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Abstract

Overturning Droplets in Thin Fluid Films

by Anand Patil

May 2001

We investigate the formation of droplets in a thin liquid film on a solid substrate

due to the combined action of surface tension and van der Waals forces. Current

models for droplet formation assume that droplets have a shallow profile. By re-

moving that assumption and numerically solving for stable droplet profiles, we

have modelled droplets that separate from the substrate on which they sit.
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Chapter 1

Introduction

Figure 1 shows the evolution of oil on a thread as detergent is added to the

water in which it is immersed. The detergent’s effect is to reduce the surface inter-

action energy between the oil and the surrounding water, making it energetically

favorable for the oil to expose relatively more of its surface to the surrounding wa-

ter and relatively less of its surface to the thread. As the surface interaction energy

is decreased, the oil film breaks up into droplets which become steeper. Eventu-

ally, the interfaces of the droplets overturn, and when surface energy is sufficiently

weak the droplets separate from the thread. In this thesis, I will investigate similar

behavior in much thinner films of 100 to 1000Å, whose dynamics are driven mainly

by surface interactions and the Van der Waals forces. In this thickness regime, sur-

face tension tends to flatten films’ surfaces, while the Van der Waals forces tend to

destabilize flat films and cause the formation of droplets.

The dynamics of very thin fluid films are generally modeled using lubrication

theory, which assumes that the films have a low aspect ratio and that their inter-

faces never become very steep. Lubrication theory clearly cannot be used to model

overturning droplets, as their surfaces are vertical in places. In addition, Bertozzi et

al. [7] have demonstrated that as precursor film depth approaches zero the height

of droplets predicted by lubrication theory becomes infinite- a highly unphysi-

cal result. The purpose of this project is to solve for equilibrium droplet profiles

and their stability without using the lubrication approximation, and thereby model
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Figure 1.1: Oil droplets being removed from a thread by detergent

overturning droplets.

1.1 Physical background

Molecules whose time-averaged dipole moment is zero can temporarily develop

dipole moments due to quantum mechanical fluctuations in their electron distri-

bution [18]. If a molecule develops a dipole moment in this fashion, its electric

field tends to induce parallel dipole moments in its neighbors, and strictly attrac-

tive intermolecular forces result. These attractive dipole-induced dipole forces are

known as the Van der Waals forces, and their magnitude can be shown to vary

with the distance r between the two molecules as 1/r7 (See appendix A) The Van

der Waals forces are generally active over distances of 100-1000Å, and they can be

the dominant bulk forces driving the dynamics of fluid films whose depth is in this

range.

We will model a fluid l sitting on a substrate s immersed in a surrounding fluid

v that is uniform in one direction and constrained in a box in the other (fig. 1.2.)

The energy of such a fluid is

E =

∫ ∫

interface

k dA +

∫ ∫ ∫

bulk

Vls + Vll + Vfv + Vsv + Vvv + Vss + VlvdV (1.1)
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Here dA is an infinitesimal surface element, dV is an infinitesimal volume element,

and k is a constant with dimensions of energy per unit area. The first integral

accounts for surface interaction energy between the fluid and the surrounding

fluid, which is proportional to the area of the interface. The surface interactions

between the fluid and substrate and the surrounding fluid and substrate are con-

stant, since the area of contact between the fluid and the substrate is constant. The

first term,Vls, under the second integral is the Van der Waals potential energy of a

differential fluid element due to its substrate, the second term Vll is its energy due

to the rest of the fluid, and so on. The bulk fluid-fluid, fluid-surrounding fluid,

and surrounding fluid-surrounding fluid energies are assumed to be very small

compared to the other energy terms due to the small surface area/volume ratio of

very thin fluid films; these will be neglected. The substrate-surrounding fluid and

substrate-substrate energies are nearly constant if the fluid is constrained in a box

and if the fluid does not deform the substrate, so they may also be dropped from

the equation. If the width of the box is L, the total remaining energy of a cross

section of the fluid is, after nondimensionalization,

E =

∫ L

0

√

1 + h2
x −

a

h2
+

b

h3
dx (1.2)

The first term is the interface length between the fluid and the surrounding fluid,

and the second two terms account for the Van der Waals fluid-substrate interaction.

The form of this interaction is derived in Appendix A.
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Figure 1.2: A liquid droplet L on a substrate S in a vapor V.



Chapter 2

The lubrication model

2.1 The analytical model

We begin our adventure by finding equilibrium fluid interfaces under the lubrica-

tion model. This model assumes that the height h and slope hx of the fluid interface

above the substrate at point x are very small, so that the differential interface length

(
√

1 + h2
x)dx may be approximated to first order as (1 + 1

2
h2

x)dx. The energy under

this model is

E =

∫ L

0

1

2
h2

x −
a

h2
+

b

h3
dx (2.1)

where the constant 1 in the approximate interface length may be ignored as it shifts

the energy by a constant.

An interface h is an equilibrium interface if the addition of a volume-preserving

perturbation εĥ to it, where ε is a vanishingly small constant, leaves the energy

E(h + εĥ) ≈ E(h) + ε
δE

δh
+

1

2
ε2 δ2E

δh2
(2.2)

unchanged to first order in ε. The term of order ε in equation (2.2) is

δE

δh
=

∫ L

0

hxĥx + ĥ
(2a

h3
−

3b

h4

)

dx

= hxĥ
∣

∣

L

x=0
+

∫ L

0

ĥ
(

−hxx +
2a

h3
−

3b

h4

)

dx

(2.3)

In order for the interface h to be stationary with respect to all volume- preserving
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x=0 x=L

h(x)

x=0 x=L

h h h
0

1 N

dx

Figure 2.1: Approximating the continuous fluid shape as a series of trapezoidal columns

perturbations ĥ, hx must be equal to zero at the box boundaries x = 0, L and the

pressure

P = −hxx +
2a

h3
−

3b

h4
(2.4)

must be constant for all values of x.

Bertozzi et al. [7] found equilibrium interfaces by solving the differential equa-

tion (2.4); we find them using a Newton-Raphson method [8], which I explain in

the next section. The advantage of this method is that it makes it easier to deter-

mine the interfaces’ stability. If the term of order ε2 in (2.2) is positive definite for

all ĥ that preserve volume and become flat at the box boundary, then h is a stable

equilibrium, and if it is not then h is unstable.

2.2 Numerical results

In order to find equilibrium interfaces numerically, we approximate the fluid as a

series of discrete fluid columns (fig. 2.1).
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If we divide the fluid into N columns of width ∆x = L
N

, then the height function

h(x) becomes a vector ~h =< h1, h2, ...hN > and the energy becomes

E = ∆x
N−1
∑

i=1

[

(1

2

hi+1 − hi

∆x

)2
+

V (hi+1) + V (hi)

2
+ λ

hi+1 − hi

2

]

− λvol (2.5)

where V is the Van der Waals potential energy and λ is a Lagrange multiplier which

constrains the fluid’s volume. The discretized version of the energy expansion (2.2)

is

E(~p + εp̂) ≈ E(~p) + εp̂ · ~F (~p) +
ε2

2
p̂T J(~p)p̂ (2.6)

where

~p =























h1

h2

...

hN

λ























, ~F (~p) =























∂E
∂h1

∂E
∂h2

...
∂E
∂hN

∂E
∂λ























, J(~p) =























∂2E
∂h2

1

∂2E
∂h1∂h2

· · · ∂2E
∂h1∂hN

∂2E
∂h1∂λ

∂2E
∂h2∂h1

∂2E
∂h2

2

· · · ∂2E
∂h2∂hN

∂2E
∂h2∂λ

...
... . . . ...

...
∂2E

∂hN∂h1

∂2E
∂hN∂h2

· · · ∂2E
∂h2

N

∂2E
∂hN∂λ

∂2E
∂λ∂h1

∂2E
∂λ∂h2

· · · ∂2E
∂λ∂hN

∂2E
∂λ2























(2.7)

The parameters ~p constitute a stationary solution if ~F , which contains the partial

derivative of the energy with respect to each element of ~p and also with respect to

λ, is zero. The stability of ~p is determined by the Jacobian matrix J ; this is discussed

further in section (3.3.) We use the Newton-Raphson method [8], an iterative root-

finding method, to bring ~F to zero:

~pk+1 = ~pk − J(~pk)−1 ~F (~pk) (2.8)

We find three classes of equilibrium solutions. One is the trivial flat solution

(fig. 2.2), ~h = h̄, the second is an unstable solution (fig. 2.3), and the third is a

stable solution, which for large volumes approximates a parabolic droplet (fig. 2.4)
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sitting on an ultra-thin film whose thickness minimizes the Van der Waals potential

energy.

dV (h)

dh
= 0 ⇒ h = hmin ≡

3b

2a
(2.9)

The bifurcation of the droplet solution is easy to explain physically: as the film

gets deeper, it eventually becomes energetically favorable for most of the film to

be pulled down to the equilibrium depth hmin. This ultra-thin film is known as the

precursor film. The remaining fluid takes on a parabolic shape because a parabola

minimizes the approximate surface energy. If the surface energy is small relative to

the Van der Waals potential, therefore, a long precursor film and tall droplet will be

energetically favorable, and if the surface energy is large the parabolic droplet will

be shallow and long, leaving a relatively small portion of the substrate covered

by precursor film. Bertozzi et al. [7] found, in addition, that as the depth of the

precursor film approaches zero the steepness and height of the parabolic droplet

approach infinity (fig. 2.5.)

2.3 Linear stability of the flat solution

The location of bifurcations from the flat solution can be computed analytically.

Perturbing the flat interface h(x) = h̄ to form h̄+ εĥ, where
∫ L

0
ĥdx = 0 and ĥx(0) =

ĥx(L) = 0 and expanding E about E(h̄),

E =

∫ L

0

ε2

2
ĥ2

x + V (h̄) + εĥ
dV (h̄)

dh̄
+

(εĥ)2

2

d2V (h̄)

dh̄2
+ O(ε3)dx (2.10)

The integral of the term of order ε is equal to zero, indicating that h = h̄ is always

a stationary solution. The terms of order ε2 contain the stability information: when

h = h̄ is stable energy increases with the amplitude ε of the perturbation and these

terms are positive, indicating that h = h̄ is a local minimum of energy. When h̄ is
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Figure 2.2: Flat solution for a=5, b=.3, L=1. Solutions are plotted for various volumes.



10

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

Figure 2.3: Unstable solution for a=5, b=.3, L=1. Solutions are plotted for various volumes.
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0
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8

Figure 2.4: Droplet solution for a=5, b=.3, L=1. Solutions are plotted for various volumes. The
precursor film, which covers the left-hand side of the substrate, is of thickness 3b

2a
= .18, and the

bulk of the fluid is contained in the parabolic droplet. The droplet retains the same shape as fluid
volume is increased.
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Figure 2.5: Each successively steeper droplet has had its precursor film thickness halved. As precur-
sor film thickness approaches zero, droplet height approaches infinity- a highly nonphysical result.
Figure taken from [7].

unstable energy decreases with ε for some perturbations ĥ and the terms of order

ε2 are not strictly positive.

Integrating the first term in eq. (2.10) by parts,

∫ L

0

ĥ2
x

2
dx =

ĥĥx

2

∣

∣

∣

∣

L

0

−
1

2

∫ L

0

ĥĥxxdx (2.11)

The first term vanishes since ĥx(0) = ĥx(L) = 0. Substituting the second term into

equation ( 2.10) and collecting the terms of order ε2 yields

∫ L

0

−ĥ

[

d2ĥ

dx2
+ ĥ

d2V (h̄)

dh̄2

]

dx (2.12)

The integrand may be written as a linear operator L whose eigenfunctions are

cos
(

nπx
L

)

:

ĥ
(

−ĥxx +
d2V (h̄)

dh̄2
ĥ
)

= ĥL(ĥ) (2.13)
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Setting the eigenvalues n2π2

L2 + d2V (h̄)

dh̄2
of this operator to zero yields the bifurcation

condition:

n2π2

L2
+

d2

dh̄2

(−a

h̄2
+

b

h̄3

)

=
h̄5n2π2

L2
− 6ah̄ + 12b = 0 (2.14)

For n = 1, L = 1, a = 5, and b = .3, there are two real-valued solutions to equation

( 2.14) at h̄ = h̄− ≈ .1200 and h̄+ ≈ 1.288. For this set of parameters, the flat solution

is stable for h̄ < h̄−, unstable for h̄− < h̄ < h̄+, and stable for h̄ > h̄+. Figure 2.6

shows the full bifurcation diagram.
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Figure 2.6: The bifurcation diagram for the lubrication model, a=5, b=.3, L=1. The x-axis is average
fluid height h̄, and the y=axis is the height h(0), h(L) of the fluid at each edge of the box. The higher
curves show h(L) at the right side of the box for each solution and the lower curves show h(0) at
the left; solid curves correspond to stable solutions, and dashed curves correspond to unstable
solutions. The line of slope 1 corresponds to the trivial flat solution (fig. 2.2.) Note that it loses
stability at h̄ = h̄

−
≈ .1200 and regains it at h̄ = h̄+ ≈ 1.288. The stable branch which bifurcates at

h̄
−

is the droplet solution (fig. 2.4), and the unstable branch which bifurcates at h̄+ corresponds to
fig. 2.3.



Chapter 3

Improving the model

3.1 A slight improvement

The first change we make to the lubrication model is to simply include the full

differential arc length, rather than the first-order approximation, in the energy in-

tegral.

E =

∫ L

0

√

1 + h2
x −

a

h2
+

b

h3
dx (3.1)

We find stationary interfaces using the Newton-Raphson method again; the proce-

dure is nearly identical to that discussed in the previous section.

The stability analysis for the flat solution is also identical, since in the neigh-

borhood of the flat solution the full arc length can indeed be approximated to first

order without error. The lower bifurcation appears to be subcritical in general,

but the ’corner’ is difficult to trace (fig. 3.3) using this numerical method. In or-

der to find the droplet branch (fig 3.2,) we follow the supercritical unstable branch

through increasing volume until it turns around in a fold bifurcation, then per-

turb it strongly and decrease volume. The shape of the droplets is approximately

circular rather than parabolic, as circles minimize the exact arc length.

We can now change the magnitude of the surface energy relative to the Van der

Waals energy in order to see if the droplets’ shape becomes steeper like the shape

of the oil droplets pictured in chapter 1. Indeed, as the relative magnitude of the

surface energy decreases, the droplet branch becomes steeper (fig. 3.4.) Eventually,

the interface becomes nearly vertical and the method fails to converge for weaker
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Figure 3.1: Unstable solution branch using exact arc length, a = 1, b = .5, L = 20. Solutions are
plotted for various volumes.
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Figure 3.2: Droplet solution branch for exact arc length, a = 1, b = .5, L = 20. Note that the droplets
are approximately circular and not parabolic. Solutions are plotted for various volumes. The depth
of the precursor film is still hmin = 3b

2a
= .75.
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Figure 3.3: A bifurcation diagram for exact arc length, a=1, b=.5, L=20. Average interface height is
plotted on the x-axis, and fluid height h(0) and h(L) at each side of the box is plotted on the y-axis.
Solid curves correspond to stable solutions, and dashed curves correspond to unstable solutions.
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Figure 3.4: Droplet solution for a constant volume as surface energy decreases. When surface
energy becomes sufficiently weak, the interface becomes nearly vertical and the method fails to
converge to a stationary solution if the surface energy is weakened further.



20

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

Figure 3.5: Unstable branch for various volumes at a constant, weak surface energy. The interface
resembles a smooth curve that has been broken and shifted along a nearly vertical line



21

surface energy. The unstable branch also behaves strangely for weak surface en-

ergy (fig. 3.5;) the interface appears to be broken and shifted along a near-vertical

line. Both of these behaviors suggest that for sufficiently weak surface energy the

droplet branch and the unstable branch overturn; that is, h(x) becomes a multi-

valued function of x. This numerical model, which assumes that the fluid is com-

posed of narrow columns, is clearly unable to accomodate such solutions.

Note that the different curves in fig. 3.4 correspond to different surface energy

strengths at constant volume, while the different curves in fig. 3.5 correspond to

different volumes at a constant, weak surface energy. I present the data in this

fashion because decreasing surface energy strength moves the high-volume bifur-

cation point h+ to a higher volume. This tends to reduce the interface amplitude of

the unstable solution branch as the weakening surface energy increases it, making

it difficult to effectively show the strangeness of the branch’s behavior on a single

plot.

3.2 A major improvement

In order to allow the fluid to overturn, we parametrize the fluid interface by arc

length t rather than by x. Instead of a single function h(x), the arc length-parametrized

interface is described by two functions h(t) and x(t) (fig. 3.6.)

E =

∫ T

0

√

x2
t + h2

t −
[ a

h(t)2
+

b

h(t)3

]

xt dt (3.2)

When the fluid interface is discretized and represented by N points (h1, x1)...(hN , xN),

another numerical challenge arises; allowing each point to ’float’ freely underspec-

ifies the problem, as shifting a point along an equilibrium interface leaves energy

unchanged. This can be remedied by constraining the spacing between each point

to the common, but variable, length l using N − 1 Lagrange multipliers k1...kN :



22

E =
N−1
∑

i=1

(

l +
(V (hi+1) + V (hi)

2

)

(xi+1 − xi)

+ ki

(

(hi+1 − hi)
2 + (xi+1 − xi)

2 − l2
)

+ λ(xi+1 − xi)
(hi+1 + hi

2

)

)

− λvol

(3.3)

h ,x h ,xl1 N1 N
l

l

l

l

l
l

l

l

l
l l

Figure 3.6: Approximating the fluid as a series of columns does not allow for overturning interfaces,
but parametrizing the interface by arc length does. The spacing between each point is constrained
to the common, but variable, value l.
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3.3 Numerics

The problem now becomes to find values p∗ of the new vector ~p such that the new

vector ~F (~p) is zero. We solve the problem by using the Newton- Raphson method,

as before.
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(3.4)

The Jacobian matrix J(~p), which I have not shown due to its size, is expanded to

include mixed partial derivatives with respect to the new parameters ~x, ~k, and l.

The x coordinates of the boundary points, x1 and xN , are not allowed to change;

if they were, translating the solution along the x axis would leave the energy un-

changed and the Jacobian would become singular, rendering the Newton-Raphson

method useless.

The linear stability analysis for the flat solution is still the same as in chapter

2, but in order to extract matching stability information from the numerical code

we must take another step. The Jacobian matrix is the discretized equivalent of the
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linear operator L in equation (2.13,) but the Jacobian’s eigenvalues vj and eigen-

vectors p̂j , which are composed of ĥj,i=1..N , x̂j,i=2..N−1, k̂j,i=1..N−1, l̂j , and λ̂j , obey

the eigenvalue equation

Jp̂j = vj p̂j (3.5)

These do not necessarily correspond to eigenvectors and eigenvalues of L, as the

derivation of L assumes that all perturbations obey the same constraints and bound-

ary conditions as the solutions they perturb. In order to obtain the correct eigen-

values and eigenvectors from the numerical code, the Jacobian’s eigenvectors must

be forced to obey the constraints:

k̂j,i

(

(ĥj,i+1 − ĥj,i)
2 + (x̂j,i+1 − x̂j,i)

2 − l̂2j
)

= 0

λ̂j

( ĥj,i+1 + ĥj,i

2

)

− λ̂jvol = 0

(3.6)

The first derivative of the energy of a perturbed fluid interface dE(p∗+εp̂j)

dcm |cm=c∗m

with respect to c∗m, which is one of the constraint parameters k∗

1..N , λ∗ corresponding

to the stationary solution p∗, can be expanded to give

∂E(p∗ + εp̂j)

∂cm

∣

∣

∣

∣

cm=c∗m

=
∂E(p∗)

∂cm

∣

∣

∣

∣

cm=c∗m

+ εp̂j

(∂2E(p∗)

∂p1∂cm

+ ...
)

∣

∣

∣

∣

cm=c∗m,~p=p∗

+ O(ε2) (3.7)

The first term is equal to zero for stationary solutions, and the term of order ε con-

tains the contribution of the perturbation to the constraint energy up to the order

of the second variation of the energy. This term is simply the perturbing vector p̂

multiplied by the row of the Jacobian that contains the mixed partial derivatives

involving cm. In order to force the eigenvectors of the Jacobian to obey the con-

straints, therefore, it is necessary to use the modified eigenvalue equation

J(p∗)p̂j = vjBp̂j (3.8)
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where B is an identity matrix of the same size as the Jacobian with diagonal ele-

ments whose indices corresponding to constraint parameters have been zeroed:
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(3.9)

The eigenvalues and eigenvectors of the stability operator L for a flat interface of

height h̄ in a box of length L parametrized using N gridpoints are

ĥ(x) = cos
(nπx

L

)

⇒ x̂j,i ≈ (i − 1)
L

N − 1
, ĥj,i = cos

(jπx̂j,i

L

)

vj =
h̄5j2π2

L2
− 6ah̄ + 12b

(3.10)

The numerical eigenvalues and some samples of the h components of the eigen-

vectors of equation (3.8) for h̄ = 2, L=20, N = 51, a = 1, b = .5 are shown in figures

3.7, 3.8, and 3.9, respectively. The eigenvalues corresponding to small values of j in

equations (3.10) agree with theory up to a factor of N +2; we’re not sure where this

factor comes from, but we hope to find it soon and at any rate it doesn’t change the
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locations of the bifurcation points. The eigenvalues corresponding to higher values

of j deviate from the predicted parabolic spectrum because the higher-frequency

eigenvectors cannot be accurately represented due to the finite number of points

available.



27

0 5 10 15 20 25 30 35 40 45 50
−2

0

2

4

6

8

10

Figure 3.7: The eigenvalue spectrum is accurate up to a factor of N + 2 for low-frequency eigenvec-
tors. Each constraint-obeying eigenvalue vj of the Jacobian is plotted against its index j.
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Figure 3.8: The low-frequency eigenvectors are cosines, as predicted. The h components ĥ1,i=1..N

are plotted against their indices i. The eigenvectors appear to have nonzero slope at the boundaries
because Matlab has ininterpolated ĥ1,i=1..N using cubic splines.
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Figure 3.9: The eigenvalue spectrum deviates from theory for high-frequency eigenvectors because
these eigenvectors cannot be accurately represented due to the finite grid size. The h components
ĥj,i=1..N of the eigenvector are plotted against their indices i.



Chapter 4

Results and conclusion

4.1 Qualitative results

After checking to make sure that the arc length-parametrized code agrees with

the x-parametrized code for values of a, b, and L which do not give rise to any

overturning solution branches (a typical bifurcation diagram and the stability of

the constituent branches are plotted in figs. 4.1 and 4.2, respectively,) we begin to

use the arc length- parametrized code to explore solution branches and parameter

ranges which have been inaccessible until now.

For appropriate choices of a, b, and L, all three non-flat solution branches can

overturn (the subcritical bifurcation from the flat solution is traceable using arc

length parametrization.) Figs. 4.3, 4.4, and 4.5 are examples of the strange and

beautiful plots that can result when the subcritical unstable branch, the droplet

branch, and the supercritical unstable branch, respectively, are made to overturn.

Note that these three plots are not related to each other. They were generated using

different initial parameters, and the droplet branch is plotted at constant volume

and various surface energy strengths while the unstable branches are plotted at

constant surface energy strength and various volumes for the reason discussed in

section 3.1.

The droplet solution approximates a portion of a circle sitting on a precursor

film whose depth is equal to the equilibrium depth hmin of the Van der Waals po-

tential. The two parts of the solution are smoothly connected by a ’foot,’ which

is a subject of further research interest. If the magnitudes of the energy terms are
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Figure 4.1: A bifurcation diagram for the arc length parametrized code, a = 1, b = .5, L = 10.
The Average fluid height is plotted on the x-axis, and the heights h(0) and h(L) of the stationary
interfaces at the edges of the box are plotted along the y-axis. Solid lines correspond to stable
solutions, and dashed lines correspond to unstable solutions.
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Figure 4.2: The smallest eigenvalue of the Jacobian matrix for the four solution branches. The
stability of the droplet solution and the unstable branches that connect it subcritically and super-
critically to the flat solution are plotted in blue, and the flat solution is plotted in red. Average fluid
height h̄ is plotted on the x-axis. The flat solution is stable for low h̄, but it becomes unstable at
the first bifurcation point, h̄

−
≈ 1.00. The subcritical unstable branch becomes more unstable with

decreasing volume, then folds into the droplet branch, which becomes gradually less stable as vol-
ume increases. The droplet branch eventually folds into the supercritical unstable branch, which
becomes an equilibrium solution when the droplet regains its stability at h̄+ ≈ 3.65.
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Figure 4.3: The unstable branch that connects the droplet branch subcritically to the flat solution
overturning. This plot was generated using a = 100, b = 53, and L = 1, and steeper solutions
correspond to lower volume.
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Figure 4.4: The droplet branch overturning for L = 20, h̄ = 3.65, and a and b decreasing from 1 and
.5, respectively. Steeper solutions correspond to weaker surface energy.
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Figure 4.5: The unstable branch that connects the droplet branch subcritically to the flat solution
overturning. This plot was generated using a=5, b=.3, and L=1, and larger solutions correspond to
higher volume.
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held constant and the volume of the film is increased, the droplet tends to keep its

shape, and in particular the slope of the interface at the base of the droplet does not

change appreciably, but the circular portion increases in size (fig. 3.2.) The droplet

branch is stable as volume increases until the droplet foot encounters the wall of

the box, at which point it merges with the supercritically bifurcated unstable solu-

tion.

If the surface energy is decreased (or, equivalently, if both Van der Waals terms

are increased) (fig. 4.4,) the droplet pulls away from the surface and its foot is

drawn inward (making the droplet stable over a greater range of volume.) The

points at the droplet foot tend to become sparse relative to the foot’s high curva-

ture for overturning droplets, making it numerically difficult to follow the droplet

branch to very weak surface energies. It is also extremely difficult to ’round cor-

ners’ of the bifurcation diagram when the solutions overturn; so far, we have only

been able to overturn the droplet branch by finding a relatively flat droplet and

then following it through decreasing surface energy.

4.2 Quantitative results

In order to quantify these observations of the droplet branch, we need a measure

of the ’pulled-awayedness’ of the droplet from the surface. One such measure that

is very often used in analysis of droplets that sit on a completely dry surface is

contact angle (fig. 4.6) [18], but the droplets produced by our model are smoothly

connected to the precursor film in such a way that the slope of the interface is con-

tinuous everywhere; the interface never actually contacts the substrate, nor does

it ever make a sharp contact angle with the precursor film. After observing that

the interface at the droplet foot is concave up while the interface of the droplet it-

self is concave down, we define the contact angle θ of the droplet as the angle that

the tangent to the interface makes with the horizontal directly above the inflection
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point between foot and droplet (figure 4.7.) The reason for this choice of contact

angle is that it seems to be just above the droplet foot, and just at the base of the

droplet proper.

Young’s Law is a famous result governing the contact angle that droplet inter-

faces make with otherwise dry substrates:

1 − cos(θ) =
W

Esurface

(4.1)

where θ is the contact angle and W is the adhesion energy per unit area between

fluid and substrate [18]. Our model certainly preserves equation (4.1)’s y-intercept;

if the surface energy is strong enough, the flat solution never loses its stability and

the contact angle is π for all fluid volumes. Figure 4.8 shows the relationship be-

tween cos(θ) and 1
Esurface

. The relationship is approximately linear to well past the

point of overturning; the slope of the fitline is −.3982, and the y-intercept is 1.0646.

We have not been able to explain the slope of the line analytically, but the small de-

viation of the y- intercept from 1 is to be expected. The relationship appears to be

very slightly concave down, and we know that the near-linear relationship cannot

hold for all surface energies, since the surface energy required to keep the flat so-

lution stable for all volumes is finite. The relationship between cos(θ) and 1
Esurface

will deviate strongly from linear as surface energy approaches this critical value,

since the droplet branch in this regime will tend to be very long and shallow. When

the droplet interface becomes low, the Van der Waals potential has a significant ef-

fect on the shape of the bulk of the droplet. In other words, the droplet becomes

’all foot’ rather than a well-defined circular droplet connected by a small foot to

a well- defined precursor film, and small increases in droplet height due to relax-

ing surface energy will sharply decrease the Van der Waals forces at the interface.

When surface energy is greater than the critical value, the relationship plotted in

fig. 4.8 becomes horizontal, since the flat solution is the only equilibrium solution.

One of the major motivations for developing this model was the lubrication
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Figure 4.6: The contact angle of a droplet is the angle that its surface makes with the substrate at
the droplet base. Droplets that sit on a precursor film have no such contact angle.
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Figure 4.7: We define the contact angle as the angle that the droplet surface makes with the hori-
zontal at the inflection point between the droplet’s foot and the rest of the droplet. Our intent is to
measure the angle of the interface just above the boundary layer where the Van der Waals energy
and the surface energy commingle.
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Figure 4.8: The cosine of the contact angle is plotted on the y-axis, and 1

Esurface
is plotted along

the x-axis for a = 1, b = .5, and L = 20. The slope of the fitline is −.3982, and the y-intercept is
1.0646 It is somewhat surprising that the y-intercept should be anything other than 1 exactly, since
if surface energy is sufficiently high the flat solution never loses stability. The relationship appears
very slightly concave down, and we expect a strong deviation from linear for very strong surface
energy.
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model’s prediction that droplet height approaches infinity as the precursor film

depth is reduced. In order to see whether this model remedies that problem, we

investigate the behavior of the droplet profiles for progressively shallower precur-

sor films. We drive precursor depth down by reducing b, the repulsive term in

the Van der Waals potential. Figure 4.9 shows droplet profiles as b is reduced, and

figure 4.10 shows the relationship between droplet height and 1
hmin

= 2a
3b

. Like the

lubrication model, this model appears to predict that droplet height approaches

infinity as hmin approaches zero. However, the droplet’s foot penetrates the right-

hand sidewall! The droplet has pinched off and separated from the precursor film,

much like the oil droplets pictured in chapter 1. This prediction is far more physi-

cally believable than droplets whose height increases without bound.

4.3 Conclusion

Our attempt to model overturning droplets has been a success. We have found

that Van der Waals forces between a thin fluid film and the substrate it sits on

and surface interaction between the film and a surrounding fluid can cause the

film to break up into droplets sitting on a very thin precursor film. The depth of

this precursor film minimizes the precursor film-substrate Van der Waals energy,

and the droplet tends to take on a circular shape, which minimizes surface en-

ergy. The droplet and precursor film are connected by a smooth ’foot,’ a boundary

layer where the Van der Waals energy and surface interaction energy are of com-

parable magnitude. If the surface interaction is sufficiently weak the droplet can

overturn and eventually pinch off from its precursor film. The cosine of the angle

that the droplet interface at the inflection point between foot and droplet makes

with the vertical is roughly inversely proportional to the magnitude of the sur-

face interaction if the magnitude of the surface interaction is sufficiently small. For

very strong surface interactions we expect a deviation from this near-linear rela-
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Figure 4.9: As the Van der Waals constant b is decreased, the depth of the precursor film decreases in
proportion. Steeper droplets correspond to shallower precursor films. The droplet’s foot eventually
intersects the sidewall, pinching the droplet off from the precursor film.
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Figure 4.10: One over precursor depth, 1

hmin
= 2a

3b
, is plotted on the x-axis, and the droplet’s height

h(L) at the box boundary is plotted on the y-axis. Our droplets’ height increases without bound
like those predicted by lubrication theory, but they pinch off and separate from the substrate at
finite precursor height.
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tionship. The model also predicts that decreasing precursor depth leads to droplet

pinch-off rather than arbitrarily tall droplets, solving one of the major problems of

the lubrication approximation.

4.4 Future work

I will be continuing work on this problem with Professor Bernoff this summer. The

first thing we will do will be to allow point spacing to vary over the interface so

that more points can be allocated at the droplet foot, where the interface is highly

curved. This change should make it easier to follow the droplet branch as precur-

sor depth and surface energy decrease, and it will certainly make it much easier

to measure the contact angle accurately. Hopefully, we will be able to obtain more

extensive and accurate data on the relationships between contact angle, droplet

height, and the relative magnitudes of the energy terms.

When we have obtained satisfactory numerical data, we’ll work on analysis.

By the end of the summer, we would like to develop an understanding of the

aforementioned relationships based on the analytical energy formulation. This

will almost certainly require analytical modeling of the droplet foot by asymptotic

matching.

After we understand this problem completely, we’ll solve it for the axisymmet-

ric geometry. This will require weighting the energy integral by the radius r.

E =

∫ R

0

[
√

1 + h2
r − (

a

h2
+

b

h3
)
]

r dr

=

∫ s(R)

0

[
√

r2
s + h2

s − (
a

h2
+

b

h3
)
]

rsr ds

(4.2)

where s is the arc length along a radial cross-section. Changing the numerical code

to use this energy formulation will be simple, but the analytical problem and the

results will probably change significantly. In particular, the eigenfunctions of the
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linear stability operator Ψ will become Bessel functions rather than cosines. The

solutions to this problem will also carry more physical import than the planar-

geometry solutions, since ridges of fluid tend to be unstable with respect to long-

wave lateral perturbations and break up into axisymmetric droplets [14]. In addi-

tion, the axisymmetric model will allow us to capture the dynamics of the droplet

pinch-off, which is perhaps our most important result.



Appendix A

Appendix A: Derivation of Van der Waals potentials

A.1 Dipole- induced dipole energy of interaction between a dipole and a po-

larizable molecule

The magnitude of an electric field a distance r away from a molecule with dipole

moment ~p along the dipole axis is

~E =
p

2πε0r3
(A.1)

This dipole will induce a dipole moment in a neighboring molecule of polarizabil-

ity α of

pα =
−αp

2πε0r3
(A.2)

Approximating the induced dipole as two point charges q and −q and linearizing

the electric field over the small distance l between them, the magnitude of the

attractive force between the dipole and the induced dipole is

p + -
l

r

Figure A.1: Interaction between a dipole and an induced dipole
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D
θr

r

Figure A.2: A dipole and a polarizable half- space

F ≈ ql
dE

dr
≈ αE

dE

dr
=

−3p2

4π2ε2
0r

7
(A.3)

and the energy of interaction is

w(r) =

∫ r

∞

−3p2dr′

4π2ε2
0′r

7
=

−p2

8π2ε2
0r

6
(A.4)

While this derivation is heuristic, it yields the correct scaling behavior for the

dependence of w(r) on r [13].

A.2 Energy of interaction between a dipole and a polarizable half-space

Absorbing all constants in equation (A.4) into a single constant C and working

in cylindrical coordinates r, z, and θ, the net energy of interaction between and

a polarizable half-space containing ρ molecules per unit volume separated by a

distance D is [18]

w(D) = −Cρ

∫ 2∗π

θ=0

∫

∞

z=0

∫

∞

r=0

rdrdx

(z2 + r2)3
=

2πCρ

4

∫

∞

z=D

dz

z4
= −

2πCρ

12D3
(A.5)
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A.3 Energy of interaction between a polarized fluid and a polarizable half-

space

In equilibrium, the pressure P at the surface of a fluid film must be the same over

the entire film:

P = f(h(x, y)) −

∫ h

0

dw(z(x, y))

dz
dz (A.6)

where f(h(x, y)) includes pressure due to surface tension and any other sources

and w(z(x, y)) is the dipole-half space potential found in the last section. This

implies that the Van der Waals energy per unit area of a fluid of height h(x, y)

is equal to

−

∫ h

0

∫ h

0

dw(z(x, y))

dz
dzdz = −

∫ h

0

w(z(x, y))dz (A.7)

Integrating the potential energy found in the last section from z = 0 will yield

infinity. This problem can be circumvented by integrating from some small height

δ which is guaranteed to be less than the height of the fluid; the energy of the

fluid between z = 0 and z = δ is then common to all of the fluid and may be

omitted from the energy. However, guaranteeing the existence of δ requires adding

a repulsive term of the form 1/rn where n is greater than 6 to the dipole-dipole

potential Note that this term also provides a ’hard-core repulsion’ between two

dipoles and prevents the distance between them from going to zero.

Again absorbing all constants in Equation A.4 into a single constant C, the en-

ergy of interaction between a polarized fluid and a polarizable half space with ρ

molecules per unit volume can be found by integrating the result found in the last

section plus a repulsive term from δ to h(x, y), the height of the fluid.

−
2πCρ0ρ1

12

∫

∞

x=−∞

∫

∞

y=−∞

∫ h(x,y)

z=δ

−
1

z3
+

1

zn
dzdxdy =

∫

∞

x=−∞

∫

∞

y=−∞

W (h(x, y))dxdy

(A.8)
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r



h(x,y)

x y
z

Figure A.3: A polarized fluid interacting with a polarizable half-space
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This will be infinite, but the energy of interaction per unit surface area is finite.

Neglecting the constant terms involving delta, W (h(x, y))is equal to

1/6πCρ

(

1/2
n − 1

2(−1 + n)(h(x, y))2
−

1

(h(x, y))n−1(−1 + n)

)

(A.9)
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