
Claremont Colleges
Scholarship @ Claremont

HMC Senior Theses HMC Student Scholarship

2009

Locality and Complexity in Path Search
Andrew Hunter
Harvey Mudd College

This Open Access Senior Thesis is brought to you for free and open access by the HMC Student Scholarship at Scholarship @ Claremont. It has been
accepted for inclusion in HMC Senior Theses by an authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

Recommended Citation
Hunter, Andrew, "Locality and Complexity in Path Search" (2009). HMC Senior Theses. 220.
https://scholarship.claremont.edu/hmc_theses/220

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Claremont

https://core.ac.uk/display/215289836?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarship.claremont.edu
https://scholarship.claremont.edu/hmc_theses
https://scholarship.claremont.edu/hmc_student
mailto:scholarship@cuc.claremont.edu

Locality and Complexity in Path Search

Andrew H. Hunter

Nick Pippenger, Advisor

Ran Libeskind-Hadas, Reader

May, 2009

Department of Mathematics

Copyright c© 2009 Andrew H. Hunter.

The author grants Harvey Mudd College the nonexclusive right to make this work
available for noncommercial, educational purposes, provided that this copyright
statement appears on the reproduced materials and notice is given that the copy-
ing is by permission of the author. To disseminate otherwise or to republish re-
quires written permission from the author.

Abstract

The path-search problem considers a simple model of communication net-
works as channel graphs: directed acyclic graphs with a single source and
sink. We consider each vertex to represent a switching point, and each edge
a single communication line. Under a probabilistic model where each edge
may independently be free (available for use) or blocked (already in use)
with some constant probability, we seek to efficiently search the graph: ex-
amine (on average) as few edges as possible before determining if a path of
free edges exists from source to sink. We consider the difficulty of searching
various graphs under different search models, and examine the computa-
tional complexity of calculating the search cost of arbitrary graphs.

Acknowledgments

I would like to thank Professor Pippenger for his patience and boundless
knowledge; Professor Hadas for his enthusiasm, support, and encourage-
ment; and my father, without whom I never would have done a single piece
of academic writing.

Contents

Abstract iii

Acknowledgments v

1 Introduction 1
1.1 Path Search & Notation . 1
1.2 Search Algorithms . 3
1.3 Local Path Search . 6
1.4 Complexity of Algorithm Generation 9
1.5 Techniques and Results . 11

2 Analyzing Fully Parallel Graphs 15
2.1 The Fully Parallel Graphs . 15
2.2 Bounds on Parallel Graphs . 16
2.3 Local Search on Fk . 20

3 Computational Complexity of Path Search 33
3.1 Our Languages . 33
3.2 Hardness Results for Our Languages 34

4 Future Work and Conclusions 37
4.1 Future Work . 37
4.2 Conclusions . 38

Bibliography 39

List of Figures

1.1 A graph G and associated decision tree. 5
1.2 G2, a graph where the location of search matters. 7
1.3 GG1, where ends are not always enough. 8

2.1 The definition of fully parallel graphs. 16
2.2 An alternate definition of fully parallel graphs. 17
2.3 Breaking up F2 into trees. 22
2.4 A demonstration that path-greedily searching Tk only ever

searches length-k paths. 29
2.5 Our best upper and lower bounds for c, the exponential base

of searching Fk. 32

Chapter 1

Introduction

Under conditions of heavy traffic, communication networks can run short
of useful channels between two parties wishing to interact, and even when
they can, finding such channels can take more effort than is desirable. Both
of these problems stem from a given network’s topology, which both de-
termines if it will contain the desired paths, and how hard finding those
paths actually is. Thus, we need to find better network topologies, that are
highly likely to remained linked under traffic, and easily admit algorithms
for finding communication channels.

To do this, we need good models for both of these criteria (the likely-
hood that the paths we wish to find exist, and the cost incurred in finding
those paths.) Path search is just such a model. In this work, we consider
two previously unstudied facets of path search:

• A more realistic restriction of the standard model.

• Several complexity-theoretic results on the difficulty of analyzing net-
works under the path search model.

1.1 Path Search & Notation

1.1.1 Definitions

The path-search problem gives a directed acyclic graph G, with a single
source s and sink t, and a probability q. Independently let each e ∈ E
be either free (sometimes available) with probability q or blocked (sometimes
busy) with probability p = 1− q; however, assume that at the start, we do
not know the status of any of the edges. On average, how many edges must

2 Introduction

we probe (query the free or blocked status of) to either find a free path or a
busy cut? We begin by defining some terminology and notation.

• A channel graph is a graph to which we can apply the path search
problem—as above, this means it’s a DAG with a single source and
sink.

• The vacancy probability, denoted q, is the probability that any single
edge in a channel graph is free.

• The occupancy probability, denoted p = 1− q, is the probability that
any single edge is blocked.

• A free path is a path consisting of only free edges. We say a channel
graph is free or linked if it contains a free path.

• The free probability of G, denoted Pf (G, q) is the probability that G is
free if q is the vacancy probability.

• A busy cut is a cut separating s and t, consisting of only busy edges.
We say a channel graph is blocked if it contains a busy cut.

Remark 1.1. Any channel graph is either free or blocked. Either there
exists a free path from s to t, or we can take at least one blocked edge
from every path from s to t, and construct a busy cut.

• The blocking probability of G, denoted Pb(G, q) is the probability that G
is blocked.

Remark 1.2. Of course, for all q and G,

Pf (G, q) + Pb(G, q) = 1,

since any graph is either free or blocked.

• The search cost of a channel graph G is the expected number of probes
we must make before we can conclude that G is free or blocked (by
demonstrating a fully probed free path or busy cut.) We denote this
value by E(G, q), and sometimes EA(G, q) for the expected number of
probes taken by some search algorithm A (see Section 1.2). E(G, q),
then, is just the minimum of EA(G, q) over all algorithms A.

Search Algorithms 3

1.1.2 Motivation

A good interpretation of the intuition behind path search is to see channel
graphs as communication networks—imagine we want to let s talk to t,
but have limited communication bandwidth. Each vertex in the channel
graph represents a switch in our network, and each edge a communication
channel, that may or may not be in use. In this context, the path search
question becomes: how long does it take to determine if we can let s talk to
t?

This is obviously a very simple model, and most of the time, we ignore
this explanation. We will usually consider the problem on abstract graphs,
and not worry about the realistic interpretation. However, using this model
can help provide understanding of what’s going on; also, we will soon con-
sider more complicated cases of path search (see 1.3) which we will justify
in terms of the network analogy.

1.2 Search Algorithms

In our definitions, we described the search cost of channel graphs in terms
of “search algorithms.” These are our central objects of study—our main
goal is to examine the search cost of various graphs—and thus we should
carefully define these algorithms, so we can accurately characterize their
costs.

1.2.1 Formalizing Path Search Algorithms

There are a number of ways we can consider path search algorithms. All
of them can be expressed as a simple decision procedure based on marking
and examining edges.

1. Begin by marking each edge of the graph as “unprobed”.

2. Examine the graph:

(a) If G contains a path from s to t with each edge marked “free”,
halt and return “free”.

(b) If G contains a cut that separates s and t with each edge marked
“blocked”, halt and return “blocked”.

3. Use some function f to select an edge in G. (Without loss of general-
ity, we consider only those functions f such that e = f (G) is always

4 Introduction

marked “unprobed”. In other words, we only consider algorithms
that never probe the same edge twice: doing so is always subopti-
mal.) Probe e; mark it as either “free” or “blocked”, whichever’s ap-
propriate. (This step is the algorithm-dependent part, and finding the
optimal algorithm boils down to choosing the best possible f .)

4. Go to Step 2.

Note that from a complexity-theoretic standpoint (but see Section 1.4), both
of the termination tests are relatively easy (in P). Similarly, if we care, it’s
easy to actually give the path or cut that our algorithm found using stan-
dard graph-theoretic algorithms such as depth-first search (Cormen et al.,
2001).

• For Step 2a, apply DFS from s to the subgraph of G with just those
edges marked “free”. If t is reachable, we have found a path (and can
recover it trivially from the DFS’s forest.)

• For Step 2b, apply DFS from s to the subgraph of G with just those
edges marked “free” or “unprobed”. If t is not reached, we know
there’s a busy cut. Consider the set Vs of vertices reachable from s.
The busy cut we found is exactly those edges from Vs to V −Vs.

Given, then, that these tasks are mostly simple, we will generally (when
evaluating an algorithm) not consider the computational cost of its deci-
sion making; only the average number of probes it makes. This choice is
not without precedent; for example, see the discussion of certificate and
decision-tree complexity in Arora and Barak (2009: ch. 12).

1.2.2 An Alternate Formalization

Since we are considering only deterministic algorithms,1 if an algorithm re-
ceives the same feedback from a graph (i.e., is told the same results from
its probes) on two runs, it will make the same decisions, probe the same
edges, and come to the same conclusion in the same time. This determin-
ism leads to another representation of our algorithms: decision trees. For

1An attentive reader will ask if ignoring randomness is safe—we’re already in a random-
ized problem space, why not allow ourselves random choices? However, we are playing
what is called a game against nature (see Section 1.4), and in such games it is well known that
we can always meet the expectation of any mixed (random) strategy with a pure (determin-
istic) strategy (Papadimitriou, 1985). Thankfully, we do not need to consider the additional
possibilities of randomized algorithms.

Search Algorithms 5

s

a

t
1

2 3

(a) A channel graph G.

1

2 P:1

fb

C:1, 2

b

3

f

C:1, 3

b

P:2, 3

f

(b) Decision tree for checking node 1 first, then going
through nodes 2 and 3.

Figure 1.1: A graph G and associated decision tree.

any channel graph G and any algorithm (function f), we can write down a
binary tree that represents that algorithm’s decisions on that graph. Each
internal node is labeled with an edge and has two children labeled “free”
and “blocked”. Each leaf is labeled with either a path or a cut. It’s clear how
the tree is built: each vertex represents a state and the action the algorithm
will choose to take at that point. Under this model, the expected cost of the
algorithm on the graph is just the average depth of the tree (with subtrees
weighted by the blocking probability p). A simple graph and an associated
decision tree for searching it are shown in Figure 1.1. The particular way
we express our algorithms is unlikely to matter, but it is important have a
way to formally consider the cost model, especially when we begin looking
at complexity-theoretic problems in path search.

1.2.3 Graph Families and Search Complexity

In a certain sense, we are interested in the computational complexity of
searching various graphs. However, of course, for any fixed graph G =
(V, E), there is a simple constant bound on the cost of searching G: we

6 Introduction

probe every edge, in some arbitrary order, then announce a decision. Since
we speak entirely in average-case asymptotics, ours is an O(1) algorithm:
|E| is a constant.

Obviously, we don’t consider all graphs to have constant search com-
plexity. Hence, we typically consider infinite families of graphs. We define
a sequence G0, G1, G2, . . . of graphs with some common kind of structure,
but increasing size. (For the moment, our graphs will typically have paths
that are O(k) edges long, but O(ck) total edges.) We are then interested in
some family of algorithms2 that can search all the Gk. If we then define

EG(k) = E(Gk, q)

we can then define the search complexity of the graph family Gk as the
asymptotic growth of EG with k. This complexity measure helps justify our
choice of growth rates for path lengths and number of edges. Thus, an “ef-
ficient” (polynomial) algorithm for Gk is meaningful. Unless the number of
edges grows exponentially, every algorithm is efficient. Conversely, unless
“short” paths exist, even an algorithm that always guessed the right edge
to probe would be exponential just because it had to prove an entire path
was free.

1.3 Local Path Search

Our main consideration here is a restriction of path search. Path search,
as currently defined, does not mesh well with our network routing inter-
pretation. If we only allow ourselves a subset of the original choices—
specifically, we no longer allow fully global consideration of the graph—we
may find that fewer graphs can be efficiently searched.

1.3.1 Is Global Searching Necessary?

We will see a number of search algorithms (for instance, see 2.2) that are
efficient, but rely on being able to search wherever they need to. For exam-
ple, consider a family Gk, shown in Figure 1.2. Here, s has 2k disjoint paths
of length k, all leading to a single path of length k. For all q < 1,

lim
k→∞

PB(Gk, q) = 1.

2Typically, we don’t bother going into this much detail, but we are defining some se-
quence of functions f0 : G0 → e, f1 : G1 → e, . . . as we define f in Section 1.2.1. Most often,
we’ll define some f : ∀i.Gi → e, that describes the algorithm’s choice on any of the graphs
in the family.

Local Path Search 7

More to the point, we can find this out with an (expected) constant number
of probes in the “tail” of the graph (by using the path-greedy lemma, 1.3.)
If we instead examine the “wide” front of the graph, we might examine a
very large number of edges before finding a cut (or determining we can get
through that part of the graph.3) Allowing algorithms to search wherever

s t

Figure 1.2: G2, a graph where the location of search matters.

they please is perhaps an unrealistic assumption given our physical justi-
fication: if s is trying to talk to t, how can s start out by fiddling with the
network near t—wouldn’t it need to be able to talk to t to do that?

So, our physical model suggests a logical restriction of the problem, to
what we can call local path search: What if we can only probe edges we have
access to? That is, at any step of the algorithm, we have probed some set of
edges, and found some subset of them to be free. If we have found a free
path from s to some vertex v, then it is reasonable—in our physical model—
to probe edges leaving v, as we clearly can communicate with v, and thus
make decisions involving information from v’s vicinity. So, in local path
search, we say that at any step, we can only probe an edge (u, v) if there
exists a free path from s to at least one of u or v (but see Section 1.3.2).

Note that this restriction does not affect the decision power of our al-
gorithms: if a free path from s to t exists, we will be able to probe it in
order—each edge in turn will become available. Similarly, if there is no free
path, we will eventually find a busy cut—with sufficient probes, we can
find a path to every reachable vertex. If we determine (by there being no
more available edges) that t is not in that set, as discussed in 1.2, we have

3We won’t bother finding the exact cost of searching Gk, locally or otherwise; we just
illustrate with an example the idea that being able to search different parts of the graph can
be very valuable.

8 Introduction

s t

Figure 1.3: GG1, where ends are not always enough.

found a busy cut. It may be considerably more expensive—in fact, cost is
our first question—to search graphs locally, but we can always do it.

So, local path search is decidable, but is it efficient? We can show that
for at least some graphs, it is asymptotically slower; see 2.3. In fact, this
question is the main purpose of our work; our ultimate goal is to accu-
rately characterize how the locality restriction slows search. We wish to
find where we can search efficiently, where we cannot, and what the distin-
guishing characteristics of such graphs are.

1.3.2 Bridging the Local–General Gap

We will see that for many graphs, allowing general search—probing wher-
ever the algorithm wants—is sufficient for the existence of efficient search
algorithms, but allowing fully local search (probing from source-reachable
vertices) prevents efficient search. However, this choice—all or nothing—
is too harsh. We actually don’t always need to be able to probe from any-
where. For example, for Gk as above, all we need is the ability to probe
from either end: probing on the narrow tail near t will quickly find a small
cut.

Is this true in general? No. For example, consider a graph family GGk,
defined as the composition of Gk with the reversal of Gk, as shown in Fig-
ure 1.3. If we are only allowed s and t, probing GGk will take exponential
time. Otherwise, we could adapt the algorithm to locally probe Gk (since
we effectively are simultaneously locally probing two copies of Gk from
the front.) However, adding just one more vertex—the center—leaves us
simultaneously probing two copies of Gk from both ends, and we know do-
ing so is efficient. This leads naturally to a simple question: given some
graph G, what is the smallest set of vertices of G we must be given “access”
to search it efficiently?

We will write ES(G, q) for the optimal average cost of searching some

Complexity of Algorithm Generation 9

graph G, with S as the set of allowable starting vertices.

1.4 Complexity of Algorithm Generation

For the graph families and path search models we have considered so far,
depth-first search of various forms has been an optimal algorithm. But we
have no guarantee that DFS is always best—some graph G might require a
totally different search strategy.

One thing we can guarantee, however, is that we can determine (with
some computational effort) what the optimal algorithm for any graph is.
The obvious algorithm for doing so is

1. If G contains a marked free path or busy cut, the cost of searching G
is zero and we don’t need to probe anything.

2. Otherwise, for all e ∈ E,

(a) If e is already marked, or e isn’t accessible from our currently
available vertices,4 continue to the next e.

(b) Otherwise, mark e free, recursively use this algorithm to com-
pute the cost of probing that graph, and call the result e f .

(c) Then, mark e blocked, recursively use this algorithm to compute
the cost of probing that graph, and call the result eb.

(d) The optimal cost of searching G by starting with e is then ce =
qe f + peb.

3. The optimal edge to take is the one with the lowest ce; the cost is
ce + 1.

This algorithm works, but is slow. It considers the cost of probing edges
in every possible order, for a cost of O(n!) time.5 We note that the recur-
sion depth of this algorithm is at most polynomial, as there are at most n2

edges in a graph of size n, and we only recurse after assigning a mark to an
edge. So, this algorithm only takes polynomial space. Can we do better? In
complexity-theoretic terms, we want to know the complexity of deciding
this language:

PATHCOST = {< G, S, x, q > |ES(G, q) ≤ x}.
4Note that step this means we can make this algorithm work for general path search,

local search, or search from some set of allowed vertices.
5in fact, it does more than this, but that aspect is enough to show that it takes intractable

time.

10 Introduction

The above algorithm proves that PATHCOST ∈ PSPACE. We would
like to show that either PATHCOST is PSPACE-complete, or that we can
decide the language with fewer resources—ideally that PATHCOST ∈ P,
or failing that, perhaps PATHCOST ∈ PH (still an improvement) or the
like.

We can see evidence that PATHCOST might be PSPACE-complete in
the structure of path search: it is a game against nature, a two-player game
with a “disinterested” opponent who plays entirely randomly. PSPACE
can be seen as the class of problems expressible as the optimal strategy
for a two-player game; consider the canonical PSPACE-complete problem
TQBF, (Arora and Barak, 2009). It asks if a quantified boolean expression,

∃x1∀x2∃x3∀x4 . . . ∃xp(n)−1∀xp(n)φ(x1, . . . , xp(n)),

where φ is a boolean expression with a polynomial p(n) number of vari-
ables, is satisfiable. We can see proving or disproving this formula as a
game between two players: “forall” and “exists”. They take turns select-
ing values for variables, and “exists” wins at the end if the expression is
true. Hence, it is unsurprising that finding optimal strategies for several
real-world games, such as Othello, are PSPACE-complete (Iwata and Ka-
sai, 1994).

In fact, we can extend PSPACE-completeness to suitably complex
games against nature; the computational power doesn’t just come from
both players playing optimally. Papadimitriou (1985) showed that the gen-
eral class of polynomial-length games against nature is equal to PSPACE,
and demonstrated a number of specific PSPACE-complete games against
nature. One worth considering is dynamic graph reliability.

In the dynamic graph reliability problem, we are given a directed
acyclic graph with a source s and a sink t, and wish to travel from s to t.
However, if we are currently at a vertex v, and wish to travel along an edge
e, there is a probability p(e, v) that that edge will fail (become unavailable
for use) before our next move. We wish to find the maximal probability of
successful traversal.

Note that path search can be encoded as a form of dynamic graph re-
liability problem! It is not a perfect match, and the reverse isn’t true (it
is not immediately obvious how to encode any dynamic graph reliability
problem as a PATHCOST instance) but it is easy to see the similarity: each
move we try to make corresponds to an edge probe with some probability
of failure, and both problems seek to find a working path from s to t.

Thus one plausible goal is to find a reduction from dynamic graph

Techniques and Results 11

reliability to PATHCOST or a related path search problem. Of course,
PATHCOST is in some ways simpler (or just different) from graph reliabil-
ity: it is not out of the question that PATHCOST is not PSPACE-hard and
we can find a polynomial time algorithm for it,6 or some other improve-
ment (such as a containment in some level of the polynomial hierarchy).

1.5 Techniques and Results

This section is primarily dedicated to proving useful lemmas and results
for analyzing search algorithms, and describing the basis of the techniques
we will use heavily.

1.5.1 Forcing Information

A useful technique for analyzing lower bounds on searching graphs is what
we will call forcing information on an algorithm. Since we are concerned
with average case asymptotics, we can restrict our attention to the cost of
searching the graph in some common case. That is, suppose that for some
graph family Gk, some probalistic event X (for example, the graph is free)
occurs with positive probability for all k. Then (if we like) we can derive a
lower bound just from the expected cost of searching the graph given that
X happens.

In fact, we can take our analysis to assume that the cost of search-
ing the graph is zero if X doesn’t happen; since X occurs with positive
probability—that is, we have some ε such that for all k,

P(X) ≥ ε > 0

So if the expected cost of searching the graph when X occurs is f (k), the
overall cost is bounded as

E(Gk, q) > (1− ε) · 0 + ε · f (k) = ε f (k) ∈ Ω(f (k)).

This fact will be helpful when the minimum cost for any algorithm is easily
seen (and high) when X occurs, but not in general.

We can see the effect of this technique by looking at the decision tree
representation of any algorithm. We simply prune out any subtree where
a probe resulted in a contradiction of X (e.g., if X is “the graph is free”, we

6Of course, PATHCOST being PSPACE-hard doesn’t rule that out. . . but since that
would prove P = PSPACE, I’m not exactly holding my breath.

12 Introduction

prune out any edge leading to a declaration of a cut). Our interpretation of
this change is that when an algorithm makes a probe that might contradict
X, we ensure (with high probability) that it gets the answer that preserves
the possibility of X. This pruning will shrink the decision tree, but if we
take the same weighted average, we can still discover useful lower bounds.
In fact, we will often be able to ignore the cost of “proving” X; the number
of edges probed after any algorithm determines X will be enough to get the
bound we want.

1.5.2 Path-Greedy Algorithms

When determining lower bounds on locally searching graphs, it will be
helpful to restrict our attention to algorithms that in some sense “focus”
on some small part of the graph at any one point in time. One such useful
class are path-greedy algorithms, which we define as algorithms that can be
described as

1. Pick a path from some available vertex v to t through G.

2. Probe edges along that path, starting at v, continuing until some edge
is blocked (and the path is no longer of value).

3. Repeat until the graph is decided.

In other words, once these algorithms choose a path to examine any part of
(the first edge out of the available vertex), they focus entirely on that path
until it is of no use. The path-greedy lemma, which tells us that we only
need consider such algorithms (if we want), will be useful.

Lemma 1.3. For any channel graph G, there exists an asymptotically optimal
path-greedy search algorithm.

Proof. We can simulate an arbitrary local search algorithm with a path-
greedy algorithm, with a constant (1/p) factor overhead. Pick some op-
timal algorithm for locally searching G. At each step, where the original
algorithm would probe an edge e, pick a remaining path involving e (ob-
viously, one exists, or there would be no point in probing e). Probe that
path instead of just x. Clearly we have enough information to simulate the
original algorithm—we can just ignore the knowledge we have about the
additional edges we probed, if necessary. Moreover, this method is cheap:
we probe the first edge on the path, which is e (since the algorithm is lo-
cal, the source of e is accessible, and thus the path including it starts there).

Techniques and Results 13

Then, if that edge is free (with probability q) we probe the next, and so on.
If the path has n edges in total, the number of edges we expect to probe is:

1 + q (1 + q (1 + . . .)) = 1 + q + · · ·+ qn−1 < 1 + q + q2 + · · · = 1
p

and so we can efficiently use a path-greedy algorithm.

In many cases, path-greedy algorithms are obviously expensive; the
point of this lemma is that so long as we can prove that all path-greedy
algorithms satisfy some lower bound, we do not have to worry that some
algorithm outside of our restricted class will do (substantially) better.

Chapter 2

Analyzing Fully Parallel
Graphs

A relatively simple family of graphs, called the fully parallel graphs, will be
our first subject of study; in particular, they can teach us a great deal about
the differences in cost between global and local path search, while having
a tractable analysis.

2.1 The Fully Parallel Graphs

The fully parallel graphs, denoted Fk, have a simple recursive definition
shown in Figure 2.1. F0 is a single edge connecting s and t, and Fk is two
copies of Fk−1, placed in parallel with one another.

For convenience, we will need to label the two contained subgraphs. As
shown in Figure 2.1, we label one of the included copies of Fk−1 as F1

k ; the
other as F2

k . We write (s, F1
k) for the single edge from s into F1

k , and the like
for t and F2

k .
We can also define Fk differently, as the composition of two complete

binary trees, as seen in Figure 2.2. Here, Tk is a complete binary tree of
depth k. Then, Fk is two copies of Tk, with the leaves of one linked to the
other (importantly, they are linked “in order”, as shown, respecting the
symmetry of the graph). We will call the tree rooted at s the diverging or
initial tree, and the tree rooted at t the converging or final tree. This notation
will occasionally be more convenient when analyzing certain algorithms.

16 Analyzing Fully Parallel Graphs

s t

(a) F0, the first paral-
lel graph.

s

F1
k−1

F2
k−1

t
(s, F1

k
) (F 1

k , t)

(s, F 2
k) (F2

k
, t)

(b) Fk in terms of Fk−1.

s t

(c) F2, an example of a larger parallel
graph.

Figure 2.1: The definition of fully parallel graphs.

2.2 Bounds on Parallel Graphs

From previous work (Pippenger, 1999), we know that if 0 ≤ q < 1√
2

then,

lim
k→∞

Pb(Fk, q) = 1.

We can see this fact via the union bound: Fk is the union of 2k paths of
length 2k + 1, and all edges on a path must be free (with probability q) for
the graph to be free. Thus,

Pf (Fk, q) ≤ 2kq2k+1 = q(2q2)k.

Bounds on Parallel Graphs 17

(a) T2, a com-
plete binary tree
of depth 2.

s t

(b) F2, two connected copies of T2.

Figure 2.2: An alternate definition of fully parallel graphs.

Thus if q < 1√
2
, this bound goes to zero with increasing k. But if 1√

2
≤ q ≤ 1,

we have:

lim
k→∞

Pb(Fk, q) =
(1− q2)2

q4 .

Thus, if q is greater than the critical probability (here, 1√
2
), Pb is bounded

strictly away from 1 regardless of k; even in large fully parallel graphs, if
q is high enough, it is likely that the graph is free. This bound comes from
“folding” Fk along its midline into a binary tree.

We say that an edge in this tree exists if both edges it corresponds to in
Fk are free, with probability q2. The graph is free if a leaf of depth k exists,
and the bound can be derived from treating the tree’s edges as a branching
process.

Moreover, we can search fully parallel graphs relatively efficiently if we
do so globally.

Theorem 2.1 (Lin and Pippenger (1996)). For all 0 ≤ q ≤ 1,

E(Fk, q) ∈ O(k).

Proof. We demonstrate a simple algorithm: DFS from both ends simulta-
neously. (Note that this algorithm corresponds to searching the folded tree
described above.)

1. Probe (s, F1
k). If that edge is free, probe (F1

k , t). If that edge is free, use
this algorithm recursively to probe F1

k . If that graph is free, Fk is free.

18 Analyzing Fully Parallel Graphs

2. If Step 1 didn’t find a path, do the same with F2
k ; if there is no path

there either, the graph is blocked.

We label the expected cost on Fk of this algorithm as EDFS(k).
The expected cost c(k) of the two steps 1 and 2 above are precisely the

same (as they perform the same steps on identical subgraphs:)

c(k) = 1 + q(1 + qEDFS(k− 1)).

Furthermore, we will always execute 1, but we will only go to 2 if that
didn’t find a path, with probability

p(k) = 1− q2Pf (Fk, q).

Then we can write the expected cost of this algorithm as

EDFS(k) = (1 + p(k))c(k). (2.1)

Let d = (1 + p(k))(1 + q) (for our purposes, we really just want a constant
with regards to k upper bound on d; since p(k) ≤ 1, we can use d = 2 + 2q).
Then we can rearrange 2.1 to

EDFS(k) ≤ d + (1 + p(k))q2EDFS(k− 1).

Let X(q) = limk→∞
(
(1 + p(k))q2). Then we have

EDFS(k) ≤ d + X(q)EDFS(k− 1). (2.2)

Interpret Equation2.2 as a geometric series with ratio X(q). So, if X(q) < 1,
the expected cost is bounded by a constant; if X(q) ≤ 1, the cost is bounded
by O(k). Two cases are worth considering:

1. q < 1√
2
.

Remember that p(k) ≤ 1 regardless of k or q (since it is a probability).
So

X(q) ≤ 2q2 < 1.

Thus in this range, the expected cost to search Fk is constant in k!

2. 1√
2
≤ q < 1

In this range, remember that

lim
k→∞

Pf (Fk, q) = 1− (1− q2)2

q4 .

Bounds on Parallel Graphs 19

Hence we have

lim
k→∞

p(k) = 1− q2 +
(1− q2)2

q2 = 1− q2 +
1
q2 − 2 + q2 =

1
q2 − 1,

which tells us
X(q) = (1 +

1
q2 − 1)q2 = 1.

So in this range, the expected cost to search Fk is proportional to k.

Hence, for all q, X(q) ≤ 1 and E(Fk, q) ∈ O(k).

While it is not obvious that this is a strictly optimal algorithm, this O(k)
bound is “good enough”: each path in Fk has length 2k + 1 (remember,
also, that Fk has O(2k) vertices—these paths are short compared to the size
of the graph) and thus we’re determining if a path exists (and finding one
if so!) in about as much time as it takes to walk down one path. From a
complexity-theoretic viewpoint, we simply can’t do enough better for it to
be worth trying.

In addition, Lin and Pippenger (1996) have demonstrated that this al-
gorithm is asymptotically optimal, and their method is worth considering.

Lemma 2.2 ((Lin and Pippenger, 1996)). The above algorithm uses at most 1
p

times as many probes as any algorithm for searching Fk.

Proof. (Sketch.) We can demonstrate that the above algorithm is optimal
among algorithms that work symmetrically from both ends (at each step,
probing both ends of some subgraph we have demonstrated can be ac-
cessed from both source and target). Furthermore, any algorithm can be
simulated with minimal overhead by such an algorithm. If the arbitrary
algorithm would probe an edge x at some step, instead probe both ends of
the subgraph containing x repeatedly until we either reach x or have found
a blocked edge that invalidates x. It is not hard to see that this process takes
at most

1 + q + q2 + · · · < 1
p

probes, and gives at least as much information as probing x. Thus, a suit-
ably symmetric algorithm can do at least a factor of 1

p as well, and DFS does
better than any symmetric algorithm. (This approach is a global-search
variant of the path-greedy lemma, applicable to any graph where any edge
is on exactly one path from s or to t (though not necessarily both.)

20 Analyzing Fully Parallel Graphs

2.3 Local Search on Fk

While the fully parallel graphs are efficiently globally searched without too
much difficulty, the same is not true in the case of local search.

Theorem 2.3. For local path search on the fully parallel graphs, we have (for
q > 1

2)

E(Fk, q) ∈ Ω(ck)
E(Fk, q) ∈ O(Ck)

for some 1 < c ≤ C < 2. We know that

(2q)− log q ≤ c ≤ C ≤
{

2q if q < 1√
2

1
q otherwise

.

Proof. First we will demonstrate that we can perform the search with ex-
ponential cost. Then we demonstrate that any algorithm must satisfy some
exponential lower bound.

Achieving the Bound

We begin by demonstrating an algorithm that achieves this cost: depth-first
search from one end. To reiterate

1. To search F0, just probe the single edge there.

2. To search Fk, first probe (s, F1
k) (the choice here is obviously arbitrary).

If the edge is free, recursively apply DFS to F1
k ; if that graph is free,

probe (F1
k , t); if that edge is free, the whole graph is free and we’re

done.

3. Otherwise, repeat exactly the same procedure with F2
k ; if that method

fails to find a path to t, the graph is blocked.

We can analyze the cost of this algorithm much as we did for the two-sided
DFS in the general case. Again, we have to look at either one side or two
sides (with the same expected cost per side):

EDFS(k) = (1 + p(k))c(k),

where c(k) is the cost of probing one side of the graph, and p(k) is the
probability we’ll find that first side is blocked and we’ll have to look at

Local Search on Fk 21

another. In fact, p(k) has the same recursive definition. But here, c(k) is
different:

c(k) = 1 + q
(
EDFS(k− 1) + Pf (Fk−1, q)

)
This cost is higher! The issue is that since we don’t look at both (s, F1

k) and
(F2

k , t) before diving recursively, we’re considerably more likely to recur.
With a similar rearrangement as before, we can write, for two constants d1
and d2,

d1 + (1 + p(k))qEDFS(k− 1) ≤ EDFS(k) ≤ d2 + (1 + p(k))qEDFS(k− 1).

Hence defining as before,

X(q) = lim
k→∞

((1 + p(k))q) .

We see we are bounded on both sides by a geometric series with ratio X(q).
We consider four cases:

1. q < 1
2 .

Here we note that p(k) ≤ 1, and see that X(q) ≤ 2q < 1. So, in this
range, we still see a constant expected cost.

2. q = 1
2 .

Here we are still in the blocking regime and see p(k) go to 1 at high
k. Then we see X(q) = 2q = 1, and we find an expected cost of O(k).
Note this result is strictly worse than the general case, though still
“tractable”.

3. 1
2 < q < 1√

2

Here we still see p(k) go to 1, giving us X(q) = 2q > 1, and the
exponential growth we wanted.

4. 1√
2
≤ q.

Here, p(k) (as before) goes to 1
q2 − 1, giving us

X(q) = (1 + p(k))q =
1
q

,

as desired.

22 Analyzing Fully Parallel Graphs

s

F0

F0

F0

F0

t

Figure 2.3: Breaking up F2 into T2, 4 copies of F0, and T2. If the internal
subgraphs grow quickly enough, as k does, the probability of any of them
being free will go to zero.

An Exponential Lower Bound Exists

Of course, demonstrating that DFS takes exponential time doesn’t show
that nothing else is better—but we can demonstrate that an exponential
lower bound applies to any algorithm.

Lemma 2.4. For all 1
2 < q < 1√

2
(the blocking range) there exists c > 1 such that

we have
E(Fk, q) ∈ Ω(ck).

Specifically,

E(Fk, q) ∈ Ω

((
2

1
2

(
3+ log 2

log q

)
q
)k
)

. (2.3)

Proof. We demonstrate this bound by breaking the graph into two regions:
the tree and the barrier. Specifically, we demonstrate that for some d de-
pendent only on q, breaking Fk into a tree of depth k/d rooted at s, another
tree rooted at t, and the 2k/d copies of Fk−k/d between those trees allows
us to bound the search with high probability to within the first tree—and
furthermore, that searching that tree is expensive. Figure 2.3 demonstrates
breaking up Fk; the key idea is that we can force every one of the central
subgraphs being blocked on the algorithm.

Lemma 2.5. Let d > 2 log q
log 2+2 log q . Then the probability as k goes to infinity that

2k/d copies of Fk−k/d are all blocked goes to 1.

Local Search on Fk 23

Proof. Let c = k/d. If P is the probability all copies of the subgraph are
blocked, we have

P =
(
1− Pf (Fk−c)

)2c
.

Applying the union bound approximation for Pf and the binomial theorem,

P ≥ 1− 2cq(2q2)k−c

= 1− q2kq2k−2c

= 1− q2kq2k(d−1)/d

= 1− q(2q2(d−1)/d)k.

So long as r = 2q2(d−1)/d < 1, this probability goes to 1. But using the
definition of d (taking the bound as equality)

r = 2q2 d−1
d ,

so

log r = log 2 + 2
d− 1

d
log q

= log 2− 2
log 2

2 log q
log q

= log 2− log 2 = 0.

Thus
r = 1.

Since the probability of the barrier being blocking goes to 1 with high
k, it’s bounded away from zero for all k by a constant; we can force the
algorithm to find all of the subgraphs in the barrier to be blocked.

Then, we must search all of the diverging tree to find a cut—we must
get to each (available) leaf of that tree, so we can search the corresponding
barrier subgraph and determine it is impassable. Thus, we bound E(Fk, q)
from below by the cost of searching the initial tree.

Lemma 2.6. Let Tk be a tree of depth k. Looking at the cost of searching the tree
fully (to find all available leaves), we have

E(Tk, q) ∈ Θ((2q)k).

24 Analyzing Fully Parallel Graphs

Proof. We have E(T0, q) = 0. Searching any large tree is simple: we must
probe both children of the root; if either child is free, we must probe the
corresponding subtree (since we want to find all available leaves). Thus,

E(Tk, q) = 2 · (1 + qE(Tk−1, q)) = 2 + (2q)E(Tk−1, q).

The desired bound immediately follows from treating this formula as a ge-
ometric series.

We can now put the pieces together. We have

d =
2 log q

log 2 + 2 log q
.

We can bound the cost of searching Fk as:

E(Fk, q) ≥ E(Tk/d, q) ∈ Θ
(
(2q)k/d

)
.

Thus we have a minimal ratio of

c = (2q)1/d

and tedious arithmetic gives Equation 2.3.

This bound is not tight—DFS has a significantly worse ratio—but it is
exponential. We can derive a similar exponential bound in the passing
regime.

Lemma 2.7. For all 1
2 < q < 1√

2
(the blocking range) there exists c > 1 such that

we have
E(Fk, q) ∈ Ω(ck).

Specifically, there exists some d > 1 depending only on q such that

E(Fk, q) ∈ Ω

((1
q

)1/d
)k
 .

Proof. The proof is complex and takes three steps:

1. We demonstrate that with high probability, an exponential number
((2q)k) of the leaves of the converging tree are reachable.

2. We show that if a tree of depth k has some large number of reach-
able leaves (exponential in k), then it must contain a subdivision of a
complete binary tree of depth comparable to k.

Local Search on Fk 25

3. We prove a lower bound of Ω
((

1
q

)k
)

on searching a complete tree

of depth k from the leaves.

Lemma 2.8. On average, q(2q)k of the leaves of the converging tree of Fk are
reachable.

Proof. Let R(k) be the expected number of reachable leaves of Tk (when
searched from the root.) Then,

R(0) = 1
R(k) = 2qR(k− 1),

where (2q(1− q) + 2q2) = 2q is the expected number of reachable copies of
Tk−1 from the root of Tk. We immediately derive

R(k) = (2q)k.

So, R(k) leaves of the diverging tree are reachable; since each reachable
leaf must pass through one unprobed edge (with probability q) to become
a reachable leaf of the converging tree, the expected number of successful
leaves is:

qR(k) = q(2q)k.

In effect, we have proved that a significant fraction of the converging tree is
of interest. Next, we demonstrate that this result implies that a substantial
complete tree must be navigated.

We say the pebble number P(T) of any tree T is the depth of the largest
binary tree contained in T as a minor. We have

P(T0) = 0.

If T is a tree whose root has one child, T′, then

P(T) = P(T′)

and if T’s root has two children, Ta and Tb, then

P(T) =

{
k + 1 P(Ta) = P(Tb) = k
max(P(Ta), P(Tb)) otherwise.

26 Analyzing Fully Parallel Graphs

Another interpretation is that the pebble number is the number of registers
needed to evaluate an expression with a given abstract syntax tree. For
proofs of the above and substantial analysis of upper bounds on the pebble
number, see Flajolet et al. (1979). We will demonstrate that the reachable
section of the converging tree in the average case has a high pebble number,
since it has many leaves.

Lemma 2.9. Define Lp,k as the maximum possible number of leaves of a tree with
depth k and pebble number p. We have

Lp,k =
p

∑
i=0

(
k
i

)
.

From there, we have for any constant d > 2,

Lk/d,k <
(
(de)

1
d

)k
.

Corollary 2.10. If the converging tree has at least q(2q)k leaves, its pebble number
(for sufficiently large k) is at least:

p =
k
d

For some constant d > 1, depending only on q.

Proof. Note that we have

Lk,k = 2k

L0,k = 1
Lp,k = Lp,k−1 + Lp−1,k−1.

The first two cases are trivial:

1. The only depth-k tree with pebble number k is a complete tree.

2. The only tree with a pebble number of 1 is a single path with exactly
1 leaf.

The recurrence relation can be derived from the definition of the pebble
number; a tree with depth k and pebble number p has as the children of its
root:

• A single tree with pebble number p and depth k− 1;

Local Search on Fk 27

• Such a tree, plus another child with pebble number less than p and
depth k− 1; or,

• Two trees with pebble number p− 1 exactly.

However, the first case trivially has fewer leaves than the second; the third
case is subsumed as well, since Lp,k obviously increases with p.1 Thus we
have:

Lp−1,k−1 + Lp−1,k−1 ≤ Lp,k−1 + Lp−1,k−1.

So only the second case remains in the recurrence as given. The closed form
solution

Lp,k =
p

∑
i=0

(
k
i

)
.

is immediate by induction.2

For the corollaries, note that if 2p < k,

Lp,k =
p

∑
i=0

(
k
i

)
< (p + 1)

(
k
p

)
.

Let p = k/d, for some d > 2. We now have

Lp,k <

(
k
d

+ 1
)(

k
k
d

)
≤
(

k
d

+ 1
)(

(de)1/d
)k

.

Note that
lim
d→∞

(de)1/d = 1,

and that so long as
2q > (de)1/d,

we have that R(k) grows faster than L k
d ,k; thus, for large k and suitable d,

R(k) > L k
d ,k.

Our conclusion is that there exists some d, depending only on q, such that
for large enough k, the converging tree of Fk has pebble number at least k

d
with high probability.

1We can just add leaves from the bottom of the tree until we increase the pebble number.
2The structure of our closed form for Lp,k suggests that a good combinatorial proof is

possible, though we have yet to find one.

28 Analyzing Fully Parallel Graphs

So we now know that we can force a large complete binary tree into the
reachable part of Fk. In fact, we can do something stronger: we can force
a large binary tree, rooted at the root of Fk’s converging tree, on the algorithm.
We do so by forcing the four edges (s, F1

k), (s, F2
k), (F1

k , t), (F2
k , t) to be free

(with probability q4 > 0); we then apply the above logic to the two reach-
able copies of Fk−1 to find large binary trees in each half; we then have a
large binary tree rooted at the base of the entire channel graph, which is
necessary.

The tree we have found is only contained in the reachable part of the
graph G—to be exact, the reachable part of the tree is a subdivision of the
binary tree in question. However, we will apply lower bounds to searching
complete trees to this graph. This is safe.

Lemma 2.11. Let T be a complete binary tree and U be a tree that contains T as a
rooted minor. Then

E(U, q) ≥ E(T, q).

Proof. Any algorithm which searches U also searches T. The only difference
between U and T is that U replaces single edges with possibly longer paths.

Since we will (see Lemma 2.12) prove a lower bound on searching bi-
nary trees by minimizing the number of leaves any step of a search can
eliminate as plausible free paths, and moreover that the number of leaves
eliminated by such a step shrinks if the search dies faster, the change to U
can only hurt. Since paths of length greater than one are less likely to be
free, the search is only more likely to die at any one stage: the step in a
search will eliminate fewer leaves, we must take more steps, and the cost is
no lower.

All that remains is to show that searching complete trees is expensive.
This is relatively straightforward, but interesting.

Lemma 2.12. Locally searching a complete binary tree Tk from the leaves takes at

least Ω
((

1
q

)k
)

probes on average.

Proof. We apply the path-greedy lemma, and thus only need consider algo-
rithms that probe entire paths. Note that any path we can pick initially is
of length k; moreover, after probing that path, we will still be left with only
length k paths! To see this, examine Figure 2.4. As soon as a path becomes
blocked, all the shorter paths we have exposed by looking at it are pruned
out, and all that remains are the (full length) paths disjoint from the part of
the path we probed. So, we can consider searching a tree as a series of path-

Local Search on Fk 29

t

12345678

(a) Searching one path in a tree of depth k = 3

t

345678

(b) After that search, paths are still length k.

Figure 2.4: A demonstration that path-greedily searching Tk only ever
searches length-k paths.

probes that eliminate leaves. A leaf is eliminated when we begin searching
a path beginning there (because after this probe, we will have no further
use for it) or when we find a path to some ancestor of that leaf (regardless
of whether the current search finds a path to the root or not, the leaf will not
be necessary). When all the leaves are eliminated, the tree is decided—we
have either found a path to the root, or a cut that is “beneath” all the leaves.

Lemma 2.13. Probing any single path in a binary tree of depth k eliminates no
more than O

(
(2q)k) leaves on average.

Proof. Consider Figure 2.4. Suppose without loss of generality that we

30 Analyzing Fully Parallel Graphs

search the path starting at leaf 1.
Obviously, we always eliminate leaf 1. If the first edge is free; leaf 2

is eliminated as well. If the second edge is free also, leaves 3 and 4 are
eliminated, and so on. In fact, it’s easy to see that the number N of leaves
eliminated is:

N = 1 +
k−1

∑
i=0

(
qk2k

)
= O

(
(2q)k

)

Remark 2.14. This applies to binary trees that are not complete; in such trees,
a path probe can “eliminate” leaves that never existed, but doesn’t get any
additional help.

Remember that there are 2k leaves in a complete binary tree to start
with. Since each step (probe of a single path) can only eliminate (2q)k

leaves, the number of steps (and thus the search cost) is at least

2k

(2q)k = Ω

((
1
q

)k
)

as desired.

Lemma 2.8, Lemma 2.9, and Lemma 2.12 combine nicely to form the
desired result: there exists a tree of depth k/d, and searching it must take

Ω
((

1
q

)k/d
)

time.

Thus, we have demonstrate that for an important family of graphs, local
search is fundamentally inefficient. We would like to show that the DFS
algorithm is in fact optimal; this is difficult, but we strongly conjecture it to
be true. For one thing, the bounds on any algorithm are roughly derived
from the cost of searching either the initial or the final tree, and in both
cases the cost of searching a full tree matches the cost of DFS; our lower
bounds simply cannot guarantee a full tree. We believe that with additional
work, the proportion of the tree that we can guarantee will grow; if we can
eventually demonstrate that (up to constant factors) the whole tree is of
interest, DFS is immediately optimal.

In fact, we can already combine the techniques used above to form a
better bound for both the blocking and free regimes.

Local Search on Fk 31

Lemma 2.15. For the exponential base lower bound c given in Theorem 2.3, we
have:

c ≥ (2q)− log(q)

Sketch of proof. Recall by Lemma 2.8 that the expected value of the number
of available leaves of the converging tree of Fk is q(2q)k. By Lemma 2.12,
if we give away the diverging tree, we then must eliminate all available
leaves via path-probes into the converging tree. Furthermore, if we are
probing into a tree that contains a rooted copy of a complete binary tree
of depth d, each path-probe can eliminate at most (2q)d leaves on average
(Lemma 2.13.)

But consider the pebble number of the available portion of the converg-
ing tree. It is at most k log(2q) in the average case, since a complete tree of
higher depth would have more leaves. Thus we can eliminate on average
at most (2q)k log(2q) leaves on average with each path-probe, by the above
lemmata. Thus gives a trivial lower bound on the number N of required
path-probes,

N ≥ (2q)k

(2q)k log(2q) = (2q)k(1−log(2q)) = (2q)−k log(q) =
(
(2q)− log(q)

)k
,

as desired.

Remark 2.16. This bound does not yet match that of DFS (2q in the blocking
range, 1/q in the blocking range) but it is a much more encouraging result,
easily seen in Figure 2.5. It is considerably higher than our earlier bounds
(in fact, in the passing regime, our earlier bounds were nonconstructive and
experimentally the derived base was very close to 1). Also, the previous
bounds for both the passing regime and the blocking regime approached 1
at the critical value, whereas DFS’s cost is at a maximum there. This new
bound is also maximal at the critical value. Lastly, as can be seen from
the graph, the lower bound approaches the upper bound near q = 1

2 and
q = 1, as the bounds are tangent there. Thus we feel that even if this bound
is not tight with DFS, it provides substantial supporting evidence towards
a conjecture that DFS is optimal for local search of the fully-parallel graph.

DFS is still not optimal in the entire range, but we are getting closer to
that goal.

32 Analyzing Fully Parallel Graphs

0.6 0.7 0.8 0.9 1.0

1.1

1.2

1.3

1.4

Figure 2.5: Our best upper and lower bounds for c, the exponential base of
searching Fk.

Chapter 3

Computational Complexity of
Path Search

As discussed in Section 1.4, it is a cause for some concern that we ignore
the computational cost of making choices (as opposed to the cost of making
probes.) The best we can say easily about the computational effort needed
to find the best choice at any step is that PSPACE suffices. To the complexity
theorist, this is not a reassuring bound of tractability!

We thus seek to accurately characterize the hardness of the tasks we
need to perform to actually execute our optimal algorithms. The following
are our main results:

• PATHPROB is #P-complete.

• PATHCOST is #P-hard, and contained in PSPACE.

While we have yet to define the above languages, the names should be sug-
gestive, and the hardness results (at least) should be disheartening, at least
if we are looking for a truly efficient (or even tractable) method of searching
graphs.1

All the results in this chapter (unless otherwise specified) apply to local
search algorithms. We can begin by defining the above languages.

3.1 Our Languages

There are two (computational) problems of interest in path search.

1Of course, from the perspective of a complexity theorists, such hardness results are only
a good thing.

34 Computational Complexity of Path Search

• Computing the probability some channel graph G is free.

• Computing the cost of searching some G.

From here we derive our first two important problems, which we present
them here as decision problems; we could easily consider them function
problems as well (and in fact, will do so later for convenience).

PATHPROB = {< G, q, b > |PF(G, q) ≥ b}
PATHCOST = {< G, S, q, b > |E(G, q) ≥ b}

Here, as before, S is the set of “accessible” vertices to begin with (under a lo-
cal search assumption.) This allows us to subsume local and glocal search.
For a fully local search, S = {s}; for a fully global search, S = V. Obviously,
we do not need a starting set S for the free-probability language—the set
of accessible starting points does not affect the overall probability that the
graph is free, only how many probes it takes to ascertain that!

3.2 Hardness Results for Our Languages

Our first theorem is a well-known result of Valiant.

Theorem 3.1 (Valiant). PATHPROB is #P-complete.

Proof. See Valiant (1979b). He considers the related problem of counting
the subgraphs of G that are connected, but a little thought shows that for
q = 1

2 all such subgraphs are equally likely, and the desired probability is
just the number of connected graphs over the total number of subgraphs.
Simple constructions extend this to other q.

Theorem 3.1 will be our main building block. We begin by using it to
examine computing costs.

Theorem 3.2. PATHCOST is #P-hard, and contained in PSPACE.

Proof. For the containment, just remember that as discussed in Section 1.4
PATHCOST is a game against nature and thus in PSPACE (Papadimitriou,
1985). For the hardness result, we reduce from PATHPROB.

Following Arora and Barak (2009) and Valiant (1979a), we will call a
function problem y #P-hard if given an oracle for y, we can compute any
function in #P; that is,

#P ⊂ FPy.

Hardness Results for Our Languages 35

In our case, as we reduce from PATHPROB, we will call PATHCOST #P-
hard if given an oracle for PATHCOST, we can compute PATHPROB in
polynomial time. Take an arbitrary instance of PATHPROB; as a function
problem, that instance is < G, q >, and asks us to compute PF(G, q). Con-
struct the graph GG, which is just two copies of G in series.

G1 G2

We do not want any edges separating G1 and G2; instead, we simply merge
the source of G2 with the previous graph’s target. Now, for any graph G
define EB(G, q) as the expected cost of the optimal algorithm2 conditioned
on G being blocked; define EF similarly for the case where G is free. Clearly

E(G, q) = PB(G, q)EB(G, q) + PF(G, q)EF(G, q), (3.1)

but note that (in terms of the optimal algorithm for G) the optimal algo-
rithm for locally searching GG is obvious.

1. Search G1. If it is blocked, return that GG is blocked.

2. Otherwise, search G2 and return the answer that gives.

In fact, no other algorithim is possible. If we are doing a fully local search,
we must decide if G1 is free or blocked before we can even consider exam-
ining G2. We can see that

E(GG, q) = PB(G, q)EB(G, q) + PF(G, q) (EF(G, q) + E(G, q)) ,

but subtracting out Equation 3.1 and solving for PF(G),

PF(G, q) =
E(GG, q)− E(G, q)

E(G, q)
.

Thus (labeling the sources of G and GG sG and sGG), and given access to an
oracle F for PATHCOST, we can solve PATHPROB in polynomial time.

1. Construct GG.

2. Query the oracle for a = F(< G, {sG}, q >).

3. Query the oracle for b = F(< G, {sGG}, q?).

2To be clear, this is the optimal algorithm overall; if there is an algorithm that is more
efficient just in the case of a blocked graph, we do not use it.

36 Computational Complexity of Path Search

4. Return the value
c =

b− a
a

Thus with two queries to a PATHCOST oracle, we can solve PATHPROB,
and PATHCOST is #P-hard.

Remark 3.3. A logical extension from here is to reduce the gap between up-
per and lower bounds for PATHCOST. Toda’s theorem (Arora and Barak,
2009) tells us

PH ⊂ P#P

and in some sense, PSPACE is the “next step up” from the polynomial
hierarchy. Since we know the hardness of our problem lies somewhere
in this narrow range, it’s natural to want to pin down its precise location.
In finding a cheaper algorithm, the biggest difficulty is simply representing
the algorithm(s) we wish to evaluate; short of a polynomially-deep and
exponentially wide tree, it is simply difficult to find a way to compute with
a description of an algorithm (so that we can find its cost, and then possibly
find some sort of minimum.)

In the other direction (proving a PSPACE-hardness result, instead of
solving PATHCOST in fewer resources than unrestrictured polynomial
space) the main difficulty is overcoming the local3 action of path search.
Most of the PSPACE-complete games against nature allow a decision made
in one portion of the game to drastically and irrevocably modify other dis-
joint points—the proof that the dynamic graph reliability problem consid-
ered in Section 1.4 is PSPACE-complete relies critically on the ability to set
up a problem where moving to one vertex of the graph can cause a failure
in a completely different part of the graph.

Path search, on the other hand, has only local effects. Probing an edge
can only change the status of adjacent vertices—the result cannot effect
other edges, except possibly by making probing those edges unnecessary.
Thus, it is difficult to apply reductions from the literature, as we cannot
replicate the necessary effects.

3This sense of the word is completely orthogonal to local path search; we’re simply noting
the local effects of any of our decisions.

Chapter 4

Future Work and Conclusions

In this work, we have made the first known examination of local path
search, and found many surprising results. However, much is left to be
studied; many questions are still open, and there are some tempting con-
jectures we have yet to successfully prove. We will present some such ques-
tions and conjectures here.

4.1 Future Work

Conjecture 1. A depth-first approach is optimal for local search on any graph.

Remark 4.1. We have found no counterexample to this conjecture. In fact,
for every graph we have considered, it seems that the following heuristic is
true: if it’s optimal to make your next probe in some subgraph of G, unless
that probe determines the free/blocked status of that subgraph, it’s still
optimal to keep probing there.

The intuition behind this is simple. If we expect to make the most
“progress” by looking at one part of G, it’s probably because we can find a
path there (or determine that some large part of G is blocked). It’s unlikely
that some result of that probe will tell us suddenly that there’s nothing that
can be easily learned from that section of G.

If we could prove this greedy property of path search, the conjecture
would immiediately follow (for a wide class of graph families, at least.)
Methods for doing so are unclear.

Conjecture 2. If indegree and outdegree are bounded by a constant for some fam-
ily Gk, and the family grows exponentially in size and polynomially in depth with
k, then the family cannot be locally searched in polynomial time. In other words,

38 Future Work and Conclusions

there are no efficiently searchable families (in the sense of Section 1.2.3) in the local
case.

Remark 4.2. This conjecture is derived from Conjecture 1 (though not nec-
essarily dependent on it.) Our intuition is simple: any graph meeting the
characteristics has to branch out from the source, repeatedly and often, or
it can’t have enough vertices. While we don’t know, obviously, if this arbi-
trary family’s branching is a tree, it shares a lot of characteristics with the
trees of Fk—and similar arguments would hopefully prove we must explore
nearly all of it to find a cut or path.

Conjecture 3. PATHCOST is PSPACE-complete.

Remark 4.3. As mentioned above, this seems true, as it certainly seems
difficult to calculate algorithm costs without the ability to delve into a
polynomially-deep tree, but is hard to prove without nonlocal effects most
reductions rely upon.

4.2 Conclusions

As is often true, restricting the options available in the path search problem
has produced a new, interesting problem with some structure not known
to exist in global path search—several tractable graphs become intractable,
common techniques for finding efficient search algorithms become inappli-
cable, and we find several previously-unknown hardness results (that do
not immediately apply to the global case.) Much is still to be done, the
topic is accessible, and the local case is at least nominally more connected
to the practical application/justification of routing networks. Given these
encouraging facts, we look forward to seeing what else can be said about
local path search.

Bibliography

Arora, Sanjeev, and Boaz Barak. 2009. Computation Complexity: A Modern
Approach. New York, NY, USA: Cambridge University Press. URL http:
//www.cs.princeton.edu/theory/complexity. 1.2.1, 1.4, 3.2, 3.3

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. 2001. Introduction to Algorithms. Cambridge, MA, USA: MIT Press.
1.2.1

Flajolet, Philippe, Jean-Claude Raoult, and Jean Vuillemin. 1979. The num-
ber of registers required for evaluating arithmetic expressions. Theoretical
Computer Science 9:99–125. 2.3

Iwata, Shigeki, and Takumi Kasai. 1994. The othello game on an n × n
board is pspace-complete. Theoretical Computer Science 123(2):329–340. 1.4

Lin, Geng, and Nicholas Pippenger. 1996. Routing algorithms for switch-
ing networks with probabilistic traffic. Networks 28(1):21–29. 2.1, 2.2, 2.2

Papadimitriou, Christos H. 1985. Games against nature. Journal of Com-
puter and System Sciences 31(2):288–301. 1, 1.4, 3.2

Pippenger, Nicholas. 1999. Upper and lower bounds for the average-case
complexity of path search. Networks 33(4):249–259. 2.2

Valiant, L. G. 1979a. The complexity of computing the permanent. Theo-
retical Computer Science 8(2):189–201. 3.2

Valiant, Leslie G. 1979b. The complexity of enumeration and reliability
problems. SIAM Journal on Computing 8(3):410–421. 3.2

http://www.cs.princeton.edu/theory/complexity
http://www.cs.princeton.edu/theory/complexity

	Claremont Colleges
	Scholarship @ Claremont
	2009

	Locality and Complexity in Path Search
	Andrew Hunter
	Recommended Citation

	Abstract
	Acknowledgments
	Introduction
	Path Search & Notation
	Search Algorithms
	Local Path Search
	Complexity of Algorithm Generation
	Techniques and Results

	Analyzing Fully Parallel Graphs
	The Fully Parallel Graphs
	Bounds on Parallel Graphs
	Local Search on Fk

	Computational Complexity of Path Search
	Our Languages
	Hardness Results for Our Languages

	Future Work and Conclusions
	Future Work
	Conclusions

	Bibliography

