includes a stochastic factor.

Criteria of the Sequencing and Scheduling Problem

According to Rinnooy Kan (1976) and French (1982), the criteria for sequencing and 

scheduling problems are classified according to three measures: completion times; due dates, and 

inventory and machine utilization. With each of the three measures, the following criteria can be 

associated, as shown in Table 1.

In the sequencing and scheduling literature, there are other criteria such as a combination 

of two or more of the above mentioned criteria. Also, there are other criteria in the sequencing and 

scheduling literature that were not mentioned above. For additional criteria, the reader can refer to 

Conway, Maxwell, and Miller (1967); Baker (1974); Rinnooy (1976); Bellman, Esogbue, and 

Nabeshima (1982); French (1982); Morton and Pentico (1993); and Pinedo (1995).



Table 1. Criteria associated with each of the three measures.
Criteria based on completion times

Completion time o f  job i C, n
The total completion time E^Cj .

n
The total weighted completion time E w C - .

i=I 1 ‘
n m

The total weighted waiting time E w. E W.. .
i = 1 ' j  = l '■*

Flow time o f  job i Fi = C,-r, Maximum completion time (the schedule time, total 
production time, or makespan) Cm«= max {C,}.

lr-,n
n

The total flow time E  F; .
i=l '

n
The total weighted flow time E w F; .

i=l i '
Average flow time F . Maximum flow time Fm«%.

m
Waiting time o f jo b  i Wi = F -  E P- .

1 j=l ‘J
n m

The total waiting time E  E W.. .
i = 1 j = 1

Average completion time C . Average waiting time W .
Criteria based on due-dates

Lateness o f job  i Li = C, - dj. n
The total lateness E L: .

i=l '
n

The total weighted lateness E w L; .
i=I i ‘

Average lateness L .

Maximum lateness Lnux = max {L,}.
lr-,n

Tardiness o f job i T; = max {0, L,} 
1.-^

Earliness o f job i Hi = max {0, -Li} Maximum Earliness Enax = max {Ei}
lr-.n

n
The total tardiness .E T; .

i=l '

n
The total weighted tardiness E w  .T  .

i=l i ‘
Average tardiness T . Maximum tardiness Tnax= max (TJ 

1 ^
n

Number o f jobs tardy N r = .E S(T ) ,  S(Ti) = 1 i f  Ti > 0 and 5(Ti) = 0 if  Ti 5  0. 
1=1

Criteria based on inventory and machine utilization

Average number of jobs waiting for machines . Average number of unfinished jobs N „ .

Average number o f  jobs completed Ng.. Average number o f  jobs actually being processed N p .

Average number o f  machines idle Î . Maximum machine idle time I^iax •
_  n m

Average utilization U  = .E. .E P- /  m-C—av 
1=1 j= l y

Decision-Making Goals in the Sequencing and Scheduling Problem

According to Baker (1974), there are three common types of decision-making goals in 

sequencing and scheduling problems: efficient utilization of machines; rapid response to demands, 

and close conformance to prescribed deadlines. The three common goals can be achieved by 

associating the criteria mentioned above with each of the three goals as follows:



1) Efficient utilization of machines (resources): minimize C^x or F, or maximize or U ,

n n n n m  _ _ _ _ ______ __
or  W .2) Rapid response to demands: minimize IC,- ; S F ; S L; ; S S w.. ; c  ; F ; L ’ ^

1 = 1 '  i=i 1=1 i = i j  = i 'J

n _  n
3) Close conformance to prescribed deadlines: minimize U»,; Tra»,; Nt; IT : ; T , or Sw.T: .

1=1 ' i=l 1 ‘

Methods of Solution for the Sequencing and Scheduling Problem

Several methods have been developed to solve and model sequencing and scheduling

problems that belong to any of the four categories (deterministic, static, dynamic, and stochastic).

These methods of solution can be classified as follows:

1. Efficient optimal methods such as Johnson's algorithm to solve a flow shop problem with two 

machines and n jobs (Johnson 1954).

2. Enumerative methods (implicit and explicit or complete) such as Brown and Lomnicki's 

branch and bound algorithm (Brown and Lomnicki 1966).

3. Heuristic methods such as Campbell, Dudek, and Smith's algorithm to solve m machines and n 

jobs flow shop problems (Campbell, Dudek, and Smith 1970).

4. Mathematical models (Integer Programming) such as Wagner’s Form to solve the permutation 

flow shop problem with n jobs and m machines (Wagner 1959).

5. Heuristic search techniques: simulated annealing, genetic algorithms, tabu Search, and 

artificial Intelligence.

6. Simulation models.

7. Analytical models (such as Jackson's open queueing network model, Jackson 1957a).

Over the last four decades, a large amount of research has been done in each of the seven

classes to model and to solve sequencing and scheduling problems. Most of the research that has

been done has been reported by Muth and Thompson (1963), Conway, Maxwell, and Miller



(1967), Moore and Wilson (1967), Elmaghraby (1968), Day and Hottenstein (1970), Baker 

(1974), Rinnooy Kan (1976), Dannenbring (1977), Lemoine (1977), Panwalkar and Iskander 

(1977), Graham et al. (1979), Bellman, Esogbue, and Nabeshima (1982), French (1982), Graves 

(1981), Blackstone, Phillips, and Hogg (1982), Park, Pegden, and Enscore (1984), Forst (1984), 

Raghavachari (1988), Rodammer and White (1988), Buxey (1989), Cheng and Gupta (1989), 

Kovalev et al. (1989), Cheng and Sin (1990), Nof, Rajan, and Frederick (1990), Bahouth (1991), 

Noronha and Sarma (1991), Dudek, Panwalkar, and Smith (1992), Maccarthy and Liu (1993), 

Kamath (1994), Morton and Pentico (1994), Koulamas, Antony, and Jaen (1994), Szelke and Kerr 

(1994), Yen and Pinedo (1994), Pinedo (1995), Shirhatti and Kamath (1995), and Hall and 

Sriskandarajah (1995).

Purpose of the Study

The purpose of this study is not to survey all the work that has been done to model and to 

solve the sequencing and scheduling problem, but rather to study the related research that has been 

done to model and to solve the job shop problem. Another major focus of this research is the 

control of a dynamic stochastic job shop environment. The control of this environment was 

accomplished by an integrated model that used sequencing and scheduling theory, heuristic search 

techniques, and dispatching rules. The integrated model consists of a heuristic search technique, 

the genetic algorithm, that used the available sequencing and scheduling theories and dispatching 

rules to enhance its search procedures. The results of this integration is the constrained genetic 

algorithm. The constrained genetic algorithm is the main thrust and the focus of this research.



CHAPTER n  

LITERATURE REVIEW 

Introduction

In this chapter, the related work that has been done to model and to solve the job shop 

problem will be reviewed. Specifically, this chapter will first review the dispatching rules and the 

simulation studies that have been done to investigate the dispatching rules. Next, a description of 

the best-known heuristic. Shifting Bottleneck, that has been used to solve the job shop problem will 

be presented. Next, an introduction to genetic algorithms (GAs) will be given. Then, a summary 

of the GA methodology developed to solve sequencing and scheduling problem will be given. Next, 

a review of the genetic algorithm applications to sequencing and scheduling problems will be given. 

Then, the constrained genetic algorithm that was developed by Al-Harkan and Foote (1994, 1996) 

is introduced. Next, analysis of the results obtained by the constrained genetic algorithm will be 

given. Finally, the research gaps will be discussed.

Dispatching Rules

Over the last four decades, the job shop problem has been solved using dispatching rules 

(also called scheduling rules, sequencing rules, decision rules, or priority rules). These dispatching 

rules are used to determine the priority of each job. The priority of a job is determined as a 

function of job parameters, machine parameters, or shop characteristics. When the priority of each 

job is determined, jobs are sorted and then the job with the highest priority is selected to be 

processed first.

Baker (1974, 216-217) and Morton and Pentico (1993, 373) classified dispatching rules as

10
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follows: local, global, static, dynamic, and forecast. Local rules are concerned with the local 

available information. Global rules are used to dispatch jobs using all information available on 

the shop floor. Static rules do not change over time, and ignore the status of the job shop floor. 

Dynamic rules are time dependent, and change according to the status of the job shop floor. 

Forecast rules are used to give priority to jobs according to what the job is going to come across 

in the future, and according to the situation at the local machine.

Several dispatching rules have been reported by many researchers. These reports have 

been made by Conway, Maxwell, and Miller (1967, 113-129, 219-247), Moore and Wilson

(1967), Day and Hottenstein (1970), Jones (1973), Baker (1974, 214-231), Rinnooy (1976, 51- 

52), Panwalkar and Iskander (1977), BufFa and Miller (1979, 485-535), Blackstone, Phillips, and 

Hogg (1982), Forst (1984), Sen and Gupta (1984), DayhofF and Atherton (1986), Sawaqed 

(1987), Cheng and Gupta (1989), Haupt (1989), Nof, Rajan, and Frederick (1990), Ramasesh 

(1990), Bahouth (1991), Bhaskaran and Pinedo (1992), Morton and Pentico (1994, 372-378: 389- 

395), and Pinedo (1995, 143-148). The following are some o f the dispatching rules that have been 

developed, investigated, and implemented by several researchers and practitioners:

1. SPT or SEPT: Shortest Processing Time or Shortest Expected Processing Time. The job with 

the smallest operation processing time is processed first. The SPT rule has several versions.

• SRPT: Total Shortest Remaining Processing Time.

• TSPT: Truncated SPT. The job with the smallest operation processing time is processed 

first, but if there is a job with an operation waiting time larger than W, that job is 

processed first, W is arbitrarily chosen.

• WSPT: Weighted Shortest Processing Time. The job with the smallest ratio is processed 

first. The ratio is computed by dividing the operation processing time of the job by its 

weight.
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• LWR: Least Woric Remaining in terms of the number of operations.

• TWORK: Total Work in terms of processing time.

• AJF-SPT: Assembly jobs first with SPT rule. If there are assembly and non-assembly

products waiting for a specific machine, then the assembly products are selected first. The 

SPT rule is used to select one of them.

2. LPT or LEPT: Longest Processing Time or Longest Expected Processing Time. The job with

the largest operation processing time is processed first. There are other versions of LPT.

• TLPT: Total LPT.

• LRPT: Total Longest Remaining Processing Time.

• MWR: Most Work Remaining in terms of the number of operations.

3. EDO: Earliest Due Date. The job with the smallest due date is processed first. There are three

versions of EDD rule.

• ODD; Operation Due Date. The operation with the smallest due date is processed first.

• MDD: Modified Due Date. From the set of jobs waiting for a specific machine, jobs are

assigned a new due date, and EDD is performed on this set. The new due dates are

assigned in one of two ways. In the first, a job with negative slack is assigned a due date

that is equal to the current time plus the processing time. In the second, a job with positive 

slack is assigned its original due date.

• MODD: Modified Operation Due Date. From the set of operations waiting for a specific 

machine, operations are assigned a new due date, and ODD is performed on this set. This 

means the new operation due dates are assigned using the two ways used in the MDD, but 

instead of using EDD, the ODD is used.

4. JST: Job Slack Time. The job with minimum slack is processed first. The job slack time is

computed as the difference between the job due date, the work remaining, and the current time.
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The JST rule has five versions.

• OST or S/OPN: Operation Slack Time. The job with the smallest operation slack is 

processed first. The OST is determined by dividing the JST by the number of job 

operations remaining.

• A/OPN; Allowance over remaining number of operation. The job with the smallest ratio is 

processed first.

• S/A: Slack time over Allowance: The job with the smallest ratio is processed first.

• WPT+WOST: Weighted Processing Time plus Weighted Operation Slack Time. The job 

with the smallest value is processed first.

• S/RPT: Slack over Remaining work Time. S/RPT is computed as job slack divided by the 

remaining work time.

5. CR: Critical Ratio. The job with the smallest ratio is processed first. The CR is determined

by dividing job’s allowance by the remaining work time. The CR has one version.

• OCR: Operation Critical Ratio. The operation with the smallest ratio is processed first. 

The OCR is determined by dividing operation’s allowance by the operation process time.

6. RANDOM: Service In Random Order. A job is randomly selected fi’om the set of jobs which

are queued at the machine. RANDOM has one version.

• Biased-RANDOM: Service In Biased Random Order. When RANDOM rule is applied, 

jobs are equally likely to be selected from the set of jobs waiting. However, in the Biased- 

RANDOM rule, jobs are not equally likely to be selected. The selection process is biased 

according to one or more of the other dispatching rules such SPT or EDD. To apply the 

Biased-RANDOM to a set of jobs waiting, a dispatching rule is selected first (say SPT). 

Then, the set of jobs waiting are sorted according to the dispatching rule selected (i.e., 

SPT). Next, jobs in the ordered list are assigned selection probabilities which are usually
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computed according to geometric distribution. The job in the first position will be given 

the largest selection probability and the job in the last position will be given the smallest

selection probability. By doing so, the jobs early in the ordered list of jobs are more likely 

to be selected, while jobs late in the ordered list of jobs are less likely to be selected.

7. FCFS or SORT; First Come, First Served or Smallest Ready Time. The job which arrives 

first at the machine will be served first. There is one version of FCFS rule.

• FASFS or SRT: First At Shop, First Served or Smallest Release Time. A job arriving 

first at the shop is given priority to go first in all machines.

8. LCFS: Last Come, First Served. The job which arrives last will be served first.

9. LFJ: Least Flexible Job. The job with the least flexibility is processed first.

10. FOFO: First Off, First On. The job with the operation that could be completed earliest will be 

processed first even if this operation is not yet in the queue. In this case, the machine will be 

idle until the operation arrives.

11. LAWINQ: Least Anticipated Work In Next Queue. From the set of jobs waiting for a 

specific machine, a job will be selected that will encounter the smallest queue at the next 

machine in its route.

12. COVERT: Cost OVER Time. COVERT is a composite rule that puts the job with the largest 

COVERT ratio in first position. The COVERT ratio is computed by dividing an anticipated 

tardiness for the associated job and its operation processing time. The COVERT rule has two 

versions.

• ATC: Apparent Tardiness Cost. The ATC introduces the effect ofjob weight and it uses a 

different function to estimate the tardiness associated with each job. ATC gives priority to 

a job with the largest ATC value.

• ATEC: Apparent Tardiness and Earliness Cost. ATEC is a generalization of both
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COVERT and ATC. It includes a different function to account for tardiness and earliness

in its computations.

As mentioned earlier, the above dispatching rules are determined according to job 

parameters, machine parameters, and shop characteristics. The above rules can be classified into 

four classes. The first class consist of rules that deal with the processing time (that is, rules 1 and

2). Rules 3, 4, and 5 are a class of rules which involve due dates. Class three consists of rules 

numbering 6, 7, 8, 9, 10, and 11 that involve shop and/or job characteristics. Finally, class four is 

formed by a combination of the other three classes and is known as rule 12.

Since the job shop problem can be viewed as a networic of queues, the effects of the 

dispatching rules can be tested using queueing network theory. Open queueing network (OQN) 

theory, developed by Jackson in 1957 (Jackson 1957a, 1963), can only be used to test the effect of 

the FCFS rule. However, the effects of the other rules are difficult to describe using OQN theory. 

Therefore, other dispatching rules have been tested using computer simulation models. As a 

results, simulation modeling of the job shop has been receiving much attention over the last four 

decades.

In the late fifties, a group of researchers simulated the job shop environment and published 

the results. This team is considered the pioneers of the field. The group consisted of Jackson 

(1957b), Nelson and Jackson (1957), and Rowe (1958) from the University of California Los 

Angeles (UCLA). The woric done by the this group has influenced all the investigations done since.

During the sixties, a series of investigations was done to continue studying the effect of 

dispatching rules. This series of investigations was encouraged by the results obtained by the 

UCLA group. These attempts were made by Baker and Dzielinski (1960), Conway, Johnson, and 

Maxwell (I960), Nanot (1963), Carroll (1965), Conway (1965a, 1965b), Gere (1966), and 

Conway, Maxwell, and Miller (1967,219-247).
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Baker and Dzielinski (I960) at International Business Machine corporation (IBM) 

simulated a job shop that can have several shop sizes, which ranged from nine to thirty non- 

identical machines. They investigated the effect of RANDOM, FCFS, and SPT on the total 

manufacturing time. Two main conclusions obtained: the SPT rule is superior in minimizing the 

total manu6cturing time and the size of the shop is not a significant factor.

Conway, Johnson, and Maxwell (1960) investigated the effect of thirteen dispatching rules 

on the distribution of the following four performance measures: completion times; lateness; work- 

in-process, and utilization. In their experiment, an open job shop was simulated which had five 

machines and three levels of shop load (heavy, medium, and light). They concluded that for all 

performance measures, the SPT rule was the best among all rules tested.

Nanot (1963) investigated ten dispatching rules using six different shop sizes and over 

2.44 X 10*̂  orders. Four of these shop sizes were assumed to have medium loads, and the others 

had high loads. Four conclusions came out of this study: I) the SPT rule is the best under all 

conditions; 2) FCFS and FASFS rules have low standard deviations; 3) FCFS rule achieved a 

small proportion of jobs tardy if the shop is not heavily loaded; and 4) job shop size is not a 

significant factor.

Carroll (1965) investigated the effect of the COVERT rule on several job shop 

configurations. He used six other dispatching mles to investigate the effectiveness of the 

COVERT rule. He concluded that when the objective function is the mean tardiness the COVERT 

rule is superior to SPT, FASFS, and TSPT.

Conway (1965a) investigated the effects of twenty dispatching rules on the work-in- 

process (WIP) by simulating an open job shop that had nine machines and ten thousand jobs were 

processed. Conway measured the WIP using five measures. These are: number in queue; work 

remaining in terms of processing time; total woric content; work completed, and imminent operation 

work content. Conwav concluded that the SPT dominated all the other rules tested. Conwav
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(1965b) continued his investigations and used the same job shop configuration in Conway (1965a). 

In this study, job lateness was used as the performance measure. The effect of the due date 

tightness was investigated using several methods to estimate the due dates. The estimations of due 

dates were based on the number of operations (NOP) required, TWORK, constant lead time for all 

jobs (CON), and random method. For each of these four methods, he compared nine dispatching 

rules. These rules were RANDOM, FCFS, FASFS, EDD, SPT, LPT, ODD, JST, and 

WPT+OST. He concluded that the SPT was the best rule among the rules tested, and that the SPT 

rule was insensitive to due date tightness.

Gere (1966) investigated the effects of eight dispatching rules where the total tardiness was 

the objective function. Both static and dynamic environments were tested. The job shop simulated 

had a variety of configurations: 4 to 6 machines, 6 to 60 jobs, and 1 to 16 operations per job. 

Besides the general assumption mentioned before, Gere assumed no assembly and no labor 

constraint. He concluded that the non-random dispatching rules (JST, OST, S/A, a modified S/A, 

SPT, and a combined SPT and S/A) are more significant than random rules (FCFS, and 

RANDOM). Also, rules that were based on job slack were more effective than the SPT rule.

Conway, Maxwell, and Miller (1967, 219-247) presented several interesting studies. The 

most interesting was a study that was done by Wayson (1965) to test SPT and FCFS rules with 

machine flexibility. The average number in queue was used as the performance measure. Wayson 

concluded that the SPT rule was more sensitive to machine flexibility than FCFS.

Several important conclusions can be obtained from the above series of studies:

1. The SPT rule minimizes the average flow time, average lateness, average number in queue, 

average tardiness, and percentage of jobs tardy. The SPT is insensitive to due date tightness.

2. COVERT rule is superior in minimizing the mean tardiness when compared to SPT and TSPT.

3. Job slack rules are more effective to minimize the tardiness.
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4. The size of the shop is not a significant factor.

5. The FCFS rule achieves a small proportion of jobs tardy if the shop is not heavily loaded.

6. The OST minimized the percentage of jobs tardy and the conditional average tardiness.

The above conclusions have inspired researchers to study the effect of the dispatching rule 

in more complex and different job shop environments. Also, advancements in computer technology 

and software that can be used to simulate and study the job shop environment have helped 

researchers to do more work in this fruitful area. Thirteen studies had been performed during the 

seventies to investigate more difficult job shop environments. These attempts have been performed 

by Hottenstein (1970), Putnam et al. (1971), Ashour and Vaswani (1972), Elvers (1973, 1974), 

Holloway and Nelson (1974), Irastorza and Deane (1974), Eilon, Chowdhury, and Serghiou 

(1975), Hershauer and Ebert (1975), Berry and Finlay (1976), Eilon and Chowdhury (1976), 

Nelson, Holloway, and Wong (1977), Hurrion (1978), and Weeks (1979). Some of these studies 

will be discussed in the following paragraphs.

Hottenstein (1970) studied the process of speeding up the job delivery which is called 

expediting. One of two reasons can be used to accelerate jobs; 1) the due date of a job has been 

revised or 2) job slack has become negative. Under normal operating conditions, the SPT rule is 

used. When jobs belong to the expediting set of jobs, however, the jobs are processed according to 

either SPTEX or FCFSEX rules. The SPTEX rule gives priority to jobs according to the SPT 

rule, and the FCFSEX gives priority according to the FCFS rule. Hottenstein simulated hybrid job 

shops and pure flow shops using six machines. Two types of loads were used. Six performance 

measures were used: average number of jobs in the system; flow time; percentage of jobs tardy; 

percentage of early-request jobs shipped late; average tardiness, and average tardiness for early- 

request jobs. Conclusions of this study can be summarized as follows: SPT and SPTEX rules 

performed almost the same imder all performance measures and conditions, and the FCFSEX had 

the worst performance. Eilon, Chowdhury, and Serghiou (1975), performed a similar study and in
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their study, jobs were quickened according to an expediting criterion which was computed as the 

job slack combined with a control parameter (U). The control parameter was used to regulate the 

percentage of jobs that can be put in the set of expediting jobs. Then the SPT rule was applied to 

the jobs which were in the expediting set. The researchers named their general procedures the 

SPT* rule which was performed by first computing a classification index as follows: F, = JST, - U. 

Then, if Fi < 0, job i is put in the expediting set. Otherwise, job i is put in the normal set.

The effect of due date assignments was studied by Ashour and Vaswani (1972), Elvers 

(1973), Eilon and Chowdhury (1976), and Weeks (1979). A common conclusion of this series of 

studies is that dispatching rules that were due-date based performed better when due dates were 

assigned according to number of operations and work content of a job. In other words, these 

dispatching rules performed better when due dates were assigned according to expected flow time 

and job shop congestion. Also, the average tardiness was minimized by S/OPN rule.

Elvers (1974) investigated the effects of sixteen arrival distributions on ten dispatching 

rules using tardiness as the performance measure. The sixteen arrival distributions were three 

parameters for each of binomial distribution, bimodal distribution, discrete uniform distribution, 

left skew distribution, and right skew distribution, plus the Poisson distribution. Some of the 

dispatching rules used were: FCFS; FASFS; SRPT; SEPT; EDD; OST, and JST. Elvers 

simulated a job shop with eight machines, and concluded that the dispatching rules are not affected 

by the arrival distributions in the performance measure tested.

The effect of incorporating queueing waiting time in the calculations of both job slack time 

and critical ratio was investigated by Berry and Finlay (1976). They used flow time, job lateness, 

and work-in-process as the performance measures. They estimated the queue time using historical 

queue waiting times. Berry and Finlay simulated a job shop with ten machines and fifteen 

products. They concluded that the incorporation of queueing waiting time in the calculations of 

JST and CR rules did not improve the performance of these rules, which implies no improvement
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in the shop performance.

Since the early eighties, more and more studies have been published to investigate the 

effect of dispatching rules in more realistic job shop environments. Some of these studies have 

been performed by Arumugam and Ramani (1980), Baker and Bertrand (1981, 1982), Miyazaki 

(1981), Dar-El and Wysk (1982), Muhlemann, Lockett, and Fam (1982), Elvers and Taube 

(1983), Baker (1984), Ragatz and Mabert (1984), Elvers and Trelevn (1985), Rachamadugu, 

Raman, and Talbot (1986), Russell, Dar-El, and Taylor (1987), Sawaqed (1987), Vepsalainen and 

Morton (1987, 1988), Kanet and Christy (1989), Schultz (1989), Anderson and Nyirenda (1990), 

Karsiti, Cruz, and Mulligan (1992), Kanet and Zhou (1993), Raghu and Rajendran (1993), 

Rohleder and Scudder (1993a, 1993b), Vig and Dooley (1993), Udo (1993), Bahouth and Foote

(1994), and Chang (1994).

Using decision theory, Arumugam and Ramani (1980) compared five dispatching rules to 

be selected to minimize a combined criterion. This criterion consisted of work-in-process inventory 

and delivery performance. The five dispatching rules used were: lowest value time; highest value 

time; customer priority; SPT, and OST. They simulated a job shop with sixty-four machines, 

ninety-one workers, and nineteen products. Arumugam and Ramani simulated a job shop with 

various shop loads, and they concluded that the SPT dominated all dispatching rules in all job shop 

configurations they tested. Kanet and Zhou (1993) used decision theory to developed a dispatching 

rule which is called MEANP and they tested it against six other dispatching rules. The other 

dispatching rules used were: SPT; FCFS; ODD; COVERT; ATC, and MODD. They simulated a 

job shop with a single machine, and they concluded that the MEANP approach was better than all 

the dispatching rules when both tardiness and flow time were the criteria.

One of the most important elements that affect the performance of dispatching rules are the 

due date setting rules. The effect of due date setting rules on the dispatching rules have been 

investigated by several researchers. These attempts have been made by Baker and Bertrand (1981,
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1982), Miyazaki (1981), Baker and Kanet (1983), Baker (1984), Ragatz and Mabert (1984),

Kanet and Christy (1989), Udo (1993), Vig and Dooley (1993), and Chang (1994). Several

conclusions came out of these studies;

1. When job flow time estimates are used to predict due dates, the due dates produced are more 

robust and accurate to uncontrollable job shop (Miyazaki 1981 and Vig and Dooley 1993).

2. The relative performance of the dispatching rules was affected by the tightness of the due dates 

(Baker and Bertrand 1981).

3. For practicability, the best due date setting rule is the total work content (TWK) rule which 

provides the best results for tardiness performance measures (Baker and Bertrand 1981 and 

1982, Baker 1984, and Kanet and Christy 1989). According to Kanet and Christy (1989), the 

TWK reduces work-in-process. TWK = kP, where k is the due date factor and P is the total 

work required.

4. According to Baker (1984), the second best due date setting rule is the number of operations 

(NOP) rule which is computed as follows: NOP = km, where k is the due date fector and m is 

the number of operations required by the job.

5. There is no advantage to using the slack-based dispatching rules over the simple allowance- 

based rule (Baker 1984).

6. When assigning due dates, both job characteristics and shop status information should be 

included (Ragatz and Mabert 1984, Udo 1993, Chang 1994).

7. In estimating a job due date, information about machine center congestion and the routing of 

the job is more useful than knowing general information about the job shop conditions (Ragatz 

and Mabert 1984).

8. When estimating due dates, the use of more details provides only marginal improvement in the 

performance of the due date setting rules (Ragatz and Mabert 1984).



22

9. Due dates that are assigned according to analytical analysis are favorable (Baker and Bertrand 

1981).

Dar-El and Wysk (1982) investigated the effect of the release mechanism on six 

dispatching rules using tardiness as a performance measure. The release of jobs to the shop floor 

is controlled by delaying jobs according to two actions known as flushed and un-flushed. An un

flushed action was taken when no more jobs were allowed to enter the system. A flushed action is 

taken when all remaining jobs are completed, and all machines in the job shop are empty. The 

following were the dispatching rules used: SPT; FCFS; LCFS; EDD; OST, and LAWINQ. The 

researchers simulated a job shop with four machines which had three types of load (70%, 77%, and 

85%). Dar-El and Wysk concluded that the best rules that should be selected to manage a job shop 

with such behavior were SPT and LAWINQ.

The effect of dispatching mles when incorporating machine breakdowns was investigated 

by Muhlemann, Lockett, and Fam (1982). They tested twelve dispatching mles using seven 

performance measures. The twelve dispatching tested were: RANDOM; FCFS; EDD; SPT; 

LWR; SPT*; S/OPN; ODD; LCFS; CR; OST, and a composite mle which was developed by Fam 

(1979). The seven performance measures were: lateness; makespan; conditional lateness; 

percentage of jobs late; average queue time; mean tardiness, and average ration of flow time to 

process time. Their job shop had twelve machines and processed twelve products. They tested 

four cases of breakdowns where each had different arrival times and repair times. Also, 

Muhlemann, Lockett, and Fam included a rescheduling factor in their experiment. This factor was 

handled by having two sets of jobs waiting for any machine. The first set had the initial jobs, and 

the second set had the newly arrived jobs. The rescheduling was done in a certain frequency to 

include the newly arrived jobs in the initial set. From the results obtained, Muhlemann, Lockett, 

and Fam concluded that, in general, the SPT mle was the best when rescheduling was infrequent. 

However, the SPT* and the composite mles were far better than the SPT when rescheduling was
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performed frequently. The mean tardiness was minimized by JST, SPT, and EDD rules. The CR 

rule minimized the conditional mean lateness. Frequent rescheduling resulted in better performance 

for the shop.

Elvers and Taube (1983) studied the effects of efficiencies and inefficiencies of machines 

and workers on five dispatching rules (SPT, EDD, JST, OST, and FCFS) using percentage of jobs 

completed on time as a criterion. In other words, they studied the effect of workers’ learning and 

loss of knowledge in terms of the processing times. To represent workers’ learning and loss of 

knowledge using the processing times, the processing times were fluctuated accordingly. In their 

experiment. Elvers and Taube compared two cases which they called stochastic and deterministic. 

The stochastic case is with efficiencies and inefficiencies of machines and workers. The 

deterministic case is without efficiencies and inefficiencies of machines and workers. The study 

simulated a job shop with eight machines and six types of loads which ranged from 84.5% to 

97.9% of capacity. From their results, it is clear that when the job shop is heavily loaded, SPT 

was superior. However, when the job shop load was under 91.6%, EDD, JST, OST, and FCFS 

were superior to SPT. Finally, they concluded that the incorporation of efficiencies and 

inefficiencies in terms of the processing did affect the performance of the dispatching rules in most 

situations.

Russell, Dar-El, and Taylor (1987) simulated an open job shop to test three alternative 

formulations of COVERT rule and ten other dispatching rules to test the effect of due date 

tightness. The ten dispatching rules were: FCFS; EDD; JST; S/OPN; SPT; MDD; MODD; ATC, 

two versions of TSPT. Eight performance measures were used: average flow time; average 

tardiness; average conditional tardiness; average lateness; root mean square of tardiness; root mean 

square of conditional tardiness; percent tardy job, and maximum tardiness. The job shop 

simulated, as designed by Baker (1984), consisted of four machines which had a 90% utilization 

level. From their results, it is clear that the SPT rule was superior in minimizing the average flow
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time, average lateness, and percent of job tardy. The lowest value for average conditional 

tardiness, root mean square of tardiness, and root mean square of conditional tardiness was 

achieved by COVERT rule. The MODD was superior in minimizing the average tardiness and 

TSPT was superior in minimizing maximum tardiness. For loose due dates (20% tardy), MODD 

was superior in minimizing all performance measures except for the average flow time which was 

minimized by SPT. The SPT was superior in minimizing the average flow time, the maximum 

tardiness, and average lateness when due dates were moderate (40% tardy). Also, under tight due 

dates, COVERT was superior in minimizing the average conditional tardiness, the root mean 

square tardiness, and the root mean square conditional tardiness. The MODD was superior in 

minimizing the average tardiness.

Sawaqed (1987) performed a study where he investigated a hybrid assembly job shop with

bottleneck machine. He investigated the effect of the position of the bottleneck machine on various

performance measures. Sawaqed tried to answer several questions in his study. However, the two

most important questions that are related to our study are;

...Does the location of bottleneck machines influence the relative performance of dispatching 
rules? Is it sufficient to manage a job shop by managing its bottleneck machines? (Sawaqed 
1987, ix)

To answer these two questions Sawaqed simulated a hybrid assembly job shop with nine 

machines, nine products, six criteria, and six dispatching rules. The load for non-bottlenecks was 

75% and for the bottleneck it was 90%. Out of the nine products, there were four assembly 

products. The six criteria were: average flow time; average tardiness; average lateness; average 

staging time; percentage of tardy, and maximum tardiness. Six dispatching rules were used 

(FASFS, FCFS, SPT, EDD, AJF-SPT, and SRPT). The results of this investigation concluded 

that the location of the bottleneck machine does not affect the relative performance of the superior 

dispatching rules. For example, SPT will be superior wherever the bottleneck is.
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Next, Sawaqed performed another experiment to investigate the effect of managing the job 

shop by managing its bottleneck machines. The bottleneck machines were identified by first 

identifying the average utilization level of all nine machines, then the machine with over 85% 

utilization level was identified as the bottleneck machine. In his experiment there were three 

bottleneck machines with a utilization level of 97%, 86%, and 95%. In terms of dispatching rules, 

Sawaqed developed and used four management policies to schedule jobs on bottleneck and non- 

bottleneck machines. These policies were: 1) EDD for both; 2) SPT for non-bottlenecks and EDD 

for bottlenecks; 3) EDD for non-bottlenecks and SPT for bottlenecks, and 4) SPT for both. Then 

Sawaqed (1987, x) concluded that “the most crucial element in managing a job shop is the 

management of its bottleneck machines."

Schultz (1989) developed a new rule that combined SPT with tardiness-based rules which 

was named CEXSPT rule. Schultz tested the CEXSPT and six other dispatching rules by 

simulating an open job shop that was designed by Russell, Dar-El, and Taylor (1987). The six 

dispatching rules used were: MODD; COVERT; SPT; ODD; S/OPN, and OCR. Four 

performance measures were used which were: average flow time; average tardiness; average 

conditional tardiness, and proportion of job tardy. Schultz concluded that the SPT was superior in 

minimizing the average flow time, CEXSPT was superior in minimizing average tardiness, and 

COVERT was superior in minimizing average conditional tardiness. Both MODD and SPT were 

superior in minimizing the proportion ofjob tardy.

Vepsalainen and Morton (1987) developed and tested the effect of the ATC rule which 

considered the influence of multiple machines by using look-ahead parameters. They compared the 

ATC rule with five dispatching rules using three performance measures. The five dispatching rules 

were: FCFS; EDD; OST; WSPT, and COVERT. The four performance measures were: the 

normalized weighted tardiness; percentage of jobs tardy; the work-in-process, and the work-in- 

system. Vepsalainen and Morton simulated three types of job shops with ten machines and five
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shop loads (80%, 85%, 90%, 95% and 97%). Vepsalainen and Morton generalized their 

conclusions for the three types of job shops because of similar patterns. For all utilization and 

under tight due dates, they ranked the dispatching rules to minimize the weighted tardiness as 

follows: ATC; COVERT; WSPT; OST; EDD, then FCFS. In all utilization levels and when the 

due dates are loose, the ATC was ranked first to minimize the weighted tardiness, COVERT was 

second. When due dates are loose and the utilization is low (<90%), the OST was ranked third, 

but, with high utilization (>90%), the WSPT rule was ranked third. The ATC rule was the best 

under all utilization levels and due dates types to minimize the percentage of jobs tardy. When due 

dates were tight and utilization was low (<85%), COVERT performed better than WSPT, but 

WSPT was better when the utilization level was higher than 85%. Also, when due dates were 

loose and utilization was lower than 95%, COVERT performed better than WSPT, and when the 

utilization was higher than 95%, WSPT performed better. The WIP was minimized by the ATC 

and EDD rules when the utilization was high (> 90%) and the due dates were loose. However, 

when the utilization was lower than 90%, the WSPT rule was the first to minimize WIP, then the 

ATC and the EDD rules. In all shop loads and under tight due dates, the EDD was the best rule to 

minimize the WIP. The EDD and OST rules were the best for WIS under tight due dates and all 

utilization levels. The EDD rule was superior in all utilization levels when due dates were loose. 

However, when the utilization was lower than 85%, the ATC rule was ranked second, but when the 

utilization was higher than 85%, the OST rule was ranked second.

The computations of the ATC and COVERT rules required the computation of the 

expected waiting time for each operation of each job under consideration. Vepsalainen and Morton 

(1987) used a unique method to compute the expected waiting time which was a multiplier of the 

processing time of a specific job under consideration (W=aPjj, where a is the multiplier and Pij is 

the processing time of operation j for job i). Therefore, Vepsalainen and Morton (1988) continued 

their research and investigated the effect of different estimates of the expected waiting times on
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ATC and COVERT. They tested three methods to estimate the waiting time, using the models of 

the previous study. These three methods are; multiple of processing time (STD); priority-based 

(PRIG), and lead-time iteration (ITER). They found that an accurate estimate of the waiting time 

helped the ATC and the COVERT rules to reduce the tardiness. With respect to minimizing 

tardiness, the ATC/TTER combination was the best minimizer and COVERT/PRIO was the 

second.

Anderson and Nyirenda (1990) developed two new methods to compute the operation due 

date. These two methods were: CR+SPT and S/RPT+SPT. Using the CR+SPT, the due date for 

operation j of job i is computed as follows: ODD = ma.x(OCR*P,j, P|j). Also, the S/RPT+SPT 

computed an operation due date as follows: ODD = max(S/RPT*Pij, Py). Anderson and Nyirenda 

simulated an open job shop with eight machines to compare the performance of these two methods 

when they were used to computed the operation due date in the MODD rule. Also, they compared 

the performance of the MODD with four other dispatching rules. These rules were: SPT; 

CEXSPT, and two versions of COVERT. Four performance measures were used: mean flow time; 

mean tardiness; proportion of tardy jobs, and conditional mean tardiness. The shop load was kept 

at 90% utilization level. The results of this study indicated that the SPT rule was superior in 

minimizing the average flow time in all due dates types, and also superior in minimizing the 

percentage of jobs tardy when due dates were tight. When the due dates were very tight, the 

MODD rule was superior in minimizing the mean tardiness. The S/RPT+SPT rule was the best to 

minimize the mean tardiness when due dates were moderate, and superior in minimizing the 

percentage of jobs tardy when due dates were loose. The CR+SPT rule was better than 

S/RPT+SPT rule in minimizing the average tardiness when due dates were loose.

Raghu and Rajendran (1993) developed a new dispatching rule that is sensitive to the 

machine utilization level, job processing time, and operation due date. Raghu and Rajendran tested 

their rule against six dispatching rules (SPT, EDD, MOD, ATC, S/RPT+SPT, and CR+SPT).
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Four performance measures were used: average flow time; average tardiness; percentage of jobs 

tardy, and root mean square of average tardiness. They simulated an open job shop with twelve 

machines and two shop loads (86% and 95%). The results of this study indicated that at 85% 

utilization level and in all cases of due dates and processing times, RR and SPT rules performed 

equally and they were the best to minimize the average flow time. However, when the utilization 

level was 95%, the RR rule was ranked first and SPT was second. For both the average tardiness 

and root mean square of average tardiness, the RR rule was superior in combinations tested. The 

S/RPT+SPT and the CR+SPT rules were ranked second to minimize the average tardiness. The 

EDD was ranked second with respect to root mean square average tardiness. For percentage of 

jobs tardy, the SPT rule was ranked first, the S/RPT+SPT rule was ranked second, then the RR 

rule was ranked third.

A similar study to Dar-El and Wysk (1982) was recently performed by Rohleder and 

Scudder (1993b). In this study, four job release mechanisms were tested to minimize earliness and 

tardiness simultaneously. The four release rules were immediate release (IR), modified infinite 

loading (MIL), modified Ow and Morton (MOM), and operation early or tardy release (GETR). 

The release time in the IR rule was the arrival time of the job. The MIL rule derived its release 

time by using the attributes of jobs and the shop congestion. The MOM rule obtained its release 

time by using the job’s due date, processing times, and early and tardy costs. The OETR rule used 

overall information of the job, and produced release times for each operation of each product at all 

machines. The OETR rule forced machines to have two queue types, which were active and 

inactive. The active queue kept jobs that had been released, and the inactive queue held jobs that 

had not yet been released. The active and inactive behavior performed by the OETR rule simulated 

the construction of a delay schedule and the other three release rules used a non-delay schedule. 

Four dispatching rules were used: FCFS; EDD; weighted COVERT, and modified ATEC. 

Rohleder and Scudder simulated an open job shop with six machines with three levels of utilization
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(70%, 80%, and 90%). The results of this study indicated that in terms of dispatching rules, the 

modified ATEC was superior in all cases tested. The OETR rule was the best at all utilization 

levels and due date types. When utilization was high, the IR was ranked second, but, as utilization 

levels decreased, MOM competed with IR. In terms of importance between dispatching rules and 

release rules, they conclude that dispatching rules were effective in reducing early or tardy costs 

when the utilization was high and due dates were tight. However, release rules were effective when 

the utilization level was low and the due dates were loose.

Bahouth and Foote (1994) developed and implemented three dispatching rules to manage 

two bottleneck machines in a hybrid assembly job shop with one assembly machine. The three 

dispatching rules were developed by using Johnson’s flow shop algorithm. The three developed 

rules were:

1. JNP: Johnson No Priority rule. Parts were scheduled or rescheduled in all machines according 

to the sequence obtained by Johnson’s algorithm which was applied on the two bottlenecks.

2. JHP: Johnson Half Priority rule. Parts were scheduled or rescheduled according to JNP, but 

the first priority was given to a part on which only one operation was performed. If ties 

occurred among the jobs that were prioritized by JHP, then JNP was used. JHP was only 

applied before the assembly operation.

3. JFP: Johnson Full Priority rule. Parts were scheduled or rescheduled according to JNP, but the 

first priority was given to a part on which the maximum number of operations was performed. 

If ties occurred among the jobs that were prioritized by JFP, then JNP was used. JFP was 

applied at any machine.

The purpose of this study was not only the development o f new dispatching rules but also 

the investigation o f the management of two bottlenecks in a hybrid assembly job shop. Bahouth 

and Foote simulated a job shop with nine machines where two of them were bottlenecks. The total 

flow time was used as the performance measure. They studied the effect of five factors. These
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factors were: the interarrival times; percentage deviation between the assumed process time and the

actual process time; the difference in average processing time between the two bottlenecks; the

dispatching rules, and location of the bottlenecks. The performance of the three dispatching rules

was compared with the performance of a superior rule, which was SPT. For the two bottlenecks,

six locations were selected. These locations were: 1) the first two stages; 2) the first stage and the

second-to-Iast stage; 3) the first and last stages; 4) the second and last stages; 5) the last two

stages, and 6) the second stage and the second-to-last stage. The results of this study indicated that

for the time between job creations, the JNP rule performed better than the other rules. Also, they

found that for the difference in the average process time between the two bottlenecks, the SPT rule

was superior when the two bottlenecks were located in the first two stages. The JNP rule

performed better than the other rules when the two bottlenecks were located in the last two stages.

The SPT rule performance deteriorated when there was more than one non-bottleneck machine

between the two bottlenecks. Finally, Bahouth and Foote concluded the following:

...Flow shop sequencing rules can be applied to manage job shops: When a job shop has two 
bottleneck machines, a modified version of the Two-Machine Flow Shop Johnson rule can be 
used... The above results can only be applied to cases when the two bottleneck machines are 
not on parallel branches of the product structure, and when jobs use the two bottleneck 
machines in the same sequence. (Bahouth and Foote 1994, 2476)

Shifting Bottleneck Algorithm

Several heuristics have been developed by several researchers to solve the job shop 

problem. Most of these heuristics have been reported by Conway, Maxwell, and Miller (1967), 

Baker (1974), Rinnooy (1976), Bellman, Esogbue, and Nabeshima (1982), French (1982), Morton 

and Pentico (1993), and Pinedo (1995). However, this section will be devoted to the recently 

developed heuristic which is known as the Shifting Bottleneck (SB) algorithm. The SB algorithm 

was developed in 1988 by Adams, Balas, and Zawack. Then, in 1993 it was modified by Dauzere- 

Peres and Lasserre. The SB algorithm was recently extended by Balas, Lenstra, and Vazacopoulos

(1995). The SB algorithm is reviewed in this research study for four reasons:
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I ) It is the only well-known heuristic that simulates the management of bottleneck machines in the 

job shop environment.

2) It is known to be superior among all heuristics that were used to solve the job shop problems.

3) The SB algorithm and genetic algorithms were combined in several implementations.

4) The results obtained by the SB algorithm has been used as a benchmark to test the 

performance of several genetic algorithms.

The SB algorithm was developed to solve the general sequencing problem that was defined

in chapter 1 where the makespan was minimized. The idea of the SB algorithm was described by

Adams, Balas, and Zawack (1988), who stated:

...We sequence the machines one at a time, consecutively. In order to do this, for each machine 
not yet sequenced we solve to optimality a one-machine scheduling problem that is a relaxation 
of the original problem, and use the outcome both to rank the machines and to sequence the 
machine with highest rank. Every time a new machine has been sequenced, we reoptimize the 
sequence of each previously sequenced machine that is susceptible to improvement by again 
solving a one-machine problem. (Adams, Balas, and Zawack 1988; 393)

The above description of the SB algorithm can be re-stated as follows. The SB algorithm 

sequences machines sequentially one at a time. The machines that have not yet been sequenced are 

ignored, and the machines that have been sequenced have their sequences held fixed. At each step, 

the SB algorithm determines a bottleneck machine from the set of machines that have not yet been 

sequenced by performing two steps:

1. Solving a one-machine scheduling problem for each un-sequenced machine.

2. The machine that yielded the maximum makespan is selected to be the bottleneck machine from 

the set of machines that have not yet been sequenced.

Then, the associated sequence that was obtained by the one-machine scheduling problem is 

used to sequence the bottleneck machine chosen. Every time a bottleneck machine is sequenced, a 

re-optimization procedure for the set of machines that have been sequenced Is performed. The re

optimization is performed by âreeing up and re-sequencing each machine in turn with the sequences
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on the other machines held fixed.

To test the quality of solutions obtained by the SB algorithm, several small problems for 

which an optimal solution was known were solved by Adams, Balas, and Zawack. Also, this team 

solved large problems which had up to 500 operations and ten machines. From the results 

obtained, they found out that the SB algorithm was able to find the optimal solution in all the 

problems with ten machines and over 30 jobs. The SB algorithm found in five minutes the optimal 

solution to a difficult problem that was designed by Fisher and Thompson (1963). In comparison, 

the optimal solution had only recently been found with extensive effort. The SB algorithm 

determination of the bottleneck machine was stable and accurate when there were many more jobs 

than machines, and this situation led the SB algorithm to converge to the optimal solution.

Adams, Balas, and Zawack solved forty problems to compare their algorithm to ten 

dispatching rules. These dispatching rules were FCFS, late start time (LST), early finish time 

(EFT), late finish time (LFT), most immediate successor (MIS), first available (FA), SPT, LPT, 

RANDOM, and JST. For the forty problems, they did not report the results of each dispatching 

rule. However, for each problem, they reported the best solution obtained by one of the 

dispatching rules and compared it to the solution obtained by the SB algorithm. From the results 

reported, the SB algorithm dominated in 38 problems.

Dauzere-Peres and Lasserre (1993) observed one of the weaknesses of the SB algorithm 

which was “...When the procedure fixes the sequence on a machine, it may thereby create a 

precedence constraint between some pair of jobs on some unsequenced machine” (Balas, Lenstra, 

Vazacopoulos 1995, 95). This problem was treated by both Dauzere-Peres and Lasserre (1993) 

and Balas, Lenstra, Vazacopoulos (1995). Dauzere-Peres and Lasserre (1993) developed a 

heuristic to solve the one-machine problem with delay precedence constraints. Also, an 

optimization procedure was developed by Balas, Lenstra, Vazacopoulos (1995) for solving the 

one-machine scheduling problem with delay precedence constraints. Both studies reported that the
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improved SB algorithm obtained better results than the original SB algorithm.

Genetic Algorithms

This section is devoted to describing the genetic algorithms which were developed by 

Holland in 1975. Since genetic algorithms (GAs) are adaptive and flexible, they have attracted 

several researchers from different fields such as computer sciences and engineering, operations 

research, business, social science, etc. As Holland puts it “...The last five years have seen the 

number of researchers studying genetic algorithms increase from dozen to hundreds” (Holland 

1992, ix). The theory and the application of the GAs have been reported by several researchers. 

Some of these reports are by Grefenstette (1985, 1987), Goldberg (1989), Liepins and Hilliard 

(1989), Schaffer (1989), Belewand Booker (1991), Davis (1991), Rawlins(1991), Holland (1992), 

Forrest (1993), Lin (1993), Michalewicz (1994), Srinivas and Patnaik (1994), Chambers (1995a, 

1995b), Eshelman (1995), Mattfeld (1996), Osman and Kelly (1996), and Gen and Cheng (1997). 

In these reports, the GAs were shown to be successfully applied to several optimization problems. 

For example, they have been applied to routing, scheduling, adaptive control, game playing, 

cognitive modeling, transportation problems, traveling salesman problems, optimal control 

problems, database query optimization, etc.

The GAs are stochastic search techniques whose search algorithms simulate natural

phenomena (biological evolution). The basic idea of the GAs is that the strong tend to adapt and

survive while the weak tend to die. One of the strengths of GAs is that they use past information to

direct their search with the assumption of improved performance. The formal description of the

GA which was provided by Grefenstette is as follows:

...A genetic algorithm is an iterative procedure maintaining a population of structures that are 
candidate solutions to specific domain challenges. During each temporal increment (called a 
generation), the structures in the current population are rated for their effectiveness as domain 
solutions, and on the basis of these evaluations, a new population of candidate solutions is 
formed using specific genetic operators such as reproduction, crossover, and mutation. 
(Grefenstette 1985)
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Holland's original GA is known as the simple GA (SGA). The SGA works with a

population of binary chromosomes (chromosomes are also called strings or individuals). Each

chromosome is made of genes of Os and Is (genes are also called features, charters, alleles or

decoders). As mentioned earlier, the GAs have attracted several researchers. The binary

representation of population, however, was not suitable for all applications. Hence, the population

representations have changed from binary to various representations such as real values, integer

values, characters, lists of rules, etc. These changes have been made to simplify the representation

of the population of chromosomes to be appropriate for the problem under consideration.

Michalewicz elaborated on this subject;

...Classical genetic algorithms, which operate on binary strings, require a modification of an 
original problem into appropriate (suitable for GA) form, this would include mapping between 
potential solutions and binary representation, taking care of decoders or repair algorithm, etc. 
This is not usually an easy task. (Michalewicz 1994, 7)

A rich discussion about the unsuitableness and suitableness of binary representation of 

populations can be found in Michalewicz (1994, 1-10). The general procedures of the GA are as 

follows:

1. Initialize a population of binary or non-binary chromosomes.

2. Evaluate each chromosome in the population using the fitness function.

3. Select chromosomes to mate (reproduction).

4. Apply genetic operators (crossover and mutation) on chromosome selected.

5. Put chromosomes produced in a temporary population.

6. If the temporary population is full, then go to step 7. Otherwise, go to step 3.

7. Replace the current population with the temporary population.

8. If termination criterion is satisfied, then quit with the best chromosome as the solution for the 

problem. Otherwise, go to step 2.

In the above steps, there are several elements that need to be explained. The first element
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chromosomes can be generated randomly or by using some heuristics that are suitable for the 

problem considered. The determination of the population size is a crucial element in the GAs. 

Selecting a very small population size increases the risk of prematurely converging to a local 

optimal. Large population sizes increase the probability of converging to a global optimal, but it 

will take more time to converge. In most of the GA applications, the population size was 

maintained at a constant.

The second element of the GAs is the fitness function, which is very important to the GAs 

process of evolution. The GA without a fitness function is blind because, as mentioned earlier, the 

GA directs its search using historical data which are the fitness values of each chromosome. The 

GA will use the fitness value of each chromosome to determine if the chromosome can survive and 

produce offspring, or die.

The selection of chromosomes to reproduce is the third element of the GA. This is a very 

important element in the GA because it plays an important role in the convergence of the GA. If 

the selection process is always biased to only accept the best chromosome, the algorithm will 

quickly have a population of almost the same chromosomes which will cause the GA to converge 

to a local optimum. Several selection methods have been employed by several researchers to select 

among the best performers. Some of these methods are: the proportional selection scheme; the 

roulette wheel selection; deterministic selection; ranking selection; tournament selection, etc.

In step four, two genetic operators were used. The first operator is crossover, which 

combines the features of two fittest chromosomes and carries these features to the next generation 

by forming two offspring. The SGA performs the crossover by selecting two chromosomes and a 

random crossover position (single-position crossover method), then the corresponding parental 

segments are swapped to form two new children. Several crossover methods have been developed 

and applied to binary representation. One of them is the two-position crossover method, which is
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performed by selecting two crossover positions in two chromosomes and then swapping segments 

between the two chromosomes. The multi-position crossover method is a natural extension of the 

two-position crossover. A version of the multi-position crossover method is the segmented 

crossover method, which varies the number of segments during the implementation of the GAs 

while the multi-position crossover uses a fixed number of segments. Shuffle crossover was 

proposed as a crossover method which first shuffles the crossover positions in the two selected 

chromosomes. Then it exchanges the segments between the crossover positions and finally un

shuffles the chromosomes. The final crossover method proposed is the uniform crossover, a 

generalization of the one-position and multi-position crossover methods. The uniform crossover 

method produces two new children by exchanging genes in two chromosomes according to a 

crossover probability and a random value given to the same gene in both chromosomes. The 

random value assigned to each gene is uniformly distributed between 0 and I and denoted by Xi, 

i = l,...,n where n is the number of genes. The uniform crossover is performed as follows: Let P, 

and P: be two parents in which each has n genes so that Pi = {Pu, P12, P13, -, Pin} and P% = {P21, 

P22, P23,—, P2n}- These two parents will produce two children which are denoted by C| and C2. 

Hence, if the crossover probability is Pc, then the uniform crossover is performed as follows:

If Xi < Pc then Cii= Puand Ca = Pa and If Xi > Pc then Cu = Pa and Ca = Pn 

To demonstrate how the uniform crossover method works, assume that there are two chromosomes 

and each gene is assigned a random value as shown below:

PI: 0110000111, and P2: 0001011 111 

Assume Xi:= 0.79, 0.83, 0.44, 0.88, 0.11, 0.89, 0.59,0.7, 0.45, and 0.14, for i = 1,...,10. 

Assume that the Pc is 0.5. The implementation of the uniform crossover method will result in the 

following children:

Cl: 001101I I 11, and €2:0100000111
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The second operator is mutation, which alters one or more of the chromosome genes 

randomly to ensure search diversification, which hopefully will lead the population out of the local 

optimum. In the SGA approach, the mutation is performed by first selecting a mutation position. 

Then, if the gene value is 0, it is flipped to 1. If the gene value is 1, then it is changed to 0.

Finally, the last element in the GA procedures is the stopping criterion. Several criteria 

have been suggested. One of them is that the GA will stop if the maximum number of generations 

has been reached, or if the population has converged. The convergence of the population has been 

interpreted by researchers through several measures. One of them is that the GA converges after a 

chromosome with a certain high fitness value is located. Another one is that the GA converges 

after all chromosomes have attained a certain degree of homogeneity (that is, all of them have 

almost the same fitness value).

The following example will demonstrate the above producers of the GA. Assume that 

there is an initial randomly generated population of four binary chromosomes which each contain 

ten genes:

Chromosome 1: 0000000111 Chromosome 2: 0001011111

Chromosome 3:0110101011 Chromosome 4: 1111111011

The fitness function is assumed to be the sum of ones in a chromosome. Therefore, chromosomes 

1, 2, 3, and 4 have fitness values of 3, 6, 6, and 9 respectively. If the minimum value is sought, 

then the best performer is chromosome 1. Assume chromosomes 1 and 2 are arbitrarily selected. 

To perform crossover, assume that the two-position crossover method is used. The two positions 

are denoted by “|” below.

Parent 1: 000|0000|11I Parent2: 011|1001|110

When the two segments of the genes between the two crossover positions in each parent are 

exchanged, these two parents will produce the following children:
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Child 1:0001001111 Child 2: 0110000110

To perform mutation, selection a mutation position (denoted by “1”) in child 2, and the result of the 

mutation method is given below:

Child 2: 01|1|0000110 results of mutation Child 2: 0100000110

The fitness values for the newly generated chromosomes are 5 and 3 for children 1 and 2 

respectively. These two children will replace the two parents that produced them, and the final 

population will be as follows:

Child 1: 0001001111 Child 2: 0100000110

Chromosome 3:0110101011 Chromosome 4: 1111111011

At this point, the GA procedure is terminated with child 2 as the best solution obtained for the 

problem under consideration with an objective function value of 3.

Genetic Algorithms and Sequencing and Scheduling Problems

As mentioned earlier, a binary representation of a population was not suitable for all 

applications. One of the applications that the binary representation was not suitable for, but can be 

applied to, is the combinatorial optimization problems. Some of these combinatorial optimization 

problems are the traveling salesman problem (TSP), the bin packing problem, the job scheduling 

problem (JSP), the plant layout, etc. Several representations of population have evolved from the 

applications of the genetic algorithms (GAs) to the TSP. Because of the similarities between TSP

and JSP, these representations have been used in JSP. In the following paragraphs, population

representations and the associated genetic operators that have been applied to JSP will be 

discussed. The only representation that will be discussed in detail is the order-based representation 

because it is used in this study.

Ordinal representation was developed by Grefenstette et al. (1985). It was developed to 

represent a population in a GA approach that solved a TSP. In the ordinal representation method.
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all classical crossover methods that were explained earlier can be applied to the ordinal 

representation method. However, the classical mutation method cannot be applied because there is 

no gene that can be flipped to either 0 or 1. Therefore, several mutation methods have been 

developed to handle such population representations and other representations. One of these 

mutation methods is the simple inversion, which is performed by first selecting two mutation 

positions in a chromosome. The segment between these two positions is reversed. The second 

mutation method, called insertion, is where a gene is selected and inserted in a random place. 

Displacement is the third method, which is performed by selecting a string of genes which is 

inserted in a random position. Order-based mutation (DBM) is the fourth method, which selects 

two genes randomly and swaps them. A version of the order-based mutation is position-based 

mutation (PGM), which selects two genes randomly and then inserts the second gene before the 

first. Scramble sub-sequence mutation (SSM) is another mutation method, that selects a sub

sequence in a chromosome, and scrambles the genes in the sub-sequence to produce a new 

chromosome.

The second representation method is an order-based representation (also called 

permutation ordering representation, path representation, natural representation, or direct 

representation) where a chromosome is represented by a sequence of jobs. This method has been 

applied extensively by several researchers. These studies were attempted by Liepins et al. (1987), 

Cleveland and Smith (1989), Bagchi et al. (1991), Falkenauer and BoufFouix (1991), Syswerda 

(1991), Stopller and Bierwirth (1992), Fang, Ross, and Come (1993), Gupta, Gupta, and Kumar

(1993), Neppalli (1993), Vempati, Chen, and Bullington (1993), Gen, Tsumjimura, and Kubota

(1994), Sridhar and Rajendran (1994), Bierwirth (1995), Bierwirth, Kopfer, Mattfel, and Rixen

(1995), Chen, Vempati, and Aljaber (1995), Croce, Tadei, and Volta (1995), Kobayashi, Ono, and 

Yamamura (1995), Lee and Choi (1995), Reeves (1995), Rubin and Ragatz (1995), and Mattfeld

(1996).
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In the order-based representation method, a chromosome is formed as a sequence of jobs, 

such as: 4-6-9-7-5-3-1-2-8. This chromosome is interpreted as follows: job 4 is sequenced first, 

job 6 is sequenced second, and likewise until job 2 is sequenced second to last, and then job 8 is 

sequenced last. Clearly this representation is simple and has a meaningful interpretation. All 

mutation methods that are applied to the ordinal representation method can be applied to the order 

based representation method. However, infeasible chromosomes will be generated when the 

classical crossover methods that was explained in the previous section are performed. The 

infeasible chromosomes produced by the classical crossover can be demonstrated by the following 

example. Assume that in the initial population there are two parents which are:

Parent 1: 4-6-9-7-5-3-1-2-8 and Parent 2: 8-2-4-6-9-1-3-5-7

A single-position crossover method is performed on the two parents, where the single-position 

crossover is denoted by T as shown below.

Parent 1: 4-6-9-7-5-3-| 1-2-8 and Parent 2: 8-2-4-6-9-l-|3-5-7 

The result of the crossover is shown below:

Child 1: 4-6-9-7-5-3-3-5-7 and Child 2: 8-2-4-6-9-1-1-2-8

It is obvious that both of the children represent infeasible sequences because both of them have 

only six jobs out of the nine jobs, and each has three duplicated jobs. Therefore, to solve this 

infeasibility problem, several crossover methods that produce feasible chromosomes were proposed 

by several researchers:

1. Order Crossover (OX) by Davis (1985).

2. Partially Mapped Crossover (PMX) by Goldberg and Lingle (1985).

3. Sub-sequence-Swap crossover (SSX) and Sub-sequence-Chunk Crossover (SCX) by 

Grefenstette et al. (1985).

4. Cycle Crossover (CX) by Oliver, Smith, and Holland (1987).
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5. Edge Recombination Crossover (ERX) by Whitley, Starkweather, and Fuguay (1989).

6. Linear order Crossover (LOX) by Falkenauer and BoufFouix (1991).

7. Order-based Crossover (OBX) and Position-based Crossover (PBX) by Syswerda (1991).

8. Enhanced edge recombination crossover (EERX) by Starkweather etal. ( 1991).

Only four crossover methods (PMX, LOX, OBX, and PBX) will be explained in this study 

for two reasons. First, the PMX has been extensively used in the GA implementations and hence is 

discussed in following paragraphs. Second, the other three crossover methods (LOX, OBX, and 

PBX) will be discussed later in Chapter HI because they are implemented in this study. For 

detailed explanations of the other crossover methods, the reader can refer to references associated 

with each method or refer to Michalewicz (1994) and Gen and Cheng (1997).

The PMX was developed by Goldberg and Lingle (1985) to handle the infeasibility 

problem in a GA approach that was applied to TSP. However, it has been applied by several 

researchers to solve JSP (Liepins et al. (1987), Cleveland and Smith (1989), Bagchi et al. (1991), 

Gupta, Gupta, and Kumar (1993), Vempati, Chen, and Bullington (1993), Sridhar and Rajendran

(1994), and Chen, Vempati, and Aljaber (1995)).

Given two parents, the PMX first randomly selects two positions which are the same in 

both parents. Then segments between these two positions are exchanged. The exchanging of the 

segments will define a series of mappings between genes. The defined mappings will be used to 

replace genes that are causing infeasibility in the new chromosomes. The following example will 

show how the PMX works assuming that the following parents are given:

Parent 1: 4-6-9-7-5-3-1-2-8 and Parent 2: 8-2-4-6-9-1-3-5-7

The two cutting positions on the two parents are selected where the two positions are denoted by T 

as shown below:

Parent 1: 4-6-|9-7-5-3|-l-2-8 and Parent 2: 8-2-|4-6-9-l[-3-5-7
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The result of the segment swapping is shown below:

Child I: x-x-|4-6-9-I|-x-x-x and Child 2: x-x-|9-7-5-3|-x-x-x 

From the segments swapped, the defined mappings are as follows: 4 o 9 , 6 o 7 , 9cs>5, and les>3. 

Therefore, the defined mappings will be used to correct infeasibility. In parent 1, job 4 is mapped 

as follows: 4<=>9<s>5 (job 4 is replaced with job 5). Job 6 is replaced with job 7. Job 1 is replaced 

with job 3. Both jobs 2 and 8 are not causing infeasibility, hence, they are not involved. In parent 

2, job 3 is replaced with job 1. Job 5 is replaced with job 4, because of the mapping, 5o9<»4. 

Job 7 is replaced with 6. The result of the PMX is two feasible children given below:

Child I: 5-7-|4-6-9-I|-3-2-8 and Child 2: 8-2-|9-7-5-3|-l-4-6

The order-based representation can be easily interpreted and applied to single machine and 

flow shop problems because both the single machine and the flow shop problems are permutation 

scheduling problems. However, a job shop problem is not a permutation scheduling problem and 

hence the order-based representation is not easily interpreted and applied to job shop problems. As 

a result of this difficulty, several variations of the order-based representation have been developed 

to handle the interpretation problem &ced in the job shop implementations. These variations will 

be discussed in the next section.

A binary representation of the population was applied by Nakano and Yamada (1991). 

Both the classical crossover and mutation methods were applied. A random key representation 

method was developed by Bean (1994), and implemented by Norman and Bean (1994). In the 

random key representation method, all the classical crossover and mutation operators can be 

applied.

As mentioned earlier, the population representations can be represented by various 

representations such as integer values. The integer value representation of population was 

suggested by Domdorf and Pesch (1995). They proposed two GA applications to use this type of
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representation. In the first, the chromosomes were formed of genes which represented an integer 

value which corresponded to a dispatching rule number from a given list of dispatching rules. The 

integer values in the second application depict a machine number. This means a chromosome was 

formed of genes each of which represented a machine number from a list of machines that were in 

the shop. In this representation, all classical crossovers will always produce feasible 

chromosomes. Also, all mutation methods that are applied to the ordinal representation method 

can be applied to this representation.

Applications of genetic algorithms to Sequencing and Scheduling Problems

In this section, a listing of most of the genetic algorithm (GA) studies that have been 

applied to all sequencing and scheduling problems will be given. However, since the focus of this 

research study is the job shop problem, the GAs that have been applied recently to job shop 

problems will be discussed in more depth.

The GAs were applied to single machine problems by Liepins et al. (1987), Gupta, Gupta, 

and Kumar (1993), Lee and Choi (1995), Lee and Kim (1995), and Rubin and Ragatz (1995). 

Liepins et al. (1987) applied a GA approach to minimize lateness. In their study, they compared 

the performance of three crossover methods (PMX, greedy weak crossover heuristics, and greedy 

powerful crossover heuristic). They concluded that PMX dominated both crossover methods. 

Gupta, Gupta, and Kumar (1993) tried to minimize flow time variance using a GA approach. In 

their study, they tested the effect of the GA parameters, which were population size, number of 

generations, problems size, crossover rate, and mutation rate. They found that most of these 

parameters have significant effects on the GA approach-especially the population size and the 

number of generations. Only the crossover rate had an insignificant effect. Lee and Choi (1995) 

applied a GA approach to solve a single machine problem where the total earliness and tardiness 

penalties was minimized. Lee and Kim (1995) developed a parallel GA to solve a single machine.
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using a common due date where the weighted sum of the total earliness and total tardiness was 

minimized. A GA approach to handle sequence dependent set-up time has been applied by Rubin 

and Ragatz (1995) where the total tardiness was minimized.

Cleveland and Smith (1989) used a GA approach to solve a flow shop problem where the 

total flow time was minimized. Neppalli (1993) tested the effect of the genetic parameters on the 

GA approach, using both total flow time and the makespan as performance measures. Neppalli 

concluded that the application of GAs are problem dependent, and the non-random initial 

population has a significant effect on the GA convergence. A GA approach was used to minimize 

the Cnujc in flow shop problems by Stopller and Bierwirth (1992), Vempati, Chen, and Bullington 

(1993), Sridhar and Rajendran (1994), Chen, Vempati, and Aljaber (1995), and Reeves (1995). 

Stopller and Bierwirth (1992) developed a parallel GA to the solve the flow shop problem. Reeves

(1995) compared GA and simulated annealing, and found that when the problem is small, the two 

are comparable, but as the problem gets bigger, the GA performs better.

Davis (1985) was the first to apply GAs to job shop problems. However, he was not the 

only one. Several researchers have been attempting to solve the job shop problem using GAs. 

These attempts were made by Bagchi et al. (1991), Falkenauer and BoufFouix (1991), Nakano and 

Yamada (1991), Fang, Ross, and Come (1993), Gen, Tsumjimura, and Kubota (1994), Norman 

and Bean (1994), Bierwirth (1995), Bierwirth, Kopfer, Mattfel, and Rixen (1995), Kobayashi, 

Ono, and Yamamura (1995), Croce, Tadei, and Volta (1995), Domdorf and Pesch (1995), and 

Mattfeld (1996).

Davis (1985) presented a conceptual and instructional study to show how the GA can be 

applied to job shop. Davis attempted to solve a job shop problem, using an indirect representation 

of the population which allows the use of Holland’s crossover operator. Davis represented a 

chromosome as a preference list of operations where the chromosome is time dependent and 

machine controlling. Each machine has a list of these chromosomes, which are activated
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sequentially as time passes. Davis’s representation of each chromosome has four elements. The

first element is the activation time of the chromosome. The second element is a preference list of

operations, and the third and fourth elements are keys to control the machine, which are ‘wait’ and

idle’. However, for reasons that have been reported by several researchers, Davis’s work can be

summarized by the following statements;

...The performance of the Davis-style approach in initial runs on Problem 1 was not 
particularly notable. Some improvement was observed over time, but the final solution 
obtained was not as good as that obtained by the standard-GA. (Cleveland and Smith 1989, 
167)

...Davis (1985) uses an intermediate representation which is guaranteed to produce legal 
schedule when operated upon by genetic recombination operators. However, the example used 
is not very complicated, and there are no significant results. (Bagchi etal. 1991, 11)

...Davis (1985) discusses a more indirect encoding that permits the use of the traditional 
crossover operator. For this encoding, a chromosome consists of a sequence of job preferences 
combined with times at which these job preferences become active. However, this encoding 
suffers from inflexibility due to the need to determine an appropriate time scale and 
appropriate machine idle and waiting time periods. (Norman and Bean 1994, 6)

...Davis (1985) presented an application of genetic search to a simple job shop scheduling 
problem. The focus of the paper was on developing a workable representation of the problem. 
Only a single example problem was presented, with very limited computational experience. 
(Rubin and Ragatz 1995, 87)

Bagchi et al. (1991) developed and implemented a GA approach to solve a job shop 

problem. They designed a hypothetical job shop that had three machines and could process three 

products. The eleven orders produced by the job shop were orders for one of three products with a 

specific batch size. Each of the three products had several alternative process plans, including 

three process plans for product one, and two process plans for products two and three. All the 

process plans had three operations except one. All operations could be processed by two 

alternative machines except two of them were processed by only one alternative machine.

In their study, Bagchi et al. used three representations of the population which are variants 

of the order-based representation. The first representation is a simple order-based representation, 

but the second and third representations are known as problem-specific-based representation. In 

the first representation, each gene in a chromosome represented the order priority. A chromosome
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in the second representation was formed by genes that had two elements. The first element of a

gene was the order priority, and the second was the process plan assigned to the order. The third

representation was the same as the second representation; however, the third representation was

more specific than the second representation. In the second element of the gene, the third

representation not only assigns a process plan to an order, but also specifies the machines to

perform the operations in the process plan assigned. Bagchi et al. compared the three

representations using machine utilization as the performance measure and found that the third

representation was superior. The major conclusion of their study was:

...To enhance the performance of the algorithm and to expand the search space, a chromosome 
representation which stores problem-specific information is devised. (Bagchi et al. 1991, 10)

Falkenauer and BouffouLx (1991) solved a job shop problem using a GA approach where 

jobs had different release times. Falkenauer and BoufFouix used an order-based representation 

version which is known as preference-list-based representation. In this representation a 

chromosome is formed by several sub-chromosomes. These sub-chromosomes contain genes 

which represent the preference list for a specific machine. Each gene in the sub-chromosome 

represents an operation to be performed on that machine. For example, if there are three machines 

in the job shop, then there will be three sub-chromosomes in a chromosome. Also, if each machine 

performs five operations, there will be five genes in each sub-chromosome. In their 

implementation, each chromosome was evaluated, using a simulation model for the problem under 

consideration. The LOX and PMX were used as the crossover operators and inversion was the 

mutation operator. Each of these crossover methods was implemented on two chromosomes by 

crossing the first sub-chromosome of one parent with the first sub-chromosome of the other parent, 

the second with the second, and likewise until the last with the last.

Falkenauer and Bouffouix performed their experiment using three job shop models which 

they called small, big, and giant. The small model had 24 operations, the big had 60 operations.
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and the giant had 250 operations. In their GA approach they maximized the difference of the 

summation of weighted earliness and the summation of squared tardiness where the earliness was 

given a weight between 0 and I. Falkenauer and Bouffouix used a pilot study to determine the GA 

parameters. From the pilot study, they fixed the following parameters: crossover rate was 0.6; 

mutation rate was 0.033; the population size was 30, and the number of generations was 100. To 

evaluate the performance of the GA, they used the following dispatching rules: SPT and JST. 

Falkenauer and Bouffouix performed ten replicates for each model mentioned above. From their 

results, they concluded the following: the GA is superior when compared to the dispatching rules, 

and LOX performed better than PMX.

Nakano and Yamada (1991), as mentioned in the previous section, developed a GA 

approach to solve job shop problems using binary representation of the population. The classical 

crossover and mutation operators were applied as they were by Holland. They evaluated their 

chromosomes using semi-active schedules. In their experiment they solved three well-known 

problems designed by Fisher and Thompson (1963). From their results, it was clear that their GA 

approach obtained results comparable to the results obtained by other approaches.

Fang, Ross, and Come (1993) and Gen, Tsumjimura, and Kubota (1994) implemented GA 

approaches that utilized a variant of an order-based representation known as operation-based 

representation. In this representation a chromosome is formed by genes which represent an integer 

value which corresponds to a job number. In each chromosome, a job's number will be repeated 

according to its number of operations. Therefore, a chromosome becomes a sequence of operations 

for all jobs. For example, if there are three machines and three jobs in the job shop and all jobs go 

through all machines, then there will be 9 genes in a chromosome as follows: 3-1-1-3-2-3-2-1-2, 

where the first 3 stands for operation 1 of job 3, the first 1 stands for operation 1 of job 1, the 

second 1 stands for operation 2 of job 1, and likewise until the third 2 stands for operation 3 of job

2. In the chromosome given, each job was repeated three times because each of them had three
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operations. The given chromosome can be interpreted when the process plan of each job is given. 

Hence, assume that the process plans for jobs 1, 2, and 3 are as follows: 1-2-3, 1-3-2, and 2-1-3 

respectively (where numbers in the process plans indict the machine number). Then, the 

chromosome above can be interpreted as follows: job 3 is processed first at machine 2, job 1 is 

processed first at machines I and 2, job 3 is processed second at machine 1, job 2 is processed 

third at machine 1, job 3 is processed first at machine 3, job 2 is processed second at machine 3, 

job 1 is processed third at machine 3, and job 2 is processed third at machine 2.

Gen, Tsumjimura, and Kubota (1994) implemented their GA approach to solve a job shop 

problem where the makespan was minimized. In their implementation, each chromosome was 

evaluated using deterministic Gantt charting. Specifically, for each chromosome, they constructed 

a semi-active schedule. Gen, Tsumjimura, and Kubota developed their own crossover operator 

which they named partial schedule exchange crossover (for detailed explanations for the developed 

crossover operator, the reader can refer to Gen and Cheng 1997). They developed their own 

crossover method because all the other crossover methods that can be applied to the order-based 

representation cannot be applied to operation-based representation. The OBM was used as the 

mutation operator and the elitist method was used as the production method. Dynamic population 

size was utilized where at the end of each generation the population size was increased by a percent 

of the summation of mutation and crossover rates. Then, the population size was reduced to the 

original size, where only the best individuals were selected from the inflated population size. Gen, 

Tsumjimura, and Kubota solved three well-known benchmarks from Fisher and Thompson (1963). 

In their experiment, they used the following parameters: crossover rate was 0.4; mutation rate was

0.3; the population size was 60, and the number of generations was 5000. They compared their 

results to branch and bound approaches and other GAs. From their results, it is clear that they 

performed better than the other GAs but not better than branch and bound approaches.
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Norman and Bean (1994) performed a study in which they developed and implemented a 

GA approach to solve a job shop problem using a random key representation method. The\ 

designed the GA approach to solve a job shop with m machines and n jobs where these jobs arrive 

at the job shop separately. Also, setup times were sequence dependent, and machine down time 

and scarce tools were incorporated. The GA approach was applied to the described job shop 

model to minimize the total tardiness. In the GA implementation, the elitist method, which enforces 

preserving the best chromosomes, was used in the reproduction process. A variant of the binary 

tournament was used to select two chromosomes to reproduce. Uniform crossover and 

immigration mutation were the two genetic operators used. In every generation, the immigration 

mutation method inserted a new random chromosome. By using the immigration mutation, the 

study tried to eliminate the effect of the elitist reproduction, which causes premature convergence. 

In this study, the GA approach terminates if the best solution found has not changed for 15 

generations.

Norman and Bean incorporated problem specific data to enhance the performance of the

GA approach by using ready times and due dates to prioritize jobs. They stated:

The scheduling application incorporates problems specific into the random keys encoding to 
improve the rate of convergence. Recall that for the general random keys encoding the random 
keys for all the genes are uniform (0,1) variâtes. The scheduling application contains problem 
specific data vdiich can be used to bias the random key values of the jobs. If the problem 
objective is to minimize total tardiness then it is likely that jobs that have early ready and due 
times will be found early in the optimal sequence. Likewise, jobs with late ready and due times 
will probably be found late in the optimal sequence. (Norman and Bean 1994, 13)

The enhancement incorporated in their model was performed when the chromosomes were 

generated. That is, if job 5 has to be before job 2 in the optimal sequence, the uniform random 

number assigned to job 2 will be biased to be large (for example, the random number for job 2 will 

be uniformly distributed between 0.8 and 1 instead of being uniformly distributed between 0 and 

1). By doing so, job 2 will usually be located in later positions in the sequence. On the other hand, 

job 5 will be assigned a smaller random number which will often locate it in earlier positions. The
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example given by Norman and Bean was not a good example to demonstrate the data specific 

enhancement. In addition, they did not give any explanations of how to handle difficult situations. 

This enhancement does not incorporate job processing times, which does not make it robust 

enough. The reason for not being robust enough is that their objective function, total tardiness, is a 

function of ready times, due dates, and processing times. Also, this enhancement is performed only 

on the initial population and not during the evolution process. This implies that this enhancement 

is predictive and not reactive.

Norman and Bean performed an elementary testing by solving three types of data sets. 

The first consisted of a single machine and 16 jobs. The second set had seven problems which 

each contained two machines and 350 jobs. Five problems were in the third data set, with each 

problem having ten machines and 250 jobs. For the first data set, ten replications were performed 

and the GA approach was able to obtain the optimal solution provided by Kanet and Sridharan 

(1991). They concluded that the results of all the data sets were encouraging, and claimed that the 

GA approach was good in solving the job shop problem.

Bierwirth (1995) developed a GA approach (GP-GA) to solve a job shop problem using an 

operation-based representation where the makespan was minimized. In the GP-GA, each 

chromosome was evaluated according to an active schedule. As mentioned earlier, all the 

crossover methods that can be applied to an order-based representation cannot be applied to 

operation-based representation. Therefore, Bierwirth developed a crossover method which is a 

generalization o f OX (GOX). In the conducted experiment, the following parameters were used; 

the population size was 100, and two levels of the number of generations were 100 and 150. 

Ranking selection method was used to select chromosomes to reproduce. Bierwirth solved twelve 

standard problems which were designed by Fisher and Thompson (1963) and Lawrence (1984). 

Bierwirth performed a total of 100 replicates for the two problems that were designed by Fisher 

and Thompson and 25 replicates for the other ten problems that were designed Lawrence (1984).
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From the results obtained, Bierwirth reported that the average solutions for all problems were 

within a percentage of deviation of errors that ranged between 0.7% and 7%. Also, Bierwirth 

concluded that the GP-GA was a promising approach. Bierwirth, Kopfer, Mattfel, and Rixen 

(1995) performed a preliminary study in which they extended the GP-GA to solve dynamic job 

shop problem where jobs had different release times.

Croce, Tadei, and Volta (1995) developed a GA approach to solve a job shop problem 

using a preference-list-based representation that was developed by Falkenauer and Bouffouix 

(1991). In their implementation, each chromosome was evaluated using a simulation model for the 

problem considered. Croce, Tadei, and Volta claimed that schedules produced by the simulation 

model were only non-delay schedules. Hence, they constructed schedules with look-ahead function 

to introduce delay. The look-ahead function used by Croce, Tadei, and Volta violated the 

definition of non-delay schedule to a certain extent so that some of the delay schedules could be 

incorporated in the final solution. The look-ahead function was accomplished as follows: when a 

machine finishes processing and becomes available to process the operations waiting for it, an 

operation with the highest priority will be scheduled to be processed. However, before scheduling 

this operation, the look-ahead function will first determine the processing time and the completion 

time of the candidate operation. Then, the look-ahead function will check to see if there is an 

operation which will arrive before the candidate operation finishes and has higher priority than the 

candidate operation. If there is an operation that satisfies both conditions, then the machine will 

stay idle until the new operation arrives. Otherwise, the candidate will be scheduled.

The LOX was the crossover method used by Croce, Tadei, and Volta. The OBM was 

applied by swapping genes within a sub-chromosome. The steady-state reproduction was the 

reproduction method used, where at each generation a number o f new chromosomes were inserted. 

Croce, Tadei, and Volta performed a pilot study to determine the GA parameters. From the pilot 

study, they fixed the following parameters: crossover rate was 1; mutation rate was 0.03; the



52

population size was 300, and ten new chromosomes were inserted at each generation for the 

reproduction method. Croce, Tadei, and Volta applied the GA approach developed to minimize the 

makespan using eleven standard problems by performing five runs for each of them. Three of 

these problems were designed by Fisher and Thompson (1963), and the other eight were designed 

by Lawrence (1984). The optimal solutions for these problems were provided by Fisher and 

Thompson (1963), and Lawrence (1984). Croce, Tadei, and Volta obtained the results for the 

eleven problems and compared the best obtained result for each problem with the best obtained 

results of three other studies which had solved the same eleven problems. One of these studies 

which solved the eleven problems by the simulated annealing (SA) algorithm was performed by 

Laarhoven, Aarts, and Lenstra (1992). The second study was performed by Dell’Amico and 

Trubian (1993) who solved the eleven problems using the tabu search (TS) approach. The Shifting 

Bottleneck (SB) algorithm (Adams, Balas, and Zawack 1988) was the third heuristic that also was 

used to solve the eleven problems.

From the results o f this study and the other three studies, it is clear that the tabu search 

approach was superior. Out of the eleven problems, the TS converges to the optimal solution in 

ten problems. The SA approach found the optimal solution to 8 problems. The SB and GA found 

the optimal solutions to 7 and 6 problems respectively.

As mentioned earlier, Domdorf and Pesch (1995) proposed a GA approach that used an 

integer value representation of population which was used to solve a job shop problem where the 

makespan was minimized. Recall fi'om the previous section that they proposed two GAs, which 

they named P-GA and SB-GA. In the P-GA, each chromosome consisted of n-1 genes where n-1 is 

the number of operations in the problem under consideration. Each gene was represented by an 

integer value which corresponded to a dispatching rule number from a list of twelve dispatching 

rules (SPT, LPT, LRPT, SRPT, RANDOM, FCFS, TWORK, TLPT, MWR, LWR, longest 

operation successor, and longest operation reaming processing time). This implies that each gene
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can have an integer value between 1 and 12. In the P-GA, the schedules were constructed using an 

active schedule algorithm which was developed by Giffler and Thompson (1960). At each iteration 

of Giffler and Thompson’s algorithm a conflict set of operations is formed which can have one or 

more operations. From the conflicting set of operations, an operation is selected randomly or by 

using a single dispatching rule. Hence, this selection problem motivated Domdorf and Pesch to 

developed their P-GA approach, which was used to solve the conflict in selecting an operation. 

The selection of an operation was performed by referring to the gene that was associated with this 

operation, and this gene would prioritize this operation according to the relevant dispatching rule.

In the second application, the developed GA approach (SB-GA) was part of the shifting 

bottleneck (SB) algorithm. Recall that the SB algorithm sequences machines sequentially, one at a 

time until all machines are sequenced. It should be clear that the sequence of machine selection 

affect the quality of solutions obtained. Again, the selection problem motivated Domdorf and 

Pesch to develop the SB-GA approach which controlled the machine selection at the first step of 

the SB algorithm. Each chromosome in the SB-GA approach consisted of m genes where m is the 

number of machines in the job shop. Each gene represented a machine number which could have 

any value between I and m.

Domdorf and Pesch used three well-known benchmarks by Fisher and Thompson (1963) 

to tune their parameters. They used the elitist method in both GA approaches. For the P-GA, they 

used the following parameters: crossover rate was 0.65; mutation rate was 0.001; inversion rate 

was 0.7, and the population size was 200. In the SB-GA, mutation and inversion were not 

implemented, the crossover rate was 0.75, and the population size was 40. Domdorf and Pesch 

randomly generated and solved 105 problems by the P-GA and the SB-GA, and then compared the 

results obtained to the results of four other heuristics. These were: a random selection; dispatching 

rules, and two versions of the SB algorithm. Also, they solved 40 problems that were designed by 

Lawrence (1984). Then they concluded that with respect to the makespan, the SB-GA performed
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better than the SB and the other heuristics. However, in terms of CPU time, the SB performed 

better than all heuristics. On the other hand, the SB algorithm dominated the P-GA approach in 

both time and objective function. The improvement gained by using the SB-GA over the SB 

algorithm was on the average very small. Also, the CPU time needed by SB-GA was increased by 

a huge percentage in both small and large problems.

Kobayashi, Ono, and Yamamura (1995) implemented a GA approach to solve a job shop 

problem where chromosomes were represented using the preference-list-based representation. In 

their implementation, each chromosome was evaluated using an active schedule. The OX and sub

sequence exchange crossover (SXX) were used as the crossover methods and mutation was not 

applied. Kobayashi, Ono, and Yamamura tuned their GA with two well-known benchmarks which 

were designed by Fisher and Thompson (1963). From the pilot study, they fixed the following 

parameters; crossover rate was 1.0, and the population size was 600. Random selection without 

replacement was used to select chromosomes. In their final experiment, they performed a total of 

100 replicates for Fisher and Thompson’s problems and they concluded that SXX performed better 

than OX, and the GA approach developed was promising.

Mattfeld (1996) developed three GA approaches to solve the job shop problem using 

operation-based representation. In all the GAs developed (GAI, GA2, and GA3), each 

chromosome was evaluated using a semi-active schedule, then the resultant schedule was re

optimized using a hill climbing algorithm. Also, a proportional selection method was used. Using 

GAI, they compared three mutation operators, PBM, OBM, and SBM, and concluded that PBM 

was the best. Also, using GAI, they compared two crossover operators, GOX and a developed 

version of PBX (called GPX). The conclusion of the second experiment was that the GOX was 

superior. Also, Mattfeld performed an experiment where the GAI was compared with pure GA. 

The pure GA used neither semi-active schedules nor hill climbing algorithm. Then he concluded 

that GAI achieved better results than the pure GA in fewer generations. The parameters used in
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the GAI implementation were as follows: crossover rate was 0.6; mutation rate was 0.03; the 

population size was 100; the number of generations was 100, and the number of neighbors was 

100. Using the parameters mentioned, Mattfeld solved twelve benchmarks to evaluate the 

performance of the GAI. Two of these problems were designed by Fisher and Thompson (1963), 

three of them were designed by Adams, Balas, and Zawack (1988), and the other seven were 

designed by Lawrence (1984). From the results obtained, Mattfeld reported that the average 

percentage error of deviation ranged between 1.3% and 4.8%. In the GA2, Mattfeld (1996) 

introduced structured population GA. Using the same parameters except for the crossover rate 

was 1, and the number of neighbors was 4, using a population structure of 10x10. In the GA2, 

Mattfeld used an acceptance criterion to either accept or reject the replacement of a parent by its 

oSspring. The same twelve problems were solved by the GA2 and Mattfeld reported that the 

average percentage of errors ranged between 0.4% and 1.1%. The GA3 used the same parameters 

used by GA2, except the crossover and mutation rates were auto-adaptive. When the same twelve 

problems were solved by the GA3, the percentage of errors ranged between 0.3% and 1%.

Constrained Genetic Algorithm Study

In this section, an introduction will be given to the constrained genetic algorithm (CGA) 

which was developed by Al-Harkan and Foote (1994, 1996). The CGA was developed to address 

the single machine total weighted tardiness (TWT) problem which is strongly NP-hard. The 

proposed CGA approach obtained close to optimal solutions with much less deviation from optimal 

and much less computational effort than the conventional or unconstrained GA (UGA), which does 

not exploit the problem structure. This superior performance was achieved by combining 

sequencing and scheduling theory with the genetic algorithms methodology. Our approach can be 

called a hybrid GA, since it incorporates local search features in its procedures. However, we offer 

an additional feature that of constraining the order of certain elements of the chromosomes
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according to precedence relationships established theoretically. Hence, we called our approach a 

constrained GA. This section is organized as follows: in the following passage, the study 

motivation will be presented. Then the UGA and the CGA are introduced, followed by a section 

that will give tests and comparisons of the algorithms. Then concluding remarks which led to this 

dissertation topic will be given.

Motivation

This study was motivated by several scheduling problems that are classified as NP-hard

problems which can be solved by using implicit enumerative methods which are branch and bound

(B&B) and dynamic algorithm (DA). One of these problems is the total weighted tardiness. For

large-sized problems, B&B and DA will take a long time to find the optimal solution; also, the time

required by the B&B is unpredictable. Hence, these implicit enumeration methods are only

efficient when time is not considered a factor. When faced with this reality, a search for a

substitution method that is efficient and gives good results was the next alternative. Several

methods have been found to solve such NP-hard problems: one of them is the GA approach.

Researchers claim that GAs give fairly good and close to optimal solutions 6ster than the implicit

enumeration methods. Wainwright expanded on that where he stated:

The GAs are a robust search technique that will produce “close” to optimal results in a 
“reasonable” amount of time. .. The GAs should be used when a good fitness function is 
available; when it is feasible to evaluate each potential solution; when a near-optimal, but not 
optimal solution is acceptable; and when the state-space is too large for other methods. 
(Wainwright 1993, 12-13)

Also, Koulamas, Antony, and Jaen elaborated on the robustness of these search techniques:

OR researchers are increasingly turning towards new solution techniques such as neural 
networks, genetic algorithms, simulated annealing, and tabu search to solve management 
science problems. These techniques can be used as heuristics for finding near optimal 
solutions to a problem, and serve as alternatives to problem specific heuristics. .. Typically, 
these techniques have been successfully applied to NP-hard problems. (Koulamas, Antony, and 
Jaen 1994, 41)

Knowing that the GA is fast and give fairly good results, the question that raised itself was
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how we could improve the quality of their solutions The answer to this question was the work 

performed in this study.

Unconstrained Genetic Algorithm

Before discussing the details of the CGA, an introduction to the unconstrained genetic 

algorithm (UGA) will be given. The UGA used the general GA procedures mentioned in the 

previous section. The following paragraphs describe the parameters that were used in the UGA. 

The UGA parameters were selected according to pilot runs that were done previously. These 

parameters are: the population size; the number of generations; the generation of the initial 

population; the selection methods; the reproduction methods (crossover and mutation), and 

termination criterion. The population size and the number of generations are determined as a 

function of the problem size (i.e., the number of jobs). The initial population for the UGA was 

randomly generated. Two selection methods were used in this study. The first method was the 

elitist method, which enforces preserving the best chromosomes in the reproduction process. Thus, 

at each generation the elitist method will be used to move a fraction of the population to the next 

generation. The second was a variant of the binary tournament that was suggested by Norman and 

Bean (1994). The variant method is performed by first randomly selecting two chromosomes from 

the population. Then the genetic operators are applied to these two chromosomes. Next, the best 

of the two produced chromosomes will be selected and allowed to enter the pool of the potential 

chromosomes for the next generation. The tournament procedures will be repeated until a new 

generation of chromosomes is produced. The linear order crossover (LOX) and order-based 

mutation (OBM) were used as the genetic operators. The UGA terminated its procedures when the 

maximum number of generations had been reached.
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Constrained Genetic Algorithm

The section will give a discussion of the proposed constrained genetic algorithm (CGA). 

In the UGA, a random population of feasible sequences was generated to be used as an initial 

population. This starting initial population will affect the quality of solutions and the time taken to 

obtain the solution. This claim was the conclusion of a sensitivity study that will be discussed 

later. Hence, this step can be improved by using one of the heuristics that solve for the TWT. 

Three heuristics were used to generate three of the initial sequences. These three heuristics are the 

SPT, the HDD, and the ATC. Thus, when the CGA was implemented, three chromosomes were 

generated according to the SPT, the HDD, and the ATC heuristics. The rest of the population was 

randomly generated to avoid the bias that might be caused by the three heuristics.

As mentioned earlier, the OBM procedures were to select two jobs at random and swap 

them; however, swapping these two jobs could fail to satisfy standard dominance conditions of the 

TWT problem. Hence, dominance rules can be used to avoid dominated swapping of jobs, and so 

better objective values can be obtained. Two theorems can be used as dominance rules for the 

TWT problem. These are:

Rule 1 : For two jobs j and k, if Pj < Pk, dj < dk, and Wj > Wk, then there exists an optimal sequence 

in which job j appears before job k.

n
Rule 2: If there exists a job k that satisfies ^  T,P j, then there exists an optimal sequence in

which job k is assigned the last position in the sequence.

The dominance rules were implemented on the children produced by the LOX operator by 

ordering the set of jobs located in the segment between the crossover positions according to a 

precedence constraint based on the dominance rule. The motivation behind only ordering the jobs 

in the crossover block was to avoid the bias that might be caused if the whole chromosome was 

sorted, which would tend to create a whole set of chromosomes that were similar, tending to
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localize the search. Further, sorting the whole chromosome is time-consuming. These two 

conjectures are the conclusions of a sensitivity test study that will be discussed in the following 

section. The UGA approach was modified to adopt all mentioned improvements, which resulted in 

the CGA approach. For detailed explanations for both the UGA and the CGA, the reader can refer 

to Al-Harkan and Foote (1994, 1996).

Algorithm Tests and Comparisons

The UGA and the CGA are stochastic in nature, which makes the theoretical analysis quite 

difficult, especially with the analysis of convergence. Therefore, the algorithm’s behavior can only 

be determined computationally through a series of experiments which will be presented in this 

section.

In ordered to evaluate the performance of the UGA and the CGA, a DP approach was 

adopted to obtain the optimal solution for the problems that were solved in this research study. 

The adopted DP was proposed by Baker (1974). The three approaches were coded in FORTRAN 

90 for a Gateway 2000 (Pentium-90) computer using the Microsoft FORTRAN PowerStation™, 

professional edition, version 4.0'. Microsoft Windows™ 95  ̂ was chosen to be the operating 

system. Several experiments were performed to compare the quality of solutions obtained by both 

the CGA and the UGA with the results obtained by a DP approach (which gives the optimal 

solution). Experiments conducted have four problem sizes, four problem types, four parameter 

cases, and three versions for the CGA and the UGA.

The quality of solutions obtained was measured by a percentage of deviation from optimal. 

The percentage of deviation is defined in terms of the performance measure used in this research, 

the TWT. The percentage of deviation measure was calculated for each of the two algorithms as

' Microsoft FORTRAN PowerStation is a trademark of Microsoft Corporation. 
■ Microsoft Windows 95 is a trademark of Microsoft Corporation.
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follows:

a , =IOO(TWT.-TWTop./TWTop.)

where:

a, The percentage deviation of the solution obtained by algorithm i from the optimal 

solution.

TWT, The total weighted tardiness obtained by algorithm i (i.e., UGA, or CGA).

TWTopt: The total weighted tardiness obtained by the DP.

As mentioned earlier, the population size for both GAs was determined as a function of the 

problem size. Five population sizes were tested in the pilot study, which were 2n, 2.5n, 3n, 3.5n, 

and 4n. The two population sizes which gave good and similar results were 3.5n and 4n. 

Therefore, both population sizes were used in the final testing of the CGA and the UGA 

algorithms. The number of generations had three levels that were tested in the pilot study. These 

levels were: n̂ ; n^ ,̂ and n̂ . Both n̂  and n̂  ̂gave similar results and hence they were selected to 

participate in the final testing of the two GAs. In the elitist selection method, a fraction of the 

population is enforced in the next generation. The fraction value used in this study was 5%.

The two population sizes and two levels of the number of generations were used to support 

the hypothesis that the CGA will perform better than the UGA in terms of quality of solutions and 

computational effort when the population size and the number of generations are smaller. The 

motivation behind this hypothesis is that it is known in the GA community that increasing the 

population size and the number of generations should improve the performance of the GA. 

Therefore, it is desirable to have an algorithm that will achieve close to an optimal solution with 

much less deviation from optimal and with much less time. Also, it is more challenging for our 

proposed CGA approach.

The effect of the genetic operators on the performance of the CGA and the UGA was
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tested by implementing three versions for each of the two algorithms. The first version of the CGA 

and the UGA was implemented using only the mutation operator (named CGA_OBM and 

UGA_OBM). In the second version, only the crossover operator was implemented and the 

algorithms were named CGA_LOX, and UGA_LOX. The crossover and mutation operators were 

both implemented in the third version and the algorithms were named CGA OBM LOX and 

UGA_OBM_LOX.

To carry out these experimental tests, several groups of random problems were generated 

according to the following parameters: n = 18, 20, 22, or 24. Pj was uniformly distributed between 

(I, 10) or (1,5), Wj was uniformly distributed between (1,10), and dj was uniformly distributed 

between (Pj ,Pj + k n) for k = I or 1.5 (k is the due dates Actor). The largest problem size that was 

solved in this study was limited to twenty four jobs because of the computer memory limitations 

imposed by the DP approach. According to Emmons (1975), this method of generating the due 

dates provides relatively difiBcult problems for the algorithm to solve, which is desirable for a 

testing environment.

Thus, there were four cases for n, two cases for Pj, one case for Wj, and two cases for d„ 

for a total of sixteen combinations of parameters. Nine problems were generated for each 

combination. The random number starting seed has an impact on the behavior of the UGA and the 

CGA. Therefore, to ensure the same testing environment, a different random number starting seed 

was used to implement each of the thirty-six instances which were associated with the same 

problem types and different problem sizes. For the 144 problems, the tests were performed as 

follows: 1) the process times for the jobs, the weights, and the due date were generated; 2) the 

computer codes for the CGA_OBM, CGA_LOX, CGA_OBM_LOX, UGA_OBM, UGA_LOX, 

UGA OBM LOX, and DP were implemented; 3) the TWT were computed and recorded; 4) the 

CPU times were recorded, and 5) the percentages of deviations were calculated.
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The results for each combination obtained by the seven approaches were averaged over the 

nine instances relating to the same problem type, problem size, population size, and the number of 

generations. The results obtained are reported in Tables A.l through A. 16 in Appendix A. From 

the sixteen tables, it should be clear that the experiment was designed to have four problem types 

and four parameter cases. The structure of problem type I has low variability in the processing 

times (with variance of 1.3) and tight due dates. On the other hand, problem type II has low 

variability in the processing times but looser due dates. Problem types III and IV were structured 

to have high variability in the processing times (with variance of 6.75) with tighter due dates in the 

former, and looser due dates in the latter. The parameters for cases I and II were selected to have 

small population size with fewer generations in case I than in case II. Cases III and IV have large 

population size and fewer generations in the former, and more generations in the latter.

From the sixteen tables, it can be seen that the CGA outperforms the UGA in all three 

versions with respect to both the average percentage deviations and the average CPU time. From 

the results given in these tables, it is clear that the CGA deviated from the optimal solutions with 

an average of 9.3% or less while the UGA deviated with 12.81% or less. Also, the average 

percentage of deviations over all problem types, problem sizes, and parameter cases that were 

achieved by the CGA_OBM, CGA_LOX, and CGA_OBM_LOX were 2.89%, 0.57%, and 0.04% 

respectively. These averages achieved by the three versions of the UGA were 3.3%, 0.92%, and

0.05%. From these results, it can be implied that the CGA OBM, the CGA LOX, and the 

CGA OBM LOX reduced the percentage deviation by 15.6%, 61.95%, and 25% respectively. 

The maximum deviations from the optimal solutions were smaller for the CGA in two versions, but 

not statistically smaller. The percent of optimal solutions found by the CGA were highly 

significant at an a  smaller than 0.000001. The maximum CPU time needed by the CGA and the 

UGA were 40.83 seconds and 66.96 seconds respectively.
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From Tables A.2, A.3, A 4, and A.5, it can be seen that the maximum average deviations 

from optimal solution achieved by the CGA OBM was 9.3% in case I, 5.89% in case II, 6.97% in 

case III, and 7.81% in case IV. The maximum average deviations for the UGA OBM were 

12.81%, 8.76%, 5.78%, and 8.1% in cases I, H, HI, and IV respectively. In cases I and III, the 

CGA OBM outperformed the UGA OBM in eleven combinations. In nine combinations, the 

CGA OBM performed better than the UGA OBM in cases II and IV. These results support the 

hypothesis that the CGA would perform better than the UGA in terms of quality of solutions and 

computational effort when the population size and the number of generations are smaller. The 

performance of the UGA OBM was consistent with the finding in the GA literature. The 

UGA_OBM performance improved when the number of generations increased, however, no 

significant improvement occurred when the population size was increased. The behavior of the 

CGA_OBM in case III was consistent and stable in all problem types. The CGA OBM behaved 

by reducing the percentage deviation as the problem size increased. In case I, similar behavior was 

achieved by the CGA OBM only for problem type II. The maximum deviations from the optimal 

solutions were smaller for the CGA OBM in nine combinations in case I, in eleven combinations 

in case HI, and in eight combinations in case IV. However, this accomplishment is not statistically 

significant. The percent of optimal solutions found by the CGA OBM and UGA OBM were 

23.61%and 15.97% incase I, 36.11% and 34.72% incase II, 27.08% and 18.06% in case IH, and 

44.44% and 31.94% in case IV respectively (see Table A. 14). This implies that the CGA OBM 

found optimal solutions at statistically significant level.

From Tables A.6 through A.9, it can be seen that the CGA LOX outperformed the 

UGA LOX in fourteen combinations in cases I and II. In cases I and U, the maximum average 

deviation from optimal solutions obtained by the CGA LOX was 2.24%, while it was 2.17% for 

the UGA LOX. The CGA LOX and UGA LOX accomplished their solutions in cases HI and IV 

with maximum average deviations of 0.96% and 2.32% respectively. In cases HI and IV, the
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CGA_LOX outperformed the UGA LOX in eleven combinations. Again, these results support the 

hypothesis that the CGA should perform better than the UGA when the population size and the 

number of generations are smaller. The behavior of the UGA_LOX was not consistent with past 

GA literature. The UGA LOX performed better when the population size was increased, but 

showed no significant improvement when the number of generations was increased. The maximum 

deviations from the optimal solutions were smaller for the CGA LOX in all cases. In cases I and 

U, the CGA LOX was smaller in ten combinations and in cases HI and IV it was smaller in nine 

combinations. The percent of optimal solutions found by the CGA LOX was 42.36% in cases I 

and II, and 46.53% in cases III and IV. For the UGA_LOX, these percentages were 15.27% in 

cases I and II, and 27.08% in cases HI and IV (see Table A. 15). Again, it can be implied from 

these results that the CGA LOX found more optimal solutions at a highly statistically significant 

level (a= 0.000001).

Tables A. 10 through A. 13 present the results obtained by the CGA OBM LOX and the 

UGA OBM LOX for the four parameter cases. From the results given in these tables, the 

CGA_OBM LOX outperformed the UGA OBM LOX in six combinations in cases I and II, in 

seven combinations in case HI, and in five combinations in case IV. These findings do support the 

hypothesis proposed in this study. The performance of the UGA_OBM_LOX was improved as the 

population size and the number of generations were increased. The maximum average deviations 

fi’om the optimal solutions obtained by the CGA OBM LOX in all cases ranged between 0% and

0.33% and the range for the UGA_OBM LOX was between 0% and 0.35%. The maximum 

deviations fi'om the optimal solutions achieved by the CGA OBM LOX were larger in all cases. 

From Table A. 16, it can be seen that the percent of optimal solutions found by the 

CGA OBM LOX was larger than the percent the UGA_OBM_LOX obtained. These percentages 

for the CGA OBM LOX were as follows: 92.36% in case I; 95.83% in case II; 94.44% in case 

III, and 96.53% in case IV. The percentages for the UGA OBM LOX were 87.5%, 88.88%,
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89.58%, and 93.06 in cases I, II, HI, and IV respectively.

From the above analysis of the results, it is clear that CGA OBM LOX performed better 

than both CGA OBM and CGA LOX with respect to the percentage deviation. This shows how 

strong the CGA is when both operators participated in the evolution process. In addition, the 

CGA_OBM_LOX was so robust that it diminished the normal behavior of the UGA. When the 

CGA LOX and the CGA OBM are compared, it is clear that the CGA LOX was better. This 

implies that the crossover operator contributed to improving the performance of the CGA more 

than the mutation operator.

From the results given in Tables A. 1 through A. 13, it is clear that all the three versions of 

the CGA and the UGA needed less time to obtain near optimal solutions than the time needed by 

the DP approach in all problem types and parameter cases. The three versions of the CGA 

demanded less time than the UGAs versions in all problem types and parameter cases. The times 

needed by the CGA_OBM were 59% lower than the UGA OBM demanded. Also, the CGA LOX 

and CGA OBM LOX needed CPU times 40% lower than UGA LOX and UGA OBM LOX 

needed. This implies that the CGA was the fastest approach in obtaining near optimal solutions in 

all problem types, problem sizes, parameters cases, and the three versions.

When the CGA was implemented, the starting population was seeded with three 

chromosomes generated according to three heuristics, which were the SPT, EDO, and ATC. Then 

the rest of the population was randomly generated. It was claimed earlier that this was done to 

enhance the performance of the CGA. To verify this claim, a sensitivity test study which involved 

504 problems was performed to test the performance of the CGA when using the same random 

starting population used in the UGA procedures. The conclusion of the test study was that the 

quality of solutions obtained by the CGA was decreased by an average of 11.47% when the CGA 

used the same starting population. Further, the CPU time increased by an average of 5.4%. This 

implies that the performance o f the CGA was improved when the initial population was seeded
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with the three heuristics.

As mentioned earlier, the dominance rules were implemented on the children produced by 

the LOX operator by sorting the set of jobs that are located in the segment between the crossover 

positions according to a precedence constraint that is based on the dominance rule. Thus, a 

sensitivity test study was done which involved 576 problems to test the performance of the CGA 

when the whole chromosome was sorted when the LOX procedures were performed. The results of 

this study were compared to the results of the UGA mentioned earlier. The conclusion of the test 

study was that sorting the whole chromosome doubled the CPU time based on our stopping rules. 

In addition, a set of chromosomes that were almost identical was formed, which localized the 

search. Also, sorting the whole chromosome improved the chance of performing better than the 

UGA by 8.8%.

Conclusion

From the computational results, it was clear that the CGA was better than the UGA in 

both quality of solutions obtained and the CPU time needed to obtain the close to optimal solutions 

in all the four cases. The three versions of the CGA reduced the percentages of deviations from 

optimal by 15.6%, 61.95%, and 25% respectively. Also, they obtained close to optimal solutions 

with 59% lower CPU time than the three versions of the UGA demanded. When the population 

size is 4n and the number of generations is n^ ,̂ the CGA OBM LOX was the best performer in 

terms of quality and effort in all problem types and sizes.

To sum up, the concept of the constrained search procedure is appealing and the CGA 

should be extended to solve larger job shop problem. This conclusion led to the topic of this 

dissertation, which is to extend the concept of the constrained GA procedure to solve large job shop 

problems.
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Research Gaos

In the previous sections, several unexplored issues were mentioned. These unsolved issues 

not only originated from the literature review but also from the conclusion given in the 

"Constrained Genetic Algorithm Study” section. Some of the unexplored issues which could be 

investigated further in this research can be summarized as follows:

1. The constrained genetic algorithm described in the previous section has not been applied to 

solve job shop problems that have more than one machine.

2. The methods used to evaluate chromosomes are either simulation or deterministic Gantt 

charting. Both methods are extremes in the sense that deterministic is neither dynamic nor 

stochastic. Simulation can evaluate the chromosomes stochastically and dynamically, but it is 

very expensive since it requires large amounts of time. Evaluating the chromosomes using 

deterministic Gantt charting with stochastic process time has not been applied before.

3. In a job shop environment, machines are normally classified as critical and non-critical 

machines. The genetic algorithm treats machines equally and blindly. This implies that the 

genetic algorithm does not manage bottleneck machines. The management of bottlenecks has 

not been incorporated in the genetic algorithm.

4. Lee, Sikora, Shaw (1993) developed a genetic algorithm to optimize both the lot size for each 

product and the schedule makespan. Husband and Mill (1991) developed a genetic algorithm 

to optimize the process plan for each product. Parallel genetic algorithm models were solved 

simultaneously in which each had its own set of product process plans. Optimizing lot sizes 

and process plans simultaneously in a genetic algorithm has never been implemented. Also, 

simultaneous incorporation of lot sizes and process plans into the genetic algorithm 

representation has never been done.

5. Crossover and mutation operators depend on each other and support each other to improve the
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performance of the genetic algorithm. Also, coupling one crossover method with different 

mutation methods would improve the performance of the genetic algorithm differently. The 

same behavior is true when one mutation method is coupled with a different crossover method. 

This conjunction was supported by Syswerda (1991) and Al-Hailcan and Foote (1996). 

Syswerda (1991) tested the performance of a  genetic algorithm using the following methods: 

order-based mutation (OBM); position-based mutation (PBM); order-based crossover (OBX), 

and position-based crossover (PBX). Syswerda tested the performance of each of the 

operators individually and when they were coupled. The OBM performed better than PBM 

when no crossover method was used. Also, PBX performed better than OBX when no 

mutation operator was used. When PBX was combined OBM, the best performance was 

achieved by the genetic algorithm. Also, Al-Harkan and Foote (1996) tested the performance 

of the genetic algorithm when only OBM was used, when only linear order crossover (LOX) 

was used, and when LOX and OBM were combined. The results showed that when LOX and 

OBM were combined, the genetic algorithm achieved its best performance. The following 

crossover and mutation methods were claimed to be good for order-based problems: LOX; 

PBX; OBX; OBM; SSM, and PBM. Therefore, combining each of these crossover methods 

with each of the three mutation methods has not been tested when they are implemented in a 

job shop environment.

6. As mentioned earlier, the binary tournament is performed by first randomly selecting two 

parents from the population. Then the genetic algorithm operators are applied to these two 

parents. Next, the best of the two produced offspring will be selected and allowed to enter the 

pool of the potential chromosomes for the next generation. These procedures will be repeated 

until a new generation of chromosomes is produced. In the genetic algorithm community this 

type of binary tournament is known as binary tournament with replacement, which means 

children will always replace their parents. The other extreme of this binary tournament is to
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always select the best among the parents and children. This method is known as binary 

tournament without replacement. Both extremes have contributed to a major problem that the 

genetic algorithm has been criticized for, namely premature convergence. The premature 

convergence is caused by the loss of population diversity where the loss of diversity in the 

population can cause an increase in the selection pressure. To decrease the selection pressure 

and increase population diversity in the binary tournament, simulated annealing algorithm had 

been used by several researchers (Mahfoud and Goldberg (1992) and Chen and Flann (1994)). 

The binary tournament method utilizes the simulated annealing approach in making the 

decision whether to accept or reject a produced child according to a probability of acceptance 

which is the core of the simulated annealing approach. The incorporation of the simulated 

annealing approach in the genetic algorithm to solve job shop problem has not been applied 

before.

7. The general priority of the job shop (or individual priorities at each machine) dispatches jobs 

by either static discipline or dynamic discipline. To explain this statement, consider the 

following situation. When a machine finishes processing and becomes available to process the 

operations waiting for it, an operation with the highest priority in the priority list will be 

scheduled to be processed. However, if this operation has not yet arrived, there will be two 

actions possible in this situation. The first is to schedule the next operation that is waiting and 

is next on the priority list. This means that the dynamic discipline rule has been applied. The 

second action is to make the machine stay idle until the operation with the highest priority 

arrives. This means that the static discipline has been applied. The combination of both 

priorities with a control parameter to know when to switch between the two priorities has not 

been attempted. Also, the combining of these discipline in which the dynamic discipline is 

applied at the bottleneck machine and the static discipline is applied at the non-bottleneck 

machine has not been applied before.
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RESEARCH PROGRAM 

Introduction

This research study is an extension of the previous research that was concerned with

applying the genetic algorithm (GA) to job shop problems. The main objective of this research is

to answer the following questions:

1. Does the constrained genetic algorithm perform better than the unconstrained genetic algorithm 

when both algorithms are extended to solve dynamic stochastic job shops?

2. What is the impact of the population size on the accuracy of the deterministic constrained 

genetic algorithm to minimize makespan?

3. What is the impact of nine genetic operator combinations on the performance of the 

deterministic constrained genetic algorithm to minimize makespan and which of the nine 

genetic operator combinations would be the best?

4. Is the evaluation of the chromosomes using the probability Gantt charting as effective as 

simulation evaluation?

5. What is the performance of the stochastic constrained genetic algorithm to minimize total 

tardiness when lot sizes, process plans, and machine priority lists are optimized 

simultaneously?

6. What is the potential gain from incorporating the probability distribution function of the 

processing times in the genetic algorithm?

None of the above questions has been answered in the literature reviewed. Therefore, this

70
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study attempts to answer them. Before attempting to answer the six research questions, the GA 

approach needed to be extended to solve a large job shop model, which is the first part of the 

research program. Then, after extending the GA approach, a series of experiments was performed 

to answer the six research questions, which is the second part of the research program.

The organization of this chapter is as follows. In the following section, the structure of the 

extended genetic algorithm will be discussed. Next, a description of the genetic algorithm 

computer code logic and organization will be given. Then, an introduction to the deterministic 

genetic algorithms to minimize makespan will be given, followed by a discussion of the 

deterministic genetic algorithms to minimize total tardiness. Next, a description of the stochastic 

genetic algorithms will be presented, followed by a presentation of a dynamic stochastic genetic 

algorithm. Finally, a brief discussion of the pilot studies performed will be given.

Genetic Algorithm Structure

In this section, several elements and parameters for the GA approach will be discussed. 

These elements and parameters are; population representation method; schedule building and 

fitness fimction evaluation; population size; generation of the initial population; selection methods; 

crossover and mutation operators, and termination criteria.

Population Representation

In this study, a chromosome was represented by the representation method developed by 

Falkenauer and Boufifouix (1991). This representation method is known as the preference-list- 

based representation method. This representation method has been chosen in this study for several 

reasons:

I. It is the oldest representation method that was used to represent chromosomes in a job shop 

implementation (Davis (1985)).
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2. It has been used more often than the other representation methods in job shop implementations 

(Davis (1985), Falkenauer and Bouffbuix (1991), Croce, Tadei, and Volta (1995), and 

Kobayashi, Ono, and Yamamura (1995)).

3. It represents the solution space that this study attempted to optimize which is the solution 

space of the sequence of jobs at each machine.

4. It is the only straightforward representation for a job shop problem to search the solution space 

for the original attempted job shop problem.

5. It does not require encoding of genes, which is necessary for the other order-based 

representations.

6. It is the only natural extension of the representation method that was used in the single machine 

GA model.

7. It works with sub-chromosomes, which means it treats machines individually. This 

representation gives the GA designer and the scheduler the opportunity to easily differentiate 

among machines so that the focus can be directed to bottlenecks and non-bottlenecks.

As mentioned earlier, the population in the preference-list-based representation is 

represented by chromosomes formed by several sub-chromosomes. These sub-chromosomes 

contain genes which represent the preference list for a specific machine. Each gene in the sub- 

chromosome represents an operation to be performed on that machine. For example, if there are 

three machines in the job shop, there will be three sub-chromosomes in a chromosome as shown in 

Figure 1. Also, if each machine performs five operations, there will be five genes in each sub

chromosome. In Figure I, two chromosomes are given: the first chromosome is 1-3-4-5-2-3-4-5-2- 

1-5-4-2-1-3, and the second chromosome is 2-3-5-1-4-4-5-3-2-1-5-2-3-1-4. By referring to 

chromosome I in Figure 1, it can be seen that the preference list of machines 1, 2, and 3 are 1-3-4- 

5-2, 3-4-5-2-1, and 5-4-2-1-3 respectively. From the preference list of each machine, it should be 

clear that job 1 is given the first priority at machine 1, job 3 is given the first priority at machine 2,



73

and job 5 is given the first priority at machine 3. Also, jobs 2, 1, and 3 are given the last priority 

at machines I, 2, and 3 respectively.

The preference list of machine 
I

The preference list o f machine 
2

The preference list o f machine 
3

Sub-chromosome I Sub-chromosome 2 Sub-chromosome 3

Chromosome 1 1 3 4 5 2 3 4 5 2 1 5 4 2 1 3
Chromosome 2 2 3 5 1 4 4 5 3 2 1 5 2 3 1 4

Figure 1. Chromosome representation.

Schedule Building and Fitness Function Evaluation

Chromosomes are usually evaluated by either simulation or deterministic Gantt charting. 

For the representation method used in this study, simulation evaluation was applied by Falkenauer 

and Bouffbuix (1991) and Croce, Tadei, and Volta (1995) and the deterministic evaluation was 

applied by Kobayashi, Ono, and Yamamura (1995). When Falkenauer and Bouffbuix evaluated 

their chromosomes using discrete-event simulation model, they gave full control to the discrete 

event calendar to construct their schedule types. This means that the simulation model could have 

produced either an active schedule or a non-delay schedule. Croce, Tadei, and Volta used 

simulation to evaluate their chromosomes. However, they claimed that schedules produced by the 

simulation model were only non-delay schedules. Hence, they constructed schedules with a look

ahead function to introduce delay in schedules constructed. By doing so, they were trying to 

construct both active and non-delay schedules. Kobayashi, Ono, and Yamamura evaluated each 

chromosome using deterministic Gantt charting, where schedules were constructed using an active 

schedule heuristic developed by Gififler and Thompson (1960).

These types of schedules used to evaluate chromosomes were defined and discussed by 

Baker as follows:

...The set of all schedules in which no local left-shift can be made is called the set of semiactive 
schedules. .. This set dominates the set of all schedules, which means that it is sufficient to 
consider only semiactive schedules to optimize any regular measure of performance.... The set 
of all schedules in which no global left-shiff can be made is called the set of active schedules, 
and is clearly a subset of the set of semiactive schedules in optimizing any regular
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measure of performance it is sufficient to consider only active schedules.... The number of 
active schedules still tends to be large, and it is sometimes convenient to focus on an even 
smaller subset called the nondelay schedules. In a nondelay schedule no machine is kept idle at
a time when it could begin processing some operation the active schedules are generally
the smallest dominant set in the job shop problem. The nondelay schedules are smaller in
number but are not dominant the best nondelay schedule can usually be expected to
provide a very good solution, if not an optimum. (Baker 1974, 181-187)

Also, Conway, Maxwell, and Miller defined and discussed the same schedule t\pes as follows;

...Active schedules, schedules on which it is not possible to perform a left-shift on any 
operation. A lift-shift of an operation is any decrease in the time at which the operation starts
that does not require an increase in the starting-time of any other operation a nondelay
schedule; simply stated, there is no instance in which a job is delayed when the machine that is 
to process the next operation is available and idle ... Nondelay schedule are by definition a 
subset of the active schedules, but not a dominating subset in the same sense that the active 
schedules dominate the semiactive. It is not true that in every problem there is an optimal
schedule among the nondelay schedules when one lacks a procedure for constructing an
optimal schedule directly and must resort to a heuristic or sampling approach, it may be more 
profitable to address the nondelay schedules than active schedules even though one may, in 
doing so, forfeit the infinitesimal probability that an optimal schedule may be obtained. 
(Conway, Maxwell, and Miller (1967), 111-112)

To demonstrate the relationships among all type of schedules, a Venn diagram that

explains the relationships is given in Figure 2 which is taken from Baker (1974).

All schedules

Semi-active

fon-delay
Active

Figure 2. Venn diagram of schedule relationships.

The following two Venn diagrams were constructed to show the location of the optimal 

solution with respect to the schedule types. Figure 3 a illustrates an optimal schedule that is a non

delay schedule assuming that there is only one global optimal schedule. In Figure 3.b, a unique

global optimal schedule is shown to be an active schedule.
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All schedulesAll schedules

Semi-active
Semi-active

Non-delay
Non-delay Active

Active

(a) A situation in which the unique optimal (b) A situation in which the unique optimal is 
solution is a non-delay schedule. an active schedule.

Figure 3. Venn diagram illustrating the optimal solution location with respect to the schedule
types.

It should be clear that the location of the unique optimal schedule is not known in advance. 

Hence, it would seem to make sense to generate and to evaluate chromosomes according to both 

active and non-delay schedules. By doing so, the probability of finding the unique optimal is 

increased versus using only one of either schedule types. Therefore, in this study, chromosomes 

were generated in the initial population according to both active and non-delay schedules (see 

'‘Initial Population Generation” section for full details of the generation process). The generation 

process was as follows. The population was divided into two sub-populations. Then one sub

population was generated according to active schedules and the other sub-population was generated 

according to non-delay schedules. Also, during the evolution process, chromosomes were 

evaluated according to their original schedule type generator. This means that if a parent was 

generated according to an active schedule (or non-delay schedule), then all of its offspring 

produced throughout the evolution process would be evaluated according to an active schedule (or 

non-delay schedule). This implies that a child would inherit an original schedule type generator 

fi'om one of its parents, which makes the original schedule type generator an attribute that was 

associated with each chromosome throughout the evolution process.

To generate both active and non-delay schedules, two heuristics developed by Giffler and 

Thompson (1960) were used in this study. For detailed explanations for both heuristics, the reader
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can refer to Baker ( 1974, 189-191).

When active and non-delay schedules were generated, the completion time for each job was 

obtained. These completion times can be used to compute any of the scheduling performance 

measures that belong to the three common types of decision making goals. Recall from Chapter I 

that these goals were: efficient utilization of machines; rapid response to demands, and close 

conformance to prescribed deadlines. In this study, two performance measures were selected to 

accomplish the first and last goals; these were the makespan and the total tardiness. These two 

performance measures were used as the fitness function in two separate GA models. Besides these 

two performance measures, the average flow time and the number of jobs tardy were computed. 

This means that the four performance measures were computed in every GA model, but one of 

them was minimized.

The purpose of computing the fitness function for all the GA models was to direct the 

search of the GA approach. However, the purpose of computing the other three performance 

measures was to break ties among chromosomes when the selection method was applied. When the 

makespan was minimized, the other three performance measures were used to break ties in the 

following order: 1) the total tardiness; 2) the number of jobs tardy, then 3) the average flow time. 

When the total tardiness was minimized, the order was as follows: 1) sum of the makespan and the 

average flow time, then 2) the number of jobs tardy.

Population Size

As mentioned earlier in the “Constrained Genetic Algorithm Study” section, the population 

size (Pop size) was determined as a function of the problem size (i.e., the number of jobs). The 

population sizes were 3.5n and 4n, where n is the number of jobs. The same idea has been applied 

to the extended GA by using the number of machines and the number of jobs to compute the 

population size. Three population sizes selected were 44+nm, 44+2nm, and 44+4nm, where n is
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the number of jobs and m is the number of machines (i.e., Pop_size = 44+nm, 44+2nm, or 

44+4nm). The reason for adding the constant to the population size will be discussed in the 

following section.

Initial Population Generation

In the developed constrained genetic algorithm discussed in the “Constrained Genetic 

Algorithm Study” section, three of the chromosomes in the initial population were generated 

according to three heuristics; the shortest processing time (SPT); the earliest due date (EDO), and 

the apparent tardiness cost (ATC). The rest of the population was randomly generated. Seeding 

the starting initial population with heuristics has two advantages: I) makes the GA achieve good 

quality solutions in a shorter amount of time and 2) increases the efficiency of the GA, which also 

allows us to have a reasonable population size (i.e. smaller population size). Thus, the same 

concept was applied in the extended GA. The starting initial population for the GA was seeded 

with forty-four heuristics which were:

1. Earliest due date heuristic was used to generate both an active and a non-delay schedule: 

EDD(A) and EDD(ND).

2. Operation due date heuristic was used to generate botli an active and a non-delay schedule: 

ODD(A) and ODD(ND).

3. Modified due date heuristic was used to generate both an active and a non-delay schedule: 

MDD(A) and MDD(ND).

4. Modified operation due date heuristic was used to generate both an active and a non-delay 

schedule: MODD(A) and MODD(ND).

5. Shortest processing time heuristic was used to generate both an active and a non-delay 

schedule: SPT(A) and SPT(ND).

6. Total work heuristic was used generate both an active and a non-delay schedule: TWORK(A)
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andTWORK(ND).

7. Total shortest remaining processing time heuristic was used to generate both an active and a 

non-delay schedule: SRPT(A) and SRPT(ND).

8. Least anticipated work in next queue heuristic was used to generate both an active and a non

delay schedule: LAWINQ(A) and LAWINQ(ND).

9. Least work remaining heuristic was used to generated both an active and a non-delay schedule: 

LWR(A) and LWR(ND).

10. Smallest release time heuristic was used to generate both an active and a non-delay schedule: 

SRT(A) and SRT(ND).

11. Smallest ready time heuristic was used to generate both an active and a non-delay schedule: 

SORT(A) and SORT(ND).

12. Job slack time heuristic was used to generate both an active and a non-delay schedule: JST(A) 

and JST(ND).

13. Operation slack time heuristic was used to generate both an active and a non-delay schedule: 

OST(A) and OST(ND).

14. Slack over remaining work time heuristic was used to generate both an active and a non-delay 

schedule: S/RPT(A) and S/RPT(ND).

15. Weighted processing time plus weighted operation slack time heuristic was used to generate 

both an active and a non-delay schedule: WPT+WOST(A) and WPT+WOST(ND).

16. Critical ratio heuristic was used to generate both an active and a non-delay schedule: CR(A) 

and CR(ND).

17. Operation critical ratio heuristic was used to generate both an active and a nondelay schedule: 

OCR(A) and OCR(ND).

18. Cost over time heuristic was used to generate both an active and a nondelay schedule: 

COVERT(A) and COVERT(ND).
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19. Apparent tardiness cost heuristic was used to generate both an active and a non-delay schedule: 

ATC(A) and ATC(ND).

20. Allowance over remaining number of operation heuristic was used to generate both an active 

and a non-delay schedule: A/OPN(A) and A/OPN(ND).

21. Total longest remaining processing time heuristic was used to generate both an active and a 

non-delay schedule: LRPT(A) and LRPT(ND).

22. Most woilc remaining heuristic was used to generate both an active and a non-delay schedule: 

MWR(A) and MWR(ND).

Then the rest of the population was generated according to four random heuristics:

1. Service in random order heuristic was used to generate both active and non-delay schedules: 

RANDOM(A) and RANDOM(ND).

2. Service in biased random order heuristic was used to generate both active and non-delay 

schedules in which the SPT rule and the EDO rule were equally likely to be selected to bias the 

probability of selection: Biased-RANDOM(A) and Biased-RANDOM(ND).

As mentioned earlier, two heuristics developed by Giffler and Thompson (1960) were used 

in this study to generate both active and non-delay schedules. At each iteration of Giffler and 

Thompson’s heuristics a conflict set of operations is formed which can have one or more 

operations. From the conflicting set of operations, an operation is selected using one of the 

dispatching heuristics mentioned above. When the dispatching heuristic used does not resolve the 

conflict uniquely, a tie break rule is needed. In this study, the SPT rule was used to break ties.

Figure 4, shows the distribution of chromosomes in the population. Specifically, it shows 

the number of chromosomes generated according to active and non-delay schedules. Also, it shows 

the number of chromosomes generated according to dispatching heuristics using both active and 

non-delay schedules. In addition, it illustrates the number of chromosomes generated according to 

random and biased random heuristics using both schedule types.
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■ Pop , size -  - - ■
Pop size: The total number of chromosomes in the population.

-ND-
A; The total number of chromosomes that are generated ND: The total number of chromosomes that are generated

<----- A H ------> 4----- AR----- ► 4----- ABR----- ► 4-  — — N d H ~ 4-----NDR----- ► 4-----N L)BR—►
AH; The total AR: The total ABR: The total NDH: The total NDR: The total NDBR The total

number of number of number of number of number of number of
chromosomes chromosomes chromosomes chromosomes chromosomes chromosomes

that are that are that are that are that are that are
generated generated generated generated generated generated

according to according to according to according to according to according to
active heuristics active random active biased non-delay non-delay non-delay biased
schedules = 22. heuristic random heuristic heuristic random heuristic random heuristic

schedules schedules schedules = 22. schedules schedules
= (A-22V2. = (A-22V2. = (ND-22)/2. = (ND-22V2.

Figure 4. Chromosomes distribution across the population.

From Figure 4, it should be clear that the sum of the parameters AR+ABR+NDR+NDBR 

is equal to Pop_size-44. Thus, if Pop_size is less than 44, this will cause the starting initial 

population to be seeded only with some of the forty-four heuristics Hence, to avoid this problem, a 

constant which is 44 was added to the three population sizes mentioned in the previous section 

(44+nm, 44+2nm, and 44+4nm). Doing so guaranteed that the starting initial population would be 

seeded with forty-four heuristics and a number of nm random heuristics, where n is the number of 

jobs and m is the number of machines.

Selection Methods

There are several selection methods that have been developed and implemented by many 

researchers. Two selection methods were used in this study. The first is the elitist method, which 

enforces preserving the best chromosome in the reproduction process. Thus, at each generation, 

the elitist method was used to move the best chromosome to the next generation. If there was a tie 

among chromosomes that had the same best solution, then one of them would be selected according 

to a random mechanism that assigned to each chromosome an equal probability of being selected. 

The selection probability was computed as 1/k, where k is the number of chromosomes that have 

the same best solution.
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The second selection method is a variant of the binary tournament that was suggested by 

Norman and Bean (1994). In the binary tournament, the tournament size is two. The variant 

method is performed by first selecting randomly two parents from the population. Then the genetic 

operators are applied to these two parents. Next, the best of the two produced children will be 

selected and allowed to enter the pool of the potential chromosomes for the next generation. These 

procedures will be repeated until a new generation of chromosomes is produced. The binary 

tournament was used in this study for two reasons:

1. The binary tournament was used as the selection method in the GA discussed in the 

“Constrained Genetic Algorithm Study” section.

2. It opens the door for the GA designer to work with a major problem that the GA approach has 

been criticized for, which is the premature convergence.

The premature convergence is caused by the loss of population diversity, which increases 

the selection pressure. To decrease the selection pressure and increase population diversity in the 

binary tournament, simulated aimealing (SA) algorithm had been used by several researchers 

(Mahfoud and Goldberg (1992) and Chen and Flann (1994)). The binary tournament method uses 

the SA approach in making the decision whether to accept or reject a produced child according to a 

probability of acceptance which is the core of the SA approach. Thus, in this study, the SA was 

incorporated in the GA approach when the binary tournament was applied. The SA approach and 

its parameters will be discussed later in this section.

As mentioned earlier in Chapter II, in the binary tournament there are several possibilities 

of competitions between two parents and two children. In this study, three binary tournaments 

were held. The first two tournaments were held between a parent and its child. The third 

tournament was a competition between the winners of the first two tournaments. Figure 5 shows a 

flow chart that demonstrates the selection process of parents and their children when the genetic 

operators are implemented.
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Population K

Crossover

Produces■* SA Tournament *■Produces

C2C l cr C2’

Best Tournament

Pool k

Mutation  ̂SA Tournament Mutation

C2’Cl cr
Best Tournament

Population k+1

Figure 5. Binary tournament flow chart

As shown in Figure 5, two parents (PI & P2) were selected randomly from population k. 

Then, the crossover operator was applied to these two parents and two children were produced (C 1 

& C2). Next two tournaments were held between each parent and its child using the SA approach. 

This implies that P 1 competed against C 1 and the result was C l’, and P2 competed against C2 and
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the result was C 2\ Then a third tournament was held between the winners of the first two 

tournaments, in which the better of the two was selected. This means that C 1 ’ competed against 

C2’. Next, the winner, C", entered pool k of the potential chromosomes for the next generation. 

These procedures would be repeated until a new generation of chromosomes was produced. Then 

the same steps were implemented using the mutation operator. When the mutation operator was 

applied, two parents were selected fi'om the temporary pool k. Then the winner of three 

tournaments is allowed to enter population k+1, which is the population of chromosomes for the 

next generation.

Since the SA approach was incorporated in the GA approach, a brief introduction to SA 

will be given. The SA, one of the heuristic search techniques, was developed initially in the study 

of the cooling and annealing process of hot materials. The SA starts with an initial feasible 

solution which is randomly generated. Then it creates a neighbor solution of the initial solution by 

using some kind of perturbation fimction. Next, the change in the objective function is calculated. 

Assume that the minimization of the objective fimction is sought; if a reduction in the objective 

function is found by the neighbor, the current solution is replaced by the generated neighbor. 

Otherwise, an acceptance function (P) and a random number (x) are used to either accept or reject 

the neighbor solution. The acceptance function is computed as follows: P = e^ "^  where Af is the 

change in the objective function and T is the temperature. The SA compares the P to a random 

number x (where: x is imiformly distributed between 0 and 1) as follows: if x < P, then accept the 

neighbor solution (i.e., bad solution); otherwise, retain the previous solution. By accepting a bad 

solution, the SA attempts to avoid entrapment in a local optimum.

The annealing schedule consists of the following parameters: the starting temperature 

value (T,); the final temperature value (Tf); a cooling parameter (CP); the number of iterations 

performed at each temperature (Z,), and stopping criterion (Zj). In this study, the starting and the
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final temperature values were computed using the acceptance function (P= as follows:

Tj= -Af, / ln(P,) and T(= -Af/ In(Pf)
Where:

T,: The starting temperature.

Af, : The starting possible maximum difference in the objective function. In this study, Af, was 

estimated as one standard deviation from the average of the objective function of 

chromosomes in the initial population.

P,: The starting probability of accepting a bad solution. The P, was assigned a random value 

that was uniformly distributed between 0.8 and 0.99.

Tf: The final temperature.

Aff: The final possible minimum difference in the objective function. In this study, Aff was 

assigned a value of 1 when the fitness fimction was the makespan and the total tardiness. 

Also, Aff was equal to 0.001 when the fitness function was a utility function that was 

associated with each chromosome, which will be explained later.

Pf: The final probability of accepting a bad solution (Pr=0.01).

The temperature was reduced every Z, iteration as follows: CP*T, where Z,= 2(Pop_Size-

l)+2(0.4Pop_size). The CP was computed as follows: CP= log(T/Ts)/log(Zz), where Z^ is the 

number of generations to reach the freezing stage. The Zi was uniformly distributed between 75 

and 125. All of the above parameters were selected according to pilot runs that have been done, 

which will be discussed in the “Pilot Investigations" section.

Crossover and Mutation Operators

Starkweather et al. (1991) compared six crossover methods: partially mapped crossover 

(PMX); order crossover (OX); cycle crossover (CX); enhanced edge recombination crossover 

(EERX); order-based crossover (OBX), and position-based crossover (PBX). They applied these



85

six methods to a scheduling problem and a traveling salesman problem. Then they concluded that 

the PMX was the worst for scheduling problems, while it was the second best for the traveling 

salesman problem. Also, they concluded that for the scheduling problem the following crossover 

methods performed almost the same: EERX; OX; OBX, and PBX. Another crossover method that 

has been used in the scheduling literature is the linear order crossover (LOX). Therefore, in this 

study, three of these crossover methods were selected and used: the LOX; the OBX, and the PBX. 

These three operators will be explained in the following three sections.

The crossover rate was determined as a function of the population size (Pop_size) as 

follows: (Pop_size-l)/Pop_size. This implies that the number of chromosomes that were generated 

according to the crossover operator procedures was Pop_size-I. However, when the tournament 

selection method was applied, the number of chromosomes that participated in the crossover 

process was 2(Pop_size-l).

According to Davis (1991), Syswerda (1991), and Michalewicz (1994), three mutation 

methods are known to perform well in the order-based representation. The first is the order-based 

mutation (OBM) and the second is the position-based mutation (PBM), a version of the OBM. 

The scramble sub-sequence mutation (SSM) is the third well-known mutation operator. Therefore, 

these three mutation operators were selected and used in this study, which will be explained in the 

following section.

The mutation rate that was used in this study was 0.4. This means that the number of 

chromosomes produced using the mutation operator was 40% of the Pop_size; also, the number of 

chromosomes that participated in the mutation process was 2(40%Pop_size).

Linear Order Crossover Operator

The linear order crossover (LOX) operator developed by Falkenauer and Bouffbuix (1991) 

is a version of the order crossover. The LOX is performed by first selecting two sub-chromosomes
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on two parents, as shown in Figure 6 where sub-chromosome 2 was selected;

Sub-chromosome 1 Sub-chromosome 2
Parent 1 1 2 3 4 5 6 7 8 9 4 6 9 7 5 3 1 2 8
Parent 2 9 8 4 5 3 2 1 7 6 8 2 4 6 9 1 3 5 7

Figure 6. Two parents selected to mate.

Then, two cutting positions are selected on the two sub-chromosomes (sub-parents) as shown 

below (the two cutting positions are denoted by T):

Sub-parent 1:4-6-|9-7-5-3|-I-2-8 and Sub-parent 2:8-2-14-6-9-11-3-5-7

Second, the first sub-child is formed by removing the genes from sub-parent 2 that are located in 

the segment between the cutting positions in sub-parent 1. This step will form a partial sub-child 

as follows:

Sub-child I: 8-2-14-6-x-11-x-x-x 

Next, slide the empty ‘x’ positions toward the center of the sub-child so that the crossover segment 

is filled with empty ‘x’ positions. This step will result in the following partially formed sub-child:

Sub-child 1: 8-2-lx-x-x-xl-4-6-I 

Finally, place the genes in the segment between the two cutting positions in sub-parent 1 in the 

empty ‘x’ positions. This step will result in the following sub-child:

Sub-child 1: 8-2-|9-7-5-3|-4-6-l 

The same steps can be performed to generate sub-child 2 as follows:

Step 1= sub-child 2: x-x-|x-7-5-3|-x-2-8 

Step 2= sub-child 2: 7-5-|x-x-x-x|-3-2-8 

Step 3= sub-child 2: 7-5-|4-6-9-l|-3-2-8 

The result of the LOX is as follows:

Sub-child 1: 8-2-9-7-5-3-4-6-1 and Sub-child 2: 7-5-4-6-9-1 -3-2-8
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Order-Based Crossover Operator

The order-based crossover (OBX) operator is also a version of the order crossover. It was 

developed by Syswerda (1991) to handle the infeasibilit>' problem in a GA approach that was 

applied to a scheduling problem. Using the same two sub-chromosomes that were used in the 

previous section, the OBX is performed by first selecting several random positions on two sub- 

parents as shown below (the positions selected are underlined).

Sub parent I: 4-6-9-7-5-3-1-2-8 and Sub-parent 2: 8-2-4-6-9-1-3-5-7

Next, the first sub-child is formed by removing the genes from sub-parent I that are located in the 

positions selected in sub-parent 2. This step will form a partial sub-child as follows:

Sub-child 1: 4-6-x-7-x-x-l-x-8 

Then, the empty ‘x’ positions are filled with genes selected in sub-parent 2 using the order these 

genes appear in sub-parent 2 (i.e., 2-9-3-S). This step will result in the following sub-child:

Sub-child 1: 4-6-2-7-9-3-1-5-8 

The same steps can be performed to generate sub-child 2 as follows:

Step 1= Sub-child 2: 8-x-4-x-9-x-3-x-7 

Step 2= Sub-child 2: 8-6-4-5-9-1-3-2-7 

The result of the OBX is as follows:

Sub-child I: 4-6-2-7-9-3-1-5-8 and Sub-child 2: 8-6-4-5-9-1-3-2-7

Position-Based Crossover Operator

The position-based crossover (PBX) operator is similar to the OBX and was developed by 

Syswerda (1991). A similar procedures can be applied to perform the PBX; however, the position 

of genes selected in sub-parent 2 are imposed in sub-child I whereas the OBX imposes the order of 

genes. Using the same two sub-chromosomes that were selected before, the PBX is performed by 

first selecting several random positions on two sub-parents as shown below (the positions selected
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are underlined).

Sub-parent 1:4-6-9-7-5-3-1-2-8 and Sub-parent 2 :8-2-4-6-9-1-3-5-7

Next, Sub-child 1 is formed by copying the genes selected in sub-parent 2. This step will form a 

partial sub-child as follows:

Sub-child 1: x-2-x-x-9-.x-3-5-x 

Then, the empty ‘x’ positions are filled with genes from sub-parent 1, where these genes to be 

copied from sub-parent 1 are not already in sub-child 1 and they are copied using the order given in 

sub-parent I (i.e., 4-6-7-I-8). This step will result in the following sub-child:

Sub-child 1: 4-2-6-7-9-1-3-5-8 

The same steps can be performed to generate sub-child 2 as follows:

Step 1 = Sub-child 2: x-6-x-x-5-x-I-2-x 

Step 2 = Sub-child 2: 8-6-4-9-5-3-1-2-7 

The result of the PBX is as follows:

Sub-child 1:4-2-6-7-9-1-3-5-8 and Sub-child 2: 8-6-4-9-5-3-1-2-7

Order-Based Mutation Operator

As mentioned in Chapter II, the order-based mutation (OEM) operator is implemented by 

selecting two genes randomly and swapping them. In this study, the OEM was performed by first 

selecting a sub-chromosome on a parent which is given in Figure 7 where sub-chromosome 2 was 

selected:

Sub-chromosome I Sub-chromosome 2 |
Parent 1 2 3 4 5 6 7 8 9 4 6 9 7 5 3 I 2 8 f

Figure 7. A parent selected to mutate.

Then, two positions were selected on sub-parent 2 as shown below (the positions selected are 

underlined).

Sub parent: 4-6-9-7-5,-3-1-2-8
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Next, the sub-child is formed by swapping the genes selected as follows:

Sub-child: 4-5-9-7-6-3-1-2-8

Position-Based Mutation Operator

The position-based mutation (PBM) operator is a version of the OBM operator and it is 

performed by selecting two genes randomly and then inserting the second gene before the first. 

Using the same sub-chromosome that was used in the previous section, the PBM is performed by 

first selecting two positions on a sub-parent as shown below (the positions are underlined):

Sub parent: 4-6-9-7-5-3-I-2-8 

In the above selection, gene 6 was selected before gene 5. Next, the sub-child is formed by 

inserting gene 5 before gene 6 as follows:

Sub-child: 4-5-6-9-7-3-I-2-8

Scramble Sub-Sequence Mutation Operator

The scramble sub-sequence mutation (SSM) operator was developed by Davis (1985). 

The SSM selects a sub-sequence in a sub-chromosome, and scrambles the genes in the sub

sequence selected. Using the same sub-chromosome that was used in the previous section, the 

SSM is performed by first selecting a block of genes on a sub-parent as shown below (the two 

cutting positions for the block selected are denoted by ‘|’):

Sub-parent: 4-6-|9-7-5-3|-1 -2-8 

Next, the sub-child is formed by scrambling genes within block as follows:

Sub-child: 4-6-3-5-7-9-1-2-8

Genetic Operators Implementations

As mentioned earlier, the population in this study was represented by chromosomes that 

were formed by several sub-chromosomes. Hence, to implement crossover and mutation operators
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to this type of representation, several questions needed to be answered. These questions were:

1. Should these genetic operators be applied to all or some of the sub-chromosomes?

2. How many sub-chromosomes should be selected if it were decided to apply the genetic 

operators to selected sub-chromosomes?

3. Which sub-chromosomes should be selected if it were decided to apply the genetic operators to 

selected sub-chromosomes?

4. How many genes should be selected in each sub-chromosome?

5. Which genes should be selected in each sub-chromosome?

In the following paragraphs the answers to the above five questions will be discussed. 

Some of the above questions were answered by performing several pilot studies.

According to the conclusion of a pilot study that was performed, the problem with 

applying the genetic operators to all sub-chromosomes is that it was extremely time consuming. 

Also, it was extremely disturbing for the GA evolution process. This conclusion led to 

investigating the answer to the second question.

The number of sub-chromosomes that can be selected was randomly determined as a 

function of the number of machines according to a discrete uniform distribution. For the operators 

LOX, OBX, PBX, and SSM, the number of sub-chromosomes was uniformly distributed between 

1 and 0.5m, where m is the number of machines. Also, the number of sub-chromosomes was 

uniformly distributed between I and 0.69m for OBM and PBM operators.

As mentioned in Chapter II, Sawaqed (1987, x) concluded that “the most crucial element 

in managing a job shop is the management of its bottleneck machines." This conclusion helped to 

answer question number three on which sub-chromosomes should be selected (i.e., which machines 

should be selected). To answer question number three using Sawaqed’s conclusion, machines were 

first classified as bottlenecks and non-bottlenecks according to the total work content of each 

machine. Then, according to the number of sub-chromosomes determined, sub-chromosomes were
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selected as follows:

1. If the number of sub-chromosomes = 1, then the top bottleneck was selected.

2. If the number of sub-chromosomes = 2, then the top two bottlenecks were selected.

3. If the number of sub-chromosomes > 2, then the top two bottlenecks were selected and the 

other m-2 machines were equally randomly selected.

Recall from the pervious sections that the OBM operator is implemented by selecting two 

genes randomly and swapping them. Also, the PBM operator is implemented by selecting two 

genes randomly and then inserting the second gene before the first. Therefore, the answer to 

question number four for these two operators was two genes.

However, the answer to question number four was different for the operators LOX, OBX, 

PBX, and SSM. This question was answered randomly as a function of the machine load (i.e., the 

sub-chromosome size) according to a discrete uniform distribution using the following procedures:

1. The maximum number of genes (MG) was determined as follows: MG = 0.7ML where ML is 

the machine load (i.e., the sub-chromosome size).

2. Then the number of genes (G) was randomly determined according to a discrete uniform 

distribution with a = 2 and b = MG.

When the number of genes (G) was determined, the genes were randomly defined as a 

function of the machine load according to a discrete uniform distribution with a=l and b = ML. 

For the OBM and the PBM operators, two genes were randomly defined and for the OBX and the 

PBX operators, a G different genes were randomly defined. The genes in the LOX and SSM 

operators were defined as follows:

1. The position of the starting gene (PSG) was generated according to a uniform distribution 

between I and ML-G.

2. Then the position of the ending gene was determined as follows: PSG + G-1.
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3. Then, when the starting and the ending positions were defined, the genes in this block were 

selected.

Termination Criteria

Several criteria have been suggested for the GA convergence. Goldberg (1989) and Davis 

(1991) suggested that the GA converges if all chromosomes have attained a certain degree of 

homogeneity (that is, all of them have almost the same fitness value). A version of this criterion is 

that the GA will converge if the percentage of the best solution in the population is greater than or 

equal to fifty percent. Another convergence criterion is that the GA will converge if the maximum 

number of generations has been reached or a certain time limit has been reached. Also, the GA will 

converge after a chromosome with a certain high fitness value is located. Furthermore, the GA will 

terminate if the best solution has not been changed for a number of generations.

To take advantage of several termination criteria, the termination criterion in this study 

was a combined criterion. The GA approach was terminated if one of the following conditions was 

satisfied:

1 ) The maximum number of generations has been reached.

2) The best solution has not been changed for a number of generations.

3) A certain time limit has been reached.

The first termination condition was used in the GA discussed in the “Constrained Genetic 

Algorithm Study” section. The maximum number of generations was determined as a fimction of 

the problem size, which was n̂ , where n is the number of jobs. The same concept was used to 

determine the minimum number of generations, which was 4nm, but the maximum number of 

generations was fixed, which was 200 generations. The number of generations required by 

condition number two was determined as 10% of the number of generations. Ten minutes was the 

time limit required by condition number three. The GA approach investigated the termination
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conditions after a threshold of generations, which was determined as 10% of the number of 

generations.

Genetic Algorithm Computer Program Logic and Organization

In this section the necessary elements for the GA computer program logic and organization 

are discussed. The general logic of the GA approach follows the general steps for the GA 

approach. The organization of the GA computer program is illustrated in Figure 8. From Figure 

8, it can be seen that besides the MAIN program there are nineteen subroutines, three functions, 

and the IMSL™ Mathematical and Statistical libraries^.

The MAIN program begins by calling the CGA VAR subroutine to define and to initialize 

all global variables. Then, it calls DATA FILE subroutine to initialize the data file name. Next, a 

call is made to JOBS DATA subroutine to read job data and to do all necessary initialization and 

computations (e.g. the maximum number of operations, classification of machines, ...etc.). Also, 

the JOBS DATA subroutine calls the EXPECTED WAITING TIME subroutine to compute the 

expected waiting time of each operation for each job on each machine. The GA PARAMETERS 

subroutine is called next by the MAIN program to initialize and to define the GA parameters. 

Next, the MAIN program calls the INmALIZE_POPULATION subroutine to generate the 

starting initial population. When the initial population is generated, the MAIN program calls the 

selected crossover subroutine. This means one of the following subroutines is selected: LOX; 

OBX, or PBX. When the chosen crossover subroutine is performed, the MAIN program makes a 

call to one of the following mutation subroutines: SSM; OBM, or PBM. Then, if the termination 

condition is satisfied, the MAIN program makes a call to two subroutines: OUTPUT and 

DEALLOCATE ARRAYS. The former subroutine will print the results and the latter subroutine

 ̂IMSL Mathematical and Statistical libraries is a trade mark of Visual Numerics, Inc.
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will re-initialize all variables. If the termination condition is not satisfied, then the procedure is 

repeated.

CGA VAR subroutine MAIN program
1 —ar

DATA FILE subroutine

JOBS DATA subroutine

GA PARAMETERS subroutine

LOX
subroutine

Crossover
number

^  OUTPUT subroutine]

DEALLOCATE ARRAYS subroutine

INITIALIZE_POPULAT!ON
subroutine

EXPECTED
WAITING,

TIME
subroutine

OBX
subroutine

PBX
subroutine

utation
number

subroutineSSM
subroutine

▲

PBM 
subroutine 
%

r 1r ▼ ▼ 1
GA Prooram library of subroutines and functions:

CHR_EVAL subroutine 
INDEXX subroutine 

SORTsubroutine 
SORTS subroutine

S0RT2 subroutine 
RAN1 function 
RAN2 function 

GASDEV function 
IMSL Libraries

Figure 8. Genetic algorithm computer program organization.

The MAIN program and the following subroutines used the GA program library of 

subroutines and functions: JOBS_DATA; INilLALIZE_POPULATION; LOX; OBX; PBX;
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SSM; OBM; PBM; EXPECTED WAl IlNG TIME, and OUTPUT. This library contains the 

following subroutines and functions: CHR_EVAL; SORT; S0RT2; S0RT3; INDEXX; RANI; 

RAN2; GASDEV, and the IMSL libraries. The CHR_EVAL subroutine is used to evaluate each 

chromosome. The SORT, the S0RT2, the S0RT3, and the INDEXX are sorting subroutines. All 

of these subroutines sort only one array. However, they differ from each other with respect to how 

many arrays need to be rearranged while sorting the array sought. The RANI and RAN2 

functions are used to generated uniform distribution values between 0 and 1. The GASDEV 

function generates random numbers according to standard normal distribution.

Several versions of the GA approach were developed and will be discussed in the following 

sections. These versions of the GA approach were coded in FORTRAN 90 for a Gateway 2000 

computer using the Microsoft FORTRAN PowerStation™, professional edition, version 4.O'*. The 

Gateway 2000 computer has a 90MHZ Pentium CPU, 40MB of RAM, and 1 GB IDE hard drive 

running Microsoft Windows™ 95 .̂ The Microsoft FORTRAN PowerStation package was used 

because it is the only FORTRAN 90 development system for Microsoft Windows 95. Also, the 

Microsoft FORTRAN PowerStation was chosen because it allows a complete interface to the 

IMSL Mathematical and Statistical libraries, which contains 1000 classic mathematical and 

statistical functions. The Microsoft Windows 95 was chosen to be the operating system because it 

provides a 32-bit operating system with flat memory model, which made it easy to program and 

faster to execute.

The computer codes for the GA versions will not be included in this dissertation. The 

reason for not including the computer codes is space limitation. For a full listing of the computer 

codes, the reader can refer to Al-Harkan and Foote (1997).

■* Microsoft FORTRAN PowerStation is a trademark of Microsoft Corporation. 
 ̂Microsoft Windows 95 is a trade mark of Microsoft Corporation.
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Deterministic Genetic Algorithm to Minimize Makesnan: CGA Cmax and

UGA Cmax

This section will discuss the deterministic constrained genetic algorithm to minimize 

makespan (CGA_Cmax) and the deterministic unconstrained genetic algorithm to minimize 

makespan (UGA_Cmax). The CGA Cmax and the UGA Cmax used the same elements and 

parameters discussed in the “Genetic Algorithm Structure” section. The only difference between 

the CGA_Cmax and the UGA Cmax is that the CGA Cmax used dominance rules when 

performing the crossover and the mutation operators. The following figure demonstrates the 

structure of both the CGA Cmax and UGA Cmax. In Figure 9, the structure of the CGA Cmax 

and UGA Cmax is given.

OutputInput

OutputInput

CGA_Cmaz
Used three dominance rules to constrain its chromosomes

UGA_Ona*
Did not use dominance rules to constrain its chromosomes

•Makespan 

•Total tardiness 

•Average flow time 

•Number of jobs tardy 
•Preference list for each 
machine

•Number of jobs 
•Number of machines 
•Number of operations 
•Expected process time 
•Expected set-up lime 
•Due dates 
•Lot sizes 
•Process plans

•Minimized makespan 
•Population size: 44+nm 
•Number of generations: S5
•Selection methods: elitist method and binary 
tournament
•Linear order crossover (LOX)
•Order-based mutation (OBM)
•Evaluated its chromosomes using deterministic 
Gantt charting
•Ranked its chromosomes using makespan

Figure 9. CGA Cmax and UGA_Cmax structure.

The dominance rules used in the genetic operators should be selected to minimize the 

objective function sought in the CGA model, which is the makespan in the CGA Cmax. This 

implies that the dominance rules are objective function dependent. Before listing the dominance 

rules used in the CGA Cmax model, a brief description of how these rules were selected will be 

given in the following paragraph.
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Chang, Sue>'oshi, and Sullivan (1996) ranked forty-two dispatching rules by using data 

envelopment analysis in a job shop environment. The ranking for the dispatching rules was first 

accomplished by associating the dispatching rules with several performance measures. Then the 

dispatching rules were ranked according to each performance measure. Thus, in this study, six 

dispatching rules were selected to be used as the dominance rules. These six rules were ranked by 

Chang, Sueyoshi, and Sullivan among the first fifteen dispatching rules to minimize the makespan. 

A pilot study was performed to compare the performance of these six dispatching rules.

According to the conclusions of the pilot study, the following theorem and two dispatching 

rules were selected to be used in the CGA Cmax model as the dominance rules:

Dominance rule 1 (theorem 1): For two jobs i and k, if pÿ < pkj, and d̂  < d&j then there exists an 

optimal sequence in which job i appears before job k, where Py and pkj are the expected 

processing times for jobs i and k on machine j. Also, dy and dkj are the expected due dates of 

jobs i and k at machine j. In this study, dÿ was computed as follows: dÿ= d; - a,, where d, is 

the original due date and at is the total remaining work for job i. Also, ai was computed as 

follows: ai = Wi + pj, where pi is the expected remaining processing time for job i, and w, is 

the expected remaining waiting time for job i. The Wi was computed as follows: w, =Z Wy, 

where Wÿ is the waiting of job i at machine j. The Wy was computed using two methods. 

The first, multiple of processing time, was computed as follows: Wy = bpÿ, where b was 

assigned a random value that was uniformly distributed between 1 and 2. The second is an 

iterative method, which consisted of 5 simulation runs. In every simulation run, the waiting 

time of job i at machine j was computed as follows: wj' = (I -  + aq|^, where k is

the simulation run number (k=I,...,5), a is a smoothing parameter which was 0.95, w° = 

bpij, and was the actual waiting time during the k* simulation. The first method was 

used in the deterministic genetic algorithms, while the second method was used in the
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stochastic genetic algorithms.

Dominance rule 2 (dispatching rule I): Select a job with the smallest ratio of the processing time 

to the total work remaining: Pi/(Wi + pJ, where pÿ is the expected processing time of job i on 

machine j, pi is the expected remaining processing time for job i, and w; is the expected 

remaining waiting time for job i, which was computed as explained above.

Dominance rule 3: (dispatching rule 2): Select a job with the largest total remaining processing 

time: (Wi + p.), where and p; is the expected remaining processing time for job i, and w, is the 

expected remaining waiting time for job i, which was computed as explained above.

The CGA Cmax utilized these dominance rules exclusively in the way they are ordered 

above. This implies that when the CGA_Cmax was implemented the dominance rules were applied 

by first investigating the satisfaction of dominance rule one. If rule one was satisfied, then none of 

the other rules would be investigated. Otherwise, dominance rule two would be investigated. 

Finally, dominance rule three would be investigated if dominance rule two was not satisfied.

Recall from the previous sections that the OBM operator is implemented by selecting two 

jobs randomly and swapping them. Hence, for the OBM operator the dominance rules were 

applied to avoid swapping of jobs that satisfy the dominance rules. Also, the PBM operator is 

implemented by selecting two jobs randomly and then inserting the second job before the first. 

Thus, if inserting the second job before the first violates one of the dominance rules, then the 

second job will not be inserted before the first job.

During the implementation of the dominance rules to the OBM and the PBM operators, a 

cycling problem can exist. This cycling problem occurs when several attempts have been made to 

perform mutation without finding any pair of jobs that do not satisfy the dominance rules. This 

situation happened at the later stages of the CGA evolution process. This cycling problem was 

handling by restricting the number of cycles to a fixed number of cycles as follows. A sub

chromosome on any chromosome would be attempted for mutation the number of the machine load
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times. This means that if there are four machines and each with a load of 4, then the maximum 

number of mutation attempts would be equal to 16. Also, a selected chromosome would be 

attempted for mutation 114 times.

Recall that the LOX, the OBX, the PBX, and the SSM operators are implemented by first 

selecting several random jobs on either one or two sub-parents. Then one or two children are 

produced. The dominance rules were implemented on the children produced by ordering the set of 

jobs selected according to a precedence constraint based on the dominance rules.

Deterministic Genetic Algorithm to Minimize Total Tardiness: CGA TT and 

UGA TT

The deterministic constrained genetic algorithm to minimize total tardiness (CGA_TT) and 

the deterministic unconstrained genetic algorithm to minimize total tardiness (UGA_TT) are 

discussed in this section. The CGA TT and the UGA TT used the same elements and parameters 

discussed in the “Genetic Algorithm Structure” section. Again, the difference between the 

CGA TT and the UGA TT is that the genetic operators in the CGA TT produced children that 

were altered not only by the operator’s procedures but also by the dominance rules, while no 

alteration was performed in the UGA TT. The CGA TT used only one dominance rule when 

performing the crossover and the mutation operators. The dominance rule used by the CGA TT is 

dominance rule number one mentioned in the previous section. In Figure 10, the structure of both 

the CGA TT and UGA TT is given.
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OutputInput

OutputInput
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Figure 10. CGA TT and UGA TT structure.

Stochastic Genetic Algorithm

It was mentioned in Chapter II that the methods used to evaluate chromosomes are either 

simulation or deterministic Gantt charting. Both methods are extremes, in the sense that 

deterministic charting does not account for uncertainty and simulation, while accounting for 

uncertainty, is expensive in terms of time to get accurate estimates. Therefore, an evaluation 

method between the two extremes was proposed in this study and will be described in this section. 

This method is called probability Gantt charting. Also, in this section four models will be 

described: stochastic constrained genetic algorithm to minimize total tardiness and to evaluate 

chromosomes using probability Gantt charting (CGA_WSPT); stochastic constrained genetic 

algorithm to minimize total tardiness and to evaluate chromosomes using simulation (CGA SIM); 

stochastic unconstrained genetic algorithm to minimize total tardiness and to evaluate 

chromosomes using probability Gantt charting (UGA_WSPT), and stochastic unconstrained 

genetic algorithm to minimize total tardiness and to evaluate chromosomes using simulation 

(UGA_SIM). The CGA WSPT and the UGA_WSPT models used probability Gantt charting to 

evaluate their chromosomes and the CGA SIM and the UGA SIM models evaluated their 

chromosomes using simulation.
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The organization of this section is as follows. A description of the probability Gantt 

charting is given first, followed by a description of the CGA_WSPT and the UGA_WSPT. Then, 

a utility function approach used to rank chromosomes will be presented. Finally, the CGA SIM 

and the UGA SIM models will be discussed.

Chromosome Evaluation Method: Probability Gantt Charting

In the proposal of this dissertation, the probability Gantt charting was included. However, 

Liang (1996) developed the methodology and the computer code required to implement the 

probability Gantt charting and also performed several experiments that are beneficial to this 

research. Since some of the conclusions of Liang’s research will be given later in this section, only 

a brief introduction to this evaluation method will be given. For detailed explanations of the 

evaluation method and experiments performed, the reader can refer to Liang (1996).

To evaluate chromosomes, all the required performance measures are computed using job 

completion times. The completion times are obtained using one of three evaluation methods 

mentioned in the previous section. When deterministic Gantt charting is used, the completion times 

of jobs are computed according to the expected value of both the processing times and set-up times, 

which are deterministic values. On the other hand, when simulation evaluation is used, the 

completion times of jobs are computed according to stochastic processing times and stochastic set

up times. When probability Gantt charting is used, the completion times of jobs are computed 

using deterministic Gantt charting with uncertainty in the process time, which makes it stochastic 

evaluation method.

The basic concept of the probability Gantt charting is that it estimates the completion time 

of a job based on the probability that a job will be out of the machine. In other words, the 

probability of the job being out will be determined first, and from that the completion time of a job 

will be determined. To demonstrate the probability Gantt charting computations, assume that there
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is a job that has a processing time which is normally distributed with the following parameters: p. = 

10 and 0  = 2. Using these parameters, the normal distribution and the cumulative distribution 

functions can be constructed. From the cumulative distribution fimction, the completion time of 

the job can be computed using a 90% probability that the job will be completed (i.e., Pr = 0.9, 

where Pr is the probability selected). The density function and the cumulative distribution fimction 

of the process time are given below.
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Figure 11. The density function and the cumu ative distribution function of the process time.

From Figure 11, it can be seen that when the probability of 90% was specified, the time to 

complete a job can be found at 12.564. Mathematically, this completion time can be computed by 

using the following formula: time out (TO) = p + Zcy, where Z is determined according to the 

probability value from the standard normal table (Z= 1.282 for 0.9). Thus, TO=10+1.282x2 = 

12.564.

The following example will explain the concept of the probability Gantt charting, and 

demonstrates the difference between standard deterministic and probability Gantt charting. 

Assume that in a job shop there are four machines which process three products. The process plan 

and the lot size for each product are give in Table 2. Also, the process times and set-up times for 

each machine are normally distributed with the parameters given in Table 3:
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Table 2. Three pro< ucts’ data.
Product number Order Size Routing (machine number)

1 15 M
2 10 2-y-A
3 20 1-2-3^

Table 3. Four machines’ data.
Machine
number

Mean o f the processing 
time (hours)

Variance o f the 
processing time

Mean of the set-up 
time (hours)

Variance o f the 
Set-up time

1 0.1 0.00083 0.75 0.021
2 0.2 0.00083 1.25 0.021
3 0.15 0.00083 1.5 0.083
4 0.075 0.0021 0.875 0.01

Assume that the priority list for the three machines is the same and is as follows: product 3 

has the first priority; product 2 has the second priority, then product I has lowest priority. Assume 

that the three products are available at time zero and the dynamic priority is applied. To construct 

the standard deterministic Gantt chart for this example, the completion time (C,j) for product i on 

machine j has to be computed. The general formula to compute the processing times is as follows:

C,j= max (n, Cicj) + Pij Qi + Sÿ

Where:

r,: Ready time of product i.

Sij: Set-up time of product i on machine j.

P,j: Process time of product i on machine j.

Qi: The lot size of product i.

Ckj: Completion time of the product k on machine j, where job k proceeded job i.

In the standard deterministic Gantt charting, the expected mean values are used. For normal 

distribution, this means that the standard deterministic Gantt charting is implemented with a 

probability of 50% that the product will be completed at each machine. This is similar to saying 

that the probability Gantt charting is implemented with a Pr value equal to 0.5. Also, for 

exponential distribution, this means that the probability Gantt charting is implemented with a Pr 

value equal to 0.632.
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The general formula to compute the completion times using the probability Gantt charting is as 

follows:

C,j = max (r„ Q.,) + {P.j Qi + Si,} + Z ^ Q , * V[P„]+V[S,j]

Where:

V[P,j]: The variance of the processing time of product i on machine j.

V[Sijj: The variance of the set-up time of product i on machine j.

The Pr value for the probability Gantt charting was selected to be 0.9. Using the above two 

formulas, the completion times for the three products can be computed and are given in the 

following table:

Product number Standard Gantt chart Probability Gantt chart
1 7.00 7.55
2 8.63 9.4
3 15.38 15.43

From Table 4, the effect of the variability caused by the variance on the completion times can be 

seen, which we hoped to find more accurate than the deterministic computations.

Stochastic Genetic Algorithm to Minimize Total Tardiness and to Evaluate 

Chromosomes using Probability Gantt Charting: CGA WSPT and UGA_WSPT

This section will discuss the stochastic constrained genetic algorithm to minimize total 

tardiness and to evaluate chromosomes using probability Gantt charting (CGA WSPT) and the 

stochastic unconstrained genetic algorithm to minimize total tardiness and to evaluate 

chromosomes using probability Gantt charting (UGA WSPT).

To implement the proposed evaluation method, the CGA TT model was extended to 

evaluate its chromosomes according to the described evaluation method-the probability Gantt 

charting. The result of this extension was a CGA with stochastic process time (CGA_WSPT) 

model. The CGA WSPT model was an extension of the CGA TT, which implies that it attempted
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to minimize the total tardiness. Also, it used the same elements and parameters used by the 

CGA TT. The dominance rule used by the CGA TT was also used by the CGA WSPT

When the dominance rule was taken out of the CGA WSPT model, the result was a new 

model which was the UGA WSPT. This means that the UGA WSPT is identical to the 

CGA WSPT, except the UGA WSPT does not incorporate the dominance rule when it applied the 

genetic operators. Figure 12 illustrates the structure of the CGA WSPT and the UGAWSPT.

Input
Output

OutputInput UGA_WSPT
^  Did not use domiiunce rule to constrain its chromosomes ' **

CGA_WSPT
Used one dominance rule to constrain its chromoaomcs

«Makespan

•Total tardiness

•Average flow time

•Number of jobs tardy 
•Preference list for each 
machine

•Number of machines 
•Number of jobs 
•Number of operations 
•Process plans 
•Lot sizes 
•Due dates
•Process time distributions 
•Process time mean values 
•Process time standard deviations 
•Set-up time distributions 
•Set-up time mean values 
•Set-up time standard deviations 
•Ready times 
•Three probability values

•Minimized total tardiness
•Population size: 44+nm
•Number of generations: SS
•Selection methods: elitist method and binary
tournament
•Linear order crossover (LOX)
•Order-based mutation (OBM)
•Evaluated its chromosomes using probability 
Gantt charting
•Ranked its chromosomes using a utility 
function

Figure 12. CGA WSPT and UGA WSPT structure.

Chromosome Ranking Method: Utility Function Approach

It should be clear that when the probability Gantt charting is implemented with different 

levels of probability, each probability level would have a different result. It should be obvious that 

the values assigned to each level are probability distribution dependent. Also, it should be clear 

that there is an infinite number of probability levels. Thus, there is a need to narrow the range of 

the probability levels. This goal was attempted by the research that was done by Liang (1996). 

Liang narrowed the number of probability levels to only three for specific probability distributions.

Therefore, when the CGA WSPT and UGA_WSPT were implemented, three probability 

levels were used to evaluate each chromosome. This implies that each chromosome would have
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three total tardiness values computed from three sets of completion times. Given that each 

chromosome has three total tardiness values, it is difficult to rank chromosomes. Hence, to rank 

chromosomes according to a single fitness fimction value, a decision should be made which of the 

three total tardiness values should be associated with each chromosome. To solve this difficulty, a 

utility fimction constructed using the three total tardiness values is associated with each 

chromosome. For each chromosome, the utility fimction is assumed to be the cumulative 

distribution fimction of the normal distribution. To compute the utility fimction for each 

chromosome, the average and the standard deviation of the three total tardiness values are 

computed first. Then a target value for the total tardiness is determined and used when computing 

the utility fimction value. The utility fimction for each chromosome is compute as follows;

U = Probability{Total tardiness of the chromosome ^ Target total tardiness }= {TT-TT/a-rr} 

Where:

U: The chromosome utility fimction value.

TT: A target value for the total tardiness.

TT : The average of the three total tardiness values.

OTT: the standard deviation of the three total tardiness values .

Using the utility fimction computed for each chromosome, chromosomes can be ranked 

according to the utility fimction in descending order. This implies that the chromosome with the 

largest utility fimction value is preferred.

When the CGA WSPT and UGA WSPT were implemented, the target value was 

determined as the minimum average total tardiness obtained among the chromosomes generated in 

the initial population. Mathematically, this target value was computed as follows: TT =

min{TTci| i=l,...,Pop_size}, where: TTci : the average of the three total tardiness values for 

chromosome i.
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The following example illustrates how beneficial the utility function is. Assume that there 

are two chromosomes with the following averages and standard deviations for the three total

tardiness values associated with each chromosome; TTci= 137;Ot-î =  ^0; TTc:=l30, and

= 60. Assume that target value is 150; then the utility function values for chromosomes one

and two are 0.626 and 0.629 respectively. Clearly, chromosome two has a higher utility value and 

hence it is selected even though it has higher variability.

Stochastic Genetic Algorithm to Minimize Total Tardiness and to Evaluate 

Chromosomes using Simulation: CGA SIM and UGA SIM

The stochastic constrained genetic algorithm to minimize total tardiness and to evaluate 

chromosomes using simulation (CGA SIM) and the stochastic unconstrained genetic algorithm to 

minimize total tardiness and to evaluate chromosomes using simulation (UGA SIM) are discussed 

in this section.

As mentioned earlier in the “Stochastic Genetic Algorithm” section, the CGA SIM model 

evaluated its chromosomes using simulation. The CGA SIM model was extended from the 

CGA TT model, which means that the CGA SIM is identical to the CGA WSPT except they are 

different in the chromosome evaluation method used. The CGA SIM used the utility function 

approach mentioned earlier to rank its chromosomes.

In the CGA SIM each chromosome should be evaluated several times to reach a certain 

confidence level for the results obtained. By doing so, the results obtained by the simulation would 

not be 6 r  away from the true mean. Hence, to determine the number of evaluations for each 

chromosome (i.e., the number of replications for the simulation), the following sequential 

procedure was used, which was proposed by Law and Kelton (1991):

1. Make no replication of the simulation and set n=no, where n<^.
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2. Compute TT and5(n,a) fromTTi, TTi, ...,TT„.

3. If 5(n,a)/| TT | > y’, then replace n by b+I, make an additional replication of the simulation,

and go to step I. Otherwise, use TT as the point estimate for the true mean of the total 

tardiness (p) and stop.

Where:

n: The number of replications that has been performed.

5(n,a): Confidence-interval half length, where 5(n,a) = t„.i. /n  , where S' is the

variance, and tn.i. is the upper critical point for the t distribution with n-1 degree 

of freedom.

y’: The adjusted relative error, where y’=y/(l+7), where y is the relative error and y= |TT-

From the above sequential procedure, the following confidence interval can be obtained:

[ TT -5(n,a), TT +6(n,a)]

This confidence interval is an approximate 100(1-a) percent confidence interval for p with the 

desired relative error.

In this research, the above parameters were assigned the following values: no =11; y=0.1; 

y’=0.09, and a=0.1. Using the parameter values implied that 90% confidence intervals were 

constructed in this research study with a relative error of 0.1

When the dominance rule was taken out of the CGA_SIM model, the result was a new 

model which was the UGA SIM. This means that the UGA SIM is identical to the CGA SIM, 

except the UGA_S1M does not incorporate the dominance rule when it applied the genetic 

operators. The structure of the CGA_S1M and UGA SIM is given in Figure 13.
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Figure 13. CGA SIM and UGA SIM structure.

Dynamic Stochastic Constrained Genetic Algorithm to Minimize Total Tardiness 

and to Evaluate Chromosomes using Probability Gantt Charting: CGA APP

This section presents the final constrained genetic algorithm, constrained genetic algorithm 

with alternative process plan (CGA_APP), which was intended to be the integrated production 

model that controls a dynamic stochastic job shop environment. This model is an extension of the 

CGA_WSPT model, which attempted to minimize the total tardiness. Also, it used the same 

elements and parameters used by the CGA WSPT. The dominance rule that was used by the 

CGA_WSPT was also used by the CGA APP. In addition to attempting to minimize the total 

tardiness, the CGA APP attempted to optimize simultaneously the lot sizes and the process plans 

for the products involved in the production plan. Specifically, the CGA APP can handle products 

that each have a set of top alternative process plans and from which the lot size for each product 

can be optimized.

The CGA APP attempted to optimize product lot sizes and process plans as follows. For 

each product there is a set of process plans from which a set of top alternative process plans can be
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selected. Then, for the products in the production plan, several sets of process plans can be formed 

randomly from the set of top alternative process plans for each product. A set of products process 

plans can be formed randomly as follows. For each product, the process plan number can be 

uniformly selected between I and the maximum number o f top alternative process plans. Using the 

order size (OJ and selected process plan for each product, the lot sizes (Qi) for all products can be 

optimized. The optimized lot size for each product could be less than or equal to the order size. 

When the lot size for a product is less than the order size, then this product should be re-produced 

to satisfy its order size. This means that the maximum number of re-productions for product i is 

0,/Qi. At this stage of the optimization process, the lot sizes have been optimized with respect to 

the products' process plans selected.

The above procedures can be repeated for several iterations (say k) in which in every 

iteration a set of products’ process plans is selected and then the products’ lot sizes are optimized. 

At the final iteration, there will be k sets of products’ process plans in which each set has its 

optimized lot sizes. For each set of the k sets of products’ process plans and their optimized lot 

sizes, the total tardiness can be minimized using the same procedures used in the CGA WSPT. 

Figure 14 demonstrates the selection of the top alternative process plans for each product and the 

formation of the k sets of products’ process plans and lot sizes.

The lot sizes for a product can all be released at time zero or can be released according to 

a releasing mechanism. In this study, the releasing mechanism consisted of dispatching rules that 

attempted to minimize the total tardiness. Hence, these dispatching rules were used to release 

product lot sizes considering the minimization of the total tardiness. The releasing mechanism is 

the last component that completed the design of the CGA_APP. Figure 15 shows the components 

required for the CGA APP design and development.
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This completes the description of the integrated production model, CGA_APP, that 

controls a dynamic stochastic job shop environment. It is dynamic because at different time in the 

production horizon different sets of products are produced. Also, the lot sizes for a product can be 

released at different time. It is a stochastic model because stochastic process times are used in the 

CGA_APP model. Figure 16 demonstrates the structure of the CGA APP

Input

Output

•Preferred set o f product’s process plans 
•Preferred set o f product’s lot sizes

•Makespan 
•Total tardiness 
•Average flow time 
•Number of jobs tardy 
•Preference list for each machine

•Number of machines
•Number of Jobs
•Number of operations
•Number of aitemative process plans
•Alternative process plans
•Order sizes
•Due dates
•Process time distributions 
•Process time mean values 
•Process time standard deviations 
•Set up time distributions 
•Set-up time mean values 
•Set-up time standard deviations 
•Ready times 
•Three probability values

CGA_APP

•Used one dominance rule to constrain its chromosomes
•Minimized total tardiness
•Optimized Its lot sizes
•Population size: 44+nm
•Number of generations: 55
•Selection methods: elitist method and binary
tournament
•Linear order crossover (LOX)
•Order-based mutation (OBM)
•Evaluated its chromosomes using probability Gantt 
charting
•Ranked its chromosomes using a utilitv function 
•Used a release mechanism

Figure 16. CGA APP structure.

It should be clear from Figure 14 that to implement the CGA_APP model, the population 

of chromosomes must be divided into k sub-populations. Each of these sub-populations consists of 

chromosomes generated according to products that belong to one of the k sets of product process 

plans. These sub-populations must be constructed for two reasons. First, the selected products’ 

process plans and their optimized lot sizes for one of the k sets cannot be mixed with one of the 

other k sets. The second reason is to simplify the genetic operators' implementations. Figure 17 

shows the structure of the population of chromosomes that contains k sub-populations.
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A population of chromosomes which consists o f k sub-populations

Sub-population 1 Sub-population 2 Sub-population 3 Sub-population k
which was which was which was which was
generated generated generated generated

according to i according to j according to f according to 1
products products products products

Figure 17. A population of chromosomes which consists of k sub-populations.

From Figure 17, it should be clear that the lengths of chromosomes in each sub-population 

are different because each sub-population was generated according to different numbers of 

products. For example, sub-population 1 was generated according to i products while sub

population k was generated according to 1 products where i^l. Having chromosomes with different 

lengths in each sub-population has made the implementation of the genetic operators very difficult. 

Also, it complicated the computer program coding and execution.

Several complications came up during the attempts to implement the CGA APP which 

caused the incompletion of this model. One of these complications occurred in the attempts to 

integrate the lot size model in the CGA APP. Other complications came up when attempts were 

made to implement the genetic operators because of the different chromosome lengths in each sub

population. However, the implementation of the CGA_APP model will be demonstrated in 

experiment VI on which each component of the CGAAPP model was implemented separately.

Pilot Investigations

In this section, a  list of some of the pilot investigations that have been performed in this 

study will be given. These pilot investigations were performed to tune some of the parameters in 

all of the GA models. In these pilot investigations, three well-known benchmarks were used, which 

were designed by Fisher and Thompson (1963). The list of the pilot investigations is as follows:

1. Recall from the “Schedule Building and Fitness Function Evaluation” section that when the total 

tardiness was minimized, the other three performance measures were used to break ties in the
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following order; I) sum of the makespan and the average flow time, then 2) the number of jobs 

tardy. A pilot study was performed to investigate breaking ties not only by the preceding order 

but also in the following order: 1) the makespan; 2) the average flow time, then 3) the number 

of jobs tardy. The results obtained by using both orders to break ties showed that the first order 

was better.

2. Recall from the “Selection Methods” section that in the binary tournament two parents were 

selected and two children were produced. However, only one of them entered the pool of the 

potential chromosomes for the next generation. Another way of handling this tournament is to 

select two parents and allow the two children produced to enter the pool. Hence, these two 

ways were investigated in a pilot study and from the results obtained the first way of handling 

the tournament was better.

3. A pilot study was performed to investigate the performance of the CGA with and without the SA 

approach. From the results obtained, it was clear that incorporating the SA in the CGA was 

beneficial.

4. In the annealing schedule, when the starting temperature value was computed (T,), a starting 

probability (P,) of accepting a bad solution was uniformly distributed between 0.8 and 0.99. 

Also, when the cooling parameter was computed, the number of generations (Zz) to reach the 

freezing stage was uniformly distributed between 75 and 125. A pilot study was performed to 

compare the performance of the CGA when the following combinations of P, and 2% were used: 

(0.99, 125); (0.95, 125); (0.9, 125); (0.85, 125); (0.8, 125); (0.99, 75); (0.95, 75); (0.9, 75); 

(0.85, 75); (0.8, 75), and (P, is uniformly distributed between 0.99 and 0.8, and Zz is uniformly 

distributed between 125 and 75). The results showed that the last combination was the best.

5. In dominance rule 1, the dij, the expected due date of job i on machine j, needed to be 

determined. A pilot study was performed to compare two methods to compute the dij. These 

methods were: d,j= di - at, where di is the original due date and a, is total remaining work for job
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i, and d,,= di,.i+ai, where d,j.i is the expected due date of job I on machine j-1 and a, is the total 

time that job i has spent so fer in the shop floor. The results showed that the first method was 

better.

6. When the CGA_WSPT and the CGA SIM were implemented, chromosomes were ranked 

according to their utility function value. However, chromosomes could be ranked according to 

the average total tardiness associated with each chromosome. A pilot study was performed to 

compare the performance of the CGA_WSPT when both methods were used to rank 

chromosomes. The result showed that ranking chromosomes according to the utility flmction 

value was better.

7. When both the CGA WSPT and the CGA SIM were implemented, a target value for the total 

tardiness was determined as the minimum average total tardiness obtained among 

chromosomes generated in the initial population. However, the target value can be determined 

by simulating the job shop in which the SPT could be used to dispatch operations. In a pilot 

study, these two ways of determining the target were compared. The results showed that the 

first method was better.



CHAPTER IV 

EXPERIMENTS AND EXPERIMENTAL RESULTS 

Introduction

In this chapter, seven experiments will be discussed. Experiment I was conducted to 

investigate the effect of the genetic operator combinations on the performance of the deterministic 

constrained genetic algorithm to minimize makespan (CGA Cmax). In experiment II, the impact 

of the population size on the performance of the CGA_Cmax was investigated. Experiment III 

compared the performance of the deterministic constrained genetic algorithm to minimize 

makespan (CGA Cmax) with the deterministic unconstrained genetic algorithm to minimize 

makespan (UGA_Cmax). Also, the performance of the deterministic constrained genetic algorithm 

to minimize total tardiness (CGA_TT) and the deterministic unconstrained genetic algorithm to 

minimize total tardiness (UGA_TT) were evaluated in experiment IV. Experiment V investigated 

which of the chromosome evaluation methods was better. The effect of lot sizing and aitemative 

process plans was investigated in experiment VI. Experiment VII investigated the potential gain 

from incorporating the probability distribution function of the processing times in the genetic 

algorithm.

For the seven experiments, the computer package STATGRAPHICS™ version 5® was 

used to perform the required ANOVA procedure and Tukey’s range test and ranking procedures. 

The significance level used to test the significance o f the Actors included in each experiment was

* STATGRAPHICS is a trademark of Statistical Graphics Corporation.
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Nine well-known benchmarks were used in the seven experiments. Three of these 

problems were designed by Fisher and Thompson (1963) and the other six were designed by 

LawTence (1984). In Tables 5 and 6, the nine problems are described. In these tables, the problem 

number and name are given in columns 1 and 2. In columns 3 and 4, the problem size in terms of 

the number of jobs and machines is given. Also, the problem size with respect to the number of 

operations is given in column 5. The optimal solution of the problem is given in column 6. From 

these tables, it should be clear that all problems solved are rectangular size.

Table 5. Benchmar (S proposed by Fisher and Thompson.
Problem Problem No. of No. of No. of Optimal solution

no. name jobs machines operation (makespan)
I FT06 6 6 36 55
2 m o 10 10 100 930
3 FT20 20 5 100 1165

Ta )le 6. Benchmarks proposed by Lawrence.
Problem Problem No. of No. of No. o f Optimal solution

no. name jobs machines operations (makespan)
4 LA21 15 10 150 1046
5 LA25 15 10 150 977
6 LA27 20 10 200 1235
7 LA29 20 10 200 1153
8 LA38 15 15 225 1196
9 LA40 15 15 225 1222

The above benchmarks were selected for several reasons. First, they have been used by 

several researchers to test their GA approaches. They are known to be difficult problems. The 

optimal solution with respect to the makespan for each of these problems is known, which is good 

for purposes of comparisons.

The above nine problems were designed to be solved for the makespan performance 

measure, which does not require the due dates in its computation. Hence, for the first three 

experiments, jobs were given a common due date which is the optimal makespan of the problem 

considered. However, for experiments IV, V, and VII, the due dates were computed according the 

results obtained from experiment HI in which jobs were given due date based on flow time
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estimates. The computational for these due dates will be discussed later in this chapter. In

experiment VI, the due dates were computed according to the total work content (TWK) rule.

To have a fair compression for all the GA models when they solved the nine problems, the 

number of generations was set to 55. Also, the population size was set to 44+4nm.

Experiment I; The Effect of Genetic Operator Combinations

In this section, a description of experiment I is given. This experiment was performed to 

investigate the impact of the genetic operator combinations on the performance of the CGA Cmax. 

Also, this experiment was performed to determine which of the nine operator combinations would 

be the best for the CGA and UGA versions. The nine operator combinations that were tested in 

this experiment were as follows:

1. Linear order crossover and scramble sub-sequence mutation (LS).

2. Linear order crossover and order-based mutation (LO).

3. Linear order crossover and position-based mutation (LP).

4. Order-based crossover and scramble sub-sequence mutation (OS).

5. Order-based crossover and order-based mutation (00).

6. Order-based crossover and position-based mutation (OP).

7. Position-based crossover and scramble sub-sequence mutation (PS).

8. Position-based crossover and order-based mutation (PO).

9. Position-based crossover and position-based mutation (PP).

In this experiment five problems were solved: FT06; FTIO; FT20; LA25, and LA29. Ten 

replicates were made for the first three problems, only five for the last two problems. This means 

that there were three problems with ten replicates, two problems with five replicates, and nine 

operator combinations, a total of 360 problems. Using the CGA Cmax model, the 360 problems 

were solved.
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The results obtained for each problem and for each combination are reported in Tables B. 1 

through B.45 in Appendix B. These results were summarized and are given in Tables 7 through

11. In these tables, the first column is the combination number. The second column lists four 

statistics; the average value; the standard deviation value; the maximum value, and the minimum 

value. In column three, the number of alternatives of the best solution at the end of the evolution 

process is given. The CPU time needed by the CGA Cmax model is given in column four. In 

columns 5, 6, 7, and 8, the following performance measures are given: the makespan; the number 

of jobs tardy; the average flow time, and the total tardiness. The percentage of error is given in 

column 9. The percentage of error was calculated as follows:

a  =100((Cmax - CmaXopt)/CmaXopt)

Where:

a: The percentage deviation of the solution obtained by the CGA Cmax from the optimal 

solution.

Cmax: The makespan obtained by the CGA Cmax.

CmaxopT: The optimal makespan.

This experiment was designed to have two-factor fectorial design. The first factor was the 

genetic operator combinations and the second fector was the problem number. There were nine 

levels for the first factor and five levels for the second factor. A two-way ANOVA procedure was 

conducted on the results obtained. The results showed a significant level of 0.02 for the first 

factor, which means that the genetic operator combinations are different. To further investigate the 

significance of these operator combinations, one-way ANOVA Tukey’s range test procedures were 

performed. The results of the range test ranked the combinations as follows: LO; PS; LS; 0 0 ; PP; 

LP; OS; PO, then OP. Also, the results of Tukey’s test showed that the LO combination is the 

only combination that is significantly different from the other eight combinations. Also, there was
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no significant difference among the other eight combinations.

The above conclusion can be supported by the percentage errors given in the nine tables. 

It should be clear that when ranking each combination according to the percentage errors for each 

problem, the LO and LS combinations are the best performers. Also, the LO and LS tied in the 

first three positions over the five problems. This implies that the LOX method is the best among 

the crossover methods. Then the question is which mutation method should be selected: OBM or 

SSM? To answer this question, the mutation methods were ranked according the percentage errors 

for each problem. Then it was clear that the OBM method is the best performer.

Also, comparing the average percentage errors obtained when using the LO combination 

with the average percentage errors obtained when using the other eight combinations, the LO 

combination improved the average percentage errors by approximately 10%.

This implies that the LO combination is the best among the nine combinations. Thus, the 

LO combination was the only genetic operator combination that was used in experiments 11, 111, 

IV, V, VI, and VH.
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Table 7. I; Summary of results obtained for problem FT6.
Case no. Statistics No. of 

alternatives
CPU time 

(Sec.)
Makespan
(Cmax)

Number
Tardy

Average Dow 
time

Total
Tardiness

Percentage of 
error

I(LS) Average 160.400 55.085 55.400 0.300 51.150 0.400 0.727

Std 35.747 2.768 0.699 0.483 0.669 0.699 1.271

Maximum 188.000 61.900 57.000 1.000 52.000 2.000 3.636

Minimum 103.000 52.400 55.000 0.000 49.500 0.000 0.000

II (LO) •Average 138.300 66.626 55.700 0.400 50.800 0.700 1.273

Std 42.620 5.570 0.949 0.516 0.919 0.949 1.725

Maximum 188.000 72.830 57.000 1.000 51.500 2.000 3.636

Minimum 93.000 56.470 55.000 0.000 49.500 0.000 0.000

III(LP) Average 161.600 66.136 55.800 0.400 50.600 0.800 1.455

Std 41.097 5.901 1.033 0.516 0.966 1.033 1.878

Maximum 188.000 73.270 57.000 1.000 51.500 2.000 3.636

Minimum 97.000 58.820 55.000 0.000 49.500 0.000 0.000

IV (OS) Average 163.100 59.413 56.000 0.500 50.717 1.000 1.818

Std 38.974 3.255 1.054 0.527 1.179 1.054 1.917

Maximum 188.000 65J60 57.000 1.000 52.500 2.000 3.636

Minimum 98.000 55J70 55.000 0.000 49.500 0.000 0.000

V (0O) Average 143.600 68.351 56.200 0.600 50.650 1.200 2.182

Std 46.705 10.541 1.033 0.516 1.055 1.033 1.878

Maximum 188.000 95.520 57.000 1.000 52.000 2.000 3.636

Minimum 84.000 60.470 55.000 0.000 49.500 0.000 0.000

VI (OP) Average 152.800 75.002 56.600 0.800 50.983 1.600 2.909

Std 54.760 26.687 0.843 0.422 1.355 0.843 1.533

Maximum 188.000 144.620 57.000 1.000 52.500 2.000 3.636

Minimum 65.000 54.930 55.000 0.000 49.500 0.000 0.000

VII(PS) Average 177.800 52.883 56.000 0.500 50.467 1.000 1.818

Std 20.509 2.403 1.054 0.527 0.996 1.054 1.917

Maximum 188.000 57J90 57.000 1.000 51.500 2.000 3.636

Minimum 132.000 50.260 55.000 0.000 49.500 0.000 0.000

VIII (PO) Average 162.000 60.242 55.600 OJOO 50.700 0.600 1.091

Std 29.885 5.371 0.966 0.483 0.827 0.966 1.757

Maximum 188.000 68.660 57.000 1.000 51.500 2.000 3.636

Minimum 123.000 51.030 55.000 0.000 49.500 0.000 0.000

IX (PP) Average 167.000 59.189 55.400 0.200 50.883 0.400 0.727

Std 32.090 3.763 0.843 0.422 0.774 0.843 1.533

Maximum 188.000 62.950 57.000 1.000 51.500 2.000 3.636

Minimum 115.000 53.120 55.000 0.000 49.500 0.000 0.000
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Table 8. I; Summary of results obtained for problem FTIO.
Case no. Statistics No. of 

alternatives
CPU time 

(Sec.)
Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Percentage of 
error

I(LS) Average 385.300 547.856 965.900 3.900 872.950 88.100 3.860

Std 134.750 20.305 7.062 0.738 30.260 19.376 0.759

Maximum 444.000 577.260 984.000 5.000 895.100 110.000 5.806

Minimum 8.000 515.590 957.000 3.000 814.900 53.000 2.903

«(LO) Average 441.500 567.703 964.400 3.800 872.900 91.600 3.699

Std 7.561 20.004 2.271 0.422 33.016 13.664 0.244

Maximum 444.000 598.360 968.000 4.000 895.100 99.000 4.086

Minimum 420.000 537.940 960.000 3.000 819.000 53.000 3.226

III(LP) Average 428.600 559.394 966.000 3.800 879.940 90.900 3.871

Std 34.056 15.330 3.887 0.422 23.704 22.762 0.418

Maximum 444.000 584.130 976.000 4.000 895.100 131.000 4.946

Minimum 342.000 539.970 964.000 3.000 839.300 53.000 3.656

IV (OS) Average 390.000 558.976 965.200 3.800 878.700 86.500 3.785

Std 68.082 12.577 1.932 0.422 24.064 19.260 0.208

Maximum 444.000 579.350 968.000 4.000 895.100 96.000 4.086

Minimum 261.000 542.280 964.000 3.000 836.200 50.000 3.656

V (O0) Average 386.100 568.248 964.200 3.800 875.590 84.200 3.677

Std 54.106 20.085 2.394 0.632 29.671 19.832 0.257

Maximum 444.000 606.380 968.000 5.000 895.100 99.000 4.086

Minimum 306.000 542.120 960.000 3.000 821.600 53.000 3.226

VI (OP) Average 423.400 557.428 966.900 3.400 858.420 82.000 3.968

Std 43.030 15.374 5.896 0.516 35.130 31.319 0.634

Maximum 444.000 578.750 978.000 4.000 911.000 137.000 5.161

Minimum 335.000 534.810 960.000 3.000 821.600 50.000 3.226

VII(PS) Average 428.800 570.093 963.600 3.700 872.460 79.600 3.613

Std 31.333 38.080 3.502 0.483 29.653 21.438 0.377

Maximum 444.000 645.870 968.000 4.000 895.100 96.000 4.086

Minimum 365.000 541.840 956.000 3.000 821.600 50.000 2.796

VIII (PO) Average 420.500 566.929 965.200 4.200 875.330 100.300 3.785

Std 42.019 22.596 1.687 1.033 26.012 25.395 0.181

Maxinnim 444.000 618.460 968.000 6.000 895.100 140.000 4.086

Minimum 322.000 534.150 964.000 3.000 825.000 50.000 3.656

IX (PP) Average 424.800 570.017 964.900 4.000 887.250 98.800 3.753

Std 38.415 14.665 5.131 0.471 23.360 22.987 0.552

Maximum 444.000 594.130 979.000 5.000 900.100 156.000 5.269

Minimum 351.000 550.570 960.000 3.000 821.600 61.000 3.226
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Table 9. Experiment I: Summary of results obtained for problem FT20.
Case no. SUtistics No. of 

ahematives
CPU time 

(Sec.)
Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Percentage of 
error

l(LS) Average 314.000 1660.036 1183.300 1.900 884.970 29.900 1.571

Std 162.086 65.077 5.056 0316 21.927 II 628 0.434

Maximum 444.000 I784J70 1193.000 2.000 921.500 52.000 2.403

Minimum 27.000 1576.250 1178.000 1.000 857.550 17.000 1.116

II (LO) Average 390.700 1778.911 1188.400 1.800 892.510 34.500 2.009

Std 137 JOO 207.658 9.348 0.632 23.939 13.517 0.802

Maximum 444.000 2318.180 1203.000 3.000 927.800 63.000 3.262

Minimum 7.000 1594.220 1178.000 1.000 860.400 17.000 1.116

III(LP) Average 365.400 1666.184 1188.800 1.800 875.000 34.400 2.043

Std 144.608 81.613 9.378 0.422 24.840 14.089 0.805

Maximum 444.000 1778.820 1210.000 2.000 908.200 57.000 3 863

Minimum 38.000 1531.110 1178.000 1.000 829.950 17.000 1.116

IV (OS) Average 211.000 1725.299 1189.400 2.100 912.355 45.400 2.094

Std 156.323 74.819 9.395 0.738 29.691 24.167 0.806

Maximum 444.000 1856.700 1203.000 3.000 951.650 74.000 3.262

Minimum 1.000 1621.510 1178.000 1.000 856.150 13.000 1.116

V (00) Average 271.400 1753.798 1186.000 2.000 897.870 32.400 1.803

Std 199.856 73.158 5.774 0.000 26.328 11.047 0.496

Maximum 444.000 1851.700 1194.000 2.000 936.850 50.000 2.489

Minimum 7.000 1646.440 1178.000 2.000 850.050 18.000 1.II6

VI (OP) Average 260.700 1721.600 1191.500 1.900 890.080 38.400 2.275

Std 175.011 57.815 7.721 0.568 11.986 12.677 0.663

Maximum 444.000 1821.000 1203.000 3.000 907.500 66.000 3.262

Minimum 1.000 1598.660 1180.000 1.000 872.400 24.000 1.288

VII (PS) Average 259.400 1710.346 1185.900 1.700 893.285 30.100 1.794

Std 146.821 31.754 7.355 0.483 23.561 13.212 0.631

Maximum 444.000 1755.250 1197.000 2.000 924.000 59.000 2.747

Minimum 23.000 1666.940 1178.000 1.000 857.750 13.000 1.116

VIII (PO) Average 288.600 1746.597 1190.000 2.100 901.675 43.300 2.146

Std 206.618 97.499 8.000 0.876 12.371 20.039 0.687

Maximum 444.000 1916.350 1203.000 4.000 917.750 88.000 3.262

Minimum 1.000 1617.940 1178.000 1.000 873.850 13.000 1.116

IX (PP) Average 267.800 1792.102 1185.100 1.900 886.995 29.300 1.725

Std 182.850 199.060 8.198 0.568 14.878 II .156 0.704

Maximum 444.000 2329.770 1203.000 3.000 919.950 46.000 3.262

Minimum 4.000 1662.980 1178.000 1.000 868.250 17.000 1.116
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Table 10. Experiment I; Summary of results obtained for problem LA2S,
Case no. Statistics No. of 

alternatives
CPU time 

(Sec.)
Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Percentage of 
error

I(LS) Average 271.800 2006.494 1005.000 4.800 922.680 98.600 2.866

Std 272.705 131.896 5.788 1.483 13.150 45.357 0.592

Maximum 644.000 2153.030 1015.000 7.000 933.667 174.000 3.889

Minimum 3.000 1877.080 1000.000 3.000 902.333 51.000 2.354

11 (LO) Average 266.000 1817.002 1003.800 5.000 932.307 85.800 2.743

Std 343.891 64.436 1.789 0.000 1.403 1.095 0.183

Maximum 643.000 1906.630 1007.000 5.000 933.667 87.000 3.071

Minimum 1.000 1748.390 1003.000 5.000 930.867 84.000 2.661

HI(LP) Average 294.800 1742.576 1004.800 5.000 927.987 91.800 2.845

Std 325.136 62.373 2.049 0.707 15.292 21.970 0.210

Maximum 644.000 1797.550 1007.000 6.000 938.333 127.000 3.071

Minimum l.OOQ 1668.800 1003.000 4.000 901.000 67.000 2.661

IV (OS) Average 338.800 1985.214 1006.600 4.800 928.533 92.200 3.030

Std 187.033 63.702 5.899 0.837 6.108 29.132 0.604

Maximum 643.000 2068.600 1014.000 6.000 936.667 129.000 3.787

Minimum 179.000 1893.550 1002.000 4.000 921.000 63.000 2.559

V (00) Average 375.000 1833.044 1006.600 6.000 936.280 112.000 3.030

Std 232.911 84.890 2.881 0.707 6.146 17.335 0.295

Maximum 644.000 1930.250 1010.000 7.000 941.133 139.000 3.378

Minimum 8.000 1699.290 1002.000 5.000 925.667 94.000 2.559

VI (OP) Average 447.000 1841.620 1008.600 5.600 932.400 105.800 3.234

Std 222.841 51.613 4.393 0.894 4.111 29.372 0.450

Maximum 644.000 1890.320 1014.000 7.000 938.733 147.000 3.787

Minimum 80.000 1763.930 1003.000 5.000 928.867 84.000 2.661

VII (PS) Average 183.400 1915.624 1009.000 5.600 933.720 122.400 3.275

Std 160.082 40.173 5.292 0.894 7.269 41.932 0.542

Maximum 328.000 1972.700 1017.000 7.000 944.933 176.000 4.094

Minimum 3.000 1867.680 1003.000 5.000 925.667 84.000 2.661

VIII (PO) Average 238.600 1832.422 1006.000 5.000 926.800 85.600 2.968

Std 270.961 30.101 3.606 0.707 10.913 5.857 0.369

Maximum 644.000 1860.490 1011.000 6.000 937.733 92.000 3.480

Minimum 40.000 1781.780 1002.000 4.000 909.867 78.000 2.559

K (PP) Average 405.200 1788.748 1013.600 5.200 926.747 130.400 3.746

Std 240.339 48.102 6.542 0.837 12.330 34.122 0.670

Maximum 644.000 1852.140 1022.000 6.000 939.267 165.000 4.606

Minimum 1.000 1738.500 1007.000 4.000 906.133 84.000 3.071
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Table 11. experiment I; Summary of results obtained for problem LA29.
Case no. Statistics No. of 

ahematives
CPU time 

(Sec.)
Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Percentage of 
error

I(LS) Average 143.400 3472.996 1214.400 9.000 1111.970 319.600 3.323
Std 186.428 148.490 6.731 1.414 9.933 124.102 0.384

Maximum 364.000 3663.700 1220.000 11.000 1128.330 464.000 5.811
Minimum I.OOO 3321.310 1203.000 8.000 1104.030 213.000 4.337

II (LO) Average 116.600 4933.486 1210.400 7.400 1093.820 271.200 4.978
Std 227.027 108.287 14.605 1.317 22.983 33.719 1.267

Maximum 322.000 3110.820 1229.000 10.000 1131.200 320.000 6.392
Minimum 1.000 4810.480 1191.000 6.000 1067.530 186.000 3.296

III(LP) Average 221.000 3183.432 1212.600 7.600 1108.370 264.800 3.169
Std 330.582 466.029 8.142 1.949 33.474 116.160 0.706

Maximum 834.000 3734.160 1224.000 10.000 1141.130 420.000 6.138
Minimum 4.000 4729.910 1203.000 3.000 1071.630 164.000 4.310

IV (OS) Average 173.000 3416.996 1223.200 8.800 1101.140 398.000 6.089
Std 374.047 130.318 4.266 2.387 29.823 98.247 0.370

Maximum 844.000 3386.090 1229.000 12.000 1123.530 319.000 6.392
Mittimum 1.000 3288.890 1219.000 6.000 1049.300 272.000 3.724

V (0 0 ) Average 360.800 3170.630 1212.600 7.800 1099.740 300.600 5.169
Std 344.646 190.425 11.216 1.924 17.718 113.313 0.973

Maximum 844.000 5439.430 1226.000 10.000 1120.900 431.000 6.331
Miniimim 22.000 3014.970 1200.000 3.000 1084.130 162.000 4.076

VI(OP) Average 348.400 5223.834 1222.000 8.200 1118.630 393.600 3.984
Std 341.753 231.483 10.840 1.924 17.204 127.902 0.940

Maximum 843.000 3613.220 1233.000 10.000 1133.830 488.000 7.112
Minimum 9.000 3038.870 1206.000 3.000 1094.100 190.000 4.397

VII (PS) Average 3.200 3377.368 1212.400 8.800 1102.910 312.000 3.132
Std 3J47 136.944 3362 1J04 19.003 76.834 0.292

Maximtun 9.000 5820.070 1216.000 10.000 1129.900 380.000 3.464
Minimum I.OOO 3494.390 1207.000 7.000 1084.430 194.000 4.683

VIII (PO) Average 310.200 4942.396 1218.200 8.600 1113.730 343.400 5.633
Std 336.028 186.802 7.328 1.817 12.103 87.999 0.636

Maximum 844.000 3148.360 1227.000 11.000 1129.430 443.000 6.418
Minimum 3.000 4703.830 1209.000 7.000 1097.930 222.000 4.837

IX (PP) Average 178.000 3027.176 1213.400 8.400 1103.180 318.400 3.239
Std 199.341 337.278 2.608 1.317 3.141 37.639 0.226

Maximum 306.000 3648JI0 1217.000 10.000 1108.730 389.000 3.531
Minimum 16.000 4749.790 1210.000 6.000 1096.100 236.000 4.944

Experiment II: The Effect of Population Size

In this experiment the impact of the population size on the performance of the CGA Cmax 

model was investigated. It was mentioned in Chapter HI that three population sizes were selected 

to be tested: 44+nm; 44+2nm, and 44+4nm. The same five problems solved in experiment I were 

used in this experiment. Thus, there were three population sizes, ten replicates for three problems, 

and five replicates for two problems, a total of 120 problems. The CGA Cmax model was used to 

solve the 120 problems.
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The results obtained for each problem and for each population size are reported in Tables

C.l through C.15 in Appendix C. These results were summarized and are given in Tables 12 

through 16. These tables have the same design described in the previous section except for the first 

column. In column 1, the population size number is given. The formula used to compute the 

percentage of error in the previous section was used in this experiment.

This experiment was designed to have two-fector factorial design. The first factor was the 

population size and the second fector was the problem number. There were three levels for the 

first factor and five levels for the second factor. A two-way ANOVA procedure was conducted on 

the results obtained. The results showed a significant level of 0.0001 for the first factor, which 

means that the population sizes are significantly different. To further investigate the significance 

of these population sizes, one-way ANOVA Tukey’s range test procedures were performed. The 

results of the range test ranked the population sizes as follows: 44+4nm; 44+2nm, then 44+nm. 

Also, the results of Tukey’s range test grouped the following population sizes: 44+4nm and 

44+2nm. This implies that these two population sizes are not significantly different; however, they 

are significantly different from 44+nm.

The above analysis of the results suggests that the performance of the CGA Cmax was the 

same when the following population sizes were used: 44+4nm and 44+2nm. Also, it recommends 

that those population sizes were better than 44+nm. However, from Tables 12 through 16 it can be 

seen that when the population size was increased from 44+nm to 44+2nm, the makespan was 

improved by approximately 0.5%. Also, increasing the population size from 44+nm to 44+4nm 

improved the makespan by approximately 0.81%. In addition, the percentages of increase in the 

CPU times ranged between 48.1% and 82.267% when the population size was increased from 

44+nm to 44+2nm. Also, when the population size was increased from 44+nm to 44+4nm, the 

range of the percentages of increase in the CPU time was between 136.1% and 243.48%. With 

these marginal improvements in the makespan and the huge increase in the CPU times, the
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following conclusion is given. It is sufficient to state that when the population size was 44+nm. 

acceptable results were obtained with both reasonable CPU times and good quality solutions. 

Therefore, this population size, 44+nm, was the only population size that was used in experiments 

111, rv, V, VI, and VII.

Table 12. Experiment II; Summary of results obtained for problem FT6.
Population

size
Statistics No. of 

alternatives
CPU time 

(Sec.)
Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Percentage of 
error

Average 62.600 28.226 55.700 0.700 51.767 1.300 1.273
44+nm Std 21.737 4.984 1.059 1.252 0.763 2.791 1.926

Kfaximum 80.000 40.810 58.000 4.000 53.667 9.000 5.455
Minimum 30.000 22J50 55.000 0.000 51.000 0.000 0.000
Average 83.200 41.788 55.700 0.500 51.050 0.800 1.273

44+2nm Std 31.650 9.025 0.949 0.707 1.039 1.135 1.725
Maximum 116.000 64.100 57.000 2.000 53.000 3.000 3.636
Minimum 13.000 32.460 55.000 0.000 49.500 0.000 0.000
Average 138.300 66.626 55.700 0.400 50.800 0.700 1.273

44+4nm Std 42.620 5.570 0.949 0.516 0.919 0.949 1.725
Maximum 188.000 72.830 57.000 1.000 51.500 2.000 3.636
Minimum 93.000 56.470 55.000 0.000 49.500 0.000 0.000

Population size displacement Percentage of increase in CPU time Percentage of improvement in makespan

From 44+nm to 44+2nm. 48.048 0.000
From 44+nm to 44+4nm. 136.045 0.000

From 44+2nm to 44+4nm. 59.438 0.000

'able 13. Experiment II: Summary of results obtained for problem FTIO.
Population

size
Statistics No. of 

alternatives
CPU time 

(Sec)
Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Percentage of 
error

44+nm Average 135.600 178.846 976.100 4.200 871.650 126.700 4.957

Std 11.759 7.365 5.607 0.789 27.260 38.592 0.603

Maximum 144.000 193.330 987.000 5.000 900.800 185.000 6.129

Minimum 114.000 167.960 968.000 3.000 825.000 50.000 4.086

44+2nm Average 239.600 325.977 970.000 3.800 872.200 113.100 4.301

Std 13.914 17J52 7.860 0.632 33.477 41.908 0.845

Maximum 244.000 362.560 985.000 5.000 912.200 192.000 5.914

Minimum 200.000 298J50 960.000 3.000 825.400 53.000 3.226

44+4nm Average 441.500 567.703 964.400 3.800 872.900 91.600 3.699

Std 7.561 20.004 2.271 0.422 33.016 13.664 0.244

Maximum 444.000 598.360 968.000 4.000 895.100 99.000 4.086

Minimum 420.000 537.940 960.000 3.000 819.000 53.000 3.226

Population size displacement Percentage of increase in CPU time Percentage of improvement in makespan

From 44+nm to 44+2nm. 82.267 0.625

From 44+nm to 44+4nm. 217.426 1.199

From 44+2nm to 44+4nm. 74.154 0.577
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Table 14. Experiment II; Summary of results obtained for problem FT20.
Population

size
Statistics No. of 

alternatives
CPU time 

(Sec.)
Makespan
(Cmax)

Number
Tardy

Average (low 
time

Total
Tardiness

Percentage ot' 
error

44-̂ nm Average
Std

Maximum
Minimum

113.9(K)
50.382
144.000
2.000

350.079
34.981

622.190
512.790

1194.000 
7.024

1204.000
1182.000

2.300
0.675
4.000
2.000

893.955
23.838

929.600
858.200

50.900
22.903
98.000
23.000

2.489
0.603
3.348
1.459

44-^2nm Average
Std

Maximum
Minimum

179.500
87.423

244.000
12.000

940.457
42.228

1013.920
881.780

1186.700
6395

1193.000
1178.000

1.800
0.422
2.000
1.000

895.785
19.382

924.150
869.850

31.000 
9.955

49.000
19.000

1.863
0.549
2.403
1.116

44+4nm Average
Std

Maximum
Minimum

390.700
137300
444.000
7.000

1778.911
207.658
2318.180
1594.220

1188.400
9348

1203.000
1178.000

1.800
0.632
3.000
1.000

892.510
23.939

927.800
860.400

34.500
13.517
63.000
17.000

2.009
0.802
3.262
1.116

Population size displacement Percentage of increase in CPU time Percentage of improvement in makespan

From 44+nm to 44*2nm. 
From 44+nm to 44+4nm. 

From 44+2nm to 44+4nm.

70.968
223.392
89.154

0.611
0.469
-0.143

II: Summary of results obtained for problem LA2S.
Population

size
Statistics No. of 

alternatives
CPU time 

(Sec.) _
Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Percentage of 
error

44+nm Average 104.600 554.848 1016.400 5.400 932.947 137.200 4.033
Std 95.508 36.611 12.502 1.140 7.142 23.983 1.280

Maximum 194.000 615.660 1032.000 7.000 940.667 164.000 5.629
Minimum 3.000 517.950 1007.000 4.000 925.667 105.000 3.071

44+2nm Average 240.600 985.494 1009.400 4.800 924.600 96.200 3.316
Std 68.744 42.255 4.615 1.095 13.260 21.347 0.472

Maximum 343.000 1036.280 1015.000 6.000 940.667 131.000 3.889
Minimum 176.000 941.750 1003.000 3.000 905.267 78.000 2.661

44+4nm Average 266.000 1817.002 1003.800 5.000 932.307 85.800 2.743
Std 343.891 64.436 1.789 0.000 1.403 1.095 0.183

Maximum 643.000 1906.630 1007.000 5.000 933.667 87.000 3.071

Minimum 1.000 1748390 1003.000 5.000 930.867 84.000 2.661

Population size displacement Percentage of increase in CPU time Percentage of improvement in makespan

From 44+nm to 44+2nm. 77.615 0.689
From 44+nm to 44+4nm. 227.477 1.240

From 44+2ran to 44+4nm. 84375 0.555

Table 16. Eiperiment
Population

size
Statistics No. of 

alternatives
CPU time 

(Sec.)
Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Percentage of 
error

44+mn Average 144.200 1442.146 1224.400 10.000 1125.750 409.200 6.193
Std 129.010 53.474 8.081 1.000 28.681 137.583 0.701

Maximum 244.000 1482.600 1233.000 11.000 1154.850 601.000 6.938

Minimum 1.000 1351390 1214.000 9000 1080.050 256.000 5.291

44+2nm Average 202.000 2583.258 1217.000 8.000 1110.120 314.200 5.551
Std 159.465 83.443 11.853 2.828 34.936 99.746 1.028

Maximum 442.000 2690.860 1231.000 12.000 1147.250 460.000 6.765

Minimum 35.000 2470.220 1200.000 6.000 1058.350 218.000 4.076

44+4nm Average 116.600 4953.486 1210.400 7.400 1095.820 271.200 4.978
Std 227.027 108.287 14.605 1.517 22.985 53.719 1.267

Maximum 522.000 5110.820 1229.000 10.000 1131.200 320.000 6.592
Minimum 1.000 4810.480 1191.000 6.000 1067.550 186.000 3.296

Populiition size displacement Percentage of increase in CPU time Percentage of improvemem in makespan

From 44+nm to 44+2ntiL 79.126 0.604
From 44+nm to 44+4nm. 243.480 1.143

From 44+2nm to 44+4nm, 91.753 0.542
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Experiment HI: Comparison of CGA Cmax and UGA Cmax

The performance of the CGA Cmax and the UGA Cmax were compared in this 

experiment. The nine problems discussed earlier in this chapter were solved in this experiment. 

The CGA_Cmax and the UGA_Cmax were used to solve the nine problems using five replicates. 

Thus, each of these models solved a total of 45 problems.

The results obtained for each problem by both models are reported in Tables D. 1 through

D.18 in Appendix D. These results were summarized and are given in Tables 17 through 25. 

These tables have the same design described in the “Experiment I” section except for the first 

column, which instead of listing the combination number lists the model type. The percentage of 

error in this experiment was calculated as follows:

a i =lOO((CmaXi - Cmaxopt)/Cmaxopt)

Where:

ai: The percentage deviation of the solution obtained by algorithm i from the optimal 

solution.

Cmax,: The makespan obtained by the algorithm i (i.e., CGA Cmax or UGA Cmax).

CmaxoPT: The optimal makespan.

This experiment was designed to have two-factor 6ctorial design. The first factor was the 

model type and the second fector was the problem number. There were two levels for the first 

fector and nine levels for the second factor. A two-way ANOVA procedure was conducted on the 

results obtained. The results showed a significant level of 0.00000012 for the first factor, which 

means that the two models are significantly different. To further investigate the significance of 

these two models, one-way ANOVA Tukey’s range test procedures were performed. The results of 

the range test showed that they are significantly different and ranked the CGA Cmax as better than 

the UGA Cmax.
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The conclusion from the Tukey’s range test can be supported by the percentage errors 

obtained for each problem by both models. From the results obtained, it can be seen that the 

average percentage errors over the nine problems for the CGA Cmax ranged between 1.091% and 

6.672% and the range for the UGA was between 2.5% and 8.077%. Also, when the average 

percentage errors over the nine problems obtained by both models were compared, the CGA Cmax 

improved the average percentage errors by approximately 27.44%. From these results, it should be 

clear that the CGA Cmax performed better than the UGA Cmax

The adaptation curves of both the CGA Cmax and UGA Cmax are given in Figure 18 for 

the LA25 problem with respect to the best makespan obtained in each generation. From Figure 18, 

it can be seen that the CGA achieved better results in fewer generations, which supports the 

hypothesis that the CGA should perform better than the UGA using fewer generations.
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Figure 18. The adaptation curves for the CGA Cmax and the UGA Cmax for the LA25
problem.

From the nine tables, it can be seen that the averages of the CPU times needed by the 

UGA Cmax were lower than the CPU times needed by the CGA Cmax except for in one problem. 

The average CPU time needed by the CGA Cmax over the nine problems was 805.39 seconds, 

while the average CPU time required by the UGA Cmax was 767.37 seconds. This means that the 

UGA reduced the CPU time by only 4.7%, which is an insignifrcant reduction.



131

Table 17. Experiment III: Summary of results obtained for problem FT6,
Approach Statistics Vo. of 

alternatives
CPU time 

(Sec.)
Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Percentage of 
error

CGA Cmax Average 59.200 24.736 55.600 0.800 51.833 1.800 1.091
Std 23.669 2.216 1342 1.789 1.048 4.025 2.439

Maximum 80.000 27.190 58.000 4.000 53.667 9.000 5.455
Minimum 21.000 22.570 55.000 0.000 51.000 0.000 0.000

L'OA Cmax Average 73.000 20.926 57.000 1.000 49.600 2.000 3.636
Std 6.285 0.498 0.000 0.000 0.091 0.000 0.000

Maximum 78.000 21.640 57.000 1.000 49.667 2.000 3.636
Minimum 63.000 20.330 57.000 1.000 49.500 2.000 3.636

Table 18. Experiment III; Summary of results obtained for problem FTIO
Approach Statistics No. of 

ahematives
CPU time 

(Sec.)
Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Percentage of 
error

CO.A Cmax Average 85.600 175.432 971.200 4.000 866.180 118.200 4.430
Std 69.762 6.490 7.155 1.000 38.032 45.483 0.769

Maximtim 144.000 180.980 976.000 5.000 895.600 184.000 4.946
Minimum 6.000 167.900 960.000 3.000 823.700 61.000 3.226

UGA Cmax Average 132.200 171.458 970.000 4.200 853.100 118.000 4.301
Std 20.789 9.941 6.285 1.643 45.494 57.000 0.676

Maximum 144.000 188.670 976.000 7.000 934.000 178.000 4.946
Minimum 96.000 163.130 960.000 3.000 825.400 53.000 3.226

able 19. Experiment III: Summary of results obtained for problem FT20,
.Approach Statistics No. of 

alternatives
CPU time 

(Sec.)
Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Percentage of 
error

CGA Cmax Average 89.400 527.978 1194.200 2.600 890.560 53.600 2.506
Std 68.948 12.993 7.294 1.140 24.969 22.131 0.626

Maximum 144.000 537.500 1200.000 4.000 930J50 73.000 3.004

Minimum 3.000 506.090 1182.000 1.000 861.700 17.000 1.459

UGA Cmax Average 112.800 492.738 1194.200 2.000 806.090 52.000 2.506
Std 59.403 26.103 13.864 0.000 32.207 28.258 1.190

Maximum 144.000 529.870 1210.000 2.000 856.700 82.000 3.863

Minimum 7.000 468.680 1180.000 2.000 768.550 19.000 1.288

Table 20. Eiperiment III: Summary of results obtained for problem LA21
.Approach Statistics No. of 

ahematives
CPU time 

(Sec.)
Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Percentage of 
error

CGA Cmax Average 166.000 578.586 1102.000 4.200 973.413 152.400 5.354

Std 53.670 16.172 6.000 0.447 10.702 36.562 0.574

Maximum 191.000 600.110 1112.000 5.000 988.200 216.000 6.310
Minimum 70.000 558.320 1097.000 4.000 960.200 127.000 4.876

UGA Cmax Average 38.600 582.616 1100.200 4.200 963.040 175.600 5.182
Std 38.914 21.990 6.058 0.447 9.866 28.919 0.579

Maximum 84.000 609.890 1109.000 5.000 975.067 206.000 6.023

Minimum I.OOO 555.030 1094.000 4.000 951.400 144.000 4.589

Table 21. Experiment III: Summary of results obtained for problem LA25.
Approach Statistics No. of 

ahematives
CPU time 

(Sec.)
Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Percentage of 
error

CGA Cmax Average 80.000 597.598 1005.600 5.200 929.600 102.200 2.927
Std 69.653 14.152 3.975 0.447 2.277 29.794 0.407

Maximum 188.000 616.100 1012.000 6.000 933.667 155.000 3.582
Minimum 22.000 577.050 1003.000 5.000 928.467 84.000 2.661

UGA Cmax Average 79.800 540.908 1037.600 4.800 880.000 179.800 6.203
Std 85.692 26.877 8.905 1.095 28.661 47.267 0.911

Maximum 194.000 586.170 1051.000 6.000 926.333 234.000 7.574
Minimum 1.000 519.710 1029.000 3.000 849.933 127.000 5.322
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.Approach Statistics No. of 
ahematives

CPU time 
(Sec)

Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Percentage of 
error

CGA Cmax Average 49.400 1607.736 1291.400 5.400 1147.420 191.800 4.567

Std 52.276 69.983 10.188 2.074 15.639 104.428 0.825

Maximum 129.000 1708.180 1305.000 8.000 1166.500 368.000 5.668

Minimum 2.000 1530.610 1278.000 3.000 1129.700 89.000 3.482

CGA Cmax Average 70.400 1483.432 1305.400 5.800 1142.540 256.400 5.700

Std 101.530 39.216 7.603 0.447 14.746 39.450 0.616

Maximum 244.000 1536.430 1314.000 6.000 1167.150 303.000 6.397

Minimum 1.000 1440.920 1296.000 5.000 1128.050 196.000 4.939

Table 23. Experiment III: Summary of results obtained for problem LA29,
.Approach Statistics No. of 

alternatives
CPU time 

(Sec)
Makespan

(Cmax)
Number
Tardy

Averagç flow 
time

Total
Tardiness

Percentage of 
error

CGA Cmax Average 52.400 1547.418 1217.400 9.800 1120.280 395.800 5.585

Std 104.923 44.259 6J87 2.168 26.240 123.435 0.554

Maximum 240.000 1607.780 1224.000 12.000 1151.450 576.000 6.158

Minimum 3.000 1508.420 1208.000 7.000 1079.850 262.000 4.770

UGA Cmax Average 124.200 1473.432 1236.000 9.400 1098.230 464.600 7.199

Std 118.122 65.485 10.320 0.894 17.542 113.997 0.895

Maximum 243.000 1540.770 1250.000 10.000 1119.000 636.000 8.413

Minimum 1.000 1371.490 1227.000 8.000 1071.600 341.000 6.418

Table 24. Experiment III: Summary of results obtained for problem LA38,
.Approach Statistics No. of 

ahematives
CPU time 

(Sec.)
Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Percentage of 
error

CGA Cmax Average 69.400 1104.334 1275.800 5.400 1146.973 231.000 6.672

Std 114.921 47.548 13.864 0.894 7.187 74.887 1.159

Maximum 269.000 1154.540 1300.000 7.000 1159.333 364.000 8.696

Minimum 1.000 1059.460 1268.000 5.000 1140.533 190.000 6.020

UGA Cmax Average 102.400 1079.124 1292.600 5.400 1148.760 333.800 8.077

Std 128.282 28.378 7.470 0.548 11.940 78.085 0.625

Maximum 267.000 1110.540 1303.000 6.000 1160.133 449.000 8.946

Minimum 7.000 1049.630 1282.000 5.000 1131.200 259.000 7.191

Table 25. Experiment III: Summary of results obtained for problem LA40,
Approach Statistics No. of 

ahematives
CPU time 

(Sec)
Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Percentage of 
error

CGA Cmax Average 222.000 1084.702 1277.000 4.800 1159.267 168.000 4.501

Std 87.247 35.200 2.236 0.447 10.845 42.497 0.183

Maximum 269.000 1120J20 1278.000 5.000 1176.067 226.000 4.583

Minimum 67.000 1028.090 1273.000 4.000 1148.000 135.000 4.173

UGA Cmax Average 249.800 1061.718 1285.000 5.000 1140.640 202.800 5.156

Std 32.813 42.759 6.928 0.707 13.622 48.515 0.567

Maximum 269.000 1126.900 1294.000 6.000 1160.667 272.000 5.892

Minimum 192.000 1009.250 1278.000 4.000 1125.933 139.000 4.583

The following table compares the results of the best solution obtained by the CGA Cmax 

for the nine problems with the results of other GA approaches. These approaches were selected 

because they are the only approaches that solved the problems that were solved in this research.
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Table 26. Comparison of the CGA Cmax with other GA approaches.
Problem Optimal CGA N&Y P GA SB GA GP GA CTV GTK GA3

FT06 55 55 55 55 55 55 55 55 55
FTIO 930 960 965 960 938 936 946 962 930
FT20 1165 1182 1215 1249 1178 1181 1178 1175 1165
LA21 1046 1097 - 1139 1074 - 1097 - 1047
LA25 977 1003 - 1014 1008 - - - 977
LA27 1235 1278 - 1378 1272 1269 - - 1236
LA29 1153 1208 - 1336 1204 1233 - - 1180
LA38 1196 1268 - 1296 1251 1251 - - 1201
LA40 1222 1273 - 1321 1274 1252 - - 1228

N&Y: A GA approach by Nakano and Yamada (1991). 
P_GA: A GA approach by Domdorf and Pesch ( 1995). 
SB_GA: A GA approach by Domdorf and Pesch (1995). 
GP GA: A GA approach by Bierwirth (1995).

CTV: A GA approach by Croce, Tadei, and Volta (1995). 
GTK: A GA approach by Gen, Tsumjimura, and Kubota 

(1994).
GA3: A GA approach by Mattfeld (1996).

It should be clear from Table 26 that only four GA approaches solved all the nine 

problems that were solved in this research study. However, this does not make this comparison 

insignificant. All the above GA approaches solved the three problems designed by Fisher and 

Thompson (1963) and four of them solved the problems designed by Lawrence (1984). From 

Table 26, it is clear that the CGA obtained reasonable results given the fact that all of the other GA 

approaches were tuned to obtained the best for most of the problems solved. Also, all o f these GA 

approaches were implemented with larger number of replicates, larger number of generations, and 

larger population sizes (refer to Chapter II for details of these approaches). For example, the N&Y 

approach was implemented using a population size of 1000 and the number of generations was 

150. Also, the number of generations in the GTK approach was 5000. The best solutions for both 

the GP_GA and G A3 were obtained after 100 replications and 30 replications respectively.

Table 27 compares the results of the best solution obtained by the CGA Cmax for the nine 

problems with the results of other approaches. In Table 27, the fourth column presents the results 

obtained by the shifting (bottleneck algorithm. Columns 5 and 6 give the results for two tabu 

search approaches. In columns 7 and 8, the results obtained by two simulated annealing 

algorithms are given. The last column presents the results of a hybrid approach, which is a 

combination of a simulated annealing algorithm and the shifting bottleneck algorithm. Again, from 

Table 27, it is clear that the CGA obtained reasonable results given the fact that it was not tuned to
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compete with other approaches.

’able 27. Comparison of the CGA Cmax with other approaches.
Problem

FT06
FTIO
FT20
LA2I
LA25
LA27
LA29
LA38
LA40

Optimal CGA ABZ
55

930
1165
1046
977
1235
1153
1196
1222

DT NS LAL YRN YN
55

960
1182

55
930
1178

55
935
1165

55
930
1165

55
930
1165

930
1165

1097
1003
1278
1208
1268
1273

1084
1017
1291
1239
1255
1269

1048
979
1242
1182
1203
1233

1055
988
1259
1164
1209
1234

1063
992
1269
1218
1215
1234

1050
985
1262
1188
1209
1235

1046
977
1235
1154
1198
1228

ABZ: The Shilling Bottleneck (SB) algorithm by Adams, Balas, and Zawack (1988). 
DT: A tabu search (TA) approach by Dell’Amico and Tmbian (1993).
NS: A tabu search (TA) approach by Nowicki and Smutnicki (1996).
LAL: A simulated annealing (SA) algorithm by Laarhoven, Aarts, and Lenstra (1992). 
YRN: A simulated annealing (SA) algorithm by Yamada, Rosen, and Nakano (1994). 
YN: A hybrid approach (SA plus SB) by Yamada and Nakano (1996).______________

Experiment IV; Comparison of CGA TT and UGA TT

In this experiment the performance of the CGA TT and the UGA TT models were 

compared. The same nine problems that were solved in experiment III were used in this 

experiment. As mentioned earlier in this chapter, the due dates for the problems solved in 

experiments IV, V, and VII were computed using the results obtained in experiment III. The due 

dates in this experiment were computed using the procedures given below. These procedures 

produced very tight due dates and consequently very difficult problems, which is good for the 

purpose of comparisons. These procedures are as follows:

1. From the results given in the tables in Appendix D, the best replicate among the five replicates 

for each problem was selected first. For example, from Table D.I the best replicate is 

replicate number three.

2. Then, for each problem, several completion times for each job were computed using the 

number of alternatives of the best solution obtained for the replicate selected. For example, 

fiom Table D.I the number of alternatives associated with the third replicate is 80. This 

means that there were 80 completion times for each job for the FT06 problem.

3. Next, for each problem, the average and the standard deviation for each job’s completion were
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computed: Cj . Hence, for the 80 aitemative sequences, the average and the standard

deviation for each job’s completion were computed.

4. Then, for each problem, the maximum average completion time among all jobs was

determined: Cmax •

5. Finally, for each problem, the due date for each job was computed as follows: d,=C, -

max[(Cmax -optimal solution), Cq ].

Thus, the above procedures which are based on job flow time estimates were used to 

compute the due dates for jobs in the nine problems. Then the nine problems were solved by both 

the CGA_TT and the UGA TT, using five replicates. To compare the results of the CGA TT and 

the UGA_TT, each of the nine problems was solved by sampling from active and non-delay 

schedules developed using dispatching heuristics. The sample size was 1000 schedules in which 

500 schedules were sampled fi~om active schedules and the rest were sampled from non-delay 

schedules. The dispatching heuristics used to generate the initial population of chromosomes were 

used to sample from both schedule types. Then, the result of the dispatching heuristic that obtained 

the best total tardiness was compared with the results obtained by both the CGA TT and the 

UGA_TT.

The results obtained for each problem by both models are reported in Tables E. 1 through

E.I8 in Appendix E. These results were summarized and are given in Tables 28 through 36. 

These tables have the same design described in the “Experiment I” section except for the first 

column and the last row. The first column gives the model type instead of the combination 

number. The last row in each table represents the results obtained by the dispatching heuristic. In 

this row, column 2 gives the dispatching heuristic name that obtained the minimum total tardiness 

among the 1000 solutions sampled. In this experiment the percentage of error was computed as 

follows:
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a , =100((1T. - TTb«)/T T b« )

Where:

ai: The percentage deviation of the solution obtained by algorithm i from the best solution.

TT,: The total tardiness obtained by the algorithm i (i.e., CGA TT, UGA_TT, or 

dispatching heuristic).

TTae»; The best obtained total tardiness.

The t\vo-fector factorial design used in experiment III was used in this experiment. A two- 

way ANOVA procedure was conducted on the results obtained. The results showed a significance 

level of 0.000000005 for the first factor, which means that the CGA TT and the UGA TT are 

significantly different. To further investigate the significance o f these two models, one-way 

ANOVA Tukey’s range test procedures were performed. The results of the range test ranked the 

CGA_TT before the UGA_TT.

It can be seen from the nine tables that the CGA TT and UGA TT outperform the 

dispatching heuristics in all problems. The CGA TT and UGA_TT improved the average 

percentage errors over the best heuristic by 1388.11% and 326.68% respectively.

The Tukey’s range test results can be supported by the results obtained for the percentage 

errors given in the nine tables. From these tables, the percentage errors for the CGA TT ranged 

between 0% and 22.38%, while the range for the UGA TT was between 8.63% and 165.19%. 

When the average percentage errors over the nine problems obtained by both models were 

compared, the CGA TT improved the average percentage errors by approximately 248.77%. 

From these results it is obvious that the CGA TT outperformed the UGA_TT.

The adaptation curves of both the CGA TT and UGA TT are given in Figure 19 for the 

FT20 problem with respect to the best total tardiness obtained in each generation. It should be 

clear that the CGA TT achieved better results in fewer generations, as shown in Figure 19.
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Figure 19. The adaptation curves for the CGA TT and the UGA_TT for the FT20 problem.

In the nine tables, it can be seen that the averages for the CPU times needed by the 

CGA_TT were lower than the CPU times needed by the UGA TT. From the results given in 

Table 27 through 35, the average CPU time over the nine problems for both the CGA TT and the 

UGA_TT can be computed. The average for the CGA TT was 754.16 seconds and the average 

for the UGA TT was 835.12 seconds. This means that the CGA TT reduced the CPU time by 

approximately 11%. The results support the hypothesis that the CGA approach obtained better 

solutions with much less computational effort than the UGA approach.

Table 28. Experiment IV; Summary of results obtained for problem FT6.
Approach Statistics No. of 

ahematives
CPU time 

(Sec.)
Makespan

(Cmax)
Number
Tardy

Average flow 
time

Total
Tardiness

Percentage of 
error

CGA_TT Average 63.800 22.126 55.000 4.000 51.000 5.750 0.000

Std 18.539 0.602 0.000 0.000 0.000 0.000 0.000

Maximum 79.000 23.010 55.000 4.000 51.000 5.750 0.000
Minimum 34.000 21.540 55.000 4.000 51.000 5.750 0.000

UGA_1T Average r 73.600 23.332 56.800 4.000 50.233 7.436 29.32

Std 14J1I 0.959 1.643 0.000 0.435 1.054 18.33

Maximum 80.000 24.880 58.000 4.000 51.000 8.130 41.39

Minimum 48.000 22.300 55.000 4.000 50.000 5.750 0.00

Best
dispatching

heuristic

JST(A)andOST(A) 2.250 57.000 6.000 52.833 15.56 170.61
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Table 29. Experiment IV; Summary of results obtained for problem FTIO
Approach Statistics No. of 

ahematives
CPU time 

(Sec.)
Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Percentage of 
error

CGA_TT Average 144.000 164.700 1007.800 7.400 813.160 308.832 13.092
Std 0.000 2.672 55.283 2.510 8.431 33.909 12.417

Maximum 144.000 168.020 1094.000 10.000 821.600 346.000 26.703
Minimum 144.000 160.770 960.000 5.000 802.000 273.080 0.000

UGA_TT Average 142.800 182.662 977.200 8.000 816.760 296.648 8.630
Std 1.789 4.684 23.552 2.739 6.628 32.272 11.818

Maximum 144.000 188.400 1003.000 10.000 821.600 332.000 21.576
Minimum 140.000 176.760 960.000 5.000 809.400 273.080 0.000

Best
dispatching

heuristic

Biased-RANDOM(ND) 9.170 1148.000 8.000 848.8 638 133.63

able 30. Experiment IV: Summary of results obtained for problem FT20.
Approach Statistics No. of 

ahematives
CPU time 

(Sec.)
Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Percentage of 
error

CGA_TT Average 128.400 425.014 1184.400 4.000 752.390 111.716 18.923
Std 18.982 16.726 3.286 0.707 2J46 15.195 16.175

Maximum 144.000 446.440 1188.000 5.000 754.350 123.900 31.893
Minimum 101.000 406.390 1182.000 3.000 748.450 93.940 0.000

L’GA_TT Average 23.600 514.826 1215.000 8.000 759.040 249.120 165.191
Std 29.594 34.750 12.000 2.000 6.177 25.273 26.903

Maximum 73.000 573.640 1228.000 11.000 765.400 279.010 197.009
Minimum 1.000 484.380 1201.000 6.000 751.250 214.970 128.838

Best
dispatching

heuristic

A/OPN(ND) 17.630 1228.000 8.000 776.1 449.58 378.58

Table 31. Experiment IV: Summary of results obtained for problem LA21
Approach Statistics No. of 

alternatives
CPU time 

(Sec.)
Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Percentage of 
error

CGA_TT Average 89.400 576.068 1163.800 5.800 933.067 652.588 15.002
Std 89.941 16.013 51.163 1.789 16.413 56.832 10.015

Maximum 192.000 595.880 1205.000 8.000 951.933 725.060 27.773
Minimum 1.000 551.950 1093.000 4.000 914.267 567.460 0.000

UGA_TT Average 83.400 648.760 1129.000 6.400 927.120 667.680 17.661
Std 101.520 36.416 28.618 1.517 20.451 32.767 5.774

Maximum 194.000 705.140 1177.000 8.000 946.600 707.660 24.707
Minimum 1.000 613.470 1102.000 5.000 898.067 627.060 10.503

Best
dispatching

heuristic

Biased-RANDOM(ND) 18.560 1205.000 10.000 967.067 1115.86 96.64

able 32. Experiment IV; Summary of results obtained for problem LA25.
Approach Statistics No. of 

alternatives
CPU time 

(Sec.)
Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Percentage of 
error

CGA_TT Average 65.600 565.832 1055.800 5.600 865.720 335.594 22.381
Std 77.861 25.583 7.662 1.673 10.925 38.491 14.037

Maximum 194.000 586.660 1068.000 8.000 880.200 378.690 38.097
Minimum 2.000 530.910 1047.000 4.000 851.467 274.220 0.000

UGA_TT Average 109.800 607.036 1127.600 4.000 865.987 379.218 38.290
Std 86.511 16.768 119.427 0.707 11.050 46.006 16.777

Maximum 194.000 636.540 1333.000 5.000 878.667 423.190 54.325
Minimum 10.000 595.990 1055.000 3.000 853.067 323.240 17.876

Best
dispatching

heuristic

ATC(ND) 19.340 1376.000 3.000 905.133 743.89 171.27
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able 33. Experiment IV: Summary of results obtained for problem LA27.
Approach Statistics No. of 

ahematives
CPU time 

(Sec.)
Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Percentage of 
error

CGA TT Average 55.800 1462.720 1398.600 11.400 1081.720 630.292 14.368
Std 104.488 27J05 142.476 2.408 9.847 45.475 8.252

Maximum 242.000 1506.170 1570.000 14.000 1094.250 663.110 20.323
Minimum 1.000 1435.150 1279.000 8.000 1068.250 551.110 0.000

UGA TT Average 31.600 1627.498 1503.600 11.600 1094.800 818.848 48.582
Std 44.236 73.902 85.670 1.342 18.019 117.042 21.238

Maximum 108.000 1741.690 1600.000 13.000 1118.950 1015 140 84.199
Minimum 1.000 1538.800 1375.000 10.000 1079.450 729.960 32.453

Best
dispatching

heuristic

OCR(ND) 32.520 1363.000 17.000 1158.7 1574.11 185.63

Table 34. Experiment IV: Summary of results obtained for problem LA29
Approach Statistics No. of 

alternatives
CPU time 

(Sec.)
Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Percentage of 
error

CGA TT Average 9.200 1426.282 1510.800 7.000 1028.170 761.802 7.447
Std 12.418 60.230 102.984 2.345 35.547 43.464 6.130

Maximum 29.000 1518.800 1592.000 11.000 1080.250 814.000 14.810
Minimum 1.000 1371.270 1353.000 5.000 980.000 709.000 0.000

UGA TT .Average 51.600 1575.920 1573.600 8.000 1038.790 957.870 35.102
Std 107.565 72.651 57.440 1.225 11.339 52.570 7.415

Maximum 244.000 1660.060 1647.000 9.000 1052.350 1030.670 45.370
Minimum 1.000 1489.250 1489.000 6.000 1022.950 909.000 28.209

Best
dispatching

heuristic

ATC(ND) 30.920 1508.000 9.000 1102.750 1681.670 137.19

'able 35. Experiment IV: Summary of results obtained for problem LA38.
.Approach Statistics No. of 

alternatives
CPU time 

(Sec.)
Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Percentage of 
error

CGA_TT Average 153.800 1070.728 1370.400 10.800 1108.480 796.484 14.903
Std 133.915 30.650 34.782 1.304 10.002 64.001 9.233

Maximum 269.000 1110.590 1429.000 12.000 1117.133 858.540 23.855
Minimum 3.000 1034.410 1339.000 9.000 1092.667 693.180 0.000

UGA TT Average 112.000 1140.860 1358.600 11.600 1113.813 776.488 12.018
Std 125.427 20.400 49.501 1.140 9.123 17.232 2.486

Maximum 269.000 1173.270 1439.000 13.000 1120.867 795.280 14.729
Minimum 1.000 1118.560 1313.000 10.000 1099.867 757.180 9.233

Best
dispatching

heuristic

Biased-RANDOM(KD) 28.340 1523.000 12.000 1139.867 1510.28 117.88

"able 36. Experiment IV: Summary of results obtained for problem LA40.
Approach Statistics No. of 

alternatives
CPU time 

(Sec.)
Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Percentage of 
error

CGA TT Average 156.800 1074.002 1316.000 11.000 1107.053 367.810 0.000
Std 110.692 33.850 0.000 0.000 0.119 0.000 0.000

Maximum 260.000 1114.660 1316.000 11.000 1107.267 367.810 0.000
Minimum 1.000 1033.530 1316.000 11.000 1107.000 367.810 0.000

UGA IT Average 175.200 1195.202 1347.400 9.800 1112.613 424.104 15.305
Std 109.177 36.736 43.322 1.643 7.954 77.193 20.987

Maximum 269.000 1238.680 1402.000 11.000 1124.733 514J40 39.839
Minimum 14.000 1142.180 1316.000 8.000 1107.000 367.810 0.000

Best
dispatching

heuristic

Biased-RANDOM(ND) 27.080 1359.000 11.000 1152.6 1058.15 187.69
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Experiment V: Comparison of CGA WSPT and CGA SIM

The purpose of experiment V was to perform the following four comparisons;

1. Compare the CGA_WSPT with the CGA_SIM.

2. Compare the CGA SIM with the UGA SIM.

3. Compare the CGA_WSPT with the UGA WSPT.

4. Compare the UGA WSPT with the UGA SIM.

According to the results obtained in experiments III and IV, the CGA versions 

outperformed the UGA versions. Thus, according to this result, it is sufficient to state that there is 

no need to compare the UGA versions with the CGA versions in this experiment. Therefore, in this 

experiment only the CGA WSPT and the CGA SIM were compared.

In this experiment, seven of the nine problems discussed earlier were solved. These seven 

problems were FT06, FTIO, FT20, LA2I, LA25, LA38, and LA40. For each of the seven 

problems, a normal distribution was associated with the processing times of each operation. This 

implies that the process times in the original problem were used as the mean values for the normal 

distribution. The standard deviation for each of these process times was uniformly distributed 

between O.CSPjj and 0.25Pjj, where Py is the processing time of job i for operation j. The same due 

dates that were used in experiment IV were used in this experiment. As mentioned in the previous 

chapter, when the CGA WSPT was implemented, three probability levels were used to evaluate 

each chromosome. Liang (1996) concluded that three Pr values resulted in good estimates for the 

true mean when the normal distribution was used to generate process times. The errors in these

estimates were less than 10%. The three Pr values were 0.5, 0.54, and 0.58. Hence, these three Pr

values were used in this study. The CGA WSPT and the CGA SIM were used to solve the seven 

problems using five replicates for each problem.

The results obtained for each problem by both models are reported in Tables F. I through
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F. 14 in Appendix F. These results were summarized and are given in Tables 37 through 43. 

These seven tables were designed to use the same statistics presented in the earlier tables. 

However, the absolute percentage of error was computed for the four performance measures used 

in this study. Hence, the absolute percentage errors for these four performance measures are given 

in the seven tables. Also, 90% confidence intervals on all the four performance were constructed 

and are given in these tables. The four statistics were computed for the number of replicates made 

by the simulation to evaluate a chromosome, and are also given in the seven tables. The average 

number of replicates made by the simulation to evaluate a chromosome is also given in the seven 

tables. In this experiment, the absolute percentage of error was computed as follows:

a  = 1 0 0 (|X ,-X sim|/X sim)

Where:

a: The percentage deviation of the solution obtained by the CGA WSPT from the 

simulation solution.

Xi: The value of the performance measure i obtained by the CGA WSPT (i.e., the 

makespan, the number of jobs tardy, the average flow time, or the total tardiness).

Xsim: The performance measure value obtained by the simulation.

This experiment was designed to have two-fector factorial design. The first factor was the 

model type and the second factor was the problem number. There were two levels for the first 

factor and seven levels for the second fector. A two-way ANOVA procedure was conducted on the 

results obtained for each of the four performance measures: the makespan; the number of jobs 

tardy; the average flow time, and the total tardiness. With respect to the makespan, the results 

showed no significant difference exists between the CGA_WSPT and the CGA SIM. This implies 

that the CGA WSPT and the CGA SIM are not different. In terms of the last three performance 

measures, the results showed the following significant levels: 0.00048; 0.0029, and 0.00023. This
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implies that the CGA_WSPT and the CGA SIM are significantly different with respect to these 

three performance measures.

From the results, it can be seen that the percentages of errors for both the makespan and 

the average flow time ranged between 0.777% and 5.245%, and 0.768% and 3.21% respectively. 

This implies that the probability Gantt charting evaluation method was a good estimator for the 

makespan and the average flow time. This observation can be confirmed by observing that all 

averages estimated by the probability Gantt charting 611 within the 90% confidence interval. 

However, the probability Gantt charting was not a good estimator for the other two performance 

measures.

When the CPU times needed by both the CGA WSPT and CGA SIM were compared, the 

CGA WSPT reduced the CPU time by approximately 554.9%.

Table 37. Experiment V: Summary of results obtained for problem FT6,
Approach Statistics No. of 

alternatives
CPU time 

(Sec.)
Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Number of 
replicates

CGA_WSPT Average 18.600 61.802 59.319 4.200 52.176 14.918
Std 16.456 0.761 1.041 0.447 0J46 0.373

Maximum 45.000 62.510 61.181 5.000 52.331 15.085
Minimum 3.000 60.640 58.854 4.000 51.558 14.250

Percentage of error Average 3.299 40.000 3.210 25.976
Std 1.678 14.907 1.691 4.791

Maximum 4.093 66.667 4.291 31.003
Minimum OJOl 33J33 0.430 17.998

CGA_SIM Average 17.800 1606.998 61J43 3.000 50.564 20.202 67.711

Std 20.092 189.080 0.051 0.000 0.863 1.009 24.616
Maximum 52.000 1939.150 61J66 3.000 52.107 20.653 239.000

Minimum 1.000 1493.150 61.251 3.000 50.178 18J96 11.000

90% Confidence Lower 55.766 2.727 45.967 18.365

interval Upper 66.920 3.273 55.161 22.038
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Table 38. Experiment V: Summary of results obtained for problem FTIO.
Approach Statistics No. of 

alternatives
CPU time 

(Sec.)
Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Number of 
replicates

CGA.WSPT Average 136.600 454.090 1057.736 6.000 818.483 495.225
Std 4.775 11.033 19.602 0.000 7.250 37.746

Maximum 143.000 469.120 1079.332 6.000 827.185 533.409
Minimum 131.000 445.670 1036.885 6.000 812.432 452.772

Percentage of error Average 3J13 0.000 0.872 21.420
Std 1.873 0.000 0.746 6.808

Maximum 6.261 0.000 1.746 3L380
Minimum 1.487 0.000 0.006 14.730

CGA_SIM Average 26.800 3274.452 1087.658 6.000 823.072 631.139 61.125
Std 27.923 87.465 20.609 0.000 2.888 26.712 21.053

Maximum 74.000 3404.400 1106.850 6.000 829.347 659.827 239.000
Minimum 1.000 3172.660 1063.514 6.000 821.901 593.052 11.000

90% Confidence Lower 988.780 5.455 750.065 573.763
interval Upper 1186.536 6.545 900.079 688.515

Table 39. Experiment V: Summary of results obtained for problem FT20.
Approach Statistics No. of 

alternatives
CPU time 

(Sec.)
Makespan

(Cmax)
Number
Tardy

Average flow 
time

Total
Tardiness

Number of 
replicates

CGAWSPT Average 108.200 1274.786 1248.988 7.600 768.406 454.982
Std 56.060 47.744 11.838 1.140 7.861 38.425

Maximum 141.000 1322.930 1259.168 9.000 775.512 518.120
Minimum 9.000 1196.830 1232.552 6.000 758.724 426.703

Percentage of error Average 0.777 16.667 0.902 15.897
Std 0.668 15.235 0.708 9.506

Maximum 1.513 40.000 1.771 23.561
Minimum 0.130 0.000 0.166 0.176

CGAJIM Average 30.600 19119 236 1243.105 9.200 771.683 542J07 42.008
Std 62.843 1612.549 4.488 0.837 2.455 16.109 12.617

Maximum 143.000 20558.940 1250.980 10.000 774.001 558.224 82.000
Minimiun 1.000 16459.800 1240.339 8.000 767.601 519.031 11.000

90% Confidence Lower 1130.096 8.364 701.530 493.006
interval Upper 1356.115 10.036 841.836 591.608

fable 40. Experiment V: Summary of results obtained for problem LA21.
Approach Statistics No. of 

alternatives
CPU time 

(Sec.)
Makespan

(Cmax)
Number
Tardy

Average flow 
time

Total
Tardiness

Number of 
replicates

CGA_WSPT Average 185.800 1644J72 1216.819 6.800 952.550 1061.577
Std 5.586 56.025 23.462 1.924 22.982 207.853

Maximum 192.000 1728.840 1246.686 9.000 991.736 1363.652
Minimum 178.000 1574.880 1183.361 4.000 933.082 888.119

Percentage of error Average 3.300 21.944 2.604 19J55
Std 2.572 18.488 1.064 12.153

Maximum 7.156 50.000 3.910 30.049
Minimum 0.820 0.000 1.017 0.157

CGA_SIM Average 34.000 7044.898 1254.801 8.200 969.015 1231J24 12.613
Std 69507 260.971 35.964 0.447 6.087 61.549 3.129

Maximum 159.000 7356.060 1319.063 9.000 976.830 1336.242 37.000
Minimum 1.000 6752.100 1236.545 8.000 960.080 1184.059 11.000

90% Confidence Lower 1140.729 7.455 880.923 1119.385
interval Upper 1368.874 8.945 1057.107 1343.262
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able 41. Experiment V: Summary of results obtained for problem LA25,
.Approach Statistics No. of 

alterrratives
CPU time 

(Sec.)
Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Number of 
replicates

CGA_WSPT Average 177.400 1578.162 1224.555 4.000 876.795 652.753
Std 6.189 50.997 93.271 1.581 3.024 75.331

Ma.'dmnm 184.000 1636.720 1314.645 6.000 880.297 725.607

Minimum 169.000 1518.090 1126.100 2.000 873.222 537.390

Percentage o f error Average 5.245 38.571 2.583 21.308
Std 2.632 20.231 1.110 14.178

Maximum 8.328 66.667 3.632 39.887
Minimum 2.483 14.286 1.173 4.995

CGAJIM •Average 57.800 8261.398 1216.762 6.400 900.109 838.325 15.261
Std 70.262 419.902 41.099 0.548 7.504 67.117 5.733

Maximum 173.000 8801.590 1282.798 7.000 906.983 915.192 46.000
Minimum 7.000 7818.970 1171.990 6.000 890.747 763.758 11.000

90% Confidence Lower 1106.147 5.818 818.281 762.114
interval Upper 1327.376 6.982 981.937 914.536

Fable 42. Experiment V: Summary of results obtained for problem LA38.
Approach Statistics No. of 

alternatives
CPU time 

(Sec.)
Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Number of 
replicates

CGA_WSPT Average 255.600 3121.756 1441.245 9.800 1162.299 1618.590
Std 6.986 107.016 44.144 L304 14.029 125.180

Maximum 261.000 3244.340 1498.820 12.000 1177J06 1766.202
Minimum 247.000 2974.930 1381.867 9.000 1145.100 1496.685

Percentage o f error Average 3.221 17.273 1.054 9.870
Std 3.175 7.971 0.953 9.128

Maximum 8.608 25.000 2.401 22.759
Minimum 0.406 9.091 0.065 1.836

CGAJIM Average 32.800 15528.898 1410.554 11.400 1154.950 1474.151 13.968
Std 60J30 241.702 18.686 0.548 4.075 41.464 3.972

Maximum 140.000 15870.940 1429.715 12.000 1158.757 1520.735 40.000

Minimum 1.000 15193.050 1380.032 11.000 1149.703 1417.470 11.000

90% Confidence Lower 1282.322 10.364 1049.955 1340.137

interval Upper 1538.787 12.436 1259.946 1608.164

fable 43. Experiment V: Summary of results obtained for problem LA40.
Approach Statistics No. of 

alternatives
CPU time 

(Sec.)
Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Number of 
replicates

CGA_WSPT Average 249.200 3054.176 1401.987 10.800 1162.790 1191.720
Std 11.692 55.406 30.732 U 04 9.717 118.600

Maximum 263.000 3109.280 1444.590 12.000 1176.202 1367.004
Minimum 231.000 2972.570 1360.974 9.000 1149.836 1081.458

Percentage of error Average 2.069 12.788 0.768 12.118
Std 1.558 8.267 0.592 5.335

Maximum 4.174 20.000 1.590 18.903
Minimum 0.464 0.000 0.144 5.488

CGAJIM Average 74.800 18436.866 1414.053 11.000 1167.786 1292.927 15.586
Std 98.014 1842.928 14.217 0.707 2.895 40.349 4.935

Maximum 237.000 20720.260 1433.487 12.000 1171.639 1333.530 41.000
Minimum 1.000 16575.970 1398.818 10.000 1163.909 1227.459 11.000

90% Confidence 
interval

Lower
Upper

128Î.Î03
1Î42.603

10.000
12.000

1061.624
1273.949

1173.388 
1410.465
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Experiment VI: The Effect of Lot Sizing and Alternative Process Plans

In experiment VI, the effect of lot sizing and alternative process plans on the performance 

of the CGA WSPT approach was investigated. In this experiment four problems were solved: 

FT06; FTIO; FT20, and LA21. For problem FT06, the products’ order sizes were uniformly 

distributed between 50 and 200, while for the other three problems the order sizes were uniformly 

distributed between 3 and 12. For each of the four problems, a normal distribution was associated 

with the processing times of each operation. This implies that the process times in the original 

problem were used as the mean values for the normal distribution. The standard deviation for each 

of these process times was uniformly distributed between O.OSPjj and 0.25Pjj, where P,j is the 

processing time of job i for operation j. For each of the four problems, the set-up time for each 

operation was normally distributed with the parameters given in Table 44:

Problem name Mean o f the set-up time Standard deviation o f the Set-up time
FT06 IX was uniformly distributed between I & 10 O.lu
FTIO ix was uniformly distributed between 2 & 99 O.lu
FT20 U was uniformly distributed between 2 & 99 O.lp
LA21 ix was uniformly distributed between 7 & 99 O.lu

As mentioned earlier in this chapter, the due dates for the problems solved in this 

experiment were computed using the total work content (TWK) rule. In this study, the TWK was 

computed as follows: TWK=kP, where k is the due date factor (k=1.5) and P is the total work 

required. The P was computed as follows: P=Z QiPy + SSÿ, where Sÿ is the set-up time of product 

i on machine j, Pÿ is the process time of product i on machine j, and Qi is the lot size of product i.

The same three Pr values that were used in experiment V were used in this experiment to 

generate both process times and set-up times. Two alternative process plans and two lot sizing 

methods were associated with each product in the four problems. The first process plan associated 

with each product was the original process plan given in the problem under consideration. The 

second set of products’ process plans was formed by reducing the load on the first three bottleneck
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machines. In the first lot sizing method, the lot size equals the order size, while in the second 

method the lot size was less than the order size. In the second lot sizing method, the lot sizes were 

computed according to a lot sizing policy that was proposed by Sawaqed (1987). Sawaqed’s 

policy was to divided the order size to two or three lot sizes. In this study, a lot size was computed 

by first dividing the order size by three. Then, if the resultant lot size was not an integer number, 

then the order size was divided by two. Finally, if none of the division procedures produced an 

integer lot size, the lot size was kept equal to the order size.

From the proceeding paragraph, four cases were constructed as follows:

• Case I: Process plan number one and the lot size equal the order size (PP1 and 0  = Q).

• Case II: Process plan number one and the lot size less than the order size (PP 1 & 0  < Q).

• Case III: Process plan number two and the lot size equal the order size (PP2 and Q = 0).

• Case IV: Process plan number two and the lot size less than the order size (PP2 and Q < 0).

This means that there were two cases for alternative process plans, two cases for lot sizes, 

and four problems with five replicates, a total of 80 problems. Using the CGA WSPT model, the 

80 problems were solved.

The results obtained for each problem and for each case are reported in Tables G.l 

through G.I4 in Appendix G. These results were summarized and are given in Tables 45 through 

48. These tables have the same design described in the “Experiment I” section except for the first 

column. The first column gives the case number instead of the combination number. In this 

experiment the percentage of error was computed as follows:

=100((TTj - TTB«t)/TTBe3t)

Where:

Oj: The percentage deviation of the solution obtained for case i from the best solution.

TTi: The total tardiness obtained for case i (i.e., case I, case II, case HI, or case IV).
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TTaot; The best obtained total tardiness.

This experiment was designed to have two-factor factorial design. The first factor was the 

number of alternative process plans and the second factor was the number of methods used to 

compute the lot size. There were two levels for both Actors. A two-way ANOVA procedure was 

conducted on the results obtained for each of the four performance measures: the makespan; the 

number of jobs tardy; the average flow time, and the total tardiness. With respect to the makespan, 

the number of jobs tardy, and the total tardiness, the results showed no significant difference exists 

between the four cases. In terms of the average flow time, the results showed a significant level of 

0.04122 for the second Actor. This implies that the two lot sizing methods are significantly 

different with respect to the average flow time.

From the results, it can be seen that the percentages of errors for case IV were the smallest 

in all four problems except for in one problem. Also, the percentages of errors for case II were the 

second smallest in all four problems except for in one problem. When the order size was divided 

into several lot sizes, the makespan was reduced by approximately 92.31%, the number of jobs 

tardy was reduced by approximately 564.93%, the average flow time was reduced by 

approximately 855.78%, and the total tardiness was reduced by approximately 18254.2%.

To summarize, the results in this experiment showed that the potential for improving 

production criteria is much greater by adjusting lot size plans than by using alternative process 

plans. Also, this result showed that the choice of alternative process plan must include other 

criteria besides reducing maximum utilization.

Regarding the CPU times needed, when the order size was divided into several lot sizes, 

the CPU time was increased by approximately 683.4%.
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Case number Statistics N’o. of 
alternatives

CPUume
(Sec.)

.Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Percentage of 
error

I Average 73.600 59.166 4687.313 2.000 3426.271 1041.690 104208.980
PPl and O = Q Std 5.595 3.898 18.813 0.000 18.813 37.626 3741.229

Maximum 80.000 64.320 4720.967 2.000 3459.925 1108.997 110899.700
Minimum 69.000 53.830 4678.900 2.000 3417.858 1024.863 102486.300

II Average 110.000 263.470 4925.309 0.000 2896.768 0.000 0.00
PPl andO <Q Std 0.000 5.742 167.488 0.000 28.737 0.000 0.00

Maximum 110.000 269.410 5000.212 0.000 2942.759 0.000 0.00
Minimum 110.000 254.640 4625.698 0.000 2871.666 0.000 0.00

III Average 78.400 57.290 4870.012 3.000 3435.844 241.243 24124.300
PP2 and O = Q Std 2.191 2.864 0.000 0.000 0.000 0.000 0.000

Maximum 80.000 61.020 4870.012 3.000 3435.844 241.243 24124.300
Minimum 76.000 54.430 4870.012 3.000 3435.844 241.243 24124.300

IV Average 110.000 274.686 4352.367 0.000 2766.900 0.000 0.00
PP2 and O < Q Std 0.000 3.420 206.273 0.000 144.921 0.000 0.00

Maximum 110.000 279.080 4647.518 0.000 2917.759 0.000 0.00
Minimum 110.000 271.670 4148.081 0.000 2525.526 0.000 0.00

Table 46. Experiment VI: Summary of results obtained for problem FTIO.
Case number Statistics No. of 

alternatives
CPU time 

(Sec.)
Makespan
(Ctnax)

Number
Tardy

Average flow 
time

Total
Tardiness

Percentage of 
error

I Average 140.200 473.538 10357.151 3.000 5272.446 903.299 693.386
PPl and O = Q Std 6.340 46.648 63.705 1.000 43.712 354.242 925.934

Maximum 144.000 548.490 10392.997 4.333 5338.428 1514.745 2266.487
Minimum 129.000 437.650 10243.996 2.000 5232.494 657.410 59.143

II Average 230.000 2988.780 7573.123 1.133 4712.381 661.923 588.31
PPl andO <Q Std 2.345 37.142 134.055 0.298 53.807 82.262 895.85

Maximum 232.000 3032.050 7769.071 1.667 4770.877 742.555 2130.83
Minimum 227.000 2949.280 7456.205 1.000 4628.617 542.068 31.22

III Average 86.200 463.746 10077.931 3J33 5300.858 1373.808 1571.386

PP2andO = Q Std 63.684 20.380 248.525 0.781 51.415 448.527 2351.485
Maximum 140.000 495.760 10333.062 4.333 5368J25 1758.459 5626.940
Minimum 2.000 442.640 9672.101 2.667 5241.074 641.122 55.200

IV Average 229.600 3106.336 7983.432 1.000 4912.624 276.055 0.00

PP2andO <Q Std 1.140 120.555 69.195 0.235 78.325 204.665 0.00
Maximum 231.000 3278.610 8055.037 1.333 5004.182 497.344 0.00
Mitiimum 228.000 2989.650 7895.034 0.667 4801.138 27.780 0.00

VI: Summary of results obtained for problem FT20.
Case number Statistics No. of 

alternatives
CPU time 

(Sec.)
Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

Percentage of 
error

I Average 33.600 1307.622 12151.596 17.200 6397.647 58112.103 2.465

PPl andO = Q Std 62.244 102.346 138.949 0.447 59.775 1220.126 2.367

Maximum 144.000 1425.430 12251.797 18.000 6473.464 59635.769 5.300
Minimum 1.000 1179.850 11918.124 17.000 6312.958 56343.504 0.000

II Average 41.200 9372.584 14175.241 25.133 5744.579 84224.419 48.54

PPl andO <Q Std 73.690 155.487 292.566 1.016 37.482 1528.299 4.57

Maximum 171.000 9604.880 14516.519 26.333 5799.659 86133.535 54.89
Minimum 1.000 9237.750 13961.862 24.000 5694.326 81870.470 44.12

III Average 84.400 1076.474 12798.005 18.600 6410.588 57910.827 2.073
PP2 andO = Q Std 71.231 27.074 517.900 0.925 124.906 2424.734 3.128

Maximum 143.000 1111.750 13683.754 19.667 6544.912 60467.992 7.042
Minimum 3.000 1044.570 12333.526 17333 6288.605 55488.338 0.000

IV Average 51.800 7842.678 14797.549 25.867 5855.952 89392.008 57.64

PP2andO <Q Std 87.044 224.881 40.980 1.070 61.500 1844.720 4.76
Maximum 203.000 8126.720 14822.514 27.000 5911.186 90764.624 63.22
Minimum 1.000 7586.360 14728.141 24.333 5759.240 86169.473 52.94
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Table 48. Experiment VT: Summary of results obtained for problem LA21.
Case number Statistics So. of 

alternatives
CPU time 

(Sec.)
Makespan
(Cmax)

Number
Tardy

.Average flow 
time

Total
Tardiness

Percentage of 
error

I Average 173.800 1539.868 11374.222 12.067 7295.548 13911.976 104.555
PPl and 0  = Q Std 33.192 71.405 351.060 1.038 79.194 633.044 30.654

Maximum 194.000 1656.050 11782.555 13.000 7404.054 15040.765 156.984
Minimum 115.000 1475.130 10972.215 10J33 7189.398 13557.195 78.881

II Average 254.600 12961.880 10437.941 10.067 6350.741 8060.584 18.04
PPl andO<Q Std 72.765 497.170 101.731 0.983 73.331 397.842 12.34

Maximum 324.000 13447.410 10583.701 11.667 6438.975 8628.599 34.26
Minimum 158.000 12297.160 10315.424 9J33 6271.694 7552.052 4.25

III Average 189.600 1530.566 11743.799 12.067 7194.929 11701.466 71.905
PP2andO = Q Std 5.683 44.547 321.191 0.641 65.820 947.054 26.124

Maximum 194.000 1594.820 12164.899 13.000 7255.654 12609.367 110.177
Minimum 180.000 1474.370 11354.351 11.333 7100.836 10391.181 37.107

IV Average 247.600 14174.654 10791.680 9.067 6233.415 6878.220 0.00
PP2 and O < Q Std 40.352 484.722 208.710 1.479 111.926 659.249 0.00

Maximum 282.000 14538.830 11055.534 10.667 6344.725 7578.889 0.00
Minimum 182.000 13361.940 10494.373 6.667 6063.088 5852.796 0.00

Experiment VTI: Analysis of Advantage Gained by Explicitly Incorporating the 

Probability Distribution Function of the Processing Times in the Genetic Algorithm

The purpose of this experiment was to investigate the potential gain from incorporating the 

probability distribution function of the processing times in the genetic algorithm.

In this experiment, seven of the nine problems discussed earlier were solved. These seven 

problems were FT06, FTIO, FT20, LA21, LA25, LA38, and LA40. For each of the seven 

problems, a normal distribution was associated with the processing times of each operation. This 

implies that the process times in the original problem were used as the mean values for the normal 

distribution. The standard deviation for each of these process times was uniformly distributed 

between O.OSPij and 0.25Pij, where Pÿ is the processing time of job i for operation j. The same due 

dates that were used in experiment IV were used in this experiment.

To perform the required analysis for the seven problems, the final best solutions obtained 

by the CGA TT, the CGA_WSPT, and the CGA SIM were simulated using a simulation model 

that was developed for this experiment. In the simulation model developed, each chromosome was 

simulated several times to reach a certain confidence level for the results obtained. The number of 

replications for simulating each chromosome was determined using the same sequential procedure
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that was mentioned in the previous chapter. The simulation model was coded in FORTRAN 90 for 

a Gateway 2000 computer using the Microsoft FORTRAN FowerStation™, professional edition, 

version 4.0. For a fiill listing of the computer code, the reader can refer to AI-Harkan and Foote 

(1997).

Thus there were seven problems, five replicates for each problem, a chromosome to be 

simulated obtained by the CGA TT, a chromosome to be simulated obtained by the CGA WSPT, 

a chromosome to be simulated obtained by the CGA SIM, a total of 105 problems. Using the 

simulation model developed, the 105 problems were solved.

The results obtained for each problem by simulating the final best solution of the three 

approaches are reported in Tables H I through H.21 in Appendix H. These results were 

summarized and are given in Tables 49 through 55. These seven tables were designed to use the 

same statistics presented in the earlier tables. However, the absolute percentage of error was 

computed for the four performance measures used in this study. Hence, the absolute percentage 

errors for these four performance measures are given in the seven tables. Also, 90% confidence 

intervals on all the four performance measures were constructed and are given in these tables. The 

four statistics were computed for the number of replicates made by the simulation to evaluate a 

chromosome, and are also given in the seven tables. In this experiment, the absolute percentage of 

error was computed as follows:

a =100(|Xi-XsiM|/XsiM)

Where:

a: The percentage deviation of the solution obtained by simulating the final best solution 

obtained by the CGA WSPT or the CGA TT from the CGA_SIM.

X: The value of the performance measure i obtained by simulating the final best solution 

obtained by the CGA WSPT or the CGA TT (i.e., the makespan, the number of jobs
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tardy, the average flow time, or the total tardiness).

Xsim: The performance measure value obtained by simulating the final best solution 

obtained by the CGA SIM.

From the results, it can be seen that there is a tremendous gain in modifying the genetic 

algorithm to incorporate the normal probability distribution function of the processing times.

When the results of the CGA WSPT and the CGA SIM were compared, the CGA SIM 

reduced the actual expected total tardiness by approximately 30.3%, the CGA SIM reduced the 

actual worst case total tardiness by approximately 56%, and the CGA SIM reduced the risk by 

approximately 18%.

When the CGA TT and the CGA SIM were compared, the CGA SIM reduced the actual 

expected total tardiness by approximately 28.7%, the CGA SIM reduced the actual worst case 

total tardiness by approximately 52%, and the CGA SIM reduced the risk by approximately 

16.4%.

From these results, it can be stated the CGA SIM performed better than both the 

CGA TT and the CGA WSPT.
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Table 49. Experiment VII: Summary of results obtained by simulating the final best solution

Approach Statistics Number of 
replicates

CPU time 
(Sec.)

Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

CGA WSPT Average 124.800 0.286 63.691 3.800 53.732 27.320

Probability Std 45.801 0.093 2.108 0.447 0.766 3.290

Gantt charting Maximum 182.000 0.390 65.780 4.000 54J51 30.806

evaluation Minimum 75.000 0.160 60.831 3.000 52.560 23.253

Percentage of error Average 4.101 26.667 6.294 35.045

Std 2.943 14.907 2.618 12.487

Maximum 7.193 31333 8J16 49.160

Minimum 0.686 0.000 2.424 20.118

CGA TT Average 125.400 0.298 62.510 4.400 55.694 35.222

Deterministic Std 32.323 0.086 1.396 0.548 1.465 8.146

Gantt charting Maximum 158.000 0.390 64.768 5.000 57.991 48.005

evaluation Minimum 72.000 0.160 61.004 4.000 54.057 26.248

Percentage of error .Average 2.138 46.667 10.171 74.833
Std 2.002 18.257 3.432 41.171

Maximum 5.544 66.667 15.571 132.436
Minimiun 0.590 33J33 6.945 27.090

CGA SIM Average 64.600 0.132 61.343 3.000 50.564 20.202

Simulation Std 14.758 0.049 0.051 0.000 0.863 1.009

evaluation Maximum 91.000 0.220 61J66 3.000 52.107 20.653

Minimum 58.000 O.UO 61.251 3.000 50.178 18396

90% Confidence Lower 55.766 2.727 45.967 18.365

interval Upper 66.920 3.273 55.161 22.038

Table 50. Experiment VII: Summary of results obtained by simulating the final best solution

Approach Statistics Number of 
replicates

CPU time 
(Sec.)

Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

CGA WSPT Average 33.200 0.262 1098.985 7.000 849.983 799.299

Probability Std 10.208 0.073 16.310 0.000 5.038 36.111

Gantt charting Maximum 46.000 0.330 1119.780 7.000 855.383 835.797

evaluation Minimum 21.000 0.160 1076.879 7.000 842.864 749.833

Percentage of error Average 1.515 16.667 3.019 26.838
Std 1.176 0.000 0.408 8.265

Maximum 3.100 16.667 3.600 40.931

Minimum 0.188 16.667 2.551 19.038

CGA TT Average 44.200 0.328 1091.643 7.200 857.181 800.007

Deterministic Std 18.431 0.165 25.888 0.447 7.949 70.466

Gantt charting Maximum 68.000 0.500 1114.563 8.000 865.518 911.314

evaluation Minimum 26.000 0.160 1053.114 7.000 845.635 727.646

Percentage of error Average 2.301 20.000 3.891 27.194

Std 1.646 7.454 0.818 15.712

Maximum 4.355 33.333 4.828 53.665

Minimum 0.815 16.667 2.757 11.497

CGA SIM Average 11.000 0.076 1087.658 6.000 825.072 631.139

Simulation Std 0.000 0.031 20.609 0.000 2.888 26.712

evaluation Maximum 11.000 0.110 1106.850 6.000 829.347 659.827

Minimum 11.000 0.050 1063.514 6.000 821.901 593.052

90% Confidence Lower 988.780 5.455 750.065 573.763

interval Upper 1186.536 6.545 900.079 688.515
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Table 51. Experiment VII: Summary of results obtained by simulating the final best solution

Approach Statistics Number of 
replicates

CPU time 
(Sec.)

Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

CGA WSPT Average 50.800 1.044 1276.787 10.200 786.842 859.353
Probability Std 10.183 0.210 20.202 1.095 12.750 165.146

Gantt charting Maximum 63.000 1.320 1307.754 11.000 799.228 1072.514
evaluation Minimum 41.000 0.830 1257.596 9.000 773.072 678.294

Percentage o f error Average 2.710 15.944 1.966 59.226
Std 1.648 14.396 1.776 35.049

Maximum 5.430 37.500 4.120 106.638
Minimum 1.215 0.000 0.183 21.776

CGA TT Average 54.800 1.132 1263.585 9.600 780.482 734.830
Detertninistic Std 6.419 0.108 20.865 0.894 7.226 94.742
Gantt charting Maximum 62.000 1.210 1296.153 11.000 793.170 890.768

evaluation Minimum 48.000 0.990 1245.166 9.000 776.307 650.280
Percentage of error Average 1.837 9.500 1.143 35.929

Std 1.677 16.240 1.238 21.327
Maximum 4.495 37.500 3.331 71.621
Minimum 0.330 0.000 0.336 20.768

CGA SIM Average 42.800 0.868 1243.105 9.200 771.683 542.307
Simulation Std 8.526 0.149 4.488 0.837 2.455 16.109
evaluation Maximum 49.000 0.980 1250.980 10.000 774.001 558.224

Minimum 28.000 0.610 1240.339 8.000 767.601 519.031

90% Confidence Lower 1130.096 8J64 701.530 493.006
interval Upper 1356.115 10.036 841.836 591.608

Table 52. Experiment VTI: Summary of results obtained by simulating the final best solution

Approach Statistics Number of 
replicates

CPU time 
(Sec.)

Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

CGA WSPT Average 13.200 0.264 1269.729 9.200 995.896 1564.320
Probability Std 3.194 0.060 29.029 0.447 5.550 96.679

Gantt charting Maximum 18.000 0.330 1308.552 10.000 1002.529 1697.678
evaluation Minimum 11.000 0.220 1236.718 9.000 991.294 1479.511

Percentage of error Average 3.346 12.500 2.775 27.418
Std 2J73 8.839 0.524 11.775

Maximum 5.823 25.000 3J83 42.442
Minimum 0.087 0.000 2.145 10.722

CGA TT Average 14.000 0.274 1258.205 9.200 987.633 1350.801
Deterministic Std 6.164 0.121 21.823 1.095 22.467 203.631
Gantt charting Maximum 25.000 0.490 1279.249 11.000 1013.927 1511.519

evaluation Minimum 11.000 0.220 1226.564 8.000 965.896 1007.412

Percentage of error Average 2.489 12.500 1.915 15.945
Std 1.613 15J09 1.805 8.510

Maximum 4.584 37.500 3.973 24.654
Minimum 0.807 0.000 0.403 2.449

CGA SIM Average 11.000 0.220 1254.801 8.200 969.015 1231.324
Simulation Std 0.000 0.000 35.964 0.447 6.087 61.549
evaluation Maximum 11.000 0.220 1319.063 9.000 976.830 1336.242

Minimum 11.000 0.220 1236.545 8.000 960.080 1184.059

90% Confidence Lower 1140.729 7.455 880.923 1119.385
interval Upper 1368.874 8.945 1057.107 1343.262
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Table 53. Experiment VII: Summary of results obtained by simulating the final best solution

Approach Statistics Number of 
replicates

CPU time 
(Sec.)

Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

CGA WSPT Average 23.800 0.440 1250.859 6.400 907.021 979.590
Probability Std 5.630 0.085 72.738 1.140 13.754 102.844

Gantt charting Maximum 30.000 0.550 1330.665 8.000 921.266 1132.230
evaluation Minimum 17.000 0.330 1172.620 5.000 884.953 852.010

Percentage of error Average 4.387 6.190 1.610 17.640
Std 2.829 8.518 1.222 17.632

Maximum 7.232 16.667 3.426 45.239
Minimum 0.201 0.000 0.229 1.534

CGA TT Average 27.800 0.538 1149.020 8.200 918.963 977.310
Deterministic Std 5.495 0.093 17.091 1.095 17.286 79.116
Gantt charting Maximum 36.000 0.660 1179.467 9.000 937.180 1089.149

evaluation Minimum 22.000 0.440 1139.830 7.000 894.271 868.435

Percentage of error Average 5.714 29.048 2.095 16.665
Std 3.756 21.652 1.775 5.169

Maximum 11.077 50.000 3.966 22.771
Minimum 0.638 0.000 0.103 9.432

CGA SIM Average 11.000 0.208 1216.762 6.400 900.109 838.325
Simulation Std 0.000 0.027 41.099 0.548 7.504 67.117
evaluation Maximum 11.000 0.220 1282.798 7.000 906.983 915.192

Minimum 11.000 0.160 1171.990 6.000 890.747 763.758
Confidence Lower 1106.147 5.818 818.281 762.114

interval Upper 1327J76 6.982 981.937 914.536

Table 54. Experiment VII: Summary of results obtained by simulating the final best solution

Approach Statistics Number of 
replicates

CPU time 
(Sec.)

Makespan
(Cmax)

Number
Tardy

Average flow 
time

Total
Tardiness

CGA WSPT Average 13.800 0.352 1446.181 11.000 1178.740 1898.406
Probability Std 3347 0.065 30.857 0.707 15.399 194.124

Gantt charting Maximum 19.000 0.440 1499.826 12.000 1198.998 2161.140
evaluation Minimum 11.000 0.270 1424.848 10.000 1157.978 1639.654

Percentage of error Average 2.048 6.818 1.277 19.122
Std 2.215 3.826 1.416 19.303

Maximum 5.259 9.091 3.707 51.590
Minimum 0.195 0.000 0.244 1.386

CGA TT Average 15.800 0.416 1453.685 11.800 1178.978 1834.070
Deterministic Std 5.891 0.139 47.176 0.447 8.151 69.997
Gantt charting Maximum 26.000 0.660 1534.480 12.000 1189.127 1905.281

evaluation Minimum 11.000 0.330 1419.917 11.000 1168.841 1735.621

Percentage of error Average 3.133 0.000 1.259 14.982
Std 3.485 0.000 1.130 13.210

Maximum 8.765 0.000 2.853 33.643
Minimum 0.063 0.000 0.202 2.345

CGA_S1M Average 16.000 0.418 1417334 11.800 1166.521 1609.575
Simulation Std 6.928 0.195 24.518 0.447 12.295 170.283
evaluation Maxiimim 25.000 0.660 1438.303 12.000 1181.363 1838.386

Miniimmi 11.000 0.270 1377.840 11.000 1151.618 1425.649

90tt Confidence Lower 1288.486 10.727 1060.474 1463.250
interval Upper 1546.183 12.873 1272.569 1755.900
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Table 55. Experiment VII: Summary of results obtained by simulating the final best solution

Approach Statistics Number of 
replicates

CPU time 
(Sec.)

Makespan
(Cmax)

Number
Tardy

Average flow 
lime

Total
Tardiness

CGA WSPT Average 18.400 0.484 1445.592 11.800 1196.738 1677.761

Probability Std 2.302 0.046 38.805 1.095 18.970 238.560

Gantt charting Maximum 22.000 0.550 1487.657 13.000 1215.632 1900.967

evaluation Minimum 16.000 0.440 1399.145 10.000 1171.435 1357.204

Percentage of error Average 2.684 9.455 2.317 26.792
Std 2.203 9.569 1.628 20.122

Maximum 5.851 20.000 4.235 54.870

Minimum 0.129 0.000 0.306 2.531

CGA TT Average 25.400 0.682 1401.923 12.000 1188.951 1540.398

Deterministic Std 5.079 0.128 8.182 0.000 6.619 61.356

Gantt charting Maximum 32.000 0.820 1409.616 12.000 1196.604 1599.825

evaluation Minimum 19.000 0.500 1391.050 12.000 1179.505 1440.542

Percentage of error .Average 1.577 7.636 1.529 15.317

Std 0.565 8.272 0.915 9.758
Maximum 1.917 20.000 2.809 25.320

Minimum 0.574 0.000 0.381 3.454

CGA_SIM Average 13.800 0.374 1421.166 11.200 1171.091 1341.504

Simulation Std 3.899 0.118 13.578 0.837 7.168 95.437

evaluation Maximum 19.000 0.500 1434.649 12.000 1181.550 1475.860

Minimum 11.000 0.270 1401.565 10.000 1163.909 1227.459

90% Confidence Lower 1291.969 10.182 1064.629 1219.549

interval Upper 1550.363 12.218 1277.554 1463.459



CHAPTER V 

SUMMARY, CONCLUSIONS, CONTRIBUTIONS, AND 

RECOMMENDATIONS 

Introduction

The first purpose of this chapter is to summarize the goal of this study and to discuss the 

methodology developed in this research. Next, it gives the findings and the contributions of this 

research. Then, it offers a list of recommendations for future research.

Summary

Over the last four decades, the control of the job shop problem has been studied using 

several solution methods, including enumerative methods, heuristic methods, mathematical models, 

heuristic search techniques, simulation models, and queueing network models. This research study 

is an extension of the previous research that was concerned with applying one of the heuristic 

search techniques, the genetic algorithm (GA), to the job shop problem.

The purpose of this study is to solve a dynamic stochastic job shop environment by an 

integrated model that consists of a constrained genetic algorithm which merges dispatching rules, 

heuristics, and the available sequencing and scheduling theory with the genetic algorithm to 

enhance its search procedures.

From the research gaps, the following questions emerged, which this study attempts to 

answer; 1) Does the constrained genetic algorithm perform better than the unconstrained genetic 

algorithm when both algorithms are extended to solve dynamic stochastic job shops? 2) What is the 

impact of the population size on the accuracy of the deterministic constrained genetic algorithm to

156
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minimize makespan? 3) What is the impact of nine genetic operator combinations on the 

performance of the deterministic constrained genetic algorithm to minimize makespan and which of 

the nine genetic operator combinations would be the best? 4) Is the evaluation of the chromosomes 

using the probability Gantt charting as effective as simulation evaluation? 5) What is the 

performance of the stochastic constrained genetic algorithm to minimize total tardiness when lot 

sizes, process plans, and machine priority lists are optimized simultaneously? 6) What is the 

potential gain from incorporating the probability distribution function of the processing times in the 

genetic algorithm?

The research program consisted of two parts. The first was the development of the 

elements and the parameters related to the genetic algorithm and its variations. The second was the 

implementation o f seven major experiments intended to answer the research questions addressed.

Several elements and parameters for the genetic algorithm were designed, including 

population representation method, schedule building and fitness function evaluation, population 

size, generation of the initial population, selection methods, crossover and mutation operators, and 

termination criteria.

The population of chromosomes was represented using the preference-list-based 

representation method. Chromosomes were generated in the initial population according to both 

active and non-delay schedules. Also, during the evolution process, chromosomes were evaluated 

according to their original schedule type generator, which could be either an active schedule or a 

non-delay schedule.

For each chromosome, four performance measures were computed; however, one of them 

was minimized. These performance measures were the makespan, the total tardiness, the average 

flow time, and the number of jobs tardy. Three of these performance measures were used to break 

ties among chromosomes when the selection method was applied.



158

Three population sizes were used: 44+nm; 44+2nm, and 44+4nm, where n is the number 

of jobs and m is the number of machines. The starting initial population was seeded with fort>'- 

four heuristics. Then the rest of the population was generated according to four random heuristics.

Two selection methods were used: the first was the elitist method and the second was the 

binary tournament. In the binary tournament, the simulated annealing approach was used to make 

the decision whether to accept or reject a produced child.

Three crossover operators were used: linear order crossover (LOX); order-based crossover 

(OBX), and position-based crossover (PBX). The following mutation operators were used: order- 

based mutation (OBM); position-based mutation (PBM), and scramble sub-sequence mutation 

(SSM).

Three termination criteria were used sequentially. These criteria were: the maximum 

number of generations had been reached; the best solution had not been changed for a number of 

generations, and a certain time limit had been reached.

Using the elements and the parameters discussed above, nine genetic algorithms were 

designed and developed. These algorithms were: a deterministic constrained genetic algorithm to 

minimize makespan (CGA_Ctnax); a deterministic constrained genetic algorithm to minimize total 

tardiness (CGA TT); a stochastic constrained genetic algorithm to minimize total tardiness and to 

evaluate chromosomes using probability Gantt charting (CGA WSPT); a stochastic constrained 

genetic algorithm to minimize total tardiness and to evaluate chromosomes using simulation 

(CGA SIM); a deterministic unconstrained genetic algorithm to minimize makespan 

(UGA Cmax); a deterministic unconstrained genetic algorithm to minimize total tardiness 

(UGA TT); a stochastic unconstrained genetic algorithm to minimize total tardiness and to 

evaluate chromosomes using probability Gantt charting (UGA WSPT); a stochastic unconstrained 

genetic algorithm to minimize total tardiness and to evaluate chromosomes using simulation 

(UGA SIM), and a dynamic stochastic constrained genetic algorithm to minimize total tardiness
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and to evaluate chromosomes using probability Gantt charting (CGA_APP).

The CGA Cmax and the UGA Cmax models attempted to minimize the makespan. The 

CGA_TT, the UGA_TT, the CGA_WSPT, the CGA_SIM, the UGA_WSPT, the UGA_SIM, and 

the CGA APP models attempted to minimize the total tardiness. In addition to attempting to 

minimize the total tardiness, the CGA APP attempted to optimize simultaneously the lot sizes and 

the process plans for the products involved in the production plan. Specifically, the CGA APP 

can handle products that each have a set of top alternative process plans and from which the lot 

size for each product can be optimized.

In the five constrained genetic algorithms, the genetic operators produced children that 

were altered not only by the operator's procedures but also by the dominance rules, while no 

alteration was performed in the four unconstrained genetic algorithms. By performing this 

alteration to the children produced we offer an additional feature, that of constraining the order of 

certain elements of the chromosomes according to precedence relationships established 

theoretically. Hence, we called our approach a constrained genetic algorithm.

The input to the CGA Cmax, the UGA Cmax, the CGA TT, and the UGA TT included 

the number of machines, the number of jobs, the number of operations, process plans, lot sizes, due 

dates, expected process times, expected set-up times, and ready times.

The input to the CGA WSPT, the UGA WSPT, the CGA SIM, and the UGA_SIM 

consisted of the following: the number of machines; the number of jobs; the number of operations; 

process plans; lot sizes; due dates; distribution of process times; expected process times; standard 

deviation of process times; distribution of set-up times; expected set-up times; standard deviation 

of set-up times, and ready times. In addition to the previous input, the CGA WSPT and the 

UGA_WSPT read three probability values to be used in evaluating chromosomes. Also, the 

CGA SIM and the UGA SIM read a specified confidence level and a desired relative error to be 

used in evaluating chromosomes.
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The CGA APP input consisted of the number of machines, the number of jobs, the 

number of alternative process plans, alternative process plans, the number of operations, order 

sizes, due dates, distribution of process times, expected process times, standard deviation of 

process times, distribution of set-up times, expected set-up times, standard deviation of set-up 

times, ready times, and three probability values to be used in evaluating chromosomes.

The CGA Cmax, the UGA Cmax, the CGA TT, and the UGA TT evaluated their 

chromosomes using the deterministic Gantt charting. The CGA WSPT and the UGA WSPT used 

the probability Gantt charting to evaluate their chromosomes and the CGA SIM and the 

UGA SIM evaluated their chromosomes using simulation.

The CGA Cmax, the UGA Cmax, the CGA TT, and the UGA TT ranked their 

chromosomes using their fitness fimctions (i.e., either makespan or total tardiness). The 

CGA WSPT, the UGA WSPT, the CGA SIM, and the UGA_SIM ranked their chromosomes 

using the utility fimction approach values.

The output from the nine genetic algorithms were as follows: the preference list for each 

machine; the makespan; the total tardiness; the average flow time, and the number of jobs tardy. In 

addition to these outputs, the CGA APP produced a preferred set of product’s process plans and a 

preferred set of product’s lot sizes.

The computer programs for the nine genetic algorithms consisted of a main program, 

nineteen subroutines, three fimctions, and the IMSL mathematical and statistical libraries. The 

computer programs for the nine genetic algorithms were coded in FORTRAN 90 for a GATEWAY 

2000 (Pentium-90) computer using the Microsoft FORTRAN PowerStation™, professional 

edition, version 4.0.

As mentioned earlier, seven major experiments were performed in which each experiment 

was intended to answer one of the research questions addressed. Experiment I was conducted to 

investigate the effect of the genetic operator combinations on the performance of the deterministic
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constrained genetic algorithm to minimize makespan (CGA_Cmax). In experiment II, the impact 

of the population size on the performance of the CGA Cmax was investigated. Experiment III 

compared the performance of the deterministic constrained genetic algorithm to minimize 

makespan (CGA Cmax) with the deterministic unconstrained genetic algorithm to minimize 

makespan (UGA Cmax). Also, the performance of the deterministic constrained genetic algorithm 

to minimize total tardiness (CGA_TT) and the deterministic unconstrained genetic algorithm to 

minimize total tardiness (UGA_TT) were evaluated in experiment IV. Experiment V investigated 

which of the chromosome evaluation methods was better. In experiment VI, the effect of lot sizing 

and alternative process plans on the performance of the stochastic constrained genetic algorithm to 

minimize total tardiness and to evaluate chromosomes using probability Gantt charting 

(CGA_WSPT) was investigated. Experiment VU investigated the potential gain from 

incorporating the probability distribution function of the processing times in the genetic algorithm.

Nine well-known benchmarks used in the seven experiments are known to be difficult 

problems. Three of these problems were designed by Fisher and Thompson (1963) and the other 

six were designed by Lawrence (1984). In these nine problems, the number of operations ranged 

between 36 and 225 operations.

For the first three experiments, jobs were given a common due date which is the optimal 

makespan of the problem considered. However, for experiments IV, V, and VII, the due dates 

were computed according to flow time estimates. In experiment VI, the due dates were computed 

according to the total work content (TWK) rule.

For the seven experiments, the number of generations was set to 55. Also, the population 

size was set to 44+4nm in experiments I and II and the population size was set to 44+nm in the 

other five experiments. The linear order crossover (LOX) and the order-based mutation were used 

as the genetic operators in the last six experiments.
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For the seven experiments, the computer package STATGRAPHICS™ version 5 was used 

to perform the required analysis of variance procedures and Tukey’s range test and ranking 

procedures. The significance level used to test the significance of the Actors included in each 

experiment was 0.05. Also, the percentage errors computed and CPU time recorded were used to 

analyze the results obtained for the seven experiments.

Conclusions

According to the results given in Chapter IV, the following conclusions which correspond 

to the research questions are given:

Research question 1: Does the constrained genetic algorithm perform better than the 

unconstrained genetic algorithm when both algorithms are extended to solve dynamic stochastic job 

shops?

When comparing the average percentage errors over the nine problems obtained by the 

deterministic constrained genetic algorithm to minimize makespan (CGA Cmax) and the 

deterministic unconstrained genetic algorithm to minimize makespan (UGA Cmax), the 

CGA Cmax improved the average percentage errors by approximately 27.44%. This means the 

CGA_Cmax model outperformed the UGA Cmax model.

Also, when the average percentage errors over the nine problems obtained by the 

deterministic constrained genetic algorithm to minimize total tardiness (CGA TT) and the 

deterministic unconstrained genetic algorithm to minimize total tardiness (UGA_TT) were 

compared, the CGA TT improved the average percentage errors by approximately 248.77%. This 

implies that the CGA TT model performed better than the UGA TT model.

Research question 2: What is the impact of the population size on the accuracy of the 

deterministic constrained genetic algorithm to minimize makespan?

The results showed at a significance level of 0.0001 that increasing the population size did
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significantly improve the performance measures.

According to the percentage errors computed, when the population size was increased from 

44+nm to 44+2nm, the makespan was improved by approximately 0.5%. Also, increasing the 

population size from 44+nm to 44+4nm improved the makespan by approximately 0.81%.

Regarding the CPU times recorded, when the population size was increased from 44+nm 

to 44+2nm, the CPU time was increased by approximately 71.6%. Also, when the population size 

was increased from 44+nm to 44+4nm, the CPU time was increased by approximately 209.7%.

With these marginal improvements in the makespan and the huge increase in the CPU 

times, the following conclusions are given. The constrained genetic algorithm was able to obtain 

good quality solutions with a smaller population size and much less computational effort. From 

this conclusion we can state that the constrained genetic algorithm was not significantly affected by 

the population size, which shows how robust the constrained genetic algorithm is.

Research question 3: What is the impact of nine genetic operator combinations on the 

performance of the deterministic constrained genetic algorithm to minimize makespan and which of 

the nine genetic operator combinations would be the best?

At a significance level of 0.02, the results showed that the genetic operator combinations 

significantly affect the performance measures. Hence, the performance of the constrained genetic 

algorithm was influenced by the genetic operator combinations. According to Tukey's range test 

and ranking procedures, the LO combination (the linear order crossover (LOX) and the order- 

based mutation (OBM)) was the best genetic operator combination for the constrained genetic 

algorithm. Also, comparing the average percentage errors obtained when using the LO 

combination with the average percentage errors obtained when using the other eight combinations, 

the LO combination improved the average percentage errors by approximately 10%.

Research question 4: Is the evaluation of the chromosomes using the probability Gantt 

charting as effective as simulation evaluation?
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According to the ANOVA results and regarding the makespan objective, the results 

showed no significant difference exists between probability Gantt charting and simulation in terms 

of finding an optimal solution.

The stochastic constrained genetic algorithm to minimize total tardiness and to evaluate 

chromosomes using probability Gantt charting (CGA_WSPT) deviated from the true mean for 

both the makespan and the average flow time by 3.032% and 1.713% respectively. Also, all 

averages estimated for both the makespan and the average flow time when using the probability 

Gantt charting fell within the 90% confidence interval.

When the CPU times needed by both the stochastic constrained genetic algorithm to 

minimize total tardiness and to evaluate chromosomes using probability Gantt charting 

(CGA_WSPT) and the stochastic constrained genetic algorithm to minimize total tardiness and to 

evaluate chromosomes using simulation (CGA_SIM) were compared, the CGA WSPT reduced 

the CPU time by approximately 554.9%.

To sum up, the evaluation of chromosomes using the probability Gantt charting was more 

effective than simulation when the performance measures are the makespan and the average flow 

time, but it was not as effective as simulation when the performance measures are the number of 

jobs tardy and the total tardiness.

Research question 5: What is the performance of the stochastic constrained genetic 

algorithm to minimize total tardiness when lot sizes, process plans, and machine priority lists are 

optimized simultaneously?

When the order size was divided into several lot sizes, the makespan was reduced by 

approximately 92.31%, the number of jobs tardy was reduced by approximately 564.93%, the 

average flow time was reduced by approximately 855.78%, and the total tardiness was reduced by 

approximately 18254.2%. Regarding the CPU times recorded, when the order size was divided 

into several lot sizes, the CPU time was increased by approximately 683.4%.
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To sum up, the preliminary experiment showed that the potential for improving production 

criteria is much greater by adjusting lot size plans than by using alternative process plans. Also, 

this result showed that the choice of alternative process plan must include other criteria besides 

reducing maximum utilization.

Research question 6: What is the potential gain from incorporating the probability 

distribution frmction of the processing times in the genetic algorithm?

From the results, it can be seen that there is a tremendous gain in modifying the genetic 

algorithm to incorporate the normal probability distribution function of the processing times.

When the results obtained by both the stochastic constrained genetic algorithm to minimize 

total tardiness and to evaluate chromosomes using probability Gantt charting (CGA_WSPT) and 

the stochastic constrained genetic algorithm to minimize total tardiness and to evaluate 

chromosomes using simulation (CGA_SIM) were compared, the CGA SIM reduced the actual 

expected total tardiness by approximately 30.3%, the CGA SIM reduced the actual worst case 

total tardiness by approximately 56%, and the CGA SIM reduced the risk by approximately 18%.

When the deterministic constrained genetic algorithm to minimize total tardiness 

(CGA TT) and the stochastic constrained genetic algorithm to minimize total tardiness and to 

evaluate chromosomes using simulation (CGA_SIM) were compared, the CGA SIM reduced the 

actual expected total tardiness by approximately 28.7%, the CGA SIM reduced the actual worst 

case total tardiness by approximately 52%, and the CGA SIM reduced the risk by approximately 

16.4%. From these results, it can be concluded that the CGA SIM performed better than both the 

CGA_TT and the CGA_WSPT.

Contributions

This research has contributed to the literature of both genetic algorithms and sequencing 

and scheduling. These contributions can be summarized as follows:



166

1. This study developed and implemented a unique and a robust genetic algorithm to solve job 

shop problems.

2. This study showed that the performance of the genetic algorithm was enhanced when problem 

specific theoretical results were incorporated. This enhancement incorporated in the genetic 

algorithm was performed not only when the chromosomes were generated but also during the 

evolution process. This implies that this enhancement was both predictive and reactive.

3. This study proposed and tested a fast evaluation method for chromosomes using probability 

Gantt charting which accounts for random variation.

4. This study showed that the management of bottleneck machines can be incorporated in the 

genetic algorithm. This incorporation was accomplished by first using the preference-list-based 

representation method, which works with sub-chromosomes, which means it treats machines 

individually. Second, the first two sub-chromosomes were selected as the top two bottlenecks 

when implementing the genetic operators.

5. This study designed and developed the required components to implement a genetic algorithm 

that optimizes lot sizes, process plans, and machine priority lists simultaneously.

6. This study was the first to incorporate the simulated annealing algorithm in the genetic 

algorithm to solve job shop problems.

7. This study is the first job shop sequencing algorithm to use a risk-based utility function to rank 

chromosomes.

8. This study structured the population of chromosomes so that both active and non-delay 

schedules were used to generate and to evaluate chromosomes.

Recommendations for Further Research

In this section, a list of recommendations for further research is given, as follows;

1. Recall from Chapter III that the integration of the components for the dynamic stochastic
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constrained genetic algorithm to minimize total tardiness and to evaluate chromosomes using 

probability Gantt charting (CGA APP) was incomplete because of the complications 

mentioned. Hence, this is a fruitful area for further research. Recall that this model was 

attempted to answer research question 5, which asks what the perfonnance of the constrained 

genetic algorithm is when lot sizes, process plans, and machine priority lists are optimized 

simultaneously.

2. There is a need to lower the CPU time needed by the genetic algorithms, which could be 

accomplished by improving the selection method or using a different selection method.

3. The evaluation of chromosomes using the probability Gantt charting was shown to be an 

effective method. However, an improvement is needed to make the probability Gantt charting 

a better estimator for total tardiness by tuning it with several probability values. This implies 

that the probability Gantt charting is both problem and probability values dependent.

4. In this study, genetic algorithms were developed in which jobs were not allowed to make re

visits to machines. Hence, further research could be done to investigate the issue of job re

visits to machines.

5. In experiment VI, the lot sizes were computed according to a policy that was proposed by 

Sawaqed (1987). However, there could be an even greater improvement in production criteria 

due to other lot sizing methods. Thus, a lot sizing method, common cycle time, which was 

proposed by Foote (1993) can be used to further investigate the lot sizing effect.

6. The following two questions are research gaps that were not attempted: 1) Do multiple criteria 

affect the performance of the constrained genetic algorithm? 2) What is the impact on the job 

shop performance measures of combining static and dynamic disciplines?
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APPENDIX A

EXPERIMENTAL RESULTS OF SINGLE MACHINE MODELS:

TaUeA.1. SummOT of (he CPU rwults for dig dfwanik protramnUng approach.
Comb.

No.
Problem 
Size (n)

Problem
type

No. of 
problems 

solved

CPU time 
needed by 

DP
1 18 P 9 9.65
2 18 i f 9 9.56
3 18 nr 9 9.63
4 18 IV* 9 15.09
5 20 I 9 45.05
6 20 n 9 46.08
7 20 in 9 45.27
8 20 IV 9 82.28
9 22 I 9 408.79
10 22 n 9 427.58
11 22 m 9 395.65
12 22 IV 9 547.03
13 24 I 9 2332.93
14 24 n 9 2340.68
15 24 m 9 2378.22
16 24 IV 9 3600.96

. . — ............. ........V--------  _  a ---- -----
CGA OBM UGA OBM

Comb.
No.

Problem 
Size (n)

Problem
type

No. of 
problems 

solved

Average Maximum No. of CPU Time 
%age error %age error Optimal needed (in 

found seconds)

Average Maximum No. of CPU Time 
%age error %age error Optimal needed (in 

found seconds)
1 18 r 9 3.49 9.64 2.00 1.31 3.87 19.97 1.00 3.05
2 18 9 9.30 29.11 1.00 1.30 4.44 18.36 3.00 3.07
3 18 nr 9 1.57 13.36 5.00 1.31 0.91 5.40 4.00 3.01
4 18 IV* 9 1.82 8.24 5.00 1.31 2.05 15.33 3.00 3.03
5 20 I 9 1.13 6.33 2.00 1.91 4.47 12.82 1.00 4.56
6 20 n 9 4.19 10.86 1.00 1.90 12.81 45.33 1.00 4.61
7 20 m 9 3.33 9.29 1.00 1.89 3.81 13.74 1.00 4.55
8 20 TV 9 4.06 7.52 0.00 1.90 4.14 11.58 1.00 4.56
9 22 1 9 4.63 19.55 1.00 2.69 3.01 8.52 2.00 6.58
10 22 n 9 3.51 19.31 0.00 2.70 5.19 10.37 0.00 6.66
11 22 m 9 2.57 7.76 2.00 2.68 2.91 10.81 2.00 6.54
12 22 TV 9 2.68 8.28 2.00 2.69 2.13 5.69 1.00 6.57
13 24 1 9 1.63 5.86 2.00 3.69 2.35 7.73 1.00 9.16
14 24 n 9 2.18 5.65 3.00 3.69 4.16 10.17 0.00 9.24
15 24 m 9 1.22 4.93 4.00 3.65 1.16 4.24 1.00 9.07
16 24 IV 9 2.27 16.35 3.00 3.66 2.41 8.63 1.00 9.14

T ype I: Pi was uniformly distributed between 1 & 5, and di was uniformly distributed between Pj and Pj + n. 
T ype II: Pi was uniformly distributed between 1 & 5, and di was uniformly distributed between Pj & Pj+ 1.5n. 
T ype n t  Pi was uniformly distributed between 1 &10, and di was uniformly distributed between Pj & Pj + n. 
T ype  IV: Pi was uniformly distributed between 1 & 10, and di was uniformly distributed between Pj & Pj + 1.5n.
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CGA OBM UGA OBM
Comb. Problem Problem No. of Average Maximum No. of CPU Time Average Maximum No. of CPU Time

\o . Size (n) type problems
solved

%age error %age error Optimal
found

needed (in 
seconds)

«4age
error

“/«age error Optimal
fbund

needed (in 
seconds)

1 18 I* 9 3.97 13.27 3.00 5.50 5.58 11.28 2.00 12.82
2 18 9 5.55 28.07 3.00 5.52 8.76 25.99 2.00 12.90
3 18 n r 9 0.98 5.34 6.00 5.51 4.08 9.72 2.00 12.70
4 18 IV* 9 2.00 12.39 4.00 5.52 5.48 20.48 1.00 12.78
5 20 I 9 0.43 1.73 6.00 8.48 3.03 21.54 4.00 20.25
6 20 n 9 5.89 14.09 2.00 8.52 8.43 60.00 4.00 20.47
7 20 ni 9 4.06 11.40 3.00 8.47 0.94 4.06 4.00 20.11
8 20 IV 9 2.06 11.92 4.00 8.47 1.30 7.61 2.00 20.21
9 22 I 9 2.84 20.00 3.00 12.60 2.97 12.92 5.00 30.66
10 22 n 9 5.37 30.49 3.00 12.64 6.39 25.81 2.00 30.98
II 22 m 9 3.28 15.13 1.00 12.58 1.42 5.56 3.00 30.44
12 22 rv 9 3.33 13.03 0.00 12.57 1.96 7.73 4.00 30.59
13 24 I 9 3.07 8.35 2.00 17.94 2.16 10.89 3.00 44.55
14 24 n 9 1.94 7.76 5.00 17.98 3.69 17.46 3.00 44.88
15 24 m 9 1.52 6.82 5.00 17.85 1.17 6.15 5.00 44.17
16 24 IV 9 1.95 7.08 2.00 17.85 1.68 8.24 4.00 44.44

CGA OBM UGA OBM
Comb.

No.
Problem 
Size (n)

Problem
type

No. of 
problems 

solved

Average Maximum No. of CPU Time 
%age error %age error Optimal needed (in 

lixind seconds)

Average Maximum No. of 
%age error %age error Optimal 

found

CPU Time 
needed (in 
seconds)

1 18 r 9 5.94 22.02 2.00 1.49 2.70 4.25 0.00 3.51
2 18 tf* 9 3.96 10.80 0.00 1.49 2.41 7.31 3.00 3.53
3 18 n r 9 2.70 12.42 3.00 1.49 1.46 8.44 3.00 3.47
4 18 rv* 9 6.97 19.78 2.00 1.49 1.72 11.61 2.00 3.50
5 20 I 9 2.57 11.89 3.00 2.18 2.57 14.76 2.00 5.23
6 20 n 9 3.28 12.27 3.00 2.18 5.78 28.90 1.00 5.27
7 20 m 9 1.10 4.66 2.00 2.16 1.92 12.81 3.00 5.19
8 20 rv 9 4.30 9.04 0.00 2.17 3.08 19.31 1.00 5.20
9 22 I 9 1.26 8.16 4.00 3.06 4.57 9.48 1.00 7.53
10 22 n 9 2.69 10.84 2.00 3.07 5.97 13.56 1.00 7.60
11 22 m 9 1.77 10.42 2.00 3.06 2.16 6.56 0.00 7.50
12 22 IV 9 2.65 11.21 1.00 3.05 4.04 11.40 0.00 7.53
13 24 I 9 0.44 2.05 4.00 4.23 2.20 12.04 3.00 10.55
14 24 n 9 1.43 6.43 4.00 4.25 4.07 16.58 2.00 10.63
15 24 m 9 0.53 2.10 4.00 4.22 1.07 3.04 3.00 10.45
16 24 IV 9 1.28 4.14 3.00 4.21 1.33 4.56 1.00 10.50

‘Type I: Pi was uniformly distributed between I & 5, and di was uniformly distributed between Pj & Pj + n. 
*^ype H; Pt was uniformly distributed between 1 & 5, and di was uniformly distributed between Pj & Pj + 1.5n. 
T ype ni: Pi was uniformly distributed between 1 &10, and dj was uniformly distributed between Pj & Pj + n. 
T ype IV: Pi was uniformly distributed between 1 &10, and di was uniformly distributed between Pj & Pj + l.Sn.
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TaMcA^
CGA OBM UGA OBM

Comb.
No.

Problem
Size(n)

Problem
type

No. of 
problems 

solved

Average 
%age error

.Ma.'dmum 
%age error

No. of CPU Time 
Optimal needed (in 
found seconds)

Average 
%age error

Maximum No. of CPU Time 
t'oage error Optimal needed (in 

found secorxb)
I 18 r 9 0.19 0.71 5.00 6.39 4.92 14.19 1.00 14.72
2 18 9 3.26 16.75 5.00 6.40 7.56 28.28 2.00 14.82
3 18 nr 9 2.63 11.98 5.00 6.38 3.17 7.20 1.00 14.60
4 18 [V* 9 5.31 22.97 2.00 6.38 3.89 10.38 2.00 14.67
5 20 I 9 0.90 4.02 6.00 9.73 2.13 8.46 2.00 23.05
6 20 n 9 7.81 39.12 6.00 9.80 8.10 40.00 2.00 23.32
7 20 m 9 1.33 5.38 5.00 9.72 0.95 3.27 3.00 22.95
8 20 IV 9 2.84 14.21 3.00 9.72 1.83 5.28 3.00 23.03
9 22 I 9 4.73 24.04 4.00 14.46 1.94 12.79 4.00 34.95
10 22 n 9 2.15 4.56 2.00 14.52 2.98 15.18 2.00 35.28
11 22 m 9 1.25 8.53 3.00 14.42 2.39 12.41 2.00 34.70
12 22 IV 9 1.56 10.99 4.00 14.46 3.06 17.86 3.00 34.85
13 24 I 9 2.85 17.11 4.00 20.80 2.00 9.04 5.00 51.10
14 24 n 9 2.75 7.32 4.00 20.86 4.41 20.65 4.00 51.48
15 24 m 9 2.15 5.40 1.00 20.69 0.81 3.81 5.00 50.67
16 24 IV 9 1.73 6.54 5.00 20.71 1.01 4.35 5.00 50.95

CGA LOX UGA LOX
Comb.

No.
Problem
Size(n)

Problem
type

No. of 
problems 

solved

Average 
%age error

Maximum No. of CPU Time 
liage error Optimal needed (in 

Rxmd seconds)

Average Maximum No. of CPU Time 
%age error %age error Optimal needed (in 

found seconds)

1 18 r 9 1.08 3.96 2.00 1.90 1.47 6.20 0.00 3.14
2 18 9 1.62 6.79 3.00 1.88 2.01 6.79 0.00 3.15
3 18 nr 9 0.29 1.20 4.00 1.89 0.61 1.64 1.00 3.14
4 18 IV* 9 0.17 0.90 5.00 1.88 0.14 0.50 4.00 3.14
5 20 1 9 0.31 2.01 5.00 2.90 0.99 2.67 2.00 4.85
6 20 n 9 1.83 8.00 4.00 2.91 2.17 6.36 1.00 4.87
7 20 m 9 0.13 0.43 5.00 2.90 0.76 3.98 2.00 4.86
8 20 rv 9 0.38 1.98 4.00 2.90 0.55 1.98 3.00 4.85
9 22 I 9 0.61 1.94 4.00 4.37 0.75 2.46 2.00 7.24
10 22 n 9 0.44 1.22 3.00 4.38 1.53 4.17 1.00 7.26
11 22 m 9 0.12 0.43 5.00 4.32 0.42 1.21 0.00 7.24
12 22 IV 9 0.72 1.93 1.00 4.33 0.97 2.51 2.00 7.24
13 24 I 9 0.38 1.75 5.00 6.21 0.72 2.19 2.00 10.31
14 24 n 9 2.24 10.00 1.00 6.19 1.77 3.87 1.00 10.33
15 24 m 9 0.14 1.01 6.00 6.17 0.44 0.95 1.00 10.29
16 24 rv 9 0.22 1.22 4.00 6.15 0.61 1.69 0.00 10.32

T ype I: Pj was unifonnly distributed between 1 & 5, and di was uniformly distributed between Pj & Pj + n. 
T ype  H: P, was uniformly distributed between 1 & 5, and dj was uniformly distributed between Pj & Pj + 1 .5il 
T ype n t  Pi was uniformly distributed between 1 &10, and di was uniformly distributed between Pj & Pj + n. 
T ype  IV: Pi was uniformly distributed between 1 &10, and di was uniformly distributed between Pj&Pj+ 1.5n.
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rwults (CTMII: Popalatlow sbg~ZSn A no. of memermtkim*
CGA LOX UGA LOX

Comb. Problem Problem No. of Average Maximum No. of CPU Time Average Maximum No. of CPU Time
No. Size(n) type problems %age error t'&age error Optimal needed (in %age error '̂&age error Optimal needed (in

solved found seconds) found seconds)

I 18 P 9 1.08 3.96 2.00 7.93 1.47 6.20 0.00 13.24
2 18 I f 9 1.62 6.79 3.00 7.93 2.01 6.79 0.00 13.25
3 18 nr 9 0.29 1.20 4.00 7.89 0.61 1.64 1.00 13.21
4 18 IV* 9 0.17 0.90 5.00 7.89 0.14 0.50 4.00 13.23
5 20 I 9 0.31 2.01 5.00 12.90 0.99 2.67 2.00 21.56
6 20 u 9 1.83 8.00 4.00 12.90 2.17 6.36 1.00 21.62
7 20 in 9 0.13 0.43 5.00 12.85 0.76 3.98 2.00 21.55
8 20 IV 9 0.38 1.98 4.00 12.87 0.55 1.98 3.00 21.57
9 22 I 9 0.61 1.94 4.00 20.37 0.75 2.46 2.00 33.81
10 22 n 9 0.44 1.22 3.00 20.34 1.53 4.17 1.00 33.83
11 22 m 9 0.12 0.43 5.00 20.09 0.42 1.21 0.00 33.75
12 22 IV 9 0.72 1.93 1.00 20.13 0.97 2.51 2.00 33.78
13 24 I 9 0.38 1.75 5.00 30.25 0.72 2.19 2.00 50.26
14 24 n 9 2.24 10.00 1.00 30.23 1.77 3.87 1.00 50.36
15 24 m 9 0.14 1.01 6.00 30.16 0.44 0.95 1.00 50.16
16 24 IV 9 0.22 1.22 4.00 29.94 0.61 1.69 0.00 50.21

T ible A.8. Sammarv of aleorithm results tease III: Papalatton sbe-4n & no. o f eeneratkms - n \
CGA LOX UGA LOX

Comb. Problem Problem No. of Average Maximum No. of CPU Time Average Maximum No. of CPU Time
No. Size(n) type problems %age error %age error Optimal needed (in %age error %age error Optimal needed (in

solved found seconds) found seconds)

1 18 r 9 0.73 2.84 4.00 2.17 0.44 1.99 4.00 3.61
2 18 9 0.87 2.49 3.00 2.18 1.27 9.15 3.00 3.64
3 18 nr 9 0.15 0.88 6.00 2.15 0.18 1.20 6.00 3.63
4 18 IV* 9 0.19 0.90 5.00 2.16 1.11 7.16 3.00 3.63
5 20 I 9 0.45 2.01 4.00 3.37 0.40 2.01 3.00 5.56
6 20 n 9 0.41 1.70 6.00 3.34 1.47 8.00 4.00 5.56
7 20 m 9 0.02 0.16 8.00 3.32 0.86 4.82 3.00 5.54
8 20 IV 9 0.37 2.11 4.00 3.32 0.37 0.92 2.00 5.56
9 22 I 9 0.66 2.18 5.00 4.98 0.99 1.94 1.00 8.26
10 22 n 9 0.96 5.49 4.00 4.97 0.90 3.66 1.00 8.26
11 22 m 9 0.19 0.68 5.00 4.92 0.55 2.07 4.00 8.25
12 22 IV 9 0.62 1.38 1.00 4.92 0.41 1.04 1.00 8.26
13 24 I 9 0.48 1.30 3.00 7.15 1.31 3.29 0.00 11.87
14 24 n 9 0.88 1.68 1.00 7.13 2.32 6.04 1.00 11.86
15 24 m 9 0.07 0.37 6.00 7.13 0.50 1.53 1.00 11.84
16 24 IV 9 0.30 0.83 2.00 7.07 0.30 0.81 2.00 11.85

i + n.
*Type II: Pi was unifonnly distributed between 1 & 5, and di was unifonnly distributed between Pj & Pj +  1.5n. 
Type IIL P, was unifonnly distributed between 1 &10, and di was unifonnly distributed between Pj & Pj + n. 
T ype rV: P, was uniformly distributed between 1 &10, and di was unifonnly distributed between Pj & Pj + 1.5n.
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CGA LOX UGA LOX
Comb.

No.
Problem
Size(n)

Problem
type

No. of 
problems 

solved

Average 
%age error

Maximum No. of CPU Time 
?^ge error Optimal needed (in 

Rxind seconds)

Average 
^'iage error

Maximum No. of CPU Time 
■̂iage error Optimal needed (in 

fixind seconds)

1 18 I* 9 0.73 2.84 4.00 9.14 0.44 1.99 4.00 15.23
2 18 n" 9 0.87 2.49 3.00 9.17 1.27 9.15 3.00 15.25
3 18 n r 9 0.15 0.88 6.00 9.12 0.18 1.20 6.00 15.22
4 18 rV 9 0.19 0.90 5.00 9.13 1.11 7.16 3.00 15.24
5 20 I 9 0.45 2.01 4.00 14.80 0.40 2.01 3.00 24.60
6 20 n 9 0.41 1.70 6.00 14.76 1.47 8.00 4.00 24.66
7 20 m 9 0.02 0.16 8.00 14.71 0.86 4.82 3.00 24.58
8 20 IV 9 0.37 2.11 4.00 14.74 0.37 0.92 2.00 24.64
9 22 I 9 0.66 2.18 5.00 23.20 0.99 1.94 1.00 38.47
10 22 n 9 0.96 5.49 4.00 23.15 0.90 3.66 1.00 38.52
11 22 m 9 0.19 0.68 5.00 22.88 0.55 2.07 4.00 38.39
12 22 TV 9 0.62 1.38 1.00 22.96 0.41 1.04 1.00 38.43
13 24 I 9 0.48 1.30 3.00 34.81 1.31 3.29 0.00 57.78
14 24 n 9 0.88 1.68 1.00 34.75 2.32 6.04 1.00 57.85
15 24 m 9 0.07 0.37 6.00 34.70 0.50 1.53 1.00 57.71
16 24 IV 9 0.30 0.83 2.00 34.48 0.30 0.81 2.00 57.77

CGA OBM LOX UGA OBM LOX
Comb.

No.
Problem
Size(n)

Problem
type

No. of 
problems 

solved

Average Maximum No. of CPU Time 
%age error %age error Optimal needed (in 

(bund seconds)

Average 
%age error

Maximum No. of 
%age error Optimal 

found

CPU Time 
needed (in 
seconds)

1 18 r 9 0.00 0.00 9.00 2.32 0.13 1.16 8.00 3.73
2 18 rf* 9 0.03 0.30 8.00 2.30 0.00 0.00 9.00 3.72
3 18 n r 9 0.00 0.00 9.00 2.28 0.00 0.00 9.00 3.72
4 18 IV* 9 0.00 0.00 9.00 2.28 0.01 0.09 8.00 3.71
5 20 I 9 0.04 0.35 8.00 3.49 0.02 0.17 8.00 5.70
6 20 n 9 0.00 0.00 9.00 3.50 0.00 0.00 9.00 5.72
7 20 m 9 0.00 0.00 9.00 3.48 0.00 0.00 9.00 5.69
8 20 IV 9 0.03 0.25 8.00 3.48 0.03 0.25 8.00 5.70
9 22 I 9 0.02 0.20 8.00 5.13 0.00 0.00 9.00 8.41
10 22 n 9 0.33 2.44 6.00 5.14 0.35 2.44 5.00 8.41
11 22 m 9 0.05 0.43 8.00 5.09 0.07 0.43 7.00 8.39
12 22 IV 9 0.00 0.00 9.00 5.08 0.05 0.39 7.00 8.40
13 24 I 9 0.00 0.00 9.00 7.27 0.00 0.00 9.00 11.94
14 24 n 9 0.21 0.99 7.00 7.26 0.19 0.99 6.00 11.95
15 24 m 9 0.04 0.34 8.00 7.26 0.04 0.34 7.00 11.92
16 24 IV 9 0.00 0.00 9.00 7.20 0.02 0.20 8.00 11.94

Type L Pi was uniformly distributed between I & 5, and di was uniformly distributed between Pj & Pj + n. 
Type U: P, was uniformly distributed between 1 & 5, and di was unifonnly distributed between Pj & Pj + 1.5n. 
Type nL Pi was uniformly distributed between 1 &10, and di was uniformly distributed between Pj & Pj + n. 
Type IV: Pi was uniformly distributed between 1 &10, and di was uniformly distributed between Pj & Pj + 1.5n.
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CGA OBM LOX UGA OBM LOX
Comb. Problem Problem No. of Average Maximum No. of CPU Time Average Maximum No. of CPU Time

N'o. Size(n) type problems
solved

%age error 9’iage error Optimal needed (in 
found seconds)

^4age error °.'iage error Optimal needed (in 
found seconds)

1 18 P 9 0.00 0.00 9.00 9.64 0.00 0.00 9.00 15.67
2 18 9 0.00 0.00 9.00 9.64 0.00 0.00 9.00 15.68
3 18 n r 9 0.00 0.00 9.00 9.60 0.00 0.00 9.00 15.62
4 18 IV* 9 0.00 0.00 9.00 9.60 0.00 0.00 9.00 15.63
5 20 1 9 0.00 0.00 9.00 15.53 0.01 0.09 8.00 25.36
6 20 n 9 0.00 0.00 9.00 15.52 0.00 0.00 9.00 25.44
7 20 m 9 0.00 0.00 9.00 15.49 0.02 0.10 7.00 25.34
8 20 rv 9 0.03 0.25 8.00 15.43 0.13 0.92 7.00 25.36
9 22 1 9 0.00 0.00 9.00 23.96 0.00 0.00 9.00 39.25
10 22 E 9 0.28 2.44 7.00 23.95 0.35 2.44 5.00 39.32
11 22 El 9 0.05 0.43 8.00 23.72 0.03 0.20 7.00 39.19
12 22 IV 9 0.00 0.00 9.00 23.73 0.04 0.39 8.00 39.22
13 24 1 9 0.00 0.00 9.00 35.47 0.00 0.00 9.00 58.26
14 24 E 9 0.21 0.99 7.00 35.43 0.13 0.99 7.00 58.34
15 24 El 9 0.00 0.00 9.00 35.39 0.00 0.00 9.00 58.17
16 24 IV 9 0.00 0.00 9.00 35.15 0.03 0.20 7.00 58.21

CGA OBM LOX UGA OBM LOX
Comb.

No.
Problem 
Size (n)

Problem
type

No. of 
problems 

solved

Average Maximum No. of CPU Time 
%age error %age error Optimal needed (in 

found seconds)

Average Maximum No. of CPU Time 
%age error %age error Optimal needed (in 

found seconds)

1 18 P 9 0.00 0.00 9.00 2.63 0.08 0.71 8.00 4.27
2 18 iT 9 0.00 0.00 9.00 2.63 0.02 0.14 8.00 4.27
3 18 EP 9 0.00 0.00 9.00 2.64 0.00 0.00 9.00 4.25
4 18 rv* 9 0.00 0.00 9.00 2.61 0.00 0.00 9.00 4.26
5 20 1 9 0.04 0.35 8.00 4.02 0.00 0.00 9.00 6.51
6 20 E 9 0.00 0.00 9.00 3.99 0.00 0.00 9.00 6.53
7 20 IE 9 0.00 0.00 9.00 3.98 0.02 0.16 8.00 6.49
8 20 IV 9 0.03 0.25 8.00 3.97 0.02 0.19 8.00 6.50
9 22 1 9 0.00 0.00 9.00 5.88 0.00 0.00 9.00 9,62
10 22 E 9 0.33 2.44 6.00 5.88 0.35 2.44 5.00 9.64
11 22 IE 9 0.00 0.00 9.00 5.84 0.14 0.61 6.00 9.59
12 22 IV 9 0.04 0.39 8.00 5.85 0.05 0.39 7.00 9.62
13 24 1 9 0.00 0.00 9.00 8.41 0.00 0.00 9.00 13.72
14 24 E 9 0.21 0.99 7.00 8.38 0.02 0.15 8.00 13.76
15 24 IE 9 0.00 0.00 9.00 8.36 0.00 0.00 9.00 13.71
16 24 rv 9 0.00 0.00 9.00 8.31 0.02 0.20 8.00 13.71

lype X. r i  w a s  uiuiomuy u isu iD U icu  o e iw c c n  i o& j ,  cuiu u, w a s  u m iu iu u j  u is u iu u ic u  u c iw c c u  x j o& r j  ^  lu 

“Type I t  Pi was uniformly distributed between 1 & 5, and di was uniformly distributed between Pj & Pj + 1.5n. 
Type n t Pi was uniformly distributed between 1 &10, and di was uniformly distributed between Pj & Pj + n. 
Type rV: Pi was uniformly distributed between I &10, and di was uniformly distributed between Pj & Pj + 1.5n.
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Tabic A.13. Summary of  a lto rithm  rwnits fcaac IV: Population g|zc-4n A no. o f  generation» «n“ V
CGA OBM LOX UGA OBM LOX

Comb. Problem Problem No. of Average Maximum No. of CPU Time Average Maximum No. of CPU Time
N'o. Size (n) type problems

solved
®/4age error -̂oage error Optimal needed (in 

found seconds)
%age error l^ g e  error Optimal 

found
needed (in 
seconds)

1 IS r 9 0.00 0.00 9.00 11.04 0.00 0.00 9.00 17.92
2 18 9 0.00 0.00 9.00 11.06 0.00 0.00 9.00 17.96
3 18 n r 9 0.00 0.00 9.00 11.00 0.00 0.00 9.00 17.90
4 18 rv* 9 0.00 0.00 9.00 11.01 0.00 0.00 9.00 17.94
5 20 I 9 0.00 0.00 9.00 17.71 0.00 0.00 9.00 28.87
6 20 n 9 0.00 0.00 9.00 17.70 0.00 0.00 9.00 28.96
7 20 m 9 0.00 0.00 9.00 17.66 0.00 0.00 9.00 28.86
8 20 IV 9 0.03 0.25 8.00 17.64 0.00 0.00 9.00 28.89
9 22 I 9 0.00 0.00 9.00 27.41 0.00 0.00 9.00 44.85
10 22 n 9 0.33 2.44 6.00 27.42 0.35 2.44 5.00 44.92
11 22 in 9 0.00 0.00 9.00 27.15 0.05 0.43 8.00 44.77
12 22 IV 9 0.00 0.00 9.00 27.19 0.04 0.39 8.00 44.83
13 24 I 9 0.00 0.00 9.00 40.91 0.00 0.00 9.00 66.96
14 24 n 9 0.11 0.99 8.00 40.83 0.23 1.96 7.00 67.06
15 24 m 9 0.00 0.00 9.00 40.81 0.00 0.00 9.00 66.89
16 24 IV 9 0.00 0.00 9.00 40.51 0.03 0.20 7.00 66.92

Table A.14. Summary of CCA OBM and UGA OBM alforithma result».
Percentages of optimal soltitions found The no. of times the maximum deviation from 

the optimal was smaller for the CGA OBMCase No. CGA_OBM UG.A_OBM

r 23.61 15.97 9 out of 16
36.111 34.722 7 out o f 16

n r 27.083 18.056 11 out o f 16
rv<i 44.444 31.944 8 out o f 16

Table A.15. Summary of CGA LOX and UGA LOX altorUhma reaulta.
Percentages of optimal solutions found The no. of times the maximum deviation from 

the optimal was smaller for the CGA_LOXCase No. CGA_LOX UGA_LOX

I* 42J61 15.278 10 out of 16

n" 42J61 15.278 10 out of 16

n r 46.528 27.083 9 out o f 16

i V 46.528 27.083 9 out o f 16

Table A.16. Summary of CCA OBM LOX and UGA OBM LOX alforithma résulta.
Percentages of optimal solutions found The no. of times the maximum deviation from

Case No. CGA_OBM_UOX UGA_OBM_LOX the optimal was smaller for the CGA_OBM_LOX

r 92J61 87.5 4 out o f 16

I f 95.833 88.889 5 out o f 16

in' 94.444 89.583 5 out o f 16

IV* 96.528 93.056 4 out o f 16

Type I: P; was uniformly distributed between 1 & 5, and d  was uniformly distributed between Pj & Pj + n. 
Type II: Pi was uniformly distributed between 1 & 5, and di was uniformly distributed between Pj & Pj + 1 .5 il 
Type lU: P, was uniformly distributed between 1 &10, and di was uniformly distributed between Pj & Pj + n. 
Type IV: P, was uniformly distributed between I &10, and di was uniformly distributed between Pj & Pj + 1.5n.



APPENDIX B

RESULTS OF EXPERIMENT I

Problem
size

No. of 
alternatives

CPU time 
(Sec.)

.Makespan Number
Tardy

Average 
now time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

6x6 187 55.15 55 0 51.5 0 OST(A) 0.000
6x6 133 55.53 55 0 51 0 LRPTCA) 0.000
6x6 109 52.51 55 0 52 0 COVERT(AS) 0.000
6x6 188 54.82 55 0 51.5 0 CR(A) 0.000
6x6 103 53.99 55 0 51 0 Biased-RANDOM(A) 0.000
6x6 137 53.33 57 1 49.5 2 Biased-RANDOM(ND) 3.636
6x6 188 61.9 55 0 51 0 JSTfA) 0.000
6x6 188 52.4 56 1 51.5 1 RANDOMCA) 1.818
6x6 183 54.27 56 1 51.5 1 OST(A) 1.818
6x6 188 56.95 55 0 51 0 S/RPT(A) 0.000

Table BJ. SunutMiy of reauHs obUlncd for prohtem FT6 «nd ewae II (LOV.
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

6x6 187 71.12 55 0 51.5 0 CR(A) 0.000
6x6 116 72.12 55 0 51.5 0 LRPT(A) 0.000
6x6 117 59.82 57 1 49.5 2 RANDOM(ND) 3.636
6x6 188 64.49 55 0 51 0 LRPT(A) 0.000
6x6 93 56.47 57 1 49.5 2 Biased-RANDOM(ND) 3.636
6x6 111 72.83 55 0 51.5 0 LRPT(A) 0.000
6x6 102 70.42 56 1 51.5 1 RANDOM(A) 1.818
6x6 96 66.79 55 0 51 0 RANDOM(A) 0.000
6x6 185 62.83 57 1 49.5 2 Biased-RANDOM(ND) 3.636
6x6 188 69.37 55 0 51.5 0 OST(A) 0.000

Problem size No. of 
alternatives

CPU time 
(Sec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

6x6 112 71.62 55 0 51.5 0 RANDOM(A) 0.000
6x6 188 73.27 55 0 51 0 LRPT(A) 0.000
6x6 187 59.04 57 1 49.5 2 Biased-RANDOM(ND) 3.636
6x6 185 58.82 57 1 49.5 2 Biased-RANDOM(ND) 3.636
6x6 187 59.49 57 1 49.5 2 Biased-RANDOM(ND) 3.636
6x6 187 60.53 57 1 49.5 2 Biased-RANDOM(ND) 3.636
6x6 97 68.22 55 0 51.5 0 RANDOM(A) 0.000
6x6 98 69.53 55 0 51 0 RANDOM(A) 0.000
6x6 187 69.98 55 0 51.5 0 LRPT(A) 0.000
6x6 188 70.86 55 0 51.5 0 LRPTCA) 0.000

184
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Table B.4. Summary o f rerolti obulned for prohltm  FT6 n d  ctae tV (OSV
Problem size No. of CPU time Makespan Number Average Total 

alternatives (Sec.) Tardy flow time Tardiness
The origin of the best 

chromosome
Percentage of 

error

6x6 122 59.59 55 0 50.833 0 R.ANDOM(.A) 0.000

6x6 187 57.84 57 1 49.5 2 COVERT(ND) 3.636

6x6 188 56.47 57 1 49.5 2 Biased-RANDOM(ND) 3.636

6x6 184 62.23 55 0 51 0 Biased-RANDOM(A) 0.000

6x6 98 58.05 55 0 50.833 0 Biased-RANDOM(A) 0.000

6x6 187 65J6 55 0 52 0 RANDOM(A) 0.000

6x6 188 55.37 57 1 49.5 2 Biased-RANDOM(ND) 3.636

6x6 188 55.97 57 1 49.5 2 RANDOM(ND) 3.636

6x6 187 60.91 55 0 52 0 RANDOM(A) 0.000

6x6 102 6234 57 1 52.5 2 SW T(A) 3.636

Table B.S. Summary of resiiits obtained for problem FT6 and case V (OOk
Problem size No. of 

alternatives
CPU time Makespan 

(Sec.)
Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

6x6 104 74.26 55 0 51 0 RANDOM(A) 0.000
6x6 186 95.52 57 1 52 2 OST(A) 3.636

6x6 84 61.57 55 0 51 0 RANDOM(A) 0.000

6x6 100 66.35 55 0 51 0 Biased-RANDOMCA) 0.000

6x6 113 63.99 57 1 49.5 2 Biased-RANDOM(ND) 3.636

6x6 187 60.59 57 1 49.5 2 SRPT(ND) 3.636

6x6 98 68.44 57 1 52 2 S/RPT(A) 3.636

6x6 188 60.47 57 1 49.5 2 RANDOM(ND) 3.636

6x6 188 62.56 57 1 49.5 2 Biased-RANDOM(ND) 3.636

6x6 188 69.76 55 0 51.5 0 Biased-RANDOMCA) 0.000

Table B.6. Summary of results obtained for problem FT6 am case VI (OP).
Problem size No. of 

alternatives
CPU time Makespan 

(Sec.)
Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

6x6 187 67.23 55 0 50.833 0 RANDOM(A) 0.000

6x6 65 66.79 55 0 52 0 Biased-RANDOMCA) 0.000
6x6 187 54.93 57 1 49.5 2 Biased-RANDOMCND) 3.636

6x6 187 80.74 57 1 52.5 2 LRPTCA) 3.636
6x6 185 74.92 57 1 52 2 LRPTCA) 3.636

6x6 186 56.63 57 1 49.5 2 SRPTCND) 3.636

6x6 82 144.62 57 1 52.5 2 CRCA) 3.636

6x6 187 61.35 57 1 49.5 2 RANDOMCND) 3.636

6x6 188 56.41 57 1 49.5 2 Biased-RANDOMCND) 3.636

6x6 74 86.4 57 1 52 2 LRPTCA) 3.636

Table B.7. Summary of results obtained for problem FT6 and case V n CPS).
Problem size No. of 

alternatives
CPU time Makespan 

(Sec.)
Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

6x6 186 55.25 55 0 51 0 RANDOMCA) 0.000

6x6 186 55.75 55 0 51.5 0 LRPTCA) 0.000

6x6 188 5 U 6 57 1 49.5 2 Biased-RANDOMCND) 3.636

6x6 188 57.39 55 0 51.5 0 Biased-RANDOMCA) 0.000

6x6 132 52.51 55 0 51.5 0 JSTCA) 0.000

6x6 188 51.58 57 1 49.5 2 Biased-RANDOMCND) 3.636

6x6 187 50.26 57 1 49.5 2 Biased-RANDOMCND) 3.636

6x6 188 52.4 57 1 49.5 2 Biased-RANDOMCND) 3.636

6x6 147 51.74 55 0 51.5 0 RANDOMCA) 0.000

6x6 188 50.59 57 1 49.667 2 LAWINQCND) 3.636
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Tmbk B A  S am nury  of result» obuliw d for problem  FT< n d  c « c  VIII (POV
Problem size No. of 

altenutives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

6x6 185 63.16 55 0 51 0 JST(A) 0.000
6x6 126 60.53 55 0 50.833 0 S/RPT(A) 0.000

6x6 187 53.99 57 1 49.5 2 Biased-RANDOM(ND) 3.636
6x6 186 58.66 55 0 51 0 LRPT(A) 0.000

6x6 176 51.03 57 1 49.5 2 R.ANDOM(ND) 3.636
6x6 125 68.66 55 0 51.5 0 S/RPTCA) 0.000

6x6 137 63J8 55 0 51.5 0 S/RPT(A) 0.000

6x6 187 58.49 57 1 49.667 2 RANDOMCND) 3.636

6x6 123 66.3 55 0 51.5 0 CR(A) 0.000

6x6 188 58.22 55 0 51 0 Bissed-RANDOM(A) 0.000

Table B.9. Summary of rtsulti obuined for problem FT6 «nd m e  I X  (P P X
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number 

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

6x6 121 61.57 55 0 51.5 0 OST(A) 0.000
6x6 185 62.46 55 0 51 0 Biased-RANDOM(A) 0.000
6x6 187 53.12 57 1 49.5 2 Blased-RANDOM(ND) 3.636
6x6 187 62.67 55 0 51.5 0 Biased-RANDOM(A) 0.000

6x6 188 56.29 55 0 50.833 0 RANDOM(A) 0.000

6x6 115 60.48 55 0 51.5 0 LRPT(A) 0.000

6x6 188 61.13 55 0 51 0 JST(A) 0.000
6x6 186 62.95 55 0 51.5 0 Biased-RANDOM(A) 0.000
6x6 126 57.67 55 0 51 0 LRPT(A) 0.000
6x6 187 53.55 57 1 49.5 2 RANDOMCND) 3.636

Tmbk B.10. Summary of result» obtained for problem FTIO end cage I (LS).
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage 
of error

10x10 377 533.05 964 4 895.1 96 Blased-RANDOM(ND) 3.656
10x10 8 515.59 957 5 875.4 86 RANDOMCND) 2.903
10x10 444 563.43 964 4 895.1 96 RANDOMCND) 3.656
10x10 443 546.29 984 3 814.9 110 RANDOMCND) 5.806
10x10 444 561.01 968 3 839.3 53 RANDOMCND) 4.086
10x10 405 543.71 968 3 839J 53 RANDOMCND) 4.086
10x10 444 566.01 964 4 895.1 96 RANDOMCND) 3.656
10x10 402 577.26 964 4 895.1 96 RANDOMCND) 3.656
10x10 444 519.6 962 5 885.1 99 Biased-RANDOMCND) 3.441
10x10 442 552.61 964 4 895.1 96 Biased-RANDOMCND) 3.656

n(Lo>
Problem size No. of 

ahemalives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage 
of error

10x10 444 56836 964 4 895.1 96 RANDOMCND) 3.656
10x10 444 551.67 968 3 8393 53 WSPT+WOSTCND) 4.086
10x10 444 588.64 964 4 895.1 96 OCRCND) 3.656
10x10 444 549.42 964 4 887.9 96 RANDOMCND) 3.656
10x10 420 537.94 960 4 819 92 RANDOMCND) 3.226
10x10 444 59836 968 3 819.4 99 WSPT+WOST(ND) 4.086
10x10 443 590.06 964 4 887.9 96 RANDOMCND) 3.656
10x10 444 575.18 964 4 895.1 96 Biased-RANDOMCND) 3.656
10x10 444 554.97 964 4 895.1 96 Biased-RANDOMCND) 3.656
10x10 444 562.43 964 4 895.1 96 RANDOMCND) 3.656
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Table B.12. Samiwiry o f w auhs o b m n td  fo r problem FTIO miW case HI CLPV
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage 
of error

10x10 444 572 964 4 895.1 96 LRPTCND) 3.656

10x10 444 551.29 968 3 839J 53 JST(ND) 4.086

10x10 444 550.13 968 3 839J 53 ODDfND) 4.086
10x10 444 550.58 964 4 895.1 96 RANDOMCND) 3.656
10x10 444 584.13 976 4 862J 131 Biased-RANDOM(ND) 4.946

10x10 342 569.79 964 4 887.9 96 WSPT+WOST(ND) 3.656
10x10 444 576.72 964 4 895.1 96 JSTCND) 3.656

10x10 442 539.97 964 4 895.1 96 Biased-RANDOM(ND) 3.656

10x10 443 558.04 964 4 895.1 96 WSPT+WOST(ND) 3.656
10x10 395 541.29 964 4 895.1 96 Biased-RANDOMCND) 3.656

Tmbk B.Ï3. Smrnnary of results obtained for problem FTIO m i aae IV (OS).
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

10x10 377 542.28 964 4 895.1 96 RANDOMCND) 3.656
10x10 444 562.17 964 4 892.5 96 Biased-RANDOMCND) 3.656
10x10 444 544.47 964 4 895.1 96 Biased-RANDOMCND) 3.656
10x10 289 559.36 964 4 895.1 96 MODDCND) 3.656
10x10 444 558.2 964 4 887.9 96 RANDOMCND) 3.656
10x10 444 546.73 964 4 887.9 96 RANDOMCND) 3.656
10x10 381 579J5 968 3 836.2 50 ATCCND) 4.086
10x10 442 557.71 964 4 895.1 96 RANDOMCND) 3.656
10x10 261 577.65 968 4 865.9 93 RANDOMCND) 4.086
10x10 374 561.84 968 3 836.2 50 RANDOMCND) 4.086

TabkB.14. Sumiiuiy of m ults obtained for problem FTIO and came VfOO).
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

10x10 344 606.38 964 4 895.1 96 Biased-RANDOMCND) 3.656
10x10 444 578.25 962 5 885.1 99 Biased-RANDOMCND) 3.441

10x10 444 568.75 968 3 8393 53 ATCCND) 4.086
10x10 444 558.26 964 4 895.1 96 RANDOMCND) 3.656
10x10 327 545.24 964 4 895.1 96 RANDOMCND) 3.656
10x10 380 590.39 968 3 8393 53 RANDOMCND) 4.086
10x10 353 557.94 964 4 895.1 96 ATCCND) 3.656
10x10 444 558.43 964 4 895.1 96 Biased-RANDOMCND) 3.656
10x10 375 576.72 964 4 895.1 96 WSPT+WOSTCND) 3.656
10x10 306 542.12 960 3 821.6 61 RANDOMCND) 3.226

Tabk B.15. Summary of results obtained for problem FTIO and caae VI (OPV
Problem size No. of 

alternatives
CPU time 

CSec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

10x10 443 578.75 964 4 895.1 96 RANDOMCND) 3.656
10x10 444 56936 978 4 911 137 RANDOMCND) 5.161
10x10 444 534.81 968 3 836.2 50 ATCCND) 4.086
10x10 444 552.55 964 4 892.5 96 RANDOMCND) 3.656
10x10 444 548.49 968 3 8393 53 RANDOMCND) 4.086
10x10 444 577.93 975 3 827.4 120 Biased-RANDOMCND) 4.839
10x10 349 557.71 964 4 895.1 96 Biased-RANDOMCND) 3.656
10x10 444 566.72 968 3 836.2 50 SPTCND) 4.086
10x10 335 539.15 960 3 821.6 61 Biased-RANDOMCND) 3.226

10x10 443 548.81 960 3 829.8 61 SPTCND) 3.226
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Table B.16. Summary o f result» obU hud for problem FTIO mnd etat V II (PS).
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

10x10 365 630.44 964 4 895.1 96 RANDOMCND) 3.656

10x10 442 549.03 960 3 821.6 61 WSPT+WOST(ND) 3.226

10x10 443 551.23 956 4 869.8 59 Biased-RANDOM(ND) 2.796

10x10 444 542.28 964 4 895.1 96 Biased-RANDOMCND) 3.656

10x10 444 541.84 964 4 887.9 96 RANDOMCND) 3.656

10x10 374 576.93 968 3 836.2 50 WSPT+WOST(ND) 4.086

10x10 444 547.06 964 4 895.1 96 Biased-RANDOMCND) 3.656

10x10 444 645.87 964 4 895.1 96 RANDOMCND) 3.656

10x10 444 572.82 964 4 892.5 96 RANDOMCND) 3.656

10x10 444 543.43 968 3 836.2 50 Biased-RANDOMCND) 4.086

Table B.17. Snmmafy of results obtained for problem FTIO aiW caae VTII (?OV
Problem size No. of 

alternatives
CPU time 

CSec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosoine

Percentage of 
error

10x10 396 571.61 964 4 895.1 96 RANDOMCND) 3.656
10x10 379 586.66 968 3 825 97 ATCCND) 4.086

10x10 444 534.15 968 3 836.2 50 Biased-RANDOMCND) 4.086
10x10 444 558.98 964 4 895.1 96 RANDOMCND) 3.656

10x10 444 552.93 964 4 887.9 96 COVERTCND) 3.656

10x10 444 557.77 966 6 867.5 140 WSPT+WOSTCND) 3.871

10x10 444 556.94 966 6 867.5 140 Biased-RANDOMCND) 3.871

10x10 444 618.46 964 4 895.1 96 WSPT+WOSTCND) 3.656

10x10 322 563.75 964 4 895.1 96 MODDCND) 3.656

10x10 444 568.04 964 4 888.8 96 RANDOMCND) 3.656

and caie K  (PPy
Problem size No. of 

alternatives
CPU time 

CSec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

10x10 444 553.2 964 4 895.1 96 SPTCND) 3.656

10x10 443 563J8 964 4 895.1 96 Biased-RANDOMCND) 3.656
10x10 438 550.57 962 5 885.1 99 RANDOMCND) 3.441

10x10 444 563.04 964 4 895.1 96 Biased-RANDOMCND) 3.656

10x10 444 573.86 964 4 895.1 96 OSTCND) 3.656

10x10 351 593.25 964 4 895.1 96 Biased-RANDOMCND) 3.656

10x10 443 572.38 964 4 895.1 96 RANDOMCND) 3.656

10x10 444 572.27 964 4 895.1 96 WSPT+WOSTCND) 3.656

10x10 444 564.09 979 4 900.1 156 Biased-RANDOMCND) 5.269

10x10 353 594.13 960 3 821.6 61 RANDOMCND) 3.226

Table &19. 10^
Problem size No. of 

alternatives
CPU time 

CSec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x5 35 1657.76 1185 2 868.75 37 SPTCND) 1.717

20x5 27 1626.23 1182 2 861.65 31 OCRCND) 1.459

20x5 444 1660.62 1182 2 912.55 22 RANDOMCND) 1.459

20x5 366 1584.27 1193 2 872.15 45 SRTCND) 2.403

20x5 444 1613.93 1178 2 881.4 26 SPTCND) 1.116

20x5 297 1727.63 1182 2 901.9 29 SPTCND) 1.459

20x5 266 1576.25 1182 1 857.55 17 SPTCND) 1.459

20x5 443 1664.14 1178 2 875.95 18 Biased-RANDOMCND) 1.116

20x5 444 1705.16 1180 2 921.5 22 SRTCND) 1.288

20x5 374 1784.37 1191 2 896.3 52 SPTCND) 2.232
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Tmbk BJO. Sunuiury o f rtau h s  ofctefawd fo r problem FT20 n d  case 11 (LOV
Problem size No. of 

alternatives
CPU lime 

(Sec.)
Makespmn Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x5 442 1658.58 1182 2 886.35 34 EDD(ND) 1.459
20x5 7 1739.66 1178 3 911J 33 LWR(ND) 1.116
20x5 443 1594.22 1197 2 881.8 41 SRT(ND) 2.747
20x5 360 1642.11 1182 1 860.4 17 Biased-RANDOM(ND) 1.459
20x5 444 1911.9 1182 2 905.4 34 SPTCND) 1.459
20x5 444 1723.18 1182 1 867.65 17 Biased-RANDOMCND) 1.459
20x5 444 1742.95 1203 2 917J 43 SPTCND) 3.262
20x5 444 2318.18 1185 2 903.75 38 Biased-RANDOMCND) 1.717

20x5 440 1755.69 1203 2 927.8 63 SPTCND) 3.262
20x5 439 1702.64 1190 1 863JS 25 Biased-RANDOMCND) 2.146

Tmbk B ^I. Summary of rtanhs ohtolnmd for probkm FT20 m i W  tmme III (LP\
Problem size No. of 

ahematives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x5 171 1778.82 1184 2 877.15 29 Biased-RANDOM(ND) 1.631
20x5 444 1578.12 1190 2 873.05 48 MODDCND) 2.146
20x5 444 1765.31 1210 2 902.05 57 SPTCND) 3.863
20x5 444 1658.47 1194 2 908.2 42 SPTCND) 2.489
20x5 444 1680J9 1182 2 877.45 32 SPTCND) 1.459
20x5 444 1531.11 1182 1 829.95 17 Biased-RANDOMCND) 1.459
20x5 441 1633J8 1193 2 898 44 SPTCND) 2.403
20x5 341 1706.76 1178 2 871.55 18 Biased-RANDOMCND) 1.116
20x5 443 1729.72 1193 2 871.05 40 RANDOMCND) 2.403
20x5 38 1599.76 1182 1 841.55 17 MDDCND) 1.459

Tmbk B J2. Summmry of rm ilts  ohtaintd for prohkm FT20 mnd aae  fV (OS).
Problem size No. of 

alternatives
CPU time 

CSec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x5 5 1709.23 1180 1 909.3 15 Biased-RANDOMCND) 1.288
20x5 243 1729.98 1185 2 928.5 39 Biased-RANDOMCND) 1.717
20x5 319 1726.2 1184 2 898.8 37 MDDCND) 1.631
20x5 235 1687.21 1202 3 912.95 73 Biased-RANDOMCND) 3.176
20x5 234 1635.25 1182 2 856.15 24 Biased-RANDOMCND) 1.459
20x5 343 1621.51 1203 2 937.4 74 SPTCND) 3.262
20x5 1 1812.54 1178 1 872.55 13 EDDCND) 1.116
20x5 4 1689.18 1196 3 951.65 69 Biased-RANDOMCND) 2.661
20x5 444 1785.19 1186 2 922J 41 SPTCND) 1.803
20x5 282 1856.7 1198 3 933.95 69 EDDCND) 2.833

Tmbk BJ83. Sammmry of reaults obtalntd for probkm FT20 mnd cmmc V (OO).
Problem size No. of 

ahematives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x5 75 1851.7 1180 2 879.45 25 Biased-RANDOMCND) 1.288
20x5 444 1745.7 1188 2 871.05 38 SPTCND) 1.974
20x5 444 1705.21 1193 2 894.25 42 SPTCND) 2.403
20x5 77 1646.44 1182 2 913.9 19 TWORKCND) 1.459
20x5 21 1781.9 1194 2 927.05 50 EDDCND) 2.489
20x5 444 1797.44 1178 2 897 18 Biased-RANDOMCND) 1.116
20x5 444 1849.73 1185 2 913.55 31 EDDCND) 1.717

20x5 315 1648.42 1185 2 936.85 37 Biased-RANDOMCND) 1.717

20x5 443 1784.2 1193 2 850.05 42 SPTCND) 2.403

20x5 7 1727.24 1182 2 895.55 22 Biased-RANDOMCND) 1.459
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Table B J4 . Summmry o f rwuKi obuliw d for p robkm  FT20 iwd cmc VT (OP).
Problem size Vo. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x5 444 1723J9 1180 2 890J 26 Biased-RANDOM(ND) 1.288

20x5 372 1716.64 1203 2 907.5 66 SPT(ND) 3.262
20x5 I 1752.29 1194 2 872.4 41 SPT(ND) 2.489

20x5 114 1680J3 1184 2 902J 30 Biased-RANDOM(ND) 1.631
20x5 272 1598.66 1191 2 876.1 44 SPT(ND) 2.232
20x5 4 1726.2 1182 2 886.75 24 SPTCND) 1.459

20x5 195 1733.67 1190 3 889.15 43 TWORKCND) 2.146

20x5 444 1821 1193 1 896.95 28 SPTCND) 2.403
20x5 444 1700 1198 2 901J5 47 SPTCND) 2.833

20x5 317 1763.82 1200 1 878 35 SPTCND) 3.004

Mid CMe VII (PS).
Problem size No. of 

ahematives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x5 318 1703.84 1185 2 906.4 31 COVERTCND) 1.717

20x5 350 1746.9 1178 1 862.15 13 SPTCND) 1.116
20x5 23 1747.51 1182 2 920 33 SPTCND) 1.459
20x5 257 1725.15 1184 1 871.25 19 EDDCND) 1.631

20x5 186 1755.25 1178 2 882.55 21 SPTCND) 1.116

20x5 219 1701.26 1197 1 900J 32 MDDCND) 2.747

20x5 315 1687.64 1194 2 924 42 SRTCND) 2.489

20x5 444 1695.88 1182 2 857.75 21 Biased-RANDOMCND) 1.459

20x5 39 1673.09 1182 2 899.45 30 Biased-RANDOMCND) 1.459
20x5 443 1666.94 1197 2 909 59 SPTCND) 2.747

Tmbk B j6. Summary of results obttlned for problem FT20 and case VTO (PO).
Problem size No. of 

ahematives
CPU time 

CSec.)
Makespan Number

Tardy
Average 
Row time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x5 7 1617.94 1178 2 917.75 21 LWRCND) 1.116
20x5 444 1638.37 1203 1 910 38 EDDCND) 3.262
20x5 444 1716.8 1194 2 896.2 48 Biased-RANDOMCND) 2.489
20x5 444 1758.66 1190 2 899.85 35 LWRCND) 2.146

20x5 1 1759.37 1197 4 906.85 88 COVERTCND) 2.747

20x5 1 1661.17 1194 2 909.6 46 COVERTCND) 2.489

20x5 442 1815.07 1184 3 906.6 48 SPTCND) 1.631

20x5 444 1866J7 1178 1 873.85 13 Biased-RANDOMCND) 1.116
20x5 419 1715.87 1191 2 890.9 50 SPTCND) 2.232
20x5 240 1916J5 1191 2 905.15 46 SPTCND) 2.232

and caae DC fPP).
Problem size No. of 

ahematives
CPU time 

CSec.)
Makespan Number

Tardy
Average 
Row time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x5 4 1740.69 1178 2 889.25 18 LWRCND) 1.116

20x5 17 1745.43 1193 3 868.25 46 SPTCND) 2.403
20x5 444 1748.06 1178 2 876.5 25 SPTCND) 1.116

20x5 443 166238 1181 2 892.15 18 SRTCND) 1.373
20x5 442 1686.32 1178 2 876.6 21 SPTCND) 1.116

20x5 338 2329.77 1203 1 895.55 38 SPTCND) 3.262

20x5 282 188532 1191 2 883.85 45 SPTCND) 2.232

20x5 350 1670.83 1182 2 894 34 Biased-RANDOMCND) 1.459

20x5 23 1744.87 1185 2 919.95 31 Biased-RANDOMCND) 1.717

20x5 335 1706.75 1182 1 873.85 17 Biased-RANDOMCND) 1.459
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Tmbk B ^8. Summary of rwnit» ohUliwJ for probkm  LA25 n d  a a e  I (LSV
EYoblem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage 
of error

15x10 8 2153.03 1015 7 916.8 174 RANDOMCND) 3.889
15x10 3 1877.08 1000 3 902.333 51 JST(ND) 2.354

15x10 644 1882.4 1003 5 928.533 93 Biased-RANDOMCND) 2.661

15x10 306 1988.41 1004 4 932.067 88 WSPT*WOST(ND) 2.764
15x10 398 2131.55 1003 5 933.667 87 Biased-RANDOMCND) 2.661

Problem size No. of 
alternatives

CPU time 
(Sec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage 
of error

15x10 11 1906.63 1003 5 933.667 86 RANDOMCND) 2.661

15x10 642 1760.2 1007 5 932.467 84 Biased-RANDOMCND) 3.071

15x10 1 1835J9 1003 5 930.867 86 RANDOMCND) 2.661
15x10 643 1834.4 1003 5 930.867 87 Biased-RANDOMCND) 2.661
15x10 33 1748J9 1003 5 933.667 86 Biased-RANDOMCND) 2.661

Tabk BJO. Summary of results obtaliwd for probkm LA25 and case UI (LP%
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage 
of error

15x10 644 1797.55 1007 5 932.467 84 WSPT+WOST(ND) 3.071

15x10 644 1668.8 1004 4 901 67 OSTCND) 2.764
15x10 166 1778J7 1003 5 935.8 88 Biased-RANDOMCND) 2.661

15x10 1 1680.83 1003 5 932.333 93 JSTCND) 2.661

15x10 19 1787J3 1007 6 938333 127 Biased-RANDOMCND) 3.071

Tabk B Jl. Summary of result» obtaiiwd for probkm LA25 and caae IV (OSX.
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

15x10 197 2068.6 1012 4 925.467 112 Biased-RANDOMCND) 3.582

15x10 367 1893.55 1002 5 936.667 64 RANDOMCND) 2.559

15x10 308 2011.76 1014 6 921 129 Biased-RANDOMCND) 3.787

15x10 179 1974.57 1002 4 927.133 63 Biased-RANDOMCND) 2.559

15x10 643 1977.59 1003 5 932.4 93 ATCCND) 2.661

Tabk BJ2. Summary of rtaulti obtainad for probkm LA25 and caae V (OOV
Problem size No. of 

ahematives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the beat 
chromosome

Percentage of 
error

15x10 435 1869.61 1007 6 937333 104 Biased-RANDOMCND) 3.071

15x10 8 1824.41 1002 7 941.133 118 RANDOMCND) 2.559
15x10 447 1930.25 1010 6 939.8 94 RANDOMCND) 3378

15x10 341 1841.66 1007 6 937.467 139 Biased-RANDOMCND) 3.071

15x10 644 1699.29 1007 5 925.667 105 Biased-RANDOMCND) 3.071

Problem size No. of 
ahemalives

CPU time 
(Sec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the beat 
chromosome

Percentage of 
error

15x10 460 1879.17 1007 5 938.733 84 Biased-RANDOMCND) 3.071

15x10 446 189032 1014 7 934.2 147 Biased-RANDOMCND) 3.787

15x10 644 1817.32 1003 5 930.867 87 RANDOMCND) 2.661

15x10 80 1763.93 1007 5 928.867 84 Biased-RANDOMCND) 3.071

15x10 605 185736 1012 6 929333 127 MODDCND) 3.582
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T able B J4 . Summmry o f results ohtaliwd for p rob ltm  LA25 m d  east V II (PS).
Problem size No. of 

ahematives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

15x10 252 1899.05 1007 5 925.667 105 JSTCND) 3.071

15x10 315 1867.68 1007 5 930.733 84 Biased-RANDOMCND) 3.071

15x10 3 1972.7 1003 5 936.067 89 RANDOMCND) 2.661

15x10 328 1936.62 1017 6 944.933 176 Biased-RANDOMCND) 4.094

15x10 19 1902.07 1011 7 931.2 158 Biased-RANDOMCND) 3.480

Problem size No. of 
ahematives

CPU time 
CSec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

15x10 49 1842.8 1003 5 927.467 91 RANDOMCND) 2.661
15x10 66 1831.82 1002 6 937.733 92 RANDOMCND) 2.559

15x10 394 1845.22 1007 5 934.733 84 Biased-RANDOMCND) 3.071

15x10 644 1781.78 1011 4 909.867 83 Biased-RANDOMCND) 3.480
15x10 40 1860.49 1007 5 924.2 78 RANDOMCND) 3.071

Table BJ& Summary of results obtained for problem LA25 and case DC (PP).
Problem size No. of 

ahematives
CPU time 

CSec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

15x10 448 1807.11 1007 6 928.2 113 Biased-RANDOMCND) 3.071

15x10 644 1803.64 1007 5 931.133 84 Biased-RANDOMCND) 3.071
15x10 492 1742.35 1017 6 939.267 165 MWRCND) 4.094

15x10 1 1738.5 1015 5 906.133 128 Biased-RANDOMCND) 3.889

15x10 441 1852.14 1022 4 929 162 Biased-RANDOMCND) 4.606

Table BJ7. Summary of result» oMalned for problem LA29 and caie I (LSV
Problem size No. of 

ahematives
CPU time 

CSec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x10 21 5663.7 1203 8 1114 233 LRPTCND) 4.337

20x10 364 5550.55 1218 11 1128.35 446 WSPT+WOSTCND) 5.637

20x10 330 5504.19 1214 8 1105.2 215 RANDOMCND) 5.291
20x10 1 5325.03 1217 8 1108.25 240 MWRCND) 5.551
20x10 1 5321.51 1220 10 1104.05 464 JSTCND) 5.811

caae II (LO).
Problem size No. of 

ahematives
CPU time 

CSec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x10 37 497235 1202 10 1131.2 282 JSTCND) 4.250

20x10 1 4916.98 1191 6 1067.55 186 ODDCND) 3.296
20x10 8 4810.48 1218 7 1093.05 311 RANDOMCND) 5.637

20x10 522 5110.82 1229 7 1088.9 320 LRPTCND) 6.592

20x10 15 4956.8 1212 7 1098.4 257 ATCCND) 5.117

case III gPV
Problem size No. of 

ahematives
CPU time 

CSec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x10 4 556736 1205 7 1120 220 RANDOMCND) 4.510

20x10 834 5754.16 1217 9 1141.15 354 LRPTCND) 5.551
20x10 190 5124.17 1205 7 1071.65 164 S/RPTCND) 4.510

20x10 63 4751.66 1224 10 11353 420 LRPTCND) 6.158

20x10 14 4729.91 1212 5 1073.75 166 JSTCND) 5.117
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Tmbk B.40. Summmry of rtsulfa ohtolnH fo r probkm  LA29 mmd cm*  IV (OSV
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x10 19 3306.83 1219 6 1106.2 272 CR(ND) 3.724

20x10 1 3294.34 1223 7 1049.3 366 Biased-RANDOMCND) 6.243

20x10 844 3408.63 1224 10 1123.33 473 LRPTCND) 6.138

20x10 3 3288.89 1229 12 1108.73 319 WSPT+WOSTCND) 6.392

20x10 8 3386.09 1219 9 1113.7 360 RANDOMCND) 3.724

Problem size No. of 
alternatives

CPU time 
(Sec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x10 84 3047.49 1200 7 1086.2 227 CRCND) 4.076
20x10 283 3304.76 1216 8 1084.13 283 RANDOMCND) 5.464

20x10 371 3046.3 1219 10 1120.9 398 ODDCND) 3.724

20x10 844 3014.97 1226 9 1116.93 431 Biased-RANDOMCND) 6.331

20x10 22 3439.43 1202 3 1090.3 162 LRPTCND) 4.230

Tmbk B.42. Summmry of result» obkiiwd for probkm LA29 mnd cmme VI (OPV.
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x10 842 3613.22 1227 9 1133.83 474 OSTCND) 6.418

20x10 492 3074.84 1233 9 1127.6 488 RANDOMCND) 7.112

20x10 336 3244.93 1218 8 1107.73 344 RANDOMCND) 3.637

20x10 843 3038.87 1224 10 1127.93 472 OSTCND) 6.138

20x10 9 3147.29 1206 3 1094.1 190 SWTCND) 4.397

VllffS).
Problem size No. of 

alternatives
CPU time 

CSec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x10 1 3820.07 1212 8 1113.1 276 RANDOMCND) 3.117

20x10 9 3494.39 1213 10 1129.9 349 WSPT+WOSTCND) 3.204

20x10 1 3346.1 1214 9 1084.43 361 RANDOMCND) 3.291

20x10 2 3314.38 1216 10 1093 380 LRPTCND) 3.464

20x10 3 3311.3 1207 7 1090.1 194 S/RPTCND) 4.683

Tmbk B.44. Summmry of rtsuhi olmlnmd for probkm LA29 miW cmam VllI (POV
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x10 3 4703.83 1217 11 1129.43 443 JSTCND) 3.331
20x10 20 4961.64 1209 8 1106.9 288 RANDOMCND) 4.837

20x10 198 3148.36 1214 7 1097.93 222 RANDOMCND) 3.291

20x10 486 3090.6 1227 7 1114.13 378 LRPTCND) 6.418

20x10 844 4803J3 1224 10 1120J 384 LRPTCND) 6.138

Problem size No. of 
ahematives

CPU time 
(Sec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x10 306 364831 1214 6 1107.6 236 OSTCND) 3.291

20x10 88 4749.79 1212 10 1096.1 348 RANDOMCND) 3.117
20x10 223 4938.37 1217 9 1108.73 389 RANDOMCND) 3.331

20x10 33 4960.6 1214 8 1102.33 294 RANDOMCND) 3.291

20x10 16 4838.61 1210 9 1101.1 323 JSTCND) 4.944



APPENDIX C

RESULTS OF EXPERIMENT H

Table C .l. Summary of results obmntd for probkm FT6 «nd population ifae =44+4mm.
Problem size No. of 

alternatives
CPU time 

(Sec)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

6x6 187 71.12 55 0 51.5 0 CR(A) 0.000
6x6 116 72.12 55 0 51.5 0 LRPTCA) 0.000
6x6 117 59.82 57 1 49.5 2 RANDOMCND) 3.636
6x6 188 64.49 55 0 51 0 LRPT(A) 0.000
6x6 93 56.47 57 1 49.5 2 Biased-RANDOMCND) 3.636
6x6 111 72.83 55 0 51.5 0 LRPT(A) 0.000
6x6 102 70.42 56 1 51.5 1 RANDOM(A) 1.818
6x6 96 66.79 55 0 51 0 RANDOM(A) 0.000
6x6 185 62.83 57 1 49.5 2 Biased-RANDOMCND) 3.636
6x6 188 69.37 55 0 51.5 0 OST(A) 0.000

Table C^. Summaty of reanhs obtained for problem FT6 and population ifae -44+mm.
Problem size No. of 

alternatives
CPU time 

(Sec)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

6x6 79 29.22 55 0 51 0 OST(A) 0.000
6x6 60 27.73 55 0 51.5 0 COVERTCAS) 0.000
6x6 34 24.39 55 0 52 0 RANDOM(A) 0.000
6x6 73 22.35 58 4 53.667 9 RANDOMCND) 5.455
6x6 33 24.55 56 1 51.5 1 LRPTCA) 1.818
6x6 80 27.41 55 0 51 0 CRCA) 0.000
6x6 79 28.29 56 1 52 1 OSTCA) 1.818
6x6 80 28.79 55 0 51.5 0 LRPTCA) 0.000
6x6 78 28.72 55 0 51.5 0 LRPTCA) 0.000
6x6 30 40.81 57 1 52 2 SflCPTCA) 3.636

Problem size No. of 
alternatives

CPU time 
(Sec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

6x6 77 49 55 0 51 0 ODDCA) 0.000
6x6 81 38.5 55 0 51 0 Biased-RANDOMCA) 0.000
6x6 116 32.46 57 1 49.5 2 RANDOMCND) 3.636
6x6 116 37.79 56 1 52 1 LRPTCA) 1.818
6x6 68 35J7 57 1 49.5 2 RANDOMCND) 3.636
6x6 81 40.92 55 0 51 0 COVERTCAS) 0.000
6x6 116 43.28 55 0 51.5 0 Biased-RANDOMCA) 0.000
6x6 13 64.1 57 2 53 3 OSTCA) 3.636
6x6 65 38.23 55 0 51 0 Biased-RANDOMCA) 0.000
6x6 99 38.23 55 0 51 0 ODDCA) 0.000
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Problem size No. of 
alternatives

CPU time 
(Sec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage 
of error

10x10 444 568J6 964 4 895.1 96 RANDOMCND) 3.656

10x10 444 551.67 968 3 839J 53 WSPT+WOST(ND) 4.086

10x10 444 588.64 964 4 895.1 96 OCR(ND) 3.656

10x10 444 549.42 964 4 887.9 96 RANDOMCND) 3.656
10x10 420 537.94 960 4 819 92 RANDOMCND) 3.226
10x10 444 598J6 968 3 819.4 99 WSPT+WOSTCND) 4.086
10x10 443 590.06 964 4 887.9 96 RANDOMCND) 3.656

10x10 444 575.18 964 4 895.1 96 Biased-RANDOMCND) 3.656

10x10 444 554.97 964 4 895.1 96 Biased-RANDOMCND) 3.656

10x10 444 562.43 964 4 895.1 96 RANDOMCND) 3.656

Tmbk CA Summary of result» obUiwH for probltm FTIO mud population dze -44+nm.
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage 
of error

10x10 144 178.61 976 5 880.6 170 OSTCND) 4.946

10x10 119 171.64 978 4 900.8 152 OSTCND) 5.161
10x10 144 187.13 977 5 858.9 105 Biased-RANDOMCND) 5.054

10x10 131 181.42 976 4 853.8 123 Biased-RANDOMCND) 4.946

10x10 144 180.76 981 5 896.7 185 RANDOMCND) 5.484

10x10 128 167.96 974 4 900.1 136 WSPT+WOSTCND) 4.731

10x10 144 175.76 968 3 825 97 ATCCND) 4.086
10x10 144 174.82 968 3 836.2 50 SPTCND) 4.086
10x10 114 177.03 976 5 891.8 116 COVERTCND) 4.946

10x10 144 193J3 987 4 87Z6 133 COVERTCND) 6.129

Tabk C.6. Sammmry of resuhs obtmlntJ for probkm FTIO mnd population ifac -44+Znm.
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage 
of error

10x10 244 298.35 964 4 895.1 96 RANDOMCND) 3.656
10x10 244 318.3 968 3 8393 53 SPTCND) 4.086
10x10 244 314.78 960 3 825.4 61 Biased-RANDOMCND) 3.226
10x10 244 362.56 968 4 912.2 116 Biased-RANDOMCND) 4.086
10x10 200 324.33 985 5 878.8 192 OSTCND) 5.914

10x10 244 330.6 975 4 906.1 140 Biased-RANDOMCND) 4.839
10x10 244 342.02 973 4 833.4 149 Biased-RANDOMCND) 4.624
10x10 244 329 964 4 895.1 96 MODDCND) 3.656
10x10 244 314.45 964 4 895.1 96 Biased-RANDOMCND) 3.656
10x10 244 325J8 979 3 841.5 132 LRPTCND) 5.269

Tabk C.7. Summary of results obtalmd for probkm FT20 and population ifaa ~44-)-4nm.
Problem size No. of 

ahematives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosoine

Percentage of 
error

20x5 442 1658.58 1182 2 88635 34 EDDCND) 1.459

20x5 7 1739.66 1178 3 9113 33 LWRCND) 1.116
20x5 443 1594.22 1197 881.8 41 SRTCND) 2.747

20x5 360 1642.11 1182 1 860.4 17 Biased-R.ANDOMCND) 1.459
20x5 444 1911.9 1182 2 905.4 34 SPTCND) 1.459
20x5 444 1723.18 1182 1 867.65 17 Biased-RANDOMCND) 1.459
20x5 444 1742.95 1203 2 9173 43 SPTCND) 3.262
20x5 444 2318.18 1185 2 903.75 38 Biased-RANDOMCND) 1.717

20x5 440 1755.69 1203 2 927.8 63 SPTCND) 3.262
20x5 439 1702.64 1190 1 863.35 25 Biased-RANDOMCND) 2.146
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Problem size No. of 
alternatives

CPU time 
(Sec.)

.Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x3 144 398.2 1193 2 878.03 42 SPT(ND) 2.403

20x3 114 316.47 1193 2 838.2 40 SPT(ND) 2.403

20x3 144 323.3 1198 2 871J3 39 SPTCND) 2.833

20x3 2 312.79 1198 2 907.03 37 EDDCND) 2.833

20x3 144 336.43 1184 2 926.23 31 COVERTCND) 1.631

20x3 144 340.41 1204 4 873.3 98 SPTCND) 3.348

20x3 144 548.49 1193 2 893.43 40 SPTCND) 2.403

20x3 144 544.31 1182 2 929.6 23 LWRCND) 1.459

20x3 44 622.19 1202 3 909.13 79 SPTCND) 3.176

20x3 115 336.18 1193 2 891.15 40 SPTCND) 2.403

ohmiitd for probkm FTIO mnW population she -44-t-2nm.
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x3 244 974.16 1193 1 883J3 28 SPTCND) 2.403

20x3 33 917.26 1193 1 880.43 28 SPTCND) 2.403

20x3 243 950.63 1182 2 924.13 21 MODDCND) 1.459

20x5 184 881.78 1178 2 872.7 20 Biased-RANDOMCND) 1.116

20x3 223 971.32 1193 2 869.83 40 MODDCND) 2.403

20x3 244 899.24 1182 2 913.2 33 COVERTCND) 1.459

20x3 164 1013.92 1183 2 899.33 31 SPTCND) 1.717

20x3 244 896 1190 2 914.1 49 Biased-RANDOMCND) 2.146

20x3 204 932.38 1193 2 886.23 41 SPTCND) 2.403

20x3 12 967.46 1178 2 910.25 19 Biased-RANDOMCND) 1.116

Table C.IO. Summary of rtsuhs obtahiH for probkm LA25 n d  population ifae ~44-t-4nm.
Problem size No. of 

alternatives
CPU time 

CSec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage 
of error

13x10 11 1906.63 1003 5 933.667 86 RANDOMCND) 2.661

13x10 642 1760.2 1007 5 932.467 84 Biased-RANDOMCND) 3.071

15x10 1 1835.39 1003 3 930.867 86 RANDOMCND) 2.661

13x10 643 1834.4 1003 5 930.867 87 Biased-RANDOMCND) 2.661

13x10 33 174839 1003 3 933.667 86 Biased-RANDOMCND) 2.661

Problem size No. of 
alternatives

CPU time 
(Sec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage 
of error

15x10 6 613.66 1028 3 929.133 137 S/RPTCND) 3.220

13x10 126 347.33 1007 3 923.667 103 WSPT+WOSTCND) 3.071

13x10 194 339.1 1007 7 940.667 123 Biased-RANDOMCND) 3.071

13x10 194 517.93 1032 4 928.667 164 Biased-RANDOMCND) 3.629

13x10 3 333.98 1008 6 940.6 133 S/RPTCND) 3.173

Problem size No. of 
alternatives

CPU time 
(Sec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage 
of error

15x10 236 1023.21 1013 3 921.467 99 Biased-RANDOMCND) 3.889

15x10 178 1036.28 1007 6 940.667 80 CRCND) 3.071

13x10 343 932.31 1003 3 932J533 93 ATCCND) 2.661

13x10 230 973.72 1012 3 923.267 131 WSPT+WOSTCND) 3.382

13x10 176 941.73 1010 3 903.267 78 WSPT+WOSTCND) 3.378
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Table C.13. Sunuiury of results obteintJ for probkm LA29 miW poputoMon ifae ~44-*-4nm.
Problem size No. of 

ahematives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 

flow time
Total

Tardiness
The origin of the best 

chromosome
Percentage of 

error

20x10 37 4972J5 1202 10 1131.2 282 JSTCND) 4.250

20x10 1 4916.98 1191 6 1067.55 186 ODDCND) 3.296

20x10 8 4810.48 1218 7 1093.05 311 RANDOMCND) 5.637

20x10 522 5110.82 1229 7 1088.9 320 LRPTCND) 6.592
20x10 15 4956.8 1212 7 1098.4 257 ATCCND) 5.117

Table C.14. Summmry of reaiiHs obtatoed for problem LA29 n d  population size —W+mm.
Problem size No. of 

alternatives
CPU time 

CSec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x10 230 1437.84 1223 9 1080.05 297 JST(ND) 6.071

20x10 244 1482.6 1233 11 1154.85 601 LRPTCND) 6.938
20x10 5 1351J9 1220 11 1135.5 437 LRPTCND) 5.811
20x10 241 1464.2 1232 9 1140.05 455 LRPTCND) 6.852
20x10 1 1474.7 1214 10 11183 256 JSTCND) 5.291

Table C.ÏS. Summary of results obtained for problem LA29 and aoptiiatton iiz t -44+Znm.
Problem size No. of 

alternatives
CPU time 

CSec.)
Makespan Numfter

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x10 35 2690.86 1211 6 1093.4 226 LRPTCND) 5.030
20x10 442 2541.51 1231 6 1120.7 314 RANDOMCND) 6.765
20x10 177 2588.97 1200 6 105835 218 Biased-RANDOMCND) 4.076

20x10 93 2470.22 1221 12 1147.25 460 RANDOMCND) 5.898

20x10 263 2624.73 1222 10 1130.9 353 RANDOMCND) 5.984
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RESULTS OF EXPERIMENT HI

Problem size No. of 
altenulives

CPU time 
(Sec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

6x6 77 27.19 55 0 SI 0 LRPTCA) 0.000

6x6 55 26.91 55 0 51.5 0 S/RPTCA) 0.000

6x6 80 22.57 55 0 51.5 0 COVERT(AS) 0.000

6x6 63 22.74 58 4 53.667 9 RANDOMCND) 5.455

6x6 21 24.27 55 0 51.5 0 LRPTCA) 0.000

Table DJ. Sumimiryofrwiiltsobteliwd by UCA Q iim  «pproacfa for problem FT6.
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

6x6 78 20.87 57 1 49.667 2 SRPTCND) 3.636

6x6 75 21.64 57 1 49.5 2 RANDOMCND) 3.636

6x6 78 20.65 57 1 49.5 2 RANDOMCND) 3.636

6x6 63 21.14 57 1 49.667 2 RANDOMCND) 3.636

6x6 71 20.33 57 1 49.667 2 Biased-RANDOMCND) 3.636

Table I
Problem size No. of 

ahematives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin o f the best 
chromosome

Percentage 
of error

10x10 144 179.12 968 3 823.7 97 ATCCND) 4.086

10x10 14 168.84 976 5 895.6 184 SPTCND) 4.946

10x10 144 180.32 976 4 894.4 133 JSTCND) 4.946

10x10 120 1673 960 3 825.4 61 RANDOMCND) 3.226

10x10 6 180.98 976 5 891.8 116 JSTCND) 4.946

Table I
Problem size No. of 

alternatives
CPU time 

CSec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin o f the best 
chromosome

Percentage 
of error

10x10 144 169.5 973 4 833.4 149 OCRCND) 4.624

10x10 144 16836 968 3 8393 53 WSPT+WOST(ND) 4.086

10x10 144 163.13 960 3 825.4 61 Biased-RANDOMCND) 3.226

10x10 133 167.03 973 4 833.4 149 LAWINQCND) 4.624

10x10 96 188.67 976 7 934 178 Biased-RANDOMCND) 4.946

Table I for problem FT20.
Problem size No. of 

ahematives
CPU time 

CSec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x5 140 53136 1182 1 887.4 17 SRPTCND) 1.459

20x5 134 537.5 1198 4 891 73 SPTCND) 2.833

20x5 144 526.95 1193 2 861.7 51 SPTCND) 2.403

20x5 26 506.09 1198 3 93035 68 SPTCND) 2.833

20x5 3 53739 1200 3 882.35 59 SPTCND) 3.004

Table I for problem bT30.
Problem size No. of 

ahemalives
CPU time 

CSec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x5 144 468.68 1207 2 792.8 82 SPTCND) 3.605

20x5 143 477.63 1192 2 856.7 52 MDDCND) 2.318

20x5 7 529.87 1180 2 807.15 29 TWORKCND) 1.288

20x5 130 510.15 1182 2 768.55 19 MDDCND) 1.459

20x5 140 47736 1210 2 805.25 78 SPTCND) 3.863
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Table D.7. Summary of rtaahs o h u ln td  by CGA Cm#x «pproach for p robkm  LA21.
Problem size No. of 

alterruUives
CPU lime 

(Sec.)
.Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

15X10 191 579.63 1099 4 968.467 145 WSPT-*-WOST(ND) 5.067
15X10 189 586.61 1112 4 988.2 216 OCR(ND) 6.310
15X10 70 600.11 1097 5 979.267 127 ODD(ND) 4.876
15X10 190 568.26 1099 4 970.933 145 Biased-RANDOM(ND) 5.067

15X10 190 558J2 1103 4 960.2 129 RANDOMCND) 5.449

Problem size No. of 
ahematives

CPU time 
(Sec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

15X10 84 599J5 1102 4 970.6 206 JSTCND) 5.354
15X10 1 609.89 1101 5 975.067 185 OSTCND) 5.258
15X10 76 555.03 1095 4 955.867 146 CRCND) 4.685
15X10 25 577.1 1109 4 962.267 197 OCRCND) 6.023
15X10 7 571.71 1094 4 951.4 144 S/RPTCND) 4.589

Table P.9. Summary of rtanHs obtabwdbyCXIA CWiar approach for problem LA25.
Problem size No. of 

alternatives
CPU time 

CSec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin o f the best 
chromosome

Percentage 
of error

15x10 22 603.08 1003 5 933.667 86 RANDOMCND) 2.661
15x10 188 616.1 1007 5 928.8 84 Biased-RANDOMCND) 3.071
15x10 23 595.33 1003 5 928.533 93 Biased-RANDOMCND) 2.661
15x10 60 577.05 1012 6 928.467 155 WSPT+WOSTCND) 3.582
15x10 107 596.43 1003 5 928.533 93 WSPT+WOSTCND) 2.661

Table D IO. Sowniaryofreaulta obtained
Problem size No. of 

ahematives
CPU time 

CSec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin o f the best 
chromosome

Percentage 
of error

15x10 1 544.36 1034 5 882.667 138 JSTCND) 5.834
15x10 12 519.71 1051 5 865.6 234 ODDCND) 7.574

15x10 194 527.89 1032 5 849.933 182 OCRCND) 5.629
15x10 146 526.41 1042 6 926.333 218 CRCND) 6.653
15x10 46 586.17 1029 3 875.467 127 ATCCND) 5.322

Table D l l .  Summary of résulta obtained by CXîA Cmai approach for problem LA27.
Problem size No. of 

alternatives
CPU time 

CSec.)
Makespan Number

Tardy
Average 

flow time
Total

Tardmess
The origin of the best 

chromosome
Percentage of 

error

20x10 4 1570.93 1286 5 1166.5 176 WSPT+WOSTCND) 4.130

20x10 66 1582.02 1278 3 1129.7 89 ATCCND) 3.482
20x10 129 1530.61 1292 4 1134.4 170 S/RPTCND) 4.615

20x10 46 1708.18 1305 8 1158.85 368 ATCCND) 5.668
20x10 2 1646.94 1296 7 1147.65 156 JSTCND) 4.939

Table P.12. Sumnmiy of reanhs obtained
Problem size No. of 

ahematives
CPU time 

CSec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin o f the best 
chromosome

Percentage of 
error

20x10 26 1470.25 1308 6 1167.15 252 WSPT+WOST(ND) 5.911

20x10 1 1458.72 1299 6 1141.8 255 OSTCND) 5.182

20x10 244 1510.84 1296 6 1140.05 196 RANDOMCND) 4.939
20x10 76 1440.92 1314 5 1135.65 276 MWRCND) 6.397

20x10 5 1536.43 1310 6 1128.05 303 ATCCND) 6.073
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Table D.13. SumiM iy o f  résulte obUlned by CCA CiiMi «pproach fo r problem LA29.
Problem size No. of 

ahemalives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x10 5 1514.46 1220 11 1130.7 398 JSTCND) 5.811
20x10 11 1525.67 1214 11 1124.1 440 Biased-RANDOMCND) 5.291
20x10 3 1607.78 1208 7 1115J 262 WSPT+WOST(ND) 4.770
20x10 240 1508.42 1221 8 1079.85 303 Biased-RANDOMCND) 5.898
20x10 3 1580.76 1224 12 1151.45 576 JSTCND) 6.158

Table I
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x10 228 1519.46 1227 10 1071.6 407 LRPTCND) 6.418
20x10 1 1463.11 1230 8 1101.35 425 A/OPNCND) 6.678
20x10 243 1540.77 1244 10 1119 514 S/RPTCND) 7.892
20x10 1 1371.49 1250 10 1105.8 636 RANDOMCND) 8.413
20x10 148 1472.33 1229 9 1093.4 341 MWRCND) 6.592

Table D.I5. Summary of résulta obtained by CGA Cmai approach for problem LA38.
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

15X15 1 1093.79 1268 5 1145J33 194 ODDCND) 6.020
15X15 7 1153.76 1268 5 1144J33 190 COVERTCND) 6.020
15X15 269 1059.46 1268 5 1145.333 194 JSTCND) 6.020
15X15 67 1060.12 1275 5 1140.533 213 Biased-RANDOMCND) 6.605
15X15 3 1154.54 1300 7 1159.333 364 RANDOMCND) 8.696

Table I
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

15X15 267 1068.69 1303 6 1160.133 449 RANDOMCND) 8.946
15X15 14 1108.07 1282 5 1144.067 259 Biased-RANDOMCND) 7.191
15X15 7 1049.63 1292 5 1149.133 301 RANDOMCND) 8.027
15X15 216 1110.54 1294 5 1159.267 377 Biased-RANDOMCND) 8.194
15X15 8 1058.69 1292 6 1131.2 283 Biased-RANDOMCND) 8.027

Table D.17. Summary of leaults obtained by CGA Cmai approach for problem LA40.
Problem size No. of 

ahematives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

15X15 269 1120J2 1278 5 1176.067 201 Biased-RANDOMCND) 4.583
15X15 261 1028.09 1278 4 1148 139 RANDOMCND) 4.583
15X15 269 1084.89 1273 5 1152.133 226 Biased-RANDOMCND) 4.173
15X15 67 1083.57 1278 5 1162.2 139 Biased-RANDOMCND) 4.583
15X15 244 1106.64 1278 5 1157.933 135 Biased-RANDOMCND) 4.583

Table D.lg. Summary of results obtained by UGA Cmai approach for problem LA40.
Problem size No. of 

ahematives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin o f the best 
chromosome

Percentage of 
error

15X15 269 1056.1 1288 5 1145.667 220 RANDOMCND) 5.401
15X15 192 1046.88 1287 4 1125.933 193 Biased-RANDOMCND) 5J19
15X15 269 1009.25 1294 6 1160.667 272 RANDOMCND) 5.892
15X15 264 1126.9 1278 5 1130.667 190 ATCCND) 4.583
15X15 255 1069.46 1278 5 1140.267 139 RANDOMCND) 4.583



APPENDIX E

RESULTS OF EXPERIMENT IV

Tmbk E.1. Summary of rcsulti obtilncd by CGA TT »pproach for problem FT6.
Problem size No. of 

ahemalives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

6x6 79 21.34 53 4 31 5.73 LRPTCA) 0.000

6x6 60 23.01 33 4 31 3.73 LRPTCA) 0.000

6x6 79 22.41 33 4 31 3.73 JSTCA) 0.000

6x6 67 22.03 33 4 31 5.75 Biased-RANDOMCA) 0.000

6x6 34 21.64 33 4 31 3.73 OSTCA) 0.000

Problem size No. of 
alternatives

CPU time 
(Sec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

6x6 80 22J 38 4 30 8.13 LRPTCA) 41.391

6x6 48 24.88 33 4 31 3.73 WSPT+WOSTCA) 0.000

6x6 80 23.02 38 4 30 8.13 OSTCA) 41.391
6x6 80 23.43 35 4 30.167 7.04 JSTCA) 22.433

6x6 80 23.01 38 4 30 8.13 OSTCA) 41.391

Tmbk EJ. Summary of results oblaliwd by CCA TT mppromch for probkm FTIO.
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin o f the best 
chromosome

Percentage 
of error

10x10 144 166.04 1022 3 811 346 ODDCND) 26.703
10x10 144 164.43 960 10 821.6 273.08 EDDCND) 0.000

10x10 144 168.02 1003 3 809.6 332 EDDCND) 21.376

10x10 144 164.22 960 10 821.6 273.08 EDDCND) 0.000

10x10 144 160.77 1094 7 802 320 WSPT+WOSTCND) 17.182

Tmbk E.4. Summmry of résulta obuined by UGA TT mppromch for probkm FTIO.
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage 
of error

10x10 144 186.36 1003 3 809.6 332 MDDCND) 21.376

10x10 140 188.4 960 10 821.6 273.08 CRCND) 0.000

10x10 144 176.76 960 10 821.6 273.08 JSTCND) 0.000

10x10 144 180.7 1003 3 809.4 332 MDDCND) 21.376

10x10 142 181.09 960 10 821.6 273.08 Biased-RANDOMCND) 0.000

Tmbk EA, Summmry of rtsuha obtmliwd by CGA TT mppromch for probkm FT20.
Problem size No. of 

ahematives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x3 101 406J9 1182 4 732.13 93.94 EDDCND) 0.000

20x3 116 424.9 1182 4 733.23 123.9 A/OPNCND) 31.893

20x3 144 436.11 1188 3 73433 120.44 WSPT+WOSTCND) 28.209

20x3 141 411.23 1188 3 748.43 96.4 WSPT+WOSTCND) 2.619
20x3 140 446.44 1182 4 733.75 123.9 A/OPNCND) 31.893

Problem size No. of 
ahematives

CPU lime 
(Sec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x3 73 316.19 1204 6 731.23 214.97 CRCND) 128.838

20x3 6 300.43 1218 9 7333 245.77 A/OPNCND) 161.624

20x3 29 499.49 1201 11 738.15 237.84 A/OPNCND) 133.183

20x3 1 573.64 1224 7 765.1 268.01 A/OPN(ND) 185.299

20x3 9 484.38 1228 7 765.4 279.01 A/OPNCND) 197.009
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Problem size No. of 
aftemaiives

CPU time 
(Sec.)

.Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

15X10 83 577.15 1203 6 943.333 664.8 COVERTCND) 17.154

15X10 169 595.88 1093 8 917.667 664.46 Biased-RANDOMCND) 17.094

15X10 1 582.43 1205 4 951.933 641.16 Biased-RANDOMCND) 12.988
15X10 192 572.93 1126 7 914.267 725.06 Biased-RANDOMCND) 27.773
15X10 2 551.95 1192 4 938.133 567.46 RANDOMCND) 0.000

Problem size No. of 
alternatives

CPU time 
CSec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

15X10 1 619.72 1126 5 913.6 707.66 Biased-RANDOMCND) 24.707
15X10 27 705.14 1102 6 898.067 627.06 Biased-RANDOMCND) 10.503
15X10 194 654.38 1177 8 946.6 669.96 Biased-RANDOMCND) 18.063
15X10 194 613.47 1126 5 938.733 689.66 OCRCND) 21.535
15X10 1 651.09 1114 8 938.6 644.06 Biased-RANDOMCND) 13.499

Tmbk E.9. Summary of resulta obfaJntJ hy CCA TT «pproach for probltm LA2S.
Problem size No. of 

alternatives
CPU time 

CSec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage 
of error

15x10 42 546.29 1047 4 859.133 274.22 ATCCND) 0.000
15x10 2 579.74 1068 6 869.6 331.24 Biased-RANDOMCND) 20.794

15x10 194 530.91 1053 8 880.2 378.69 ATCCND) 38.097

15x10 11 586.66 1055 6 868.2 350.6 LRPTCND) 27.854

15x10 79 585.56 1056 4 851.467 343.22 MODDCND) 25.162

Problem size No. of 
ahematives

CPU time 
CSec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage 
of error

15x10 26 636.54 1056 4 870.733 390.27 Biased-RANDOMCND) 42.320
15x10 194 602.04 1133 3 878.667 423.19 Biased-RANDOMCND) 54.325
15x10 10 597.42 1055 5 855.733 323.24 ATCCND) 17.876
15x10 138 603.19 1333 4 871.733 420.17 WSPT+WOST(ND) 53.224

15x10 181 595.99 1061 4 853.067 339.22 RANDOMCND) 23.704

Problem size No. of 
ahematives

CPU time 
CSec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x10 1 1457.33 1279 13 1076J5 637.53 MODDCND) 15.681
20x10 1 1506.17 1570 10 1068.25 64Z53 OCRCND) 16.588
20x10 23 1446.29 1280 14 1085.45 551.11 ODDCND) 0.000

20x10 242 1468.66 1329 12 1094.25 663.11 Biased-RANDOMCND) 20J23

20x10 12 1435.15 1535 8 1084.3 657.18 OCRCND) 19.247

Problem size No. of 
ahematives

CPU time 
CSec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x10 108 1617 1544 13 1083.8 829.53 OCRCND) 50.520
20x10 1 1538.8 1530 11 1082.55 729.96 OCRCND) 32.453
20x10 13 1601.08 1600 13 1118.95 1015.14 A/OPN(ND) 84.199
20x10 5 1741.69 1469 11 1109.25 785.08 WSPT+WOSTCND) 42.454

20x10 31 1638.92 1375 10 1079.45 734.53 SPTCND) 33.282



203

T«Mc E.13. Sum m aiy o f r tm to  obUlntd by CCA TT mppromch for problem LA29.
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x10 1 1426.91 1555 7 980 814 Biased-RANDOM(ND) 14.810
20x10 14 1374.07 1592 5 1023.6 740 SRPTCND) 4.372
20x10 29 1371.27 1462 6 1029 798.67 Biased-RANDOM(ND) 12.647
20x10 1 1440 1592 6 1028 709 MODDCND) 0.000
20x10 1 1518.S 1353 11 1080.25 747.34 EDDCND) 5.408

Table E.14. Sammmry of m alts ohtoiinJ by UCA TT «pproach for probkm LA29,
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin o f the best 
chromosome

Percentage of 
error

20x10 5 1660.06 1558 8 1032.8 909 SRPTCND) 28.209
20x10 1 1489.25 1647 9 1040.75 936.67 Biased-RANDOMCND) 32.111
20x10 244 1635.24 1489 8 1045.1 918J4 Biased-RANDOMCND) 29.526
20x10 4 1573.89 1592 6 1022.95 994.67 ATCCND) 40.292
20x10 4 1521.16 1582 9 1052.35 1030.67 RANDOMCND) 45.370

Tmbk E.15. Snmmafy of resolts obtmlned by CGA TT mppromch for problem LA38.
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin o f  the best 
chromosome

Percentage of 
error

15X15 13 1047.59 1429 10 1105 802.9 RANDOMCND) 15.829
15X15 229 1072.7 1369 9 1092.667 789.26 MWRCND) 13.861
15X15 269 1034.41 1351 12 1112 838.54 RANDOMCND) 20.970
15X15 255 1088J5 1339 12 1115.6 858.54 Biased-RANDOMCND) 23.855
15X15 3 1110.59 1364 11 1117.133 693.18 RANDOMCND) 0.000

TT mppromch for problem LA38.
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin o f the best 
chromosome

Percentage of 
error

15X15 269 1118.56 1364 13 1120333 757.18 Biased-RANDOMCND) 9.233
15X15 23 1173.27 1313 12 1118.8 795.28 JSTCND) 14.729
15X15 226 1131.63 1324 12 1120.867 759.54 Biased-RANDOMCND) 9.573
15X15 41 1136.46 1353 10 1109.2 788.54 Biased-RANDOMCND) 13.757
15X15 1 114438 1439 11 1099.867 781.9 EDDCND) 12.799

TabkE.17. Summmry of result» ohtmlned by CCA
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

15X15 260 1091.86 1316 11 1107 367.81 Biased-RANDOMCND) 0.000
15X15 1 1114.66 1316 11 1107 367.81 Biased-RANDOMCND) 0.000
15X15 198 1044.85 1316 11 1107 367.81 RANDOMCND) 0.000
15X15 84 1085.11 1316 11 1107 367.81 RANDOMCND) 0.000
15X15 241 1033.53 1316 11 1107.267 367.81 Biased-RANDOMCND) 0.000

Problem size No. of 
alternatives

CPU time 
(Sec)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin o f the best 
chromosome

Percentage of 
error

15X15 118 1197.54 1316 11 1107 367.81 Biased-RANDOMCND) 0.000
15X15 207 1142.18 1316 11 1107.267 367.81 RANDOMCND) 0.000
15X15 269 1217.04 1402 8 1124.733 502.75 Biased-RANDOMCND) 36.687
15X15 268 1238.68 1316 11 1107.267 367.81 Biased-RANDOMCND) 0.000
15X15 14 1180.57 1387 8 1116.8 514.34 Biased-RANDOMCND) 39.839



APPENDIX F

RESULTS OF EXPERIMENT V

TmWe F.l. Summary of rtanMs obUlned by CCA WSPT ippnuch for prohkm FT6.
Problem

size
No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

6x6 3 62.4 58.854 4 52J31 15.085 LRPTCA)
6x6 17 61.95 58.854 4 52.331 15.085 LRPTCA)
6x6 21 60.64 61.181 5 51.558 14.25 LRPTCA)
6x6 45 61.51 58.854 4 52J31 15.085 LRPTCA)
6x6 7 62.51 58.854 4 52.331 15.085 LRPTCA)

Percentage of error
Problem

size
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

6x6 3.913 33J33 0.430 17.998
6x6 4.093 33.333 4.291 26.960
6x6 OJOl 66.667 2.750 31.003
6x6 4.093 33.333 4.291 26.960
6x6 4.093 33.333 4.291 26.960

Problem
size

No. of 
ahematives

CPU time 
CSec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best chromosome

6x6 1 1939.15 61.251 3 52.107 18.396 LRPT(A)
6x6 18 1498.2 61.366 3 50.178 20.653 Biased-RANDOMCND)
6x6 11 1521.54 61.366 3 50.178 20.653 Biased-RANDOMCND)
6x6 7 1582.95 61J66 3 50.178 20.653 Biased-RANDOMCND)
6x6 52 1493.15 6 U 6 6 3 50.178 20.653 LAWINQCND)

90 Percent confidence interval
Problem

size
Makespan Number Tardy Average flow time Total Tardiness

6x6 55.683 66.819 2.727 3.273 47.370 56.844 16.724 20.068
6x6 55.787 66.945 2.727 3.273 45.616 54.740 18.775 22.531
6x6 55.787 66.945 2.727 3.273 45.616 54.740 18.775 22.531
6x6 55.787 66.945 2.727 3.273 45.616 54.740 18.775 22.531
6x6 55.787 66.945 2.727 3.273 45.616 54.740 18.775 22.531
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Table F 3 . Summary o f rtauHs obtoliwd by CGA WSPT approach fo r probltm  FTIO.
Problem size No. of 

alternatives
CPU time 

(Sec.)
.Makespan Number

Tardy
.Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

10x10 133 446.98 1079.332 6 812.432 528.921 Biased-RANDOMCND)
10x10 137 445.99 1036.885 6 825.459 452.772 EDDCND)
10x10 139 445.67 1037.551 6 827.185 459.65 MDDCND)
10x10 143 469.12 1071.895 6 814.87 501J72 A/OPNCND)
10x10 131 462.69 1063.015 6 812.467 533.409 EDDCND)

Percentage of error

Problem size Makespan Number
Tardy

Average 
flow time

Total
Tardiness

10x10 1.487 0.000 1.278 14.730
10x10 2.918 0.000 0.006 31.380
10x10 6.261 0.000 0.185 22.494
10x10 2.056 0.000 1.746 23.175
10x10 3.841 0.000 1.148 15.320

Table F.4. Summary of result» obuliied by CCA SIM approach for problem FTIO.
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best chromosome

10x10 14 3256.65 1063.514 6 822.95 620.289 EDDCND)
10x10 19 3172.66 1068.047 6 825.506 659.827 A/OPNCND)
10x10 26 3307.89 1106.85 6 825.656 593.052 MODDCND)

10x10 1 3404.4 1094.401 6 829J4 7 652.616 Biased-RANDOMCND)

10x10 74 3230.66 1105.48 6 821.901 629.91 MDDCND)

90 Percent confidence interval

Problem size Makespan Number Tardy Average flow time Total Tardiness

10x10 966.831 1160.197 5.455 6.545 748.136 897.764 563.899 676.679

10x10 970.952 1165.142 5.455 6.545 750.460 900.552 599.843 719.811
10x10 1006.227 1207.473 5.455 6.545 750.596 900.716 539.138 646.966
10x10 994.910 1193.892 5.455 6.545 753.952 904.742 593.287 711.945

10x10 1004.982 1205.978 5.455 6.545 747.183 896.619 572.645 687.175

Problem size No. of 
alternatives

CPU time 
(Sec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

20x5 132 1322.93 1240.885 8 761.133 439.272 EDDCND)
20x5 9 1268J4 1232.552 6 758.724 426.703 A/OPN(ND)

20x5 120 1296.4 1253.168 8 775.512 518.12 A/OPNCND)

20x5 139 1289.43 1259.168 7 774.198 426.838 A/OPNCND)
20x5 141 1196.83 1259.168 9 772.465 463.978 A/OPNCND)

Percentage of error

Problem size Makespan Number
Tardy

Average 
flow time

Total
Tardiness

20x5 0.130 11.111 1.343 21.136
20x5 0.628 40.000 1.771 23.561

20x5 0.175 0.000 1.031 0.176
20x5 1.513 22.222 0.166 20.784
20x5 1.439 10.000 0.198 13.832
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Table F.6. Summary of r tsu to  obUintd by CCA StM  «pproach for probkm  FT20.
Problem size N'o. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin ofthe best chromosome

20x5 2 20558.94 1242.498 9 771.498 557 A'OPN(ND)

20x5 3 20070.82 1240.339 10 772.401 558.224 A/OPN(ND)

20x5 143 16459.8 1250.98 8 767.601 519.031 A/OPN(ND)

20x5 4 19649.82 1240J99 9 772.914 538.825 A/OPN(ND)

20x5 1 18856.8 1241.311 10 774.001 538.455 EDD(ND)

90 Percent confidence interval

Problem size Makespan Number Tardy Average flow time Total Tardiness

20x5 1129.544 1355.452 8.182 9.818 701.362 841.634 506.364 607.636

20x5 1127.581 1353.097 9.091 10.909 702.183 842.619 507.476 608.972
20x5 1137.255 1364.705 7.273 8.727 697.819 837J83 471.846 566.216
20x5 1127.635 1353.163 8.182 9.818 702.649 843.179 489.841 587.809

20x5 1128.465 1354.157 9.091 10.909 703.637 844J65 489.505 587,405

Problem size No. of 
alternatives

CPU time 
(Sec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin ofthe best 
chromosome

15x10 178 1574.88 1222.432 4 948.29 888.119 RANDOM(ND)

15x10 190 1629.59 1224.665 7 939.321 934.708 R.ANDOM(ND)

15x10 183 1657.93 1183J61 8 933.082 927.703 Biased-RANDOM(ND)
15x10 192 1728.84 1206.95 9 991.736 1363.652 WSPT+WOST(ND)

15x10 186 1630.62 1246.686 6 950.319 1193.703 LAWIN(XND)
Percentage of error

Problem size Makespan Number
Tardy

Average 
flow time

Total
Tardiness

15x10 1.497 50.000 2.922 27.907
15x10 7.156 22.222 2.901 30.049
15x10 4.537 0.000 3.910 23.493
15x10 2.492 12.500 2.270 15.168
15x10 0.820 25.000 1.017 0.157

Table F.8. Summaiy of reaults obtained by CCA SIM approach for problem LA2I,
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin ofthe best chromosome

15x10 3 7138.78 1241.004 8 976.83 1231.91 WSPT+WOST(ND)

15x10 6 6795.44 1319.063 9 967J8 7 1336.242 Biased-RANDOM(ND)
15x10 1 7356.06 1239.6 8 971.052 1212.57 RANDOMCND)

15x10 159 7182.11 1237.795 8 969.727 1184.059 JSTCND)
15x10 1 6752.1 1236.545 8 960.08 1191.837 Biased-RANDOMCND)

90 Percent confidence interval

Problem size Makespan Number Tardy Average flow time Total Tardiness

15x10 1128.185 1353.823 7.273 8.727 888.027 1065.633 1119.918 1343.902

15x10 1199.148 1438.978 8.182 9.818 879.443 1055.331 1214.765 1457.719

15x10 1126.909 1352.291 7.273 8.727 882.775 1059.329 1102.336 1322.804

15x10 1125.268 1350J22 7.273 8.727 881.570 1057.884 1076.417 1291.701

15x10 1124.132 1348.958 7.273 8.727 872.800 1047J60 1083.488 1300.186
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Tmbk F.9. Summary o f  r ta a h s  obtaliwd by CGA WSPT »ppro«ch fo r problem  LA25.
Problem size No. of 

ahematives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

15x10 169 1575.48 1127.558 5 873.222 537.39 RANDOM(ND)
15x10 176 1518.09 1314.645 3 878.273 707.489 RANDOMCND)
15x10 175 1636.72 1126.1 6 874.045 624.144 MODDCND)
15x10 183 1539.34 1309.088 2 880.297 669.137 JSTCND)
15x10 184 1621.18 I245J86 4 878.136 725.607 MODDCND)

Percentage of error

Problem size Makespan Number
Tardy

Average 
flow time

Total
Tardiness

15x10 3.791 28.571 3.587 39.887
15x10 2.483 50.000 2.820 15.689
15x10 7.788 14.286 3.632 31.802
15x10 8.328 66.667 1.173 14.165
15x10 3.836 33.333 1.703 4.995

Tabk F.IO. Summary of results obtained by CGA SINt mppromch for problem LA25.
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin ofthe best chromosome

15x10 20 8303J7 1171.99 7 905.707 893.971 Biased-RANDOMCND)
15x10 7 7870.44 1282.798 6 903.759 839.141 Biased-RANDOMCND)
15x10 173 7818.97 1221.203 7 906.983 915.192 Biased-RANDOMCND)
15x10 77 8512.62 1208.444 6 890.747 779.563 Biased-RANDOMCND)
15x10 12 8801.59 1199.373 6 893.349 763.758 WSPT+WOSTCND)

90 Percent confidence interval

Problem size Makespan Number Tardy Average flow time Total Tardiness

15x10 1065.445 1278.535 6.364 7.636 823J70 988.044 812.701 975.241
15x10 1166.180 1399.416 5.455 6.545 821.599 985.919 762.855 915.427

15x10 1110.185 1332.221 6.364 7.636 824.530 989.436 831.993 998.391
15x10 1098.585 1318.303 5.455 6.545 809.770 971.724 708.694 850.432
15x10 1090.339 1308.407 5.455 6.545 812.135 974.563 694.325 833.191

Tabk F .ll. Summary of reaoHa obtalmd by CGA WSPT approach for probkm LA38.
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin ofthe best 
chromosome

15X15 249 3244.34 1435.47 9 1154.895 1530.144 Biased-RANDOMCND)
15X15 260 3175.63 1466.153 9 1158.001 1559.851 Biased-RANDOMCND)
15X15 247 2974.93 1498.82 9 1145.1 1496.685 EDDCND)
15X15 261 3161.18 1423.915 10 1176.191 1766.202 MDDCND)
15X15 261 3052.7 1381.867 12 1177.306 1740.067 LRPTCND)

Percentage of error

Problem size Makespan Number Average Total
Tardy flow time Tardiness

15X15 1.747 18.182 0.285 5.145
15X15 3.224 25.000 0.065 3.467
15X15 8.608 25.000 0.974 1.836
15X15 0.406 9.091 1.543 16.141

15X15 2.123 9.091 2.401 22.759
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Table F.12. Sumnuiry o f  results oh ta iin J by CGA SIM  «pproach for problem LA38.
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin ofthe best chromosome

15X15 2 15576.99 1410.821 11 1151.618 1455.264 Biased-RANDOMCND)

15X15 3 15494.48 1420.365 12 1158.757 1507.585 Biased-RANDOMCND)

15X15 140 15193.05 1380.032 12 1156.361 1469.699 Biased-RANDOMCND)

15X15 18 15870.94 1429.715 11 1158.313 1520.735 Biased-RANDOMCND)

15X15 1 15509.03 1411.839 11 1149.703 1417.47 Biased-RANDOMCND)

90 Percent confidence interval

Problem size Makespan Number Tardy Average flow time Total Tardiness

15X15 1282.565 1539.077 10.000 12.000 1046.925 1256.311 1322.967 1587.561

15X15 1291.241 1549.489 10.909 13.091 1053.415 1264.099 1370.532 1644.638
15X15 1254.575 1505.489 10.909 13.091 1051.237 1261.485 1336.090 1603.308
15X15 1299.741 1559.689 10.000 12.000 1053.012 1263.614 1382.486 1658.984

15X15 1283.490 1540.188 10.000 12.000 1045.185 1254.221 1288.609 1546.331

Problem
size

No. of 
ahematives

CPU time 
(Sec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

15X15 263 3053.47 1360.974 12 1161.059 1090.126 Biased-RANDOMCND)
15X15 231 3034.52 1409.571 10 1167.044 1244.586 Biased-RANDOMCND)
15X15 254 2972.57 1387.883 11 1149.836 1081.458 RANDOMCND)
15X15 250 3109.28 1444.59 12 1176.202 1367.004 A/OPNCND)
15X15 248 3101.04 1406.917 9 1159.811 1175.426 RANDOMCND)

Percentage of error
Problem

size
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

15X15 4.174 20.000 0.245 15.814
15X15 0.464 16.667 0.144 5.488
15X15 0.782 0.000 1.590 18.903
15X15 3.070 9.091 0.854 11J69
15X15 1.854 18.182 1.010 9.015

Problem
size

No. of 
alternatives

CPU time 
(Sec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best chromosome

15X15 92 17617.69 1420.25 10 1163509 1294.898 Biased-RANDOMCND)
15X15 237 16575.97 1416.144 12 1168.725 1316.857 Biased-RANDOMCND)
15X15 42 17193.16 1398.818 11 1168.411 1333.53 RANDOMCND)
15X15 1 20077.25 1401.565 11 1166.247 1227.459 Biased-RANDOMCND)
15X15 2 20720.26 1433.487 11 1171.639 1291.889 Biased-RANDOMCND)

90 Percent confidence interval

Problem
size

Makespan Number Tardy Average flow time Total Tardiness

15X15 1291.136 1549J64 9.091 10.909 1058.099 1269.719 1177.180 1412.616
15X15 1287.404 1544.884 10.909 13.091 1062.477 1274.973 1197.143 1436.571
15X15 1271.653 1525.983 10.000 12.000 1062.192 1274.630 1212JOO 1454.760
15X15 1274.150 1528.980 10.000 12.000 1060.225 1272.269 1115.872 1339.046
15X15 1303.170 1563.804 10.000 12.000 1065.126 1278.152 1174.445 1409.333



APPENDIX G

RESULTS OF EXPERIMENT VI

!PPtMidO«QV.
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

6x6 79 64.32 4678.900 2 3417.858 1024.863 ATC(A) 102686.300
6x6 80 57.89 4678.900 2 3417.858 1024.863 ATC(A) 102486.300
6x6 69 58.66 4678.900 2 3417.858 1024.863 ATC(A) 102486.300
6x6 80 61.13 4678.900 2 3417.858 1024.863 ATC(A) 102486.300
6x6 70 53.83 4720.967 2 3459.925 1108.997 ATC(A) 110899.700

Table Summary of résulta obtaliwd for probkm FT6 (Ctat II: PPl and O < QV
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin ofthe best 
chromosome

Percentage of 
error

11x6 110 269.41 5000.212 0 2873.28 0 MDD(ND) 0.000
11x6 110 267.11 5000.212 0 2871.666 0 MDtXND) 0.000

11x6 110 254.64 5000.212 0 2899.289 0 MDIXND) 0.000
11x6 110 264.69 4625.698 0 2896.844 0 A/OPN(ND) 0.000
11x6 110 261.5 5000.212 0 2942.759 0 MDDCND) 0.000

Table G J. Summary of teaalta obtained for problem FT6 (Caae 111; PP2 and O » OV
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin ofthe best 
chromosome

Percentage of 
error

6x6 80 61.02 4870.012 3 3435.844 241.243 EDD(ND) 24124.300
6x6 80 54.43 4870.012 3 3435.844 241.243 EDDCND) 24124.300

6x6 76 56.8 4870.012 3 3435.844 241.243 RANDOMCND) 24124.300

6x6 76 59.38 4870.012 3 3435.844 241.243 MODDCND) 24124.300

6x6 80 54.82 4870.012 3 3435.844 241.243 Biased-RANDOMCND) 24124.300

Table G.4. Summary of results obtained for problem FT6 (Caae IV: PP2 and O < OV
Problem size No. of 

alternatives
CPU time 

CSec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin ofthe best 
chromosome

Percentage of 
error

11x6 110 277.65 4148.081 0 2525.526 0 TWORKCND) 0.000
11x6 110 279.08 4398.677 0 2807.144 0 Biased-RANDOMCND) 0.000
11x6 110 272.81 4647.518 0 2799.299 0 EDDCA) 0.000

11x6 110 272.22 4405.831 0 2917.759 0 SRPTCND) 0.000

11x6 110 271.67 4161.727 0 2784.773 0 SRPTCND) 0.000

Table I PPl and 0 - 0 ) .
Problem size No. of 

alternatives
CPU time 

(Sec)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin ofthe best 
chromosome

Percentage of 
error

10x10 142 437.76 10377.882 3.333 5279.406 843.464 Biased-RANDOM(ND) 794.173

10x10 144 437.65 10243.996 4J33 5338.428 1514.745 WSPT+WOST(ND) 204.567

10x10 142 455.88 10377.882 3.333 5279.406 843.464 MODDCND) 142.564

10x10 129 548.49 10392.997 2 5232.494 657.41 MODDCA) 2266.487

10x10 144 487.91 10392.997 2 5232.494 657.41 MODDCA) 59.143
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Table G.6. Sum m ary of resuHs obtaiiKd fo r problem FTIO (Can II: P P l n d  O  < O).
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

19x10 227 2949.28 7477.108 1 4696.928 679.125 ATC(ND) 619.954

19x10 228 3024.53 7456.205 1.667 4628.617 726.145 Biased-RANDOMCND) 46.005
19x10 232 2965J7 7509J 17 1 4738.849 742.555 ATCCND) 113.544

19x10 232 2972.67 7769.071 1 4770.877 619.724 ATCCND) 2130.828
19x10 231 3032.05 7653.914 1 4726.632 542.068 Biased-RANDOMCND) 31.221

Table G.7. Summary of eeauNa obUlned for problem FTIO (Caae HI: PP2 and 0 “ QX
Problem size No. of 

alternatives
CPU time 

CSec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

10x10 2 442.64 10333.062 3 5319.798 1618.428 MODDCA) 1615.727
10x10 35 463.52 10185.158 4 5317.002 1260.086 MODDCA) 153.363
10x10 140 495.76 9672.101 2.667 5241.074 1758.459 MODDCA) 405.698
10x10 115 450.22 10050.545 4.333 5368.325 1590.944 MODDCA) 5626.940
10x10 139 466.59 10148.79 2.667 5258.093 641.122 MODDCA) 55.200

Table G.8. Summmry of results obtained for pro Mem FTIO (Caae IV: PP2 and O < Q).
Problem size No. of 

alternatives
CPU time 

CSec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

19x10 229 3021.13 7978.923 1 4932.674 94.329 ATCCND) 0.000
19x10 230 2989.65 8048.686 1 4953J4 497.344 ATCCND) 0.000

19x10 230 3061J9 7895.034 1 4871.786 347.729 ATCCND) 0.000
19x10 228 3278.61 7939.48 0.667 4801.138 27.78 Biased-RANDOMCND) 0.000

19x10 231 3180.9 8055.037 1J33 5004.182 413.095 ATCCND) 0.000

Table G.9. Summary of reauKa obtolwej for problem FT20 (Caae I; PPl n d  0 - 0 ) .
Problem size No. of 

alternatives
CPU time 

CSec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin ofthe best 
chromosome

Percemage of 
error

20x5 1 1425.43 12229.579 17 6417.905 58524.599 MDDCA) 0.000
20x5 1 1179.85 12128.903 18 6312.958 56343.504 SRPTCND) 0.000
20x5 2 1296.9 12229.579 17 6413.127 58429.031 MDDCA) 5.300
20x5 144 1242.58 11918.124 17 6370.781 57627.613 MDDCND) 3.628

20x5 20 1393.35 12251.797 17 6473.464 59635.769 MDDCA) 3.397

Table C.IO. Summary of reauHs obtained for problem FT20 (Caae H: PPl and O < OV
Problem size No. of 

alternatives
CPU time 

(Sea)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

37x5 31 9237.75 13961.862 26.333 5740.116 84347.725 SPTCND) 44.124
37x5 2 9458.61 14474.099 25 5694.326 81870.47 SRPTCND) 45.306
37x5 1 9268.01 13961.862 24.333 5739.904 84172.942 SRPTCND) 51.695
37x5 1 9293.67 14516.519 24 5799.659 86133.535 SRPTCND) 54.888

37x5 171 9604.88 13961.862 26 5748.889 84597.425 SPTCND) 46.676

Tabk G.Il. Summary of reanhs obtained for problem FT20 (Caae III: PP2 and O ■ OV
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

20x5 122 1089.23 12333.526 19.667 6544.912 60467.992 ATCCND) 3.321
20x5 143 1082.14 13683.754 19 6534.704 60311.277 SRPTCND) 7.042

20x5 3 1111.75 12675.144 17333 6293.53 55488.338 ATCCND) 0.000

20x5 11 1044.57 12729 J37 18 6288.605 55610.257 ATCCND) 0.000

20x5 143 1054.68 12568.266 19 6391.188 57676.273 MODDCND) 0.000
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Table C.12. Summary o f  ro u H i obtointd fo rp roh ltm  H iO  (Ck  IV: P P Im d  O <QV
Problem size Mo. of 

alternatives
CPU time 

(Sec.)
Makespan Ntimber

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

37x5 I 8126.72 14822.514 26.667 5870.063 90304.46 SRPT(MD) 54.302

37x5 3 7738.06 14728.141 24.333 5759.24 86169.473 SRPT(ND) 52.936
37x5 2 7586.36 14822.514 27 5911.186 90049.376 SRPTCMD) 62.285
37x5 203 7736.2 14822.514 26 5902.435 90764.624 SRPT(MD) 63.216

37x5 50 8026.05 14792.063 25.333 5836.836 89672.107 SRPTCND) 55.475

Table C.13. Summary of result» obtained for problem LA21 (Case I: PPÏ and O " OV
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

15x10 115 1488.32 11782.555 10J33 7189 J98 13557.195 Biased-RANDOM(ND) 78.881

15x10 183 1475.13 11595.666 12.667 7312.769 13644.937 SPT(ND) 94.010

15x10 194 1544.84 10972.215 13 7404.054 15040.765 MODD(ND) 156.984

15x10 192 1656.05 11472.059 12J33 7257.854 13618.968 EDD(ND) 103.802

15x10 185 1535 11048.617 12 7313.665 13698.016 SPT(ND) 89.098

Table C.I4. Summary of result» obtained for problem LA21 fCaae II; PPl and O < OV
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

28x10 312 13134.5 10583.701 9.333 6271.694 8116.891 .MDD(ND) 7.099

28x10 158 13340.2 10389.481 9.667 6294.417 8628.599 MDD(ND) 22.685

28x10 324 12297.16 10485.72 11.667 6334J54 7857.786 MDD(ND) 34.257

28x10 199 13447.41 10315.424 9J33 6438.975 8147.594 MDD(ND) 21.925

28x10 280 12590.13 10415J77 10J33 6414.264 7552.052 MDD(ND) 4.255

Table G.15. Summary of raalti obtained for problem LA21 (Caae HI: PP2 and 0 - 0 ) .
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin o f the best 
chromosome

Percentage of 
error

15x10 180 1527.8 11518.854 12.333 7152.286 10391.181 MODD(ND) 37.107

15x10 189 1474.37 12164.899 13 7255.654 12180.41 SPT(ND) 73.187

15x10 194 1510.18 11354.351 12 7226.579 12301.23 MODCKND) 110.177

15x10 192 1545.66 11755.656 11.667 7100.836 11025.144 WSPT+WOST(ND) 64.987

15x10 193 1594.82 11925.236 1L333 7239.288 12609.367 SPT(ND) 74.070

Table G.16. Summary of résulta obtained for proMem LA2I (Caae IV: PP2 and O < O).
Problem size No. of 

alternatives
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

Percentage of 
error

28x10 243 14472.87 10789.83 10.667 6227.124 7578.889 SPT(ND) 0.000
28x10 282 14538.83 11055.534 9 6323.238 7033.108 Biased-RANDOM(ND) 0.000

28x10 252 14097.4 10721.009 9.333 6063.088 5852.796 Biased-RANDOM(ND) 0.000

28x10 182 14402.23 10494.373 6.667 6208.898 6682.451 Biased-RANDOMCND) 0.000

28x10 279 13361.94 10897.655 9.667 6344.725 7243.858 Biased-RANDOM(ND) 0.000



APPENDIX H

RESULTS OF EXPERIMENT VH

Table H I. Sum m aiy o f  results obtained by simulating the final best solution obtained by the CGA_WSPT approach for

Problem
size

Number of 
replicates

CPU time 
(Sec)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

6x6 82 0.22 60.831 4 53J7 23.253 UU>T(A)
6x6 133 0.33 65.432 4 54.351 30.192 LRPT(A)
6x6 182 0.39 65.78 3 52.56 24.808 LRPT(A)
6x6 75 0.16 62.275 4 54.04 27.542 LRPT(A)
6x6 152 0.33 64.139 4 54.337 30.806 LRPT(A)

Percentage of error
Problem

size
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

6x6 0.686 33J33 2.424 26.402
6x6 6.626 33.333 8.316 46.187
6x6 7.193 0.000 4.747 20.118
6x6 1.481 33J33 7.697 33J56
6x6 4.519 33.333 8.288 49.160

Table H.2. Summary of results obtained by simulating the final best solution obtained by the CGA TT approach for problem
FT6.

Problem size Number of 
replicates

CPU time 
(Sec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

6x6 141 0.39 62.612 4 55.726 36.13 LRPT(A)
6x6 158 0.33 61.004 4 54.057 26.248 LRPT(A)

6x6 130 0.33 62.25 5 55.792 35.048 JST(A)
6x6 72 0.16 64.768 5 57.991 48.005 Biased-RANDOM(A)

6x6 126 0.28 61.916 4 54.904 30.678 OST(A)

Percentage of error

Problem size Makespan Number
Tardy

Average 
flow time

Total
Tardiness

6x6 2.222 33333 6.945 96.401
6x6 0.590 33333 7.730 27.090
6x6 1.441 66.667 11.188 69.699
6x6 5.544 66.667 15.571 132.436
6x6 0.896 33.333 9.418 48.540
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Table H-}. Siiminarv o f results obtained by sbnulatiiic the flnal best solutioa obtained by the CX>A SIM  approach for problem
FT6.

Problem
size

Number of 
replicates

CPU time 
(Sec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best chromosome

6x6 91 0.22 61.251 3 52.107 18.396 LRPT(A)
6x6 58 O.II 61.366 3 50.178 20.653 Biased-RANDOM(ND)
6x6 58 0.11 61J66 3 50.178 20.653 Biased-RANDOMCND)
6x6 58 0.11 61.366 3 50.178 20.653 Biased-RANDOMCND)
6x6 58 O.ll 61.366 3 50.178 20.653 LAWTNQCND)

90 Percent confidence interval
Problem Makespan Number Tardy Average flow time Total Tardiness

size
6x6 55.683 66.819 2.727 3.273 47J70 56.844 16.724 20.068
6x6 55.787 66.945 2.727 3.273 45.616 54.740 18.775 22.531
6x6 55.787 66.945 2.727 3.273 45.616 54.740 18.775 22.531
6x6 55.787 66.945 2.727 3.273 45.616 54.740 18.775 22.531
6x6 55.787 66.945 2.727 3.273 45.616 54.740 18.775 22.531

Table H.4. Summary of results obtained by simulating the (Inal best solution obtained by the CGA_WSPT approach for

Problem size Number of 
replicates

CPU time 
(Sec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

10x10 31 0.27 1096.485 7 849.298 773.306 Biased-RANDOMCND)
10x10 21 0.16 1076.879 7 848.158 819.863 EDDCND)
10x10 41 0.33 1108.936 7 855J83 835.797 MDDCND)
10x10 46 0J3 1119.78 7 854.213 817.696 A/OPNCND)
10x10 27 0.22 1092.847 7 842.864 749.833 EDDCND)

Percentage of error

Problem size Makespan Number
Tardy

Average 
flow time

Total
Tardiness

10x10 3.100 16.667 3.202 24.669
10x10 0.827 16.667 2.744 24.254
10x10 0.188 16.667 3.600 40.931
10x10 2.319 16.667 2.998 25.295
10x10 1.143 16.667 2.551 19.038

Table H j. Summary of results obtained by simulating the Onal beat solution obtained by the CGA TT approach for problem 
______________________________________________ F T I O . _________________________ ~___________________
Problem size Number of 

replicates
CPU time 

(Sec.)
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

10x10 26 0.17 1080.194 7 845.635 767.79 ODIXND)
10x10 43 0J2 1114.563 7 862.784 820.893 EDDCND)
10x10 27 0.16 1095.852 7 865.518 91L314 EDDCND)
10x10 57 0.5 1053.114 8 858.779 727.646 EDDCND)
10x10 68 0.49 1114.494 7 853.187 772.393 WSPT+WOSTCND)

Percentage of error
Problem size Makespan Number

Tardy
Average 
flow time

Total
Tardiness

10x10 1.568 16.667 2.757 23.779

10x10 4J55 16.667 4.516 24.410
10x10 0.994 16.667 4.828 53.665
10x10 3.773 33J33 3.549 11.497
10x10 0.815 16.667 3.807 22.620
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TaUe H.6. Sammaty ofrcsulU obtained by sbnulatinf the final beat adution obtained by the CCA SIM approach for pro Mem
m o .

Problem size Number of 
replicates

CPU time 
(Sec.)

.Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin ofthe best chromosome

10x10 11 0.05 1063.514 6 822.95 620.289 EDDCND)

10x10 11 0.11 1068.047 6 825.506 659.827 A/OPNCND)
10x10 11 0.06 1106 85 6 825.656 593.052 MODDCND)
10x10 11 0.11 1094.401 6 829 J4 7 652.616 Biased-RANDOMCND)
10x10 11 0.05 1105.48 6 821.901 629.91 MDDCND)

90 Percent confidence interval

Problem size Makespan Number Tardy Average flow time Total Tardiness

10x10 966.831 1160.197 5.455 6.545 748.136 897.764 563.899 676.679
10x10 970.952 1165.142 5.455 6.545 750.460 900.552 599.843 719.811
10x10 1006.227 1207.473 5.455 6.545 750.596 900.716 539.138 646.966
10x10 994.910 1193.892 5.455 6.545 753.952 904.742 593.287 711.945
10x10 1004.982 1205.978 5.455 6.545 747.183 896.619 572.645 687.175

Table H.7. Summary of reauha obtained by abnulatfaic the dnal beat aohition obtained by the CGA_WSPT approach for

Problem size Number of 
replicates

CPU time 
CSec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin ofthe best 
chromosome

20x5 42 0.88 1257.596 9 773.072 678.294 EDDCND)
20x5 48 0.99 1260.387 9 773.813 758.119 A/OPNCND)
20x5 60 1.2 1282.671 11 799.228 1072.514 A/OPNCND)
20x5 63 1J2 1307.754 11 798.149 989.403 A/OPNCND)
20x5 41 0.83 1275.525 11 789.949 798.436 A/OPNCND)

Percentage of error

Problem size Makespan Number
Tardy

Average 
flow time

Total
Tardiness

20x5 1.215 0.000 0.204 21.776
20x5 1.616 10.000 0.183 35.809
20x5 2.533 37.500 4.120 106.638
20x5 5.430 22.222 3.265 83.622
20x5 2.756 10.000 2.060 48.283

Table H.8. Summary of reauMa obtained by sfanuiatlng the Unal beat aohrthm obtained by the CCA TT approach for problem
FT20.

Problem size Number of 
replicates

CPU time 
(Sec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin ofthe best 
chromosome

20x5 58 1.21 1266.774 9 776.307 688.183 EDDCND)
20x5 48 1.04 1264.428 10 776.646 691.183 A/OPNCND)
20x5 58 1.21 1245.166 11 793.17 890.768 WSPT+WOSTCND)
20x5 62 1.21 1296.153 9 779.686 753.737 WSPT+WOSTCND)
20x5 48 0.99 1245.404 9 776.6 650.28 A/OPNCND)

Percentage of error

Problem size Makespan Number
Tardy

Average 
flow time

Total
Tardiness

20x5 1.954 0.000 0.623 23.552
20x5 1.942 0.000 0.550 23.818
20x5 0.465 37.500 3.331 71.621
20x5 4.495 0.000 0.876 39.885
20x5 0.330 10.000 0.336 20.768
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Table H.9. Summaty of results obtained by siniulatinc the final best solution obtained by (he CGA SIM approach for problem
m o .

Problem size Number of 
replicates

CPU time 
(Sec.)

.Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best chromosome

20x5 44 0.88 1242.498 9 771.498 557 AOPN(ND)
20x5 45 0.93 I240J39 10 772.401 558.224 A/OPN(ND)
20x5 28 0.61 1250.98 8 767.601 519.031 A/'OPN(ND)
20x5 49 0.98 1240.399 9 772.914 538.825 A/OPN(ND)
20x5 48 0.94 1241311 10 774.001 538.455 EDD(ND)

90 Percent confidence interval

Problem size Makespan Number Tardy Average flow time Total Tardiness

20x5 1129.544 1355.452 8.182 9.818 701362 841.634 506.364 607.636
20x5 1127.581 1353.097 9.091 10.909 702.183 842.619 507.476 608.972
20x5 1137.255 1364.705 7.273 8.727 697.819 837.383 471.846 566.216
20x5 1127.635 1353.163 8.182 9.818 702.649 843.179 489.841 587.809

20x5 1128.465 1354.157 9.091 10.909 703.637 844.365 489.505 587.405

Table H.10. Summary of results obtained by simulating the final best solution obtained by the CGA_WSPT approach for

Problem size Number of 
replicates

CPU time 
(Sec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin ofthe best 
chromosome

15x10 11 0.22 1289.558 9 1001358 1634.079 RANDOM(ND)
15x10 18 0.33 1251.812 9 992.416 1479.511 RANDOMCND)
15x10 11 0.22 1262.005 9 991.884 1488.649 Biased-RANDOMCND)
15x10 15 0.33 1236.718 10 1002.529 1521.685 WSPT+WOST(ND)
15x10 11 0.22 1308.552 9 991.294 1697.678 LAWINCKND)

Percentage of error

Problem size Makespan Number
Tardy

Average 
flow time

Total
Tardiness

15x10 3.912 12.500 2.511 32.646
15x10 5.098 0.000 2.587 10.722
15x10 1.807 12.500 2.145 22.768
15x10 0.087 25.000 3383 28.514
15x10 5.823 12.500 3.251 42.442

Table H.11. Summary of results obtained by simulating the final best solntioa obtained by the CGA_TT approach for problem
LA21.

Problem size Number of 
replicates

CPU time 
(Sec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin ofthe best 
chromosome

15x10 11 0.22 1279.249 11 1013.927 1497.299 COVERT(ND)
15x10 25 0.49 1258.602 9 971.286 1368.973 Biased-RANDOM(ND)
15x10 11 0.22 1277.601 9 1009.629 1511.519 Biased-RANDOM(ND)
15x10 12 0.22 1249.007 9 977.428 1368.801 Biased-RANDOMCND)
15x10 11 0.22 1226.564 8 965.896 1007.412 RANDOMCND)

Percentage of error
Problem size Makespan Number

Tardy
Average 
flow time

Total
Tardiness

15x10 3.082 37.500 3.798 21.543
15x10 4.584 0.000 0.403 2.449
15x10 3.066 12.500 3.973 24.654
15x10 0.906 12.500 0.794 15.602
15x10 0.807 0.000 0.606 15.474
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Table H.12. Sum m ary o f  results obtained by simulating the final best solution obtained by the CGA SIM approach for problem
LA21.

Problem size Number of 
replicates

CPU time 
(Sec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin ofthe best chromosome

15x10 11 0.22 1241.004 8 976.83 1231.91 WSPT+WOST(ND)
15x10 11 0.22 1319.063 9 967.387 1336.242 Biased-RANDOMCND)

15x10 11 0.22 1239.6 8 971.052 1212.57 R.ANDOM(ND)
15x10 11 0.22 1237.795 8 969.727 1184.059 JST(ND)

15x10 11 0.22 1236.545 8 960.08 1191.837 Biased-RANDOMCND)

90 Percent confidence interval

Problem size Makespan Number Tardy Average flow time Total Tardiness

15x10 1128.185 1353.823 7.273 8.727 888.027 1065.633 1119.918 1343.902
15x10 1199.148 1438.978 8.182 9.818 879.443 1055331 1214.765 1457.719
15x10 1126.909 1352.291 7.273 8.727 882.775 1059.329 1102.336 1322.804

15x10 1125.268 1350.322 7.273 8.727 881.570 1057.884 1076.417 1291.701

15x10 1124.132 1348.958 7.273 8.727 872.800 1047360 1083.488 1300.186

Table H.13. Summary of results obtained by simulating the final best solution obtahwd by the CGA_WSPT approach for

Problem size Number of 
replicates

CPU time 
(Sec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

15x10 25 0.44 1174.343 7 907.783 951.044 RANDOMCND)
15x10 19 0.39 1330.665 5 884.953 852.01 RANDOMCND)
15x10 28 0.49 1172.62 8 915.093 1012.242 MODDCND)
15x10 30 0.55 1290.549 6 921.266 1132.23 JSTCND)
15x10 17 0.33 1286.116 6 906.009 950.422 MODDCND)

Percentage of error

Problem size Makespan Number
Tardy

Average 
flow time

Total
Tardiness

15x10 0.201 0.000 0.229 6.384
15x10 3.731 16.667 2.081 1.534
15x10 3.978 14.286 0.894 10.604
15x10 6.794 0.000 3.426 45.239
15x10 7.232 0.000 1.417 24.440

Table H.H. Summary of results obtabied by simulating the flnai best solution obtained by the CGA TT approach for problem
LA25.

Problem size Number of 
replicates

CPU time 
(Sec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin ofthe best 
chromosome

15x10 27 0.49 1179.467 7 908.574 978.29 ATCCND)
15x10 24 0.49 1140.697 9 928.719 993.595 Biased-RANDOMCND)
15x10 36 0.66 1141.13 9 937.18 1089.149 ATCCND)
15x10 30 0.61 1139.83 9 926.073 957.079 LRPTCND)
15x10 22 0.44 1143.975 7 894.271 868.435 MODDCND)

Percentage of error

Problem size Makespan Number
Tardy

Average 
flow time

Total
Tardiness

15x10 0.638 0.000 0.317 9.432
15x10 11.077 50.000 2.762 18.406
15x10 6.557 28.571 3329 19.008
15x10 5.678 50.000 3.966 22.771
15x10 4.619 16.667 0.103 13.706
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Table H .I5. Summarv o f results obtained by simulating the Unal best solution obtained by the CGA SIM approach fo r problem
LA25.

Problem size Number of 
replicates

CPU time 
(Sec.)

Makespan Number
Tardy

.Average 
flow time

Total
Tardiness

The origin ofthe best chromosome

15x10 11 0.22 1171.99 7 905.707 893.971 Biased-RANDOMCND)

15x10 11 0.22 1282.798 6 903.759 839.141 Biased-RANDOMCND)

15x10 11 0.16 1221.203 7 906.983 915.192 Biased-RANDOMCND)

15x10 11 0.22 1208.444 6 890.747 779.563 Biased-RANDOMCND)

15x10 11 0.22 1199J73 6 893.349 763.758 WSPT+WOSTCND)

90 Percent confidence interval

Problem size Makespan Number Tardy Average flow time Total Tardiness

15x10 1065.445 1278.535 6.364 7.636 823J70 988.044 812.701 975.241

15x10 1166.180 1399.416 5.455 6.545 821.599 985.919 762.855 915.427

15x10 1110.185 1332.221 6.364 7.636 824.530 989.436 831.993 998.391

15x10 1098.585 1318.303 5.455 6.545 809.770 971.724 708.694 850.432
15x10 1090.339 1308.407 5.455 6.545 812.135 974.563 694.325 833.191

Table H.I6. Summary of results obtained by simulating the Unal best solution obtained by the CGA_WSPT approach for

Problem size Number of 
replicates

CPU time 
(Sec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin ofthe best 
chromosome

15X15 11 0.27 1426.277 10 1157.978 1639.654 Biased-RANDOMCND)
15X15 11 0.33 1438.849 11 1174.828 1863.863 Biased-RANDOMCND)
15X15 19 0.44 1499.826 11 1174.543 1832.773 EDDCND)
15X15 15 0.39 1441.106 11 1187J51 1994.602 MDDCND)
15X15 13 0.33 1424.848 12 1198.998 2161.14 LRPTCND)

Percentage of error

Problem size Makespan Number
Tardy

Average 
flow time

Total
Tardiness

15X15 1.096 9.091 0.552 12.671
15X15 0.281 8.333 0.553 1.386
15X15 5.259 8.333 0.244 10.196
15X15 0.195 8.333 L326 19.768
15X15 3.412 0.000 3.707 51.590

Table H.17. Summary of results obtained by simulating the final best solution obtained by the CGA TT approach for problem
LA38.

Problem size Number of 
replicates

CPU time 
(Sec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of tlie best 
chromosome

15X15 13 033 1534.48 11 1173.494 1789.46 RANDOMCND)
15X15 26 0.66 1455.08 12 1178.982 1881.49 MWRCND)

15X15 14 0.38 1423.996 12 1184.445 1858.496 RANDOMCND)
15X15 15 0.38 1419.917 12 1168.841 1735.621 Biased-RANDOMCND)

15X15 11 0.33 1434.953 12 1189.127 1905.281 RANDOMCND)

Percentage of error

Problem size Makespan Number
Tardy

Average 
flow time

Total
Tardiness

15X15 8.765 0.000 1.900 22.965
15X15 1.413 0.000 0.202 2.345
15X15 0.063 0.000 1.090 11.743
15X15 1.278 0.000 0.253 4.218
15X15 4.145 0.000 2.853 33.643
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Table H.18. Summary o f  results obtained by simulatinc the final best solution obtained by the CGA SIM approach fo r problem
LAJ8.

Problem size Number of 
replicates

CPU time 
(Sec.)

.Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best chromosome

15X15 11 0.27 1410.821 11 1151.618 1455.264 Biased-RANDOM(ND)
15X15 25 0.66 1434.812 12 118U63 1838.386 Biased-RANDOM(ND)
15X15 11 0.28 1424.895 12 1171.679 1663.195 Biased-RANDOMCND)
15X15 22 0.6 1438.303 12 1171.807 1665J83 Biased-RANDOM(ND)
15X15 11 0.28 1377.84 12 1156.139 1425.649 Biased-RANDOMCND)

90 Percent confidence interval

Problem size Makespan Number Tardy Average flow time Total Tardiness

15X15 1282.565 1539.077 10.000 12.000 1046.925 1256.311 1322.967 1587.561
15X15 1304.375 1565.249 10.909 13.091 1073.966 1288.760 1671.260 2005.512
15X15 1295.359 1554.431 10.909 13.091 1065.163 1278.195 1511.995 1814.395
15X15 1307.548 1569.058 10.909 13.091 1065.279 1278J35 1513.985 1816.781
15X15 1252.582 1503.098 10.909 13.091 1051.035 1261.243 1296.045 1555.253

Table H.19. Summary of results obtained by simulating the final best solution obtained by the CGA_WSPT approach for

Problem
size

Number of 
replicates

CPU time 
(Sec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin ofthe best 
chromosome

15X15 16 0.44 1422.082 12 1205.19 1757.294 Biased-RANDOMCND)
15X15 19 0.5 1435.509 12 1182.14 1501.492 Biased-RANDOMCND)
15X15 18 0.49 1487.657 12 1209.293 1871.847 RANDOMCND)
15X15 22 0.55 1483.567 13 1215.632 1900.967 A/OPNCND)
15X15 17 0.44 1399.145 10 1171.435 1357.204 RANDOMCND)

Percentage of error
Problem

size
Makespan Number

Tardy
Average 
flow time

Total
Tardiness

15X15 0.129 20.000 3.547 35.709
15X15 1J67 0.000 1.148 14.021
15X15 3.695 0.000 2348 26.831
15X15 5.851 18.182 4.235 54.870
15X15 2.378 9.091 0.306 2.531

Table HJO. Summary of results obtained by simulating the final best solution obtained by the CGA TT approach for problem
LA-10.

Problem size Number of 
replicates

CPU time 
CSec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best 
chromosome

15X15 22 0.61 1395379 12 1196.604 1599.825 Biased-R.ANDOM(ND)
15X15 26 0.71 1391.05 12 1186.663 1543.734 Biased-RANDOMCND)
15X15 28 0.77 1407.151 12 1193.629 1579.636 RANDOMCND)
15X15 32 0.82 1409.616 12 1188.354 1538.251 RANDOMCND)
15X15 19 0.5 1406.42 12 1179.505 1440.542 Biased-RANDOMCND)

Percentage of error

Problem size Makespan Number
Tardy

Average 
flow time

Total
Tardiness

15X15 1.751 20.000 2.809 23.548
15X15 1.772 0.000 1.535 17.229
15X15 1.917 0.000 1.022 7.032
15X15 0.574 9.091 1.896 25320
15X15 1.870 9.091 0.381 3.454
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Table H.21. Summary o f  results obtained by sim ulating the (Inal best solution obtained by the CGA_SIM approach for problem
LA40.

Problem size Number of 
replicates

CPU time 
(Sec.)

Makespan Number
Tardy

Average 
flow time

Total
Tardiness

The origin of the best chromosome

15X15 11 0.27 1420.25 10 1163.909 1294.898 Biased-RANDOM(ND)

15X15 11 0.33 1416.144 12 1168.725 1316.857 Biased-RANDOM(ND)

15X15 19 0.5 1434.649 12 1181.55 1475.86 RANDOM(ND)

15X15 11 0.27 1401.565 11 1166.247 1227.459 Biased-RANDOMCND)
15X15 17 0.5 1433.224 11 1175.026 1392.447 Biased-R.ANDOM(ND)

90 Percent confidence interval

Problem size Makespan Number Tardy Average flow time Total Tardiness

15X15 1291.136 1549.364 9.091 10.909 1058.099 1269.719 1177.180 1412.616
15X15 1287.404 1544.884 10.909 13.091 1062.477 1274.973 1197.143 1436.571
15X15 1304.226 1565.072 10.909 13.091 1074.136 1288.964 1341.691 1610.029
15X15 1274.150 1528.980 10.000 12.000 1060.225 1272.269 1115.872 1339.046
15X15 1302.931 1563.517 10.000 12.000 1068.205 1281.847 1265.861 1519.033


