
INFORMATION DISCOVERY ACROSS

ORGANIZATIONAL BOUNDARIES

THROUGH LOCAL CACHING

By

ANURADHA GASIKANTI

Bachelor of Technology in

Computer Science & Information Technology

Jawaharlal Nehru Technological University

Hyderabad, Andhra Pradesh

2002

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SHAREOK repository

https://core.ac.uk/display/215289671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

INFORMATION DISCOVERY ACROSS

ORGANIZATIONAL BOUNDARIES

THROUGH LOCAL CACHING

Thesis Approved:

Dr. JOHNSON P. THOMAS
Thesis Adviser

Dr. JOHN P. CHANDLER

Dr. DEBAO CHEN

Dr. GORDON EMSLIE
Dean of the Graduate College

iii

ACKNOWLEDGEMENTS

My sincere thanks are due to my adviser Dr. Johnson Thomas, without his

motivation, encouragement and support; this thesis effort would not have been possible. I

appreciate his time and effort put forth towards my thesis. I am greatly indebted for his

guidance both on personal and professional fronts.

I would also like to thank my committee members Dr. John Chandler and

Dr. Debao Chen for serving on my committee. Their guidance and suggestions are

greatly appreciated.

Grateful appreciation goes to my beloved father Mr. Rama Rao, my mother

Mrs. Saroja and my sister Miss. Arvindha for their endless support, love and

encouragement in all aspects of my life.

Finally I would like to thank my husband Mr. Ravikiran, who stood beside me

with his unfailing and indispensable support. He has been encouraging me all the time to

stay focused on achieving my goal.

iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION………………………………………………………………….. 1

II. LITERATURE REVIEW………………………………………………………….. 5

2.1. Service-Oriented Architecture……………………………………………….. 5
2.2. Enterprise Service Bus……………………………………………………..... 7

2.2.1. The role of ESB and other SOA components…………………………. 8
2.2.2. Emerging patterns for integrating different ESBs…………………….. 10

2.3. Extended Service-Oriented Architecture……………………………………. 13
2.4. UDDI …………………..…………………………………………………… 15

III. PROPOSED APPROACH………………………………………………………. 17

3.1. Virtual Service-Oriented Architecture……………………………………… 19
3.2. Response Times ……………………………………………………………. 23

IV. SIMULATION MODEL ………………………………………………………... 26

4.1. Simulation Implementation Details …………………………….………….. 26
4.2. Simulation Results ……………………………………………….……….... 36

4.2.1. Web Service Provider located in Local Organization ……….……...... 37
4.2.2. Web Service Provider located in Remote Organization ……………... 38

V. CONCLUSION AND FUTURE WORK ……………………………….……….. 46

APPENDIX ………………………………………………………………….……… 48

REFERENCES……………………………………………………………….……... 53

v

LIST OF FIGURES

Figure Page

2.1. Basic Service Oriented Architecture …………………………………………….. 6

2.2. The role of the ESB in a SOA …………………………………………………… 8

2.3. Directly connected ESBs Pattern ……………………………………………….. 11

2.4. Brokered ESB Gateway Pattern ………………………………………………… 12

2.5. Federated ESB Pattern ………………………………………………………….. 13

2.6. Extended SOA protocol ………………………………………………………… 14

3.1. Advertising in the VSOA architecture ………………………………………….. 20

3.2. VSOA architecture protocol ……………………………………………………. 21

4.1. Different Components & its Implementation …………………………………... 27

4.2. NetTool Interface ………………………………………………………………. 30

4.3. Message Flow in Websphere Message Broker ………………………………… 32

4.4. Request flow in ESOA of Message Broker ……………………………………. 34

4.5. Request flow in VSOA of Message Broker ……………………………………. 36

4.6. Roundtrip times vs. no. of requests placed using ESOA ………………………. 39

4.7. Roundtrip times vs. no. of requests placed using VSOA ………………………. 42

4.8. Comparison of ESOA & VSOA models ……………………………………….. 43

vi

LIST OF TABLES

Table Page

3.1. Attributes of different registries in VSOA ……………………………………... 22

4.1. Web Service located in local DB2 using both ESOA & VSOA ……………….. 38

4.2. ESOA – Web Service in remote DB2 ………………………………………….. 41

4.3. VSOA – Web Service available in remote system …………………………….. 41

4.4. Requests processed using Cache in VSOA ……………………………………. 44

1

CHAPTER I

INTRODUCTION

Web Service is a software system designed to support interoperable machine to

machine interaction over a network. Web services are deployed within restricted spaces

of organizations intranets. There is a need for the creation of virtual organizations where

the services offered by one organization should become accessible to other organizations.

It requires opening of IT infrastructures to its participants so that the information can

flow easily within the virtual organization. The main goal of a Service-Oriented

Architecture (SOA) is to bring the uses of loosely coupled systems and encapsulation to

the integration process at an enterprise level. A service is the unit of work done by a

service provider to achieve desired results for a service consumer. Web services

standards and the SOA provide help toward opening IT infrastructures by providing a

uniform way to expose the functionalities through standards like Web Service

Description Language (WSDL) and Simple Object Access Protocol (SOAP), and to

discover web services through standards like Universal Description Discovery and

Integration (UDDI). A complete SOA implementation can be achieved with the help of

an Enterprise Service Bus (ESB). The ESB is the infrastructure which supports a fully

integrated and flexible end-to-end service-oriented architecture.

2

SOA specifies that every service that is registered with the available UDDI

registries can be discovered and invoked. Hence the discovery of web services is limited

to the scope of available UDDI registries. The service provider advertises about the type

of services it offers to the registries, this process is known as registration. In order to

extend the infrastructure for the creation of virtual organizations, the SOA must be

extended across organizations. There are many different ways to allow web services be

available to other partners within the virtual organization.

One way to extend SOA across organizations is to allow the web services to

register with all the available UDDI registries of the other partners within the virtual

organizations. Upon receiving a request the UDDI directly gives the details of the service

provider to the client since every provider advertises with all the UDDIs. This is can be

viewed as having a distributed environment of UDDIs. This solution is problematic

because it leads to multiple copies of registrations across the virtual organization. Such a

system has a number of disadvantages: first, every detail of the description of the web

service should be maintained and updating all the copies of registration of web service

whenever changes are made to it becomes difficult. It increases the traffic, which are the

interactions between systems. Second, if a web service does not register with all the

UDDIs within the virtual organization it may not be visible and discoverable.

Another sophisticated way is to make a web service register with only one UDDI,

as it normally does and allow the UDDI registries to exchange information about the web

services they have registered [7]. Then any application would inquiry only one UDDI.

3

Upon receiving the inquiry, the UDDI may solve it directly if it has the required

information, or it may contact other UDDIs to find the requested service, and reports

back to the client what it found. The difficulty of this solution is that UDDI registries

should discover each other. The local registry has to query all the available UDDIs within

the virtual organization about the service needed. The amount of queries increases

polynomially with the increase of partners in the virtual organization.

In Extended Service-oriented architecture (ESOA), the virtual organization

establishes a UDDI registry, called Main Registry, that collects the registrations of the

partner registries and answers queries about which registry is more likely to contain a

specified type of service [7]. In this model, whenever a local UDDI could not find

information about the type of service requested, it only has to query the Main registry

rather than all the UDDIs within the virtual organization. This reduces the number of

queries placed. But the drawbacks of this model are: first, if for any reason there is a

central point of failure, i.e., if the Main registry goes down then the situation comes back

to the previous model where the local UDDI registry has to contact all the available

UDDIs within the virtual organization. Second, if an application places a request for the

type of service which was requested before by another application within the scope of

same UDDI. The UDDI has to repeat the discovery process again by querying the Main

registry. There are chances that the process will be repeated if many requests are placed

for same kind of web service.

4

The proposed model is developed to resolve the issues of the above mentioned

ESOA structure. The main aspect of this thesis is to develop an architectural model to

support the creation of virtual organizations, and is called a Virtual Service-oriented

Architecture (VSOA). VSOA is based on the observation that UDDI registries are

themselves web services also. Hence it provides a way for the UDDIs to discover each

other within a virtual organization. It extends ESOA by introducing a registry, called the

Cache Registry locally within an organization that acts as a registry to support discovery

of service providers belonging to different organizations and also contain details of the

services offered. Like in ESOA, when a client places a request for a service and if the

local UDDI does not have the required information, it queries the Main registry. And the

results it gets from the Main registry are stored in the Cache registry locally. So whenever

a service request is placed, first the requester queries the cache registry to check if it can

provide the information about the provider of the placed request. Cache registry is

updated each time a new service is requested by the consumer, along with the results it

got from the providing organization.

5

CHAPTER II

LITERATURE REVIEW

2.1. Service-oriented Architecture

Service-oriented Architecture is an approach used to define integration

architectures based on the concept of services. A Service-Oriented Architecture (SOA) is

an architectural style whose goal is to achieve loose coupling among interacting software

agents. Service-oriented architecture defines concepts and general techniques for

designing, encapsulating, and invoking reusable business functions through loosely

bound service interactions [1]. SOA presents an approach for building distributed systems

that deliver application functionality as services to either end-user applications or other

services. It is comprised of elements that can be categorized into functional and quality of

service. In a SOA, services are given the highest importance. Services are defined by the

independent interfaces. All services encapsulate reusable business functions and can be

invoked using communication protocols. The encapsulation of services by interfaces and

their invocation through interoperable protocols are the means by which SOA enables

greater flexibility and reusability.

6

SOA identifies three stakeholders: the provider of the service, the requester of the

service, and a registry, typically UDDI, that takes the responsibility of finding the best

provider that matches the requirement of the requester. A detailed view of the basic

protocol used within SOA [7] is shown in Figure 2.1.

Figure 2.1: Basic Service Oriented Architecture

The service provider advertises with the registry by providing a description of the

services it provides. Service descriptions are provided using the Web Services

Description Language (WSDL) documents. WSDL is an XML based service description

that describes the public interface, protocol bindings and message formats required to

interact with a web service. The requester sends a request to the registry asking it to find

the services which satisfies its set of requirements. The registry sends a report as a

response to the requester with the details of the providers of the service that it found.

Finally, the requester selects the best service for the task and starts interaction with the

provider.

7

A SOA uses a web services as a communication mechanism with XML

documents being routed over an Enterprise Service Bus. Existing host applications

become service providers in a service-oriented architecture. The ESB will carry the

XML-based documents and route them depending on the content. Routing and

orchestration are the fundamental parts of an ESB along with other services like

management, guaranteed delivery and security. Interoperability is the most important

aspect of a SOA. Remote invocation is provided through Simple Object Access Protocol

(SOAP), Web Services Description Language (WSDL) is used to describe the service

interfaces and the services are discovered through the use of Universal Description

Discovery and Integration (UDDI).

2.2. Enterprise Service Bus

The Enterprise Service Bus (ESB) enables an SOA by providing the connectivity

layer between services. The ESB is primarily concerned with the program-to-program

communications necessary to support services-oriented interactions and combines

messaging, transformation, and content-based routing into a single product. The ESB can

be designed according to the business process services of the company implementing it.

Descriptions of the services available from a service provider can be accessed by the

service requestors with the help of registry of services. In order to participate in ESB-

managed interactions the service endpoints need to register with the ESB. The service

providers publish the meta-data about their capabilities and services they offer and the

service requestors publish the meta-data about the kind of information they are looking

8

for. The ESB manages the meta-data through a registry, which supports configuration,

connection, matchmaking and discovery of service endpoints. The meta-data describes

service requestors and providers, mediations and their operations on the information that

flows between requestors and providers, and the discovery, routing and matchmaking that

takes place dynamically.

2.2.1. The role of ESB and other SOA components

The ESB is not the only infrastructure in SOA, there are other components whose

role is to be positioned relative to the ESB [1]. The figure 2.2 shows the relationship

between all the components.

Figure 2.2: The role of the ESB in a SOA

9

� The Business Service Directory, which provides the details of the services

available to the systems participating in the SOA. The main goal of the business

service directory is to publish the availability of services and encourage their

reuse by the development activity of an enterprise. The business service directory

can be implemented as a design-time service catalogue or an open-standard

Universal Description, Discovery and Integration UDDI directory that enables

dynamic discovery and invocation of business services.

� ESB Namespace Directory, which provides the basic routing information by

means of a routing table.

� The Business Service Choreography, which is used to orchestrate the sequences

of service interactions. The role of choreography is to define and execute business

processes, whose flows are determined by the business logic. Such kind of

behavior is not part of the ESB, but ESB is responsible for functions that involve

sequencing, mediations and other invocations of technical services around the

invocations of business process.

� The ESB Gateway, which is used to provide a controlled point of external access

to the services where the ESB does not provide it locally. Large organizations will

keep the gateway as a separate component, which can also be used to federate

ESBs within an enterprise. The ESB gateway makes the services of one

organization available to others in a controlled and secure manner.

10

2.2.2. Emerging patterns for integrating different ESBs

Within an organization, the need to have different ESBs arises if they have

different governance bodies, funding models, geography, different business strategies.

The use of SOA techniques for integration is called Service Oriented Integration (SOI).

These are three emerging patterns for ESB Topology [4].

� Directly connected ESBs pattern: This pattern is used to route messages between

two ESBs. Service consumer of one ESB connects with the service provider of

other ESB and the link is created between them. As a point-to-point topology, the

endpoints contain the implementation knowledge of each other. For example, the

ESB hosting service consumer must know which ESB hosts the service provider,

what protocol to use to get the service done, and message format so it can route

the request. This result in service routing rules distributed across multiple ESBs

and in multiple ESB components. The consumer ESB should transform their

messages so that the service provider understands the message and performs the

operation.

The problems faced in this model are: first, only two ESB can

communicate at a time. Second, service provider location must be known to the

service consumer before invoking it. Third, the number of links grows

exponentially as the number of components being linked together grows.

Maintenance will increase as the number of links between ESBs increases.

11

Fourth, all the service consumers will have to take the burden of transforming

their messages according to the protocols used by external service providers.

Figure 2.3: Directly connected ESBs Pattern [4].

� Brokered ESB Gateway pattern: The number of point-to-point connections can be

reduced by introducing a centralized gateway between all the ESBs in an

organization. It may be located in a different governance zone than any of the

ESBs it integrates and may be under the control of a third party. This encapsulates

the implementation details such as routing rules into the Gateway. Each ESB has

less implementation knowledge of other ESBs. ESB Gateway often connects

heterogeneous ESBs, adapts a wide range of standards and protocols. It has to

mediate potentially incompatible standards.

The problems faced by this topology are: first, the gateway has the routing

offer nothing more than a routing service. It does have any service providers

connected to it. So it does not have a business service directory where all the

12

information about a service provider is stored. Second, service provider location

must be known to the service consumer before invoking it.

Figure 2.4: Brokered ESB Gateway Pattern

� Federated ESB pattern: This pattern is useful when resources are used from

multiple providers in multiple ESBs. It adds orchestration of service requests that

span multiple ESBs, multiple providers or both. The service consumer of the

request gets the information of all the resources from different providers in all the

ESBs, complete the request and sends the response.

The difficulties in this topology are: first, this option is a good choice if

there are only one or two occurrences of such requirement. If there are more than

two occurrences exist, this solution would lead to federation logic scattered across

13

multiple ESBs [4]. This situation would be similar to the problem of directly

connected ESBs, the penalty would be in the form of higher costs to maintain and

extend the implementation. Secondly, If the services of two or more ESBs are

fully federated i.e., all services are shared then by the definition of ESB, they

become one larger ESB rather than separate ESBs.

Figure 2-5: Federated ESB Pattern

2.3. Extended Service Oriented Architecture:

To support the need to make the services offered by one organization

accessible to another, SOA needs to be extended to span across organizational

boundaries. But according to SOA it is an implicit assumption that the discovery of web

services is limited to the scope of the available UDDI registries. Here comes the

14

Extended Service Oriented Architecture model, where UDDIs are considered as web

services themselves. In ESOA, the virtual organization establishes a UDDI registry,

called Main Registry, that collects the registrations of the partners’ registries and answer

queries about which registry is more likely to contain a specified type of service [7].

Figure 2.6: Extended SOA protocol

ESOA has four stakeholders: service requesters, service providers as in SOA. The

third stakeholder is a set of registries that store advertisements of providers and match

them with requirements of requesters. Finally, the fourth stake holder is a main registry

that collects descriptions about the type of advertisements collected by the registries.

There are three operations in ESOA, advertisement, discovery loop and interaction that

carry out the protocol inquiry [7]. In the advertisement phase, each registry transfers to

the Main registry information about the type of services that it has. Upon receiving the

advertisement of the new service, a registry, such as registry ORG_1 as shown in Figure

2.6, updates its registration with the Main registry to show that new advertisements are

available. An application at the requester, query its local registry for a specific type of

service. If the registry has information about the provider of the service, it sends a report

to the requester with all the details. Otherwise, it contacts the main registry to discover

15

what other registries may know about the type of services that the application needs. It

reports back on the registries that are likely to discover the needed service. In the

example, the main registry reports ORG_1. At this point registry ORG_2 sends a query

that it originally received from the application to registry ORG_1. The registry ORG_1

then performs the discovery process and then sends back a report to registry ORG_2 with

all the information about the providers that satisfies the requirement of the application.

The application then selects the best provider and starts interaction directly with the

provider.

The ESOA has a number of advantages. Firstly, it allows SOA to span across

organizational boundaries supporting discovery of services within other organizations

without having multiple copies of registrations. Secondly, it requires very limited

infrastructure. The only requirement is the additional Main registry. Finally, by avoiding

the copying of advertisements it reduces the redundancy between the registries, and it

does not require any overhead when the virtual organization is dismantled.

2.4. Universal Description Discovery and Integration (UDDI)

Universal Description Discovery and Integration is the standard SOA registry,

because it is a standard at the OASIS standardization body and also because major

companies in software Industry like IBM, Microsoft, Oracle, etc., have invested in the

development of UDDI and participate in the work of the UDDI technical committee [7].

UDDI supports SOA by providing a publish API that is used by the provider to advertise

16

the web services, and an inquiry API that allows requesters to search for web services and

to retrieve information about the registered services. Web services are described in UDDI

by a set of data structures that are used to specify the business that deployed the service,

the service itself and all the bindings of the service.

The success of ESOA hinges on the ability to provide an effective discovery

mechanism. The problem of service discovery arises as the provider and requester of the

service may have different perspectives on the same service advertised. For example, a

provider of the service may report many different types of information about a service,

whereas the requester might need only one type of information. Thus a matching process

needs to recognize the similarity between the meaning of the request and the meaning of

the advertisement. The web services technologies, SOAP, WSDL, and UDDI rely on

XML for interoperability.

17

CHAPTER III

PROPOSED APPROACH

This thesis proposes an architectural model to provide IT infrastructure for virtual

organizations, so that information can flow easily within virtual organizations. The

creation of virtual organizations becomes important as the services offered by one

organization should become accessible to other organizations. This proposed model, that

we call Virtual Service-Oriented Architecture or VSOA in short, is based on the

observation that UDDI registries are themselves web services and is also a way to extend

ESOA to deal with virtual organizations. In ESOA, if a situation arises where the same

kind of request is placed from different customers within an organization at different

times, the entire discovery and interaction phases needs to be repeated. In other words,

the central Main registry is first contacted. The Main registry returns the registries that

are likely to discover the set of providers which offer the requested service. The local

UDDI registry which placed the original request contacts all the registries of the

providers (local registries of all partner organizations). They provide more details about

the providers such as the type of services they offer, the protocols they use, and other

such details. The application then selects one of these providers based on some criteria.

Furthermore, since there is no local caching, a customer who has previously requested a

service will have to go through the whole process again if another request is made for the

same service again.

18

Repeating the whole process is time consuming and increases the number of

requests to query the Main registry as well as the requests to local registries when there

are repeated requests. The proposed architecture makes the Information discovery

process across organizations more flexible and efficient.

The drawbacks of the ESOA which are dealt by VSOA are, firstly, VSOA deals

with the central point of failure problem. If for any reason the central point in ESOA, i.e.,

the Main Registry fails, then the situation reverts back to the basic SOA model where the

service providers not only advertises with the local UDDI but also with all the UDDIs

available in the network. VSOA deals with this problem by introducing another local

registry called the Cache Registry, where all the results received by the requestor

application about the services it needs are stored and are available for retrieval whenever

the same kind of request is placed next time without actually going through the entire

procedure again. This to some extent, if not fully, solves the center point of failure

problem. Even if the Main Registry goes down, the proposed VSOA model helps to

process the requests that require the same type of services that were handled before.

Some simulations will be run at later stages of the thesis to get the measurements of what

percentage of services can be processed even when the Main registry fails. We assume

that the central point will be restored after sometime.

Secondly, suppose that the same service is requested more than once by different

requesters within the same organization at different times. According to ESOA, the

discovery phase has to be repeated each time the request is placed. This consumes much

19

time and increases the number of requests made to query the main registry. In VSOA, all

the information about a service requested is stored in the cache registry. The cache

registry consists of information such as the name of the web service, the business that

deployed the service and exact location of the service provider. Whenever the same kind

of request is repeated, it can be accessed locally easily and the information about the

provider of service can be directly obtained. This reduces the number of procedures it has

to go through and can contact the provider directly using the provider address in cache.

Thirdly, our proposed approach reduced the communication bottleneck introduced

by a central point of communications. Network traffic is much more distributed.

3.1. VSOA: Virtual Service Oriented Architecture

To support the needs of virtual organizations and to make them perform

efficiently, ESOA should be extended, without requiring an organization’s UDDI

registries to perform the same set of operations again and again. One way to approach

this problem is to think of the UDDI registry as a web service itself. Another local

registry is used that acts as a registry to support discovery of service providers belonging

to different organizations and contain the information about the services offered.

VSOA has five stakeholders: service requestors, service providers, the third

stakeholder is a set of registries that store the advertisements of local providers to match

them with the requirements of service requesters which may or may not be local, the

20

fourth stakeholder is the Main Registry, that holds the descriptions of the type of services

or advertisements collected by each of the organizations registries as in ESOA. Finally,

the fifth stakeholder is the Cache Registry, which collects the results obtained by the

service requester in its new service request. This registry can be viewed for information

retrieval when the same kind of request is placed the next time.

Figure 3.1: Advertising in the VSOA architecture

The four operations that characterize the VSOA protocol are advertisement,

discovery, collection and interaction, which are applied to organizational registries and

the services. In the advertisement phase as shown in Figure 3.1 whenever a new service is

added or any changes are made to the existing services, the provider updates the local

registry which in turn updates the main registry with the information and details of the

services. The discovery process happens in three stages by using the local UDDI

registries, Main registry and the Cache; the attributes of these are shown in Table 3.1.

First, the application which needs a particular type of service queries the local

organization’s UDDI registry for the required information. This is because the local

UDDI may contain services that have not been accessed before (new services for

21

instance). The registries query themselves to find the information about the provider of

the service. If it finds the best providers that offer the type of service requested, it reports

back to the requested application. In the second stage, if the requested service is not

available in the local UDDI registries, the Cache Registry is queried to check if it already

has the required information about the type of service it is looking for. The cache registry

holds the information of non-local services that have been accessed. If the cache search

is also a miss, the main registry is queried to find the set of registries that are likely to

satisfy the service that fits the request. In the third stage, the original request for services

is sent to the discovered registries, which gives the details about the service provider and

reports their results to the requested registry/organization. In the collection phase, the

requester stores all the results it got from different registries in the Cache Registry for

future referral. This approach uses the cache registry as a back up for easy and faster

discovery process. Moreover, when the Main registry goes down, this Cache registry

helps to serve all requests that have an entry for a corresponding provider in the cache

registry. Simulations have been performed as part of this thesis to obtain a measurement

of what percentage of the requests placed can be processed with the information available

at the Cache registry and the corresponding improvement in performance.

Figure 3.2: VSOA architecture protocol

22

Attributes Local UDDI
registries

Main
Registry

Cache
Registry

Name/Type of Service Y Y Y
Deployed organization/UDDI N Y Y

Bindings of Services like protocols,
message formats, etc.,

Y Y Y

Location of Service (interface or URL) Y N Y
Table 3.1. Attributes of different registries in VSOA

In the request phase, the application at first queries their local registry for the

service type. If the registry knows about the services that satisfy the requirements of the

application, it will report on those services. If service provider information is not found,

the Cache registry is checked to see if it can get the required information about the type

of services it is needs. The time to go through the discover process all over again will be

saved if the required information is available in the cache registry. Otherwise, as shown

in Figure 3.2 the local registry queries the Main Registry to discover what other registries

know about the type of services that the application needs. The main registry performs

the discovery process and sends back all the information about the registries that can

process the request placed. In the example in the Figure 3.2, the main registry may report

ORG_1. At this point Registry ORG_2 sends the original query that it received from the

application directly to Registry ORG_1 which performs the discovery process, locates the

best set of services and reports them back to the Registry ORG_2. In turn, registry

ORG_2 reports these services, and all the other services that it discovered to the

application. The application then stores these reports in the cache and contacts the

provider directly.

23

The use of VSOA has a number of advantages. It allows the SOA to span across

organizational boundaries and also saves time in the discovery process by using a Cache

Registry to store the information about the type of services it already processed. The

second advantage is it requires limited additional infrastructure when compared to ESOA.

The only requirement is the additional Cache Registry. The third advantage is that it

partially solves the central point failure problem. When the Main registry fails, the

application can still be processed if a request is placed for the same type of services that

have already been processed. It also reduces the traffic bottleneck at the main registry.

3.2. Response Times

We provide a simple comparison of the ESOA and VSOA systems in terms of

response times.

Assume there are W web services and these are distributed across E ESBs

Assume there are C clients

Therefore on average each ESB will have W/E web services and C/E clients

Let pik denote the probability of a client requestor i at a ESB site accessing a web service

k at a remote ESB site. The cost to access this is tr

Let pij denote the probability of a client requestor i at a ESB site accessing a web service

at a local ESB site i. The time to access this is tl

The total cost for all accesses will therefore be

24














+









∑ ∑∑∑
=

−

== =

E
C

i
r

E
EW

k
ik

E
C

i
l

E
W

j
ij tpEtpE

1

)1(

11 1

where tr > tl

This is the cost for a ESOA access. We have assumed that tr and tl are the same for all

ESB sites.

The cost for a VSOA access will be














+









∑ ∑∑∑
=

−

== =

E
C

i
r

E
EW

k
ik

E
C

i
l

E
W

j
ij cpEtpE

1

)1(

11 1

Here we have defined the remote cost access in terms of a cost cr

The cost for a VSOA access is reduced since some of the remote accesses become local

accesses. Let pik
L-H be the local cache hit probability and pik

R-U be the remote UDDI hit

probability for all web services pik that denote the probability of a client requestor i at a

ESB site accessing a web service k at a remote ESB site.. As a result of caching the

requested web service is available either locally or remotely.

)()('
UR

ikr
HL

iklr ptptc −− ×+×=

where tl’ is the time for local cache access and is very close to tl.

It is evident that pik
R-U = 1 - pik

L-H

The objective is to minimize cr. This requires identifying appropriate measures to

minimize pik
R-U and maximize pik

L-H. This simple model needs to be extended to obtain

more detailed expressions for pik
R-U atd pik

L-H. This clearly is a function of the placement

and replacement strategies that will be employed. The next question that arises is which

web service entries to keep in the local cache. The probability of a web service being

buffered locally depends on whether the service is considered important enough to be put

25

in the local cache. If this web service is likely to be regularly accessed, it is worth

buffering it locally. On the other hand, if it is going to be accessed very rarely, it may not

be worth maintaining it locally and instead to use the space for other more important web

services. Therefore the characteristics of the other services that have been requested must

also be considered if they should instead be placed in the local cache. A number of

approaches such as least recently used or most frequently used or a combination of the

different schemes may be used.

26

CHAPTER IV

SIMULATION MODEL

4.1. Simulation Implementation Details

The aim is to develop a simulation model for web service information discovery

using both Extended Service-Oriented Architecture and Virtual Service-Oriented

Architecture. Two different algorithms are developed, one to represent the working of

ESOA model shown in Figure 2.6, and the other to represent the working of VSOA

model shown in Figure 3.2. The simulations are limited to two organizations. The web

service requesting organization is considered as the Local System and the other as

Remote System. Different web service providers are available at both the systems. Since

there are only 2 systems the centralized main registry is also implemented in the Remote

System. Although in a real scenario, requests can be placed using different protocols,

here it is limited to only the HTTP requests.

ESOA and VSOA simulation models have many components involved each

performing different operations starting from placing a request until getting the results in

terms of roundtrip times. Figure 4.1 shows the components and their implementation

details.

27

Before actually writing the code and executing the working of these two models

all the preliminary tasks like web services creation, creating DB2 tables, setting up of

ODBC connections, etc., are to be developed initially for step by step processing of the

message flow. The basic infrastructure required to run the simulations have been

developed.

Figure 4.1: Different components and its implementation

The tasks performed before actual implementation the Algorithms:

1. Developing simple web services in each system: Two web services named

‘Addition’ and ‘Multiply’ are developed which takes two integers as input and

gives the result back. IBM Rational Application Developer (RAD) V6.0 software

is used to develop web services and web services J2EE client in the Remote

System. A trial version of RAD is downloaded on the Remote System for this

28

purpose [11]. RAD is an eclipse based application developer used to design,

develop, analyze, test and deploy web, SOA, java, and J2EE applications [10].

The web service needs a server to deploy the code generated. Hence Websphere

Application Server (WAS) V6.0 trial version is downloaded [14]. Here, WAS was

just used as a server to deploy the web services created. In the Local System, web

service is developed using the java tool in Websphere Message Broker and

deployed on WAS. The request for web service is placed using the netTool which

requires the Simple Object Access Protocol (SOAP) format to post the request.

The input message consists of mainly 2 parameters: the service type which is the

name of the service required, and the input values. The web services available are

to be published in their respective local UDDI registries in order to get recognized

and invoked.

2. Setting up UDDI registries and the communication between two DB2

databases: In general, web services are described in UDDI by a set of data

structures that are used to specify the business that deployed the service, the

service itself and all the bindings of the service. It provides 2 APIs for publish and

inquiry operations about web services. In this simulation, UDDI registries are

assumed to be the database tables. A trial version of IBM DB2 is downloaded to

setup the databases [13]. The UDDIs in the Local and Remote Systems are named

as LOCAL_UDDI and REMOTE_UDDI respectively. Both these tables have 3

attributes to describe a web service, the index, service name/type, and the address

of the web service provider. After the creation of web services its details are

29

entered into the local database tables. When a request is placed the database is

queried using simple select statements based on service type.

Another table named CENTRAL_REGISTRY is created to represent the

Main Registry, which collects descriptions about the type of advertisements

collected by all the local registries in the virtual organization. The attributes of

this table are: the index, service type, the UDDI registry where the service is

available, and the datasource name which is the name of the database. The

applications need to access the databases of both Local and Remote Systems to

retrieve the web service address during execution. Hence, ODBC connections are

setup for the databases in both the systems.

3. NetTool Client download: NetTool is a developer tool for monitoring and

manipulating application-level network messages, particularly useful for

debugging web applications and web services. It is a free access software

available online. There are two components to NetTool: the HTTP Client, and the

TCP Tunnel. The HTTP client is used to place a request for the web service. The

request is placed as a SOAP message to the HTTP Input node of the message

broker. The HTTP Input node listens at, http://localhost:7080/Algorithm2 for the

ESOA algorithm and at http://localhost:7080/Algorithm1 for the VSOA

algorithm. The HTTP listener at port 7080 listens to the incoming request and

forwards it to the message flow of the message broker for further processing and

sends back the result to the netTool. The netTool gets the value of the result for

30

the requested operation (Addition/Multiply) and also the roundtrip time taken to

process the placed request in ms.

Figure 4.2: netTool Interface

4. Websphere Message Broker (WMB) and message flows: The trial version of

Websphere Message Broker (WMB) V6.0 is downloaded in one of the systems

from where the request is placed. WMB is an Eclipse-based tool that delivers an

advanced Enterprise Service Bus providing connectivity and data transformation

for applications and services in a SOA. It integrates with multiple sources of data

such as databases, applications and files to perform data manipulation. It

simplifies the integration of existing applications with web services by

transforming and routing SOAP messages. The message flows are developed

31

using WMB which are used to orchestrate the sequences of service interactions.

The role of Message flows is to define and execute processes, whose flows are

determined by logic of the algorithm. The built-in nodes in WMB like HTTP

Input node, HTTP request node and HTTP reply node along with the Compute

node are used in the message flow implementation of the simulation models. The

HTTP Input node takes the request placed by the netTool from the HTTP listener

port. It then forwards the message to the Compute node where the web service

address is found by querying different database tables representing UDDI

registries depending on the implementation algorithms of ESOA and VSOA

models. There are two different message flows for the two algorithms with all the

4 nodes mentioned above. The only difference between the two flows will be in

the implementation of the Compute node. The code to perform the required

operations in Compute node is written in esql language. Simple SELECT

statements are written in esql to query the database tables for the information

about web services offered. The web service address is dynamically computed in

the Compute node and then sent to the HTTP request node, which places the

request to the service provider for the required operation. A default URL

http://localhost:9080/FAILURE is set at the HTTP request incase if it is not able

to find the address of the service provider dynamically. The result of the web

service requested is sent to the HTTP Reply node which in turn sends the result to

back to the netTool.

32

The main difference between the implementation of the ESOA and VSOA

algorithms lies in the set of operations carried out in the compute node of message

broker. The message broker is a very helpful tool with its in-built functionalities

such as Dynamic Cache and HTTP nodes used for data transformation and

mediations. The dynamic cache provided is used for the simulation purposes. It

resets itself to NULL whenever the message broker is restarted.

Figure 4.3: Message Flow in Websphere Message Broker

ESOA implementation: Firstly the local registry is checked when a request for web

service is placed. If no service provider is found locally, the Main registry is contacted to

get the information about which organization has the service providers for the requested

service. The request finally goes to the remote UDDI registry to get the address of the

service provider. In ESOA model, the centralized main registry is contacted every time a

request is placed for the web service in remote system.

33

Algorithm:

// Request is placed to the HTTP Input node from netTool.

Given Inputs: service_type & two numbers to http://localhost:7080/Algorithm2

// Message is forwarded to the Compute node where the

// Checks the local database for web service address

{

service_address = SELECT service_address from (LOCAL_UDDI) for given

service_type;

else

// check the central registry for the remote database address where the service

//provider can be found

UDDI_details = SELECT datasource, UDDI from (CENTRAL_REGISTRY) for

given service_type;

// Then contact the remote UDDI for the web service address

service_address = SELECT service_address from UDDI_details registry for given

service_type;

}

-- The service address is sent to the HTTP Request node dynamically which sends the

original request to the web service provider at the service_address

-- The value of the result is sent to the HTTP Reply node which in turn displays it in the

netTool

-- The total roundtrip time starting from placing a request to the display of result is

measured by netTool in millisecond (ms).

34

Figure 4.4: request flow in ESOA of Message Broker

VSOA implementation: A Cache is used to store the results from the remote

organizations in the local organization for further referral. Here, the Dynamic Cache

provided within Websphere Message Broker is used. This Cache resets itself to NULL

every time the broker is restarted. When a service request is placed, the local registry is

checked first. If no service provider is found locally, the Cache will be checked. Cache

contains the information if the same kind of request was placed before. Else the Main

registry is contacted to get the information about which organization has the service

providers for the requested service. The request finally goes to the remote UDDI registry,

details of which are given by main registry, to get the address of the service provider.

This address is stored in the Cache for future referral. Later, when the same kind of

Compute node

NetTool HTTP
Input Local DB

Central
Registry

Remote DB

HTTP
Request

Web
Service

HTTP
Reply

35

request is placed, the service address is taken from the Cache instead of contacting the

central registry again and again. In this way, the requested placed can be solved from

within the local organization rather than contacting the remote organization.

Algorithm:

// Request is placed to the HTTP Input node from netTool.

Given Inputs: service_type & two numbers to http://localhost:7080/Algorithm1

// Message is forwarded to the Compute node where the

// Checks the local database for web service address

{

service_address = SELECT service_address from (LOCAL_UDDI) for given

service_type;

else

// If not found in local db, checks the Dynamic Cache using the GetFromCache method

service_address = GetFromCache (service_type);

// If not found, check the central registry for the remote database address where the

//service provider can be found. The datasource details are taken.

UDDI_details = SELECT datasource, UDDI from (CENTRAL_REGISTRY) for

given service_type;

// Then contact the remote UDDI for the web service address

service_address = SELECT service_address from UDDI_details registry for given

service_type; }

-- Store the service_address in the Cache using StoreInCache method

-- The service address is sent to the HTTP Request node which sends the original request

to the web service provider at the service_address

-- The value of the result is sent to the HTTP Reply node which in turn displays it in the

netTool

-- The total roundtrip time starting from placing a request to the display of result is

measured by netTool in millisecond (ms).

36

Figure 4.5: request flow in VSOA of Message Broker

4.2. Simulation Results

A total of 10 requests are placed and the roundtrip times are noted for ESOA and

VSOA algorithms implemented in each scenario. Each request value shown in the graphs

is the average of 10 requests placed for the same web service. The results help to analyze

the behavior of both the models, their overheads, time taken to process the request

placed. Standard Deviation is shown using I-form in all the graphs which represents the

range within which the results of the requests placed can be obtained.

Compute node

NetTool HTTP
Input Local DB

Central
Registry

Remote DB

HTTP
Request

Web
Service

HTTP
Reply

Local
Cache

37

Assumptions taken while running the algorithms are:

• Even though both the systems used are in the same network, they are assumed to

be in different environments while execution to depict the real-time scenario.

These two systems are assumed as two organizations in the virtual organization

each having its own local UDDI registries and Service Providers.

• The requests made are limited to only SOAP/HTTP protocol.

• The Websphere Message Broker is not restarted while running the algorithms, so

that the Cache is also not reset to NULL.

4.2.1. Web Service Provider located in the Local Organization

If the web service provider is available in the local organization i.e., within the

organization where the request is placed, the response times will be more or less the same

for both the ESOA and VSOA models. The results taken when the request is placed for

the web service available in the local system using both ESOA and VSOA algorithms are

shown in Table 4.1. The results are taken from the netTool client. It measures the time

taken to complete the request placed. The roundtrip time values vary around 200-500ms.

This kind of difference may be because of some unknown network delays, speed of the

system, etc. This shows that under normal conditions of operation both ESOA and VSOA

functionality will be the same when the service provider is available locally.

38

Roundtrip Time (ms) for the requests placedHost
Po-
rt

Resp
-onse
Size
bytes # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10

Total
Avg

local
host

70
80 627 209 451 531 309 396 446 287 623 193 530

local
host

70
80 628 172 322 234 373 373 267 334 554 272 521

local
host

70
80 629 394 355 345 319 399 353 587 406 434 476

local
host

70
80 629 519 434 145 499 555 322 519 378 531 258

local
host

70
80 629 278 353 434 350 542 542 256 278 543 598

local
host

70
80 630 250 542 523 440 440 534 456 359 448 376

Local
host

70
80 630 456 222 250 267 406 465 406 356 299 286

local
host

70
80 630 440 187 272 534 267 272 355 498 411 357

local
host

70
80 630 359 267 240 359 272 399 190 234 523 365

local
host

70
80 630 406 446 359 272 234 187 303 334 468 404

avg 348.3 357.9 333.3 372.2 388.4 378.7 369.3 402.0 412.2 417.1 377.9
Std
dev 115.4 112.2 129.4 91.6 109.0 119.1 123.1 122.0 119.7 110.8 115.2

Table 4.1: Web Service located in local DB2 using ESOA & VSOA

4.2.2. Web Service Provider located in a Remote Organization

ESOA: In this case, the requested service will not be available from the local UDDI

registry and have to contact the centralized main registry to get the information about the

service provider. Here, the remote system is contacted twice for every request, once the

central registry and again the REMOTE_UDDI. The time taken to process the request

placed for 10 consecutive requests are noted in Table 4.2. The roundtrip time is measured

using the netTool client. The port number in the table is the HTTP listener port where the

initial request is placed. While performing the simulations the two systems are within the

same network. However, in a real-time scenario these systems must be connected through

39

the internet, hence a delay is added to the roundtrip time. This delay of 98ms is the

average taken by pinging to a.cs.okstate.edu at different timings. The roundtrip times in

this case are much higher when compared to the completion times taken when the service

provider is available in the local system.

Response Times in ESOA - without Cache

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

7000.0

8000.0

9000.0

10000.0

1

No. of Requests placed

R
o

u
n

d
tr

ip
T

im
es

(m
s)

web services located in remote org

web services located in local org

Figure 4.6: Roundtrip times vs. no. of requests placed using ESOA

A graph is plotted, Figure 4.6., with the roundtrip times vs. no. of requests placed

depicting two scenarios (local and remote service providers) using ESOA model. I-

shaped line representing Standard Deviation shows the range within which the values can

be obtained. When the web service is contacted in remote system, a large amount of time

is taken to process the request as it has to invoke the central registry and also the

40

remote_uddi in the remote organization every time the request is placed. 10 requests are

placed for the same kind of web service. The roundtrip times will be the same no matter

how many times the same kind of request is placed. This increases the overheads

involved when a particular web service is requested many times.

VSOA: When a web service located in remote system is requested for the first time, the

central registry and the remote_uddi registries in the remote organizations are contacted.

The remote system is invoked twice for this purpose. The results taken from the central

registry about a web service are stored in the Cache. But whenever at a later stage, if the

same kind of request for the same service is placed, the process is completed within the

local organization itself using the information from Cache. Table 4.3 has the roundtrip

time values for the service provider in remote organization using VSOA model.

A graph is plotted, figure 4.7., with roundtrip times of the requests placed for the

web services available in local and also in remote systems when contacted using VSOA

model. In this scenario for remote service provider, the same request is placed for 10

times. Hence the remote system is contacted only once according to the VSOA algorithm.

For the next 9 times, the information i.e., the web service address is taken from the local

Cache available. This reduces the response times and also the overheads involved in

contacting the remote systems.

41

Host Port

Response
Size

(bytes)
Delay
(ms) Total Roundtrip Time (ms) for the requests placed

Total
Avg

1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10
localhost 7080 622 98 7395 7896 6657 8025 9907 5994 6727 7439 8442 7742
localhost 7080 623 98 7536 9053 7496 8445 9030 6919 7184 7195 7097 7754
localhost 7080 623 98 6442 8821 7530 6215 8751 8919 6657 7541 8410 7145
localhost 7080 622 98 6964 7184 9354 8090 6446 7336 6932 8151 7530 8333
localhost 7080 624 98 9262 6421 8764 7909 8209 7963 6715 8634 8690 8596
localhost 7080 625 98 6617 7321 8410 6963 7986 7309 8554 6519 8090 7343
localhost 7080 622 98 8238 7221 9743 7576 9641 7195 7320 7282 6062 7236
localhost 7080 624 98 9302 8530 7901 8690 7097 7545 7354 6473 5530 8063
localhost 7080 624 98 8473 7443 8473 6922 6062 8661 7671 6941 6085 7617
localhost 7080 626 98 7211 7097 7617 8863 8221 8234 6443 7443 5996 7986

avg 7744.0 7698.7 8194.5 7769.8 8135.0 7607.5 7155.7 7361.8 7193.2 7781.5 7664.2
stddev 1029.0 851.1 937.1 850.5 1284.6 866.9 621.2 666.5 1197.9 472.9 877.8

Table 4.2: ESOA – Web Service in remote DB2

Requests
placed Host Port

Response
Size

(bytes) Total Roundtrip Time (ms) AVG STDDEV
1 localhost 7080 626 8442 7211 6617 7097 8209 6932 7530 7901 6421 6223 7258.3 753.6
2 localhost 7080 622 1187 945 1054 1276 863 1238 1309 1265 1094 969 1120.0 157.8
3 localhost 7080 622 1284 876 1165 1076 945 1058 1297 978 1007 986 1067.2 141.1
4 localhost 7080 629 1188 1285 1154 1134 1007 1234 993 954 943 1010 1090.2 123.5
5 localhost 7080 625 1094 1076 1085 967 1176 1187 945 834 986 1187 1053.7 118.2
6 localhost 7080 629 969 1165 1287 1097 1122 986 1143 1262 925 1065 1102.1 120.1
7 localhost 7080 629 1000 1281 890 1054 1238 964 929 1036 1187 1198 1077.7 138.3
8 localhost 7080 626 1109 1031 963 1293 1109 1297 1198 1309 1024 1276 1160.9 130.3
9 localhost 7080 626 1281 1094 1189 974 895 912 993 1096 1123 1165 1072.2 125.8
10 localhost 7080 629 890 1298 1387 935 1053 913 945 1104 1010 914 1044.9 172.1

1704.7 198.1
Table 4.3: VSOA – Web Service available in remote system

42

Response Times in VSOA using Cache

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

7000.0

8000.0

1 2 3 4 5 6 7 8 9 10

No. of Requests placed

R
o

u
n

d
tr

ip
T

im
es

(m
s)

Web Services located in local org

Web Services located in remote org

Figure 4.7: Roundtrip time vs. no. of requests placed using VSOA algorithm

Graph in Figure 4.8. Compares the roundtrip times taken to process the request of

remote service provider using ESOA and VSOA algorithms. A careful analysis of the

simulation results and graphs tells us that under normal conditions of operation, the

proposed VSOA model will incur fewer overheads than the ESOA schema. The first time

a request is placed for a web service in remote system, both ESOA and VSOA will take

almost the same time to completely process the request. Starting from the second time a

previously requested web service is placed, the VSOA model processes requests faster

and better than the ESOA with respect to the time taken to contact the service provider in

remote system using the information available within the cache.

43

The second issue arises when a central point of failure occurs due to any reason

i.e., when the Main registry goes down. The ESOA simulation has to be stopped abruptly

until the Central main registry comes up, whereas for the same scenario in the proposed

model there is a chance to execute few requests depending on the information stored

about web services within the local Cache. If the same kind of web service request was

placed before the occurrence of the problem, then it can be processed using VSOA

algorithm.

Response Times for Web Services located in remote organization - ESOA and VSOA

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

7000.0

8000.0

9000.0

10000.0

1

No. of Requests placed

R
o

u
n

d
tr

ip
T

im
es

(m
s)

ESOA

VSOA

Figure 4.8: Comparison of ESOA and VSOA models

To evaluate the number of requests processed with the information available in

the Dynamic Cache without having to contact the central registry in the remote system,

44

few simulations were performed. This can help evaluate the working of VSOA under

central point of failure problem. It is assumed that a total of three web services A, B, and

C are available at the remote organization. VSOA algorithm is run assuming a problem

has occurred with the central registry and the percentage value of the number of requests

processed is noted in Table 4.4. along with the information in Cache.

Web Services available
In Dynamic Cache

% requests processed
using cache in VSOA

NIL 0 %
A 33.3 %

A, B 66.6 %
A, B, C 100.0 %

Table 4.4: Requests processed using cache in VSOA

The percentage value of no. of requests processed shown in table 4.4. is based on

the information stored within the Dynamic Cache and also the cache reset time. It is

observed that when the cache is reset or when no web service is contacted before the

problem has occurred, none of the placed requests can be processed using the VSOA. If

the information about one of the web service is available in Cache, then one-third of the

requests can be processed. Likewise, if the information about all the web services is

available with cache then all the requests can be processed. Hence, we can say that

VSOA model solves the central point of failure problem partially.

In the real-world scenario of the VSOA model, if any changes are made to already

available web services like an updated URL, protocol usage, etc or any new web services

are added, the local UDDI registries are notified which dynamically updates the changes

45

in the Main registry. Unlike in the simulation model, the cache size will not be reset. A

limit is set to the cache size. If its maximum size is reached then replacement strategies

like LRU can be used to save the information about newly accessed web services. The

patterns of the graphs with the real-world results for both the models discussed will be

the same as shown in simulations. There will be a wide range of results obtained as there

will be multiple partner organizations each providing more than one service within a

virtual organization. Furthermore, the different services will be using different protocol

bindings. As the number of service providers increases, there may exists a situation

where one web service will be provided by multiple providers located in different

organizations. Then some other algorithms need to be developed to select the best

provider available from the set of choices in the cache.

46

CHAPTER V

CONCLUSIONS

Four different types of simulations are run for each model discussed i.e., ESOA and

VSOA. The roundtrip times to execute a request placed for a web service located in the

local system are the same for both ESOA and VSOA architectures. For requests placed

for a web service located in a remote system, the performance of the proposed Virtual

Service-Oriented Architecture is better when compared to the Extended Service-Oriented

Architecture. The performance is measured in terms of the time taken to process the

request. The VSOA algorithm also supports the processing of the requests placed even

when a central point of failure occurs. However, there are few limitations to our

simulation. The information stored in the Cache is not updated on a regular basis. There

may be chances that the web service address stored in the Cache is moved to some other

URL or no longer available. In such situations, the request placed cannot be satisfied.

Secondly, since the simulation depends on the communication between different

environments, it is vulnerable to different types of errors and problems. There were

situations where we incurred problems due to the firewalls and antivirus software.

47

A considerable amount of work can be done to improve the performance measures of the

VSOA architecture. The amount of cache memory needed to satisfy web service

requirements has not been explored. Issues such a cache replacement strategies have not

been investigated. In future a real-time architecture should be developed to overcome the

drawbacks of the existing systems in SOA. The problem of trust in SOA remains largely

unexplored.

48

APPENDIX

I. These are the client interface (.jsp) pages of the web services created. Instead of

directly giving the endpoint address of the Web Service, we are dynamically

computing the web service address through the use of database tables representing

UDDI registries in the simulation. This service_address is then sent to the HTTP

request node dynamically and the result is taken. A netTool is used to place the

request instead of this client .jsp page used to call a web service.

I. Web Service client page(.jsp)

49

II. This is the screen shot of the LOCAL_UDDI table which contains information

about the Web Services offered in the Local System.

II. LOCAL_UDDI registry in the Local DB2 System

50

III. Screen Shot of the CENTRAL_REGISTRY located in the Remote System. This

database table contains information about all the web services offered in all the

systems available in the virtual organization. It has the attributes to show which

web service is offered with which local UDDI registry. In this simulation only

two web services are create and hence it shows information of only those two.

III. CENTRAL_REGISTRY in the Remote DB2 system

51

IV. This is the Screen shot of the REMOTE_UDDI in Remote DB2 System

V. The SOAP message sent to request the ‘Addition’ Web Service which is located

in Remote System. This message is given as input using netTool. The

service_type needed is given in the Header and the numbers are given in the body

of the message.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"><soapenv:Header><Service>Addition</Service></soapenv:Header><s

52

oapenv:Body><p565:add

xmlns:p565="http://ibm.com"><i>12.0</i><j>13.0</j></p565:add></soapenv:Bo

dy></soapenv:Envelope>

VI. The SOAP message sent to request the ‘Multiply’ Web Service which is located

in Local System. This message is given as input using the netTool. The

service_type needed is given in the Header and the numbers are given in the body

of the message.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"><soapenv:Header><Service>Multiply</Service></soapenv:Header><s

oapenv:Body><p565:mult

xmlns:p565="http://ibm.com"><i>10.0</i><j>20.0</j></p565:mult></soapenv:B

ody></soapenv:Envelope>

53

REFERENCES

[1] Keen M., Acharya A., Bishop S., Hopkins A., et al., Patterns: Implementing an SOA

using an Enterprise Service Bus, IBM Redbooks publications, July 2004

[2] Hanson J., Enterprise Service Bus,

http://www.sonicsoftware.com/solutions/soa_enterprise/enterprise_service_bus/index.ssp

[last accessed - July 10, 2006]

[3] Martin D., OWL-S: Semantic Markup for Web Services,

http://www.daml.org/services/owl-s/1.0/owl-s.html, [last accessed - April 30, 2006]

[4] Keen M., Bond J., Denman J., Foster S., et al., Patterns: Integrating Enterprise Service

Buses in a Service-Oriented Architecture, IBM Redbooks publications, November 2005

[5] Endrei M., Ang J., Arsanjani A., Chua S., et al., Service-Oriented Architecture and

Web Services, IBM Redbooks publications, April 2004

[6] Schmidt M. T., Hutchison, B., Lambros P., Phippen R., “The Enterprise Service Bus:

Making service-oriented architectural real”, IBM Systems Journal, Vol 44, No 4, pp. 781-

797, 2005

54

[7] Paolucci M., Liu X., Srinivasan N., et al., “Discovery of Information Sources across

Organizational Boundaries”, Proceedings of the 2005 IEEE International Conference on

Services Computing (SCC ’05), pp. 95-102, July 2005

[8] Ding H., Solvberg I., “Exploiting Extended Service-Oriented Architecture for

Federated Digital Libraries”,

http://www.idi.ntnu.no/~haowing/publication/papers/ICADL04.pdf, [last accessed - April

20, 2006]

[9] Korb K.B. and Nicholson A.E., Bayesian Artificial Intelligence, CRC Press, 2004

[10] Cui H., “Build HTTPS Web Services with Rational Application Developer, Part 1:

Web Services and Web Services clients”, IBM Developer Works, pp. 3-10, August 2006

[11] Download of Rational Application Developer V6, http://www-

128.ibm.com/developerworks/downloads/r/rsd/?S_TACT=105AGX15&S_CMP=DLMA

IN, [last accessed – October 18, 2006]

[12] “Websphere Cover Story – ESB Implementation with WAS for z/OS V6”,

http://websphere.sys-con.com/read/222872_p.htm, [last accessed – September,2006]

55

[13] Download page for IBM DB2,

http://www-306.ibm.com/software/data/db2/express/download.html, [last accessed -

October 11, 2006]

[14] Trial: Websphere Application Server, V6.1,

http://www-128.ibm.com/developerworks/downloads/ws/was/index.html, [last accessed -

October 13, 2006]

[15] Kalia, S., Mamas, E., and Spriet, D., “Integrating applications using WebSphere

Business Integration Message Broker V5 -- Part 1: Integration scenario for creating a

Web order processing application”, IBM Developer Works, February 2006

VITA

Anuradha Gasikanti

Candidate for the Degree of

Master of Science

Thesis: INFORMATION DISCOVERY ACROSS ORGANIZATIONAL
BOUNDARIES THROUGH LOCAL CACHING

Major Field: Computer Science

Biographical:

Personal Data: Born in Hanamkonda, India, On October 13, 1980, the elder
daughter of Rama Rao and Saroja Gasikanti.

Education: Graduated from St. Ann’s High School, Secunderabad, India in May
1996; received Bachelor of Technology degree in Computer Science &
Information Technology from Jawaharlal Nehru Technological
University, Hyderabad, Andhra Pradesh, India in May 2002. Completed
the requirements for the Master of Science degree with a major in
Computer Science at Oklahoma State University in December 2006.

Name: Anuradha Gasikanti Date of Degree: December, 2006

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: INFORMATION DISCOVERY ACROSS ORGANIZATIONAL
BOUNDARIES THROUGH LOCAL CACHING

Pages in Study: 55 Candidate for the Degree of Master of Science

Major Field: Computer Science

Scope and Method of Study:

Web services are deployed within the restricted spaces of organizations intranets.
There is a need for the creation of virtual organizations where the services offered by
one organization should become accessible to other organizations. This requires
exposing IT infrastructures to participants so that the information can flow easily
within the virtual organization. This proposed model called Virtual Service-Oriented
Architecture, or VSOA, is based on the observation that Universal Description,
Discovery and Integration (UDDI) registries are themselves web services. VSOA is
also a way to extend the existing Extended Service-Oriented Architecture model
where UDDI registries are required to perform the discovery process of web services
repeatedly when the similar request is placed. The proposed architecture makes the
Information discovery process across organizations more flexible and efficient by
introducing a Cache Registry locally within an organization. It is used to store all the
results received by the requestor application about the services it needs and are
available for retrieval whenever the same kind of request is placed the next time.
Caching can significantly improve the response time for such applications by saving
the computed results in a cache, associating the saved results with properties of the
request, and serving subsequent similar requests from the cache. Introduction of
Cache also reduces the communication bottleneck introduced in the previous models.

ADVISOR’S APPROVAL: Dr. JOHNSON P. THOMAS

