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Abstract

Applications of Minkowski Actions in CAGD

Through Laguerre Geometry

by Kira Sushkoff

May 2003

Applications of Laguerre geometry to computer aided geometric design are

presented, realized through Minkowski actions. Basic Laguerre geometry is first

discussed. Then quaternions, set multiplication, and the use of quaternion sets to

define Minkowski actions are described and used to achieve results used in geo-

metric design.
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Chapter 1

Introduction

1.1 Background

Among the many great mathematical advancements in the nineteenth century were

the developments of new ideas of space and new geometries: Lie’s sphere geome-

try, line geometry, and projective and non-Euclidean geometries. The rigid points

and parallel lines of Euclid’s mathematics became generalized elements of space

that could take the form of lines, directed lines, curves, spheres, even coordinate-

free or imaginary lines and planes. Geometrical objects transmuted from one form

to another, and their relationships to fixed geometric objects were searched for

invariant properties. It was in this milieu, in 1853, that French mathematician Ed-

mond Laguerre (1834–1886) first delved into projective geometry [20].

We refer to the classical sphere geometry which resulted from Laguerre’s work

as Laguerre geometry, although extensive results and development of this branch of

mathematics were contributed by Klein, Blaschke, Müller, and Krames [24]. La-

guerre geometry is based on oriented n-dimensional spheres and planes in ori-

ented contact. The study of oriented contact between these two types of objects

was fleshed out by geometers by the 1930s. However, Laguerre geometry is again

an exciting area of geometrical research with the recent discovery of its applications

to problems in the emerging fields of computer aided geometrical design (CAGD)

and computational geometry [16], [19], [21], [24], [25], [30].

Non-Euclidean geometries were not the only new developments in nineteenth
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century mathematics by far. Pierpont chronicles the major theories which sprung

up during this time period and notes that the single most defining characteristic of

mathematics in the nineteenth century is the systematic use of complex numbers

and variables [20].

It was in 1813 and 1814 that Argand first published his geometrical interpreta-

tion of complex numbers [20]. Hamilton approached complex numbers from the

viewpoint of pairs of real numbers and, fascinated with the geometrical implica-

tions of this interpretation, searched for 3-dimensional analogues to these ubiq-

uitous new objects. His search culminated in 1843, in his well-known discovery

of 4-tuples called quaternions, whose multiplication rules he carved, at the mo-

ment of discovery, into the Brougham Bridge in Dublin, Ireland [1]. Hamilton and

other algebraists realized that, as the set of complex numbers C could be thought

of as a 2-dimensional vector space over the reals, the set of quaternions H could

be thought of as a 4-dimensional vector space over the reals. Algebras—vector

spaces like these which possess well-defined multiplication rules for their “basis”

vectors—stimulated a trend in the theory of linear spaces toward greater abstrac-

tion; the quaternion algebra studied by Hamilton was joined in 1851 by Cayley’s

matrix algebras and in 1844 by Grassmann’s peculiar algebras in which elements

were not necessarily even specified.

Mathematicians heartily subscribed to the geometrical vector interpretation of

complex numbers, and Hamilton and his “quaternionist” followers Tait and Pierce

applied a geometrical interpretation to quaternion multiplication to be taken up

by Gibbs in his association of sphere rotations to purely imaginary quaternions.

Algebras which admit such a geometrical interpretation are called geometric alge-

bras and include C, H, and Clifford and Grassmann algebras. In 2001, Farouki,

Moon and Ravani defined a new geometric algebra, called Minkowski geometric al-

gebra, in which the elements were not numbers, but subsets of C [10]. These sets

of complex numbers are interpreted as subsets of the plane and often define polar
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curves. In 2002, Gu and Weiner extended Minkowski geometric algebra to include

sets of quaternions as the elements and also defined the Minkowski action of sets of

quaternions [12], giving geometrical intuition throughout.

With the ready geometrical interpretation of quaternion multiplication as ro-

tations in R3, it is no surprise that Shoemake introduced quaternions to CAGD

and to the animation of rotations in computer graphics. Shoemake (1985), Plet-

inckx (1989), Schlag (1991), Barr (1992), Ge and Ravani (1993,1994), Kim and Nam

(1995), and others have slowly incorporated quaternions into CAGD research and

have begun the integration of quaternion rotational motion and projective geome-

try in CAGD applications. Both this avenue of research and the Laguerre geometry

discussed earlier are promising approaches to the building of mathematical foun-

dations for improved computer-aided design. Hence, following the suggestion in

[12], this article utilizes the Minkowski action of quaternions in order to effect La-

guerre geometric results and applications to current problems in CAGD.

1.2 Overview of this Paper

In chapter 2, we will describe the basics of Laguerre geometry, discussing both

the standard model and what is known as the cyclographic model of Laguerre ge-

ometry and giving insight to the connections between them. In chapter 3 we con-

tinue the work of the second chapter by finishing the mathematical foundations for

chapters 4 through 7. We define quaternions and describe the geometrical interpre-

tation of their multiplication. The notion of multiplication of sets is discussed, and

the Minkowski action of quaternion sets is defined.

In chapters 4 through 7, we see transformations and constructions in Laguerre

geometry realized as the Minkowski action of one quaternion set on another. We

discuss the application of these results to the generation of offset curves and sur-

faces, which are used in computer-aided milling and machining, and to medial
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axis theory, an important tool in the field of computer vision. Finally we discuss

results in surface design, paying special attention to the construction and blend-

ing of canal surfaces, and the future research on quaternion Minkowski actions to

which they point.



Chapter 2

Laguerre Geometry

Like all branches of mathematics, Laguerre geometry studies certain objects

and properties which are invariant under specific kinds of transformations. In this

case the objects under scrutiny are cycles and hyperplanes, and the transformations

which we consider are those mappings which preserve oriented contact between

the cycles and oriented hyperplanes.

In Section 2.1 we explain these basic definitions while describing the standard

model of Laguerre geometry. In Section 2.2 we present the cyclographic model of

Laguerre geometry, which pulls n-dimensional Laguerre geometry into an n + 1-

dimensional model. Finally, Section 2.3 explains the cyclographic mapping, which

allows us to move between these two models of Laguerre geometry.

2.1 Standard Model

We first present the fundamental definitions of Laguerre geometry.

Definition 1 An n-dimensional oriented sphere, or cycle, is an n-dimensional sphere

together with a signed radius.

Equivalently, a cycle consists of a sphere and an associated unit normal vector field.

A radius r > 0 indicates an outward normal vector field, a negative radius r < 0

indicates an inward normal vector field, and a radius r = 0 indicates a point.

We will refer to an n-dimensional cycle with midpoint m = (m1,m2, . . . , mn)

and signed radius r as Sn(m, r), denoting the n-dimensional sphere Sn translated

to midpoint m and scaled to radius r.
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The hyperplane with unit normal vector e = (e1, e2, . . . , en) and signed distance

e0 from the origin is described by the equation e0 + e1x1 + e2x2 + . . . + enxn = 0.

The coordinates [e0, e1, e2, . . . , en] form an equivalence class of equations describing

the same hyperplane, since, for example, [2e0, 2e1, 2e2, . . . , 2en] describes the same

hyperplane.

Definition 2 An oriented hyperplane is a hyperplane with an orientation given by a

unit normal e = (e1, e2, . . . , en). We refer to a hyperplane by its hyperplane coordinates

[e0, e1, e2, . . . , en].

Definition 3 An oriented sphere (cycle) and an oriented hyperplane are in oriented con-

tact if they are tangent and their unit normals coincide at the point of tangency. For a

point and an oriented hyperplane, oriented contact equals incidence.

Special mappings which preserve oriented contact are called Laguerre transfor-

mations and are the mappings under consideration in Laguerre geometry. Let C be

the set of cycles in Rn and E be the set of oriented hyperplanes in Rn. Then:

Definition 4 A Laguerre transformation is a pair of two bijective maps,

L : C → C
L∗ : E → E , (2.1)

which preserve oriented contact and noncontact between cycles and oriented hyperplanes.

These mappings are by no means independent; the map L acts on all cycles of

radius 0, which are points. Hence L acts on each point of an oriented hyperplane

to produce an image cycle, and induces the mapping L∗ on E , which maps each

hyperplane to the envelope of its image family of cycles.

Examples of Laguerre transformations include rigid motions, similarities, and,

an important class of tools for generating offsets, dilatations.
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Definition 5 A dilatation is a Laguerre transformation which adds a constant d 6= 0 to

the signed radius of each cycle and leaves its midpoint unchanged.

A dilatation is not point preserving; in fact, it maps a point (cycle with r = 0) to a

cycle with signed nonzero radius d. Each oriented hyperplane is thus mapped to

the envelope of the family of oriented cycles generated by points of the hyperplane.

We define the image to be the half of the envelope at signed distance d from the

original hyperplane, thus preserving oriented contact.

2.2 Cyclographic Model

Another useful way to view n-dimensional Laguerre geometry is to embed Rn in

Rn+1 as the hyperplane xn+1 = 0. Each cycle Sn(m, r) inRn, where m = (m1,m2, . . . ,mn),

is mapped to the point ζ(Sn(m, r)) = (m1,m2, . . . , mn, r) in Rn+1. With this em-

bedding we also map, via the induced map ζ∗, each oriented n-dimensional hy-

perplane [e0, e1, . . . , en] to the n + 1-dimensional hyperplane ζ∗([e0, e1, . . . , en]) =

[e0, e1, . . . , en, 1].

A few remarks need to be made considering the pair of mappings ζ, ζ∗. From

Section (2.1) we know that the original hyperplane [e0, e1, . . . , en] is orthogonal dis-

tance |e0| from the origin. Besides containing the original hyperplane, the image

hyperplane [e0, e1, . . . , en, 1] also passes through the point (0, 0, . . . , 0,−e0), since

e0 + e1 · 0 + e2 · 0 + . . . + en · 0 + 1 · xn+1 = 0 implies

xn+1 = −e0.

The Euclidean angle made between the image hyperplane [e0, e1, . . . , en, 1] and Rn,

thus, equals γ = tan−1(|− e0|/|e0|) = tan−1(1) = π
4
.

Definition 6 A hyperplane in Rn+1 which makes a Euclidean angle of γ = π
4

with Rn is

called a γ-hyperplane, and a line in Rn+1 which makes a Euclidean angle of γ = π
4

with

Rn is called a γ-line.
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Hence, a cycle C is mapped to the point ζ(C) ∈ Rn+1, and an oriented n-plane

E in oriented contact with C in Rn is mapped by ζ∗ to the γ-hyperplane through

E and the point ζ(C). If the cycle C is interpreted as the envelope of a family of

oriented n-planes in Rn, then the image family of n + 1-planes determined by ζ∗

has as its envelope a γ-cone whose vertex is ζ(C) and whose generators are γ-lines.

Laguerre transformations in the cyclographic model, then, must map each γ-cone

and tangent n + 1-plane pair to another γ-cone and tangent n + 1-plane pair, to

preserve oriented contact in the standard model.

2.2.1 Pseudoeuclidean scalar product

In the cyclographic model of Laguerre geometry, since relevant transformations

send γ-cones and their tangent hyperplanes to other γ-cone and tangent hyper-

plane pairs, we use a scalar product which characterizes points as under, on, or

above γ-cones as our geometric measure. This scalar product is the pseudoeuclidean

scalar product.

Definition 7 The pseudoeuclidean (pe) scalar product of two vectors a and b is de-

fined to be

〈a,b〉pe := aT · Epe · b, (2.2)

where, in Rn+1, Epe is the diagonal matrix with e1,1 = e2,2 = · · · = en,n = 1, en+1,n+1 =

−1.

The matrix Epe does not define a metric because it is not positive definite. It does,

however, define the quadratic form x2
1 + x2

2 + · · · + x2
n − x2

n+1 = 0. In the most

common dimension for application, n = 2, this reduces to x2
1 + x2

2 − x2
3 = 0, the

equation of a γ-cone.
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2.3 Cyclographic Mapping

The mapping c := ζ−1 from Rn+1 to Rn maps the point x = (x1, x2, . . . , xn, xn+1)

to the cycle c(x) in Rn with center m = (x1, x2, . . . , xn) and radius r = xn+1. The

mapping c∗ := ζ∗−1 maps the γ-hyperplane E in Rn+1 to the oriented n-plane ζ∗−1

which is the intersection of E and Rn.

Definition 8 The pair of mappings (c, c∗) : Rn+1 → Rn is called the cyclographic map-

ping.

2.3.1 Cyclographic image of a line

A simple line in Rn+1 will have a different image under the cyclographic mapping

depending on the Euclidean angle which it makes with Rn.

Example 2.1 For a vector a ∈ R3, if 〈a, a〉pe > 0, then a line with direction a makes an

angle γ < π
4

with R2 and is called a hyperbolic line. Its cyclographic image, the envelope

of the family of image cycles of its points, consists of two oriented lines.

0 1 2 3 4 5 6 7
–2

0

2

0

0.5

1

1.5

2

2.5

Figure 2.1: A hyperbolic line and its cyclographic image
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Example 2.2 A vector a ∈ R3 which has 〈a, a〉pe = 0 makes the angle γ = π
4

with R2

and, hence, a line with direction a is a γ-line, or a parabolic line. The image cycles of such

a line are all tangent to one line, so the envelope of this family of cycles, its cyclographic

image, is just that one single oriented line in R2.

0 2 4 6 8 10
–5

0

5

0

1

2

3

4

5

Figure 2.2: A γ-line and its cyclographic image

Example 2.3 If 〈a, a〉pe < 0 for a ∈ R3, then a line with direction a makes an angle γ > π
4

with R2 and is called elliptic. Its family of image cycles covers R2, so it has no envelope,

hence an imaginary cyclographic image.

Definition 9 Consider two points a and b in Rn+1. The pseudoeuclidean (pe) distance

of a and b is defined to be d =
√〈a− b, a− b〉pe.

Let a = c−1(A) and b = c−1(B) be two points in R3. Then any common tangent

oriented line of the two cycles A and B in R2 touches A and B at points with

Euclidean distance d, called the tangential distance of A and B.



11
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8

10

Figure 2.3: An elliptic line and its cyclographic image

Theorem 2.3.1 Consider two points a = c−1(A) and b = c−1(B) in R3. Then the tan-

gential distance d of A and B in R2 equals the square root of the pe distance of a and b in

R3 (where this is real and defined):

d =
√
〈b− a, b− a〉pe. (2.3)

Proof : Let a = (m1,m2, r), let b = (M1,M2, R), and let E be the line through a

and b. Let γ be the angle which E makes with R2, where γ is arbitrary. Then the

vertical distance between a and b is R− r, while the distance between (m1,m2) and

(M1,M2) is
√

(M1 −m1)2 + (M2 −m2)2. Thus,

tan γ = (R− r)/
√

(M1 −m1)2 + (M2 −m2)2. (2.4)

So

√
〈b−a, b−a〉pe =

(〈(M1−m1,M2−m2, R−r), (M1−m1,M2−m2, R−r)〉pe

)1/2

=
(
(M1−m1)

2 + (M2−m2)
2 − (R−r)2

)1/2

=
√(

1− tan2 γ
)(

(M1−m1)2 + (M2−m2)2
)

by (2.4). (2.5)
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But since height of a point in R3 equals radius of its cyclographic image, the same

right triangle used above is formed in R2 with sides d and R − r and hypotenuse
√

(M1 −m1)2 + (M2 −m2)2, so that, similarly,

d =
√(

1− tan2 γ
)(

(M1 −m1)2 + (M2 −m2)2
)
.

Thus, d =
√〈b− a, b− a〉pe.

We use this theorem to prove the above claims about cyclographic images of

lines.

• If a and b lie on a hyperbolic line, i.e. 0 ≤ γ < π
4
, then tan γ < 1, so by equation

2.5, d is positive and A and B possess two common tangent lines.

• If a and b lie on a γ-line, then tan γ = 1, so by equation 2.5, d = 0 and A and

B coincide at their one point of tangency.

• If a and b lie on an elliptic line, i.e. π
4

< γ ≤ π, then tan γ > 1, so by equation

2.5, d is imaginary, so the cyclographic image of the elliptic line is imaginary;

A and B possess no common tangent lines.

The pe metric naturally lends itself to the description of Laguerre transforma-

tions, and the following two theorems from [24] demonstrate this utility.

Theorem 2.3.2 There is a 1-1 correspondence between pe congruences in Rn+1 and tan-

gential distance-preserving Laguerre transformations in Rn.

Theorem 2.3.3 All Laguerre transformations are pseudoeuclidean (pe) similarities

x′ = a + λA · x, (2.6)

where a is a translation factor, λ is a scaling factor, and A is a pseudoeuclidean orthgonal

matrix.
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2.3.2 Cyclographic Mapping of Curves

Now that we have described the cyclographic mapping of lines, we can use ori-

ented line elements to describe the cyclographic image of curves. We say line ele-

ment, denoted (x, l), to describe the point x along with a small direction ∆s given

by the direction of oriented line l. Let p (t) be C1 a curve in R. For each x ∈ p, we

consider the line element (x, x + λp′), where x + λp′ is the line through x = p (t0) in

the direction of the tangent vector p′(t0).

From section 2.3.1, we know that if the tangent vector p′(t0) makes the angle γ

with R2, then the cyclographic image of (x, x + λp′) is one oriented line element

(x1, t1). In this case, x1 is the intersection of x + λp′ and R2, and t1 is the oriented

line in contact with c(x) at x1. The γ-plane through x + λp′, whose normal has

x1, x2-direction given by the projection of p′ onto R2, intersects R2 in the line t1.

For a hyperbolic tangent vector p′(t0), the cyclographic image of (x, x + λp′) is

two oriented line elements (x1, t1) and (x2, t2), where t1 and t2 are the intersections

with R2 of the two γ-planes through the tangent line x + λp′(t0). The points x1

and x2 then are the intersections of the cycle c(x) with oriented lines t1 and t2,

respectively. An elliptic line element has no real image.

To map the curve p (t) we map the line element (p, p + λp′) for each point along

the curve. By definition, c(p) is the envelope of the image oriented line elements.

The simplest case occurs when all the tangents to a curve p ∈ R3 make the angle

γ with R2. We call these curves γ-curves. Another way to find c(p) of a γ-curve is

to consider the surface

T (p)
(
t, λ

)
= p(t) + λp′(t). (2.7)

T (p) is a developable surface, as we can easily show. A surface X(t, λ) = α(t) +

λw(t) is said to be developable if

(w, w′, α′) ∆
= (w ∧ w′) · α′ ∆

= det(w,w′, α′) ≡ 0.
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Thus, for T (p), α = p and w = p′. Then

det(w,w′, α′) = det(p′, p′′, p′)

= − det(p′, p′, p′′)

= −(p′ ∧ p′) · p′′

≡ 0.

(2.8)

The tangent planes of T (p) (osculating planes of p) form the constant angle γ with

R2, hence we call T (p) a γ-developable. The usefulness of considering T (p) appears

in the following theorem.

Theorem 2.3.4 Let p(t) ⊂ R3 be a γ-curve. Its cyclographic image c(p) is T (p) ∩ R2, the

intersection of T (p) with R2.

Proof : For ease of calculation we assume p lies entirely in the upper half space

of R3. The situation simply reverses orientation when a curve crosses into the

negative half-space and thus r < 0. By definition,

T (p) = p(t) + λp′(t)

=
(
p1(t) + λp′1(t), p2(t) + λp′2(t), p3(t) + λp′3(t)

)
.

(2.9)

To find T (p) ∩ R2, we solve p3(t) + λp′3(t) = 0. Hence λ = −p3(t)
p′3(t)

. So

T (p) ∩ R2 =
(
p1 − p3p

′
1

p′3
, p2 − p3p

′
2

p′3

)
.

Now we calculate the cyclographic image c(p). Let x = (p1, p2, p3) = p(t0) be a

point of p and let (x, x + λp′(t0)) be the associated line element. Let (x1, t1) denote

the cyclographic image line element of (x, x + λp′). Then c(x) is a cycle with center

(p1, p2) and radius p3 > 0. So x1 is the point on c(x) in the opposite direction of p′:

x1 = (p1, p2)− p3
(p′1, p

′
2)

‖(p′1, p′2)‖
. (2.10)
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Now p′ is a γ-vector, so 〈p′, p′〉pe ≡ 0, i.e. p′1
2 + p′2

2 − p′3
2 ≡ 0. Thus,

c(p) = (p1, p2)− p3
(p′1, p

′
2)

(p′3
2)1/2

=
(
p1 − p3p

′
1

p′3
, p2 − p3p

′
2

p′3

)
.

(2.11)

∴ T (p) ∩ R2 = c(p).

The proof of this fact gives several more results concerning the cyclographic

image of a γ-curve. Let p ∈ R3 be a C1 γ-curve parameterized by arc length. We can

assume this because it is always possible to find a curve q(t) parameterized by arc

length which has the same trace as p (t) [4]. Then ‖p′(t)‖ ≡ 1 and p′′(t) = k(t)n(t),

where k(t) is the curvature of p (t) and n(t) is the unit normal to p (t).

Definition 10 The evolute of a curve α(t) ⊂ R2 is given by β(t) = α(t)+ 1
k(t)

n(t), where

k(t) is the curvature of α(t) and n(t) is the unit normal to α(t).

We then have the following results for γ-curves:

• The orthogonal projection onto R2 of a γ-curve p parameterized by arc length

is the evolute of c(p).

• The term p−1
3 gives the curvature of c(p).

• The vector (
p′1
p′3

,
p′2
p′3

) gives the unit normal to c(p).

For an arbitrary C1 curve p ∈ R3, the γ-developable through p is more difficult

to describe. The definition of T (p) is more general than the γ-curve case, in which

T (p) is ruled by the tangent lines of p. Let τ(t) be the family of γ-planes through

the tangent lines x + λp′ of p. We described the direction of these γ-planes on page

13. Parabolic tangents have one γ-plane through them, hyperbolic tangents have
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two γ-planes through them, and elliptic tangents have none. Then the envelope of

the family τ(t) forms T (p), which we call the γ-developable through p.

For arbitrary C1 p ⊂ R3, we still have the fact c(p) = T (p) ∩R2. We show this in

section 5.2, where we generalize the results on T (p) for γ-curves in R3 to arbitrary

C1 curves in R3.

Pottman and Peternell summarize in [24] some facts about the cyclographic im-

age c(p) of curves in p ∈ R3 which are important for applications of 2-dimensional

Laguerre geometry. Some of these results are:

• Let t0 be an isolated root of the function defined by 〈p′ (t), p′ (t)〉pe. In this case,

〈p′ (t), p′ (t)〉 undergoes a sign change at t0, so that the point p(t0) separates an

elliptic segment of the curve p from a hyperbolic segment of p. Then the point

c(p(t0)) is a vertex of the image curve c(p).

• Let t0 be an inflection point of p(t). Then the curve c(p) has an inflection point

at p(t0). The image curve c(p) has in fact two inflection points at p(t0) when

p′(t0) is hyperbolic.

• Let t0 be an isolated root of the function defined by p3(t). Then p(t0) is a

double point of c(p), that is, the point c(p(t0)) is traced out twice by c(p).

Having thus built a foundation of the Laguerre geometry of R2 and R3, we

now turn to the geometric algebra which will describe the associated 3− and 4-

dimensional cyclographic models: the Minkowski geometric algebra of quaternion

sets.



Chapter 3

Minkowski Action

In Section 3.1 we describe the geometric interpretation of quaternion multipli-

cation, with the identification of R3 and i, j, k-space, since they are isomorphic as

vector spaces. In Section 3.2 we describe the Minkowski product, a notion of multi-

plying whole sets of quaternions instead of singleton quaternions. We then discuss

the Minkowski action of one quaternion set on another, which is an extension of

the Minkowski product.

3.1 Minkowski Product

3.1.1 Quaternion Multiplication

Recall that the set of quaternions, H, is a normed division algebra with elements of

the form a1 + bi + cj + dk, for a, b, c, d ∈ R, where multiplication is defined by

1.) 1 is the multiplicative identity

2.) i2 = j2 = k2 = −1

3.) ij = k; ji = −k

jk = i; kj = −i

ki = j; ik = −j

We identify H with R4 so that the x1-axis is the i-axis, the x2-axis is the j-axis, the

x3-axis is the k-axis, (which comprisesR3), and the fourth axis, the x4-axis, is identi-

fied with the scalar axis. In this way, totally imaginary quaternions become vectors

in R3.
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3.1.2 Geometric Interpretation

Using the multiplication rules above, [12] and [31] show that given a unit length

quaternion

p0 = cos θ + up0 sin θ, (3.1)

left multiplication p0q of an arbitrary quaternion q ∈ H by p0 effects a 4-dimensional

rotation of q as follows:

• The plane spanned by 1 and up0 is rotated counterclockwise by θ. The coun-

terclockwise direction in this plane brings 1 toward up0 .

• The plane in i, j,k-space that is orthogonal to the first plane, which we shall

call the u⊥p0
plane, is also rotated counterclockwise by angle θ. The counter-

clockwise direction in the u⊥p0
plane is determined by the “right hand rule”

while pointing one’s thumb in the direction of up0 .

Right multiplication qp0 by a unit quaternion p0 has a similar effect: the plane

spanned by {1,up0} is again rotated counterclockwise by θ, but the u⊥p0
plane is

now rotated clockwise by θ.

Thus, left and right multiplication by unit quaternions can be coupled to effect

purely 3-dimensional rotations. In particular, if we replace θ with−θ, p0 is replaced

by its conjugate

p0 = cos θ − up0 sin θ.

Then, left multiplication by p0 and right multiplication by p0 counteract each other

in the 1,up0-plane and double the angle of rotation in the u⊥p0
plane. Gu and Weiner

show in [12] that for an arbitrary quaternion q ∈ H, conjugation by p0 effects a

rotation of the imaginary part of q in i, j,k-space about the axis up0 . Specifically,

the imaginary part of q is rotated counterclockwise in the u⊥p0
plane by an angle 2θ

while the real part of q is held fixed.



19

As a consequence of these geometric interpretations, any 3-dimensional rota-

tion of vectors in i, j,k-space can be accomplished by conjugation by a unit quater-

nion, which is unique up to sign. And, any 4-dimensional rotation can be achieved

by left and right multiplication by unit quaternions, which are uniquely deter-

mined up to sign [12].

3.2 Minkowski Action of Quaternion Sets

Now that we know the geometric interpretation of singleton quaternion multipli-

cation, we describe the geometry of multiplication of quaternion sets. The Minkowski

product defines multiplication of sets of quaternions and is a higher-dimensional

analog of interval arithmetic.

Definition 11 Given quaternion sets A,B ∈ H, we define the Minkowski product of A
and B to be

A⊗ B = {ab | a ∈ A and b ∈ B}.

This definition is motivated by the analogous definition of Minkowski product of

complex sets defined and explored in [10]. Similarly, a set addition can be defined

on quaternion sets.

Definition 12 Given quaternion sets A,B ∈ H, we define the Minkowski sum of A and

B to be

A⊕ B = {a + b | a ∈ A and b ∈ B}.

Gu and Weiner show in [12] that these operations do indeed form an algebra,

hence called Minkowski geometric algebra. Using these definitions we can achieve

surfaces and regions in both two and three dimensions as the product or sum

of simpler quaternion curves. (The case of 2-dimensional curves reduces to the

Minkowski geometric algebra of complex curves explored in [9], [10], [11], and

[14].) A more advantageous definition would utilize both Minkowski sums and
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products of quaternion sets to define and describe geometrical constructs. This

motivates the definition of the Minkowski action.

Definition 13 Let A ⊂ R×H3 and X ⊂ H. We define A(X ) ⊂ H by

A(X ) = {asalxār + aτ | (as, al, ar, aτ ) ∈ A}

We call this set the action of A on X .

In practice, we take al and ar to be unit quaternions, so that as can be a true

scaling factor. Then, each point x ∈ X is rotated through left multiplication by al

and right multiplication by ar, as described in Section 3.1. If we choose ar = al
−1,

then the imaginary part of x is rotated in 3-space as described also in Section 3.1.

The resultant point is then scaled by the scaling factor as and translated by the

translating factor aτ . In this way, the Minkowski action of one quaternion set on

another prescribes the construction of a subset ofR4, and taking only the imaginary

“coordinates” produces a subset of R3, as we see in the next chapter.



Chapter 4

Laguerre Geometry Realized by Minkowski Action

In this chapter, we show that many of the operations performed in Laguerre

geometry can be written naturally as the Minkowski action of one quaternion set

on another. Usually these operations will be achieved by the action of a quaternion

curve in n dimensions on another set. An immediate advantage of this technique

is the ease with which we generalize results on 2-dimensional Laguerre geometry

for 3-dimensional Laguerre geometry.

4.1 The Cyclographic Mapping

For applications in computer aided geometrical design, the cyclographic mapping

has only been used as applied to curves in Rn+1, where n = 2, 3. It is very conve-

nient, thus, that given a curve p(t) = (m1(t), m2(t), . . . , mn(t), r(t)) in R4 or R3, for t

in some interval I , we can easily realize the cyclographic mapping applied to p(t)

by letting an appropriate set act on S2 or S1, respectively.

4.1.1 Images of Curves in R3

Let p(t) = (m1(t),m2(t), r(t)) in R3, for t in some interval I . We identify R3 with

i, j,k-space so that R2 is identified with i, j-space. Then the cyclographic image of

p(t) consists of the envelope of S1 scaled by r(t) and translated by m(t) = m1(t)i +

m2(t)j. We parameterize S1 by

S1 = {ekθi | 0 ≤ θ ≤ 2π}
= {cos(θ)i + sin(θ)j | 0 ≤ θ ≤ 2π}.
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Then

A = {(r(t), 1, 1,m(t) | t ∈ I} for interval I under consideration,

and we have

c(p(t)) = A(S1)

= {rq + m | q ∈ S1, (r, 1, 1,m) ∈ A}.

For application in CAGD, we can instead parameterize S1 using its rational

parametrization. Then if the component curves in A(t) are rational, A(S1) defines

a rational curve, which can thus be represented in current computer-aided design

or computer-aided machining systems.

In Figure 4.1, a segment of a parameterized parabola acts on S1 to produce the

image in R2. Recall from section 2.3.2 that the cyclographic image of an isolated

root of 〈p′ (t), p′ (t)〉pe produces a vertex in the cyclographic image curve (see page

16). In Figure 4.1 we highlighted two such points which separate the hyperbolic

segment of the parabola (black) from the elliptic portions of the parabola (grey).

The cyclographic images of the curve segments with elliptic tangent vectors (grey)

are imaginary and hence are not shown.

In Figure 4.2, a parameterized ellipse acts on S1 to produce the image in R2. If

p is an ellipse or hyperbola in R3 which is symmetric to R2, then the cyclographic

image of p is a conic section with focal points at the intersections of p and R2 [24].

For another example, the piecewise continuous absolute value function acts on

S1 to produce the image in Figure 4.3.

4.1.2 Images of Curves in R4

Slight modification of this technique allows us to realize surfaces in R3 as the cy-

clographic image of curves in R4. For simplification, we identify i, j,k-space with
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Figure 4.1: Cyclographic mapping of a normal parabola in R3
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Figure 4.2: Cyclographic mapping of an ellipse p in R3 symmetric with respect to R2. p intersects
R2 at the foci of the image ellipse.

R3. We parameterize S2 as

S2 = (sin ϕ cos θ, sin ϕ sin θ, cos ϕ) = sin ϕ cos θi + sin ϕ sin θj + cos ϕk.

Let p(t) = (m1(t),m2(t),m3(t), r(t)) in R4, for t in some interval I . We still scale
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Figure 4.3: Cyclographic mapping of the absolute value function in R3

S2 by r(t), but now we translate by m(t) = m1(t)i + m2(t)j + m3(t)k. Then

A = {(r(t), 1, 1,m(t) | t ∈ I} for interval I under consideration,

and we have

c(p(t)) = A(S2)

= {rq + m | q ∈ S2, (r, 1, 1,m) ∈ A}. (4.1)

A pipe surface, which is a surface traced out by spheres of constant radius with

centers lying on some space curve p ⊂ R3, always admits a rational parametriza-

tion if its spine curve p is rational. Pottmann and Lü prove this fact and give an

algorithm for its construction in [15]. We can generate a wider class of rational sur-

faces, including pipe surfaces, in the example above by instead parameterizing S2

using its rational parametrization. A(S2) then gives a rational surface if the com-

ponent curves of A(t) are rational, for compatibility with computer-aided design

systems. Only rational surfaces can be represented authentically in current CAD

systems; other surfaces must be approximated by rational surfaces called NURBS
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(Non-Uniform Rational B-Spline) surfaces, in order to be represented in current

CAD.

Canal surfaces, pipe surfaces of spheres with varying radius, can be constructed

by using the action described in equation 4.1. Additionally, we can let arcs of the

specific curves in R4 called pe circles act on S2 to produce Dupin cyclides, which

are canal surfaces used to blend cones and cylinders together [16], [24]. Given two

cones in space, it is generally the case that one Dupin cyclide cannot blend the

first cone smoothly into the second. Hence we use pairs of Dupin cyclides spliced

together by the spline consisting of the corresponding pairs of pe arcs in R4, in

order to smoothly blend arbitrary cones. Such pairs of Dupin cyclides are called

double cyclide blends.
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Figure 4.4: A double cyclide blend with minimal radial variation connects two cones with skew
axes.

4.2 Laguerre Transformations

Throughout its wide applications, the standard model of Laguerre geometry in Rn

is most useful in the cases n = 2 and n = 3. For the n = 2 case, cycles and oriented



26

hyperplanes become 2-dimensional sets and thus are represented as subsets of a

2-dimensional subspace of H, which we can identify with C. The commutative

nature of the objects we study allows us this identification because two quaternions

commute if and only if there exists a plane containing both of them and the real

axis [12], and every 2-plane in H that contains the real axis is ring-isomorphic to

C[12]. However, for easier generalization and for consistency of notation, we work

in the 2-dimensional i, j-plane in the following examples.

4.2.1 Dilatation

Recall from Section 2.1 that a dilatation, Ld, is a Laguerre transformation which

adds a constant d 6= 0 to the signed radius of each cycle and leaves its midpoint

unchanged. InR2, Ld maps a curve to its offset curve at a perpendicular distance of

|d|, and the sign of d determines whether this distance is taken parallel (negative) or

antiparallel (positive) to the normal vector of the curve defined by its orientation.

We denote a cycle with center m = m1i + m2j and radius r (possibly 0) as

S1(m, r). Let the dilatation Ld : (C, E) → (C, E) be defined by

Ld : S1(m, r) 7→ S1(m, r + d).

Then Ld maps line l(e) with normal e in oriented contact with S1(m, r) to the line

l(E) with normal E in oriented contact with S1(m, r + d).

m

r + d θ

m

r θ

Figure 4.5: Dilatation Ld
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Write S1(m, r) and l(e) as parameterized sets of quaternion numbers in the i, j-

plane

z = {rekθi + m | 0 ≤ θ ≤ 2π}
w = {(rekθ0i + m) + t(ek(θ0+π

2
))i | t ∈ I},

(4.2)

respectively. Then the map Ld can be realized as the action of the singleton point

A =
{(

r+d
r

, 1, 1,− (
r+d

r

)
m + m

))} on the set of quaternions z ∪w.



Chapter 5

Offsets

5.1 Introduction

Offset curves and surfaces and curves and surfaces at a constant distance λ from a

given curve or surface. For example, the interior of a ship or automobile may be

described as an offset surface of the exterior at distance λ given by the thickness

of the material. Offset curves are used in decorative designs but also also play an

important role in computer-aided machining (CAM), especially in the form of off-

set space curves. They describe tool paths for milling pockets or holes in objects,

for example in the milling of dies and molds used to make automobile parts [13].

During 3-axis NC (Numerically Controlled) milling of a free form surface, a refer-

ence point on the axis of the cutting tool has to move on an offset surface in order

to have accurate shape control and collision prevention. When you use a ball cut-

ter (versus cylindrical, toroidal and many other shapes of cutters), that reference

point moves on a general offset surface, which is the surface wished to be milled,

displaced by a constant multiple of its unit normal vector [23]. Computation of

offset surfaces is thus essential for tool path planning in surface milling.

5.2 Computation of Offsets

In this section, we utilize results from the cyclographic model of Laguerre geome-

try to compute offsets of curves and surfaces in 2 and 3 dimensions. Since offsets

are effectively the loci of points with constant distance to a given curve or surface,

we find our first useful fact in the following theorem.
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Theorem 5.2.1 The γ-developable T (p) to an arbitrary C1 curve p ∈ R3 is the graph of

the signed distance function to c(p) ∈ R2.

Proof : Let (x, x + λp′) be a tangent line element to curve p. For elliptic (x, x + λp′),

there is no image line element. For parabolic or hyperbolic (x, x + λp′), let (x1, t1)

be an image line element of (x, x + λp′).

In order for oriented contact to occur between the cycle c(x) and the oriented

line t1, the unit normal to t1 at x1 must coincide with the unit normal to c(x) at x1,

which is the unit normal to the envelope c(p) at x1. The projection onto R2 of the

line from x to x1 is always orthogonal to (x1, t1), and hence, normal to the curve

c(p) at x1. The distance between a point and a curve is measured along the normal

direction, if that direction can be defined. Thus, points y = (y1, y2) lying on the

projection of the xx1 line will have distance |y−x1| to c(p), with positive (negative)

sign when y − x1 is antiparallel (parallel) to the normal to c(p).

Project y along a ray parallel to (0, 0, 1) until the line (y1, y2, t) first intersects

T (p) in (y1, y2, y3). Then since T (p) is a γ-developable, the signed distance y − x1

from y to x1 in R2 equals the vertical distance from y to x1, which is y3 − 0 = y3.

Hence the signed distance to c(p) is y3, which is the height of T (p) at (y1, y2).

Notice that Theorem 5.2.1 implies that the intersection of T (p) and R2 has zero

distance to c(p), hence c(p) = T (p) ∩ R2 for arbitrary C1 curves in R3. We use this

fact to compute offset curves in this chapter and later, in Chapter 6, to compute the

medial axes of 2-dimensional shapes.

5.2.1 Offset Curves

An oriented, possibly closed curve c ⊂ R2 can be thought of as the cyclographic

image of a curve p ⊂ R3. We then use Theorem 5.2.1 to find offset curves to c.

Let c(t) be a smooth curve in R2. We consider first the case c is a simple closed

curve or not closed at all, where c is the cyclographic image of a curve p ⊂ R3.
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Assume without loss of generality that the pre-image curve p lies in the upper

half-space of R3, so that r ≥ 0 always. Recall that r > 0 is equivalent to a clockwise

orientation of c or, for a closed curve, an outward normal. To construct an offset

curve we want to move the curve along the direction determined by its normal,

which we do by rotating the tangent c′ clockwise by π
2

radians and translating the

curve by the resultant vector.

For each point c(t), the ruling through c(t) of the γ-developable T (p) is in the

direction determined by the normal to c, since T (p) is the graph of the signed dis-

tance function to c (Theorem 5.2.1). We identify R3 with i, j,k-space so that R2 is

identified with i, j-space. Assume that c(t) is parameterized by arc length and write

c = (c1, c2) as c = c1i + c2j. We then can write c′ as the quaternion c′ = c′1i + c′2j

and consider the quaternion curve c′(t). We rotate c′ clockwise by π
2

radians by

multiplying by k on the right and effecting a 4-dimensional rotation. Notice that

multiplication by k on the right induces a clockwise rotation by π
2

radians in the

i, j-plane but also a counterclockwise rotation by π
2

radians in the 1,k-plane. In

dealing with planar curves, we restrict ourselves to the i, j-plane, so the rotation of

the 1,k-plane does not affect us. When dealing with all of R3, however, we must

use quaternion conjugation instead of quaternion multiplication to effect purely

3-dimensional rotations.

If we define the set A ⊂ R×H3 to be

A(λ, t) = {(λ, 1,k, c(t) + λk)|t ∈ I, λ ∈ J}, (5.1)

then the Minkowski action of A on c′ gives the γ-developable T (p) through p(t).

If c(t) is not parameterized by arc length, then we scale c′ by ‖c′‖−1 to retain the

angle γ made with R2. Our acting set thus becomes:

A =

{(
λ

‖c′(t)‖ , 1,k, c(t) + λk

)
|t ∈ I, λ ∈ J

}
. (5.2)

Since a curve can always be parameterized by arc length, it is theoretically suffi-

cient to consider only the formulation 5.1.
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Then for γ ≡ constant,A(c′) gives curves inR2 at a constant signed distance λ to

c, which we call the untrimmed offsets to c at signed distance λ. These correspond to

level curves of T (p), or horizontal slices of T (p) at height λ which are then projected

onto R2. An untrimmed offset can have self-intersections and segments which are

not distance λ from c, which must be trimmed off to form the trimmed offset to c.

Points which must be trimmed have, as their projection pre-images, coordinates

(y1, y2, λ) where there exists 0 < h < λ (or λ < h < 0) such that (y1, y2, h) is a

self-intersection point of T (p).

Trimming is an important modification of offset curves for their applications

in design. When used as decorative designs on boats, woodwork and the like,

untrimmed offsets are decidedly aesthetically displeasing. When used in computer-

aided NC (Numerically Controlled) milling, the segments of untrimmed offsets

which do not have the desired minimal distance to c represent unwanted colli-

sions between the milling tool cutter and the milled material. Another important

modification of offsets is the inclusion of curve segments to deal with cusps and

corners in the original curve c.

Definition 14 Let c(t0) be a point of the piecewise smooth curve c(t) ⊂ R2 such that

limt→t0− c′(t) = t− and limt→t0+ c′(t) = t+ exist, but that

lim
t→t0−

c′(t) 6= lim
t→t0+

c′(t).

Then c(t) has a tangent discontinuity at t0.

At points of tangent discontinuity, we fill in the gap between the two tangents t−

and t+ with coincident base point by introducing a 1-parameter family of lines

through c(t0) which interpolates t− and t+ by rotating through the smallest angle θ

between t− and t+. Letting our acting setA act on these lines adds a portion of a γ-

cone to the γ-developable T (p). Only when θ < 0 does the additional arc projected

from horizontal slices of the γ-cone contribute to the trimmed offset curve.
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Definition 15 Let c(t0) be a point of the piecewise smooth curve c(t) ⊂ R2 such that c(t0)

is not a tangent discontinuity and such that limt→t0− c′′(t) and limt→t0+ c′′(t) exist, but

that

lim
t→t0−

c′′(t) 6= lim
t→t0+

c′′(t).

Then c(t) has a curvature discontinuity at t0.

Curvature discontinuities occur, for example, where an arc smoothly joins a

straight line segment in a plane curve c. Unlike tangent discontinuities, curvature

discontinuities present no problem to computing offsets. To compute the offsets

to more general piecewise smooth curves, we apply the same principle, using the

acting set A and adding portions of γ-cones at discontinuities when needed. The

last case occurs when c is closed but not simple, as in a trace of the figure eight. In

this case, offsets in the bounded domains formed by c change in their sign of λ after

intersection points of c. Taking level curves of the γ-developable with opposite-

signed heights for each simple closed piece of c, we can construct the offsets to the

original curve.

A cardioid is an example of a closed curve with a tangent discontinuity. At the

origin, the two tangent vectors differ by a rotation of π radians. Thus, in addition

to the γ-developable through its cyclographic pre-image curve, we add half, i.e.

π radians, of a γ-cone centered at the origin before taking level curves of the γ-

developable. Trimming occurs after points of intersection of the surface and γ-cone

and after points of self-intersection.

We can also compute offsets to C1 space curves p ⊂ R3. These offsets take the

form of pipe surfaces with spine curve p. A simple action, via translation, of p(t)

on S2 scaled with radius λ produces these offset surfaces, as shown in more detail

in section 4.1.
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Figure 5.1: A cardioid and some of its trimmed offset curves

5.2.2 Offset Surfaces

A generalization of the method we used for construction of offset curves is given

for surfaces in R3, and in this section, we outline the modifications necessary to

construct offset surfaces.

Let X(u, v) be a regular surface in R3, that is, a surface which we are able to

cover with a family of diffeomorphisms from R2 onto subsets of X such that a

nonzero normal to X is locally defined for each point p ∈ X . One way in which

we might generate offset surfaces to X is by considering X as the cyclographic

image of a curve p(t) ⊂ R4, and by constructing the γ-developable though p by

considering the tangent vector p′(t), as in the case of constructing offset curves.

Another way in which we might generate offset surfaces of X is by displac-

ing the surface by a multiple of the surface normal. We choose arbitrarily to act

on Xu(u, v). Thus, we want to rotate Xu through an angle of π
2

radians in the

plane spanned by Xu and Xu ∧ Xv. Now that we have three dimensions un-

der consideration, we use quaternion conjugation to effect 3-dimensional rota-
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tions. Since we know that conjugation by a unit quaternion written in polar form

p0 = cos(θ) +up0 sin(θ) rotates the u⊥p0
plane counterclockwise by angle 2θ, we seek

p0 such that the u⊥p0
plane is the Xu,Xu ∧Xv-plane.

Thus, if we define the set A ⊂ R×H3 to be

A(λ, u, v) = {(λ,p0,p0,X(u, v) + λ)|u ∈ Iu, v ∈ Iv, λ ∈ J}, (5.3)

where p0 = 1√
2

+ 1√
2
up0 and the u⊥p0

plane is the Xu,Xu ∧ Xv-plane, then the

Minkowski action ofA on Xu gives the graph of the signed distance function to X ,

and for γ ≡ constant, A(Xu) gives surfaces in R3 at a constant signed distance λ to

X , the untrimmed offset surfaces to X at signed distance λ. Each of these corresponds

to the intersection A(Xu) ∩ E of the γ-developable A(Xu) with 3-dimensional hy-

perplane E parallel to R3, which is then projected onto R3. Untrimmed offsets can

again have self-intersections and pieces which are not distance λ from X , which

must be trimmed off to form the trimmed offset surfaces to X . Pieces which need

to be trimmed off have, as their projection pre-images, coordinates (x1, x2, x3, λ)

where there exists 0 < h < λ (or λ < h < 0) such that (x1, x2, x3, h) is a self-

intersection point of A(Xu).

Some suitably symmetric surfaces have offset surfaces which do not intersect

and hence need no trimming. Two examples of these types of surfaces are the

surfaces of revolution below. A sphere and some of its offsets are shown in Figure

5.2, and a hyperboloid of one sheet is shown with some of its offsets in Figure 5.3.
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Figure 5.2: An ellipsoid and some of its offset surfaces
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Figure 5.3: A hyperboloid and some of its offset surfaces



Chapter 6

Medial Axis Theory

6.1 Introduction

The concept of medial axis is a close cousin to the offset. Whereas an offset is the

curve or surface at a constant distance to a given curve or surface, a medial axis

is a kind of “skeleton” of a given shape, such that each point of the skeleton is

equidistant from at least two points on the boundary of the shape. Since medial

axes thus represent shapes in an intuitive and concise manner, they are one of the

most influencing constructs in computer vision today [5]. In fact, medial axes are

not only used in computer vision and robot vision, but also in the subfields of CAD

including pattern analysis, feature extraction and shape recognition, image com-

pression, tool path planning for NC (Numerically Controlled) milling machines,

computer graphics, surface fitting and FEM (Finite Element Meshing) [5], [26],[29].

Mathematically, we formulate the medial axis as follows.

Definition 16 Let Ω be a bounded domain in R2 or R3. The medial axis of Ω is the locus

of centers of the maximally inscribed circles within Ω which touch the boundary ∂Ω in at

least 2 points.

The medial axis defines a kind of symmetry for the given domain, which is why

we require contact at at least two points.

Definition 17 A circle is a maximally inscribed circle of bounded domain Ω if its inte-

rior C ⊂ Ω satisfies the following properties:

• C belongs to the set S of the open disks that do not have any points of ∂Ω
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• C is not a proper subset of any other open disk in S.

6.2 The Medial Axis Transform

One of the two basic problems in medial axis theory is: given a medial axis, how

do we reconstruct the image which it represents? The answer is given by a “width”

function for the skeleton represented by the medial axis called the medial axis trans-

form (MAT).

Definition 18 Let Ω be a bounded domain in R2 or R3. The medial axis transform of

Ω, denoted MAT(Ω), is the set of the pairs consisting of the center and the radius of the

maximal inscribed circles of Ω.

Notice that the MAT of a domain Ω ⊂ R2 has x3-coordinates given by the radii of

the maximally inscribed circles. Thus, the projection of the medial axis transform

for a domain Ω ⊂ R2 onto R2 gives the medial axis of Ω.

6.2.1 From MAT To Shape

Given the medial axis transform p(t) = (m1(t),m2(t), r(t)) in R3, t ∈ I , for the

boundary ∂Ω of a closed domain Ω in R2, we let the set

A = {(r(t), 1, 1,m(t)) | t ∈ I},

where m(t) = m1(t)i+m2(t)j, act on S1 = {ekθi | 0 ≤ θ ≤ 2π}. ThenA(S1) recreates

the domain Ω in R2 via the cyclographic map.

An analogous notion of medial axis and medial axis transform can be defined

for closed surfaces in R3. Let the medial axis transform of a closed surface ∂Ω,

bounding a connected region Ω in R3, be the 4-dimensional curve segment p(t) =

(m1(t),m2(t),m3(t), r(t)) ∈ R4 for t ∈ I . We recreate the closed surface ∂Ω which it

represents by letting the set

A = {(r(t), 1, 1,m(t)) | t ∈ I},
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Figure 6.1: The MAT for the four-leaved rose is shown in black, with the rose beneath it in dark
grey. The projected medial axis is shown in light grey.

where m(t) = m1(t)i+m2(t)j+m3(t)k, act on S2. A(S2) then reproduces the surface

∂Ω in R3.

6.2.2 From Shape to Medial Axis

The second basic problem in medial axis theory is: given a 2-dimensional or 3-

dimensional domain, what is its medial axis, and furthermore, what is its medial

axis transform? We consider the case of a 2-dimensional domain first. In form-

ing the medial axis transform from a closed curve c, we first must construct a

γ-developable. A boundary of a domain Ω in R2 may be thought of as the cy-

clographic image of a curve p ∈ R3. Recall from Section 5.2 that the γ-developable

T (p) is the graph of the signed distance function to c(p). Thus, arguments similar

to the proof of Theorem 2.3.4 can be used to show that the cyclographic image c of

a general C1 curve p ⊂ R3 is given by T (p) ∩ R2. The projection of p onto R2 is still

the evolute of c. Thinking of ∂Ω as the cyclographic image of a curve p in R3, the

MAT of Ω is simply the pre-image curve of ∂Ω.
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For domains with smooth boundaries, the medial axis is then given by self-

intersection points of T (p) whose projections onto R2 lie within Ω. As is the case

in constructing offset curves, we add parts of γ-cones at tangent discontinuities of

∂Ω. Then segments of the intersection curves of these γ-cones and T (p) comprise

prongs of the MAT when their projections onto R2 lie within Ω. These projections

form prongs of the medial axis of Ω.

There are three types of “prongs”, or terminating segments of the trimmed me-

dial axis: the maximally inscribed disks can have two points of tangency as their

limit approaches a point (a triangle), the maximally inscribed disks can terminate

in one minimal osculating circle with one tangency (and osculating) point, or the

maximally inscribed disks can terminate in one osculating circle with an arc of con-

tact (a symmetrical construct of two straight line segments joined smoothly to an

arc of a circle) [3].
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Figure 6.2: The medial axis of an ellipse is shown in light grey. The MAT for this ellipse is graphed
in black in R3 and intersects R2 at the terminal points of the medial axis.

In Section 5.2 we proved results for smooth curves in R2. In general, however,

requiring that the boundary curve ∂Ω be smooth, or C∞, is not sufficient for a well-
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behaved or even well-defined medial axis. Many examples of bounded domains

with C∞ boundaries and pathological medial axes are described in [2]. The medial

axis for such a curve can have infinitely many prongs emanating from one point, or

can have infinitely many branches. Thus, for meaningful consideration of medial

axes, we restrict the boundary curves we consider to piecewise continuous curves

with curve segments comprised of a finite number of real analytic pieces.

Unfortunately, the computation of medial axes amounts to the computation of

surface self-intersections, a nontrivial computational problem which we presently

possess no robust algorithms for solving. One area of future research, thus, is

to examine how we can apply the Minkowski action to the problem of surface

intersection computations.

6.3 Conclusion

Minkowski actions of quaternion sets were used to generate many constructs in

Laguerre geometry which apply to current problems in computer aided design.

However, this investigation was based heavily on 2-dimensional Laguerre geom-

etry and was only extended to 3-dimensional Laguerre geometry and analogous

problems in Chapters 4 and 5. Additional work should examine further properties

of the Minkowski action, analogous to the studies of Minkowski geometric alge-

bra of complex sets in [9],[10], [11],[14], and will extend results to 3-dimensional

problems in CAD.
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