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Abstract

The well-known binomial coefficient is the building block of Pascal’s trian-
gle. We explore the relationship between functions of the binomial coeffi-
cient and Pascal’s triangle, providing proofs of connections between Cata-
lan numbers, determinants, non-intersecting paths, and Baxter permuta-
tions.
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Chapter 1

Introduction

1.1 The Binomial Coefficient

The binomial coefficient, one of the most well-known mathematical objects,
is defined as (

n
k

)
=

n(n− 1) · · · (n− k + 1)
k(k− 1) · · · 1 .

Combinatorially, the binomial coefficient counts the number of subsets of
size k from a size n set. More well known is the fact that the binomial
coefficient generates Pascal’s triangle.

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
...

. . .

where (n
k) gives the term in the nth row and kth column. Though relatively

easy to construct, Pascal’s Triangle has a myriad of interesting connections
to other mathematical quantities. For example, summing across a row
yields

n

∑
k=0

(
n
k

)
= 2n.
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Or, summing diagonally yields

∑
k≥0

(
n− k

k

)
= Fn+1

where Fn is the nth Fibonacci number.

1.2 Functions of the Binomial Coefficient

Since the binomial coefficient and Pascal’s Triangle appear to have so many
connections to other numerical quantities, we explore the effect of replacing
each factor i in the binomial coefficient with some function f (i). For exam-
ple, the nth triangular number is defined as the sum of the first n positive
integers. So, if we let f (i) = ti, we have[

n
k

]
=

tntn−1 . . . tn−k+1

tk . . . t1

which we shall call the triangular coefficient. Or, letting f (i) = (i+2
3 ) we

have [
n
k

]
3

=
(n+2

3 )(n+1
3 ) . . . (n−k+3

3 )

(k+2
3 ) . . . (3

3)

which we shall call a Baxter coefficient. We also explore f (i) = Fn, yielding[
n
k

]
F

=
FnFn−1 . . . Fn−k+1

Fk . . . F1
.

We examine new such mathematical objects created by choosing vari-
ous functions to replace each factor of the binomial coefficient. Rather than
algebraically grind out various formulae, we provide insightful combina-
torial proofs of theorems and identities for these mathematical objects and
demonstrate connections to other areas.
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The Catalan Numbers

2.1 The Catalan Sequence

The Catalan numbers are a sequence of numbers which play an integral role
in the understanding of the triangular coefficient, given in the introduction.
The Catalan numbers 1,1,2,5,14,42,. . . are defined by C0 = 0 and satisfy the
recurrence

Cn+1 = ∑
k≥0

CkCn−k

with the initial condition C0 = 1. The nth Catalan number can also be
expressed directly in terms of the binomial coffecients

Cn =
1

n + 1

(
2n
n

)
.

2.2 Combinatorial Interpretations

Despite the slightly unusual recurrence, the Catalan numbers have many
simple combinatorial interpretations. One such interpretation describes lat-
tice paths. Cn counts the number of lattice paths from (0, 0) to (n, n) that
only move up and right which lie below the line y = x. For example, Figure
2.1 shows the first several Catalan paths.

To prove this, we demonstrate that such paths satisfy the Catalan recur-
rence. Let P be a Catalan path from (0, 0) to (n + 1, n + 1). Consider the last
point at which P touches the y = x line, say point (k, k) where 0 ≤ k ≤ n.
There are Ck ways to reach (k, k) from the origin. Also, we know P never
touches the y = x line again, so we must move from (k + 1, k) to (n + 1, n)
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Figure 2.1: The Catalan Paths for n=1,2,3 and 4.

without ever crossing the y = x− 1 line. Here, there are Cn−k ways to move
from (k + 1, k) to (n + 1, n). Therefore, there are CkCn−k total such paths P.
Summing over all values of k yields the Catalan Recurrence, as desired.
We also define C0 to be 1, as there is one Catalan path from (0, 0) to (0, 0),
namely the empty path.

Catalan numbers have a variety of combinatorial interpretations, which
can be found in [6]. Here we consider an interpretation involving polyomi-
noes. We first define a polyomino to be two simultaneous lattice paths of
equal length which only move up and right, where both start at (0, 0) and
end at the same point, but never intersect beforehand. Below are examples
of polyomonies

Although the polyomino is defined in terms of two paths, we can visu-
ally see polyominoes as two dimensional shapes. We define the width of a
polyomino to be the number of columns in the polyomino and the height
to be the number of rows. For example, the rightmost polyomino in Figure
2.2 has width 3 and height 4. We can also talk about the height of each
column within the polyomino. For instance, the rightmost polyomino has
columns of height 2, 3, and 2. Last, we define the size of a polyomino to
be the length of the paths which forms the polyomino. For example, the
first two polyominoes in Figure 2.2 have size 6, as both the red and blue
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Figure 2.2: Three examples of polyominoes.

paths have length 6. Likewise, the rightmost polyomino has length 7. Let
Pn denote the number of polynomies of size n.

We demonstrate that polyominoes satisfy the Catalan recurrence and
are, hence, counted by the Catalan sequence. In examining Catalan paths,
we looked at the last point where our path touched the y = x line. Similarly,
for polyominoes, we examine the last point at which a polyomino of size
n + 1 has two columns that overlap by exactly one square. In the case where
no columns overlap by one, such as the leftmost polyomino in Figure 2.2,
we say that the this last overlap occurs before the first column, at the zeroth
break point. Such a polyomino is analagous to a Catalan Path which never
touches the y = x line, and hence the last contact point with y = x is at
(0, 0). Suppose this overlap occurs between column columns i and i + 1.
Further suppose that the last move entering this overlap was the kth move
and, hence, the first move leaving the overlap is the (k + 1)st move. We
know there are Pk ways of forming the polyomino to the left of the overlap.
To the right of the overlap, we know that there are no more columns which
overlap by exactly one square. To create this, we form a polyomino of size
n− k, which can be formed Pn−k ways, and then increase the height of each
column by 1, as in Figure 2.3.

By increasing the height of each column by 1, we increase the size of the
polyomino by exactly 1. Therefore, we can join the first polyomino, which
can be made Pk ways and the second modified one, which can be made
Pn−k ways, to form a polyomino of size n + 1. Summing over all possible
values of k yields the Catalan Recurrence, as desired. However, we must
examine the initial conditions. Note that there are 2 polyominoes of size 3,
and 5 polyominoes of size 4. In other words, Cn−1 counts the number of
polyominoes of size n, rather than Cn. Therefore Pn+1 = Cn.
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Figure 2.3: The last overlap occurs after move k. The polyomino to the
right of k can be constructed by forming a polyomino of size n− k and then
increasing each column height by 1, as denoted by the grey boxes.

2.3 Higher Dimensional Catalan Numbers

In [3], we see that there are generalizations to higher dimensional Catalan
numbers. We call C(d, n) the number of d-dimensional lattice paths using
the steps X1 := (1, 0, . . . , 0), X2 := (0, 1, . . . , 0), . . . , Xd := (0, 0, . . . , 1), run-
ning from (0, 0, . . . , 0) to (n, n, . . . , n) and lying in the wedge {(x1, x2, . . . , xd) :
0 ≤ x1 ≤ x2 ≤ . . . ≤ xd}. In [3], MacMahon uses generating function argu-
ments to demonstrate that

C(d, n) = (dn)!
d−1

∏
i=0

i!
(n + i)!

.

Therefore, we see that C(2, n) = 1
n+1 (2n

n ). Rather than rely on generat-
ing functions, which can often be overly mechanical and non-intuitive, we
present a combinatorial proof for the closed formula C(2, n). This proof is
based on the argument presented in [8].

Theorem 1. C(2, n) = 1
n+1 (2n

n )

Proof. We construct all possible lattice paths from (0, 0) to (n, n) only using
right and up moves. We can enumerate a path in such a manner by using
X and Y for right and up moves, respectively. Therefore, one path to (3, 3)
could be enumerated as XYYXXY. Since we are making 2n total moves,
we can simply choose where the n X moves are in a path and the Y moves
are thereby determined. In other words, there are (2n

n ) total lattice paths to
(n, n).
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We then append a Y move to the end of each lattice path. As a result,
we have a path from (0, 0) to (n, n + 1) with n X moves and n + 1 Y moves
which ends in a Y. We can now create an equivalence class by cycling the
enumeration to generate other paths which end an in up move. For ex-
ample, to the path XYYXXY, we first append a Y, yielding XYYXXYY.
We then cycle this permutation to generate all possible paths ending in an
up move (we underline the original last Y move to help see the cycling):
XYYXXYY, YXYYXXY, XXYYXYY, and YXXYYXY. These paths to-
gether form an equivalence class. Therefore, with n + 1 (or in this example,
4) total Y moves in each path, there were will a total of n + 1 paths in each
equivalence class. Since n and n + 1 are relatively prime, it is impossible to
have duplicate paths in an equivalence class.

Geometrically, each path is a lattice path to (n, n + 1) that ends in an up
move, so we can generate a path to (n, n) by removing the last move. Also,
since there are no lattice points in the triangle bounded by y = n+1

n x, y = x
and x = (n + 1), we know that the number of paths to (n, n) which never
cross the y = x line is equal to the number of paths to (n, n + 1) which never
cross the y = n+1

n x line. Using this fact, given any path P to (n, n + 1) we
append the identical path P′ to the end, as seen in Figure 2.4.

We then push the y = n+1
n x line upward until the entire path PP′ is un-

der this parallel line. Naturally, the path will start and end after up moves,
as seen in Figure 2.5.

Since n and n + 1 are relatively prime, we know that these start and
endpoints can only be corresponding moves in P and P′. Moreover, we
see that there is exactly one line placement that will be entirely above PP′.
Therefore, making exactly one of the Y moves in P the last up move will
result in a path that stays below the y = n+1

n x line. In other words, in each
of our equivalence classes, there is only one element that lies below the
y = n+1

n x line, i.e., 1
n+1

th
of the total paths. In Figure 2.5, we see that the

path in blue is the legitimate Catalan path in the equivalance class. For each
of these paths, we simply remove the last up move and we have a Catalan
path to (n, n). Therefore, Cn = 1

n+1 (2n
n ) as desired.

We note that rearranging MacMahon’s formula yields a combinatorially
telling formula

C(d, n) =
( dn

n,n,...,n)

(n+1
1 )(n+2

2 ) . . . (n+d−1
d−1 )

.
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Figure 2.4: The concatenation of P and P′.
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Figure 2.5: After exactly one upmove will PP′ lie under a line parallel to
y = n+1

n .





Chapter 3

Baxter Permutations

3.1 Introduction to Baxter Permutations

Baxter permutations are a somewhat odd set of restricted permutations of
[n]. Consider a permutation of [n], in word form σ1σ2 . . . σn−1σn where σi
is the mapping of element i. A Baxter permutation satisfies the following
restrictions: for all indices 1 ≤ i < j < k < l ≤ n,

1. If σi + 1 = σl and σj > σl , then σk > σl

2. If σl + 1 = σi and σk > σi, then σj > σi

Although this might seem somewhat complicated, some examples make
Baxter permutations very easy to understand. Let n = 5. The condition
σi + 1 = σl says to choose two consecutive numbers, such as 1 and 2, 2 and
3, 3 and 4, or 4 and 5. For our example, let us choose the two numbers 2
and 3. The restriction 1 ≤ i < j < k < l ≤ n tells us to look between these
consecutive numbers. So, in the permutation 21543, since we have chosen
the numbers 2 and 3, we look at the sequence of numbers in between 2 and
3, namely 154. Finally, the condition “if σj > σl , then σk > σl” implies that
the sequence 154 must have all numbers below 2 come first, followed by all
numbers above 3. So, for example, 21543 satisfies these conditions because,
between 2 and 3, we see that the sequence 154 can be divided into 1|54.
Clearly, all numbers below 2 come first, followed by all numbers above
3. If the permutation satisfies these conditions for all consecutive pairs of
numbers, then we say the permutation is a Baxter permutation. The sec-
ond restriction does nothing more than consider everything in reverse or-
der. That is, it accounts for when i + 1 comes before i (such as 3 coming
before 2) in a permutation. For example, for the permutation 35412, we see
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that, for 3 and 2, the sequence 541 is acceptable because everything above 3
comes first, followed by everything below 2. Therefore, for n = 4, the only
non-Baxter permutations are 2413 and 3142.

3.2 Background

Baxter permutations originally appeared when trying to prove the “com-
muting function” conjecture of Dyer [1]. Although Dyer’s conjecture was
eventually proven false, Baxter permutations have a more general signifi-
cance in fixed point analysis:

For a continuous mapping h : [0, 1] → [0, 1] let [h] = {x : h(x) = x} be
the set of fixed points of h. Let [h]∗ ⊂ [h] denote the set of crossing points
of h. That is x∗ ∈ [h]∗ if and only if x∗ is a limit point of both {x : h(x) < x}
and {x : h(x) > x}. For functions f , g : [0, 1]→ [0, 1], if x∗ ∈ [g ◦ f ] then

( f ◦ g)( f (x∗)) = f (g( f (x∗))) = f (x∗).

In other words, f (x∗) ∈ [ f ◦ g]. When [ f ◦ g] is finite, then f is a 1-1 map
of [g ◦ f ] onto [ f ◦ g] and induces a permutation of σf of {1, 2, . . . , M} onto
itself as follows: If we write [g ◦ f ] = {x1, . . . , xM}, [ f ◦ g] = {y1, . . . , yM},
then for i ∈ {1, 2, . . . , M},

σf (i) = j

where f (xi) = yj. So, for example, suppose that we have the sets {x1, x2, x3, x4}
and {y1, y2, y3, y4} such that f (x1) = y2, f (x2) = y3, f (x3) = y4 and
f (x4) = y2. We can represent this as the permutation σf = 2341.

Baxter demonstrated in [1] that when |[g ◦ f ]| = 2n− 1, the correspond-
ing permutation is a Baxter permutation.

3.3 Various Results

Despite an ugly recurrence relation, B(n), the number of Baxter permuta-
tions of [n], has a rather nice closed formula.

Bn =
n

∑
k=1

(n+1
k−1)(

n+1
k )(n+1

k+1)

(n+1
1 )(n+1

2 )
.

Surprisingly, each term in the sum is an integer. In [4], Mallows gives a
combinatorial interpretation of this result, proving that k is the number of
rises in each permutation.
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The Triangular Coefficient

4.1 The Triangular Coefficient

As mentioned, we obtain the triangular coefficient by replacing each factor
i in the binomial coefficient with ti, the ith triangular number, yielding[

n
k

]
=

tntn−1 . . . tn−k+1

tk . . . t1
.

We immediately see that since tn = (n+1
2 ) we have that[

n
k

]
=

(n+1
2 )(n

2) . . . (n−k+2
2 )

(k+1
2 )(k

2) . . . (3
2)(

2
2)

.

Algebraically, we then see that

[
n
k

]
=

(n+1
2 )(n

2) . . . (n−k+2
2 )

(k+1
2 ) . . . (2

2)

=
[(n + 1)(n)][(n)(n− 1)] . . . [(n− k + 2)(n− k + 1)]

[(k + 1)(k)] . . . [(3)(2)][(2)(1)]

=
1

k + 1
(n + 1)(n)(n− 1) . . . (n− k + 2)

(k)(k− 1) . . . (2)(1)
(n)(n− 1) . . . (n− k + 1)

(k)(k− 1) . . . (2)(1)

=
1

k + 1

(
n
k

)(
n + 1

k

)

which will be a very useful form in future proofs.



14 The Triangular Coefficient

Just as the binomial coefficient generates Pascal’s Triangle, the triangu-
lar coefficient has its own triangle as well.

1
1 1
1 3 1
1 6 6 1
1 10 20 10 1
...

. . .

We immediately see several interesting properties. First,
[

n
k

]
=

[
n

n− k

]
.

Surprisingly, the triangular coefficient always appears to yield an integer.
Most significantly, however, we see that

∑
k≥0

[
n
k

]
=

n

∑
k=0

1
n− k + 1

(
n
k

)(
n + 1
k + 1

)
=

n

∑
k=0

1
n + 1

(
n + 1

n− k + 1

)(
n + 1
k + 1

)
=

1
n + 1

(
(n + 1) + (n + 1)

1 + (n + 1)

)
=

1
n + 1

(
2n + 2
n + 2

)
=

1
n + 2

(
2n + 2
n + 1

)
= Cn+1

The above identity implies that the triangular coefficients count some-
thing, namely that they partition Catalan paths in some way. Although the
above properties can be proven algebraically, we provide some insightful
combinatorial proofs which demonstrate several interesting connections
between the triangular coefficients and the Catalan numbers.

4.2 Kinky Proof

As the Catalan path can involve many changes in direction, we choose to
define a kink in a path as a combinatorial parameter of a Catalan path.
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Definition 1 (kink). A kink in a lattice path is a lattice point at which an upward
move is followed by a rightward move.

The X in Figure 4.1 denotes the location of a kink.

Figure 4.1: A kink.

Figure 4.2 depicts a change in direction that is not a kink.

Figure 4.2: A non-kink.

With this definition in mind, we can introduce our first combinatorial
interpretation of the triangular coefficient.

Theorem 2.
[

n
k

]
counts the number of Catalan Paths to (n + 1, n + 1) with

exactly k kinks.

Proof. First, let a lattice path from (0, 0) to (n + 1, n + 2) that only makes
right and up moves and and stays on or below the line y = (n+2)

(n+1) x be called
an An+1 path. We claim that the number of An+1 paths is equal to Cn+1. To
prove this, we provide a bijection between An+1 paths and Catalan paths to
(n + 1, n + 1). Clearly, every Catalan Cn+1 path with an additional upstep
at the end is an An+1 path. Conversely, since there are no lattice points in
the triangle bounded by y = (n+2)

(n+1) x, y = (n+1)
(n+1) x and x = (n + 1), we know

that an An+1 path must lie on or below the y = x line. Consequently, since
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a Cn+1 path must have its last move be an up move, an An+1 path must
have its last two moves must be up moves. Therefore, by removing the last
upward move from an An+1 path, we form a Catalan path to (n + 1, n + 1),
forming a simple bijection between An+1 paths and Catalan paths.

We will now construct an unrestricted path from (0, 0) to (n + 1, n + 2)
by placing k kinks. We will force the first move in the path to be a right
move and the last move to be an up move. Therefore, we can place a kink
at any point (x, y) where x ∈ {1, 2, . . . , n} and y ∈ {1, 2, . . . , n + 1}. That is
we can place on any lattice point at any of the red dots in Figure 4.3.

Figure 4.3: The red dots denote lattice points at which we can place kinks.

We also must have the condition that kinks be placed in an increasing
order. For example, we could not place kinks as in Figure 4.4.

Therefore, in order to place k kinks in a legitimate fashion, we choose
k x-coordinates 1 ≤ x1 < x2 < . . . < xk ≤ n and k y-coordinates 1 ≤
y1 < y2 < . . . < yk ≤ n + 1. The coordinates of our kinks will then be
(x1, y1) . . . (xk, yk). For example, if we chose the x-coordinates (1, 5, 6) and
the y-coordinates (2, 4, 5), we would place kinks at (1, 2) (5, 4) and (6, 5) as
in Figure 4.5.
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Figure 4.4: An improper arrangement of kinks.

Therefore, there are (n+1
k )(n

k) total paths from (0, 0) to (n + 1, n + 2) that
can be formed in this manner. We now demonstrate that exactly one out of
every k + 1 paths constructed in this fashion yields an An+1 path. Let P be
a path constructed in this manner with k kinks. Let us label these kinks as
a1, a2, . . . , ak. We will now generate a valid An+1 path from P. Consider P′

as a translation of P from (n + 1, n + 2) to (2n + 2, 2n + 4) with the kinks
labeled as a′1, a′2, . . . a′k. as shown in Figure 4.6.

We can push the y = (n+2)
(n+1) x line upward until both P and P′ lie entirely

below a line parallel to y = (n+2)
(n+1) x. For example, in Figure 4.7, we pushed

the original line upward until P and P′ were entirely below the red line.
The resultant An+1 path is highlighted in blue. Since (n + 1) and (n + 2)
are relatively prime, no kinks can lie on a line parallel to y = (n+2)

(n+1) x except
for each pair of kinks ai, a′i. Also, since the endpoints of the path P behave
like kinks (the endpoint of P and the startpoint of P′ forms a kink), we
see that there are k + 1 kinks total. Therefore, there is exactly one pair of
ai, a′i out of the k + 1 total kink pairs such that P and P′ lie below the line
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Figure 4.5: An acceptable arrangement of kinks.

connected by these endpoints.
In other words, we have constructed a path from (0, 0) and found that

exactly one out of the k + 1 pairs will construct a line which stays above the
entire P − P′ path. Therefore, exactly one out of every k + 1 unrestricted
paths will originally be an An+1 path. Therefore, we must divide out by

k + 1, yielding
[

n
k

]
= 1

k+1 (n+1
k )(n

k) total An+1 paths with exactly k kinks.

Since we established a simple bijection between An+1 paths and Catalan

paths, we have demonstrated that
[

n
k

]
counts the number of Catalan paths

from (0, 0) to (n + 1, n + 1) with exactly k kinks.

Immediately, we see that the triangular coefficient must be an integer,
as it always counts a discrete number of Catalan paths. Also, we can now
combinatorially prove another identity presented in the introduction.
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Figure 4.6: The concatenation of P and P′.

Theorem 3.

∑
k≥0

[
n
k

]
= Cn+1.

Since ∑k≥0

[
n
k

]
counts the number of Catalan paths to n + 1 with k

kinks, summing over all values of k is equivalent to counting Catalan paths
to n + 1 with any number of kinks, which is naturally equal to Cn+1.
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Figure 4.7: Exactly one kink pair will serve as endpoints for a line which
stays completely above both P and P′.

4.3 Non-Intersecting Paths

The triangular coefficient can also be interpreted as counting a specific type
of non-intersecting path. Before giving this interpretation, we introduce the
notion of counting non-intersecting paths.

Consider simultaneous paths from starting points S1 and S2 to destina-
tions D1 and D2. Let these starting points and destinations be arranged as
in Figure 4.8.
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Figure 4.8: A simultaneous path from S1 to D1 and S2 to D2.

Let the number of paths from starting points to destinations be given
by the following table.

Total # of paths D1 D2

S1 A B
S2 C D

Therefore, if we consider simultaneous paths from our starting points
to our destinations, there are two possibilities: S1 to D1 and S2 to D2, which
we shall call a standard simultaneous path, or S1 to D2 and S2 to D1, which
we shall call a crossover simultaneous path. Note that a crossover path will
always have some point of intersection between the two paths. Therefore,
the total number of simultaneous paths is AD + BC.

Now, consider intersecting standard simultaneous paths, such as in Fig-
ure 4.9.

We claim that there are BC such paths with at least one intersection.
Consider a standard simultaneous path with a point of intersection be-
tween the two paths. Let x be the first point of intersection of these two
paths. After the point x, we swap the tails of the two paths. That is, our
S1 path was originally going to D1, but after x, the S1 path follows the one
started by S2 and will end in D2. Likewise, S2 was originally going to D2,
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Figure 4.9: A standard path with an intersection.

but after x, S2 will follow along S1’s path to D1. A visual example is pro-
vided in Figure 4.10.

In other words, since every crossover path had a point of intersection,
we see that we have formed a bijection between standard paths with inter-
section and crossover paths. Therefore, there are BC standard paths with
a point of intersection, yielding AD − BC standard paths without inter-
section. Note that we can encode this as the determinant of the following
matrix.

Nonintersecting standard paths =
∣∣∣∣A B
C D

∣∣∣∣
We see that this matrix has the exact same format as the previous table. We
use this notion of non-intersecting paths to prove the following theorem.

Theorem 4. [
n
k

]
=

∣∣∣∣ (n
k) ( n

k+1)
(n+1

k ) (n+1
k+1)

∣∣∣∣
Proof. We first consider the matrix. Using our non-intersecting path inter-
pretation of the determinant, we simply need to establish which points are
our starting points and destinations and the behavior of the paths. Let the
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Figure 4.10: We swap the tails between that paths from Figure 4.9 to yield
the above crossover path.

two starting points be (0, 0) and (0,−1) and let the destinations be (k, n− k)
and (k + 1, n − k − 1). Also, we are counting the number of lattice paths
that only move up and right. So, from (0, 0) to (k, n− k), we must perform
k + (n− k) = n total moves, so if we choose which k are the right moves,
there are (n

k) total such paths. Performing similar counting arguments for
the other start/destination pairs yields the above matrix.

For example, if n = 4 and k = 2, we could have such restricted paths as
in Figure 4.11.

However note that in each case, if we draw a line segment from (0, 0)
to (0,−1) and close the top right corner by (k, n− k) and (k + 1, n− k− 1),
we form polyominoes of size n + 2, as in Figure 4.12.

Therefore, the original matrix counts the number of polyominoes of size
n + 2 with width k + 1, where the width of a polyomino is the number of
columns.

We now demonstrate a simple bijection between polyominoes of size
n + 2 and Catalan paths to (n + 1, n + 1). Consider a polyomino of size n +
2. First, we break up the polyomino into its corresponding columns. Each
column has two parameters: the height and the overlap from the previous
column. For example, consider the third polyomino in Figure 4.13.



24 The Triangular Coefficient

Figure 4.11: An example of restricted paths.

Figure 4.12: By closing the corners, we form polyominoes.

Figure 4.13: We can break up a polyomino into its individual columns.

Since every column must have an overlap of at least one (except for the
first column), we say that the overlap parameter is one less than the actual
overlap. So, in this example, the first column has a height 2 and no overlap
parameter (as it was the first column), the second column has a height 3
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and overlap 1, and the third column has a height 2 and overlap 1. Starting
with the first column, we draw a right triangle with height and base equal
to the height for each of the columns. Continuing with the above example,
we would have the right triangles as seen in Figure 4.14.

Figure 4.14: Each column of the polyomino corresponds to a triangle which
will be used to form a Catalan path.

We will now place these triangles on the integer lattice to form a Catalan
path. We place the first triangle (corresponding to the first column) flush
at (0, 0) and the y = x line. To place the next triangle, we look at the y-
coordinate of our path endpoint and p, the value of the overlap parameter.
We place the next triangle’s base at (y− p) and flush with the y = x line.

Tracing along the envelope of these triangles yields a Catalan path from
(0, 0) to (n + 1, n + 1). Note that the overlap will be at least zero, and thus
we can never cross the y = x line. We see the triangles used to form a
Catalan path in this fashion in Figure 4.15.

The number of kinks in each Catalan path is equal to one less than the
number of columns of the corresponding polyomino. Therefore, by the
above bijection, since the matrix on the right counts the number of poly-
ominos with k + 1 columns, it also counts the number of Catalan paths
with k kinks. Therefore [

n
k

]
=

∣∣∣∣ (n
k) ( n

k+1)
(n+1

k ) (n+1
k+1)

∣∣∣∣
as desired.
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Figure 4.15: We arrange each triangle as specified by the overlap between
columns to form a Catalan path.

4.4 Symmetry

Theorem 5.
[

n
k

]
=

[
n

n− k

]

Proof. We have demonstrated that
[

n
k

]
counts the number of Catalan paths

to (n + 1, n + 1) with exactly k kinks. Therefore, using the bijection be-
tween Catalan paths and polyominoes, the corresponding polyomino will
have k columns and a height of n − k. If we reflect this polyomino over
the y = x line, we have a polyomino with n− k columns and a height of
k. Consequently, the Catalan path corresponding to this polyomino has
n − k kinks. Since each path has a unique polyomino representation, we
see that this forms a bijection between paths with k kinks and n− k kinks,
as desired.

4.5 Narayana and Schroder Numbers

Although we found the triangular coefficient by placing tn in the binomial
coefficient, we find that the triangular coefficient is studied in a generalized
form called Narayana and Schroeder numbers. In [7], Sulanke provides
generating function arguments and enumerations for the Narayana and
Schroeder numbers. The Narayana number N(n, d, k) counts the number
of paths C(d, n) that have exactly k rises (or kinks). Therefore, N(n, 2, k) =
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[
n
k

]
. The Schroder numbers are similar to Narayana numbers. They are

restricted paths to (n, n, . . . , n) that lie in the same wedge as C(d, n) de-
scribed in Chapter 3. However, Schroder numbers allow any movement
along the unit cube. That is, in Narayana numbers, a path could move
in any of X1 = (1, 0, . . . , 0), X2 = (0, 1, . . . , 0), . . . , Xd = (0, 0, . . . , 1). In
Schroder numbers, a path can move in any step of the form (ξ1, ξ2, . . . , ξd)
where ξi ∈ {0, 1}.





Chapter 5

Baxter Coefficients

5.1 Introduction

In the previous chapter, we considered the triangular coefficient. Since tn =
(n+1

2 ) we can rewrite the triangular coefficient as[
n
k

]
=

tntn−1 . . . tn−k+1

tk . . . t1
=

(n+1
2 )(n

2) . . . (n−k+2
2 )

(k+1
2 ) . . . (2

2)
.

We find surprising results when we increment each term in each binomial
coefficient, replacing ( i

2) by ( i+1
2+1) = (i+1

3 ). We define[
n
k

]
3

=
(n+2

3 )(n+1
3 ) . . . (n−k+3

3 )

(k+2
3 ) . . . (3

3)
.

This object generates its own triangle

1
1 1
1 4 1
1 10 10 1
1 20 50 20 1
1 35 175 175 35 1

We again are surprised to see that this new coefficient is always an inte-
ger. More importantly, though, when we sum across the rows, we have the
sequence 1, 2, 6, 22, 92, 422 . . . or that
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∑
k≥0

[
n
k

]
3

= Bn.

Therefore, we call
[

n
k

]
3

a Baxter coefficient.

5.2 Interesting Correspondences

We begin by proving the fundamental observation of the inner triangle.

Theorem 6.

∑
k≥0

[
n
k

]
3

= Bn.

Proof.[
n
k

]
3

=
(n+2

3 )(n+1
3 ) . . . (n−k+3

3 )

(k+2
3 ) . . . (3

3)

=
[(n + 2)(n + 1)(n)][(n + 1)(n)(n− 1)] . . . [(n− k + 3)(n− k + 2)(n− k + 1)]

[(k + 2)(k + 1)(k)] . . . [4 · 3 · 2][3 · 2 · 1)]

=
2

(k + 1)2(k + 2)
(n + 2) . . . (n− k + 3)

(k) . . . (1)
(n + 1) . . . (n− k + 2)

(k) . . . (1)
(n) . . . (n− k + 1)
(k)(k− 1) . . . (1)

=
2

(k + 1)2(k + 2)

(
n + 2

k

)(
n + 1

k

)(
n
k

)
=

(n+2
k )(n+1

k )(n
k)

(k+1
1 )(k+2

2 )

=
(n+1

k )(n+1
k+1)(

n+1
k+2)

(n+1
1 )(n+1

2 )

Therefore, as noted in Chapter 3, summing over a row yields

n

∑
k=1

(n+1
k−1)(

n+1
k )(n+1

k+1)

(n+1
1 )(n+1

2 )
= Bn.

as desired.

Similar to the triangle coefficient, we see that the Baxter coefficient can
also be found by taking a determinant in Pascal’s triangle.
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Theorem 7. [
n
k

]
3

=

∣∣∣∣∣∣
(n

k) ( n
k+1) ( n

k+1)
(n+1

k ) (n+1
k+1) (n+1

k+2)
(n+2

k ) (n+2
k+1) (n+2

k+2)

∣∣∣∣∣∣
Proof. Although we can perform algebraic manipulations to prove this fact,
this fact is an immediate corollary of Dulucq and Guibert’s work [2]. In
their paper Baxter Permutations, they demonstrate that the number of Baxter
permutations with k rises is ∣∣∣∣∣∣

(n
k) ( n

k+1) ( n
k+1)

(n
k) ( n

k+1) ( n
k+2)

(n
k) ( n

k+1) ( n
k+2)

∣∣∣∣∣∣
In other words, as discussed in Chapter 4, this matrix counts the number of
non-intersecting paths with starting points S1 = (0, 0), S2 = (1,−1), S3 =
(2,−2) and destination points D1 = (k, n− k), D2 = (k + 1, n− k− 1), D3 =
(k + 2, n− k− 2). Figure 5.1 gives a visual example of three non-intersecting
paths with these start and end points.

Figure 5.1: Three non-intersecting paths.

However, note that, since we may only make right and up moves, the
number of non intersecting paths does not change if we move S3 to (0,−2)
and S2 to (0,−1) as in Figure 5.2.
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Figure 5.2: The number of paths doesn’t change if we extend the starting
locations.

The number of non-intersecting of paths is therefore counted by∣∣∣∣∣∣
(n

k) ( n
k+1) ( n

k+1)
(n+1

k ) (n+1
k+1) (n+1

k+2)
(n+2

k ) (n+2
k+1) (n+2

k+2)

∣∣∣∣∣∣ .

This implies that

[
n
k

]
3

=

∣∣∣∣∣∣
(n

k) ( n
k+1) ( n

k+1)
(n

k) ( n
k+1) ( n

k+2)
(n

k) ( n
k+1) ( n

k+2)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
(n

k) ( n
k+1) ( n

k+1)
(n+1

k ) (n+1
k+1) (n+1

k+2)
(n+2

k ) (n+2
k+1) (n+2

k+2)

∣∣∣∣∣∣ .

In other words, the number of Baxter permutations with k rises can be de-
termined by going to the nth row and kth column in Pascal’s triangle and
taking a 3 by 3 determinant.
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Although no connection has been found, we are interested to see the
relationship between three-dimensional Catalan paths and Baxter coeffi-
cients, as both formulae look extraordinarily similar:

C(3, n) =
( 3n

n,n,n)

(n+1
1 )(n+2

2 )[
n
k

]
3

=
(n

k)(
n+1

k )(n+2
k )

(k+1
1 )(k+2

2 )
.





Chapter 6

The Fibonomial Coefficient

Replacing each factor of the binomial coefficient with a Fibonacci number

yields the Fibonomial coefficient. We define
[

n
k

]
F

to be

[
n
k

]
F

=
FnFn−1 . . . Fn−k+1

Fk . . . F1
.

where F0 = 0, F1 = 1 and Fn+1 = Fn + Fn−1 for n ≥ 2. Again, the Fibonomi-
als have their own triangle,

1
1 1
1 1 1
1 2 2 1
1 3 6 3 1
1 5 15 15 5 1

.

We are surprised to see that the Fibonomial coefficient is always an integer.

Algebraically and in the triangle we also see that
[

n
k

]
F

=
[

n
n− k

]
F

.

To prove these facts, we use the well known fact that that fn = Fn+1,
the shifted Fibonacci numbers, count the number of ways to tile a board of
length n with squares and dominoes.

6.1 Always an Integer

Theorem 8.
[

n
k

]
F

is an integer.
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Proof. Using the shifted Fibonacci numbers, we have
[

n
k

]
F

= fn−1 fn−2 ... fn−k
fk−1 ... f0

.

To prove that
[

n
k

]
F

is always an integer, we demonstrate that there are

always tilings of length k − 1, k − 2, . . . , 1, 0 in tilings of length n − 1, n −
2, . . . , n − k. We call the tilings from the denominator the sub-tilings and
the tilings from the numerator the pyramid tilings. Just as we would cancel
equal terms algebraically, we remove any pyramid tilings and sub-tilings
of equal length as a trivial initial search. For the remainder of the tilings
we, not surprisingly, arrange the pyramid tilings in a pyramid as in Figure
6.1.

Figure 6.1: A pyramid arrangement of the pyramid tilings.

We will find exactly one sub-tiling in each pyramid tiling. We begin
by examining the tilings one at the time starting at the top of the pyramid.
First, we determine whether the (n− 1)-tiling is breakable at cell k− 1. If
the (n− 1)- tiling is breakable at k− 1, we have succeeded in finding our
first sub-tiling. So, we remove the (n − 1)-tiling from the pyramid and
determine whether the next tiling is breakable at k− 2, as demonstrated in
Figure 6.2.

In other words, if we have found i sub-tilings, we can continue look-
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Figure 6.2: If the topmost tiling is breakable at k− 1, we examine the rest of
the pyramid for the remaining sub-tilings.

ing for whether the topmost pyramid tiling is breakable at k − (i + 1).
However, we encounter a problem when the topmost pyramid tiling is
not breakable at k− (i + 1), in other words a domino is centered over cell
k− (i + 1). In this case, we take the portion of the topmost tiling which lies
to the right of the domino and move it to the bottom of the pyramid, as in
Figure 6.3.

Again, if we have found i sub-tilings, there are still k− i tilings remain-
ing in the pyramid and k− i sub-tilings left to find. By performing the move
in Figure 6.3, we still have a pyramid with k− i tilings, but the pyramid is
slightly smaller than before, as in Figure 6.4.

At each step in the process, if we have found i sub-tilings, we deter-
mine whether the topmost pyramid tiling is breakable at k − (i + 1). We
either have a success and our pyramid shrinks by one tiling, or we have a
domino and move the remaining topmost tiling to the bottom of the pyra-
mid. In either case, the topmost tiling length will decrease by exactly one
after each iteration. In the worst case scenario, if we have found i sub-
tilings, we are left with a pyramid whose tilings are length k− (i + 1), k−
(i + 2), . . . , 1, 0, giving us all the remaining sub-tilings. Therefore, we can
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Figure 6.3: If the topmost tiling isn’t breakable at k − 1, we move the re-
mainder of the tiling to the bottom of the pyramid.

always find tilings of lengths 0, 1, . . . , k − 1 in any set of tilings of lengths

n− k, n− k + 1, . . . , n− 2, n− 1, so we know that
[

n
k

]
F

must always be an

integer, as desired.

6.2 Symmetry

Theorem 9. [
n
k

]
F

=
[

n
n− k

]
F

Proof. Suppose without loss of generality that k ≤ n
2 . Consider

[
n
k

]
F
. We

know that when we perform the initial search, we do not trivially find any
tilings. That is, since k ≤ n

2 , there will be no sub-tilings and pyramid tilings
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Figure 6.4: The new pyramid has the same number of tilings as the previous
iteration, but the overall size is decreased.

of equal length. However, when we consider
[

n
n− k

]
F
, we find exactly n−

2k sub-tilings and pyramid tilings of equal length in our initial search. The
resultant initial pyramid is the exact same pyramid as constructed when we

considered
[

n
k

]
F
. Consequently, we see an obvious bijection between the

pyramids of
[

n
k

]
F

and those of
[

n
n− k

]
F
. Therefore, we know that

[
n
k

]
F

=[
n

n− k

]
F
.

6.3 Combinatorially Proving other Results

In [5], Jaroslav Seibert proved three identities of the Fibonomial coefficient
using generating functions, analysis, and algebraic manipulation. We pro-
vide an alternative proof of one of his results below.
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Theorem 10. For n odd,
m

∑
i=0

(−1)
i
2 (n+i)

[
n
i

]
F

= 0

We have already seen that
[

n
k

]
F

=
[

n
n− k

]
F
. Therefore, we must simply

demonstrate that i
2 (n + i) and n−i

2 (n + (n− i)) = n−i
2 (2n− i) have opposite

parity. To do this, we demonstrate that the difference between 1
2 (i)(n +

i) and 1
2 (n − i)(2n − i) is always odd, implying that (i)(n + i) and (n −

i)(2n− i) have opposite parity.

1
2
(n− i)(2n− i)− 1

2
(i)(n + i) =

1
2
(2n2 − ni− 2ni + i2 − ni− i2)

=
1
2
(2n2 − 4ni) = n2 − 2ni

Since n2 is always odd, we see that n2− 2ni is always odd, and therefore
i
2 (n + i) and n−i

2 (n + (n− i)) = n−i
2 (2n− i) have opposite parity.

We demonstrate that exactly one of (i)(n + i) and (n − i)(2n − i) will
be congruent to 0 mod 4 and the other will be congruent to 2 mod 4. We
immediately note that, because n is odd, i and n + i have opposite parity,

as do (n− i) and (2n− i). Therefore
[

n
k

]
F

and
[

n
n− k

]
F

will be weighted

oppositely. So, summing across an odd row will always yield 0, as desired.
Note that this identity does not hold for even rows of n. For example,

consider the fourth row of the Fibonomial Triangle: 1 3 6 3 1. Not only
does the identity not hold for this row, but it is impossible to assign any
combination of positive or negative weights to the terms to yield a sum of
zero.

6.4 Open Identities

In [5], Jaroslav Seibert provided two other identities for which we have yet
to determine combinatorial proofs. The identities, where Ln is the nth Lucas
number, are

m

∑
i=0

(−1)
i
2 (2l+i+1) F(k−i)(k−2l)

F(k−2l)

[
k + 1

i

]
= 0

m

∑
i=0

(−1)
i
2 (2l+i+(−1)k)L(k−2l)(i+n)

[
k + 1

i

]
= 0.



Chapter 7

Future Directions

Though many of the identities for the Baxter and triangular numbers al-
ready exist through research into Schroeder and Narayana numbers, the
previous research relied primarily on mechanical and somewhat confusing
generating function arguments. Fortunately, the combinatorial proofs in
chapters 4 and 5 provide solid intuitive explanations for the identities and
relationships.

For future work, we are curious to see whether continuing the theme
from the triangular and Baxter coefficients holds true, specifically
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Since taking 2x2 determinants and 3x3 determinants yield partitions of
Catalan and Baxter numbers, respectively, we are interested to explore whether
the nxn case provides anything more than n non-intersecting paths.

We also are curious to explore a simple combinatorial proof for a d-
dimensional Catalan path. More importantly, we wish to explore the rela-
tionship between a dxd determinant in Pascal’s triangle and a d-dimensional
Catalan path. We already illustrated many connections for two dimensions:[
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Here, we see that the triangular coefficient partitions Catalan paths by the
number of kinks. However, we are unable to fully explain the similar form
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for three dimensional case:[
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Last, we wish to combinatorially prove the final two identities provided by
Seibert, and perhaps find a way to generate the Fibonomial coefficient us-
ing Pascal’s triangle, as we did for the the triangular and Baxter coefficient.
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