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Abstract

Genetic Algorithms and the Traveling Salesman Problem

by Kylie Bryant

December 2000

Genetic algorithms are an evolutionary technique that use crossover and mutation

operators to solve optimization problems using a survival of the fittest idea. They

have been used successfully in a variety of different problems, including the trav-

eling salesman problem.

In the traveling salesman problem we wish to find a tour of all nodes in a

weighted graph so that the total weight is minimized. The traveling salesman

problem is NP-hard but has many real world applications so a good solution would

be useful.

Many different crossover and mutation operators have been devised for the

traveling salesman problem and each give different results. We compare these

results and find that operators that use heuristic information or a matrix represen-

tation of the graph give the best results.
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Chapter 1

Introduction

Genetic algorithms are a relatively new optimization technique which can be

applied to various problems, including those that are NP-hard. The technique does

not ensure an optimal solution, however it usually gives good approximations in

a reasonable amount of time. This, therefore, would be a good algorithm to try on

the traveling salesman problem, one of the most famous NP-hard problems.

Genetic algorithms are loosely based on natural evolution and use a “survival

of the fittest” technique, where the best solutions survive and are varied until we

get a good result. We will explain genetic algorithms in detail, including the var-

ious methods of encoding, crossover, mutation and evaluation in chapter 2. This

will also include the operations used for the traveling salesman problem.

In chapter 3 we will explore the traveling salesman problem, what it is, real

world applications, different variations of the problem and other algorithms and

methods that have been tried.

Finally, in chapter 4 we will compare and contrast the different applications of

genetic algorithms to the traveling salesman problem. In particular we will com-

pare, where possible, their results for problems of specific sizes.



Chapter 2

Genetic Algorithms

2.1 Introduction

Genetic algorithms are an optimization technique based on natural evolution. They

include the survival of the fittest idea into a search algorithm which provides a

method of searching which does not need to explore every possible solution in the

feasible region to obtain a good result. Genetic algorithms are based on the natural

process of evolution. In nature, the fittest individuals are most likely to survive

and mate; therefore the next generation should be fitter and healthier because they

were bred from healthy parents. This same idea is applied to a problem by first

’guessing’ solutions and then combining the fittest solutions to create a new gen-

eration of solutions which should be better than the previous generation. We also

include a random mutation element to account for the occasional ’mishap’ in na-

ture.

The genetic algorithm process consists of the following steps:

• Encoding

• Evaluation

• Crossover

• Mutation

• Decoding

A suitable encoding is found for the solution to our problem so that each pos-

sible solution has a unique encoding and the encoding is some form of a string.

The initial population is then selected, usually at random though alternative tech-
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niques using heuristics have also been proposed. The fitness of each individual

in the population is then computed; that is, how well the individual fits the prob-

lem and whether it is near the optimum compared to the other individuals in the

population. This fitness is used to find the individual’s probability of crossover. If

an individual has a high probability (which indicates that it is significantly closer

to the optimum than the rest of its generation) then it is more likely to be cho-

sen to crossover. Crossover is where the two individuals are recombined to create

new individuals which are copied into the new generation. Next mutation occurs.

Some individuals are chosen randomly to be mutated and then a mutation point

is randomly chosen. The character in the corresponding position of the string is

changed. Once this is done, a new generation has been formed and the process is

repeated until some stopping criteria has been reached. At this point the individual

which is closest to the optimum is decoded and the process is complete.

2.2 Basic Explanation

Genetic algorithms range from being very straightforward to being quite difficult

to understand. Before proceeding, a basic explanation is required to understand

how genetic algorithms work. We will use the following problem throughout this

section. We want to maximize the function f = −2x2 + 4x− 5 over the integers in

the set {0, 1, . . . , 15}. By calculus or brute force we see that f is maximized when

x = 1.

2.2.1 Encoding

The encoding process is often the most difficult aspect of solving a problem using

genetic algorithms. When applying them to a specific problem it is often hard to

find an appropriate representation of the solution that will be easy to use in the

crossover process. Remember that we need to encode many possible solutions to
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create a population. The traditional way to represent a solution is with a string of

zeros and ones. However genetic algorithms are not restricted to this encoding, as

we will see in section 2.4. For now we will use a binary string representation.

Consider the problem defined above. Our possible solutions are obviously just

numbers, so our representation is simply the binary form of each number. For

instance, the binary representations of 12 and 7 are 1100 and 0111 respectively.

Note that we added a zero to the beginning of the string 0111 even though it has

no real meaning. We did this so that all the numbers in the set {0, . . . , 15} have the

same length. These strings are called chromosomes and each element (or bit) of the

string is called a gene.

We now randomly generate many chromosomes and together they are called

the population.

2.2.2 Evaluation

The evaluation function plays an important role in genetic algorithms. We use the

evaluation function to decide how ’good’ a chromosome is. The evaluation func-

tion usually comes straight from the problem. In our case the evaluation function

would simply be the function f = −2x2 + 4x − 5, and because we are trying to

maximize the function, the larger the value for f , the better. So, in our case, we

would evaluate the function with the two values 7 and 12.

f(7) = −71

f(12) = −241

Obviously 7 is a better solution than 12, and would therefore have a higher fitness.

This fitness is then used to decide the probability that a particular chromosome

would be chosen to contribute to the next generation. We would normalize the

scores that we found and then create a cumulative probability distribution. This is

then used in the crossover process.
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The stopping criteria is used in the evaluation process to determine whether or

not the current generation and the best solution found so far are close to the global

optimum. Various stopping criteria can be used, and usually more than one is

employed to account for different possibilities during the running of the program:

the optimal solution is found, the optimal solution is not found, a local optimum

is found, etc. The standard stopping criteria that is used stops the procedure after

a given number of iterations. This is so that if we do not find a local optimum or a

global optimum and do not converge to any one point, the procedure will still stop

at some given time. Another stopping criteria is to stop after the “best” solution has

not changed over a specified number of iterations. This will usually happen when

we have found an optimum - either local or global - or a point near the optimum.

Another stopping criteria is when the average fitness of the generation is the same

or close to the fitness of the ’best’ solution.

2.2.3 Crossover

Crossover can be a fairly straightforward procedure. In our example, which uses

the simplest case of crossover, we randomly choose two chromosomes to crossover,

randomly pick a crossover point, and then switch all genes after that point. For

example, using our chromosomes

v1 = 0111

v2 = 1100

we could randomly choose the crossover point after the second gene

v1 = 01 | 11

v2 = 11 | 00
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. Switching the genes after the crossover point would give

v′
1 = 0100 = 4

v′
2 = 1111 = 15

We now have two new chromosomes which would be moved into the next popu-

lation, called the next generation.

Not every chromosome is used in crossover. The evaluation function gives each

chromosome a ’score’ which is used to decide that chromosome’s probability of

crossover. The chromosomes are chosen to crossover randomly and the chromo-

somes with the highest scores are more likely to be chosen. We use the cumulative

distribution created in the evaluation stage to choose the chromosomes. We gener-

ate a random number between zero and one and then choose which chromosome

this corresponds to in our distribution. We do this again to get a pair, then the

crossover is performed and both new chromosomes are moved into the new gen-

eration. This will hopefully mean that the next generation will be better than the

last - because only the best chromosomes from the previous generation were used

to create this generation. Crossover continues until the new generation is full.

It is possible to check each new chromosome to make sure it does not already

exist in the new generation. This means that we will get a variety of possible so-

lutions in each generation, but also that once we have found the optimal solution

in one chromosome, the other chromosomes will probably not be optimal. That

means that the average fitness of the generation can never be as good as the fitness

of the optimal chromosome, which could make deciding when to stop difficult.

It is also possible to move the best solution from the previous generation di-

rectly into the new generation. This means that the best solution can never get any

worse since even if on average the generation is worse, it will still include the best

solution so far.

We can also have two point crossover. In this case we randomly choose two



7

crossover points and switch the genes between the two points. In our problem we

could pick the points after the first gene and after the third gene.

v1 = 0 | 11 | 1

v2 = 1 | 10 | 0

to get

v′′
1 = 0101 = 5

v′′
2 = 1110 = 14

There are many different crossover routines, some of which will be explored

later. We often need to change the crossover routine to make sure that we do not

finish with an illegal chromosome - that is, an infeasible solution. In this way,

crossover is very problem specific.

2.2.4 Mutation

Mutation is used so that we do not get trapped in a local optimum. Due to the

randomness of the process we will occasionally have chromosomes near a local

optimum but none near the global optimum. Therefore the chromosomes near the

local optimum will be chosen to crossover because they will have the better fitness

and there will be very little chance of finding the global optimum. So mutation is a

completely random way of getting to possible solutions that would otherwise not

be found.

Mutation is performed after crossover by randomly choosing a chromosome in

the new generation to mutate. We then randomly choose a point to mutate and

switch that point. For instance, in our example we had

v1 = 0111
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If we chose the mutation point to be gene three, v1 would become

v′
1 = 0101

We simply changed the 1 in position three to a 0. If there had been a 0 in position

three then we would have changed it to a 1. This is extremely easy in our example

but we do not always use a string of zeros and ones as our chromosome. Like

crossover, mutation is designed specifically for the problem that it is being used

on.

Inversion is a different form of mutation [1]. It is sometimes used in appro-

priate cases and we will investigate some of these later. Here we will explain the

inversion operator on our basic example.

The inversion operator consists of randomly choosing two inversion points in

the string and then inverting the bits between the two points. For example

v2 = 1100

We could choose the two points after gene one and after gene three.

v2 = 1 | 10 | 0

Now, since there are only two genes between our inversion points, we then switch

these two genes to give

v′
2 = 1010

If we had a larger chromosome, say

v3 = 110100101001111

we could choose the inversion points after the third point and after the eleventh

point.

v3 = 110 | 10010100 | 1111
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Now, we start at the ends of the ’cut’ region and switch the genes at either end

moving in. So we get

v′
3 = 110001010011111

Essentially we are just reversing (or inverting) the order of the genes in between

the two chosen points.

2.3 Prisoner’s Dilemma

Another completely different application of genetic algorithms is the prisoners’

dilemma given in [7].

The prisoners’ dilemma is a game where two prisoners are held in separate cells

and cannot communicate. Each is asked to defect and betray the other and must

decide whether to do so rather than cooperating with the other prisoner. If one

prisoner defects he receives five points and the other receives zero. However, if

both prisoners defect they each receive only one point. If both players cooperate

they each receive three points. The problem that we wish to solve is to come up

with a strategy to play the game successfully. Michalewicz ([7]) has devised an

algorithm to do this. He uses the past three plays to decide what to do for the

current play. Each history then consists of three combinations of C and D, ie, CC,

CD, DC or DD, so there are 4 × 4 × 4 = 64 different histories. Each player has

a particular set play for each of these different histories, and together these plays

will give a strategy (or chromosome) also of length 64. For instance, if we had the

histories

. . . , (CD)(DC)(CC), (DD)(DC)(CD), (CD)(CD)(CD), . . .

then the chromosome could look like

. . . , C, C, D, . . .
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meaning that if the history happened to be (CD)(DC)(CC) this player would co-

operate on the next turn. If the history was (DD)(DC)(CD) the player would also

cooperate on the next turn, but if the history was (CD)(CD)(CD) the player would

defect on the next turn.

Now we can find a play for each different history but what happens at the start

of the game when there is no history? Each different player (or chromosome) is

given an hypothetical history so that it can generate its first play. That is, we add

six more genes to the start of the chromosome to act as the ’last’ three plays. The

player then uses the play that has been assigned to that particular history. So we

end up with a string of 70 genes as our chromosome.

The fitness of each chromosome is found by playing against other players. The

usual one or two point crossover works for these chromosomes and mutation is

also just the usual mutation routine. Notice that the chromosomes are simply bi-

nary strings but we have the letters C and D rather than the binary digits 0 and

1.

2.4 Encoding

In this section we will investigate possible ways to encode different problems. In

particular, the traveling salesman problem will be examined.

We have already seen the basic way of encoding a problem using a string of

zeros and ones, which represent a number in its binary form. We can also use a

string of letters, for example ABCDE, or a string of integers, 12345, or just about any

string of symbols as long as they can be decoded into something more meaningful.

Imagine we had a problem involving a graph and we needed to encode the

adjacency list of the graph. We could create the adjacency matrix, which consists

of a one in the i, jth position if there is an arc from node i to node j and a zero

otherwise. We could then use the matrix as is or we else could concatenate the
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rows of the matrix to create one long string of zeros and ones. Notice this time,

however, the string is not a binary representation of a number.

This leads us to the first method of encoding a tour of the traveling salesman

problem. We do have a graph such as the one described above and we can encode

it in the same way, only our matrix will have a one in the i, jth position if there is

an arc from node i to node j in the tour and a zero otherwise. For example, the

matrix 
0 0 1

1 0 0

0 1 0


represents the tour that goes from city 1 to city 3, city 3 to city 2 and city 2 to city 1.

This encoding is known as matrix representation and is given in [3] and [7].

The traveling salesman problem can also be represented by a string of integers

in two different ways. The first (given in [9], [3], [2] and [7]) is by the string

v = a1a2 . . . an

which implies that the tour goes from a1 to a2 to a3, etc and from an back to a1. No-

tice that the strings v1 = 1234 and v2 = 2341 are equivalent in this representation.

The second way to represent the traveling salesman problem is with cycle no-

tation ([7]), with an integer string

v = b1b2 . . . bn

where the tour goes from city i to city bi. That is, the string v1 = 3421 means that

the tour goes from city 1 to city 3, city 3 to city 2, city 2 to city 4 and city 4 to city 1.

Note that not every possible string here represents a legal tour, where a legal tour is

a tour that goes to every city exactly once and returns to the first city. It is possible

for us to have a string that represents disjoint cycles, for example, v2 = 3412 implies

that we go from city 1 to city 3 and back to city 1 and from city 2 to city 4 and back

to city 2.
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2.5 Crossover

Several crossover methods have been developed for the traveling salesman prob-

lem. In this section we describe several of them. We shall compare these methods

in chapter 4.

We start by looking at partially matched crossover (PMX) ([4], [1], [2] and [7]).

Recall the two-point crossover and assume we were to use this with the integer

representation defined for the traveling salesman problem in section 2.4. If we

performed a two-point crossover on the chromosomes

v1 = 1234 | 567 | 8

v2 = 8521 | 364 | 7

we would get

v′
1 = 1234 | 364 | 8

v′
2 = 8521 | 567 | 7

which are obviously illegal because v′
1 does not visit cities 5 or 7 and visits cities 4

and 3 twice. Similarly v′
2 does not visit cities 4 or 3 and visits cities 5 and 7 twice.

PMX fixes this problem by noting that we made the swaps 3 ↔ 5, 6 ↔ 6 and 4 ↔ 7

and then repeating these swaps on the genes outside the crossover points, giving

us

v′′
1 = 12573648

v′′
2 = 83215674

In other words, we made the swaps, 3 ↔ 5, 6 ↔ 6, 4 ↔ 7 and the other elements

stayed the same. v′′
1 and v′′

2 still consist of parts from both the parents v1 and v2 and

are now both legal.

This crossover would make more sense when used with the cycle representa-

tion, since in this case it would preserve more of the structure from the parents. If,
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as in our example, we used the first integer representation, the order that the cities

were visited would have changed greatly from the parents to the children - only

a few of the same edges would have been kept. With cycle notation a lot more of

the edges would have been transfered. However, if we use this crossover routine

with cycle representation we do not necessarily get a legal tour as a result. We

would need to devise a repair routine to create a legal tour from the solution that

the crossover gives us, by changing as little as possible in order to keep a similar

structure.

Cycle crossover (CX) ([4], [2] and [7]) works in a very different way. First of all,

this crossover can only be used with the first representation we defined, that is, the

chromosome v = 1234 implies that we go from city 1 to city 2 to city 3 to city 4.

This time we do not pick a crossover point at all. We choose the first gene from one

of the parents

v1 = 12345678

v2 = 85213647

say we pick 1 from v1

v′
1 = 1−−−−−−−

We must pick every element from one of the parents and place it in the position it

was previously in. Since the first position is occupied by 1, the number 8 from v2

cannot go there. So we must now pick the 8 from v1.

v′
1 = 1−−−−−−8

This forces us to put the 7 in position 7 and the 4 in position 4, as in v1.

v′
1 = 1−−4−−78

Since the same set of positions is occupied by 1, 4, 7, 8 in v1 and v2, we finish by

filling in the blank positions with the elements of those positions in v2. Thus

v′
1 = 15243678
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and we get v′
2 from the complement of v′

1

v′
2 = 82315647

This process ensures that each chromosome is legal. Notice that it is possible for us

to end up with the offspring being the same as the parents. This is not a problem

since it will usually only occur if the parents have high fitnesses, in which case, it

could still be a good choice.

Order crossover (OX) ([2] and [7]) is more like PMX in that we choose two

crossover points and crossover the genes between the two points. However instead

of repairing the chromosome by swapping the repeats of each node also, we simply

rearrange the rest of the genes to give a legal tour. With the chromosomes

v1 = 135 | 762 | 48

v2 = 563 | 821 | 47

we would start by switching the genes between the two crossover points.

v′
1 = −−− | 821 | − −

v′
2 = −−− | 762 | −−

We then write down the genes from each parent chromosome starting from the

second crossover point.

v1 : 48135762

v2 : 47563821

then the genes that were between the crossover points are deleted. That is, we

would delete 8, 2 and 1 from the v1 list and 7, 6 and 2 from the v2 list to give

v1 : 43576

v2 : 45381
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which are then replaced into the child chromosomes, starting at the second crossover

point.

v′
1 = 57682143

v′
2 = 38176245

Next we consider matrix crossover (MX) ([7] and [3]). For this we have a matrix

representation where the element i, j is 1 if there is an edge from node i to node j

and 0 otherwise. Matrix crossover is the same as one- or two-point crossover. If we

have the matrices

A =


0 1 0

0 0 1

1 0 0



B =


0 0 1

1 0 0

0 1 0


we choose the crossover points after the first column and after the second column

and crossover the columns to give

A′ =


0 0 0

0 0 1

1 1 0



B′ =


0 1 1

1 0 0

0 0 0


We now have multiple 1’s in some rows and some rows without any 1’s at all. We

fix this by moving one of the 1’s from the row with the multiples to a row without
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any 1’s. We choose which 1 to move randomly.

A′′ =


1 0 0

0 0 1

0 1 0



B′′ =


0 0 1

1 0 0

0 1 0


Now notice in A′′ we have a → a and b → c → b. So we have two different cycles.

We can fix this by cutting and reconnecting the cycles. Obviously we would cut

the edge from a to a and one of the edges between b and c and connect a to b and a

to c. When we have a choice as to which nodes we connect (our example was small

enough so that we do not have a choice) we choose the ones that exist in one of the

parents to try to maintain the structure as much as possible.

Modified order crossover (MOX) ([9]) is similar to order crossover. We ran-

domly choose one crossover point in the parents and as usual, leave the genes be-

fore the crossover point as they are. We then reorder the genes after the crossover

point in the order that they appear in the second parent chromosome. If we have

v1 = 123 | 456

v2 = 364 | 215

we would get

v′
1 = 123 | 645

v′
2 = 364 | 125

The crossovers explored so far concentrate on the position of the city in the

tour whereas it is really the edges that are the most important part of the traveling
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salesman’s tour, since they define the costs. So what we really want is to deal with

edges rather than the positions of each city.

Grefenstette(1981, cited in [4]) has devised a crossover routine which picks each

node from one of those which is incident to the current node in one of the parents.

We do this by creating an edge list for each node. The chromosomes

v1 = 123456

v2 = 364215

have edge list

node 1 : 256

node 2 : 134

node 3 : 2456

node 4 : 2356

node 5 : 1346

node 6 : 1345

We first choose one of the initial nodes from one of the parents, i.e., 1 or 3 in this

example. We choose the one that has the least number of incident nodes, or if

they have the same number we randomly choose one. We then consider the nodes

incident to node 1 since this is the node we first chose. Again we choose the node

with the least number of previously unchosen incident nodes. So we choose node

2. We continue this process of considering nodes which have not previously been

selected. If we encounter a situation in which we cannot choose a node that has

not previously been selected we randomly choose a previously unselected node.

This means that we will get a node which is not incident to our current node in one

of the parents, but unfortunately this is unavoidable. So our parent chromosomes

could give the offspring

v′
1 = 124365

Notice that we were successful in being able to choose nodes that were incident in
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one of the parents at all times. We also only get one offspring from this crossover

so we need to do twice as many crossovers to create the new generation.

We also have crossover operators that use heuristic information. The heuristic

crossover ([4]) chooses a random node to start at and then considers the two edges

leaving the current node in the parent chromosomes and picks the shortest edge

that does not introduce a cycle. If both edges introduce a cycle we choose a random

edge that does not do so.

2.6 Mutation

First we will look at the 2-opt operator ([4]). We randomly select two edges (a, b)

and (c, d) from our tour and check if we can connect these four nodes in a different

manner that will give us a lower cost. To do this we check if

cab + ccd > cac + cdb

If this is the case we replace the edges (a, b) and (c, d) with the edges (a, c) and

(d, b). Note that we assume that a, b, c and d appear in that specific order in the tour

even if b and c are not connected.

We also have a 3-opt operator ([4]) which looks at three random edges instead

of two. If we have edges (a, b), (c, d) and (e, f), we check if

cab + ccd + cef > cac + cbe + cdf

If it is we replace (a, b), (c, d) and (e, f) with the edges (a, c), (b, e) and (d, f).

The Or-opt operator ([4]) is similar to the 3-opt. We randomly choose a set of

connected nodes and check if this string can be inserted between two other con-

nected nodes to give us a reduced cost. We can calculate this by finding the total

cost of the edges being inserted and the total cost of the edges being removed. If

the cost of the edges being removed is greater than the cost of those being inserted

the switch is made.
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Another three mutation operators (given in [7]) are insertion where we ran-

domly select a city and insert it in a random place. Displacement is where we

select a subtour and insert it in a random place. We also have reciprocal exchange

where we choose two random cities and swap them.



Chapter 3

The Traveling Salesman Problem

3.1 Introduction

The idea of the traveling salesman problem (TSP) is to find a tour of a given number

of cities, visiting each city exactly once and returning to the starting city where the

length of this tour is minimized.

The first instance of the traveling salesman problem was from Euler in 1759

whose problem was to move a knight to every position on a chess board exactly

once ([7]).

The traveling salesman first gained fame in a book written by German salesman

BF Voigt in 1832 on how to be a successful traveling salesman ([7]). He mentions

the TSP, although not by that name, by suggesting that to cover as many locations

as possible without visiting any location twice is the most important aspect of the

scheduling of a tour. The origins of the TSP in mathematics are not really known -

all we know for certain is that it happened around 1931.

The standard or symmetric traveling salesman problem can be stated mathe-

matically as follows:

Given a weighted graph G = (V, E) where the weight cij on the edge between

nodes i and j is a non-negative value, find the tour of all nodes that has the mini-

mum total cost.

Currently the only known method guaranteed to optimally solve the traveling

salesman problem of any size, is by enumerating each possible tour and searching

for the tour with smallest cost. Each possible tour is a permutation of 123 . . . n,
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where n is the number of cities, so therefore the number of tours is n!. When n

gets large, it becomes impossible to find the cost of every tour in polynomial time.

Many different methods of optimization have been used to try to solve the TSP and

we will explore some of these in section 3.3.

3.2 Applications

The traveling salesman problem has many different real world applications, mak-

ing it a very popular problem to solve. Here we explain a few of these given in

[8] and [6]. For example, some instances of the vehicle routing problem can be

modelled as a traveling salesman problem. Here the problem is to find which cus-

tomers should be served by which vehicles and the minimum number of vehicles

needed to serve each customer. There are different variations of this problem in-

cluding finding the minimum time to serve all customers. We can solve some of

these problems as the TSP.

The problem of computer wiring can also be modelled as a TSP. We have several

modules each with a number of pins. We need to connect a subset of these pins

with wires in such a way that no pin has more than two wires attached to it and

the length of the wire is minimized.

An application found by Plate, Lowe and Chandrasekaran (cited in [8]) is over-

hauling gas turbine engines in aircraft. Nozzle-guide vane assemblies, consisting

of nozzle guide vanes fixed to the circumference, are located at each turbine stage

to ensure uniform gas flow. The placement of the vanes in order to minimize fuel

consumption can be modelled as a symmetric TSP.

The scheduling of jobs on a single machine given the time it takes for each job

and the time it takes to prepare the machine for each job is also TSP. We try to

minimize the total time to process each job.

A robot must perform many different operations to complete a process. In this
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application, as opposed to the scheduling of jobs on a machine, we have prece-

dence constraints. This is an example of a problem that cannot be modelled by a

TSP but methods used to solve the TSP may be adapted to solve this problem.

3.3 Different Forms of the Problem

There are many different variations of the traveling salesman problem. First we

have the shortest Hamiltonian path problem ([6] and [8]). If we have a graph where

each edge has a weight and two nodes vs and vt are given we must find the short-

est Hamiltonian path from vs to vt. If we add an edge from vt to vs and give it

weight −M where M is large and positive, our optimal TSP tour will always in-

clude this edge (because it will reduce the cost of the tour) and will therefore solve

the Hamiltonian problem.

The asymmetric traveling salesman problem ([8]) is when the cost of traveling

from city i to city j is not the same as the cost from city j to city i. This can be

solved in the same way as the standard TSP if we apply certain edge weights that

ensure that there is a Hamiltonian cycle in the graph.

The multisalesmen problem ([8] and [6]) is the same as the standard TSP except

that we have more than one salesman. We need to decide where to send each

salesman so that every city is visited exactly once and each salesman returns to the

original city.

The bottleneck traveling salesman problem ([8] and [6]) is where we want to

minimize the largest edge cost in the tour instead of the total cost. That is, we want

to minimize the maximum distance the salesman travels between any two adjacent

cities.

The time dependent traveling salesman problem ([6]) is the same as the stan-

dard traveling salesman problem except we now have time periods. The cost cijt is

the cost of traveling from node i to node j in time period t. We want to minimize
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∑n
i=1

∑n
j=1

∑n
t=1 cijtxijt where xijt is 1 if the tour goes from node i to node j in time

period t and 0 otherwise. In this problem we have the constraints

n∑
j=1

n∑
t=1

xijt = 1 i = 1, . . . , n

n∑
i=1

n∑
t=1

xijt = 1 j = 1, . . . , n

n∑
i=1

n∑
j=1

xijt = 1 t = 1, . . . , n

n∑
j=1

n∑
t=2

txijt −
n∑

j=1

n∑
t=1

txjit = 1 i = 2, . . . , n

The last set of constraints ensure that node i is entered and exited in consecutive

time periods.

3.4 Methods of Solving the TSP

Homaifar ([3]) states that “one approach which would certainly find the optimal

solution of any TSP is the application of exhaustive enumeration and evaluation.

The procedure consists of generating all possible tours and evaluating their cor-

responding tour length. The tour with the smallest length is selected as the best,

which is guaranteed to be optimal. If we could identify and evaluate one tour per

nanosecond (or one billion tours per second), it would require almost ten million

years (number of possible tours = 3.2× 1023) to evaluate all of the tours in a 25-city

TSP.”

Obviously we need to find an algorithm that will give us a solution in a shorter

amount of time. As we said before, the traveling salesman problem is NP-hard so

there is no known algorithm that will solve it in polynomial time. We will probably

have to sacrifice optimality in order to get a good answer in a shorter time. Many

algorithms have been tried for the traveling salesman problem. We will explore a

few of these in this section.
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Greedy Algorithms ([8]) are a method of finding a feasible solution to the trav-

eling salesman problem. The algorithm creates a list of all edges in the graph and

then orders them from smallest cost to largest cost. It then chooses the edges with

smallest cost first, providing they do not create a cycle. The greedy algorithm gives

feasible solutions however they are not always good.

The Nearest Neighbor ([8]) algorithm is similar to the greedy algorithm in its

simple approach. We arbitrarily choose a starting city and then travel to the city

closest to it that does not create cycle. We continue to do this until all cities are in

the tour. This algorithm also does not always give good solutions because often

the last edge added to the tour (that is, the edge en1 where n is the number of cities)

can be quite large.

A minimum spanning tree ([8] and [6]) is a set of n − 1 edges (where again n

is the number of cities) that connect all cities so that the sum of all the edges used

is minimized. Once we have found a minimum spanning tree for our graph we

can create a tour by treating the edges in our spanning tree as bidirectional edges.

We then start from a city that is only connected to one other city (this is known

as a ’leaf’ city) and continue following untraversed edges to new cities. If there

is no untraversed edge we go back along the previous edge. We continue to do

this until we return to the starting city. This will give us an upper bound for the

optimal traveling salesman tour. Note, however, that we will visit some cities more

than once. We are able to fix this if whenever we need to traverse back to a city we

have already been to, we instead go to the next unvisited city. When all cities have

been visited we go directly back to the starting city.



Chapter 4

Genetic Algorithms as a Method of Solving the Traveling

Salesman Problem

4.1 Introduction

The different forms of encoding, crossover and mutation that we have seen so far

can be combined to give various genetic algorithms that can be used to solve the

traveling salesman problem. Obviously some crossover routines can only be used

with a certain form of encoding so we do not have too many different genetic

algorithms to explore. Also, only certain methods have been attempted, so we

will only look at these. Finally, we will keep in mind that these programs have

been tested on different problems and it will therefore be difficult to compare them

to each other.

4.2 Comparison of Methods

First we will note the best known solutions for particular problems given in [3].

For the 25 city problem the best known solution is 1,711, the 30 city problem is 420,

the 42 city problem is 699, the 50 city problem is 425, the 75 city problem is 535, the

100 city problem is 627, the 105 city problem is 14,383 and the 318 city problem is

41,345. These problems are standard problems with set edge costs that can be used

to test new algorithms.

We will now consider pure genetic algorithms with no heuristic information

used.
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Consider the partially modified crossover (PMX) with the tour notation and no

mutation operator. Jog ([4]) found that this algorithm gave a tour who’s length was

ten percent larger than the known optimum for the 33 city problem. For the 100 city

problem, the result was 210 percent larger than the known optimum. Homaifar

([3]) states that the best tour length of this same algorithm is 498 for the 30 city

problem.

The algorithm using order crossover gives a better performance, giving a result

of length 425 for the 30 city problem, while cycle crossover only gives a tour of

length 517 for the same problem. The best known solution for the 30 city problem

is 420 so order crossover seems to be the best so far ([3]).

Now we will consider the matrix crossover method ([3]). We will use the two

point matrix crossover method as well as inversion. Homaifar found that this

method performed well with 30, 50, 75, 100 and 318 city problems giving tours

of lengths 420, 426, 535, 629 and 42154 respectively, which are all less then two per-

cent above the best known solution. So it seems that the idea of using edges rather

than the position of cities as our variable is promising. This makes sense, as it is

the edge which holds the costs and we want to pick which edges to use to connect

all cities. Note however, that the matrix representation takes more space to store

and also more computation time for the crossover and mutation processes than the

integer representation and basic crossovers.

Homaifar ([3]) also tested an algorithm that uses only the 2-opt mutation op-

erator and no crossover. This also performed decently, however not as well as the

previous case where we used matrix crossover. In particular, it performed worse

with problems where the number of cities is large.

Jog’s ([4]) heuristic algorithms also performed well. The heuristic crossover,

when combined with the 2-opt and Or-opt mutation operators sometimes gives the

best known solution for that particular problem, and otherwise returns a solution

very close to that value. Heuristic algorithms also take up more space, since the
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costs of each edge need to be stored.

So we see that genetic algorithms work best for the traveling salesman problem

when we use a matrix representation with matrix crossover or a heuristic crossover.

In both cases the 2-opt mutation operator improves the solution.



Chapter 5

Conclusion

Genetic algorithms appear to find good solutions for the traveling salesman

problem, however it depends very much on the way the problem is encoded and

which crossover and mutation methods are used. It seems that the methods that

use heuristic information or encode the edges of the tour (such as the matrix rep-

resentation and crossover) perform the best and give good indications for future

work in this area.

Overall, it seems that genetic algorithms have proved suitable for solving the

traveling salesman problem. As yet, genetic algorithms have not found a better

solution to the traveling salesman problem than is already known, but many of the

already known best solutions have been found by some genetic algorithm method

also.

It seems that the biggest problem with the genetic algorithms devised for the

traveling salesman problem is that it is difficult to maintain structure from the par-

ent chromosomes and still end up with a legal tour in the child chromosomes. Per-

haps a better crossover or mutation routine that retains structure from the parent

chromosomes would give a better solution than we have already found for some

traveling salesman problems.
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