
Claremont Colleges
Scholarship @ Claremont

HMC Senior Theses HMC Student Scholarship

2008

Graph Linear Complexity
Jason Winerip
Harvey Mudd College

This Open Access Senior Thesis is brought to you for free and open access by the HMC Student Scholarship at Scholarship @ Claremont. It has been
accepted for inclusion in HMC Senior Theses by an authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

Recommended Citation
Winerip, Jason, "Graph Linear Complexity" (2008). HMC Senior Theses. 216.
https://scholarship.claremont.edu/hmc_theses/216

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Claremont

https://core.ac.uk/display/215289824?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarship.claremont.edu
https://scholarship.claremont.edu/hmc_theses
https://scholarship.claremont.edu/hmc_student
mailto:scholarship@cuc.claremont.edu

Graph Linear Complexity

Jason Winerip

Nicholas Pippenger, Advisor

Michael Orrison, Reader

May, 2008

Department of Mathematics

Copyright c© 2008 Jason Winerip.

The author grants Harvey Mudd College the nonexclusive right to make this work
available for noncommercial, educational purposes, provided that this copyright
statement appears on the reproduced materials and notice is given that the copy-
ing is by permission of the author. To disseminate otherwise or to republish re-
quires written permission from the author.

Abstract

This thesis expands on the notion of linear complexity for a graph as de-
fined by Michael Orrison and David Neel in their paper ”The Linear Com-
plexity of a Graph”. It considers additional classes of graphs and provides
upper bounds for additional types of graphs and graph operations.

Contents

Abstract iii

1 Introduction 1
1.1 Overview . 1
1.2 Background . 2

2 Original Results 5
2.1 Graph Operations . 5
2.2 Proof of Necessity of Multiplication 8
2.3 Generalization of Johnson Graphs 12

3 Conclusion 15
3.1 Summary of Results . 15
3.2 Future Work . 15

Bibliography 17

List of Figures

2.1 Example of a join and the associated edge partitioning sub-
graphs . 7

2.2 The graph G, depicted as 3 disjoint copies of K4 joined with
an isolated vertex, and as 3 copies of K5 identified at a vertex 9

Chapter 1

Introduction

1.1 Overview

This thesis draws on the definition of linear complexity for graphs given
by Michael Orrison and David Neel in their paper “Linear Complexity of a
Graph” (2006). We begin with some basic definitions from graph theory.

A graph G = {V, E} is composed of vertices and edges. We label the
vertices v1, . . . , vn for a graph with n vertices and two vertices vi and vj
are adjacent (denoted vi ∼ vj) if the graph contains the edge {vi, vj}. We
consder only undirected graphs, so vi ∼ vj ⇔ vj ∼ vi.

Every graph has an associated adjacency matrix which is an n × n ma-
trix whose entry in row i column j is equal to the number of edges from
vi to vj. For simple graphs, which is all this thesis will consider, there are
never multiple edges between vertices, and a vertex cannot have any edges
to itself. Moreover, since we are dealing with undirected graphs, this im-
plies the adjacency matrix is a symmetric 0− 1 matrix with 0’s along the
diagonal.

This is enough background to now rigorously define the linear com-
plexity of a graph as used in this paper. Let

(f−n+1, . . . , f0, f1, . . . , fm)

be a sequence of linear forms in the indeterminates x1, . . . , xn i.e., linear
combinations of the xi’s with coefficients from R. Such a sequence is a linear
computation sequence of length m if, for i ≤ 0, fi = xi+n and, for 1 ≤ i ≤ m,
either

fi = c f j or fi = ± f j ± fk

2 Introduction

for some c ∈ R and some j, k, < i. This sequence is said to compute a set
of linear forms F if F ⊆ {0,± fi| − n < i ≤ m}. The linear complexity of
a set of forms is the minimum value m such that there is a sequence of
length m that computes that set of forms. In the case of an n× n matrix A,
if X = [x1, . . . , xn]T then we note that AX is a vector consisting of n linear
combinations of the indeterminates x1, . . . , xn. Considering each element
of this vector as an element in a set of forms, the linear complexity of a ma-
trix is simply the linear complexity of the set of elements in the vector AX.
The linear complexity of a graph is then defined to be the linear complexity of
its adjacency matrix. Since adjacency matrices are unique up to permuting
rows and columns, and since this is equivalent to reindexing the indeter-
minates or output forms, the complexity is independent of our choice of
adjacency matrix.

In Orrison and Neel’s paper, many basic bounds on linear complexity
are laid out. In particular, they exactly determine the linear complexity
of some common classes of graphs, namely trees, cycles, complete graphs,
and k-partite cliques. However, other than these relatively simple classes
of graphs, exact values for linear complexity are not found, and only very
general upper bounds are given in many cases.

1.2 Background

Prior work by Orrison and Neel has established various useful theorems
about linear complexity of certain types of graphs. For example, Orrison
and Neel define a graph to be reducible if it has a vertex of degree 1(it is only
adjacent to 1 vertex), called a leaf, or a redundant vertex vi. A vertex vi is a
redundant vertex if it has the same neighborhood, or set of adjacent vertices,
denoted N(vi), that is the same as the neighborhood of some other vertex,
vj. The notation I(G) denotes the irreducible subgraph of G, which is sim-
ply the subgraph that remains after removing all redundant vertices and
all leaves. This is useful because L(G) = L(I(G)) + |V(G)| − |V(I(G))|,
which actually provides equality instead of a bound.

Another bound given by Orrison and Neel relates to upper bounds
on complexity based on partitioning edge sets of a graph. They prove
that, if G is a graph on n vertices such that E(G) is the union of k dis-
joint subsets of edges such that the jth subset induces the subgraph Gj of
G, and if the ith vertex is in bi of the induced subgraphs, then L(G) ≤
∑k

j=1 L(Gj) + ∑n
i=1(bi − 1)

Orrison and Neel also exactly determined the linear complexity of a k-

Background 3

partite clique on n vertices. A k-partite clique is a graph where the vertex set
can be partitioned into k subsets, and two vertices are adjacent if and only if
they are in different subsets. If k = 2, L(G) = n− 2. If k = 3, L(G) = n and
otherwise L(G) = n + k− 2. The proof of this involves reduction to a com-
plete graph, but these results also obviously imply the values for complete
graphs by letting n = k. This particular class of graphs is useful because,
for one thing, graphs can be partitioned into bipartite cliques, giving a gen-
eral upper bound based on the complexity of the bipartite cliques. Because
cliques have particularly low complexity relative to their number of edges,
these partitions give reasonable upper bounds for complexity.

Other useful results from Orrison and Neel’s paper include a general
upper bound on complexity ∝ O(m log(n2/m)/ log n) for graphs with m
edges and n vertices. This bound comes from a bipartite clique partition
constructed by repeatedly finding sufficiently large bipartite cliques in a
graph. Orrison and Neel simply show that any graph’s complexity is bound-
ed by twice the order of any clique partition, and the order of the bound
comes from an algorithm to find a clique partition. Although finding the
minimum clique partition is NP-complete, there is a fast algorithm for con-
structing a partition whose size is O(m log(n2/m)/ log n) (Feder and Mot-
wani, 1991).

Nicholas Pippenger’s paper on monomials provides an asymptotically
similar bound in a much more general case (Pippenger, 1980). The bound
proved by Pippenger deals with computations using additions only and
considering the maximum number of computations over all matrices of a
given size with given entries. Considered for the case of n × n matrices
with 0,1 entries, the upper bound of complexity for a graph of n vertices is
n2/ log n2 + o(n2/ log n2). However, since this does not consider anything
about the structure, and in particular considers matrices that may not be
symmetric, the lower bound established does not hold directly.

Chapter 2

Original Results

2.1 Graph Operations

Before considering the complexity of specific classes of graphs, we look
at the effect of various graph operations on complexity. We begin with
products of graphs, and in addition to the notion of a direct product of
graphs, for which Orrison and Neel found an upper bound, another notion
of products of graphs, called the strong product, is sometimes used. I will
denote the strong product of G and H as G · H, and we define G · H to
have the vertex set V(G)× V(H) with an edge from (v0, w0) to (v1, w1) if
and only if v0 ∼ v1 in G and w0 ∼ w1 in H. We note that this operation
is associative and commutative, so the product of more than two graphs is
well-defined.

We note that this is not the only notion of product defined for graphs,
and another product, called the direct product was previously analyzed
by Orrison and Neel. The direct product of two graphs G × H again has
vertex set V(G)×V(H) but has an edge from (v0, w0) to (v1, w1) if v0 ∼ v1
and w0 = w1 or v0 = v1 and w0 ∼ w1. Orrison and Neel showed that, if
G = G1 × · · · × Gd then

L(G) ≤ |V(G)|
(

d

∑
j=1

L(Gj)
|V(Gj)|

+ (d− 1)

)

Theorem 2.1 If G is the strong product of the graphs G1, . . . , Gd then

L(G) ≤ |V(G)|
d

∑
j=1

L(Gj)
|V(Gj)|

6 Original Results

Proof. Although this result is strikingly similar to the upper bound for the
direct product, we prove it in a very different way. It will also be illustrated
by considering an example, namely K3 · K4. We start by considering the
product of 2 graphs, G = G1 · G2. To compute the linear form for a vertex
g = (v0, w0) ∈ V(G), we note that the neighbors of g are vertices of the
form (vi, wj) where vi ∼ v0 and wj ∼ w0. Let fv0(wj) be the linear form
for v0 considered as a vertex of G1, but with each indeterminate xi replaced
with the indeterminate x(i,j), the indeterminate associated with the vertex
(vi, wj) in G. For the example, this would give fv0(w0) = x(1,0) + x(2,0) since
the linear form for v0 in K3, which we denote fv0 , is x1 + x2. We also note
that the linear form associated with w0 in K4, denoted fw0 , is x1 + x2 + x3.
We now want to construct the linear form for the vertex (vi, wj) which we
denote f(i,j). In the case of the example, we see that

f(0,0) = x(1,1) + x(2,1) + x(1,2) + x(2,2) + x(1,3) + x(2,3)

f(0,0) = ∑
{j|xj∈N(w0)}

fv0(wj).

Note that, if xj ∈ N(w0) then xj has a coefficient of 1 in the linear form
fw0 . We see that this sum holds in general, since the linear form for (vi, wj)
consists of the sum over any inderteminate of the form x(a,b) where xa ap-
pears in fv0 and xb appears in fw0 , which is exactly what this sum generates.
Thus, to compute all the linear forms, we can simply compute all the forms
associated with G1 once for each vertex in G2 and then, for each vertex in
G1, we replace an indeterminate with the linear form for that vertex and
then perform the computation sequence associated with G2 on these linear
forms. The total operations required for this is

|V(G1)|L(G2) + |V(G2)|L(G1) = |V(G)|
(

L(G1)
|V(G1)|

+
L(G2)
|V(G2)|

)
.

Iterating over multiple multiplications gives the stated result, since allow-
ing G1 to be a product itself, you get cancellation of |V(G1)| and are left
with a sum over any graphs in the product divided by the size of their
vertex sets. �

Another common graph operation is the join of two graphs, defined for
disjoint graphs G and H as the graph G + H with vertex set V(G + H) =
V(G)∪V(H) with adjacency relation v1 ∼ v2 if either v1 ∼ v2 as vertices in
either G or H or v1 ∈ G and v2 ∈ H. Any graph formed this way will have

Graph Operations 7

an edge partition consisting of G, H, and K|V(G)|,|V(H)|, and every vertex
will appear in exactly two of these graphs. This trivially gives an upper
bound of L(G) + L(H) + 2|V(G)|+ 2|V(H)| − 2, however we can do a bit
better by reusing computations.

Figure 2.1: Example of a join and the associated edge partitioning sub-
graphs

Theorem 2.2 Let ∆(G) denote the maximum degree of a vertex in graph G.
L(G + H) ≤ L(G) + L(H) + 2|V(G)|+ 2|V(H)| − ∆(G)− ∆(H).

Proof. Note that every vertex is adjacent to either all vertices in G or all ver-
tices in H, in addition to whatever vertices it is adjacent to prior to forming
the join. Thus, without loss of generality, if we consider a vertex origi-
nally in G, the linear form of that vertex as a vertex in G + H is the sum
of the linear form for that vertex as a vertex in G plus the sum over all in-
determinates associated with vertices in H. This suggests a computation
sequence which starts with the computation sequences for G and H, then
computes from the longest sum, which must at least consist of ∆(G) inde-
terminates, the sum over all indeterminates associated with G and there-
fore requires at most |V(G)| − ∆(G) operations. Similar reasoning gener-
ates a sum over all indeterminates associated with H. Finally, for every
vertex, add the linear form associated with it as a vertex in G or H plus
the sum over all vertices from the other component graph, which takes
|V(G + H)| = |V(G)| + |V(H)| operations. This generates a computa-
tion sequence of length L(G) + L(H) + 2|V(G)|+ 2|V(H)| −∆(G)−∆(H),
proving the desired upper bound. �

Another operation, considered mainly for its interesting results on com-
plexity, is an operation which combines two vertex disjoint graphs G and
H by identifying a vertex vg ∈ G with the vertex vh ∈ H and preserving all

8 Original Results

adjacency relationships. In the case of combining two graphs in this way,
there is a trivial bound of L(G) + L(H) + 1 which comes from an edge par-
tition. That is, you simply perform all computations in the sequences for G
and H independently, then add fvg to fvh . Naturally, combining n graphs,
G1, . . . , Gn in this way gives an upper bound of of ∑n

i=1 L(Gi) + n− 1. How-
ever, in the case of complete graphs, we can prove a better bound, just as
with direct products of complete graphs. Noting that we calculate a sum
over all indeterminates for a single complete graph, we can improve on the
upper bound by taking advantage of these sums. Instead of performing
the final subtraction which computes the linear form associated with the
vertices being identified, instead add the sums together. Given n complete
graphs, this replaces n subtractions with n− 1 additions. Finally, multiply
the indeterminate associated with the vertex about which the graphs have
been combined by n and subtract this from the total sum. Given graphs
Kk1 , . . . , Kkn , this results in a graph with linear complexity of

n

∑
i=1

(2ki − 2) + 1.

2.2 Proof of Necessity of Multiplication

Given that the linear forms for any adjacency matrix only ever have co-
efficients of 1, the existence of graphs such that multiplications are used
in an optimal computation sequence is of interest. Although Orrison and
Neel used a computation sequence with multiplications to prove an upper
bound for products of complete graphs, it is still possible multiplication is
not used in the optimal case. However, given one admitedly major assump-
tion, there is a specific graph where a provably optimal sequence consists
of a multiplication.

The entire point of this proof is to establish that the graph G on 13 ver-
tices constructed by taking three disjoint copies of K4 and adding single
vertex adjacent to all other vertices has an optimal computation sequence
that consists of a multiplication. Because this graph is the only one I am
interested in, I am willing to make a major assumption about this graph
that most likely does not hold in the general case. Specifically, I am willing
to assume that the graph consisting of three disjoint copies of K4 has lin-
ear complexity exactly equal to 3L(K4) or 18. Moreover, I assume that no
optimal computation sequence for this specific graph has any sums of inde-
terminates associated with disconnected vertices, and I call any such sums

Proof of Necessity of Multiplication 9

Figure 2.2: The graph G, depicted as 3 disjoint copies of K4 joined with an
isolated vertex, and as 3 copies of K5 identified at a vertex

cross-component sums. Furthermore, I assume that in the optimal computa-
tion sequence for G, it is the case that, given two linear forms that share
only one indeterminate, the computation of these two forms is optimally
done independently. That is, they never share an intermediate form that is
not a single indeterminate. Note that, even if this assumption breaks down,
we have an even more bizarre phenomenon, namely a graph on only 13
vertices with linear complexity (as we will see) of 25 that is optimally com-
puted by performing what seem like disjoint computations simultaneously.

We note that disjoint computations are not necessarily optimally per-
formed disjointly, as shown by the existence of fast matrix multiplication
algorithms. The simple bound of 4.7nlog2 7 for matrix multiplication proved
by Strassen shows that, for a large enough matrix, the computation of the
product of two n× n matrices takes 4.7nlog2 7 operations but computing it
as n disjoint products of a matrix times a vector would take n3 operations
in the general case (Strassen, 1969). We note that this can directly apply
to graphs in the case of a n disjoint copies of the same n vertex graph H.
Performed disjointly, this takes nL(H) operations, which depending on the
number of edges, can exceed n2.81 However, this gives the same result as
multiplying the adjacency matrix of H with an n× n matrix consisting of
the indeterminates x1 through xn2 , which using fast matrix multiplication,
can be done in 4.7n2.81 operations. Thus, this assumption certainly does not
hold in generally, but the linear complexity of 25 we will find for the graph
G we are actually interested in is well below 4.7n2.81, and I do not believe
my assumptions break down for this small a case.

We also note that, in the case of K4, it is necessary to compute final

10 Original Results

forms in the process of computing the sum over all indeterminates, which
will be a necessary fact for the following proof. This follows from the fact
that the complexity of Kn is 2n− 2, there are n final forms, and it requires
n − 1 computations to compute the sum over all indeterminate. Thus, if
no final forms are computed in the process of computing the sum over all
indeterminates, it would take at least 2n− 1 operations. Therefore, at least
one final form must be computed in the process.

For the proof of a lower bound, we first explicitly define redunant forms.
A redunant form is, quite simply, a term which appears more than once in a
linear computation sequence. Obviously, minimal computation sequences
cannot contain redunant forms, since removing the second appearance of a
redunant form still computes exactly the same set of linear forms but con-
sists of one fewer form, and is therefore shorter.

Theorem 2.3 Let G be the graph on 13 vertices constructed by taking 3 disjoint
copies of K4 and adding single vertex adjacent to all other vertices depicted in 2.2.
L(G) = 25.

Proof. We start, naturally, with a proof of the upper bound, simply by pro-
viding the computation sequence. Let v1 through v4 be the vertices of the
first K4, v5 through v8 the second, v9 through v12 the third, and let v13 be
the central vertex, adjacent to all other vertices, and let fi be the form asso-
ciated with vi. The computations sequence proceeds as follows:
For j = 0, 1, and 2, compute Sj = x13 + ∑

4+4j
i=1+4j xi This takes 12 total opera-

tions and computes in the process f4, f8, and f12.
For the 9 remaining vertices of the complete graphs, we have fi = Sb i

4 c
− xi.

This takes 9 total operations.
Compute ∑2

j=0 Sj which gives 3x13 + f13 in 2 operations.
Compute 3x13, and from this, we get f13. This is 2 more operations.
This computation sequence computes all 13 linear forms and takes a total
of 25 operations, giving L(G) ≤ 25.

To prove this is a lower bound, we assume we have a minimal com-
putation sequence for G, and show that removing v13 generates at least
7 unnecessary operations for the computation of the forms for 3 disjoint
copies of K4. Since we have assumed this graph has linear complexity 18,
this will prove the theorem. We let H = G − v13, which is graph consist-
ing of 3 disjoint copies of K4. Since d(v13) = 12, every final form for G
other than f13 must contain x13. Since v13 does not exist in H, the indeter-
minate x13 does not exist in any computation sequence for H. Therefore,
since the linear computation sequence for G contains some form f and the

Proof of Necessity of Multiplication 11

form f + x13, the removal of x13 generates a redundant form. Moreover,
by our assumption, we note that two vertices in different components of H
have at most one indeterminate in common as vertices of G, so the linear
computation sequence generates these forms using independent computa-
tion sequences. Specifically, x13 must at some point be introduced into the
computation sequence for each component. Since H has three components,
this means the operation of adding x13 to some other linear form must be
performed three times, generating three forms which are redundant in the
computation sequence for H.

Again noting d(v) = 12, we know that one of the forms for G is f13 =
∑1

i=1 2xi. We note that this is clearly a cross-component sum, and therefore
cannot exist in the optimal computation sequence for H by our assumption.
In fact, it is a sum across 3 components, so there must also be at least 1 other
cross-component sum which is no longer necessary in H, giving us at least
2 forms which can be removed. We now consider 2 cases, either there are
exactly 2 cross-component sums to remove or there are exactly 3 redunant
forms. (3 cross-component sums and 4 redunant forms would be enough
unnecessary forms to prove the theorem, so with these as minimums, we
must prove that in either case, there are enough other unnecessary forms.)

Case 1, we assume that there are exactly 2 cross-component sums, and
therefore f13 is computed as the sum of the 3 total sums over each compo-
nent in 2 operations. In that case, we have as intermediate forms total sums
over each component. As noted earlier for the case of H, either some final
form fi has been computed in the process of computing these total sums or
this sequence is not an optimal computation sequence for H, in which case
there is at least one extra operation per component, which would immedi-
ately give at least 8 operations which can be removed, so we assume final
forms are completed before the total sum. However, every final form in
G other than f13 must have x13 in the sum. Since we assumed the sum
over each component without x13 was computed, the indeterminate x13
must be added to fi to make it a final form in the computation sequence
for G, but the sum over all indeterminates other than x13 cannot build off
fi + x13 without spending an operation removing x13, which would gener-
ate redunant forms anyway. Thus, removing x13 must generate at least 2
redunant forms in each component, giving a total of 6 redunant forms and
2 cross-component sums, or 8 forms which are unnecessary.

Case 2, we can assume there are exactly 3 redunant forms generated in
calculating all forms except for f13. We must find a sequence that computes
f13 in as few operations as possible assuming that, if there are total sums
over components, they appear including x13. By adding together these 3

12 Original Results

sums, we generate an intermediate cross-component sum, and the form
3x13 + ∑γ∈H xγ. This can be transformed into f13 through 2 operations,
namely generating 3x13 and subtracting it from this form. Since neither of
these forms could possibly be present in the optimal computation sequence
for H, we have found a total of 7 forms which are unnecessary in H. Since
this has covered all possibilities which could have generated fewer than 7
unnecessary forms, we see that we can take the computation sequence for
G and turn it into a sequence for H with at least 7 unnecessary operations
being performed. Thus, L(H) ≤ L(G) − 7. Since L(H) = 18, this gives
L(G) ≥ 25 as desired. �

Although I suspect a parallel construction using copies of K3 would
yield a similar result, K3 has complexity 3, and as such my lower bound
would not hold. However, this graph stemmed from the notion of taking 2
graphs G and H, identifying a vertex vg ∈ G with a vertex vh ∈ H, leaving
all other vertices alone, and looking at the complexity. Denoting the result-
ing graph GH(vg, vh), it is trivial to see from bounds using edge partitions
that, in the general case, L(GH(vg, vh)) ≤ L(G) + L(H) + 1. However,
using complete graphs (and omitting the vertex specification, since all ver-
tices in complete graphs are interchangeable), and extending the notion to
multiple graphs by identifying one vertex from each graph, in the case of
K4K4K4 this bound gives an upper bound of 20. But using a similar com-
putation sequence to the one demonstrated for the K5 case above, we get a
computation sequence of length 19.

2.3 Generalization of Johnson Graphs

The Johnson graph J(n, k) is the graph whose vertices are the k-element sub-
sets of {1, . . . , n} with the adjacency relation v ∼ w if and only if |v ∩ w| =
k − 1. Orrison and Neel showed that L(J(n, k)) < (n

k)(2k + 1). Johnson
graphs can easily be generalized such that two vertices are adjacent if their
intersection is of some other fixed size, and thus we define J(n, k, j) to be
the graph with the same vertex set as J(n, k) and with v ∼ w if and only if
|v ∩ w| = k− j. It is worth noting that two vertices are adjacent in J(n, k, j)
if the minimum path between them in J(n, k) is of length j.

Theorem 2.4 L(J(n, k, j)) ≤ j · L(J(n, k)) + (j− 1)5(n
k).

Proof. Since 2 vertices in J(n, k, j) are adjacent if they are a distance j apart
in J(n, k), we note that replacing xj with f j replaces every instance of xj

Generalization of Johnson Graphs 13

with the indeterminates a distance 1 from vj, since f j is the sum over the
indeterminates associated with the neighbors of vj. Replacing xj with f j in
the computation sequence for J(n, k, 1) gives a sum over twice the indeter-
minates of all vertices at distance 2, (n− k) · k times the vertex itself (since
each vertex has degree k(n− k) and can follow a path of length two to any
neighbor then back to itself), and n − 2 times each of the indeterminates
associated with vertices at distance 1. The n− 2 copies of indeterminates
at distance 1 come form the fact that, given an initial vertex v with element
i and neighbor v′ with element i′, we can generate a new neighbor of both
vertices by choosing any element other than i and i′. If it appears in the sub-
sets associated with both vertices, replace it with i. If not, replace i′ with it.
This gives n− 2 vertices adjacent to both v and v′. Since the linear form for
each vertex in the case where j = 1 has already been computed (it was what
we began the iteration having calculated) it takes 5 operations per vertex
to multiply by the appropriate scalars and then subtract the unnecessary
terms. Thus, in 2L(J(n, k)) + 5(n

k) operations we can calculate the linear
forms for J(n, k, 2). Replacing indeterminates with these new forms and it-
erating again generates indeterminates for vertices of original distance 1,2,
or 3, all of which have been previously computed, so each additional itera-
tion ends up requiring L(J(n, k)) + 5(n

k) operations, which gives the upper
bound indicated. �

Chapter 3

Conclusion

3.1 Summary of Results

This thesis was able to establish some decent upper bounds for multiple
graph operations and one class of graphs, as was my initial intention. Al-
though I was generally pleased with my ability to generate new upper
bounds for these various operations and graphs, it was my success in prov-
ing that linear complexity allowing multiplications gives different results
than allowing only additions and subtractions that was the major success
of this thesis. Although the underlying assumption for this proof still needs
some justification, I feel confident that, in the case considered, these as-
sumptions are valid, since they are made for a single graph with only a few
vertices and already low complexity. There just doesn’t seem to be space in
a computation sequence of length 18 for a 12 vertex graph to do any partic-
ularly indirect shortcuts, since there are only 6 free operations in addition
to final forms.

3.2 Future Work

There is still much in this area that remains unaddressed. Justifying the
assumptions for the proof of multiplication would be one place to start,
and addressing these assumptions in general would be nice. Although the
question of the behavoir of complexity when considering multiple disjoint
copies of the same graph was briefly addressed, I was only able to establish
that, with enough edges, the existence upper bound is large enough that
fast matrix multiplication would give a better upper bound. Whether it’s
actually better is another question entirely, and one that I did not have the

16 Conclusion

opportunity to address. In addition, very few specific classes of graphs
have been considered here, and most of the graphs previously by Orrison
and Neel were even more basic graphs. Moreover, with the exception of
k-partite cliques, trees, and cycles characterized by Orrison, all we have is
upper bounds for a very small set of graphs, and a very rough upper bound
in the general case, with a very far off lower bound. There is therefore
certainly room for improvement on many bounds.

Bibliography

Feder, Tomás, and Rajeev Motwani. 1991. Clique Partitions, Graph Com-
pression and Speeding-up Algorithms. In STOC ’91: Proceedings of the
Twenty-third Annual ACM Symposium on Theory of Computing, 123–133.
New York, NY, USA: ACM. doi:http://doi.acm.org/10.1145/103418.
103424.

Neel, David, and Michael Orrison. 2006. The linear complexity of a
graph. Electronic Journal of Combinatorics 13(1):9–19. URL http://www.
combinatorics.org/Volume_13/PDF/v13i1r9.pdf.

Pippenger, Nicholas. 1980. On the Evaluation of Powers and Monomials.
SIAM Journal on Computing 9:230–250.

Strassen, V. 1969. Gaussian Elimination is not Optimal. Numerische Mathe-
matik 13:354–356.

http://www.combinatorics.org/Volume_13/PDF/v13i1r9.pdf
http://www.combinatorics.org/Volume_13/PDF/v13i1r9.pdf

	Claremont Colleges
	Scholarship @ Claremont
	2008

	Graph Linear Complexity
	Jason Winerip
	Recommended Citation

	Abstract
	Introduction
	Overview
	Background

	Original Results
	Graph Operations
	Proof of Necessity of Multiplication
	Generalization of Johnson Graphs

	Conclusion
	Summary of Results
	Future Work

	Bibliography

