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Abstract

Generalized Spectral Analysis for Large Sets of

Approval Voting Data

by David Thomas Uminsky

May 2003

Generalized Spectral analysis of approval voting data uses representation the-

ory and the symmetry of the data to project the approval voting data into orthog-

onal and interpretable subspaces. Unfortunately, as the number of voters grows,

the data space becomes prohibitively large to compute the decomposition of the

data vector. To attack these large data sets we develop a method to partition the

data set into equivalence classes, in order to drastically reduce the size of the space

while retaining the necessary characteristics of the data set. We also make progress

on the needed statistical tools to explain the results of the spectral analysis. The

standard spectral analysis will be demonstrated, and our partitioning technique is

applied to U.S. Senate roll call data.
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Chapter 1

Introduction

1.1 The Problem

The objective of this paper is to present a new method of analyzing large sets of

approval voting data. Approval voting is a familiar process to anyone who has

observed the federal government during legislation. For example, members of the

U.S. Senate vote “yea” or “nay” on any given bill on the floor. While the question of

what passes or does not pass is usually decided by whether a majority is achieved

or not, an interesting question is whether blocks or coalitions of voters form during

the process. Being able to completely describe coalition formation can be helpful

in understanding how legislators act in a governing body. For example, in [9] we

are able to use our analysis of coalition formation to describe the voting behavior

over the last fifty years of the U.S. Supreme Court.

The standard techniques for analyzing approval voting data, including the spa-

tial model presented in Chapter 1, have difficulty describing coalition effects. In

this paper we will describe the method of generalized spectral analysis, devel-

oped by Persi Diaconis as a way to analyze coalition behavior of our data. We will

present a new partitioning technique as a tool to apply spectral analysis to large

sets of data whose analysis would not be computationally feasible otherwise. In

addition, we will present some statistical techniques to provide a way to formally

report the results of the analysis. Finally, we will provide a program and man-

ual in the appendix that fully implements these techniques using efficient methods
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developed in [10], and [11].

1.2 Approval Voting

Approval voting or roll-call voting is a “yea” or “nay” voting system used in many

academic and political institutions to decide on issues and policy. For example, the

U.S. Senate, U.S. Supreme Court, and the HMC Math Department are all exam-

ples of institutions that use approval voting. Many questions arise from this data

such as: How do the voters behave? Do they form coalitions? Can coalitions be

determined from the data?

For the sake of mathematical analysis, roll-call data can be recorded into a large

matrix with columns corresponding to the voting members and each row corre-

sponding to a roll-call vote that was decided by the governing body. We encode

each roll-call as follows: For each voter we record a 0 if the decision places the

voter in the minority and 1 if the voter agrees with the majority.

Example 1.2.1 A voting body of 4 members and 10 bills might have a data matrix like the

following:

���

�������������������������
�

� 
 
 


 
 � 


 � 
 �

 � � 


 
 
 �
� 
 
 �

 
 
 �

 � � 


 
 
 �

 � � 


��������������������������
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For a data matrix like the one in example 1.2.1, each vote (i.e. row) can also

be thought of as a vote on a subset of the voting body where the subset is the set

of members who voted in the minority. Thus our data can now be thought of as

a function
�

on the elements of the power set of the voting body where
�

simply

tallies up how many times a given subset formed a minority in a given data set. It

is clear from this definition that the domain of our function is actually the set of all

subsets of our governing body of size ��������� and smaller.

Example 1.2.2 The data matrix from example 1.2.1 can be written as a tally function on

the minority subsets. In this case our function looks like:

�
	�� 
��� � 
 % ��	���� �� � 
 % �
	���� �� � � %
�
	�� � % � �� � 
 % �
	�� 
 % � �� � 
 % �
	�� � % � �� � � %

and
�

is 0 on all other subsets.

It is in this context that we can now describe the space in which our data resides.

We will continue this discussion in Chapters 2. First, a brief survey of the standard

spatial model is given.

1.3 The Spatial Model

A very popular method of analyzing approval voting or roll-call data is the spatial

model approach. This approach, first presented in [13] by Keith Poole and Howard

Rosenthal, has become a popular way in which political scientists analyze this kind

of data. The Poole-Rosenthal model assumes “probabilistic voting based on a spa-

tial utility function” [13]. The parameters and the spatial coordinates of the utility

functions are then estimated by the data. NOMINATE was written by Keith Poole

and Howard Rosenthal to perform the estimation of these utility functions. The
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FORTRAN source code of an updated version of NOMINATE, D-NOMINATE, can

be found on the web at [12].

The results of such analysis on the U.S. Senate and Congress suggests that the

data can be described in having a one-dimensional, “ liberal/conservative” line.

Results of applying the analysis to the U.S. senate places all the senators on a “lib-

eral/conservative” line. Your position on this line dictates how you vote to a de-

gree of accuracy.

There are a few limitations of the spatial model that leave room for more re-

search. In general, the placing of voters on a line does describe the behavior of

the voters but actually does not give precise coalition behavior. Being placed very

close to another senator usually means the two senators have similar voting behav-

ior. Unfortunately the low dimensional analysis leaves little room for explaining

exactly which coalitions form and which do not. In addition, no precise gradiancy

of coalition behavior can be derived.

Another limitation of this method is that certain bills are not useable in estimat-

ing the positions and must be removed from the original data set. It is precisely

the bills that have too “small” a minority that are removed since they seem to neg-

atively effect the estimates computed by NOMINATE. Finally, it has been pointed

out by some that the standard errors on the estimates can sometimes be quite large

when estimating the positions of the voters, suggesting that more study is needed.

To conclude, the NOMINATE program and the spatial model describes very

well how individual voters behave, but the low dimensional analysis of the data

leaves much to be desired in giving a complete description of coalition behavior.

For this description, we turn to generalized spectral analysis.



Chapter 2

Generalized Spectral Analysis

Here we present the necessary definitions and theorems in representation the-

ory to understand spectral analysis. The more experienced reader will feel com-

fortable skipping the first section of this chapter. In Section 2.1, we define a rep-

resentation of a group. We also present some useful definitions and theorems in

module theory. In Section 2.2, we draw an explicit connection between representa-

tion theory and approval voting data and explain how the resulting homogeneous

space decomposes into irreducible, orthogonal and interpretable subspaces. In Sec-

tion 2.3, we apply the theory described in Section 2.1 and Section 2.2 to a small

example. In Section 2.4, we present bootstrapping as a statistical tool to analyze

the results of spectral analysis. Lastly, in Section 2.5, we summarize our discussion

of generalized spectral analysis and how it differs from the spatial model method

mentioned in Chapter 1.

2.1 Representation of a Group, Modules

To understand generalized spectral analysis, we will need to build up some impor-

tant theory from algebra. Two excellent books on the subject are [2] and [5].

Definition 2.1.1 Let � be a ring. A left � -module is a set � together with

1. a binary operation � on � under which � is an abelian group, and

2. an action of � on � (that is, a map ��� � � � ) such that for all � %��	� � %

 % � � � %
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� 	
� � � � 
 � � 
 � � 
 %

� 	
� � � 
 � � 	 � 
 � % and

� � 	 
 � ��� � � 
 � ��� .

If the ring � has a multiplicative identity, 1, we impose the additional axiom:

� 
 
 � 
 %�� 
 � � 

All our modules will be left modules, so we will drop the word left in our

discussion of modules. Also note that modules over a field � are equivalent to

vector spaces over � . It is in these algebraic structures where we will perform

spectral analysis.

Definition 2.1.2 Let R be a commutative ring with identity. Let G be any finite group

with the group operation written as multiplication. Then the group ring, RG, is the set of

all formal sums

� ��� � � � ����� �	�
��� � �� � � ��� � � % � � ��� 

where addition is component wise and

	 � � � � 	�� �
� � � 	 � � � � � ��� .

Definition 2.1.3 Let F be a field. A representation of a group � is an � ��� 
���������� .

It is these representations or modules that primarily concerns our study.

Definition 2.1.4 A submodule  of a � � -module is a subspace of an � � -module which

is invariant under the action of � � , i.e., ��� �  % for all � � � � , � �  .

Definition 2.1.5 A module � is called irreducible if its only submodules are 0 or M.

Theorem 2.1.1 Let F be a field with characteristic 0, then every � � -module is a direct

sum of irreducible submodules.

Theorem 2.1.1 implies that the study of any given � � -module may be reduced

to studying its � � -stable irreducible decomposition. Applying generalized spec-

tral analysis involves studying these decompositions.
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2.2 Homogeneous Spaces, Interpretable Subspaces

In this section we connect the above representation theory to our problem of spec-

tral analysis of approval voting data. We first define what a homogeneous space is

and discuss why it is important.

Definition 2.2.1 Let G be a finite group and X be a finite set. Define an equivalence on �

by ����� if for some � � � %�� � � � . The equivalence classes are called orbits. G operates

transitively on � if there is only one orbit. A set with a group acting transitively on it is

called a homogeneous space.

This might be a good time to ask: How does this theory relate to the analysis

of approval voting data? The answer is that we can view the approval voting data

as residing in a ��� � -module. To see this and how homogeneous spaces relate, we

now construct our space.

As we demonstrated in the previous chapter, we can view approval voting data

as a function,
�

, on a subset of the power set of the voting members. In fact, in the

case where we only care about who is in the minority, the domain of
�

is all sub-

collections of voters up to size ����� ��� , where n is the total number of voters. To

reiterate, if we label or voters 1 to � , then � is exactly the elements of the power

set of � with up to � � ����� voters in the set.

Now let us consider the vector space of all functions, � , from � into � . We

index the basis elements of this vector space as follows: first we list the singleton

coalitions in order
�
1  to

� �
 , then followed by all doubleton coalitions in the order
�
1,2  ,

�
1,3  ,...,

�
1,n  ,

�
2,3  ,...,

� � � 
 % �  and similarly for all coalitions of up to size

��������� .

Example 2.2.1 For an example of 4 voters on ten bills we recall the data matrix from

Example 1.2.1. Then as shown above, our data function,
�

, can be written as :
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�
	�� 
��� � 
 % ��	���� �� � 
 % �
	���� �� � � %
�
	�� � % � �� � 
 % �
	�� 
 % � �� � 
 % �
	�� � % � �� � � %

and
�

is 0 on all other subsets. We now rewrite the data in vector form with the ordered

basis described above:

� �

�������������������������
�



�


�

�
�


�



�

��������������������������
�



�
�
�


��

 �


 �

� �

� �
� �




The column of numbers on the right of the data vector represents the elements of the

basis to which value corresponds.

We transform � into a ��� � -module by defining the action of the group ring,

��� � on the basis elements of � in a natural way. That is, let � � be a basis element

of � . Then an element of the group ring acts on � � as follows:

	 � ��� � � � � ��� �	�
��� � ��� � � � � � � � � 	 � � � � � � � � 	 ��� � � � � ����� � �	� 	 � � � � �
where ��� � � is just the action of the permutation on the subset � � .

Example 2.2.2 To see the action of the group ring on our data vectors, we consider the

ring element � 	 
 � � � 	 � � � acting on the data vector
�

from Example 2.2.1.
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	 � 	 
�� � � 	 � � � � � � � 	 
�� �

�������������������������
�

�
�


�


�
�
�


�

��������������������������
�

�
	 � � �

�������������������������
�

�
�


�


�
�
�


�

��������������������������
�

�

�������������������������
�

�
�

�
�
�
�
�
�
�
�

��������������������������
�

�

�������������������������
�

�
�
�




�
�


�
�

��������������������������
�

�

�������������������������
�

�
�

�


�

�
�


�
�

��������������������������
�




To reiterate, our “tally” data vectors sits inside � , which is a ��� � -module.

Drawing upon definition 2.2.1, we notice that the basis elements (of subsets) of

M decompose into a collection of homogeneous spaces with respect to � � . This

decomposition is simply grouping up all the subsets of size � for ��� ��������� . This

is clear, since the action of permutation defined on a set does not change the size

of the set. We now extend the definition of a homogeneous space to the function
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space on the corresponding homogeneous space. Thus for a data vector with voters
� 
 
 
 
 �  , M decomposes as

� � � � � � $ ��� � � ��� �(��� ��� ���
� � � � ��� � � � � %
where each � � ��� � � � � is an orthogonal, homogeneous space.

For example, in the case of the U.S. Supreme Court we have � ���
justices.

In the cases where the Supreme Court unanimously approved, the corresponding

one dimensional space is � ����� $ � . For the cases where a single justice dissented, the

corresponding 	 � ��
 dimensional space is denoted � ������� � . In general, when there is k

justices dissenting, the corresponding space is denoted � ��� � � � � � and has dimension

	 �� 
 .
There are natural statistics associated with data functions such as

�
. The first

and most basic is the mean response of
�

, which is the average number of times

any element of � � ��� � � � � . The first order summary counts the number of times an

individual voted in the minority. The second order summary counts the number of

times any given pair voted in the minority, and similarly for (��� order summaries.

As a result of this counting method, each of these summaries contains a great deal

of redundancy. To see the amount of redundancy consider the following example.

Example 2.2.3 Suppose we have 7 voters, � , � , � ,
�

, � , � and � and just a single roll-

call is made. Suppose that the dissenting minority in this vote is
� � % � % �  . Then the first

order summaries are
� �  � 
 % � �  � 
 % � �  � 
 and the rest of the individuals are 0. The

second order summaries are
� � % �  � 
 % � � % �  � 
 % � � % �  � 
 and the rest of the pairs

are 0. The third order summaries are just
� � % � % �  � 
 and the rest of the triples are 0. So

as a result of just a single bill we get a great deal of over counting.
�
	�� � % � % � �� � 
 con-

tributes to seven different summaries even though it is only a single vote, hence the the data

function
�

is used over and over again in these summaries. In general, the larger the subset

in the minority the greater degree of over counting and redundant use of information.



11

Removing this redundancy in the higher order effects is one of the amazing

results of generalized spectral analysis. From Theorem 2.1.1, we know � de-

composes into orthogonal, irreducible subspaces. The result (see [2]), is that, if

� � � � ����� the space � � ��� � � � � decomposes as follows:

� � ��� � � � � � � � ��� � � � �$ � � � ��� � � � �
� � �
��� � � � ��� � � � �� (2.1)

where � � ��� � � � �� is an irreducible, orthogonal subspace corresponding to the pure

“  ��� order coalition effects.” We state that they are pure in the sense that all re-

dundant information has been removed. The  ��� order effect space is exactly the 
order summaries with the mean response, first order summaries,...,

	  � 
���� � order

summaries removed. The  ��� order effect space measures of how much coalitions

of size  are influential in the data after accounting for all coalitions small than  .
Hence, � � describes the behavior of individual voters, � � describes the behavior

of pairs of voters and so on. We can then apply “Mallow’s Method” which is sim-

ply choosing some interpretable vectors that lie in these subspaces that correspond

to specific coalitions and take their inner product with our data vector
�

to find

exactly which coalitions have the greatest effect.

To restate, spectral analysis involves the study of projections of
�

onto its irre-

ducible invariant subspaces of the corresponding ��� � -module � . These projec-

tions tell us a story about which coalition effects explain the behavior of the voters.

In the case of the U.S. Supreme Court, spectral analysis will consist of studying the

following decomposition of � :
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� ����� $ � � � ����� $ �$

� �����"�#� � � �����"�#�$ � � ������� �
�

� ���!� �(� � � ���!� �(�$ � � ����� �	�
� � � ���!� �(�

�

� ��'�� �	� � � ��'�� �	�$ � � ��'�� �!�
� � � � � � ��'�� �!�

�

� ��)!� �!� � � ��)!� �!�$ � � ��)�� ���
� � � ��)!� �!�

� � � ��)�� ���
� � � ��)�� ���

�

and determining which coalitions have the greatest effect on the data. In general,

we ignore the space corresponding to unanimous votes, in this case � ����� $ � . We do

so since the analysis has trivial decomposition as shown above. The analysis of the

Supreme Court is performed in great detail in [9].

2.3 An Example

In this section, we present an example that is also discussed in [9]. This analysis

was done using the programs written in Appendix B. This example demonstrates

the application of the theory stated above in analyzing approval voting data. Here

one can view the data as the result of a committee of five professors (A, B, C, D,

E) voting on the approval of a 150 different text books. We would like to apply

spectral analysis to describe the behavior of the five professors.

The first step in our analysis of our data function
�

is to decompose
�

into

homogeneous spaces, as noted in Section 2.2. Following the decomposition shown

above,
� �����"�#� is the data corresponding to the decisions that had one person in the

minority and
� ����� �(� is the decisions that had two people in the minority. Thus the

data function
�

is comprised of two parts,
� ������� � and

� ����� �(� . If the original data vector
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�
is:

� �

����������������������������������������
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�


�


��
�
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�


� �
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then f decomposes as follows:
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For example, there was 4 votes in which � was in the minority against the other

committee members, and there were 11 votes in which � and � were in the minor-

ity against � % � and � .

As demonstrated in Section 2.2, we define � to be the vector space of functions

defined on one and two person subsets of individuals. Then M decomposes as

� � � ������� � � � ����� �	�

which further decomposes as

� ������� � � � ������� �$ � � ������� �
�

� ����� �	� � � ����� �	�$ � � ����� �	�
� � � ����� �	�

� 


For both � ������� � and � ����� �	� , we again point out that � $ contains the “mean re-

sponse” which is simply the average number of times a subset would be in the

minority for a given number of votes. In general, the mean response contains no

important information in regards to voter behavior and is simply the average num-

ber of votes for that space. For �� 
 , however, � � contains the “coalition” or “  th
order” effects of subsets of  individuals, as described in [2] and [14].
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2.3.1 Decomposition of One-person Minorities

Here we will demonstrate the decomposition of
� ������� � , which is done by projecting

� ������� � onto � ������� �$ and � ������� �
� .

This gives the following decomposition:
� ������� � � ��������� �$ �

�&�����"�#�
� where

� ������� � �
����������
�

�
�

 �

�

�

�����������
�

��������� �$ �
����������
�

�

�

�

�

�

�����������
�

��������� �
� �

����������
�

� �



�

� �

� 


�����������
�

�
�
��
�




The mean response function
�&������� �$ is a vector of 8’s which is the average num-

ber of votes that occurred. The first order effect
�������"�#�
� is just the amount which each

individual differs from the mean. The interpretation of this decomposition is nat-

ural: the largest value is for professor � which tells us that � was in the minority

the most (a rebel against the other committee members) where � had the smallest

value which indicates professor A’s desire to not vote alone in the voting process.

This is a typical interpretation of the decomposition of the data. In a split such

as
	 � � 
 % 
�� a careful observer could see this behavior without the decomposition

but, it becomes less obvious in higher coalition effects as demonstrated below.

2.3.2 Decomposition of Two-person Minorities

With two people in the minority there is now the mean response, the individual

effects, and pair effects, thus the two-person minority data is decomposed into

three parts. This is done by computing the projection of
� ����� �	� onto � ����� �(�$ , � ����� �	�

� ,

and � ����� �	�
� . This results in the decomposition

� ����� �(� � �&����� �(�$ �
������� �	�
� �

������� �(�
�
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where
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The interpretation of these projections takes a little more work. Again the mean

vector,
� ����� �(� , is simply the number of votes (110) with two people in the minority

divided by the 	 )� 
 � 
�� possible coalitions of size two. Therefore, because there

are 110 votes with two people in the minority, the mean value for each pair is 11

(110 divided by 10). To interpret the pure first and second order effects,
� ����� �	�
� and

������� �	�
� , we introduce Mallow’s method.

2.3.3 Mallow’s Method

The vector
������� �	�
� is the resulting pure first order effects but the resulting vector is

not as easy to interpret as was
��������� �
� . We also point out that

�&����� �(�
� are pure effects

in the sense that it is simply the first order summaries without the mean response.

In order to get a measure of how influential each single professor is we apply Mal-

low’s method as described in [2] and [14]. Mallow’s method is simply computing
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the inner products of naturally interpretable vectors with our projection, in this

case,
������� �	�
� . The idea behind Mallow’s method is that our projection

������� �	�
� is just a

vector lying in � ����� �	�
� , hence it has a length and a direction. We must find to which

coalitions
�&����� �(�
� lies closest. To do this we create vectors, described below, for each

coalition and take their inner product with
������� �(�
� where the value represents how

close the data lies in each coalition’s direction. The interpretation of the values

is largely geometric where large positive values are interpreted as the data lying

close in that particular coalition’s direction, large negative values are interpreted

as pointing in the opposite direction of that coalition.

These coalition vectors are easy to create. For example if we wanted to find

Professor A’s effect we would define a vector
���

which would have a 1 if it contains

A and 0 if not. Below are the interpretable vectors for � % � and � :
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�
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The inner product of
������� �	�
� with each

���
describes how much

�&����� �	�
� “lies in the

direction of ”
���

, for
� � � � % � % � % � % �  . Table 2.1 shows the inner products of

������� �	�
� with each of the “naturally interpretable” functions.
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Table 2.1: Pure first order effects in 3-2 splits using Mallow’s method

��� ��� � � � � ���

� ����� �	� -12 -11 16 6 1

Table 2.1 completely describes the pure first order effect in the � ����� �(� space. By

inspection, we can see that the prominent direction in which our data resides is in

the direction of professor � . It would also appear that the data lies in the opposite

direction of professor � . This gives rise to the explanation that in the case where

there is a 3-2 split, professor � is very much in the minority and professor � is not.

We can continue this analysis for the second order data but in this case it is

clear how to interpret the results. Now our Mallow’s vectors are just a 1 in the

corresponding pair and 0 everywhere else, thus the actual vector
� ����� �	�
� suffices to

explain the second order effects. This is true in general, i.e., the vector
� � ��� � � � �� is

already interpretable using Mallow’s Method. We list the result in Table 2.2 for

clarity.

Table 2.2: Pure second order effects in 3-2 splits

��� � � ��� � � ��� � � ��� � � ��� � � ��� � � ��� � � � � � � � � � � � � � �

� ����� �	� � 
 � � � 
 � � � 
 � � � 
 � � � 
 � � � 
 � � 
 
 � � 
 � � 
 � 
 
 �

Now it is clear that after removing the mean and the pure first order effects there

is still a story to tell about the pure second order effects. It would appear the the

pair
� � % �  is prone to working together and are often in the minority together

where as the pair
� � % �  avoids being in the minority together.
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2.4 The Statistics of Spectral Analysis

2.4.1 Bootstrapping

Statistical tools for spectral analysis have been developed in several papers, al-

though there still appears to be open questions as to the best way of analyzing this

data. A discussion of the Binomial and Multinomial methods can be found in [1].

Advanced techniques using Gröbner Basis is described in [4].

Given the number of bills and the number of voters, how do we know when

the projection of
�&� ��� � � � �� is significant, i.e., how do we know this did not occur by

chance? One common way of determining significance is to compute the squared

norm,
��� ��� ��� � � � �� ��� � and divide through by the dimension of the subspace � � ��� � � � �� .

The idea would be that if this data was generated randomly that, in general, the

amount of the vector that would lie in the subspace � � ��� � � � �� would be propor-

tional to the dimension of that space. Thus deviations from this proportions might

indicate structured or significant data. Diaconis [2], however, notes that

It is customary in comparing sums of squares to divide by the dimen-

sion of the subspace. This makes sense if it is thought that the projec-

tion is reasonably spread out between a natural system of coordinate

vectors so that the sum of squares is a measure of noise. If, as in the

present example, the projections are likely to be quite structured, lying

close to a few interpretable vectors, dividing by dimension is likely to

be deceptive.

As our example above shows, structure is very likely to be found in human

voting behavior and as such we will determine significance of the squared norms

of our projections without dividing by their corresponding dimension. To perform

this analysis we apply the computational method of bootstrapping.
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The idea of bootstrapping is a relatively simple one. Given the number of bills

and the number of voters, we can compute a distribution on the projections by

sampling at random from all possible voting results on a bill. So for our example

above we indicate to our bootstrapping program, found in Appendix B, that there

are 5 voters, 40 bills split 4-1 and 110 bills split 3-2. Our approach will be to find

which projections have a significant squared norm with respect to the distribution

computed by the program. This will tell us which subspaces vary significantly

from noise, or a distribution computed by randomly selecting data given the con-

straints above. Once inside these subspaces, we then can look at the actual coalition

behavior and give a description of how the data behaves in the same manner that

we did in the previous section using Mallow’s method.

The table 2.3 below shows the resulting mean and standard deviations of the

squared norms from 10000 samples with respect to the example in section 2.3.

Table 2.3: Significance via bootstrapping

observed bootstrapped Significance

split subspace norm � mean std. dev.

4-1 � � 76.0 32.2 22.3 projection not sign’f’t

3-2 � � 146.0 44.0 31.0 Significant

3-2 � � 186.0 55.0 34.7 Significant

If an observed value is 3 standard deviations away from the mean, we will

say that it is significant at the .05 level, meaning the observed value has exceeded

the expected value by more than 3 standard deviations (above or below). This

indicates that the value falls farther away from the mean than 95% of the possible

projections. To see this, the histogram in Figure 2.1 is the distribution computed
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from 10000 random samples of
��� �&����� �	�

�
��� � .
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Figure 2.1: The distribution computed by bootstrapping technique on the squared norm of ������� �	��

It should be pointed out here that these statistical techniques are rather coarse.

In general, this method of bootstrapping will conclude that most projections are

significant. The reason for this is that data with “mild” coalition behavior, which

most data has, will seemingly always differ from random samples enough to pass

this significance test. More refined techniques are discussed in [4] and more will

be said in Section 4.

2.4.2 A Short Note on the Connection to ANOVA

The additive decomposition of generalized spectral analysis can be viewed as a

generalization of the Analysis of Variance (ANOVA) as discussed in Chapter 8 of

[2]. In two-way ANOVA with 1 repetition per cell, data is collected in an 
 ���
matrix � � � � � �  , where each row corresponds to a different level of one factor and

each column is a different level of the second factor. Similar to spectral analysis,

in order to analyze which factors are important, an additive decomposition of the

data matrix � is computed where the “row effect”, the “column effect” and the
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grand mean are all separated. In this case, ANOVA is simply studying this additive

decomposition of the data to determine the importance of both factors.

2.5 Discussion of the method

As can be seen from the example demonstrated above, the computation of spectral

analysis is easy to interpret and finding large coalition effects, both positive and

negative, is also easy. Thus, if we were handed some data vector
�

and were not

provided any background on the data, we could compute this analysis and be able

to tell stories about the data as we did with the five professors above. This ability

makes spectral analysis a very powerful exploratory tool.

If we try to apply this to sets of data with a large number of voters we run

into some difficulty. The amount of computational time grows quickly with the

number of voters. For the Supreme Court our space is of size � � � � � � � which is

still reasonable for our computer to tackle, but for the U.S. senate with dimension

of � � � $	$ our methods fail. Thus, in order to apply spectral analysis to these larger

data sets, we develop a partitioning technique that drastically reduces the size of

our set while maintaining the characteristics of the data. This technique is the focus

of the next chapter.



Chapter 3

Approach to Large Sets: the Partitioning Technique

3.1 Description of the Partitioning Technique

Suppose we were handed a “large” set of data, i.e., a data set with a lot of voters

to analyze. We attempt to run the data set through our standard techniques but

the computer grinds to a halt and error messages begin flashing. We are at first

discouraged that our computer can no longer compute the spectral analysis on

this data. We decide that if we cannot analyze the individual voter’s coalition

behavior, we might instead collect up the individuals into separate groups and

now ask if we can understand the voting behavior between groups. The idea is to

take the original � members and partition them into � groups where ��� � . For

example, in the case of the U.S. Senate, dividing groups up by party, gender, and

region might be a useful way to study the Senate.

Now given these groups, we would like to apply spectral analysis to measure

the coalition effects between the groups. To do this, we need to translate the origi-

nal data collected from each bill into data in the smaller space where each group is

considered a single voting member. We solve this problem by asking the following

question: Given the result of a single bill that corresponds to a value of 0 for the

subset of senators that were in the minority and a 1 otherwise, how can we dis-

tribute this value in the resulting partitioned space? In other words, how can we

distribute this value as weights for the subsets in our new space?

We answer this question by asking another. For a given bill, we look at our

first group, and ask: If I picked a member of this group at random, what is the
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probability, � � , that I choose someone who was in the majority? We distribute that

weight to all subsets in our new space that places group 1 in the majority set. We

then distribute the weight 
 � � � to all subsets that place group 1 in the minority.

We then look at the second group. We ask the same question and get a probability,

� � . We now distribute the weight � � to all subsets in our new space that places the

second group in the majority and likewise for 
 � � � . Continue this for all k groups.

The result is a collection of weights in front of each element of the power set of the

new space.

Example 3.1.1 Suppose we had 5 different groups voting on a single bill. Each group has

probability � � that a member of the group voted in the majority. The weight in front of the

dissenting subset
� 
 % � % �  would then be

	 
 � � � � 	 
 � � � ��� � 	 
 � � � ��� ) .

The weight in front of the dissenting subset that contains all � groups is
	 
 �

� � � 	 
 � � � � 
 
 
 	 
 � � � � . The total weight in front of the dissenting subset that con-

tains all � groups except group i and j has weight,
	 
 � � � � 	 
 � � � � 
 
 
 	 � � � 	 
 �

� ��� � � 
 
 
 	 � � � 	 
 � � � � � � 
 
 
 	 
 � � � � . We now state a simple proposition.

Proposition 3.1.1 For a single bill, the sum over all possible weights is equal to 1.

PROOF: Since each weight corresponds to the probability that a certain subset

of senators are in the majority and the complement of that subset is in the minority,

summing over all possible weights corresponds to summing over all the possible

probabilities, hence this sum must equal 1.
�

Now we have a way of translating each bill to a bill in our partitioned space

with equal weight. By iterating this process and tallying the weights, we now can

transform a general data set into data in our partitioned space.

We can now translate each bill into weights of the power set of our � groups,

but as you will recall, in spectral analysis we are only concerned with the elements
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of the power set of up to size ��������� . Hence we have distribute weights in front

of elements we currently do not analyze. The natural correction is to identify the

elements of the power set that are larger than ����� ��� with its complement and add

the corresponding weight.

Example 3.1.2 After computing the partitioning technique for three groups, A, B, and C,

with corresponding probabilities, �
� � 
 � % � � � 
  and �

� � 
 
 , we obtain the following

distribution of weights on the power set:

�
	���� �� � 
 � � � % �
	�� � �� � 
 � 
�� % �
	�� � �� � 
 � � � % �
	�� � �� � 
 � � � %
�
	�� � % � �� � 
 ��� � % �
	�� � % � �� � 
 
�� � % �
	�� � % � �� � 
 � � � % �
	�� � % � % � �� � 
 � � � 


We now identify the corresponding subsets to obtain:

�
	���� �� � 
 
�� % �
	�� � �� � 
 � % �
	�� � �� � 
 
 � % �
	�� � �� � 
 � � 

Notice that the corresponding data vector

� ���!�"�#� is:

� ���!�"�#� �
����
�

 �

 
 �
 � �

�����
�



�
�

By proceeding in general with this identification, we obtain the data vector

which is now ready for spectral decomposition.

3.2 Application of Partitioning: the U.S. Senate

How do we know this technique is useful or valid? What does it mean to be valid?

Well if the technique is valid then it should not result in contradictory information,

meaning, if an obvious and important coalition among groups is not detected then

we should have cause to worry.



26

A test of whether a technique is “valid” is if, when applied, it gives “valid”

results. Thus we apply this technique to data that has been well studied, which

will make it easier to decide if our analysis is correct. The data comes from the first

session of the year 1999 of the 
��� ��� U.S. Senate. Analysis of the U.S. Senate data

can be found in [13] using the spatial model approach.

As we noted above for � � 
���� senators, our ambient space has dimension of

order � � � $($ ! As it turns out this level of computation is fantastically difficult for

computers. In fact, Matlab can run our programs up to about � � ��� , but beyond

that, Matlab fails.

Hence, the Senate is a good candidate for the partitioning method. The first

question that arises is how do we partition the Senate? The obvious partition

would be along some of the known characteristics of the Senate. For our case we

choose three characteristics:

1. Party Affiliation: Republican or Democrat

2. Gender: Male or Female

3. Region: North or South.

This results into � � distinct subsets of voters. For example: Southern, Repub-

lican, Females is one group and Northern, Republican, Males are another. This

choice of partitioning was picked as it can serve as a means to compare to what

is popularly known about the behavior of the senate, i.e., that party affiliation is

the most important factor in deciding who you align yourself with, much more

important than region and gender is. A failure to detect this using this partition-

ing technique would challenge its validity. What is also desired is the detection of

other lesser known coalitions among these characteristics.

The raw data is shown graphically in Figure 3.2 where blue is a vote in the

minority and white is a vote in the majority. There are eighty-one bills and ninety-
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nine senators in this data set. (One senator abstained a great deal in this data and

thus was left out. How to handle abstentions is briefly discussed in the chapter 4)
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Figure 3.1: Raw Data “signal” for ��������� U.S. Senate

After applying our partitioning technique to the above data, we still have 81

bills listed but now we have 8 columns corresponding to the eight subsets as shown

in Figure 3.2.
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Figure 3.2: Results of apply the partitioning technique to the �	��� ��� U.S. Senate Data

One important observation to make is that the values of the matrix no longer

are one or zero but range between the values of zero and one corresponding to the



28

different shades of blue.

After rewriting the original data into its partitioned form, we calculate the pro-

jections of this data. To verify whether party is the most important factor of the

three, we need to check the projections of our data into the � ����� ��� subspace, where

the votes split four-four. Continuing the notation established in Chapter 2, the ir-

reducible subspace corresponding to the fourth order effects, � ����� ���
� , contains all

the important information about all pure fourth order coalitions. Below are the

graphic projections of � ����� ���
� using Mallow’s method so that each bar corresponds

to a particular coalition of 4.
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Figure 3.3: Plot of � �
�
�

�
�� derived from data of the ����� ��� U.S. Senate
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The two large “spikes” correspond exactly when the Democrats and the Re-

publicans all vote together. The projections of these spikes dominate the other

projections, dictating that data in this irreducible subspace has a great deal of the

data pointing in the direction of the two party coalitions. This result is very en-

couraging and provides strong evidence to the validity of this new technique. In

this data set we have been able to demonstrate that this reduction in dimension

of the original data preserves the characteristic of party voting as the dominant

coalition behavior. In the next section we discuss how one can go about describing

the dynamics of the technique which will provide another verification of why we

seem to get valid results.

3.3 Understanding the Technique

The result above is highly encouraging. Alas if we could make rigorous what it

means to preserve the characteristics of the original data, we would have a fine

result that would explain why the method above produced a good analysis of the

data. Our first attempt at doing so is using a perturbation analysis on random sets

of data to get an understanding of the dynamics of the partitioning technique.

For example, given a set of data that we partition and then compute the pro-

jections, it is our hope that if we perturb the original data a little, the resulting

projections are stable. How do we go about “perturbing” our data?

The idea is relatively simple. Our method is a way of performing spectral anal-

ysis between groups of voters. If for all the groups, each voter in a given group

votes exactly the same, then the partitioning effect is essentially comparing the

uniform voting records of each subset against each other. The result of this com-

plete agreement for each group results in a smaller data matrix, but of still ones

and zeros (there are no fractional values since there is no disagreement).

Suppose we had 80 voters broken into 8 groups of 10 who participate in 100
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roll-call votes. If every member in each group agreed completely on the bills, then

the partitioning technique reduces the original
� � � 
���� data matrix to an

� � 
����
matrix of ones and zeros, where each column is exactly the voting record of each

group. Thus the spectral analysis of the 80 voters reduces to the spectral analysis

of 8 voting records.

Given the spectral decomposition of the 8 voting records, what would happen

if we perturbed the voting data of each group? For example, what would happen

to the spectral analysis if each group now disagreed a little among each other? Can

we discover the “behavior” of the spectral decomposition given the amount of dis-

agreement among each group? We will use Hamming distance, denoted � 	 � % � � ,
as our metric in performing this analysis. Recall that the Hamming distance be-

tween two vectors is the number of coordinates in which the vectors differ. Below

we extend this definition to a set of vectors.

Definition 3.3.1 The diameter of a set of vectors � with respect to Hamming distance,

denoted
��� 	 � � , is defined by

��� 	 � � � 
 � � � � 	 � � % � � ����� � % � � � �  

For example, if a set of vectors � has

��� 	 � � � 
 , then there are at most two

different vectors in our set � . Moreover, the two different vectors differ by one

coordinate.

With this definition we will now discuss what happens when our groups begin

to disagree. The measure of how much they disagree among each other will be

measured by the diameter,
���

, of the set of data vectors of each group. Again if

the diameter of a given group is 1, then all the members of that group agreed on

every bill but one, in which case the voters disagreed (not necessarily 50/50) on

this bill. Thus there is only two distinct different vectors in this subset.

The question then arises: As the diameter of each group grows, can we predict
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what the effect on the spectral analysis of the higher order effects might be? To

answer this question we turn to numerical simulations.

We continue the example above with the 8 groups of 10 voters deciding on 100

roll-calls. One measure of understanding the dynamics is to try and measure the

squared norms of the projections of our data into each irreducible subspace as the

diameter changes.

To obtain these measurements we ran 1000 random simulations of the 80 voters

in the case where each group had a diameter of
� � % 
 % � % � % 
�� % 
 � % � � % � � % � �  , and

recorded the squared norm of the projections corresponding to every irreducible

subspace. We then computed the mean for each squared norm of each subspace

and plotted them with respect to diameter. We provide two sample plots below of

the projection into � ����� ���
� and � ���(��� �

� .
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Figure 3.5: Plot of the average squared norm of � ��� �
�
�� with respect to the diameter

As we can see from Figures 3.4 and 3.5, the size of the projections drop of as

the the groups disagree more and more. These graphs are representative of all the

non-mean subspaces projections of the data.

What can we learn from this? It would appear that by choosing groups that

agree a good deal, we can minimize this drop off in squared norms which corre-

spond to a loss of detectable coalition behavior. The fact that along party lines there

is such a high degree of agreement might explain why party was so easily detected

in the U.S. Senate example.

The other interesting result is the behavior of the mean response as the diameter

among each group grew as shown in Figure 3.6.
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The changing parabolic behavior from � ���!�"�#�$ to � ����� ���$ is most intriguing. It

would appear that the the data vector that resides in the � ����� ��� space appears to

collect in the mean response space as the the diameter grows. One explanation of

this might be the fact that as the groups disagree more and more among each other

no discernable coalitions between groups can be detected and thus all data residing

in this space will be noise, or unrecognizable from the mean response.

These numerical results begin to give us an understanding of how the parti-

tioning technique affects the data. The decaying squared norms in the non-mean

response spaces suggest that a good choice of groups, i.e., members of a group

agree with each other well, will produce good detectable results. The behavior of

the squared norms of the mean response spaces are interesting and a closer look

at the projection formulas might reveal how the partitioning technique is affecting

these spaces.

3.4 A Short Comment on The Statistics

The statistical analysis of the partitioning method is just an extension of the statis-

tics described in section 2.4. We introduce the actual partitioning technique as step

in between generating random samples and computing their projections. After

generating the appropriate random samples, we run these samples through the

partitioning technique and compute the lower dimension projections.

While this seems like the natural extension of the bootstrapping method, the

test becomes even more sensitive to any structure found in the data. As a result,

all the projections found above are significant. One explanation for this is that the

number of possible vectors to sample out of grows immensely with the size of the

original space, hence the probability that a group of vectors are chosen that indicate

any coalition behavior becomes quite small. A more refined technique is needed

here and is discussed in the conclusion.



Chapter 4

Conclusion and Future Work

We have been able to fully apply the abstract theory of generalized spectral

analysis to approval voting data. Given a set of data we can fully analyze the

coalition behavior using our programs. If the set of data has many legislators,

we have designed a new technique to reduce the dimension of the data space by

analyzing the coalition behavior between subsets of legislators. The numerical

results in Chapter 4 begin to reveal an understanding of the dynamics of this new

technique. We have also designed a simple test for the significance of our spectral

decomposition of the data. The majority of this work resulted in fast algorithms

to implement the spectral analysis. Hence, the main result of this thesis is a rather

complete package of programs.

As a result of this work, my co-author Brian Dawson, a political scientist at

the University of Cincinnati, has been able to analyze the Supreme Court (the past

50 years) using generalized spectral analysis. These new methods have been pre-

sented at several conferences and appear to be generating interest.

There is a great deal of work that still needs to be done on this project. The first

would be to continue to work on the statistics. One method of refining our signifi-

cance technique would be to run this coarse test first and find the most significant

projection. We would then hold this value fixed and sample again with the condi-

tion that this projection is preserved. The idea is to recover significant projections

recursively. A technique like this is described in [4], but it would appear that there

is yet to be a computationally efficient way to perform such analysis. Any refine-

ment of our statistics would be useful, especially when testing data that has been
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partitioned. Our statistical methods for this technique need to be improved.

Beyond statistics is the idea of generalizing these methods to non-binary data,

such as partially ranked or ranked data. The representation theory has been devel-

oped to support such analysis but the implementation is more difficult. Progress

in this area would make these techniques more versatile. One immediate result of

such a generalization is the ability to incorporate abstentions in voting by placing

an abstention “vote” between a majority and minority vote.

It should also be pointed out that although the discussion and implementation

of these techniques are framed in the context of approval voting, the methods are

just as valid in analyzing most longitudinal binary data. That is, binary data aris-

ing from random variables that is recorded in discrete time steps. Analyzing this

data using spectral analysis is similar to a generalization of higher order correla-

tion among the random variables. This encompasses a great deal of data taken by

scientists and thus could be applied to their data. For example, after presenting a

poster on this material at conference of mostly biologists, I was offered binary data

to analyze that was coming out of medical trials to test the effect certain medication

had on finger coordination.

Lastly, it would be nice to develop more of the theory on our partitioning tech-

nique. A great deal of data falls into the category of “large” and it would be nice

to establish this technique as a useful and effective tool in measuring the coalition

effects between subsets of legislators. The numerical results presented in Chapter

4 are just small steps in understanding the behavior of this technique in the context

of spectral analysis.



Appendix A

Manual for the Program

In this appendix, I provide instruction on how to use the main components of

the program. A copy of Matlab is necessary to run the programs found in Ap-

pendix B. These programs are multifaceted and have several options, so I will only

discuss a subset of them.

Let us begin with handling the data from an outside file. Your data should be an

 � � matrix where the columns correspond to the voters and the rows correspond

to a particular roll call vote. Their should be no space in between the entries of the

matrix and no lines skipped between rows. If your data is to be partitioned then

the top row should be reserved to indicate the partition. To label your data into �
groups, you need to place in the first row of a particular column a number,  , from

0 to � � 
 that indicates membership into group i. The program will be able to

read the partitions this way. The rest of the matrix should be nothing but 1’s and

0’s. In addition, 0 is the default indication of a minority vote and thus there should

always at least as many 1’s as 0’s in each row.

Suppose that your data file’s name is Foo.txt. To read in this file, type:

DATA = dlmread(‘Foo.txt’, ‘ ’);

Your data will now be the 
 � � matrix labeled DATA. To check this you can type:

DATA

in the command line and your matrix should appear. To prep your data for spectral

analysis we need to rewrite this data into a collection of vectors corresponding to



38

� � ��� � �"�#� , � � ��� ��� �	� , ...,
� � ��� � � � � . To do this we use the FinalDataRetrieval.m program. If

your data needs to be partitioned, type:

[D] = FinalDataRetrieval(DATA, 1)

otherwise type:

[D] = FinalDataRetrieval(DATA)

This produces a 
 � � cell, D, where the  ��� cell entry is the data vector
� � ��� � � � � .

With the cell D, you are almost ready to compute the spectral analysis of your data.

The projection method onto the irreducible subspaces is done very efficiently using

an eigenspace approach. This eigenspace method was developed in [11] and is also

discussed in [10]. To perform this efficient projection method we need to feed our

program the adjacency matrices of certain Johnson graphs of appropriate size. To

generate these matrices type:

[M] = GenerateJohnson(N);

where  is either the number of voters in your original space if no partitioning is

needed or is the number of different groups in the partition.

This computes the necessary matrices for our eigenspace projection method,

which are stored in the 
 ��� cell � . We will use � several times so be careful not

to reassign � . From here you are ready to compute the spectral analysis of your

data. Here you have a couple options. To produce the projections in the fashion

seen in Chapter 2, you will use the FinalDecomposition.M program. To do so type:

[B,Q,q,R] = FinalDecomposition(D, M);

This command produces four different cells, B, Q, q, and R. Each cell will be � �
	 � � 
�� . The  %�� entry of B is the value of

��� �&� ��� � � � �� ��� � for all  %�� � � and � �  . The
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� � 
 column corresponds to the squared norm of the mean for each vector
� � ��� � � � � .

Thus, B is a lower diagonal matrix except for its last column and indicates all the

important squared norm values.

The cell Q has the same indexing as B but in each cell entry you have the projec-

tion data after applying “Mallow’s method” when appropriate. It is here that one

can begin to inspect which coalitions appear to be important. You can compute

graphics similar to Figure 3.3 by typing:

bar(Q{i,j})

The cell q has the same indexing as Q but each cell entry has the raw projection

data without applying “Mallow’s method.” This cell is less helpful for discerning

important coalitions but is useful to have nonetheless.

The last cell, R, is very similar to Q but with a modification. All the projections

have been sorted from least to greatest and next to their value has been appended

the explicit coalition vector. A 1 in the coalition vector means “not in the coalition”

and a 2 means “in the coalition.” It is here that one would look first to see which

coalitions are important. This organization of the data makes it very easy to get an

understanding of the important coalitions of the data.

After inspecting the cells you might want to compute a significance test on

your data vector. To do this you again have a couple of options. If your data is not

partitioned, then you will be using the FStatsNP.M program. Your command will

have the form

[F, T] = FStatsNP(X,Y,M,V);

where X corresponds to the number of legislators (should be N). Y is the number

of trials you would like to run. As a general rule of thumb, 1000 should be the

minimum number of trials. M is the previously computed cell that contains all

the adjacency matrices. V is a vector who’s  ��� entry indicate the number of bills
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decided by a � � �  % �� split vote. You can hand count this or you can run Vbuilder.M

by typing:

[V] = Vbuilder(DATA);

After this you are ready to run FStatsNP. The screen will tick off which trial it is

running and how long it takes so you will know about when the computation will

be done. When finished, the variable F is a � � 	 � � 
�� cell that is indexed exactly

the same as B. In each entry of F is two numbers, the first is the mean value of

the squared norm of the particular projection and the second value is the standard

deviation. T is also a � � 	 � � 
�� cell indexed in the same fashion but each cell

contains all the squared norms from each trial. By typing:

hist(T{i,j},100);

you can produce the distribution graphics in the same fashion as graphic 2.1. It is

using the values from T that let you now test your data for significance as described

in section 2.4 and organize your results into tables such as Table 2.3.

If you do have partitioned data then you will use FinalStatsA.m by typing:

[F, T] = FinalStatsA(X,P,Y,M,V);

where all the variables are the same as above for FStatsNP.m except you need to

include the actual partition vector P. To do this just use the first line of your original

data by typing:

P =DATA(1,:);

The rest is exactly the same as above.

After this you are essentially done. All the projections are computed nicely

and the statistics have been generated. The other version of the programs such as

FinalDecompositionA.M do similar computations but normalize the projections,

when it is desirable at times to reporting on scales between -1 and 1. Good luck!
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Programs

Here we attach the source code from our Matlab programs. Some were written

by Michael Orrison, some jointly written by both myself and Michael Orrison, and

most were written by just me. The comments in the code should indicate the au-

thors. I’ve included the main programs first which are then followed by many of

the smaller supporting programs.

B.1 FinalDataRetrieval.m

function [D] = FinalDataRetrieval(Raw, sig)

%Exactly the same as DataREtrieval except data can be a matlab matrix.
%FinalDataRetrieval(Raw, sig)
%
%Raw should be off the form foo.txt. This is how DataRetrieval works. If your
%incoming data file foo.txt is already partition or none is need than just type
%DataRetrieval(’foo.txt’) and you will recieve back a cell, D, of iwasaki data. If you
%need partitioning done then you will type DataRetrieval(’foo.txt’,1). The 1 signals
%a need to partition. If partitioning is done then you will receive the combined
%iwasakied data. DataRetrieval is a %collection of old m files:
%iwasaki.m, readpart.m, partition.m, and ubersaki.m.
%Still uses choose.m, index_to_set.m and set_to_index.m
%
% Author: David Uminsky, Fall 2002

DATA = Raw;

if nargin < 2,

D = sorting(DATA);
end

if nargin == 2,

[DD P] = readpart(DATA);

[DDD PP] = partition(DD,P);

[DD] = UltraSorting(DDD);
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D = DD;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
function D = sorting(DATA)

% sorting(DATA)
%
% takes takes in a matrix DATA whose rows are consist of
% seqences of 0’s and 1’s, where each row has no more 0’s
% than 1’s. The idea is to view the rows of DATA as the
% partitions of a set, where 1 means "winner" and 0 means
% "loser". The output is the tabloid version of the incoming
% data in DATA. This can then be run through BUDR or EMMYR
% to complete the spectral analysis. Note: we also assume
% that there is at least one loser in each partition.

V = size(DATA,1); % the number of votes
N = size(DATA,2); % the number of things to partition
K = floor(N/2); % the most number of "losers"
D = cell(1,K); % where we store the output

for k = 1:K,
data = sparse(choose(k,N),1); % what we’ll eventually store
for i = 1:V
d = DATA(i,:);
if (sum(d)==N-k)
d = 2.-d; % to tabloid mode
n = double(set_to_index(d)); % the tabloid’s number
data(n) = data(n)+1; % creates the data vector

end
end
D{k} = data;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [D, P] = readpart(kata)

%readpart will take in a vector of assignments to partition and return a cell of
%partitions need for the function partition. It will also trim off the index 1st row.

L = size(kata,2);
K = kata(1,:);
N = max(K);
P = cell(N+1,1);

for i = 0:N
g =[];
for j = 1:L

if K(j) == i
g= [g j];

end
end
P{i+1,1} = g;

end
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D = kata(2:size(kata,1),:);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [D, PP] = partition(DATA, P)

%partion(D,P)
%
%partion should taken in a set of raw data and "collapse" the data
%by combining the "voters" into disjoint classes. For now let P be a k x 1 cell,
%where each cell is a vector who’s entries are the members of ki’s group. Notice
%that |ki|= # of dudes in that group.

N = size(DATA,2); % number of voters
k = size(P,1); % how many different classes.
D = zeros(size(DATA,1),k);
PP = P’;
for i=1:k

Sum = zeros(size(DATA,1),1);
u = size(P{i,1},2);
for j=1:u

Sum(:,1) = Sum(:,1) + DATA(:,P{i,1}(j));
end
D(:,i) = Sum/u;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [D] = UltraSorting(DATA)

%Ultra big sorting. This combines the good and bad tabloids into one data vector.
%Big Sorting. It takes in a set of data of equivalence class votes so the
%values of DATA can range between 0-1. It will look at a row and distribute the
%weight for each tabloid and keep seperate the bad and good tabloids.

N = size(DATA,2); % number of objects
M = size(DATA,1); % number of different situations
DD = zeros(1,2ˆN);
K = floor(N/2); % the most number of "losers"
FD = fliplr(DATA); %to keep index correct on binary tree
GT = cell(1,K); % where we store the output for "good tabloids"
BT = cell(1,K); %where we store the "bad tabloids"
D = cell(1,K); %where we combine both data sets into one

for i=1:M
L=[1- FD(i,1), FD(i,1)];

for j=2:N;
L1 = [(1-FD(i,j))*L, FD(i,j)*L]; %where entry is prob vote in majority (1)
L= L1;

end

DD = DD + L; %DD is a vector of sums of all weights for
end %each tabloid shape good and bad

for k=1:K
data = sparse(choose(k,N),1); % what we’ll eventually store
bdata= sparse(choose(k,N),1); %eventually store Bad Tabloids.
for j=1:choose(k,N) %grab a tabloid shape in order and

B = 0; %find its binary rep and that number
bB = 0; %bB is for bad tabloids.
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q = 2.-index_to_set(j,[N-k,k]); %gives us what B index from DD to put in
bq= -1.+index_to_set(j,[N-k,k]); %that particular spot in data

for uu=1:N
B1 = 2ˆ(N - uu)*q(uu);
B = B1 + B;
B2 = 2ˆ(N - uu)*bq(uu);
bB = B2 + bB;

end
data(j) = DD(B+1); %-1 for shift over.
bdata(j) = DD(bB+1);

end
GT{k} = data;
BT{k} = bdata;

end

if floor(N/2) == (N/2) %Take care of issues with even and odd numbers
for a=1:(N/2 -1); %If even, we don’t want to add back last guy

D{a} = GT{a}+BT{a}; %because its the same in bt as in gt
end

D{N/2} = GT{N/2};
else

for a=1:floor(N/2);
D{a} = GT{a}+BT{a};

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function newset = index_to_set2(index, shapeVector)
% index_to_set2(number,shape)
% Maps to tabloid given integer index and a vector containing the shape of
% the tabloid. This vector is defined in accordance with the following:
% 1 chosen from 4 chosen from 5 chosen from 9 yields rows of width
% 9-5, 5-4, 4-1, 1 respectively. So the vector would be passed as
% [4 1 3 1]

index=index-1; %program originally written for indecies starting at 0.
%now they will start at 1

setSize = 0;
for counter=shapeVector

setSize = setSize + counter; %set setSize to the size of the array
end

newset = zeros(1, setSize);

nextSize=setSize;

for i = 1:1:length(shapeVector)
internalSum = 0; %the working sum just for this line
selectedSize = shapeVector(i); %these two vars are used for
workingSize = nextSize; %actual calculations

nextSize = nextSize - shapeVector(i); %saved for next iteration
base = multiplier(shapeVector, i+1, nextSize);
internalIndex = floor(index/base); %to serve as this steps index
index = index - (internalIndex * base); %saved for next iteration

for j = 1:1:setSize %the workhorse loop. loops through elements
%and sets appropriate ones to current line
%in the tabloid
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if newset(j) == 0 %only look at unplaced elements
if (selectedSize == 0) %only look while we have space

workingSize = workingSize - 1;
elseif (internalSum + choose(selectedSize, workingSize - 1) > internalIndex)

workingSize = workingSize - 1;
else
internalSum = internalSum + choose(selectedSize, workingSize - 1);

newset(j) = i;
workingSize = workingSize - 1;
selectedSize = selectedSize - 1;

end
end

end
end

%---------------------------------------------------------

function answer = multiplier(countedSet, threshhold, size)
%multiplier. Computes the base for the next level in the tabloid above
%the one passed to it as the threshhold. Size is the number of elements
%on level of threshhold or below

answer = factorial(size);
for q = threshhold:1:length(countedSet)

answer = answer / factorial(countedSet(q));
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function index = set_to_index(setArray)
% set_to_index(tabloid)
% Maps from multiple-deep tabloid or set to an integer index of possible
% sets of that shape.

index = 1;

for p = 1:1:length(setArray)
setArray(p) = setArray(p) + 1;

%this is unfortunately necessary since MATLAB won’t index
end %vector elements to 0. 0 will become 1 with this.

highestLevel = max(setArray);
setSize = length(setArray);

for i = 1:1:highestLevel
countset(i) = count(setArray, i);
countsetfact(i) = factorial(countset(i));

end

for levelCounter = 1:1:highestLevel-1
workingSize = setSize; %size still in use
thisLevel = countset(levelCounter); %size selected in this level
multiplier =
factorial(workingSize - thisLevel)/factProduct(countset, levelCounter + 1, countsetfact);
for k = setArray

if k > levelCounter
workingSize = workingSize - 1;

elseif k == levelCounter
index = index + (choose(thisLevel, workingSize - 1) * multiplier);
workingSize = workingSize - 1;
thisLevel = thisLevel - 1;
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end
end
setSize = setSize - countset(levelCounter);

end

function product = factProduct(countedSet, threshhold, countsetfact)
%factProduct
%multiplies the factorials of all elements in countedSet that are > threshhold

product = 1;
for q = threshhold:1:length(countedSet)

product = product * countsetfact(q); %factorial(countedSet(q));
end

B.2 FinalDecomposition.m

function [B,Q,q,R] = FinalDecomposition(D, JJ)

% FinalDecomposition(D)
%
% takes in data D = iwasaki(DATA) and returns the corresponding
% isotypic projections. It then returns "stuff". In particular
% q is the raw projections, Q is the projections filtered using the
% up operator. R is the sorted values with the particular tabloid appended for each
% value.
%JJ are a cell of precomputed matrices for projrplus!!
%
% Author: David Uminsky, Spring 2003, modification of scdecompx.m

N = size(D{1},1); % number of objects
K = size(D, 2); % number of different situations
Q = cell(K,K+1);
R = cell(K,K+1);
q = cell(K,K+1);
B = cell(K,K+1);

%===================================================
if nargin < 2,

for k = 1:K
[L,P] = EMMYRk([N-k,k],D{k}); % our friend EMMYR, updated with k
%---k,k case

q{k,k} = P(:,k+1);
Q{k,k} = P(:,k+1);
B{k,k} = L(1,F);

%---k,k+1 case
q{k,K+1} = P(:,1);
Q{k,K+1} = P(:,1);
B{k,K+1} = L(1,F);

%---k,j (j=2:k-1)
for j=2:k

U = eye(choose(k,N));
for l=0:j-2
U = up([N-k+l,k-l])*U;
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end
q{k,k+1-j} = P(:,k+1+1-j) ;
Q{k,k+1-j} = U*P(:,k+1+1-j)./factorial(j); %NEED TO DIVIDE TO NORMALIZE
B{k,k+1-j} = L(1,F);

end
end

else

for k = 1:K
[L,P] = PROJRplus(JJ{k},D{k}); % Projrplus takes in the johnson graphs of the

% appropriate split and goes to work!

% ALL this find calling is to keep the projections index correctly. We use the
% eigenvalues in L to do this. for the johnson graphs the formula for the jth
% projection in the kth order split is Ej = (k-j)(N-k-j)-j;

%---k,k case
[II,F] = find(L(2,:)>=-k-.00001 & L(2,:)< (-k+.00001));

if isempty(F) == 0

q{k,k} = P(:,F);
Q{k,k} = P(:,F);
B{k,k} = L(1,F);

else
q{k,k} = 0;
Q{k,k} = 0;
B{k,k} = 0;

end

%---k,k+1 case
[II,F] = find(L(2,:)>= (k*(N-k))-.00001 & L(2,:)< ((k*(N-k)) +.00001));

if isempty(F) == 0

q{k,K+1} = P(:,F);
Q{k,K+1} = P(:,F);
B{k,K+1} = L(1,F);

else
q{k,K+1} = 0;
Q{k,K+1} = 0;
B{k,K+1} = 0;

end

%---k,j (j=2:k-1)
for j=2:k

U = eye(choose(k,N));
for l=0:j-2
U = up([N-k+l,k-l])*U;

end

H = ((k-(k+1-j))*(N-k-(k+1-j))-(k+1-j));

[II,F] = find(L(2,:) >= (H-.00001) & L(2,:) < (H +.00001));
if isempty(F) == 0
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[LL,PP] = PROJRplus(JJ{k},U(1,:)’);
[III,FF] = find(LL(2,:) >= (H-.00001) & LL(2,:) < (H +.00001));

q{k,k+1-j} = P(:,F); %This normalizes our projections
Q{k,k+1-j} = U*P(:,F)./(factorial(j-1)); %NEED TO DIVIDE TO NORMALIZE
B{k,k+1-j} = L(1,F);

else
q{k,k+1-j} = 0;
Q{k,k+1-j} = 0;
B{k,k+1-j} = 0;

end

end
end
end

%===================================================

for i=1:K
for j=1:i
[Y,I] = sort(Q{i,j});
sze = size(Y,1);
T = zeros(sze,N);
for l=1:sze
T(l,:) = index_to_set(I(l),[N-j,j]);

end
R{i,j} = [Y,T];

end
end

%===================================================
%===================================================

B.3 FinalDecompositionA.m

function [B,Q,q,R] = FinalDecompositionA(D, JJ)

% FinalDecompositionA(D)
%
% takes in data D = iwasaki(DATA) and returns the corresponding
% isotypic projections. It then returns "stuff". In particular
% q is the raw projections, Q is the projections filtered using the
% up operator. R is the sorted values with the particular tabloid
%appended for each value.
%JJ are a cell of precomputed matrices for projrplus!!
%
% Author: David Uminsky, Spring 2003, modification of scdecompx.m

N = size(D{1},1); % number of objects
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K = size(D, 2); % number of different situations
Q = cell(K,K+1);
R = cell(K,K+1);
q = cell(K,K+1);
B = cell(K,K+1);

%===================================================
if nargin < 2,

for k = 1:K
[L,P] = EMMYRk([N-k,k],D{k}); % our friend EMMYR, updated with k
%---k,k case

q{k,k} = P(:,k+1);
Q{k,k} = P(:,k+1);
B{k,k} = L(1,k+1);

%---k,k+1 case
q{k,K+1} = P(:,1);
Q{k,K+1} = P(:,1);
B{k,K+1} = L(1,1);

%---k,j (j=2:k-1)
for j=2:k

U = eye(choose(k,N));
for l=0:j-2
U = up([N-k+l,k-l])*U;

end
q{k,k+1-j} = P(:,k+1+1-j) ;
Q{k,k+1-j} = U*P(:,k+1+1-j)./factorial(j); %NEED TO DIVIDE TO NORMALIZE
B{k,k+1-j} = L(1,k+1+1-j);

end
end

else

for k = 1:K
[L,P] = PROJRplus(JJ{k},D{k}); % Projrplus takes in the johnson graphs of the

% appropriate split and goes to work!
if isempty(L) == 1;
elseif isempty(L) == 0;
XX = norm(L(1,:)’)ˆ2;

% ALL this find calling is to keep the projections index correctly. We use the
% eigenvalues in L to do this. for the johnson graphs the formula for the jth
% projection in the kth order split is Ej = (k-j)(N-k-j)-j;

%---k,k case
[II,F] = find(L(2,:)>=-k-.00001 & L(2,:)< (-k+.00001));

if isempty(F) == 0

q{k,k} = P(:,F)./L(1,F);
Q{k,k} = P(:,F)./L(1,F);
B{k,k} = L(1,F)ˆ2/XX;
else
q{k,k} = 0;
Q{k,k} = 0;
B{k,k} = 0;
end

%---k,k+1 case
[II,F] = find(L(2,:)>= (k*(N-k))-.00001 & L(2,:)< ((k*(N-k)) +.00001));
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if isempty(F) == 0

q{k,K+1} = P(:,F)./L(1,F);
Q{k,K+1} = P(:,F)./L(1,F);
B{k,K+1} = L(1,F)ˆ2/XX;

else
q{k,K+1} = 0;
Q{k,K+1} = 0;
B{k,K+1} = 0;

end

%---k,j (j=2:k-1)
for j=2:k

U = eye(choose(k,N));
for l=0:j-2
U = up([N-k+l,k-l])*U;

end
H = ((k-(k+1-j))*(N-k-(k+1-j))-(k+1-j));

[II,F] = find(L(2,:) >= (H-.00001) & L(2,:) < (H +.00001));
if isempty(F) == 0

[LL,PP] = PROJRplus(JJ{k},U(1,:)’);
[III,FF] = find(LL(2,:) >= (H-.00001) & LL(2,:) < (H +.00001));

q{k,k+1-j} = P(:,F)./L(1,F); %This normalizes our projections
Q{k,k+1-j} = U*P(:,F)./(factorial(j-1)*L(1,F)*LL(1,FF)); %NEED TO DIVIDE TO NORMALIZE
B{k,k+1-j} = L(1,F)ˆ2/XX;

else
q{k,k+1-j} = 0;
Q{k,k+1-j} = 0;
B{k,k+1-j} = 0;

end
end
end
end
end

%===================================================

for i=1:K
for j=1:i
[Y,I] = sort(Q{i,j});
sze = size(Y,1);
T = zeros(sze,N);
for l=1:sze
T(l,:) = index_to_set(I(l),[N-j,j]);

end
R{i,j} = [Y,T];

end
end

%===================================================
%===================================================
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B.4 FinalStats.m

function [F, T] = FinalStats(senators,Partition,trials, JJ,V)

% Takes in the number of Bills, senators, the partion on the senate, the number
% of trial samples, the Johnson matrices (JJ), and a vector V that dictates how
% the data was distributed over the homogeneous spaces. Returns the result of
% sampling from uniformity, given V. F will contain entry values that correspond
% to the 90 percentile. T will actually be the concatenated trials.
%
% Author: David Uminsky, Spring 2003

M = sum(V); % the number of votes
%N = senators; % the number of voters
%K = floor(N/2); % the most number of "losers"
w = max(Partition)+1;
z = floor(w/2);
T = cell(z,z+1);
F = cell(z,z+1);

for j=1:trials;
j
tic
[B] = sample(senators,Partition,JJ, V);

for i=1:z;
for k=1:z+1;

T{i,k} =[T{i,k} B{i,k}];
end

end
toc

end

for ii=1:z;
for jj=1:z+1;

if isempty(T{ii,jj}) == 0
[A,S] = Ave90A(T{ii,jj},1);
F{ii,jj} = [A,S];

else
F{ii,jj} = [];

end
end

end

function [B] = sample(senators,Partition,JJ, V)

% Sample grabs random data rows till its got the same number as Bills.
% sample also takes in a horizontal vector V which is a vector of length
% Floor(senators/2) whose entries are the number of bills that had that
% exact split. THis lets us sample from the correct homogeneous spaces.
% To generate V, iwasaki the original data and sum each cell to get value.
% It then tacks on the horizontal partition vector and sends it
% to finalDataRetrieval.

DATA1= [];

% the number of "votes" in uniformity Matrix
K = floor(senators/2);
C = senators;
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% Using the so-called Fisher-Yates shuffle which can be found at
% http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlfaq4/
% How_do_I_shuffle_an_array_randomly.html
%
% This method has been proven to produce uniformly random shuffles :)
% Thanks to Nate Eldredge for the help on finding this algorithm

% the number of "votes" in uniformity Matrix

for i=1:K;
if V(i) == 0;
else

for j=1:V(i);
X = [zeros(1,i) ones(1,senators-i)];
for ii=1:C;

d = ceil((C+1-ii)*rand(1));
a = X(1,d);
X(1,d) = X(1, C+1-ii);
X(1, C+1-ii) = a;

end
DATA1 = [DATA1 X’];

end
end

end

DATA1 = [Partition’ DATA1]’;

[DD] = FinalDataRetrieval(DATA1, 1);

[B] = StatDecomposition(DD, JJ);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [A,S] = Ave90A(Q,i);

% Ave90 will take in a vector Q and return the average A which we will
% assume to be zero and return N which is the value to beat, i.e. the value
% that is in the 90th percentile.

A = mean(Q(i,:));
%A = sum(Q(i,:))/size(Q,2);
%CC = [sort(abs(Q(i,:)))];
%N = CC(1,round(.90*size(Q(i,:),2)));
S = std(Q(i,:));

B.5 FinalStatsA.m

function [F, T] = FinalStatsA(senators,Partition,trials, JJ,V)

% Takes in the number of Bills, senators, the partion on the senate, the number
% of trial samples, the Johnson matrices (JJ), and a vector V that dictates how
% the data was distributed over the homogeneous spaces. Returns the result of
% sampling from uniformity, given V. F will contain entry values that correspond
% to the 90 percentile. T will actually be the concatenated trials.
%
% Author: David Uminsky, Spring 2003
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M = sum(V); % the number of votes
%N = senators; % the number of voters
%K = floor(N/2); % the most number of "losers"
w = max(Partition)+1;
z = floor(w/2);
T = cell(z,z+1);
F = cell(z,z+1);

for j=1:trials;
j
tic
[B] = sample(senators,Partition,JJ, V);

for i=1:z;
for k=1:z+1;

T{i,k} =[T{i,k} B{i,k}];
end

end
toc

end

for ii=1:z;
for jj=1:z+1;

if isempty(T{ii,jj}) == 0
[A,S] = Ave90A(T{ii,jj},1);
F{ii,jj} = [A,S];

else
F{ii,jj} = [];

end
end

end

function [B] = sample(senators,Partition,JJ, V)

% Sample grabs random data rows till its got the same number as Bills.
% sample also takes in a horizontal vector V which is a vector of length
% Floor(senators/2) whose entries are the number of bills that had that
% exact split. THis lets us sample from the correct homogeneous spaces.
% To generate V, iwasaki the original data and sum each cell to get value.
% It then tacks on the horizontal partition vector and sends it
% to finalDataRetrieval.

DATA1= [];

% the number of "votes" in uniformity Matrix
K = floor(senators/2);
C = senators;

% Using the so-called Fisher-Yates shuffle which can be found at
% http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlfaq4/
% How_do_I_shuffle_an_array_randomly.html
%
% This method has been proven to produce uniformly random shuffles :)
% Thanks to Nate Eldredge for the help on finding this algorithm

% the number of "votes" in uniformity Matrix

for i=1:K;
if V(i) == 0;
else
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for j=1:V(i);
X = [zeros(1,i) ones(1,senators-i)];
for ii=1:C;

d = ceil((C+1-ii)*rand(1));
a = X(1,d);
X(1,d) = X(1, C+1-ii);
X(1, C+1-ii) = a;

end
DATA1 = [DATA1 X’];

end
end

end

DATA1 = [Partition’ DATA1]’;

[DD] = FinalDataRetrieval(DATA1, 1);

[B] = StatDecompositionA(DD, JJ);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [A,S] = Ave90A(Q,i);

% Ave90 will take in a vector Q and return the average A which we will
% assume to be zero and return N which is the value to beat, i.e. the value
% that is in the 90th percentile.

A = mean(Q(i,:));
%A = sum(Q(i,:))/size(Q,2);
%CC = [sort(abs(Q(i,:)))];
%N = CC(1,round(.90*size(Q(i,:),2)));
S = std(Q(i,:));

B.6 FStatsNP.m

function [F, T] = FStatsNP(senators,trials, JJ,V)

% Takes in the number of Bills, senators, the partion on the senate, the number
% of trial samples, the Johnson matrices (JJ), and a vector V that dictates how
% the data was distributed over the homogeneous spaces. Returns the result of
% sampling from uniformity, given V. F will contain entry values that correspond
% to the 90 percentile. T will actually be the concatenated trials.
%
% Author: David Uminsky, Spring 2003

M = sum(V);; % the number of votes
N = senators; % the number of voters
K = floor(N/2); % the most number of "losers"
%w = max(Partition)+1;
z = floor(N/2);
T = cell(z,z+1);
F = cell(z,z+1);

for j=1:trials;
j
tic
[B] = GsampleNP(senators,JJ, V);
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for i=1:z;
for k=1:z+1;

T{i,k} =[T{i,k} B{i,k}];
end

end
toc

end

for ii=1:z;
for jj=1:z+1;

if isempty(T{ii,jj}) == 0
[A,S] = Ave90A(T{ii,jj},1);
F{ii,jj} = [A,S];

else
F{ii,jj} = [];

end
end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [B] = GsampleNP(senators,JJ, V)

% Sample grabs random data rows till its got the same number as Bills.
% sample also takes in a horizontal vector V which is a vector of length
% Floor(senators/2) whose entries are the number of bills that had that
% exact split. THis lets us sample from the correct homogeneous spaces.
% To generate V, iwasaki the original data and sum each cell to get value.
% It then tacks on the horizontal partition vector and sends it
% to finalDataRetrieval.

DATA1= [];

% the number of "votes" in uniformity Matrix
K = floor(senators/2);
C = senators;

% Using the so-called Fisher-Yates shuffle which can be found at
% http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlfaq4/
% How_do_I_shuffle_an_array_randomly.html
%
% This method has been proven to produce uniformly random shuffles :)
% Thanks to Nate Eldredge for the help on finding this algorithm

% the number of "votes" in uniformity Matrix

for i=1:K;
if V(i) == 0;
else

for j=1:V(i);
X = [zeros(1,i) ones(1,senators-i)];
for ii=1:C;

d = ceil((C+1-ii)*rand(1));
a = X(1,d);
X(1,d) = X(1, C+1-ii);
X(1, C+1-ii) = a;

end
DATA1 = [DATA1 X’];

end
end

end
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%DATA1 = [Partition’ DATA1]’;

[DD] = FinalDataRetrieval(DATA1’);

[B] = FDecompA(DD, JJ);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [B] = FDecompA(D, JJ)

% FinalDecomposition(D)
%
% takes in data D = iwasaki(DATA) and returns the corresponding
% isotypic projections. It then returns "stuff". In particular
% q is the raw projections, Q is the projections filtered using the
% up operator. R is the sorted values with the particular tabloid appended for each
% value.
%JJ are a cell of precomputed matrices for projrplus!!
%
% Author: David Uminsky, Spring 2003, modification of scdecompx.m

N = size(D{1},1); % number of objects
K = size(D, 2); % number of different situations
Q = cell(K,K+1);
R = cell(K,K+1);
q = cell(K,K+1);
B = cell(K,K+1);

%===================================================
if nargin < 2,

for k = 1:K
[L,P] = EMMYRk([N-k,k],D{k}); % our friend EMMYR, updated with k
%---k,k case

%q{k,k} = P(:,k+1);
%Q{k,k} = P(:,k+1);
B{k,k} = L(1,k+1);

%---k,k+1 case
%q{k,K+1} = P(:,1);
%Q{k,K+1} = P(:,1);
B{k,K+1} = L(1,1);

%---k,j (j=2:k-1)
for j=2:k

U = eye(choose(k,N));
for l=0:j-2

% U = up([N-k+l,k-l])*U;
end

% q{k,k+1-j} = P(:,k+1+1-j) ;
%Q{k,k+1-j} = U*P(:,k+1+1-j)./factorial(j); %NEED TO DIVIDE TO NORMALIZE
B{k,k+1-j} = L(1,k+1+1-j);

end
end

else

for k = 1:K
[L,P] = PROJRplus(JJ{k},D{k}); % Projrplus takes in the johnson graphs of the

% appropriate split and goes to work!



57

if isempty(L) == 1;
elseif isempty(L) == 0;
%XX = norm(L(1,:))ˆ2;

% ALL this find calling is to keep the projections index correctly. We use the
% eigenvalues in L to do this. for the johnson graphs the formula for the jth
% projection in the kth order split is Ej = (k-j)(N-k-j)-j;

%---k,k case
[II,F] = find(L(2,:)>=-k-.00001 & L(2,:)< (-k+.00001));
if isempty(F) == 0

%q{k,k} = P(:,F)./L(1,F);
%Q{k,k} = P(:,F)./L(1,F);
B{k,k} = L(1,F)ˆ2;

else
B{k,k} = 0;

end

%---k,k+1 case
[II,F] = find(L(2,:)>= (k*(N-k))-.00001 & L(2,:)< ((k*(N-k)) +.00001));
if isempty(F) == 0
%q{k,K+1} = P(:,F)./L(1,F);
%Q{k,K+1} = P(:,F)./L(1,F);
B{k,K+1} = L(1,F)ˆ2;
else

B{k,K+1} = 0;
end
%---k,j (j=2:k-1)
for j=2:k

U = eye(choose(k,N));
for l=0:j-2
U = up([N-k+l,k-l])*U;

end
H = ((k-(k+1-j))*(N-k-(k+1-j))-(k+1-j));

[II,F] = find(L(2,:) >= (H-.00001) & L(2,:) < (H +.00001));
if isempty(F) == 0

% q{k,k+1-j} = P(:,F)./L(1,F); %This normalizes our projections
% Q{k,k+1-j} = U*P(:,F)./(factorial(j)*L(1,F)); %NEED TO DIVIDE TO NORMALIZE
B{k,k+1-j} = L(1,F)*L(1,F);
else

B{k,k+1-j} = 0;
end
end
end
end
end

%===================================================
%===================================================

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [A,S] = Ave90A(Q,i);

% Ave90 will take in a vector Q and return the average A which we will
% assume to be zero and return N which is the value to beat, i.e. the value
% that is in the 90th percentile.

A = mean(Q(i,:));
%A = sum(Q(i,:))/size(Q,2);
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%CC = [sort(abs(Q(i,:)))];
%N = CC(1,round(.90*size(Q(i,:),2)));
S = std(Q(i,:));

B.7 GenerateJohnson.m

function [M] = GenerateJohnson(N);

% Generate Johnson takes in a value N and computes the adjacency matrices for the
% (N choose k) johnson graphs k = 1...floor(N/2) and returns a cell of the matrices
% M.
%
% Author: David Uminsky, Spring 2003

K = floor(N/2);

M = cell(1, K);

for i=1:K;
tic
M{1,i} = Johnson([N-i,i]);
toc

end

function [A] = Johnson(S);

% Johnson returns the adjacency matrix of the Johnson graph for the particular split
% [N,k]. Such as (7,1),(6,2)...
%
% Author: David Uminsky, January 2003

N = S(1)+S(2); % the total number elements in the set

K= choose(S(2),N); %size of matrix
A = sparse(K,K);

for i=1:K
for j=1:K

if sum(abs((2.-index_to_set(i,S))-(2.-index_to_set(j,S)))) == 2
A(i,j) = 1;

else
A(i,j) = 0;

end
end

end

B.8 sample.m

function [Q,q,R] = sample(senators,Partition,JJ, V)

% Sample grabs random data rows till its got the same number as Bills.
% sample also takes in a horizontal vector V which is a vector of length
% Floor(senators/2) whose entries are the number of bills that had that
% exact split. THis lets us sample from the correct homogeneous spaces.



59

% To generate V, iwasaki the original data and sum each cell to get value.
% It then tacks on the horizontal partition vector and sends it
% to finalDataRetrieval.
%
% Author: David Uminsky, Spring 2003

DATA1= [];

% the number of "votes" in uniformity Matrix
K = floor(senators/2);

for i=1:K;
if V(i) == 0;
else

for j=1:V(i);
X = 2.-index_to_set(ceil(choose(i,senators)*rand(1)),[senators-i,i])’;
DATA1 = [DATA1 X];

end
end

end

DATA1 = [Partition’ DATA1]’;

[DD] = FinalDataRetrieval(DATA1, 1);

[Q,q,R] = FinalDecomposition(DD, JJ)

B.9 Up.m

function R = up(lam)

% R = up(lam)
%
% returns the Radon transform R: Mˆlam --> Mˆlam+ where lam is a
% partition of an integer n.
% Author: Michael Orrison

r = size(lam,2); % the number of rows of lam
s = sum(lam); % the number we’re partitioning

new_lam = lam; % the new partition
new_lam(1) = lam(1)+1;
new_lam(r) = lam(r)- 1;

M = bloids(lam); m = size(M,1); % where we’re starting
N = bloids(new_lam); n = size(N,1); % where we’re going

R = sparse(n,m); % the Radon transform

for i = 1:m
count = 0;
j = 1;
temp = zeros(1,s);
while count<lam(r)

if M(i,j)==r
temp = M(i,:);
temp(j) = 1;
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ind = set_to_index(temp);
R(ind,i) = R(ind,i) + 1;
count = count + 1;

end
j = j+1;

end
end

B.10 down.m

function R = down(lam)

% R = down(lam)
%
% returns the Radon transform R: Mˆlam --> Mˆlam- where lam is a
% partition of an integer n.
% Author: Michael Orrison

r = size(lam,2); % the number of rows of lam
s = sum(lam); % the number we’re partitioning

new_lam = lam; % the new partition
new_lam(1) = lam(1)-1;
new_lam(r) = lam(r)+1;

M = bloids(lam); m = size(M,1); % where we’re starting
N = bloids(new_lam); n = size(N,1); % where we’re going

R = sparse(n,m); % the Radon transform

for i = 1:m
count = 0;
j = 1;
temp = zeros(1,s);
while count<lam(1)

if M(i,j)==1
temp = M(i,:);
temp(j) = r;
ind = set_to_index(temp);
R(ind,i) = R(ind,i) + 1;
count = count + 1;

end
j = j+1;

end
end
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B.11 bloids.m

function M = bloids(mu)

%BLOIDS(mu) takes vector mu of positive integers and
%returns a matrix whose rows correspond to the
%tabloids of shape mu.
% Author: Michael Orrison

%tic
mu = sort(mu); %the "right" order
sze = size(mu,2); %the number of rows
summu = sum(mu);

num = factorial(summu);
for i = 1:size(mu,2)
num = num/factorial(mu(i)); %the number of tabloids of shape mu

end
M = ones(num,sum(mu)); %the setup

if sze == 1 %...then we’re all set.

else
count = 1;
lam = mu;
lam(:,sze) = []; %remove the "top row"
sumlam = sum(lam); %the number of "boxes" left
K = kset(summu,sumlam); %find the k-sets for the lower rows
J = 1 + bloids(lam); %we use bloids here!
for k = 1:size(K,1) %for each k-set...
for j = 1:size(J,1) %...get new tabloid of shape lam...
temp = ones(1,summu);
for i = 1:sumlam
temp(K(k,i)) = J(j,i); %...create new tabloid of shape mu...
end

M(count,:) = temp; %...then add it to the list.
count = count + 1;

end
end

end
%toc

B.12 choose.m

function permutations = choose(X, Y)
% choose
% returns the number of non-ordered permutations of X items chosen from Y
% Author: Michael Orrison

if (X > Y)
permutations=0;

elseif (X == 0 & Y == 0)
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permutations=0;
else

permutations = factorial(Y) / (factorial(Y-X) * factorial(X));
end

B.13 count.m

function counter = count(set, number)
%count
%Takes a vector and a number, and returns the number of occurances of the
%number in that set.
% Author: Michael Orrison

counter = 0;

for i = set
if (i == number)

counter = counter + 1;
end

end

B.14 Emmyrk.m

function [L,P] = EMMYRk(lambda,v,Rs)

% [L,P]=EMMYR(lambda,v)
%
% does what BUDR does but is a little more clever with the
% JM-elements and takes advantage of the branching rules
% associated to the representations of the symmetric group.
%
% [L,P]=EMMYR(lambda,v,Rs) does the above, but takes advantage
% of the precomputed JM elements in Rs.
% Author: Michael Orrison

%tic

if nargin < 3, Rs = JMs(bloids(lambda)); end

d = size(Rs,1);
n = size(Rs,2)/d + 1;
A = Rs(1:d,1:d);

%[’Computing the projections of v onto the eigenspaces of R_2.’]
[L,P] = PROJRplus(A,v);
[L,P] = gather(L,P);

for i = 3:n
%[’Computing the projections onto the eigenspaces of R_’, num2str(i),’.’]
A = Rs(1:d,1+(i-2)*d:(i-1)*d);
[L,P] = PROJRplus(A,P,L);
[L,P] = gather(L,P);

end

% Ugly ordering procedure to make sure P lines up in order of: mean, 1st order, 2nd order...
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[r c] = size(L);
U = [];
for i = 1:c

for f = 1:c
if L(r,f) == n - i, U(:,i) = P(:,f);
end

end
end
P = U;

%toc

B.15 gather.m

function [new_L,new_P] = gather(L,P)

% [new_L,new_P] = gather(L,P)
%
% ...uses the information in L (created using JODR
% or EMMYR) to rearrange and gather those projections in P
% that are in the same isotypic subspace under the restriction
% of the permutation representation in question to "the" subgroup
% S_m where m < n.
% Author: Michael Orrison

temp_P = P;
temp_L = L;
new_P = [];
new_L = [];
new_proj_lengths = [];

temp_L(1,:) = []; %% Remove the lengths of the projections.
temp_L = round(temp_L); %% Make sure we’re dealing with integers.

if size(temp_L,1) > 1
temp_L = sort(temp_L); %% Sort the columns of L first.

end

check = 0; %% So we know when we’ve finished comparing.
count = 1; %% So we know where to start comparing.
coord = []; %% So we can "gather" the information we need.
while check == 0

coord = [];
if count > size(temp_L,2)

check = 1;
elseif count == size(temp_L,2)

new_proj_lengths = [new_proj_lengths norm(temp_P(:,count))];
check = 1;

else
current_shape = temp_L(:,count); %% The shape we’re comparing.
for i = count+1:size(temp_L,2)

if current_shape == temp_L(:,i) %% Find coordinates of those
coord = [coord i]; %% projections with the same shape.

end
end
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A = temp_P(:,[count coord]);
summed_proj = zeros(size(A,1),1);
for i=1:size(A,2)

summed_proj = summed_proj + A(:,i);
end

temp_P(:,count) = summed_proj; %% Gather the info into the
temp_L(:,count) = current_shape; %% the right places.

new_proj_lengths = [new_proj_lengths norm(summed_proj)];

temp_P(:,coord) = []; %% Get rid of the extra info
temp_L(:,coord) = []; %% that we have just gathered.
count = count+1;

end

end

new_L = [new_proj_lengths; temp_L];
new_P = temp_P;

B.16 iwasaki.m

function D = iwasaki(DATA)

% iwasaki(DATA)
%
% takes takes in a matrix DATA whose rows are consist of
% seqences of 0’s and 1’s, where each row has no more 0’s
% than 1’s. The idea is to view the rows of DATA as the
% partitions of a set, where 1 means "winner" and 0 means
% "loser". The output is the tabloid version of the incoming
% data in DATA. This can then be run through BUDR or EMMYR
% to complete the spectral analysis. Note: we also assume
% that there is at least one loser in each partition.
% Authors: Michael Orrison and David Uminsky, Fall 2002

V = size(DATA,1); % the number of votes
N = size(DATA,2); % the number of things to partition
K = floor(N/2); % the most number of "losers"
D = cell(1,K); % where we store the output

for k = 1:K,
data = sparse(choose(k,N),1); % what we’ll eventually store
for i = 1:V
d = DATA(i,:);
if (sum(d)==N-k)
d = 2.-d; % to tabloid mode
n = set_to_index(d); % the tabloid’s number
data(n) = data(n)+1; % creates the data vector

end
end
D{k} = data;

end
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B.17 kset.m

function M = kset(n,k)

%KSET(n,k) produces a matrix whose rows are the
%k-element subsets of an n-element set.
% Author: Michael Orrison

nchsk = nchoosek(n,k);

M = zeros(nchsk,k);

if (n < k | k <= 0)
M = [];

elseif k==1
M = [1:n]’;

else
J = kset(n-1,k-1);
count = 1;
for i = 1:size(J,1)
for j = (J(i,k-1)+1):n
M(count,:) = [J(i,:) j];
count = count + 1;
end

end

end

B.18 JM.m

function R = JM(M,i)

%JM(M,i) returns the Jucys-Murphy element R_i associated with
%the space of tabloids given to us by the tabloid matrix M.
% Author: Michael Orrison

dim = size(M,1); %the dimension of our tabloid space
R = sparse(dim,dim);
temp = zeros(1,size(M,2));
check = 0;

for k = 1:dim
for j = 1:(i-1)
if M(k,i)==M(k,j)
R(k,k) = R(k,k) + 1;

else
temp = M(k,:);
temp(j) = M(k,i);
temp(i) = M(k,j);

%
%new

temp_index = set_to_index(temp);
R(temp_index,k) = R(temp_index,k) +1;
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%old
% check = 1;
% count = 1;
% while check==1
% if temp==M(count,:)
% R(count,k) = R(count,k) + 1;
% check = 0;
% else
% count = count + 1;
% end
% end

end
end

end

B.19 JMs.m

function Rs = JMs(M)

% JMs(M)
%
% computes all of the Jucys-Murphy elements for the tabloid
% space given by M. The result is the matrix [R_2 ... R_n].
% Author: Michael Orrison

n = size(M,2);
d = size(M,1);

Rs = sparse(d,(n-2)*d);
%tic
for i = 2:n
% [’Computing R_’,num2str(i),’. Please be patient.’]

Rs(1:d,1+(i-2)*d:(i-1)*d) = JM(M,i);
end
%toc

B.20 lanr.m

function [Q,R] = lanr(A,f,epsilon)

% [Q,R] = lanr(A,f)
%
% uses the "Lanczos Iteration with re-orthogonaliztion" to compute the
% QR factorization of the matrix [f Af Aˆ2f...] where A is a symmetric
% matrix.
%
% [Q,R] = lanr(A,f,espilon)
%
% also does the above but lets the user determine how small the residue
% vectors must be before terminating. If lanr(A,f) is used, then epsilon
% is set to 10e-8.
% Author: Michael Orrison
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% tic

Q = f/norm(f); % our starting vector
R = sparse([]); % our tridiagonal matrix
a = []; b = []; ep = 0; % vectors used in the iteration
check = 1; n = 1; % counters and checks
sze = size(A,2); % in case espsilon doesn’t work
v = zeros(sze,1); % v is the main character

if nargin == 2 % if we don’t choose "small"
small = 10e-8;

end

if nargin == 3 % if we do choose "small"
small = epsilon;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

v = A*Q(:,1); % this is our first pass to
a(1) = Q(:,1)’*v; % see if we should continue and
v = v - a(1)*Q(:,1); % to work our way into the iteration
R(1,1) = a(1); % portion of the algorithm
b(1) = norm(v);
if b(1) > small
Q(:,2) = v/b(1);
R(1,2) = b(1);
R(2,1) = b(1);
n = 2;
else
check = 0;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

while check > 0 % this is where the three-term
v = A*Q(:,n) - b(n-1)*Q(:,n-1); % recurrence appears
a(n) = Q(:,n)’*v;
v = v - a(n)*Q(:,n);
R(n,n) = a(n);

for j = 1:n % where we re-orthogonalize
ep = Q(:,j)’*v;
v = v - ep*Q(:,j);
end
b(n) = norm(v);
if (b(n) > small & n < sze)
Q(:,n+1) = v/b(n);
R(n,n+1) = b(n);
R(n+1,n) = b(n);
n = n+1;
else
check = 0;
end

end

% toc



68

B.21 Projrplus.m

function [L,P] = PROJRplus(A,X,Y)

% [L,P] = PROJRplus(A,X)
%
% uses the "Lanczos Iteration with re-orthogonalization" to compute
% the projections P of the column vectors of X onto the eigenspaces
% of the symmetric matrix A. It also computes the lengths of each of
% these projections and returns a two-rowed matrix L with the length
% and the corresponding eigenvalue making up one column.
%
% [L,P] = PROJRplus(A,X,Y)
%
% also does the above, but keeps track of previous computations of
% eigenvalues (in Y) for iteration.
% Author: Michael Orrison

Q = []; R = []; P = []; L = []; U = []; D = [];
nrm = 0;

if nargin==2
for i = 1:size(X,2)
[Q,R] = lanr(A,X(:,i)); %the QR decomp of [x Ax...]
R = full(R); %Needed? %to get the eig vals/vecs of R
[U,D] = eig(R); %the eig vals/vecs of R
nrm = norm(X(:,i)); %to remind us of the size of x
P = [P Q*U*diag(nrm*U(1,:))]; %the projections
L = [L [nrm*abs(U(1,:)); ones(1,size(D,1))*D]]; %the lengths

end

% Recall that the first row of U contains the lengths
% of the projections of x/||x|| onto the eigenvectors
% of R in the basis Q. We also take advantage of the
% fact that the eigenvectors in U have length 1 to
% compute the lengths in L by using abs.

elseif nargin==3
Y(1,:) = []; %forgets the old lengths
for i = 1:size(X,2)
[Q,R] = lanr(A,X(:,i)); %see above
R = full(R); %Needed? %see above
[U,D] = eig(R); %see above
nrm = norm(X(:,i)); %see above
P = [P Q*U*diag(nrm*U(1,:))]; %see above
L = [L [nrm*abs(U(1,:)); Y(:,i)*ones(1,size(D,1));

ones(1,size(D,1))*D ]]; %see above
end

end
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B.22 readpart.m

function [D, P] = readpart(kata)

% readpart will take in a vector of assignments to partition and return a cell of
% partitions need for the function partition. It will also trim off the index 1st row.
% Author: David Uminsky, Fall 2002

L = size(kata,2);
K = kata(1,:);
N = max(K);
P = cell(N+1,1);

for i = 0:N
g =[];
for j = 1:L

if K(j) == i
g= [g j];

end
end
P{i+1,1} = g;

end

D = kata(2:size(kata,1),:);

B.23 scdecompx.m

function [q,Q,R,B,G,E] = scdecompx(D)

% scdecomp(D)
%
% takes in data D = iwasaki(DATA) and returns the corresponding
% isotypic projections. It then returns "stuff". In particular
% q is the raw projections, Q is the projections filtered using the
% up operator. R is the sorted values with the particular tabloid
% appended for each value. B is the sum of the squares divided by
% the dimension, G.
% Authors: Michael Orrison and David Uminsky, Fall 2002

N = size(D{1},1); % number of objects
K = size(D, 2); % number of different situations
Q = cell(K,K+1);
R = cell(K,K+1);
B = cell(K,K+1);
G = cell(K,K+1);
E = cell(K,K+1);
q = cell(K,K+1);

%===================================================

for k = 1:K
[L,P] = EMMYRk([N-k,k],D{k}); % our friend EMMYR, updated with k

%---k,k case
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q{k,k} = P(:,k+1);
Q{k,k} = P(:,k+1);
B{k,k} = (norm(P(:,k+1)))ˆ2/dim(N-k,k); % SS/dim -- k-th order effects
E{k,k} = dim(N-k,k)/choose(k,N);
G{k,k} = (norm(q{k,k})/norm(D{k}))ˆ2;

%---k,k+1 case
q{k,K+1} = P(:,1);
Q{k,K+1} = P(:,1);
B{k,K+1} = (norm(P(:,1)))ˆ2; % SS/1 -- the mean response
E{k,K+1} = 1/choose(k,N);
G{k,K+1} = (norm(q{k,K+1})/norm(D{k}))ˆ2;

%---k,j (j=2:k-1)
for j=2:k

U = eye(choose(k,N));
for l=0:j-2
U = up([N-k+l,k-l])*U;

end
q{k,k+1-j} = P(:,k+1+1-j) ;
Q{k,k+1-j} = U*P(:,k+1+1-j)./factorial(j); %NEED TO DIVIDE TO NORMALIZE
B{k,k+1-j} = (norm(P(:,k+1+1-j)))ˆ2/dim(N-j,j); % SS/dim -- j-th order effects
E{k,k+1-j} = dim(N-(j-1),j-1)/choose(k,N);
G{k,k+1-j} = (norm(q{k,k+1-j})/norm(D{k}))ˆ2;

end

for j=1:k-1
E{k,j} = dim(N-j,j)/choose(k,N);

end

end

%===================================================

for i=1:K
for j=1:i
[Y,I] = sort(Q{i,j});
sze = size(Y,1);
T = zeros(sze,N);
for l=1:sze
T(l,:) = index_to_set(I(l),[N-j,j]);

end
R{i,j} = [Y,T];

end
end

%===================================================
%===================================================

function d = dim(a,b)

% d = dim(a,b)
%
% computes the dimension of simple module Sˆ(a,b).

if b==0
d = 1;

else
d = choose(b,a+b);
for i=0:(b-1)

d = d - dim(a+b-i,i);
end
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end

B.24 ubersaki.m

function [GT, BT, DD] = ubersaki(DATA)

%Big iwasaki. It takes in a set of data of equivalence class votes so the
%values of DATA can range between 0-1. It will look at a row and distribute the
%weight for each tabloid and keep seperate the bad and good tabloids.
% Author: David Uminsky, Fall 2002

N = size(DATA,2) % number of objects
M = size(DATA,1) % number of different situations
DD = zeros(1,2ˆN);
K = floor(N/2); % the most number of "losers"
FD = fliplr(DATA); %to keep index correct on binary tree
GT = cell(1,K); % where we store the output for "good tabloids"
BT = cell(1,K); %where we store the "bad tabloids"

for i=1:M
L=[1- FD(i,1), FD(i,1)];

for j=2:N;
L1 = [(1-FD(i,j))*L, FD(i,j)*L]; %where entry is prob vote yes (1)
L= L1;

end

DD = DD + L; %DD is a vector of sums of all weights for
end %each tabloid shape good and bad

for k=1:K
data = sparse(choose(k,N),1); % what we’ll eventually store
bdata= sparse(choose(k,N),1); %eventually store Bad Tabloids.
for j=1:choose(k,N) %grab a tabloid shape in order and

B = 0; %find its binary rep and that number
bB = 0; %bB is for bad tabloids.
q = 2.-index_to_set(j,[N-k,k]); %gives us what B index from DD to put in

bq= -1.+index_to_set(j,[N-k,k]); %that particular spot in data
for uu=1:N
B1 = 2ˆ(N - uu)*q(uu);
B = B1 + B;
B2 = 2ˆ(N - uu)*bq(uu);
bB = B2 + bB;

end
data(j) = DD(B+1); %-1 for shift over.
bdata(j) = DD(bB+1);

end
GT{k} = data;
BT{k} = bdata;

end
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B.25 Vbuilder.m

function [V] = Vbuilder(DATA);

% This builds our V vector for FinalStats.m It takes in a matrix of
% zeros and ones and sorts them into how many bills had k zeros and
% so on. The senators are the columns and the rows are each bill.
% Author: David Uminsky, spring 2003

N = size(DATA,1); % number of bills
M = size(DATA,2); % number of senators;
K = floor(M/2);

V= zeros(1,K);

for i=1:N;
a = sum(DATA(i,:));
V(1,M-a) = V(1,M-a) +1;

end
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