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Abstract

An analog to intrinsic linking, intrinsic even linking, is explored in the first
half of this paper. Four graphs are established to be minor minimal intrin-
sically even linked, and it is conjectured that they form a complete minor
minimal set. Some characterizations are given, using the simplest of the
four graphs as an integral part of the arguments, that may be useful in
proving the conjecture.

The second half of this paper investigates a new approach to intrinsic
knotting. By adapting knot energy to graphs, it is hoped that intrinsic knot-
ting can be detected through direct computation. However, graph energies
are difficult to compute, and it is unclear whether they can be used to de-
termine whether a graph is intrinsically knotted.
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Chapter 1

Introduction

In 1983, John H. Conway and Cameron McA. Gordon proved that K6 is in-
trinsically linked and K7 is intrinsically knotted [2], bridging the areas of
topology and graph theory. Sachs [21] independently arrived at the same
result for linked graphs and gave a list of seven graphs that he conjectured
classified all intrinsically linked graphs. These seven graphs were gener-
ated from K6 by a sequence of 4− Y and Y −4 exchanges, which can be
proved to preserve intrinsic linking.

While it is possible to prove certain connectedness properties of intrin-
sically linked graphs that are minor minimal - or “smallest,” in some sense
- for intrinsic linking, it took a series of papers by Roberston, Seymour, and
Thomas [19, 20] to finally establish that Sachs’ list was indeed complete.
The major results are outlined in Chapter 2.

Chapter 3 investigates original research on an analog to the Conway-
Gordon-Sachs-Robertson-Seymour-Thomas results on intrinsic linking. It
can be shown that intrinsic linking is equivalent to intrinsic odd linking,
and this can naturally be extended to a notion of intrinsic even linking.
The list of four intrinsically even linked graphs was generated during the
Clarkson / SUNY Potsdam REU in 2007. It was hypothesized that they
constituted a complete set, similar to the set of Petersen-family graphs for
intrinsic linking. The results in Chapter 3 attempt to establish character-
izations for minor minimal intrinsically even linked graphs by adapting
arguments for intrinsic linking through the use of a simple, disconnected
intrinsically even linked graph. They suggest an elementary method for
proving the completeness of the set by enumerated graphs in a specific
manner.

In Chapter 4, intrinsic knotting results are reviewed, and an alterna-
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tive method for determining whether a graph is intrinically knotted is ex-
plored. By generalizing knot energies to graphs, it is hoped that they can be
used to detect intrinsically knotted graphs. Specifically, curvature energy,
which extends naturally to graphs, is used as an example of a graph energy.
Computation of graph energy is observed to be tedious, and it is unclear
whether graph energy can be used to detect intrinsic properties of graphs.



Chapter 2

Intrinsic Linking

A graph, G = (E, V), with edge set E(G) = E and vertex set V(G) =
V, abstractly, is simply a set of vertices and edges connecting vertices. In
this paper, unless otherwise specified, all graphs will be considered to be
simple, that is, they will not be allowed to have loops and repeated edges.
Given a graph, G, we can represent G in space by placing the vertices in
space and drawing arcs between the adjacent vertices in a way that no two
distinct edges intersect (except possibly at common endpoints, which are
vertices of the graph). Such a representation is called an embedding of G,
and whenever the distinction is clear, graph and graph embedding will be
used interchangeably.

We can represent embeddings of graphs in a two dimensional drawing
by projecting to a two dimensional subspace V of R3. When two edges
intersect in a projection, we use over- and under-crossings to illustrate the
relative position of the edges along the axis normal to V. For example, in
Figure 2.1, the edge A is drawn so that it crosses over the edge B.

When considering different embeddings of a particular graph G, we
would like to know when two embeddings are equivalent. Figure 2.2(a)
and Figure 2.2(b) are two embeddings of the same graph on four vertices.

A B

Figure 2.1: The edge A crosses over the edge B.
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Figure 2.2: Two embeddings of the same graph that are equivalent under
ambient isotopy.

The curved edge in Figure 2.2(b) can be continuously deformed to a straight
edge, giving the same embedding as in Figure 2.2(a). The equivalence can
be defined by ambient isotopy.

Definition 2.1. An ambient isotopy between two embeddings f and g of a
graph G into R3 is a continuous function F : R3 × I → R3, where I is the
unit interval [0, 1] and Ft(x) = F(x, t), such that

1. F0(x) is the identity,

2. Ft(x) is a homeomorphism for all t,

3. F1(g(x)) = f (x).

Then f and g are said to be ambient isotopic embeddings of G.

In general, projections of graph embeddings will be representing a par-
ticular ambient isotopy class of embeddings. Consequently, it can be as-
sumed that no two vertices are projected to the same point and that no three
edges will mutually intersect in a projection. Therefore, the projection can
be drawn so that there are no ambiguities, and the ambient isotopy class of
graph embeddings can be uniquely defined from a two dimensional draw-
ing.

When a graph contains two or more disjoint cycles, an embedding of the
graph may have two cycles that cannot be pulled apart without breaking
open one of the cycles. Two such cycles form a topological link. Formally,
a two component link is an embedding of two disjoint copies, L1 and L2, of
S1 into (Euclidean) space. The link is trivial (also called the unlink) if each
copy of S1 is ambient isotopic to the unknot and if there exist topological
open balls B1 and B2 that are disjoint, L1 ⊆ B1, and L2 ⊆ B2. Whenever it is
clear, the word link will be used to mean a non-trivial two component link.

Definition 2.2. A graph G is intrinsically linked if for every embedding of G
into R3, G contains two disjoint cycles whose image is a (non-trivial) two
component link.
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Any graph that contains another graph that is intrinsically linked as
a subgraph is clearly intrinsically linked as well (we can look at the em-
bedding’s restriction to the intrinsically linked subgraph). In fact, an even
stronger statement is true, which requires the definition of a graph minor.

Definition 2.3. Let G be a graph. If H is a graph such that H can be obtained
from G by a sequence of the following three operations:

1. removal of an edge

2. removal of a vertex

3. contraction along an edge,

then H is called a minor of G, written H ≤ G. If H ≤ G but H 6= G, then H
is called a proper minor of G, written H < G.

Definition 2.4. A graph G is minor minimal intrinsically linked if it is intrin-
sically linked and every proper minor of G has a linkless embedding.

Conway and Gordon [2] proved in 1983 that K6 is intrinsically linked in
R3, beginning the study of intrinsically linked graphs.

Theorem 2.5 (Conway-Gordon 1983). The graph K6 is minor minimal intrin-
sically linked.

Proof. It is known that every knot can be turned into the unknot by a finite
sequence of ambient isotopies and crossing changes. As a consequence, ev-
ery embedding of a graph G can be obtained from a particular embedding
of G via ambient isotopies and crossing changes.

It is clear that linking numbers of cycles in an embedding of G are in-
variant under ambient isotopies since ambient isotopies of topological links
preserve linking number. Define

λ = ∑
C1∪C2

lk(C1, C2)

where the sum is over all two component links (possibly trivial) C1 ∪ C2
of an embedding of K6, and lk(C1, C2) is the linking number of the two
component link C1 ∪ C2. Take λ2 to be the mod 2 equivalence class of λ.

We claim that λ2 is invariant under crossing changes. Suppose the edge
(v1, v2) crosses over the edge (v3, v4). Changing the crossing so that (v1, v2)
now crosses underneath (v3, v4) affects the (oriented) linking number of
any two component link with one cycle using the edge (v1, v2) and the
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Figure 2.3: An embedding of K6 with only one non-trivial link.

other cycle using the edge (v3, v4) by±1 since the oriented crossing number
goes from ± 1

2 to ∓ 1
2 .

Notice that (v1, v2) and (v3, v4) are contained in two such links: v1 −
v2 − v5 ∪ v3 − v4 − v6 and v1 − v2 − v6 ∪ v3 − v4 − v5. Therefore, λ changes
by −2, 0, or 2, so λ2 is invariant. Combined with our previous observation
that λ is invariant under ambient isotopy this shows that λ2 is the same for
all embeddings of K6.

Consider the embedding given in Figure 2.3. All disjoint pairs of cycles
in this embedding of K6 have linking number 0, except for one, which has
linking number ±1 (depending on orientation). Therefore,

λ2 ≡ 1 (mod 2).

Moreover, since every cycle must contain at least three vertices, and K6
only has six vertices, any choice of three vertices determines a link (the
cycle using those three vertices and the disjoint cycle using the remaining
three vertices). There are (6

3) = 20 cycles, and each link is double counted
by the first cycle and its complementary cycle, so there are 10 disjoint pairs
of cycles. Therefore, at least one pair of cycles in every embedding must
have odd linking number, otherwise λ ≡ 0 (mod 2).

Consequently, there exists a non-trivial link in every embedding of K6.
If we remove any vertex or edge, or contract along any edge of K6, we

can start with an embedding of K6 (based on Figure 2.3) where elimina-
tion of that edge or vertex destroys the only link with odd linking number.
Hence, any proper minor of K6 has a linkless embedding, so K6 is minor
minimal intrinsically linked, as claimed.

Sachs [21] and Robertson, Seymour, and Thomas [20] showed that all



7

graphs obtained by 4− Y and Y −4 exchanges (removing the edges be-
tween three pairwise adjacent vertices v1, v2, and v3, and connecting them
with a new vertex v, or vice-versa), starting with K6 are minor minimal in-
trinsically linked. These graphs form the set of seven Petersen-family graphs,
which characterize intrinsic linking. Furthermore, Robertson, Seymour,
and Thomas [20] proved that a graph is intrinsically linked if and only if it
contains a Petersen-family graph as a minor, making the characterization
complete.





Chapter 3

Intrinsic Even Linking

3.1 Definitions

This paper explores an analog of the Conway-Gordon [2], Sachs [21], and
Robertson-Seymour-Thomas [20] results. The fact that each of the Petersen-
family graphs is minor minimal intrinsically linked can be proved directly
by adapting the Conway-Gordon argument to each of the six other graphs.
Consequently, we can see that not only is each graph minor minimal intrin-
sically linked - it must necessarily contain a link with odd linking number.
This result is confirmed by Taniyama and Yasuhara [22].

Theorem 3.1 (Taniyama-Yasuhara). Let G be a graph in the set of Petersen-
family graphs. Let Ci

1, Ci
2 index the set of disjoint cycles of G, and let Li be any

two component link (possibly the unlink). Define

λ2 = ∑
i

lk(Ci
1, Ci

2).

Then, there exists an embedding of G such that Ci
1 ∪ Ci

2 is ambient isotopic to Li if
and only if λ2 ≡ 1 (mod 2).

A natural question to ask is whether there exist graphs such that in
every embedding, there exists a two component unlink. The Taniyama-
Yasuhara theorem shows that this is not true for any of the Petersen-family
graphs. However, relaxing the condition to graphs that contain a link with
even linking number in every embedding yields fruitful results.

Definition 3.2. A graph G is intrinsically even linked if every embedding of
G contains a link with even linking number.
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Figure 3.1: An embedding of K6 with an edge removed such that all links
are non-trivial.

Definition 3.3. A graph G is minor minimal intrinsically even linked if it is
intrinsically even linked and every proper minor of G is not intrinsically
even linked.

3.2 Intrinsically Even Linked Graphs

From the Conway-Gordon argument on K6, we can see that the complete
graph on six vertices must contain a pair of disjoint cycles whose linking
number is even in every embedding. Otherwise λ2 ≡ 0 (mod 2) as there are
an even number of disjoint pairs of cycles. Moreover, removing a vertex
or contracting an edge results in a graph on five vertices, so there are no
disjoint cycles. In addition, there exists an embedding of K6 minus an edge
where every disjoint pair of cycles has odd linking number. This is a direct
consequence of the Taniyama-Yasuhara theorem, and one such embedding
is demonstrated in Figure 3.1. As a result, we have the following theorem:

Theorem 3.4. K6 is minor minimal intrinsically even linked.
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Figure 3.2: The minor minimal intrinsically even linked graph P8.

A similar argument on P8, shown in Figure 3.2, and the Petersen graph,
shown in Figure 3.3, proves that those two graphs are minor minimal in-
trinsically even linked. However, the other four Petersen-family graphs,
P7, K4,4 \ {e}, K3,3,1, and P9 each contain an odd number of disjoint pairs of
cycles. Thus, it is possible that all of them have odd linking number, and
in fact, we can exhibit such embeddings (see Figures 3.4, 3.5, and 3.6). The
embeddings can be obtained systematically by starting with any embed-
ding of the graph and enumerating all of the disjoint pairs of cycles along
with their linking numbers in that embedding. Then, for each pair of cycles
C1 ∪ C2 that has an odd linking number, find a pair of edges e ∈ C1, f ∈ C2
such that e and f are not in any disjoint pairs of cycles that have odd linking
number. Using ambient isotopy, if necessary, to create a crossing involving
e and f , the crossing can be inverted (i.e. if e crosses over f , then change
the crossing so that f crosses over e, and vice-versa). This affects the linking
number of any disjoint pairs of cycles that have e and f is different cycles by
±1. Thus, any disjoint pairs of cycles containing e and f in disjoint cycles
will now have odd linking number. Repeating this process, it is possible to
obtain an embedding with no even linked cycles.

There is one other graph that is known to be minor minimal intrinsically
even linked: the ∆− θ graph. It is a two component graph, with one com-
ponent isotopic to a theta, and the other isotopic to a loop (the ∆). Unlike
in the case for intrinsically linked graphs, where there exists an elementary
proof showing that there are no disconnected minor minimal intrinsically
linked graphs, in the case of even linking, there are disconnected minor
minimal graphs.
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Figure 3.3: The minor minimal intrinsically even linked Petersen graph.

Figure 3.4: An embedding of P7 with only odd linked cycles. A similar
embedding of K4,4 minus an edge can be obtained by a4−Y exchange on
the triangle disjoint from the Y in P7.
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Figure 3.5: An embedding of K3,3,1 with only odd linked cycles.

Figure 3.6: An embedding of P9 with only odd linked cycles.



14 Intrinsic Even Linking

3.3 Connectedness of Minor Minimal Graphs

In R3, there are elementary arguments showing that any minor minimal
intrinsically linked graph must be 3-connected. For intrinsic even linking,
we have demonstrated that there exists a minor minimal intrinsically even
linked graph that is disconnected, the ∆− θ graph. We can, however, use
this graph to show that any other minor minimal even linked graph must
be 3-connected.

Before delving into the connectedness results, we define the induced
subgraph and n-connectedness.

Definition 3.5. Let G be a graph with A ⊆ V(G). The subgraph of G induced
by A is the largest subgraph of G that contains none of the vertices in V(G) \
A.

Definition 3.6. A graph G is n-connected if at least n vertices must be re-
moved from G to disconnect the graph.

Theorem 3.7. The ∆− θ graph is the only disconnected minor minimal intrinsi-
cally even linked graph.

Proof. Let G be a disconnected intrinsically even linked graph consisting
of components P1, . . . , Pn. Suppose G is minor minimal and not the ∆− θ
graph. If either component contains edges or vertices that do not contribute
to a cycle, the graph is not minor minimal. Thus, each component of G must
consist of at least one cycle. If P1, . . . , Pn each contain only one cycle, they
can be embedded with Pi laying on top of P1, . . . , Pi−1, and then linked by
any crossing change between an edge of Pi and an edge of Pj, j < i. As this
embedding has an odd linking number for every pair of disjoint cycles, a
component of G must contain at least two cycles.

Suppose P1 contains more than one cycle. If an edge is shared between
any two cycles in P1, then the union of those two cycles contain the θ com-
ponent of the ∆ − θ graph as a minor. Since P2 has a cycle disjoint from
P1, then G contains ∆ − θ as a minor. Therefore, the cycles of P1 must be
wedged at vertices. Since the cycles have no edges in common, we are left
with a tree of cycles (a cycle of cycles will form a θ, so representing each cy-
cle as a vertex in a graph G′, G′ must not contain any cycles, so it is a tree)
which can be embedded in a plane. Using ambient isotopy, we can stack
the cycles on top of each other by rotating them about the shared vertex,
lining them up along an edge. Braiding the cycles together along that edge
by looping each cycle around the others as in Figure 3.7 will ensure that
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Figure 3.7: Linking cycles along an edge.

any two pair of cycles in P1 have linking number±1. The same process can
be applied to Pi, 1 < i ≤ n.

Treating the braided cycles of each component as a single unit, this re-
duces to the previous case of having a component containing only one cy-
cle. Thus, every intrinsically even linked graph that is disconnected must
contain ∆− θ as a minor.

Definition 3.8. An edge in a graph G is called a bridge if removing that
edge causes the graph to become disconnected.

Theorem 3.9. A minor minimal intrinsically even linked graph cannot contain a
bridge.

Proof. Suppose that some minor minimal intrinsically even linked graph G
contains a bridge, eb. Then, removing eb from G disconnects the graph into
two disjoint components, A and B. The edge eb cannot be contained in any
cycles since after crossing from A to B via eb, it is not possible to return to A
as there is no other path between A and B. As a result, removing eb will not
affect any of the cycles contained in the graph. Thus, the graph will remain
intrinsically even linked after we remove the bridge. Hence, G is not minor
minimal.

Definition 3.10. A vertex v in a graph G is called a cut vertex if removing
v and all edges containing v from G increases the number of connected
components of the graph.

Theorem 3.11. A connected graph G that is minor minimal for intrinsic even
linking cannot contain a cut vertex.

Proof. G cannot contain any leaves (edges with an endpoint with degree
one) since no cycles can use a leaf. Thus, we can remove any leaves from G
to obtain a smaller graph with intrinsic even linking.
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Figure 3.8: Two θ graphs wedged so that their diagonals meet.

Suppose that G contains a cycle C that does not share an edge with any
other cycle in the graph. Then, for any cycle C′ that is disjoint from C,
it is possible to force lk(C ∪ C′) ≡ 1 (mod 2) by threading C through the
middle of C′. Because C does not share an edge with any other cycles and
C′ cannot share any edges with another cycle C′′ disjoint from C without
G containing ∆− θ as a minor, this can be accomplished independently of
all other links in the graph. Hence, if G is intrinsically even linked, then
it must be that every embedding of G contains an evenly linked pair that
does not involve C. So the edges in C can be removed from the graph.

Therefore, we can reduce this to the case that G contains at least two θ
graphs, K4\{e} by taking minors (if there is only one, then G does not have
a cut vertex). Because of Theorem 3.9, any two θ graphs cannot be bridged
together. So any two 2-connected components must be wedged together
along a cut vertex.

The only way to wedge two θs together so that the graph does not con-
tain ∆− θ as a minor is to wedge them so that the diagonals meet (Figure
3.8. However, then there are no disjoint cycles, so the graph cannot be in-
trinsically even linked. Hence, the graph cannot contain a cut vertex.

Theorem 3.12. Every connected, minor minimal intrinsically even linked graph
must be 3-connected.

Proof. Let G be a minor minimal intrinsically even linked graph. We know
by Theorem 3.11 that the connectivity of G must be at least 2. Suppose that
the connectivity of G is 2. Then there exists two vertices p, q ∈ G such that
removing p and q from G results in a disconnected graph A ∪ B. Let Ā and
B̄ be the subgraphs induced by the vertices of A ∪ {p, q} and the vertices
of B ∪ {p, q} with respect to Ḡ = G ∪ {epq}, respectively. Note that G \ A
must contain a path from p to q, since otherwise, removing either p or q will
disconnect G. By taking minors, we can reduce this path down to a single
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edge. Therefore, Ā is a proper minor of G. Similarly, B̄ is a proper minor of
G.

Let R3
+ denote the half-space z ≥ 0 and R3

− be the half-space z ≤ 0. As
Ā and B̄ are proper minors of G, there exist embeddings fA : Ā → R3

+ and
fB : B̄→ R3

− with no even links such that only p, q, and epq lie on the plane
z = 0. Let f : Ḡ → R3 be an embedding such that fA = f |Ā and fB = f |B̄,
up to ambient isotopy.

Since G is intrinsically even linked, there exist cycles C1 and C′1 that are
even-linked in the embedding f |G. C1 and C′1 cannot both be contained in
Ā because f |Ā = fA is an embedding of A with no even links. Similarly,
they cannot both be contained in B̄.

Suppose that one of the two cycles intersects both A and B. Without
loss of generality, assume C1 ⊂ A and C′1 intersects both A and B. Then,
the part of C′1 in B can be changed via edge-homotopy to the edge epq in the
embedding f . Therefore, C1 ∪ C′1 is isotopic to a link in the embedding fA
of Ā. But fA is an embedding with no even links.

Suppose that C1 ⊂ A and C′1 ⊂ B̄. Let e1 and e′1 be edges in C1 and
C′1, respectively. Allowing for ambient isotopy, e1 and e′1 can be made to
cross in a planar projection of f (Ḡ). Inverting a crossing between e1 and
e′1 will form a Hopf link with C1 and C′1. If this is possible for all links
Ci ⊂ A, C′i ⊂ B̄ (or Cj ⊂ Ā, C′j ⊂ B) such that the corresponding crossing
change of ej and e′j only affects the crossing number of one link, then we
can obtain an embedding of G that has no even link. Therefore, we may
assume that some crossing change affects two different links.

Without loss of generality, we assume that changing the crossing of e1
with e′1 affects both C1 ∪ C′1 and C2 ∪ C′2. Consider C′2. If C′2 is contained
within B̄, then C′1 ∪ C′2 and C1 form a ∆− θ minor of G. Hence, G would
not be minor-minimal. Thus, C′2 must cross into A and intersect C1, going
through both p and q. Now, consider C2. C2 cannot intersect C′2, so it must
be that C2 is contained entirely in A, as neither p nor q can be contained in
C2. Consequently, C1 ∪ C2 and C′1 form a ∆− θ minor of G.

Finally, suppose that C1 ⊂ Ā and C′1 ⊂ B̄, C1 intersects p, and C′1 in-
tersects q. Take e1 to be an edge in C1 that has p as an endpoint, and take
e2 to be an edge in C1 that has q as an endpoint. If changing the crossing
of e1 and e2 only affects the link C1 ∪ C′1, then we are done. Otherwise, it
must also affect the link C2 ∪ C′2. C2 cannot intersect q, as q is in C′2, so it is
impossible for C2 to intersect C′1. Thus, C1 ∪ C2 and C′1 form a ∆− θ minor
of G.

As a result, G must be 3-connected.
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3.4 Completeness

The results in the previous section help characterize intrinsically even linked
graphs by analyzing the connectedness of minor minimal graphs. It is hy-
pothesized that the three Petersen-family graphs K6, P8, and the Petersen
graph, along with the ∆− θ graph, are the only minor minimal intrinsically
even linked graphs. The goal of this section is to prove the completness of
the minor minimal set. Although the proof of this conjecture remains un-
finished, it appears that the general techniques applied in this section can
be used to yield the desired result.

We begin by reducing to the case of two disjoint cycles connected by
edges between vertices on the cycles. Then, we will make arguments based
on the number of vertices in the cycles and the number of edges between
the two cycles.

Lemma 3.13. Let G be a minor minimal intrinsically linked graph that is not
∆− θ. Then, G is isomorphic to two disjoint cycles, C1 and C2 with any number
of edges with one endpoint in C1 and the other in C2.

Proof. First, we notice that if there are no disjoint cycles, then it is impossi-
ble to have a link. So at a minimum, G contains two disjoint cycles, C1 and
C2. Requiring that the graph be minor minimal, we can reduce the situation
even further.

On one hand, a minor minimal even linked graph G that is not ∆ − θ
must be connected by Theorem 3.7, so there must be some path from C1 to
C2 (in fact, there must be three). Moreover, suppose that there exists a ver-
tex v not on C1 nor C2. Pick a vertex v1 on C1. Since G is three connected by
Theorem 3.12, there must be three disjoint paths from v1 to v by Menger’s
Theorem. For each of the three paths, start at v and follow the path until it
first intersects either C1 or C2. Then two of these intersections occur on Ci
for some i = 1, 2 by the pigeonhole principle. Without loss of generality,
assume it is C1. Since the paths are independent, the points of intersection
must also be different. Then, the two paths from v to C1, unioned with C1,
form a graph with θ as a minor. C2 has ∆ as a minor, so that G has ∆− θ as
a minor.

Consequently, a minor minimal even linked graph that does not contain
∆ − θ cannot contain any vertices outside of the pair of disjoint cycles C1
and C2. Hence, G is a pair of disjoint cycles joined by edges between the
two cycles. If any edge had vertices in C1 as both of its endpoints, then
the subgraph induced by the vertices on C1 contain θ as a minor, and C2
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contains ∆ as a minor. Hence, it must be that the endpoints of any edges
must be on different cycles.

Based on this lemma, we make the following definitions.

Definition 3.14. Let G be a graph with two disjoint cycles C1 and C2, such
that

1. the subgraph induced by the vertices in C1 is C1,

2. the subgraph induced by the vertices in C2 is C2,

3. the subgraph induced by the vertices in C1 ∪ C2 is G.

Then, G is a cross-cycle graph, with base cycles C1 and C2.

Definition 3.15. Let G be cross-cycle graph with base cycles C1 and C2. If
epq is an edge in G such that one endpoint p lies in C1 and the other endpoint
q lies in C2, then epq is called a crossedge.

In the language defined above, Lemma 3.13 can be restated.

Lemma 3.13 Every minor minimal intrinsically even linked graph that is not
∆− θ is a cross-cycle graph.

Lemma 3.13 provides a method for proving the completeness of the mi-
nor minimal set to classify intrinsically even linked graphs. By enumerated
the types of graphs that are described in Lemma 3.13, it may be possible to
show that they must all contain ∆− θ as a minor, contain one of the three
intrinsically even linked Petersen-family graphs as a minor, or has an em-
bedding in which all links have odd linking number.

Suppose C1 has n1 vertices and C2 has n2 vertices. Then, for the graph
to be minor minimal even linked, none of these vertices can be degree two
- that is, each must be an endpoint of at least one crossedge. Otherwise, we
can take a minor by contracting along one of its adjacent edges, resulting
in a proper minor whose image under an embedding is ambient isotopic to
an embedding of G. Hence, by breaking the problem into cases based on
the number of vertices in each cycles as well as the number of crossedges,
the crossedges will be forced into particular configurations. Then, checking
that each intrinsically even linked configuration contains a known intrinsi-
cally even linked graph as a minor suffices.

First, consider the case where n1 = n2 = 5 and all crossedges are dis-
joint. By the above observation, there must be at least five disjoint crossedges
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Figure 3.9: Five crossedges on two cycles of length five forming a ∆ − θ
graph as a minor

connecting the vertices in C1 to the vertices in C2. If any three consecutive
vertices in C1 are connected to any three consecutive vertices in C2 by three
disjoint crossedges, then the subgraph induced by those six vertices forms
a graph that is a subdivision of the θ graph. Furthermore, the subgraph
induced by the other four vertices form a subdivision of the ∆ graph, so G
contains ∆− θ as a minor (see Figure 3.9).

Otherwise, we can enumerate the possible edge configurations by asso-
ciating to each valid edge configuration with a permutation. Numbering
the vertices in C1 and C2, each edge configuration maps bijectively onto a
permutation in S5. Namely, a permutation in which n maps to n′ corre-
sponds with the edge configuration in which the nth vertex in C1 maps to
the n′th vertex in C2. We are looking for permutations in which no two
adjacent numbers are adjacent in the permutation, i.e. that

f (n + 1) 6= f (n)± 1

where f ∈ Sn. All such permutations are a rotation or reflection of the
permutation (2354), written in cycle notation. We can see that this results
in a graph isomorphic to the Petersen graph (see Figure 3.10).

In the case n1 ≥ 5, n2 ≥ 5, the same argument will yield a subgraph
that is a subdivision of either ∆− θ or the Petersen graph. Since ∆− θ is a
proper minor, then we get the following result.

Theorem 3.16. Every minor minimal intrinsically even linked cross-cycle graph
with at least five disjoint crossedges is isomorphic to the Petersen graph.

Another simple case can be proved when n1 = n2 = 3.

Theorem 3.17. Let G be a minor minimal intrinsically linked graph with two
base cycles of length three. Then G is isomorphic to K6.
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Figure 3.10: Five crossedges on two cycles of length five isomorphic to the
Petersen graph.

Proof. Notice that for simple graphs, there cannot be any cycles of length
two or smaller, so this is the smallest case that needs to be considered. Since
K6 is minor minimal for intrinsic even linking and G has only six vertices in
this case, it must be that G is isomorphic to K6, otherwise, a proper minor
(subgraph) of K6 is intrinsically even linked.

The previous theorems suggest a method for proving the completeness
of the minor minimal set. We will first show that any cross-cycle graph con-
sisting of four or less crossedges cannot be intrinsicaly even linked. Then,
for every configuration of five crossedges, we will show that every intrinsi-
cally even linked graph contains a known minor minimal intrinsically even
linked graph as a minor. Theorem 3.16 is one part of this approach.

Theorem 3.18. Every cross-cycle graph with three of fewer crossedges is not in-
trinsically even linked.

Proof. Let G be a cross-cycle graph with base cycles C1 and C2, and at most
three crossedges. First, notice that the only cycle disjoint from C1 is C2, and
vice-versa. It is easy to see that there exists an embedding of G such that C1
and C2 form the Hopf link so that they are not even linked.

We claim that G contains no other links. Any other cycle in G must
use at least one crossedge. In order to complete the cycle, it must use an-
other crossedge. Hence, every cycle C that is not C1 nor C2 must use two
crossedges. In order to have a cycle C′ that is disjoint from C, it must also
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use two crossedges that are disjoint from the two crossedges in C. But this
is clearly impossible since there are only three crossedges.

Hence, G has an embedding in which its only link is not even linked.

Theorem 3.19. Every cross-cycle graph with exactly four crossedges is not intrin-
sically even linked.

Proof. Every cross-cycle graph with exactly four crossedges is a minor of
a cross-cycle graph with exactly four disjoint crossedges. Hence, if every
cross-cycle graph with exactly four disjoint crossedges has an embedding
with no evenly linked cycles, then every cross-cycle graph with exactly four
(not necessarily disjoint) crossedges also has an embedding with no evenly
linked cycles. So we will assume that the four crossedges are disjoint.

As in the five disjoint crossedges case of Theorem 3.16, each configura-
tion can be assigned to a permutation on {1, 2, 3, 4}. Up to cycling (multi-
plying by a power of (1234)) and mirror inversion (multiplying by (13)),
there are three possible permuations: the trivial permutation, the permu-
tation (12), and the permutation (12)(34). These permutations correspond
to the graphs in Figure 3.11. In each graph, we can list all of the links and
compute the linking numbers.

In the graph in Figure 3.11(a), changing the crossing between edges
(v1, v2) and (v5, v6) as well as the crossing between edges (v2, v6) and (v4, v8)
(using ambient isotopy to create those crossings in the projection) results in
an embedding where all links have odd linking number. Changing the
crossing between edges (v1, v2) and (v7, v8) will do the same for the graphs
in Figure 3.11(b) and Figure 3.11(c).

The previous two theorems show that any cross-cycle graph which is
intrinsically even linked must have at least five crossedges.

In the following theorem, we consider when the base cycles have length
four and five, and five crossedges that are as spread out as possible in the
sense that they are placed so that each vertex on the base cycles is an end-
point to at least one of the five crossedges.

Theorem 3.20. There exists no minor minimally intrinsically even linked graph
consisting of base cycles of length four and five, respectively, and five crossedges
such that only one vertex, which is on the 4-cycle, is shared by multiple crossedges,
and that this vertex is shared by exactly two crossedges.
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Figure 3.11: Graphs, up to isomorphism, with 4 disjoint crossedges.
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Figure 3.12: Embedding with five edges, only two sharing a vertex as an
endpoint

Proof. Suppose such a graph G exists. Let C1 be the 5-cycles, C2 be the 4-
cycle, and v be the vertex in the 4-cycle that is the endpoint of two crossedges.
If the two crossedges have adjacent vertices in C1 as endpoints, then the
two crossedges and the edge between the two vertices form a ∆. In addi-
tion, three adjacent vertices in C1 have crossedges to some permutation of
three adjacent vertices in C2, forming a subdivision of a θ graph. So G con-
tains ∆ − θ as a proper minor, so it is not minor minimal. Otherwise, the
two edges with v as an endpoint are separated by one vertex, u, in C1. If
the edge with u as an endpoint goes to a vertex adjacent to v, then there is
a θ in the graph. The other two vertices in C1 and the other two vertices in
C2 are adjacent and there are two crossedges between them, so this forms a
subdivision of a ∆. Hence, G contains ∆− θ as a proper minor.

The only remaining case is when the crossedges are configured as in
Figure 3.12. While this graph does not contain any of the four known mi-
nor minimal intrinsically even linked graphs, it is possible to find an em-
bedding such that all disjoint pairs of cycles have odd linking number by
passing the edges (v1, v2) through (v4, v7) and (v2, v3) through (v6, v9). The
only edges we can add to this graph without creating a ∆ − θ minor are
(v1, v7) and (v3, v9). Adding both edges creates a ∆− θ minor. By symme-
try of the graph in Figure 3.12, adding either one gives isomorphic graphs.
Without loss of generality, add the edge (v1, v7) (see Figure 3.13). Then,
there exists an embedding of G such that all links have odd linking num-
ber. This can be obtained by passing the edges (v1, v2) through (v4, v7),
(v2, v3) through (v6, v9), and (v1, v7) through (v2, v3).

We can extend the ideas in the proof, and couple it with our previous
result from Theorem 3.16 to classify another subset of intrinsically even
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Figure 3.13: The graph in Figure 3.12, with the only edge added that does
not create a ∆− θ minor.

linked graphs. First, we will make two definitions.

Definition 3.21. Let v be a vertex in a cross-cycle graph G with any number
of crossedges. The crossdegree of v is the number of crossedges with v as an
endpoint.

Definition 3.22. Let v be a vertex in a cross-cycle graph G with crossdegree
at least n. Then, a set of n edges with v as an endpoint form a n-fan, with v
as its fanning point.

Notice that the crossdegree of a vertex v is two less than the degree of v,
so it is invariant of the choice of base cycles. We now state our next result.

Theorem 3.23. There exists no minor minimal intrinsically even linked cross-
cycle graph G such that G has a subgraph H with five crossedges where only one
vertex has crossdegree at least two.

Proof. Suppose such a G exists. As in the previous theorem, the only sub-
graph H that does not contain ∆− θ as a minor is the subgraph in Figure
3.12. This subgraph has an embedding that has no even links. Thus, in
order for G to be intrinsically even linked G must contain at least one more
edge. If we add an edge that is completely disjoint from the crossedges in
H, then there is a proper subgraph with five disjoint crossedges, so by The-
orem 3.16, it must have a proper subgraph that contains the Petersen graph
as a minor. Hence, G cannot be minor minimal intrinsically even linked.

Therefore, it must be that G contains an additional crossedge that shares
an endpoint with one of the five crossedges in H. By Theorem 3.20, if the
other endpoint also coincides with an endpoint of one of the five crossedges
in H, G cannot be minor minimal intrinsically even linked. Thus, it must
be the that other endpoint does not share an endpoint with one of the five
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(a) (b)

Figure 3.14: Cross-cycle graphs for P8.

crossedges in H. The only such edges that do not result in ∆− θ as a proper
minor are the edge with endpoints at v1 and a vertex between v7 and v8 and
the edge with endpoints at v3 and a vertex between v8 and v9. If both edges
are present, ∆− θ is a proper minor.

By symmetry, we may assume that G contains a crossedge from v1 to a
vertex p between v7 and v8. Then, the crossedges (v1, p) , (v2, v8), (v3, v6),
(v4, v7), and (v5, v9) are disjoint. So by Theorem 3.16, G contains the Pe-
tersen graph as a proper minor.

So far, each cross-cycle graph has contained ∆− θ, the Petersen graph,
or K6 as a minor. As we progress to the other cases, we should expect that
P8 will show up as a minor. Therefore, it will be useful to know the cross-
cycle graph structure of P8. In order to do so, pick any two disjoint cycles
as the base cycles. We can notice that the P8 graph, shown in Figure 3.2, is
symmetric along the vertical axis. Moreover, switching the top two vertices
on either side results in an isomorphic graph. Hence, by symmetry, any two
disjoint 4-cycles will result in the same cross-cycle graph. This cross-cycle
graph structure is as shown in Figure 3.14(a).

Similarly, every cross-cycle graph structure arising from base cycles of
length three and five are the same. In this case, the cross-cycle graph is as
in Figure 3.14(b).

Returning to the proof of completness, the next case to consider is when
the cross-cycle graph contains two disjoint 2-fans. There are two subcases,
when the fanning points are on disjoint base cycles, and when they are on
the same base cycle. Notice that from Figure 3.14, P8 has no disjoint fans.
Hence, we should expect to find P8 as a minor only when there are fans
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(a) (b)

Figure 3.15: Possible configurations for 2-fans with fanning points on the
same base cycle.

whos fanning points have an edge between them that is part of the fans.
The cases when they are disjoint are addressed below.

Theorem 3.24. Let G be a minor minimal intrinsically even linked cross-cycle
graph with two disjoint 2-fans such that the fanning points are on disjoint base
cycles. Then G is isomorphic to K6.

Proof. We know that every intrinsically even linked cross-cycle graph must
have at least five crossedges. If the fifth crossedge is disjoint from both
2-fans, there will be a ∆ − θ minor. Similarly, if the fifth crossedge does
not intersect both fans at its endpoints, then ∆ − θ appears as a minor. If
all other crossedges have endpoints that lie on either of the fans, then the
base cycles only have three non-trivial vertices (a vertex is trivial if it has
crossdegree 0, so that one of its adjacent edges can be contracted without
changing the topology of the graph embedding). By Theorem 3.17, then the
graph has K6 as a minor. So if G is minor minimal intrinsically even linked,
it must be isomorphic to K6.

If the two 2-fans have fanning points that lie on the same base cycle,
they can either be interwoven, as in Figure 3.15(b), or not, as in Figure
3.15(a).

Theorem 3.25. There are no minor minimal intrinsically even linked cross-cycle
graphs with two disjoint 2-fans whose fanning points lie on the same base cycle as
in Figure 3.15(a).
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Figure 3.16: The red edge in bold does not create a ∆− θ minor.

Proof. The only crossedges that can be added to Figure 3.15(a) without cre-
ating a ∆− θ minor are those which go from a fanning point to an endpoint
of an edge in the fan that is disjoint from it (see Figure 3.16).

Adding one such edge does not create any more links, so the graph
is not intrinsically even linked because all of the links can be generated
by a subgraph with only four crossedges and all graphs with only four
crossedges are not intrinsically even linked. Adding all four possible crossedges
of the type highlighted in Figure 3.16 still does not result in an intrinsically
even linked graph. Each additional crossedge is used only in one link, so it
can be embedded in a way that the links have odd linking number.

The case in Figure 3.15(b) is more complicated, as there are more places
that the fifth crossedge can be placed without creating a ∆− θ minor. On
the lower cycle, the possibilities are that the crossedge’s endpoint is on a
fanning point or it is not. On the top cycle, the crossedge may also in-
tersect one of the fans at a vertex or it may not. Any of the possibilities
has a very small number of links, so it is likely that there is an embedding
without even links. It will probably require the addition of a couple more
crossedges before forcing a minor other than the ∆− θ graph. This case has
not yet been fully explored.

To complete the proof of the conjecture that the four minor minimal
graphs in Section 3.2 fully characterize intrinsic even linking, the case pre-
sented above must be finished. In addition, it is necessary to investigate
the possible crossedge configurations for 2-fans that intersect at a common
edge or vertex. The final cases that must be explored are 3-, 4-, and 5-fans.
These n-fan cases for large n are likely to produce many ∆− θ minors since
they already contain ∆ as a minor of the n-fans.
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Intrinsic Knotting

4.1 Definitions and Known Results

As with linking in graphs, it may be possible that a graph contain cycles
that are knotted in particular embeddings. Now, we define intrinsic knot-
ting of graphs.

Definition 4.1. Let G be a graph. If for every embedding f : G → R3 of
G, there exists a cycle C in G such that f (C) is not the unknot (i.e. f (C) is
knotted), then G is intrinsically knotted.

Clearly, if H is a subgraph of G and H is intrinsically knotted, then G
is intrinsically knotted as well. However, a more powerful concept than
subgraph (and subdivision) will be helpful in classifying graphs that are
intrinsically knotted.

Motwani, Raghunathan, and Saran [15] showed that if H ≤ G and H
is intrinsically knotted, then G is intrinsically knotted. The proof follows
easily by noting that if C is a knotted cycle in H, then there is a cycle C′

in G that is ambient isotopic to C so that C′ and C have the same knot
type. Hence, in order to classify the set of all intrinsically knotted graphs,
we need only to look for intrinsically knotted graphs that are “smallest” in
the minor sense. Such graphs are called minor minimal intrinsically knotted
graphs.

Definition 4.2. A graph G is a minor minimal intrinsically knotted graph if the
following hold:

1. G is intrinsically knotted.
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2. whenever H < G is a proper minor of G, then H is not intrinsically
knotted.

Robertson and Seymour [18] recently proved the following result, which
guarantees that a characterization of intrinsically knotted graphs by a finite
number of minor minimal intrinsically knotted graphs exists.

Theorem 4.3 (Roberston and Seymour). Let G be an infinite set of graphs.
Then, there exist H, G ∈ G such that H ≤ G.

Known as the Minor Theorem (or Wagner’s Conjecture), a corollary of
this result shows that intrinsic knotting can be characterized by a finite
number of graphs because the property is minor monotonic (i.e. if a graph
contains another graph with the property, then the original graph has the
property as well).

At this time, there are 16 graphs that are known to be minor minimal
intrinsically knotted, and there are 25 other graphs that are intrinsically
knotted, but it is not known whether they are minor minimal intrinsically
knotted.

The known intrinsically knotted graphs, with the exception of the graph
in [8], are all obtained from K7 and K3,3,1,1, which Conway and Gordon [2]
and Foisy [7], respectively, showed to be minor minimal intrinsically knot-
ted. Thirteen of the minor minimal intrinsically knotted graphs are ob-
tained from K7 by a series of 4Y moves [15, 13]. The 25 intrinsically knot-
ted graphs (not necessarily minor minimal) are obtained by 4Y moves on
K3,3,1,1. This list of intrinsically knotted graphs relies heavily on the follow-
ing theorem from Motwani et al [15].

Theorem 4.4. Let G be a graph and suppose G′ is obtained from G by removing
the edges between three mutually adjacent vertices v1, v2, v3 and adding a new
vertex v to the graph along with the edges evv1 , evv2 , evv3 . The operation G → G′

is called a4Y move, and G′ is intrinsically knotted if G is intrinsically knotted.

The argument relies on the observation that an embedding of G′ has all
of its cycles ambient isotopic to cyles in an embedding of G. We can see
this by contracting the edges evvi , i = 1, 2, 3 so that they lie on a disc that
does not intersect the rest of the graph. Then, we can replace the Y with
a triangle to obtain an embedding of G. Since G is intrinsically knotted, it
contains a knotted cycle in this embedding. But if a cycle passes through
any of the edges in the triangle v1, v2, v3, we can isotope it to a cycle passing
through the Y section of G′. Hence, G′ is intrinsically knotted.
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The proof that K7 is intrinsically knotted uses a combinatorial argu-
ment, showing that any crossing change on a projection of K7 affects the
arf invariant of an even number of Hamiltonian cycles in K7. Also, any em-
bedding of K7 can be obtained by applying crossing changes (and ambient
isotopy) to a single, “standard” embedding of K7. Then, by looking at

σ = ∑ α(C)

where the sum is over all Hamiltonian cycles, C, and α(C) is the arf invari-
ant of C, we can see that σ ≡ 1 mod 2 in all embeddings of K7. Because
K7 contains an even number of Hamiltonian cycles, it must contain a cycle
with odd arf invariant. This implies that some cycle (the cycle with odd arf
invariant) is knotted.

The proof that K3,3,1,1 is intrinsically knotted is similar [8].
In addition, the following reuslt will be helpful in identifying minor

minimal intrinsically knotted graphs. Results on connectivity will rule out
a large class of graphs.

Proposition 4.5. Let G be a minor minimal intrinsically knotted graph. Then, G
must be 2-connected.

Proof. Let v be a vertex, and suppose that G \ v = G1 ∪ G2, where G1 and
G2 are disjoint and non-empty. Let H1 be the subgraph induced by V(G1)∪
{v} and H2 be the subgraph induced by V(G2) ∪ {v}.

Since H1 is a proper minor of G, then there exists an embedding of H1
into an open ball B1

∼= R3 that is knotless. Using ambient isotopy, we
may assume that v lies on the boundary of B. Similarly, H2 has a knotless
embedding into an open ball B2, and we can isotope v to the boundary.

Identify the two balls in space at v. This gives an embedding of G,
which we claim is knotless. Clearly, the embedding contains no knot that
lies entirely in H1 or entirely in H2. However, no knot can lie in both G1
and G2 since the only path from G1 to G2 passes through v. If there were
such a cycle, without loss of generality, we may assume it starts in G1. If it
lies partially in G2, it must pass through v to get to G2. To close the cycle, it
must pass through v again to get back to the starting vertex in G1. This is
not a proper cycle since it has a self-intersection at v.

Thus, it must be that G has a knotless embedding.
The case for disconnected graphs is similar.

As a corollary of the above, we find that a minor minimal intrinsically
knotted graph cannot contain a cut vertex, bridge, leaves, or multiple con-
nected components.
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4.2 Knot Energies

Although the Conway and Gordon argument outlined in the previous sec-
tion gives a standard method for proving that a graph is intrinsically knot-
ted, it must be adapted to each graph. For a graph that does not have much
symmetry, it becomes increasing complicated because each type of edge
crossing must be considered individually. Thus, we would like to find an
alternative way of detecting intrinsically knotted graphs.

One candidate for such a method is to adapt knot energies to graphs.
Since a particular knot may have different knot diagrams for which it is not
immediately obvious that they represent equivalent knots, energy methods
help to identify knots by providing a standard embedding (or diagram).
First, an energy is defined on a knot, and then the energy is minimized for
all knots of that particular knot type.

In this section, we will define a few different knot energies taken from a
thorough survey of the subject by van Rensburg [11]. In all cases, α(t) will
be taken to be a simple, closed curve.

1. Mobius energy Let α(t) be a parametrization of a simple, closed, C2

curve. Then, the Mobius energy of α is

EM(α) =
∫

α

∫
α

(
1

||α(s)− α(t)||2 −
1

D2(α(s), α(t)

)
||α′(s)||||α′(t)||dsdt

where D(α(s), α(t)) is the shortest distance from α(s) to α(t) along
the curve α.

2. O’Hara energy Let α(t) be an arc-length parametrization of a curve
with total length 1. Then, the O’Hara energy of α is

Ep
j =

1
j

[∫ 1

0

∫ 1

0

(
1

||α(s)− α(t)||j
− 1

Dj(α(s), α(t))

)p

dsdt
] 1

p

.

3. Curvature energy Let α(t) be C2 with arc-length parametrization and
unit length. Then, the curvature of α at t0 is κ(t0) = |α′′(t0)|. The p-th
curvature energy of α is

κp(α) =
∫ 1

0
κp(t)dt.
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4. Polygonal curvature energy Let α(t) be piecewise linear segments
si, i = 1, . . . , n. Define θi to be the excluded angle between si and si+1.
An analog to curvature energy can be defined by

Ep =
n

∑
i=1

θp.

For a given knot type K, the energy of K is defined to be the minimum
(or infimum) of its energy over all embeddings with that particular knot
type. For example, the Mobius energy of the unknot is 4 [10].

It has been shown that the circle has the lowest energy of all knots for
most types of knot energies [10, 1]. Consequently, we hope that if we put
some of these energies on graphs, then a graph that is not intrinsically knot-
ted will have no non-trivial knots in a minimum energy embedding since
knots (that are not the unknot) have high energies.

4.3 Graph Curvature Energy

The curvature energy of a knot, κ, measures how much it turns as we travel
along it once. Thus, if α(t) parametrizes an embedding of the knot such that
α is piecewise C2 and is parametrized by arc-length, we can define a variant
of the curvature energy by

κ′(α) =
∫

α
κ(t)dt +

n

∑
i=1

θi

where θi is the turning angle of α at the points xi where α′′ is discontinuous.
That is, θi is the angle between limt→x−i

α′(t) and limt→x+
i

α′(t).
Then, if f is a graph embedding of G whose edges e are parametrized

by arc-length by C2 curves αe(t), we can define the total curvature energy of
f by

κ( f ; G) = ∑
e∈E(G)

∫
e

κe(t)dt + ∑
v∈V(g)

∑
e, f∈E(G)

e∩ f =v

θe f

where κe(t) = |α′′(t)| and θe f is the exterior angle between e and f . It is
important to note that θe f is the exterior angle, not the interior angle, be-
cause the exterior angle measures the turning of a curve traveling through
v from e to f . For the remainder of this chapter, we will assume that all
embeddings of graphs have edges which are C2.
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It is easy to see that κ( f ; G) is scale invariant since scaling the embed-
ding by c also scales the curvature everywhere by 1

c . This follows from the
fact that the curvature, κ, at a point x satisfies κ = 1

r where r is the radius
of the osculating circle at x.

Proposition 4.6. Let f be an embedding of a graph G, and let g = c f be a scaling
of the embedding, with c > 0. Then, we have that κ( f ; G) = κ(g; G). That is to
say, total curvature energy is scale invariant.

Proof. Let α(s), s ∈ [0, a] be parametrized by arclength. Scale α by c > 0.
Then, the scaled curve, parametrized by arclength, is γ(s) = cα

( s
c

)
, s ∈

[0, ca]. Then,∫ ca

0
|γ′′(s)|ds =

∫ ca

0

∣∣∣∣cα′′
( s

c

)( 1
c2

)∣∣∣∣ ds =
∫ a

0
|α′′(s)|ds.

So the energy contribution from each edge is invariant. The angles be-
tween adjacent edges also does not change by scaling, so

κ( f ; G) = κ(g; G).

Definition 4.7. Let G be a graph. Then the total curvature energy of G, de-
noted κ(G), is min f {κ( f ; G)}.

So the total curvature energy of G is the minimum curvature energy of
embeddings of G over all possible embeddings.

If the graph G is a cycle, then its embedding is equivalent to a closed,
piecewise C2 curve. For the cycle graph Cn on n vertices, we can find the
minimum energy of the graph. A special case of the result follows from the
Gauss-Bonnet Theorem.

Theorem 4.8 (Gauss-Bonnet Theorem). Let R ⊆ S be a regular region of an
oriented surface and let C1, . . . , Cn be the closed, simple, piecewise regular curves
which form the boundary ∂R ofR. Suppose that each Ci is positively oriented and
let θ1, . . . , θp be the set of all external angles of the curves C1, . . . , Cn. Then,

n

∑
i=1

∫
Ci

kg(s)ds +
∫∫
R

Kdσ +
p

∑
i=1

θi = 2πχ(R)

where s denotes the arc length of Ci, and the integral over Ci means the sum of
integrals in every regular arc of Ci. [3]
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Here kg denotes the geodesic curvature, K is the Gaussian curvature of the
surface, and χ(R) is the Euler characteristic of R. As a corollary, we obtain
a result about the total curvature of a simple, closed, planar, piecewise C2

curve.

Corollary 4.9. Let C be a planar, simple, closed, piecewise C2 curve with external
angles θ1, . . . , θn. Then, ∫

C
κ(s)ds +

n

∑
i=1

θi ≥ 2π

Proof. Without loss of generality, let C lie on the xy plane. Let S be the
surface on the xy plane that lies in the interior of C. Then, we have that

|kg(s)| = κ(s)
K(S) = 0.

Moreoever, S is homeomorphic to the closed disk, so it has Euler character-
istic χ(S) = 1.

Therefore, the Gauss-Bonnet Theorem tells us that∫
C

κ(s)ds +
n

∑
i=1

θi =
∫

C
|kg(s)|ds +

n

∑
i=1

θi

≥
∫

C
kg(s)ds +

n

∑
i=1

θi

= 2πχ(S)
= 2π.

The general result for closed curves, stated below, was proved by Fenchel
[4]. Fenchel’s theorem immediately implies Proposition 4.11, which char-
acterizes curvature energy for cycle graphs.

Theorem 4.10. Let C be a simple, closed, piecewise C2 curve with external angles
θ1, . . . , θn. Then, ∫

C
κ(s)ds +

n

∑
i=1

θi ≥ 2π

with equality holding if and only if C is planar convex.
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Proposition 4.11. Let Cn be the cycle graph on n vertices. Then κ(Cn) = 2π.
Moreover, κ( f , Cn) = 2π if and only if f is a planar convex embedding of Cn.

Now, we wish to find κ(G) for some non-cyclic graphs. We begin by
considering the graph K4. We expect that in a minimum energy embedding,
the embedded graph will be symmetric under permutation of the vertices,
so we will assume that they are equidistributed on the unit sphere, S2 ⊂
R3. This assumption will need to be verified at a later time. We begin by
calculating the position of the points.

Without loss of generality, we locate the first point at p0 = (0, 0, 1) and
the second point on the xz-plane. Then, we have that the three points not
on the z-axis are located at

p1 = (sin φ, 0, cos φ),

p2 = (cos
2π

3
sin φ, sin

2π

3
sin φ, cos φ),

p3 = (cos
2π

3
sin φ,− sin

2π

3
sin φ, cos φ),

where φ is the angle from the positive z-axis.
Then,

|p1 − p0| = 2 sin
φ

2
=
√

2− 2 cos φ.

We also have

|p2 − p1| =
√

3 sin φ.

Hence, setting the two quantities together, we have

3 sin2 φ = 3(1− cos2 φ) = 2− 2 cos φ.

This simplifies and factors to

(3 cos φ + 1)(cos φ− 1) = 0.

Thus, φ = 0, cos−1− 1
3 . If φ = 0, then the pi, i = 1, 2, 3, 4 are not distinct, so

it must be that φ = cos−1− 1
3 .

Now, we can calculate the total curvature energy of G for the straight
edge embedding, fs, and for the embedding, fg, where the edges are geodesics
of S2.
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Figure 4.1: Circle of curvature centered at c passing through the points p0
and p1 of the regular tetrahedron inscribed in S2.

For the straight edge embedding, κe(t) = 0 for all edges e, so that
κ( fs; K4) = ∑n

i=1 θi. Since each face of the tetrahedron is equilateral, the
exterior angle between two adjacent edges is 2π

3 . Thus,

κ( fs, K4) = 4(3)
(

2π

3

)
= 8π = 25.13274 . . . .

In an embedding onto S2, the curvature of each edge is 1. The arc-length
of each edge is cos−1− 1

3 . At any vertex v, each edge incident to v has its
tangent vector on the tangent plane at v. Moreover, the three edges cut the
tangent plane into three equiangular pieces, so the exterior angle of any
two edges that meet is π

3 . Then,

κ( fg, K4) = 6 cos−1−1
3

+ 4(3)
(π

3

)
= 6 cos−1−1

3
+ 4π = 24.03017 . . . .

Now, let fκ be the embedding where all edges have contant curvature, κ,
and the angles between all pairs of adjacent edges is the same. The central
angle σ = ∠p0cp1 of the circle of curvature subtended by an edge can be
computed by setting the length of the chord associated with σ to be the
distance between two vertices of the regular tetrahedron inscribed in S2.

sin
σ

2
= κ sin

(
1
2

cos−1−1
3

)
⇒ σ = 2 sin−1

(
κ sin

[
1
2

cos−1
(
−1

3

)])
.
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The angle between the circle’s perimeter and the chord p0 p1 is σ
2 .

Letting ψ = ∠op0 p1 be the angle between the radius of S2 and the
straight line between two vertices of K4, and letting k the distance from
the origin, o, to the straight line, p0 p1 between two vertices, we have that

k = cos
[

1
2

cos−1
(
−1

3

)]
,

so

ψ = sin−1 cos
[

1
2

cos−1
(
−1

3

)]
.

Then, the tangent vectors of two adjacent edges at a shared vertex are (up
to rigid transformation),

u = (sin(
σ

2
+ ψ), 0, cos(

σ

2
+ ψ))

v = (−1
2

sin(
σ

2
+ ψ),

√
3

2
sin(

σ

2
+ ψ), cos(

σ

2
+ ψ)).

So the angle between two edge is given by

ω = cos−1(u · v).

We can combine these results to obtain the total curvature energy of the
constant curvature embedding of K4.

κ( fκ; K4) = ∑
e∈E(K4)

∫
e

κe(t)dt + ∑
v∈V(K4)

∑
e, f∈E(K4)

e∩ f =v

θe f

=6
(

2 sin−1
(

κ sin
[

1
2

ξ

]))
+

12 cos−1
(

1
2
− 3

2
cos2

(
sin−1 cos

[
1
2

ξ

]
+ sin−1

(
κ sin

[
1
2

ξ

])))
(4.1)

where ξ = cos−1 ( 1
3

)
.

Equation (4.1) has a minimum at κ = 1√
2

1. So for constant curvature

embeddings, the minimum energy configuration of K4 has curvature 1√
2
.

The energy associated with the embedding is

κ( f 1√
2
; K4) = 22.15726951 . . .

1Solved numerically using Mathematica to 24 digits of precision.
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Figure 4.2: Graph obtained by bridging two triangles.

4.4 Remarks on Graph Curvature Energy

We have seen that for the cycle graph Cn and for K4 (with some assump-
tions), a minimum energy configuration exists, although the configuration
may not be unique. In particular, any convex planar embedding of Cn has
minimum energy. We would like to know if a minimum energy configura-
tion always exists. The following example shows that this will not always
be the case, unless some restrictions are made.

Let G0 be the graph obtained by bridging two triangles by an edge (see
Figure 4.2). Then, the energy of an embedding f of G0 is

κ( f ; G0) = κ( f |T1; T1) + κ( f |T2; T2) +
∫

b
κb(s)ds +

4

∑
n=1

θn

where T1 and T2 are the two triangle subgraphs of G0, b is the bridge,
and θ1, θ2, θ3, θ4 are the four exterior angles determined by b and the edges
which are adjacent to it.

Note that the energy of an embedding of G is at least equal to the sum
κ( f |T1; T1) + κ( f |T2; T2). By Proposition 4.11, any planar, convex embed-
dings of the triangular subgraphs have minimum energy. Let T1 and T2 be
convex triangles with the two vertices that are endpoints of b lying on the
x axis. Then, the energy of the two subgraphs are at a minimum. Let b be
the straight line between the two triangles. Then,∫

b
κb(s)ds = 0.

Consider the four edges that are adjacent to b and the angles θi, i = 1, 2, 3, 4
associated to them. For ε > 0, we can let θi < ε for each i in an embedding
of G0 while keeping the embeddings of each of the two triangles planar
convex. In the limit, we have that

lim
ε→0

κ( f ; G) = 4π.
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However, the limit does not result in a proper embedding since two edges
will overlap. Moreover, it is not possible for any proper embedding to have
θ1 = θ2 = θ3 = θ4 = 0 so that κ( f ; G0) > 4π for all embeddings f of G0.

Thus, κ(G0) is not well-defined for this graph.
We can rule out this particular case by Proposition 4.5, since minor min-

imal intrinsically knotted graphs are 2-connected. Since we are looking for
minor minimal intrinsically knotted graphs, G0 is not a candidate graph.

Unfortunately, the same problem arises for the graph obtained by join-
ing two copies of C3 along a common edge.



Chapter 5

Final Thoughts

While the work to classify intrinsically even linked graphs was not taken
to completion, it is the author’s opinion that the approach outlined and
pursued in Section 3.4 will lead to a proof that the four graphs—K6, P8, the
Petersen graph, and the ∆− θ graph—form a complete minor minimal set
for intrinsic even linking. At first, the proof attempted to adapt the methods
in Theorems 3.16 and 3.17 to cycles of specific length. It was hoped that all
cross-cycle graphs with base cycle lengths of at least five would contain the
Petersen graph as a minor. However, it was realized that it is possible to
have a cross-cycle graph with no trivial vertices without having five disjoint
edges. This seemed to crush the idea for proving completeness, making the
previous results useless.

However, the idea was salvaged by the insights of David Bachman, sug-
gesting that the author look at specific subsets of graph where the size and
number of fans are limited. In this way, it is possible to systematically gen-
erated graph one edge at a time by avoiding ∆− θ as a minor. This realiza-
tion and subsequent alteration occurred near the end of the term, so it was
not possible to complete the work, but it does appear that it can be finished
without looking at many more cases. The cases that remain are the last case
for disjoint 2-fans, intersecting 2-fans, and n-fans for larger n.

The intrinsic knotting and graph energy chapter outlines work done in
the first semester. Although the idea had potential, calculation of graph
energies, even for the simplest graphs, is extremely difficult. There were
many heuristic arguments made for calculating the energy of K4 which do
not seem very easy to prove. Moreover, connecting graph energy to in-
trinsic knotting does not seem to be very easy, as edges may be shared by
multiple cycles. Thus, it appears that further insights are necessary before
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such an approach becomes useful.
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