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Abstract 

Tinnitus is the perception of sound in the absence of an actual sound stimulus. Recent 

developments have shifted the focus to the central nervous system and the neural correlate of 

tinnitus. Broadly, tinnitus involves cortical map rearrangement, pathological neural 

synchrony, and increased spontaneous firing rates. Various cortical regions, such as Heschl’s 

gyrus in the auditory cortex, have been found to be associated with different aspects of 

tinnitus, such as perception and loudness. I propose a cortical stimulation mapping study of 

Heschl’s gyrus using a depth and subdural electrode montage to conduct 

electrocorticography. This study would provide high-resolution data on abnormal frequency 

band oscillations characteristic of tinnitus and pinpoint regions where they occur. The 

validity of the neural synchrony model would also be tested in this study.  
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Introduction 

Tinnitus affects 10-15% of the adult population worldwide (Langguth et al., 2013). 

The main risk factor for tinnitus is hearing loss (Nondahl et al., 2011), and a diverse list of 

other factors includes various otological diseases, ototoxic drugs, depression, and 

temporomandibular joint disorder (Baguley et al., 2013). Tinnitus can result from lesions to 

various structures in the auditory pathway, from the cochlea to the auditory cortex. Tinnitus 

can affect the quality of life by causing irritability, depression, insomnia, and concentration 

difficulties, among others. In 1-2% of individuals with tinnitus, quality of life is affected to a 

severe degree (Langguth, 2011). 

Objective tinnitus results from the perception of sound generated within the body. 

This can be related to a pathological symptom, such as the sound of increased blood flow as a 

result of anemia. It is a natural phenomenon in other cases, such as otoacoustic emissions, 

which is a type of sound that is naturally generated by cochlea outer hair cells when they 

process sound (Penner, 1990). When there is no actual sound source, the tinnitus is said to be 

of a subjective type. 

The pathophysiology of tinnitus is still not completely understood. A steadily 

growing number of studies indicate a primary role of the central nervous system in most 

cases of tinnitus, rather than the peripheral nervous system which may be a common 

misconception among the public (Langguth et al., 2013). Additionally, the overall perception 

of tinnitus involves interactions between both auditory and non-auditory pathways (Lanting 

et al., 2009). For instance, a magnetoencephalography (MEG) study of different cortical hubs 

found evidence of long-range coupling between auditory and non-auditory structures in 

tinnitus patients at rest (Schlee et al., 2009). The degree of interaction between these different 
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structures was correlated to tinnitus distress. Modulation of non-auditory areas to affect 

tinnitus is also possible. Deep brain stimulation (DBS) of a locus of neurons in the caudate 

nucleus could increase or decrease tinnitus loudness perception (Cheung and Larson, 2010). 

The failure of the limbic system in blocking tinnitus signals originating from the auditory 

pathway may be an explanation for chronic cases of tinnitus (Rauschecker et al., 2010). The 

interactions of diverse cortical regions in tinnitus may be explained by the need for 

consciousness-supporting networks for auditory perception, such as the salience network 

(Sadaghiani et al., 2009). The heterogeneity of tinnitus is one obstacle in the development of 

an effective treatment for tinnitus.  
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Background 

Cortical anatomy of the auditory system 

The auditory system is organized according to tonotopy, the spatial arrangement of 

different sound frequencies within neural structures. Within the cochlea in the inner ear, the 

organ of Corti is responsible for encoding electrical impulses from the displacement of 

cochlear fluid caused by sound waves. Displacement of cochlear fluid along the length of the 

cochlea leads to the vibration of a basilar membrane and the stimulation of hair cells, the 

sensory cells of the auditory system. The wide spectrum of sound frequencies that we hear in 

our daily lives is partitioned out over the length of the cochlea by virtue of the physical 

characteristics of the basilar membrane. The basilar membrane is thinner and stiffer at the 

base where the sound waves first propagate through, and thicker and more flexible at the 

apex. These characteristics causes different sound frequencies to have different regions of the 

basilar membrane that they maximally vibrate. Hair cells at the base respond to high 

frequency sounds (20,000 Hz) while those at the apex respond to low frequencies (20 Hz). 

Tonotopy is present at all structures in the auditory pathway, up to the auditory cortex 

(Pickles, 2015). 

The auditory cortex (Brodmann areas 41, 42, and part of 22) in the human brain 

consists of Heschl’s gyrus (also known as the transverse temporal gyrus) and the superior 

temporal gyrus (Figure 1). It is bounded by the lateral sulcus and the superior temporal 

sulcus. Heschl’s gyrus is oriented oblique to the sagittal and coronal planes (Reddy et al., 

2010). The auditory cortex consists of a core, a belt region surrounding the core, and a 

parabelt region located lateral to the belt region. Immunocytochemical methods have 

revealed that the belt and parabelt regions are strongly connected to each other, but not to the 
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main core. The rostral sections of the belt and parabelt regions are strongly interconnected 

with each other, and the caudal sections with each other, but between rostral and caudal 

regions, only weak connections were observed. The core can further be divided into three 

regions, AI, R, and RT. AI is the largest and most caudal region, RT is the most rostral 

region, and R is located in between. These divisions have been classified on the basis of 

differences in immunocytochemical staining and on cortical and thalamocortical connections 

to these divisions (Hackett et al., 1998).  

The auditory cortex receives signals from the medial geniculate body (MGB) within 

the thalamus via the acoustic radiations, the majority of which project to area 41. The MGB 

is tonotopically organized with higher frequencies represented in medial regions and lower 

frequencies represented in lateral regions. Signals reach the MGB from multiple structures, 

including the lateral tegmental area and the inferior colliculus. The MGB has laminated 

regions which project to the primary auditory cortex and unlaminated regions which project 

to the secondary auditory cortex. The auditory pathway contains a great number of 

contralateral connections, the majority of which are found within the trapezoid body of the 

pons. The combination of contralateral and ipsilateral connections means that lesions to the 

auditory cortex on one side will lead to only a partial deafness, but the deficits are 

experienced on both sides (Carpenter, 1991). 
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Figure 1. Human temporal lobe areas. Posterior superior temporal gyrus (pSTG) and 

intermediate rostrocaudal hippocampal formation (HF). Reproduced from “Synaptic 

Dysbindin-1 Reductions in Schizophrenia Occur in an Isoform-Specific Manner Indicating 

Their Subsynaptic Location” by Talbot K, Louneva N, Cohen JW, Kazi H, Blake DJ, et al. 

(2011) Reprinted courtesy of the Copyright Holder under a Creative Commons Attribution 

License CC BY 2.5 (https://creativecommons.org/licenses/by/2.5), via Wikimedia Commons 

  

Within the auditory cortex are neuronal columns, and the neurons within each column 

all respond to a single best frequency of sound—the frequency at which a particular neuron’s 

receptive field is centered around. Neighboring columns represent adjacent frequencies, so 

the result is a continuous spectrum of receptive fields in the auditory cortex that constitute a 

tonotopic map. Various electrophysiological studies have identified 4-8 different tonotopic 

maps in the auditory cortex. Spatially distinct areas in the auditory cortex have been observed 

to respond to a specific sound frequency, suggesting that there is some overlap within these 

tonotopic maps. These isofrequency columns have similar widths, but a larger proportion of 

https://creativecommons.org/licenses/by/2.5)
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the auditory cortex is dedicated to higher frequencies, which may be explained by the higher 

amount of innervation in the cochlea base versus the apex (Carpenter, 1991). 

 

Neural synchrony 

Neurons communicate with each other through action potentials that are propagated 

by fluctuations in the electrochemical gradient, which can be measured as neural oscillations 

(Hodgkin and Huxley, 1952). Neuronal networks in the brain can generate oscillatory activity 

at various frequencies ranging from 0.05 Hz to 500 Hz. Neural oscillations are 

conventionally divided into different frequency bands such as the delta (1-4 Hz), theta (4-8 

Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-80 Hz) bands (Buzsáki and Draguhn, 

2004). Different frequency bands are related to different neural processes. For instance, 

activity in the gamma frequency band has been correlated with awareness and consciousness, 

and EEG readings during sleep show a transition from high frequency to low frequency 

activity (Engel and Singer, 2001). 

The cerebral cortex is responsible for many higher-order brain functions such as 

perception, memory, and consciousness. The cortex has many distinct sub-areas that can be 

defined on the basis of their function, but there is no one central area that collects all sensory 

information and coordinates the activity of all of these sub-areas (Uhlhaas et al., 2009). The 

segregated nature of different brain functions means that some neural mechanism is needed 

for the organization of spatio-temporal activity patterns. For instance, a radio playing music 

presents both visual and auditory stimuli that must be integrated together in the brain for a 
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faithful sensory representation of the object (Uhlhaas and Singer, 2006). It has been 

suggested that this neural organization is achieved through neural synchrony.  

In neural synchrony, neurons release their action potentials in a concerted, rhythmic 

manner (Figure 2). This synchronization of spatially-distributed neurons serves different 

purposes. First, the synchronization of a certain output signal makes it more salient, which 

distinguishes it from other signals so that it can be processed further. Additionally, 

synchronization can modulate synaptic strength through long-term potentiation/depression, 

as these processes are temporally dependent on pre- and post-synaptic activation (Volgushev 

et al., 1998). 

Figure 2. Simulation of neural oscillations at 10 Hz. Upper panel: each individual dot 

represents the propagation of a single action potential of a neuron. Lower panel: the summed 

neural activity of the neuron population. The synchronized firing of individual neurons leads 

to a local field potential that oscillates over time on the mesoscopic or macroscopic scale. 

Reproduced from TjeerdB [Public domain], Wikimedia Commons. 
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Induction of neural synchrony 

In the putative mechanism of neural synchrony induction, networks of fast-spiking 

interneurons rhythmically create inhibitory postsynaptic potentials that hyperpolarize other 

local neurons (Hasenstaub et al., 2005). Theoretically, gamma oscillations in these cells 

causes a rhythmic inhibition which attenuates inputs to the postsynaptic neuron that arrive at 

the peak of inhibition. Thus, narrow windows of time are generated during which target 

neurons can be excited. Evidence was shown in an in vivo study of the rodent barrel cortex 

which found that selective stimulation of inhibitory interneurons led to gamma oscillations 

and a temporal regulation of sensory processing (Cardin et al., 2009). 

 

Organizational levels of neural synchrony 

Neural synchrony can be divided into three levels of organization: microscopic, 

mesoscopic, and macroscopic synchrony. Microscopic synchrony involves the simultaneous 

firing of two neurons onto the same post-synaptic neuron. The effect is an increase in 

amplitude of the post-synaptic potential. Fundamentally, this increases the efficiency of 

neural activity, as the amplitude of the post-synaptic potential is proportional to the number 

of inputs from synchronized neurons, whereas in the case of asynchronous neurons it is 

proportional to the square root of the number of inputs (Eggermont and Tass, 2015). 

Consequently, a network of neurons oscillating in synchrony has the potential to create a 

larger post-synaptic potential than one that is asynchronous. Mesoscopic synchrony is 

observed on the scale of local neuronal networks, where synchronized oscillations in the 

membrane potential of multiple neurons lead to measurable local field potentials (LFP). On a 

larger scale, macroscopic synchrony is seen between different brain regions and can be 
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measured with electrophysiological monitoring methods such as electroencephalography 

(EEG).  

 

Abnormal neural synchrony 

Abnormal neural synchrony has been implicated in various neurological disorders 

including schizophrenia (Spencer et al., 2003), Parkinson’s disease (Alberts et al., 1969), and 

tinnitus (Eggermont and Tass, 2015). In patients with Parkinson’s disease, tremors in the 

limb were correlated with rhythmic activity at the tremor frequency in the motor and 

somatosensory cortexes, suggesting that synchronization of neural activity can be a 

pathological symptom (Alberts et al., 1969).  

Synchronized gamma band activity has been proposed to bind sensory information 

into a conscious coherent percept. In the case of tinnitus, the perception of a phantom sound 

is expected to be correlated to gamma band activity. This was seen in a quantitative 

electroencephalography (QEEG) and magnetoencephalography (MEG) study where the 

presence of consistent gamma band activity in the auditory cortex of patients with tinnitus 

was confirmed (Van der Loo et al., 2009). In normal audition, the auditory cortex is activated 

in a sound level dependent manner. Tinnitus was found to also involve a sound level 

dependent activation of the contralateral auditory cortex, suggesting a fundamental similarity 

in pathways of perception. Taken together, these results suggest that synchrony in the gamma 

frequency band encodes tinnitus intensity, but not necessarily the perception of the tinnitus.  
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Measuring neural oscillations 

Measuring neural oscillations is helpful from a diagnostic and imaging standpoint, as 

they are indicative of both normal and abnormal neural processes. Electrocorticography 

(ECoG) is a method of collecting electrophysiological data from cortical regions of the brain. 

In ECoG, a craniotomy is performed to expose the brain’s surface and electrodes are placed 

directly on the cerebral cortex. These electrodes can measure local field potentials from 

neuronal regions of interest or provide targeted electrical stimulation (Schuh and Drury, 

1997). This method of electrical stimulation is known as cortical stimulation mapping and 

allows researchers to determine the function, if any, of the brain region that has been 

implanted by an electrode (Lesser et al., 1998). 

 

Acoustic coordinated reset (CR) neuromodulation® 

Acoustic coordinated reset (CR) neuromodulation is a desynchronization technique 

developed by Tass and colleagues (Tass et al., 2012). In their clinical trial, subjects with 

chronic, tonal tinnitus received 4 to 6 hours of acoustic stimulation daily that consisted of a 

series of tones distributed around their self-reported tinnitus frequency. This trial, which 

lasted for 12 weeks, led to sustained, long-term reductions in tinnitus severity in 75% of 

patients. CR neuromodulation was previously studied in a computational model and then 

used in animal studies (Tass, 2003). The underlying basis of CR is that abnormal neural 

synchrony is the correlate of tinnitus and it can be reversed through desynchronization, 

leading to the reduction of tinnitus symptoms.  
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The putative mechanism behind desynchronization is that stimulation can be designed 

in a way (in this case, as a series of tones flanking the tinnitus frequency) that promotes 

unlearning of the pathological neural synchrony through a phase reset, or a soft phase reset. 

This unlearning occurs because of spike-timing-dependent plasticity, which suggests that the 

strength of synaptic connections between neurons is dependent on the timing between input 

spikes to postsynaptic neurons and the output spikes from them.  

After 12 weeks of therapy, Tass and colleagues reported that there was a significant 

reduction in the patient self-reported tinnitus loudness and annoyance, even through a 

planned 4-week therapy pause. EEG analysis revealed a significant decrease in delta and 

gamma band power in the primary and secondary auditory cortices, and a significant increase 

in alpha band power in the auditory and prefrontal cortices. This was suggested to be 

indicative of neuroplastic changes. 

Tass and colleagues provided two possible mechanisms of how CR neuromodulation 

works at the cortical level. By inducing a phase reset in delta band activity in spatially 

distinct populations at different times, desynchronization might occur. Another possibility is 

that this desynchronization could be propagated from an upstream nucleus. The results of this 

trial, while promising, require replication due to a small group size and the lack of direct 

comparison between different treatment groups (Wegger et al., 2017).  
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Proposed Study: Cortical Stimulation Mapping of Heschl’s Gyrus 

Overview 

In this proposed study, Heschl’s gyrus will be mapped out using cortical stimulation 

mapping to determine if there is a tinnitus onset originating from this region. Multiple 

cortical regions are involved in tinnitus and successful treatment will likely involve a holistic 

approach. The goal presently is to study the abnormal neural characteristics of these regions 

and determine their role in the overall pathophysiology of tinnitus. 

Heschl’s gyrus in the auditory cortex is one such region that is connected to tinnitus. 

MRI scans of the medial section of Heschl’s gyrus in patients with tinnitus showed that gray 

matter volume was significantly reduced compared to control. Additionally, in the cases of 

patients with unilateral tinnitus the volume deficiency was observed in the Heschl’s gyrus 

ipsilateral to the side with tinnitus, while bilateral tinnitus patients saw a deficiency in both 

gyri (Schneider et al., 2009).  

One intracranial mapping study of a patient with bilateral tinnitus and hearing loss 

used ECoG to measure oscillatory power changes that occurred in response to residual 

inhibition (a transient decrease in tinnitus loudness following acoustic stimulation). Observed 

oscillatory power changes included widespread decreases in delta, theta, and alpha power in 

not only Heschl’s gyrus but also certain regions within the parietal, temporal, and 

sensorimotor cortices. Widespread increases were also observed in similar regions for the 

gamma frequency band (Sedley et al., 2015). The results of this study, while supportive of 

previous literature on tinnitus, were obtained from a single patient with bilateral tinnitus and 

hearing loss using acoustic stimulation to induce residual inhibition. The patient’s coexisting 
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hearing loss and the possibility of the stimulus being modulated by functional abnormalities 

as it ascends the auditory pathway suggests the need for a similar study that uses direct 

stimulation.  

In a nonrandomized clinical trial, two patients with refractory tinnitus were treated 

using direct electrical stimulation. The first patient was stimulated within Heschl’s gyrus and 

the second patient was stimulated on Heschl’s gyrus. The first patient experienced a near 

complete tinnitus suppression while the second patient only experienced a moderate and 

transient suppression which could be attributed to differences in the sites stimulated and 

differences in tinnitus duration (Seidman et al., 2008). Tinnitus can also be temporarily 

induced in patients without it, as shown by tinnitus perception following electrical 

stimulation of cortical areas in the temporal lobe near Brodmann’s areas 22 and 42 

(Carpenter, 1991). More research is needed to elucidate the effects of direct stimulation of 

Heschl’s gyrus.  

There is also a general need for further ECoG studies to replicate past findings which 

hold promising results but suffer from small sample sizes. The high variability observed in 

human studies and the ethical obstacles in conducting extensive direct electrical stimulation 

studies on the human brain was addressed in part by the development of a rat model (Zhang 

et al., 2011). In this study, the efficacy of auditory cortex electrical stimulation (ACES) was 

measured by testing for the suppression of tinnitus-related behavior. The tinnitus rat model 

demonstrated that tinnitus suppression was due to auditory cortex activation and that 

frequency bands associated with tinnitus were restored to non-tinnitus amplitudes. Lastly, 

this study found that ACES caused tinnitus suppression in rats that had tinnitus and co-
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existing noise-induced hearing loss. The results taken as a whole lend support to the further 

investigation of Heschl’s gyrus as a target region for tinnitus suppression.  

A study of the auditory representation of speech in the motor cortex used high-density 

multi-electrode cortical surface arrays to measure neural activity in the peri-Sylvian speech 

cortex (Cheung et al., 2016). Information obtained from the electrodes revealed the 

distribution of local field potentials in the high-gamma frequency range during listening and 

speaking tasks. The robust results obtained from this study along with the fact that Heschl’s 

gyrus is adjacent to the peri-Sylvian speech cortex suggests the possibility of a study where 

implantation of stimulatory electrodes within Heschl’s gyrus would produce a tinnitus 

percept in patients without tinnitus, and break up the tinnitus percept in patients with it.  

Studying tinnitus requires high-resolution characterization of the neural activity in 

regions of the brain associated with tinnitus. While EEG and MEG studies of tinnitus are 

numerous, they cannot provide the same level of information that can be obtained from 

ECoG studies. Understanding how different regions contribute to the overall abnormal neural 

pattern will inform the development of future tinnitus therapies. 

 

Methods 

Patient selection 

Procedures were approved by the institutional review board at the W.M. Keck 

Science Department of the Claremont Colleges in accordance with the currently applicable 

U.S. Public Health Service Guidelines. Written informed consent should be obtained from 

patients prior to experimentation.  
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ECoG is a highly invasive procedure, meaning that ECoG studies are best 

accomplished by doing them in patients who are already undergoing mapping for some other 

purpose. In other words, only one craniotomy would be required for the essential mapping 

procedure needed by the patient and the appended mapping study. These ECoG procedures 

provide research opportunities for neuroscientists to take neural recordings without having to 

subject physiologically normal individuals to an invasive procedure. Patients undergoing this 

evaluation typically have a waiting period between ictal recordings during which the 

electrodes remain implanted, and recordings for the purpose of this study could be conducted 

during this time. Cortical stimulation mapping is a routine component of the presurgical 

evaluation of patients undergoing resection of the left temporal lobe as a treatment for 

medically refractory complex partial seizures. These patients experience Type II ictal EEG 

patterns characteristic of a temporal neocortical onset (Ebersole and Milton, 2003; Ebersole 

and Pacia, 1996). In this proposed study, ECoG measurements will be taken from two patient 

populations. The first population should have left neocortical temporal lobe epilepsy (nTLE) 

and tinnitus, and the second population should have left nTLE but no reported tinnitus. 

For patients with neocortical temporal lobe onset, the goal of the mapping is the 

distinction between the epileptic focus, Heschl’s gyrus, and Wernicke’s area, which is 

responsible for the comprehension of speech. Consequently, the mapping study for nTLE is 

done when the patient is awake so that concurrent speech tests can be done to define 

Wernicke’s area. Patients are thus able to provide self-reported measures of their tinnitus 

percept during the proposed study. 

Additionally, patient demographics and audiometric variables must be taken into 

account due to the heterogeneous nature of tinnitus. Patients with a tinnitus onset occurring 
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more than 5 years ago may not respond well to cortical stimulation, as cortical reorganization 

may have led to new and refractory cortical connections (Seidman et al., 2008). Studies using 

TMS (De Ridder et al., 2005) and microvascular decompression surgery (Møller et al., 1993) 

to treat tinnitus found that patients with longer tinnitus duration were more resistant to 

treatment. Amobarbital injection into the choroidal artery in patients with tinnitus had 

varying degrees of suppression that was dependent on tinnitus laterality and tinnitus duration 

(De Ridder et al., 2006). Patients with recent tinnitus onset are preferred, but any patient with 

tinnitus and nTLE will still provide useful data for a study. Multiple epilepsy centers should 

be contacted in the search for patients who fit the criteria. 

 

Technical hurdles to cortical measurements 

Several challenges to measuring neural activity in the auditory cortex have been 

noted. The superior temporal plane, which contains Heschl’s gyrus, is one of the most folded 

regions in the human brain (Galaburda and Sanides, 1980) and core regions of Heschl’s 

gyrus are also located deep within the Sylvian fissure. In a study conducted by Tass et al. 

(2012), oscillatory activity in the brain was measured using the standardized low-resolution 

brain electromagnetic tomography (sLORETA) technique which utilizes EEG and MEG data 

to form maps of oscillatory activity. sLORETA is the gold standard for noninvasive linear 

tomography, but its low spatial resolution which decreases even further with depth suggests 

that direct probing of Heschl’s gyrus will give us more robust measures of changes in 

oscillatory activity (Jatoi et al., 2014). The complexity of the auditory cortex and the depth of 

Heschl’s gyrus necessitates an electrophysiological method that has high spatial and temporal 

resolution, such as ECoG.  
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Core regions of Heschl’s gyrus can be accessed with penetrating depth electrodes. 

The traditional method of placing depth electrodes in Heschl’s gyrus requires a lateral 

insertion along with stereoscopic stereotactic angiography for successful implantation 

without injury. A more recent method that was proven to be safe and effective does not 

require angiography and allows for the simultaneous placement of subdural grid electrodes 

(Reddy et al., 2010).  

 

 

Figure 3. Placement of a subdural grid electrode array for electrocorticography. Reproduced 

from “Brain Connectivity and the Spread of Epileptic Seizures. In Handbook of Brain 

Connectivity” by Milton, J.G., Chkhenkeli, S.A., and Towle, V.L. (2007)., V.K. Jirsa, and A. 

McIntosh, eds. (Berlin, Heidelberg: Springer Berlin Heidelberg), pp. 477–503. Reprinted 

with permission. 

 

Cortical studies are further complicated by the fact that anatomical landmarks do not 

perfectly predict underlying functional organization and individual differences in brain 

anatomy can make results difficult to compare between subjects (Nourski, 2017). Individual 
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differences in brain anatomy between subjects can be compensated for through co-

registration of neural recordings to electrode locations. Depth electrode location can be 

obtained from MRI scans while subdural electrode location can be obtained from CT scans. 

The usage of both types of electrodes has been previously validated for use in probing 

Heschl’s gyrus (Nourski et al., 2014). Brain maps from subjects can then be compared by 

spatial normalization to a reference brain such as the Talairach Atlas brain, which uses 

anatomical landmarks to affine transform a subject’s brain (Lancaster et al., 2000). Statistical 

techniques such as a linear mixed effects model can be used to further account for anatomical 

differences between patients (Nourski et al., 2014). 

 

Procedure 

Electrode placements will depend on specific clinical indications. In a global ECoG 

mapping study, Heschl’s gyrus was probed using four depth electrodes (Sedley et al., 2015). 

A high-resolution study might use additional depth electrodes as well as a subdural grid 

electrode over the auditory cortex surface near Heschl’s gyrus. 

Each individual electrode should be sequentially stimulated and the oscillatory power 

should be measured in each frequency band from 1 to 148 Hz. The electrical stimulation 

paradigm should be similar to the one used by Seidman et al. (2008). A good starting point is 

1 volt intensity, 100 Hz, and 90 microsecond pulse width for a 60 second stimulation period 

followed by a 60 second rest period. Oscillatory activity should be measured after 2 minutes, 

and the patient should be asked to rate their tinnitus loudness and annoyance using the Visual 

Analog Scale (VAS) which is a subjective measure of reduction in tinnitus severity 
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(Adamchic et al., 2012). This questionnaire involves providing a rating on a numerical scale 

from 1 (no tinnitus distress) to 10 (indicating severe tinnitus distress). 

Different stimulation parameters should be tested to see which elicits the best 

suppression of tinnitus. For the one patient that experienced long-term tinnitus relief in the 

study done by Seidman et al. (2008), the maximal suppression was achieved with a setting of 

1-3 V, 25 Hz, and 460 microsecond pulse width. The most effective electrical stimulation 

paradigm is likely to be different for each patient, contingent on variables such as tinnitus 

severity and duration. Electrode manufacturer recommended stimulation parameters should 

be followed to ensure patient safety. Pre-stimulation ECoG measures should be taken for the 

normalization of post-stimulation measures. Additionally, care must be taken to distinguish 

inter-ictal spiking from the true measures of oscillatory activity in response to the electrical 

stimulation.  

 

Results 

If the neural synchrony model holds true and the electrical stimulation is effective in 

desynchronization, then this should be reflected in oscillatory band shifts and the 

disappearance of the tinnitus percept for patients with tinnitus. Similarly, a patient without 

tinnitus should experience a tinnitus percept when these same areas are stimulated.  

The intracranial mapping study by Sedley et al. (2015) of a patient with bilateral 

tinnitus and hearing loss used ECoG to measure oscillatory power changes that occurred in 

response to auditory residual inhibition. Measured oscillatory power changes included 

widespread decreases in delta, theta, and alpha power in Heschl’s gyrus. Widespread 
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increases were also observed for the gamma frequency band in Heschl’s gyrus (HG, Figure 

4). Similar results are expected for this study, but this is contingent on tinnitus similarity.  

 

Figure 4. Oscillatory power changes in various cortical regions measured through ECoG. 

Rows represent individual electrodes and color denotes the correlation coefficients 

(Pearson’s r). Hot colors indicate a power increase, cool colors indicate a power decrease, 

and gray indicates that no significant change was measured. Reproduced from “Intracranial 

Mapping of a Cortical Tinnitus System using Residual Inhibition,” by Sedley, W., Gander, 

P.E., Kumar, S., Oya, H., Kovach, C.K., Nourski, K.V., Kawasaki, H., Howard, M.A., and 

Griffiths, T.D. (2015). Curr Biol 25, 1208–1214. Reprinted courtesy of the Copyright Holder 

under a Creative Commons Attribution License CC BY 4.0 

(https://creativecommons.org/licenses/by/4.0/) 

https://creativecommons.org/licenses/by/4.0/
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Future Directions 

Combination therapy of dorsolateral prefrontal cortex tDCS and acoustic CR 

neuromodulation to counteract tinnitus. 

CR neuromodulation, as described previously, is a technique that is promising, non-

invasive, and safe, but lacking in validation. One region in the CR neuromodulation trial that 

saw frequency power band changes was the prefrontal cortex. Thus, stimulation of this 

region with tDCS prior could possibly lead to increased efficacy of CR neuromodulation. We 

would hope to see either a significant reduction of tinnitus in a shorter amount of time or a 

more intense reduction of tinnitus confirmed by EEG and improved patient self-reported 

measures of tinnitus. 

The heterogeneous nature of tinnitus suggests that a combination therapy would be 

most effective in targeting the different neural subnetworks that underlie different clinical 

aspects of tinnitus such as distress, loudness, and duration. An approach that uses two 

different forms of stimulation could provide different advantages while compensating for any 

disadvantages that standalone methods have. Additionally, different variations are possible in 

the therapy paradigm, such as concurrent tDCS and CR neuromodulation. 

One form of stimulation that has been applied to tinnitus is transcranial direct current 

stimulation (tDCS). tDCS is a noninvasive neuromodulation technique where two electrodes 

are placed on the scalp, acting as cathode and anode, causing neuromodulation of cortical 

tissue between them by affecting membrane resting potentials (De Ridder and Vanneste, 

2012). Anodal tDCS (placement of the anode over the region of interest) uses a positive 

current flow from the anode, to elicit depolarization and excitation of targeted neurons. 
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Conversely, cathodal tDCS uses a negative current flow towards the cathode to elicit 

hyperpolarization and inhibition of targeted neurons. Thus, the placement of tDCS electrodes 

and their polarities allow for different neuromodulation strategies that can be used to 

alleviate abnormal hyper-activity or hypo-activity (Roche et al., 2015). There is evidence for 

the efficacy of tDCS in treating different neuropsychiatric disorders such as depression 

(Baeken et al., 2016; Lefaucheur et al., 2017; Yadollahpour et al., 2017). On a molecular 

level, tDCS is suggested to aid in synaptic plasticity. A study that applied tDCS to rat 

hippocampus brain slices observed a modulation of long-term potentiation (LTP) of synaptic 

activity (Ranieri et al., 2012).  

A study of 567 tDCS sessions showed that tDCS was generally safe, with the most 

common adverse effects being a mild tingling sensation (70.6%) and moderate fatigue 

(35.3%) in both healthy participants and those with various neurological disorders, including 

tinnitus (Poreisz et al., 2007).  

Other studies have used combination approaches towards tinnitus, such as tDCS 

followed by hearing aid sound therapy (Shekhawat et al., 2014). In this study, patients with 

chronic tinnitus (n = 40) underwent five sessions of anodal tDCS over the left 

temporoparietal area followed by six months of hearing aid sound therapy. The hypothesis 

was that neuromodulation techniques such as tDCS can prime the auditory system for the 

increased efficacy of hearing aid sound therapy. Benefits were observed after three months of 

hearing aid use, but this was attributed to the hearing aid sound therapy alone, independent of 

tDCS. tDCS applied to other areas, such as the dorsolateral prefrontal cortex (DLPFC) in 

conjunction with another form of tinnitus intervention, such as coordinated reset 

neuromodulation may lead to more promising results.  
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The dorsolateral prefrontal cortex (DLPFC) is a non-auditory region of the brain that 

has been implicated in tinnitus perception. In the monkey brain, DLPFC neurons showed an 

increase in firing levels during audio-visual short-term memory tasks (Bodner et al., 1996). A 

study of lesions in the DLPFC suggested that this region is also involved in inhibitory 

modulation of auditory input to the auditory cortex (Knight et al., 1989).  

Most tDCS trials have examined the effects of short-term treatment on tinnitus 

symptoms only. In a meta-analysis done in accordance with PRISMA, it was found that the 

number of daily tDCS sessions in these trials ranged from three to ten sessions with each 

session lasting from 15 to 30 minutes. (Yuan et al., 2018). The findings of these trials were 

promising but varied, suggesting the need for further trials that control for differences in 

patient populations and technical aspects of tDCS. Long-term applications of tDCS towards 

tinnitus treatment should be studied as well.  

Additionally, the heterogeneous nature of tinnitus mandates the need for the 

development of disease specific tDCS protocols. For instance, tDCS is not suitable for 

patients who have a history of seizures, such as those with epilepsy (Nitsche et al., 2008). 

This proposed study would further our understanding of the potential long-term benefits of 

tDCS on tinnitus symptoms as well as help guide the future use of long-term tDCS, 

especially in conjunction with CR. Different cortical areas are options for tDCS and 

combination therapies should be tailored to each patient’s specific tinnitus case. The intent of 

a combination therapy approach is to provide a customizable and holistic approach to a 

heterogeneous tinnitus patient population. 
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Conclusion 

Tinnitus is a complex condition for which there is no strong consensus on the 

etiology. This proposed study will allow for the high-resolution characterization of neural 

activity in Heschl’s gyrus and determine if there is a correlation between tinnitus and 

abnormal neural synchrony in this region. Further research should investigate other cortical 

areas implicated in tinnitus and the elucidation of the relationships between them. Such data 

will guide the development of future therapies that aim to reverse neural correlates of 

tinnitus. 

 

 

 

 

 

 

 

 

 

 

 

 



 

28 
 

Acknowledgements 

First, I would like to thank my thesis advisors, Professor John Milton and Professor 

Dorsa Kay, for their invaluable guidance, feedback, and support in the completion of this 

thesis. I would also like to thank Dr. Hua Yu, who is not only a close family friend, but also 

an amazing scientist and role model. Your continuous support and guidance over the years 

has inspired me to pursue my own passions in science. Thank you to my friends, who kept 

me company throughout my college journey and throughout the countless hours spent in the 

computer lab. Thank you Claremont McKenna College for a wonderful educational 

opportunity. 

Finally, I want to thank my parents for their unconditional love and support. I 

wouldn’t be where I am today without your guidance and the sacrifices you’ve made for me. 

Even though I’ve almost completed four years of college, I still find myself learning much 

from you two. 

 

 

 

 

 

 

 

 

 

 

 

 



 

29 
 

References 

 

Adamchic, I., Langguth, B., Hauptmann, C., and Tass, P.A. (2012). Psychometric Evaluation 

of Visual Analog Scale for the Assessment of Chronic Tinnitus. Am. J. Audiol. 21, 

215–225. 

Alberts, W.W., Wright, E.W., and Feinstein, B. (1969). Cortical Potentials and Parkinsonian 

Tremor. Nature 221, 670–672. 

Baeken, C., Brunelin, J., Duprat, R., and Vanderhasselt, M.-A. (2016). The application of 

tDCS in psychiatric disorders: a brain imaging view. Socioaffective Neurosci. 

Psychol. 6, 29588. 

Baguley, D., McFerran, D., and Hall, D. (2013). Tinnitus. Lancet Lond. Engl. 382, 1600–

1607. 

Bodner, M., Kroger, J., and Fuster, J.M. (1996). Auditory memory cells in dorsolateral 

prefrontal cortex. Neuroreport 7, 1905–1908. 

Buzsáki, G., and Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science 

304, 1926–1929. 

Cardin, J.A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Tsai, L.-H., 

and Moore, C.I. (2009). Driving fast-spiking cells induces gamma rhythm and 

controls sensory responses. Nature 459, 663–667. 

Carpenter, M.B. (1991). Core text of neuroanatomy (Baltimore: Williams & Wilkins). 

Cheung, S.W., and Larson, P.S. (2010). Tinnitus modulation by deep brain stimulation in 

locus of caudate neurons (area LC). Neuroscience 169, 1768–1778. 

Cheung, C., Hamilton, L.S., Johnson, K., and Chang, E.F. (2016). The auditory 

representation of speech sounds in human motor cortex. ELife 5, e12577. 

De Ridder, D., and Vanneste, S. (2012). EEG Driven tDCS Versus Bifrontal tDCS for 

Tinnitus. Front. Psychiatry 3, 84. 

De Ridder, D., Verstraeten, E., Van der Kelen, K., De Mulder, G., Sunaert, S., Verlooy, J., 

Van de Heyning, P., and Moller, A. (2005). Transcranial magnetic stimulation for 

tinnitus: influence of tinnitus duration on stimulation parameter choice and maximal 

tinnitus suppression. Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. 

Eur. Acad. Otol. Neurotol. 26, 616–619. 

Ebersole, J.S., and Milton, J. (2003). The Electroencephalogram (EEG): A Measure of 

Neural Synchrony. In Epilepsy as a Dynamic Disease, J. Milton, and P. Jung, eds. 

(Berlin, Heidelberg: Springer Berlin Heidelberg), pp. 51–68. 



 

30 
 

Ebersole, J.S., and Pacia, S.V. (1996). Localization of temporal lobe foci by ictal EEG 

patterns. Epilepsia 37, 386–399. 

Eggermont, J.J., and Tass, P.A. (2015). Maladaptive Neural Synchrony in Tinnitus: Origin 

and Restoration. Front. Neurol. 6. 

Engel, A.K., and Singer, W. (2001). Temporal binding and the neural correlates of sensory 

awareness. Trends Cogn. Sci. 5, 16–25. 

Galaburda, A., and Sanides, F. (1980). Cytoarchitectonic organization of the human auditory 

cortex. J. Comp. Neurol. 190, 597–610. 

Hackett, T.A., Stepniewska, I., and Kaas, J.H. (1998). Subdivisions of auditory cortex and 

ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. J. 

Comp. Neurol. 394, 475–495. 

Hasenstaub, A., Shu, Y., Haider, B., Kraushaar, U., Duque, A., and McCormick, D.A. 

(2005). Inhibitory postsynaptic potentials carry synchronized frequency information 

in active cortical networks. Neuron 47, 423–435. 

Hodgkin, A.L., and Huxley, A.F. (1952). A quantitative description of membrane current and 

its application to conduction and excitation in nerve. J. Physiol. 117, 500–544. 

Jatoi, M.A., Kamel, N., Malik, A.S., and Faye, I. (2014). EEG based brain source localization 

comparison of sLORETA and eLORETA. Australas. Phys. Eng. Sci. Med. 37, 713–

721. 

Knight, R.T., Scabini, D., and Woods, D.L. (1989). Prefrontal cortex gating of auditory 

transmission in humans. Brain Res. 504, 338–342. 

Lancaster, J.L., Woldorff, M.G., Parsons, L.M., Liotti, M., Freitas, C.S., Rainey, L., 

Kochunov, P.V., Nickerson, D., Mikiten, S.A., and Fox, P.T. (2000). Automated 

Talairach atlas labels for functional brain mapping. Hum. Brain Mapp. 10, 120–131. 

Langguth, B. (2011). A review of tinnitus symptoms beyond ‘ringing in the ears’: a call to 

action. Curr. Med. Res. Opin. 27, 1635–1643. 

Langguth, B., Kreuzer, P.M., Kleinjung, T., and De Ridder, D. (2013). Tinnitus: causes and 

clinical management. Lancet Neurol. 12, 920–930. 

Lanting, C.P., de Kleine, E., and van Dijk, P. (2009). Neural activity underlying tinnitus 

generation: Results from PET and fMRI. Hear. Res. 255, 1–13. 

Lefaucheur, J.-P., Antal, A., Ayache, S.S., Benninger, D.H., Brunelin, J., Cogiamanian, F., 

Cotelli, M., De Ridder, D., Ferrucci, R., Langguth, B., et al. (2017). Evidence-based 

guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). 

Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 128, 56–92. 



 

31 
 

Lesser, R.P., Arroyo, S., Crone, N., and Gordon, B. (1998). Motor and sensory mapping of 

the frontal and occipital lobes. Epilepsia 39 Suppl 4, S69-80. 

Møller, M.B., Møller, A.R., Jannetta, P.J., and Jho, H.D. (1993). Vascular decompression 

surgery for severe tinnitus: selection criteria and results. The Laryngoscope 103, 421–

427. 

Nitsche, M.A., Cohen, L.G., Wassermann, E.M., Priori, A., Lang, N., Antal, A., Paulus, W., 

Hummel, F., Boggio, P.S., Fregni, F., et al. (2008). Transcranial direct current 

stimulation: State of the art 2008. Brain Stimulat. 1, 206–223. 

Nondahl, D.M., Cruickshanks, K.J., Huang, G.-H., Klein, B.E.K., Klein, R., Nieto, F.J., and 

Tweed, T.S. (2011). Tinnitus and its risk factors in the Beaver Dam Offspring Study. 

Int. J. Audiol. 50, 313–320. 

Nourski, K.V. (2017). Auditory processing in the human cortex: An intracranial 

electrophysiology perspective. Laryngoscope Investig. Otolaryngol. 2, 147–156. 

Nourski, K.V., Steinschneider, M., McMurray, B., Kovach, C.K., Oya, H., Kawasaki, H., and 

Howard, M.A. (2014). Functional organization of human auditory cortex: 

Investigation of response latencies through direct recordings. NeuroImage 101, 598–

609. 

Penner, M.J. (1990). An estimate of the prevalence of tinnitus caused by spontaneous 

otoacoustic emissions. Arch. Otolaryngol. Head Neck Surg. 116, 418–423. 

Pickles, J.O. (2015). Chapter 1 - Auditory pathways: anatomy and physiology. In Handbook 

of Clinical Neurology, M.J. Aminoff, F. Boller, and D.F. Swaab, eds. (Elsevier), pp. 

3–25. 

Poreisz, C., Boros, K., Antal, A., and Paulus, W. (2007). Safety aspects of transcranial direct 

current stimulation concerning healthy subjects and patients. Brain Res. Bull. 72, 

208–214. 

Ranieri, F., Podda, M.V., Riccardi, E., Frisullo, G., Dileone, M., Profice, P., Pilato, F., Di 

Lazzaro, V., and Grassi, C. (2012). Modulation of LTP at rat hippocampal CA3-CA1 

synapses by direct current stimulation. J. Neurophysiol. 107, 1868–1880. 

Rauschecker, J.P., Leaver, A.M., and Mühlau, M. (2010). Tuning out the noise: limbic-

auditory interactions in tinnitus. Neuron 66, 819–826. 

Reddy, C.G., Dahdaleh, N.S., Albert, G., Chen, F., Hansen, D., Nourski, K., Kawasaki, H., 

Oya, H., and Howard, M.A. (2010). A method for placing Heschl gyrus depth 

electrodes. J. Neurosurg. 112. 

Roche, N., Geiger, M., and Bussel, B. (2015). Mechanisms underlying transcranial direct 

current stimulation in rehabilitation. Ann. Phys. Rehabil. Med. 58, 214–219. 



 

32 
 

Sadaghiani, S., Hesselmann, G., and Kleinschmidt, A. (2009). Distributed and Antagonistic 

Contributions of Ongoing Activity Fluctuations to Auditory Stimulus Detection. J. 

Neurosci. 29, 13410–13417. 

Schlee, W., Mueller, N., Hartmann, T., Keil, J., Lorenz, I., and Weisz, N. (2009). Mapping 

cortical hubs in tinnitus. BMC Biol. 7, 80. 

Schneider, P., Andermann, M., Wengenroth, M., Goebel, R., Flor, H., Rupp, A., and Diesch, 

E. (2009). Reduced volume of Heschl’s gyrus in tinnitus. NeuroImage 45, 927–939. 

Schuh, L., and Drury, I. (1997). Intraoperative electrocorticography and direct cortical 

electrical stimulation. Semin. Anesth. Perioper. Med. Pain 16, 46–55. 

Sedley, W., Gander, P.E., Kumar, S., Oya, H., Kovach, C.K., Nourski, K.V., Kawasaki, H., 

Howard, M.A., and Griffiths, T.D. (2015). Intracranial Mapping of a Cortical 

Tinnitus System using Residual Inhibition. Curr. Biol. 25, 1208–1214. 

Seidman, M.D., Ridder, D.D., Elisevich, K., Bowyer, S.M., Darrat, I., Dria, J., Stach, B., 

Jiang, Q., Tepley, N., Ewing, J., et al. (2008). Direct electrical stimulation of Heschl’s 

gyrus for tinnitus treatment. The Laryngoscope 118, 491–500. 

Shekhawat, G.S., Searchfield, G.D., and Stinear, C.M. (2014). Randomized Trial of 

Transcranial Direct Current Stimulation and Hearing Aids for Tinnitus Management. 

Neurorehabil. Neural Repair 28, 410–419. 

Spencer, K.M., Nestor, P.G., Niznikiewicz, M.A., Salisbury, D.F., Shenton, M.E., and 

McCarley, R.W. (2003). Abnormal neural synchrony in schizophrenia. J. Neurosci. 

Off. J. Soc. Neurosci. 23, 7407–7411. 

Talbot, K., Louneva, N., Cohen, J.W., Kazi, H., Blake, D.J., and Arnold, S.E. (2011). 

Synaptic Dysbindin-1 Reductions in Schizophrenia Occur in an Isoform-Specific 

Manner Indicating Their Subsynaptic Location. PLOS ONE 6, e16886. 

Tass, P.A. (2003). A model of desynchronizing deep brain stimulation with a demand-

controlled coordinated reset of neural subpopulations. Biol. Cybern. 89, 81–88. 

Tass, P.A., Freund, H.-J., von Stackelberg, T., Hauptmann, C., and Adamchic, I. (2012). 

Counteracting tinnitus by acoustic coordinated reset neuromodulation. Restor. 

Neurol. Neurosci. 137–159. 

Uhlhaas, P., and Singer, W. (2006). Neural Synchrony in Brain Disorders: Relevance for 

Cognitive Dysfunctions and Pathophysiology. Neuron 52, 155–168. 

Uhlhaas, P., Pipa, G., Lima, B., Melloni, L., Neuenschwander, S., Nikolić, D., and Singer, 

W. (2009). Neural synchrony in cortical networks: history, concept and current status. 

Front. Integr. Neurosci. 3. 



 

33 
 

Van der Loo, E., Gais, S., Congedo, M., Vanneste, S., Plazier, M., Menovsky, T., Van de 

Heyning, P., and De Ridder, D. (2009). Tinnitus Intensity Dependent Gamma 

Oscillations of the Contralateral Auditory Cortex. PLOS ONE 4, e7396. 

Volgushev, M., Chistiakova, M., and Singer, W. (1998). Modification of discharge patterns 

of neocortical neurons by induced oscillations of the membrane potential. 

Neuroscience 83, 15–25. 

Wegger, M., Ovesen, T., and Larsen, D.G. (2017). Acoustic Coordinated Reset 

Neuromodulation: A Systematic Review of a Novel Therapy for Tinnitus. Front. 

Neurol. 8. 

Yadollahpour, A., Jalilifar, M., and Rashidi, S. (2017). Transcranial Direct Current 

Stimulation for the Treatment of Depression: a Comprehensive Review of the Recent 

Advances. Int. J. Ment. Health Addict. 15, 434–443. 

Yuan, T., Yadollahpour, A., Salgado-Ramírez, J., Robles-Camarillo, D., and Ortega-Palacios, 

R. (2018). Transcranial direct current stimulation for the treatment of tinnitus: a 

review of clinical trials and mechanisms of action. BMC Neurosci. 19. 

Zhang, J., Zhang, Y., and Zhang, X. (2011). Auditory cortex electrical stimulation suppresses 

tinnitus in rats. J. Assoc. Res. Otolaryngol. JARO 12, 185–201. 

  


	Claremont Colleges
	Scholarship @ Claremont
	2018

	Cortical Stimulation Mapping of Heschl’s Gyrus in the Auditory Cortex for Tinnitus Treatment
	Austin Huang
	Recommended Citation


	tmp.1544468925.pdf.teIrY

