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Abstract: One of the most striking features of our time is the polarization,
nationally and globally, in politics and religion. How can a society achieve
anything, let alone justice, when there are fundamental disagreements about
what problems a society needs to address, about priorities among those prob-
lems, and no consensus on what constitutes justice itself? This paper explores
a model for building social consensus in an ideologically divided community.
Our model has three states: two of these represent ideological extremes while
the third state designates a moderate position that blends aspects of the two
extremes. Each individual in the community is in one of these three states. A
constant fraction of individuals are committed agents dedicated to the third,
moderate state, while all other moderates and those from either extreme are
uncommitted. The states of the uncommitted may change as they interact,
according to prescribed rules, at each time step with their neighbors; the
committed agents, however, cannot be moved from their moderate position,
although they can influence neighbors. Our main objective is to investigate
how the proportion of committed agents affects the large-scale dynamics of
the population: in other words, we examine the special role played by those
committed to embracing both sides of an ideological divide. A secondary but
equally important goal is to gently introduce important dynamical systems
concepts in a natural setting. Finally, we briefly outline a model with different
interaction rules, a fourth state representing those who loathe the other three
states, and agents who may be committed to any one of the four states.

1 Introduction

Never doubt that a small group of thoughtful, committed citizens can change
the world. Indeed, it is the only thing that ever has.

— Attributed to Margaret Mead in [11, p. 158]
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How can a society build tolerance, respect, and consensus when it is deeply divided
along political or religious lines? It can’t, we believe, because deep divisions entail, by their
nature, intolerance and disrespect between those on opposite sides, and consensus cannot
occur in that environment. This paper examines how social consensus might be built in a
community sharply divided by two ideological extremes, denoted A and B, representing
opinions or beliefs that are oppositional or opposite. In the American political context,
some examples might be Democrat and Republican or pro-choice and pro-life. Some
examples in the global religious context might be Christian and non-Christian, Muslim
and non-Muslim, or even Christian and Muslim. This latter binary ignores other faiths
and the fact that Christians and Muslims live amicably in many parts of the world, but it is
a semblance of the kind of reality that exists in some communities and to which our model
might be applied. Similar statements can be made about the Democrat-Republican binary
and other conceivable binaries. In this paper, we assume further that the adherents of A
and B rarely examine their own viewpoint and seldom engage in productive dialogue with
those who hold the opposing viewpoint. Of course, many Democrats and Republicans
think critically about their own opinions and engage in polite and reasoned dialogue
with those who hold differing ones. Nevertheless, hard-line Democrat and Republican
voters are prevalent in many electoral districts, just as fundamentalist Christians and
Muslims are common in various countries, and such extremists often attempt to impose
their collective wills on those who hold different views. We make the plausible assumption
in this paper (and make no attempt to justify it from the sociology or political science
literature) that the polarization in public discourse resulting from ideological extremism
obstructs efforts to identify and collectively address inequities in a society and, in some
cases, may contribute substantially to those inequities.

Our model is a variation of the binary agreement model of Xie et al. [13], which is in
turn a two-word version of the naming game [2]. Players in this game may use word A
to name an object, word B, or both words, {A,B} (abbreviated as AB), and interactions
between a speaker and a listener can cause their name(s) for the object to change according
to a prescribed set of rules. Similarly in [13], agents may hold opinion A, opinion B, or
opinion AB, and their opinions may change via speaker-listener interactions exactly as
in the two-word naming game. However, [13] adds a fourth kind of agent committed
to opinion A: committed agents cannot be swayed from their opinion but may influence
other agents to change their opinions according to the given rules.

The work in [13] is a kind ofmathematical sociology, also called social physics, a subject
(born in the mid-twentieth century) that employs mathematical tools, such as graph
theory and differential equations, and models often drawn from physics (see Galam [5] for
examples) to understand social behavior. Xie et al. [13] provide an informative discussion
of the background literature relevant for their work. Like others, they regard the agents
in their model as the nodes of a graph (also known as a network) whose edges indicate
relationships conducive to speaker-listener interactions. They simulate social interactions
on a finite graph with N nodes; in each unit time step of the simulation, each of the N
agents represented in the graph interacts with one of its neighbors, chosen at random
(the graph is assumed to be connected, so each node must have at least one neighbor).
The main analytical tool used in [13], however, is a limiting case in which N → ∞, called
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the mean-field approximation1. In this limiting case, changes in opinion states can be
modeled by a system of ordinary differential equations (ODEs), the mean-field equations.
The mean-field approximation is often used (usually without much explanation) in a first
course on ODEs to model, for example, the interaction of predator-prey populations and
chemical reactions that obey the law of mass action: it justifies the assumption that the
probability of, say, a predator meeting a prey or a molecule of one kind colliding with
that of another is proportional to the size of the subpopulations to which they belong.

The most important finding of [13] is the tipping point associated with the proportion
of the population committed to belief A: let p be this proportion, so 1−p is the proportion
of the uncommitted population free to adopt beliefs A, B, or AB in a mutable way as
they interact with other agents, some of whom are committed to A. Xie et al. [13] found
that when p exceeds a critical value pc ≈ 0.0979 (a root of a cubic polynomial), the
mean-field equations have only one fixed point, a stable (attracting) consensus state in
which all uncommitted agents adopt belief A. When p < pc , there are two additional
fixed points, a stable non-consensus state and an unstable saddle point; as p → p−c , these
two fixed points approach and annihilate each other (in what is known as a saddle-node
bifurcation), leaving only the attracting consensus state. Hence, a sufficient proportion of
agents committed to belief A tips the entire population to eventually adopt that belief.

The work in [13] has inspired much subsequent research. Marvel et al. [8], for example,
considermodels with agents committed to opinionA and others free to adopt A, B, or AB, as
in [13], but for which opinion dynamics are governed by simpler rules (e.g. speakers never
change their opinions); they examine seven such models, attempting to find conditions
that allow the mean-field equilibrium AB subpopulation (regarded as moderates) to thrive
rather than be destroyed by those committed to A (seen as revolutionaries). Of these
seven models, only one involving an external stimulus (such as a media campaign) that
discourages the extremism of opinions A and B permits the equilibrium AB population to
thrive. As another example, Verma et al. [12] extend the naming game dynamics used in
[13] to the case where there are two subpopulations of committed agents, some committed
to extreme A and others to B, in addition to agents free to believe A, B, or AB; they show
that in some cases a minority of zealots committed to one extreme can win over a majority
of the population to their side against a larger group of zealots committed to the other
extreme, while in other cases neither extreme wins a majority.

In this paper, as in [8], we want to discourage extremism and encourage an increase in
the size of the equilibrium AB subpopulation. This is what we mean by consensus building,
as opinion AB is a moderate, “consensus” state even at the individual level; by contrast,
we do not regard a situation in which the entire population adopts an extreme viewpoint,
A or B, as the kind of harmonious consensus (conducive to social justice) that we’d like to
achieve. Viewpoint AB represents for us the position of those who are able to understand
and critically weigh the merits of both A and B. In the American political realm, AB

1The mean-field approximation used here and in [13] involves a complete graph, i.e. there is an edge
connecting each node to every other node for a total of

(N
2
)
= N (N−1)/2 edges, and each edge is equally likely

to be chosen at random. Because there are N social interactions per unit time step, a discrete-time simulation
becomes continuous as N → ∞. See [7, pp. 127-130] for mean-field approximations in the context of social
network analysis. An idea of how mean-field theory is used in physics can be found at Wikipedia permalink
https://en.wikipedia.org/w/index.php?title=Mean_field_theory&oldid=855120670
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might represent the viewpoint of an independent or, more generally, anyone who does
not vote along party lines but instead casts each ballot only after a careful examination of
candidates and ideas; AB might also represent a third, centrist political party, as in [9]
where it is denoted by C. The approach used here to encourage agents to adopt opinion
AB is to assume that a proportion of the total population is committed to AB (and that
no agents are committed to A or B). After an extensive search of the literature, we found
[9] to be the only other paper that has agents committed to the moderate state situated
between extremes A and B. Mobilia [9] uses what we call a binary persuasion model
(different from our binary consensus model, described below) to represent interactions
between voters supporting three parties, A, B, and C (the centrist party to which some
agents are committed); in his model, supporters of party A and those of party B never
interact, but a supporter of A or B might persuade a supporter of C to join their side,
and similarly a supporter of C might persuade a supporter of A or B to join side C, but
supporters of C are assumed to have less persuasive power than those who support A or
B. Therefore, Mobilia describes his model as a struggle between the commitment of those
devoted to C and the greater persuasiveness of those who support A and B.

Section 2 presents and analyses the mean-field equations for a binary consensus (BC)
model, ending with a brief comparison between our results and those of [9]. Section 3
introduces a binary persuasion (BP) model, with far more parameters than our BC model.
After giving hints about the most significant results of the BP model, we leave the com-
pletion of its analysis to the reader (along with a promise to reveal the missing analysis
on request). Finally, we make a few final observations and draw some conclusions in
Section 4. As we put the finishing touches on this paper, the confirmation hearings for
Brett Kavanaugh to become an Associate Justice of the Supreme Court of the United States
are taking place. We offer this as an extreme example of the polarization that seems to
have gripped American politics and the kind of dysfunction, posturing, and very partisan
politics it has produced at the highest levels of that nation’s government. In our opinion,
social justice suffers in such a bitterly divided country, partly because people often fail
to notice suffering when they’re fighting a perceived enemy. It is similarly clear from
history that religious minorities often suffer from injustice in regions sharply polarized
along religious lines. Can those who resolutely straddle both sides of an ideological divide
help to build the consensus that seems necessary for communities to move in positive
directions? That is the question we explore in this paper.

2 A Binary Consensus Model

[T]he test of a first-rate intelligence is the ability to hold two opposed ideas in
the mind at the same time, and still retain the ability to function.

— F. Scott Fitzgerald, from an Esquire magazine essay [4, p. 41]

The interaction dynamics for our binary consensus (BC) model are given in Table 1.
These rules differ only slightly from those in [13]. The only differences lie in rows 2 and 4
of the table: the results after interaction for the corresponding rows in [13] are A–AB and
B–AB, respectively, and 1 is the relative probability of these interactions in [13] compared
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to λ in our model, where 0 < λ < 1. In this way, we have made the probability of these two
interactions relatively low, as it seems fairly unlikely that transformative conversations
will occur between a speaker and listener on opposing ideological sides – imagine, for
example, the likelihood of productive dialogue between hard-nosed Republicans and
Democrats. We have also chosen the outcomes of these two interactions so that both
speaker and listener revise their positions and agree afterwards. This seems more true
for the kind of two-way conversation (rather than an alternating one-way argument)
that might actually transform hard-line opponents. Notice that the speaker and listener
agree after their interaction in all rows of Table 1 and that the opinion of the speaker
changes in six of the twelve rows. This is why we call these rules a binary consensus
model: the speaker and listener come to a consensus (on A, B, or AB) at the end of each
transformative interaction.

In most previous studies (e.g. [13] and [8]), the only committed agents are those who
hold opinion A. In our BC model, however, committed agents must hold opinion AB. Let

Dynamics of the Binary Consensus Model
Before Interaction After Interaction Relative Probability

A A
−→ A A – A not applicable

A A
−→ B AB – AB λ

A A
−→ AB A – A 1

B B
−→ A AB – AB λ

B B
−→ B B – B not applicable

B B
−→ AB B – B 1

AB A
−→ A A – A 1

2

AB B
−→ A AB – AB 1

2

AB A
−→ B AB – AB 1

2

AB B
−→ B B – B 1

2

AB A
−→ AB A – A 1

2

AB B
−→ AB B – B 1

2

Table 1: Speaker-Listener interaction rules for our binary consensus model. The speaker
may hold any one of three opinions (A, B, and AB), and there is an equal chance of an
AB speaker voicing opinions A or B. The Before Interaction column indicates the speaker,
listener, and the opinion voiced (above the arrow). The After Interaction column shows
the opinions of speaker and listener after their conversation: note that the opinion of the
speaker may change. The final column indicates the relative probability of a transformative
interaction per unit time; conversations for which this probability is not applicable (as
no transformation occurs) are listed for completeness. Note that committed adherents
of AB cannot be moved from their opinion by their interactions with others, but these
interactions can change the opinions of others.
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q, with 0 ≤ q < 1, be a constant denoting the proportion of all agents committed to AB,
and x , y, z be the proportions of agents who hold (but are not committed to) opinions A,
B, AB, respectively, at a moment t in time. So, x , y, and z all lie in the interval [0, 1], and

x + y + z + q = 1 . (2.1)

Consequently, the variables x and y must lie in the triangular region Λ defined by

Λ = { (x,y) | x ≥ 0 , y ≥ 0 , x + y ≤ 1 − q } . (2.2)

See Figure 1. The last inequality in (2.2) is implied by equation (2.1) with z ≥ 0.
Now, using the interaction rules in Table 1 and the fact that the mean-field rate of a

particular interaction is proportional to the fractions of agents involved in that interaction,
we find the mean-field equations to be

dx

dt
= xz + 1

2zx − 1
2zx − 1

2qx + 2
( 1
2z

2) + 1
2qz +

1
2zq − λxy − λyx ,

dy

dt
= yz + 1

2zy − 1
2zy − 1

2qy + 2
( 1
2z

2) + 1
2qz +

1
2zq − λyx − λxy .

(2.3)

Each term in system (2.3) corresponds to one row in Table 1. The terms involving q
correspond to interactions between agents committed to AB and other agents; committed
agents can be involved in interactions that transform other agents but cannot be trans-
formed themselves. Note also that there is no need to include an equation for dz/dt in (2.3),
as z = 1 − x − y − q from equation (2.1). Denoting the right-hand sides of equations (2.3)

y

x

x+y=1-q

1-q

1-q

x+y=1-    q

3q
8λ

2

xy=

y=x

3
2

Figure 1: The flow domain Λ in the phase plane associated with our binary consensus
model: a triangle bounded by x = 0, y = 0, and x + y = 1 − q. One fixed point in the flow
domain lies on the line of symmetry, y = x , and two more are placed symmetrically about
this line on the hyperbola xy = 3q2/(8λ) when 0 < q < 2/(3 +

√
6/λ).

98



by f (x,y) and д(x,y) and eliminating z using (2.1), we find

dx

dt
= f (x,y) = xz − 1

2qx + z(z + q) − 2λxy

= 1 − q − (1 + 1
2q)x − (2 − q)y + y2 + (1 − 2λ)xy , (2.4a)

dy

dt
= д(x,y) = yz − 1

2qy + z(z + q) − 2λxy

= 1 − q − (1 + 1
2q)y − (2 − q)x + x2 + (1 − 2λ)xy . (2.4b)

By examining the component of the vector field ⟨f (x,y), д(x,y)⟩ in the inward-normal
direction on each of the boundary lines of the domainΛ and, separately, the direction of this
field at each corner point of Λ, we have verified that none of the values of ⟨f (x,y), д(x,y)⟩
on the boundary of Λ point to the exterior of Λ. Therefore, the flow associated with
system (2.4) is trapped within Λ. Now, subtracting (2.4b) from (2.4a) to exploit symmetry
yields

d(x − y)

dt
= −(x − y)(x + y + 3

2q − 1) , (2.5)

which reveals that the line of symmetry, y = x , is an invariant set of the flow; see [6, p. 33]
for more about this concept. We observe from (2.5) that fixed points2 of the flow (at which
f and д vanish) can lie only on the lines y = x or x +y = 1− 3

2q; see Figure 1. Consider the
line x + y = 1 − 3

2q: it lies in the interior of the flow domain Λ when 0 < q < 2
3 , and (2.1)

implies z = 1
2q on this line. But, using (2.4a), f (x,y) = 0 and z = 1

2q imply xy = 3q2/(8λ),
the equation of a hyperbola. Hence, two fixed points (x,y) lie at the intersections of this
hyperbola and the line x + y = 1 − 3

2q, where

x =
2 − 3q ±

√
(2 − 3q)2 − 6q2/λ

4
, y =

3q2

8λx
; 0 < q <

2
3 +

√
6/λ
. (2.6)

These fixed points (x,y), contingent on the intersections that define them, exist when q
satisfies the condition in (2.6). If they exist, they are mirror images of each other in the
line of symmetry y = x , as seen in Figure 1. On the line of symmetry itself,

dx

dt
= f (x, x) = 2(1 − λ)x2 − 1

2 (6 − q)x + 1 − q, (2.7)

using equation (2.4a). It follows that the flow has two fixed points (x, x) corresponding
to each root x of the quadratic f (x, x) in (2.7). Regarding the invariant set y = x as a
phase line, the smaller (larger) root corresponds to a stable3 (unstable, respectively) fixed
point; in other words, the line y = x is a stable (unstable) manifold of the fixed point
corresponding to the smaller (larger, respectively) root; see [6, pp. 12-16]. Naming the
smaller root x0,

x0 =
1

8(1 − λ)

[
6 − q −

√
(6 − q)2 − 32(1 − λ)(1 − q)

]
. (2.8)

2In this paper, fixed points are positions at which the right-hand sides of each equation in an autonomous
system of ODEs vanishes. They are also known as equilibria or steady-state solutions.

3Unless otherwise indicated, the term stable means locally asymptotically stable, and unstable means not
stable. See [6, p. 3] for more information.
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To examine the behavior of x0 as λ → 1−, we find

x0 =
2(1 − q)

6 − q
+
16(1 − λ)(1 − q)2

(6 − q)3
+
256(1 − λ)2(1 − q)3

(6 − q)5
+O(r 4), (2.9)

where r = 32(1 − λ)(1 − q)/(6 − q)2, when we write the square root in equation (2.8) as
(6−q)(1−r )1/2 and use the binomial series. The infinite series indicated in (2.9) converges
in all valid cases, since 0 < r < 8

9 (1 − λ) < 1 for 0 < q < 1 and 0 < λ < 1; its first term is
independent of λ and approaches 1

3 as q → 0+.
Clearly x0 > 0 from (2.8) or (2.9), and f (x, x) = −1

2qx − 2λx2 < 0 on the boundary line
x + y = 1 − q (on which z = 0) from (2.4a). Hence, the fixed points (x, x) associated with
the two roots of f (x, x) in equation (2.7) straddle the line x + y = 1 − q: the fixed point
associated with the smaller root x0 lies inside the flow domain Λ and the one associated
with the larger root lies outside. We already know that the line y = x is a stable manifold
of the fixed point (x0, x0). To examine the two-dimensional stability of this point, first
observe from (2.5) that trajectories close to the line y = x converge towards it as time
proceeds when x + y > 1 − 3

2q and diverge away from it when x + y < 1 − 3
2q. To see

this more clearly, we choose coordinates (ξ ,η) for which ξ and η are constant along lines
parallel to the lines y = x and x +y = 1− 3

2q, respectively, and such that ξ and η vanish on
these latter lines. Coordinates of this kind, together with their inverse, are given below:

ξ = x − y , x = 1
2 (ξ + η − 3

2q + 1) , (2.10a)
η = x + y + 3

2q − 1 , y = 1
2 (η − ξ − 3

2q + 1) . (2.10b)

Using (2.10), system (2.4) becomes

dξ

dt
= f (x,y) − д(x,y) = F (ξ ,η) = −ξη , (2.11a)

dη

dt
= f (x,y) + д(x,y) = G(ξ ,η)

=
[
(3q − 2)λ − 5

2q − 1
]
η + (1 − λ)η2 + λξ 2 + K , (2.11b)

where F (ξ ,η) and G(ξ ,η) denote the right-hand sides of equations (2.11), and

K = 1
4
[
6q2 − λ(2 − 3q)2

]
. (2.12)

A Jacobian matrix represents the linearization of a vector field near a point. For the
field ⟨F (ξ ,η), G(ξ ,η)⟩, the Jacobian is

J (ξ ,η) =

(
∂F
∂ξ

∂F
∂η

∂G
∂ξ

∂G
∂η

)
=

(
−η −ξ
2λξ (3q − 2)λ − 5

2q − 1 + 2(1 − λ)η

)
. (2.13)

Let η0 be the η coordinate of the fixed point on the line of symmetry ξ = 0 in the flow
region Λ defined by (2.2). The (x,y) coordinates of this fixed point are (x0, x0), and η0 can
therefore be determined from (2.8) and (2.10b). However, it is better for our purposes to
use the fact that G(0,η0) = 0: in this way, equation (2.11b) yields

η0 =
−C −

√
C2 − 4(1 − λ)K

2(1 − λ)
, C = −(2 − 3q)λ − 5

2q − 1 , (2.14)
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where K is given in (2.12). On the line ξ = 0, the Jacobian matrix in (2.13) is diagonal;
the eigenvalues of J (0,η0), namely −η0 and C + 2(1 − λ)η0 with C as in (2.14), lie on its
main diagonal and correspond to, respectively, eigenvectors parallel to the lines η = 0
(i.e. x + y = 1 − 3

2q) and ξ = 0 (i.e. y = x , the line of symmetry). From an earlier result
(i.e. that the line ξ = 0 is a stable manifold of the fixed point on this line in the region Λ),
we know that the latter eigenvalue must be negative, but it is easy to verify this directly:
from the first equation in (2.10b), we see that the boundary line x + y = 1 − q coincides
with η = 1

2q, so η ≤ 1
2q in the flow domain Λ, and thus

C + 2(1 − λ)η0 ≤ C + 2(1 − λ)12q = −2λ(1 − q) − 3
2q − 1 < −1 , (2.15)

using the expression for C in (2.14). The sign of the other eigenvalue, −η0, is opposite to
that of η0 itself. SinceC < 0, as seen in (2.15), it follows from (2.14) that η0 > 0 if and only
if K > 0, and the equivalencies below can then be inferred from (2.12):

η0 > 0 ⇔ K > 0 ⇔ λ <
6q2

(2 − 3q)2
⇔ q > qc =

2
3 +

√
6/λ
. (2.16)

For planar flows like those associated with systems (2.4) and (2.11) (see [6, pp. 42-60]
for details on such flows), a fixed point is stable if the real parts of both eigenvalues
of its Jacobian matrix at that point are negative. If its eigenvalues are real, then it is
a (stable) sink node if both eigenvalues are negative, an (unstable) source node if both
are positive, and an (unstable) saddle if they have different signs; if its eigenvalues are
complex conjugates, it is a spiral sink or source, respectively, if the sign of their real
parts is negative or positive. Hence, the fixed point (ξ ,η) = (0,η0) is a sink node when
qc < q < 1 because, according to (2.16), η0 > 0 in this case and so the eigenvalue −η0 is
negative; equivalently, it is a sink node when λ satisfies the condition in (2.16) (in addition
to the earlier requirement that 0 < λ < 1). When 0 < q < qc , however, the fixed point
(ξ ,η) = (0,η0) is a saddle, as the eigenvalue −η0 is positive, and two other fixed points
(x,y) given in (2.6) also exist in this case. Figure 2 depicts these interesting flow dynamics
in the phase plane via two cases, one for q < qc and the other for q > qc .

To investigate further the emergence of the two fixed points in (2.6) from the fixed
point (ξ ,η) = (0,η0) as q decreases through qc (holding λ constant), we employ the center
manifold techniques of Guckenheimer and Holmes [6], pp. 123-138. A center manifold is
an invariant set tangent to the eigenspace corresponding to eigenvalues with zero real
parts of the Jacobian matrix at a fixed point. Our flow has a center manifold tangent to
the line η = η0 at the fixed point (ξ ,η) = (0,η0) when q = qc , or equivalently, using (2.16),
when η0 = 0 or K = 0. This center manifold becomes an unstable manifold of fixed point
(0,η0) if 0 < q < qc (when η0 < 0) and is an invariant subset of the stable manifold of
point (0,η0) if qc < q < 1 (when η0 > 0), as we have seen. Following [6, p. 130 ff.], we
approximate the invariant manifold tangent to the line η = η0 at the fixed point (0,η0) by

η = h(ξ ) = a + bξ 2 +O(ξ 4) . (2.17)

Note that odd powers of ξ need not be included in (2.17), owing to symmetry about the
axis ξ = 0. The technique for finding the unknown coefficients a and b in (2.17) first
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Figure 2: The phase plane flow for two cases of our binary consensus model showing
fixed points (circles, red online), some trajectories (dotted), and the direction field (blue
online). (a) q = 0.25, λ = 0.5: a fixed point (a saddle) exists on the line of symmetry, y = x ,
connected via its unstable manifold (clearly visible) to two fixed points (sink nodes) lying
at the intersections of the line x + y = 1 − 3

2q and the hyperbola xy = 3q2/(8λ) (violet
online). (b) q = 0.35, λ = 0.5: only one fixed point (a sink node) lies on the line y = x . A
pitchfork bifurcation occurs at q = qc , where qc = 2/(3 +

√
6/λ); qc ≈ 0.3094 for λ = 0.5.

involves differentiating (2.17) with respect to t , substituting the expression for dξ/dt in
equation (2.11a) into the result, and using (2.17) again. This produces

dη

dt
=
dh

dξ

dξ

dt
= −

dh

dξ
ξη = −ξ

dh

dξ
h(ξ ) = −ξ

[
2bξ +O(ξ 2)

] [
a + bξ 2 +O(ξ 4)

]
. (2.18)
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However, we obtain another expression for dη/dt by combining (2.11b) and (2.17):

dη

dt
= Ch(ξ ) + (1 − λ) [h(ξ )]2 + λξ 2 + K

= C
[
a + bξ 2 +O(ξ 4)

]
+ (1 − λ)

[
a + bξ 2 +O(ξ 4)

]2
+ λξ 2 + K , (2.19)

where K and C are given in (2.12) and (2.14). Equating the coefficients of corresponding
powers of ξ in (2.18) and (2.19) yields

a = η0 , b =
λ

(2 − 3q)λ + 5
2q + 1 + (2λ − 4)η0

, (2.20)

with η0 as in (2.14). The value of a in (2.20) is exactly what we would expect from (2.17).
Furthermore, in the same way as we proved the inequality in (2.15) using the fact that
η ≤ 1

2q in the flow domain Λ, we can show that the denominator of b in (2.20) is bounded
below by 2λ(1 − q) + 1

2q + 1 > 1. So 0 < b < λ, and the resulting concavity in the curve
described by (2.17) is evident in Figure 2.

Although the manifold tangent to the line η = η0 at the fixed point (ξ ,η) = (0,η0),
as given in (2.17), is a center manifold of system (2.11) only if q = qc (when K = 0 and
η0 = 0), Guckenheimer and Holmes [6], p. 134 point out that it can be regarded as a “family
of center manifolds” parametrized by K within the center manifold of a larger system
that includes the equation dK

dt = 0 (which has its own zero eigenvalue) in addition to
system (2.11). Provided that K , ξ , and η are sufficiently close to zero, the power series in
(2.17) approximates this family of center manifolds that vary with K via the coefficients a
and b in (2.20), which depend on η0 and thusK due to (2.14). Since this family is associated
with the eigenvalue −η0, which is close to zero and therefore associated with much slower
flow dynamics than those associated with the strongly negative eigenvalueC + 2(1− λ)η0,
the local evolution of the flow described by system (2.11) can be reduced to what happens
on this family; the slow dynamics implied by the fact that eigenvalue −η0 ≈ 0 also explains
why these center manifolds are so visible in Figure 2. The following equation, obtained
by substituting η in (2.17) into (2.11a) and using a = η0 in (2.20), thus captures the local
evolution (i.e. when ξ and η are sufficiently close to zero, and q is sufficiently close to qc )
of the flow projected onto the family of center manifolds:

dξ
dt = −ξ

[
η0 + bξ

2 +O(ξ 4)
]
. (2.21)

Equation (2.21) represents a pitchfork bifurcation [6, pp. 145-150] at q = qc . If q > qc
then η0 > 0 from (2.16), and so the expression η0 + bξ

2 + O(ξ 4) in (2.21) is positive for
sufficiently small ξ values since b > 0; in this case, (2.21) has an evidently stable fixed
point at ξ = 0; note that η0 = 0 when q = qc , and so this fixed point is stable, but only
marginally so, in this case too. However, if q < qc then η0 < 0, and the right-hand side of
(2.21) vanishes when ξ ≈ ±

√
−η0/b; these two ξ values are stable fixed points of (2.21)

in this case and ξ = 0 is unstable. This shows that, as q decreases through qc (holding λ
constant), the sink node at (ξ ,η) = (0,η0) in system (2.11) becomes a saddle and two new
sink nodes emerge from it.

Our analysis of the flow associated with system (2.11) [or equivalently, system (2.4)]
will be complete after we employ one more important tool: the divergence of the flow
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field, div⟨F (ξ ,η),G(ξ ,η)⟩ = ∂F∂ξ +
∂G
∂η , which is identical to the trace of the Jacobian (2.13).

Using the fact that η ≤ 1
2q in the flow region Λ, as seen earlier, and that η ≥ 3

2q − 1,
from the first equation in (2.10b) with (x,y) = (0, 0), it is easy to show from (2.13) that
div⟨F (ξ ,η),G(ξ ,η)⟩ ≤ −2q − 1 < −1 on Λ. Bendixson’s Criterion [6, p. 44] can thus be
used to infer that the flow has no closed orbits. This indicates that the flow is characterized
by the pitchfork bifurcation and fixed points we have examined above. Note that, although
our analysis of the bifurcation is necessarily localized to values of q near qc , the absence
of closed orbits and existence of the saddle at point (0,η0) for all 0 < q < qc indicate
(and would be key parts of a rigorous proof) that the two fixed points (x,y) given in
(2.6) persist as sink nodes for all 0 < q < qc . This is supported by computations of the
trace T = trace[J (ξ ,η)], the determinant D = det[J (ξ ,η)], and the discriminant T 2 − 4D
at numerous such points (x,y) [associated with (ξ ,η) via (2.10)] using the fact that the
eigenvalues of J (ξ ,η) are real and negative if T < 0, D > 0, and T 2 − 4D > 0.

We are now in a position to summarize the results of our binary consensus model. In
the event that q ≥ qc , there is only one fixed point, (x,y) = (x0, x0), a global attractor
to which all flow trajectories are drawn. Moreover, it is clear from equation (2.9) that
x0 → 0+ monotonically as q → 1− (while holding λ constant). But equation (2.1) implies
that the total (stable for q ≥ qc ) equilibrium proportion of AB supporters, both committed
and uncommitted, is 1 − 2x0, and 1 − 2x0 → 1− as q → 1−. Hence, in the mean-field limit
of our binary consensus model with a given proportion q committed to opinion AB, a
consensus on AB is continuously built towards total consensus as q grows (with λ held
constant); this seems possibly more realistic than the model of [9] for which a consensus
on C (the centrist position) occurred discontinuously at a tipping point.

When q < qc , there are three fixed points and only the two placed symmetrically
about the line y = x are stable (see Figure 1). In this case, making q larger (while holding
λ constant) serves to bring these stable fixed points closer together; this can be seen
from the hyperbola, xy = 3q2/(8λ), on which these points lie. Since flow trajectories are
drawn to one or the other of these fixed points (except trajectories that start on the line of
symmetry y = x), this indicates that the equilibrium results (in an election, say) are less
volatile when q is larger (which is probably a good thing for an election). Making λ smaller
(while holding q constant, with q < qc ) also pushes the two stable fixed points closer. This
seems counter-intuitive, as λ is the relative probability of producing an AB supporter in
interactions between adherents of A and B (see rows 2 and 4 of Table 1): larger values
of λ imply more AB supporters produced in this way. On the other hand, an interaction
between uncommitted supporters of AB always converts them to A or B (see the final two
rows of Table 1, which come directly from the two-word naming game). So, high numbers
of uncommitted AB supporters are hard to sustain, and it is therefore tempting to change
the relative probability of transformation in the last two rows of Table 1 from 1

2 to
1
2µ,

where 0 < µ ≤ 1; we leave this possible modification as an exercise for the reader. The
wonderful thing about our model (and models in general) is that they can be modified
and explored. Breaking the symmetry with respect to A and B in our binary consensus
model would be an interesting exploration. One of the commendable features of [9] is the
symmetry-breaking included in its model: supporters of opinion A are more persuasive
(at converting supporters of C) than are supporters of B.
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3 A Binary Persuasion Model

Don’t vote: It just encourages the bastards.

— P. J. O’Rourke, from the title of his book [10]

Our second model, which we only outline in this section, is a significant departure
from our BC model in Section 2. One important difference is the addition of a new kind
of opinion, ∅, that represents the absence of any opinion (i.e. the null opinion: neither
A nor B nor any opinion in between). In the American context, for example, those who
despise politicians of all stripes and wouldn’t consider voting for any of them might be
said to hold viewpoint ∅. We think there is some merit to a political model that includes
non-voters, as otherwise they are ignored, despite the fact that they usually represent a
significant proportion of citizens (more than 40% of eligible voters in recent Canadian
federal elections). Counting those who choose not to vote because they are, say, appalled
by political corruption or because no candidate truly represents their position might
actually lead to better government, as election campaigns might begin to court these
potential voters by, respectively, refusing to accept donations from powerful lobbies or
revising their platforms to accord more with the views of the disenchanted. It is worth
noting that four Canadian provinces [3] and some other jurisdictions4 allow voters to
publicly decline their vote or indicate “none of the above” on their ballots. In the realm of
religious beliefs, the ∅ viewpoint might include atheists or at least those who are repulsed
by mainstream religious systems represented by A and B. It is important to count such
people, we think, because even some religious leaders5 have argued that it’s preferable
to abandon religion when it harbors bigotry and fosters discord. Furthermore, as with
non-voters, religious non-conformists form a large segment of many societies.

While the ∅ opinion is an important new feature of the binary persuasion (BP) model
considered here, the essential difference between our BP model and the BC model of
Section 2 lies in the disparity between the words persuasion and consensus. The interaction
rules for our BC model involve speaker and listener reaching a consensus (on A, B, or
AB) at the end of each transformative interaction: the opinion of the speaker and that
of the listener may change to achieve this consensus. In contrast, for our BP model,
only the opinion of the listener (never that of the speaker) changes at the end of a
transformative interaction. Our BP model is therefore more like proselytization than
dialogue. In any case, one of the reasons we have chosen to consider a persuasion model in
addition to a consensus model is to illustrate the diverse possibilities for speaker-listener
models. Another reason is that the interaction rules for a binary persuasion model can
be represented visually, and more simply, using a compartment diagram. One further
simplification we make in our BP model is to combine states A and B. How can we do
this? We assume that the relative probabilities of transformative interactions between
opinions A, ∅, and AB are identical to the relative probabilities of such interactions
between opinions B, ∅, and AB; in other words, we assume that the compartments for

4See Wikipedia permalink https://en.wikipedia.org/w/index.php?title=None_of_the_
above&oldid=847838101

5For example, ‘Abdu’l-Bahá states, “If religion becomes a cause of dislike, hatred and division, it were
better to be without it, ... .” [1, p. 130]
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A and B (in a compartment diagram) are linked to those for ∅ and AB in the same way,
so we can combine the compartments for A and B into a single compartment, which we
label A△B (i.e. the symmetric difference of A and B, denoting agents holding opinion A
or opinion B but not both). What happens inside the A△B compartment (such as whether
an agent can change her opinion from A to B or vice versa) need not concern us, as far
as our binary persuasion model is concerned: we have combined the extremists into a
single compartment and can think of the residents of that compartment as having the
same opinion, namely one-sided extremism. Figure 3 thus represents our BP model.

Our BP model has three parameters, α , β , and γ , which are regarded as positive. These
three parameters make our BP model more complicated than our BC model, but several
simplifying assumptions were still required to reduce the number of parameters to three.
The model represented in Figure 3 is the simplest, analytically tractable model that we
were able to handle, within the context of persuasive interactions between agents of
the three states ∅, A△B, and AB. For example, our decision to make дamma the relative
probability for conversions from state ∅ to state AB and for the opposite conversions
simplifies our BP model, and it seems realistic. Note also that, because α > 0 and β > 0
(so 1 + α > 1 and 1 + β > 1), agents in the extremist state A△B are more persuasive
at converting those in states ∅ and AB than the other way around. This reflects our
perception that opinions A and B offer a kind of social safety that ∅ and AB do not offer.
In the American political realm, this might mean that voting Democrat or Republican
is socially safer than not voting at all or voting for some fringe party of independent
thinkers. Mobilia [9] does something similar: he makes supporters of parties A and B
more persuasive at converting centrists (party C) to their side than vice versa (but the
similarity of our BP model to that of [9] is coincidence – we built and completely analyzed
the former before we discovered the latter).

Unlike the BC model of Section 2, our BP model allows for committed agents of
all kinds: let p, c , and q be constants in the interval [0, 1) denoting the proportions of
all agents committed to opinions ∅, A△B, and AB, respectively. Also, let w , u, and z

A ABø

1+α 1+β

1

γ

γ

1

▲B

Figure 3: Compartment diagram for our binary persuasion model showing the relative
probabilities of transitions between compartments ∅, A△B, and AB. The label on a directed
edge from compartment X to compartment Y is the relative probability (per unit time)
of a speaker in compartment Y persuading a listener in compartment X to move to
compartment Y. Compartments represent sets of agents of the same type.
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be the proportions of all agents who hold (but are not committed to) opinions ∅, A△B,
and AB, respectively, at a given time t ; each of these variables lies in the interval [0, 1].
Furthermore, all of these proportions must add up to 1, so

w + z + u + p + q + c = 1 . (3.1)

The mean-field equations for our BP model can now be written and analyzed as we did for
the BC model in Section 2. We have included with this paper (at https://scholarship.
claremont.edu/codee/vol12/iss1/2/) MATLAB code that plots phase portraits for
our BC and BP models; the mean-field equations for the latter can be seen in a MATLAB
function. It is not difficult to show that the resulting flow has at most three fixed points.
Furthermore, in the case when c = 0 (i.e. no agents are committed to state A△B) but p > 0
and/or q > 0, one fixed point lies on the line u = 0 (a boundary of the flow domain where
support for opinion A△B is zero); this fixed point is stable in some cases, unstable in
others, and there is a sharp boundary between these cases (a set of tipping points) that can
be described in a simple, geometric way; the transition of this fixed point from stability
to instability occurs as it collides with another fixed point in a transcritical bifurcation
on a center manifold. As we do not want this paper to be overlong and want others to
enjoy the thrill of discovery, we leave the (sometimes messy) analysis of our BP model
as an exercise for the reader. We are happy to make our results available to anyone who
requests them from the corresponding author.

4 Some Observations and Conclusions

The results of this paper give some insight into human social behavior. Although our
binary consensus model is only an imitation of reality, it indicates that consensus in
a divided community can be gradually achieved if enough people are committed to
embracing both sides of the divide. It also suggests that the distance between two stable
but opposing equilibria can be reduced by a group of committed moderates. These results
make this paper relevant to creating an environment in which social justice might flourish.

Finally, we hope that our paper helps students and others understand some of the
beautiful aspects of flows associated with systems of nonlinear ODEs. We have identified
three different kinds of bifurcations that can occur as a parameter is varied. In Section 1,
we mentioned the saddle-node bifurcation that occurs in the model of [13]; the center
manifold on which the three fixed points exist when p < pc can be seen clearly in Fig. 2(a)
of [13]. A pitchfork bifurcation arises in the BC model of Section 2; these bifurcations often
occur naturally in flows that have a line of symmetry. We also mentioned the transcritical
bifurcation that occurs in the BP model of Section 3. Bifurcations and center manifolds are
two important keys for understanding the deeper aspects of flows associated with ODEs.
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