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Abstract: A variety of inspection equipment exists in industry to capture the points on a
surface that will envisage manufacturing form errors. Manufacturing inspection faces a
problem of finding optimal methods to capture an evenly spread distribution of points on
the surface. Sampling does not yield complete information about a surface. Each material
removal process leaves a unique pattern on the surface of the workpiece, which has to be
taken into consideration while developing the sampling strategy. For instance, round patterns
left by face milling at low feeds on flat surfaces, and spiral patterns left during surface milling
and turning operations on surfaces of revolution. Two new methods have been developed to
improve sampling using the coordinate measuring machine (CMM) for inspection of flat and
revolved surfaces. These are the Spiral, and Hamspi sampling methods.

The Spiral method focuses on the centre of the area and uses the Archimedean spiral. Hamspi
is a method that combines both the Spiral and randomized Hammersley tomeasure points in the
middle as well as the outer zone of the workpiece. Mathematical comparisons of these methods
have been made to establish feasibility. An experiment was performed to determine the accuracy
of these models using two dependent variables: inspection time and minimum zone. The
minimum zone was (statistically) significantly affected by only two factors: sample size and
workpiece shape. The sampling time was however affected by sample size, workpiece shape,
and the interaction between them. This study observed that the beginning and ending cutting
zones of spherical surfaces were the most significant regions to verify. It was found that the
Spiral and Hamspi methods had similar point distributions as the Hammersley method while
placing more emphasis on the origin of the workpiece.

Keywords: sampling methods, minimum zone, form tolerance, sphericity, flatness forms,
and spiral

1 INTRODUCTION

Tolerance zones must be established and verified
through specifications of form, size, orientation, and
location to determine whether a machined workpiece
has been designed and manufactured properly [1].
Deviations occur with these processes and are caused
bymisalignments, machine imperfections, vibrations,
temperature, and tool wear. For instance, round
patterns are left by face milling at low feeds on flat

surfaces, and spiral patterns are left during surface
milling and turning operations on surfaces of revolu-
tion. Prudent samplingmust be employed tomeasure
and analyse these tolerances. Various studies have
been performed in sampling such as Woo [2], Lee
[3] and Rossi [4]. Sampling methods are a common
way of determining errors. They are used to capture
points along an object’s surface. Ideally, these sam-
pling methods are developed in accordance with the
surface area, the shape of the workpiece, and toler-
ance specifications. The errors that occur make up
the tolerance zone, which is the difference between
the measured value and the fitted value. Sampling
methods also need to be fast due to the cost of
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down time that occurs during sampling while still
giving complete enough information about the sur-
face in question to be useful.

Some examples of these sampling methods
include the Hammersley method, random sampling,
Halton–Zaremba, aligned systematic, and uniform,
among others. All sampling methods are prone to
error. Random sampling is useful but may not take
the entire surface into account. Aligned systematic
sampling is good for adapting to many shapes but
encounters difficulties due to equal spacing of the
points down the surface. Periodic errors, typical of
manufacturing processes may not be adequately
described. According to Lee [3] and Woo [2], the
Hammersley method is very reliable and efficient,
since simulation revealed that there was close to a
quadratic reduction of the points needed to be
taken by uniform sampling to have similar accuracy.
The randomization of the Hammersley allows for a
reduction in the risks of capturing systematic errors
[3]. However, Hammersley does not place enough
emphasis on the beginning and ending cutting zones
as is shown in the following sections. Due to this
reason, the present study focuses on applying the
Spiral and the Hamspi strategies to capture the
form deviations of flat and revolved surfaces.

Form measurement often involves the use of a
coordinate measuring machine (CMM) to inspect
the workpieces [5]. Many studies have been done
utilizing the CMM. The CMM is designed to capture
points along the surface. Many considerations
should be made to inspect a workpiece such as the
shape and size of the workpiece. The determination
of the sampling method that will be employed on
the part is relative to the size and shape of the work-
piece being evaluated and its quality [6]. If the part
needs to be inspected in more detail, the number
of sampling points should increase accordingly [7].
This implies that in order to get a more accurate
reading of the imperfection of the part, the sample
size should increase [4].

Sample size has been demonstrated to have a
direct correlation with the determined error. An infi-
nite amount of sample points would give complete
information about the surface. Having large sample
sizes can incur other problems, however, such as
machine drift due to heat generated by the machine.
Studies have been performed to minimize sampling
effort while maintaining accuracy [8]. A bound was
established by Roth [9] that has been adapted to
sampling methods. It illustrates that there is a maxi-
mum amount of information that can be attained
from a surface. This provides for a limit in the num-
ber of useful sample points to be taken [2, 9]. New
methods are desired that will be efficient and reli-
able while overcoming the weaknesses of current
methods. The ability to predict manufacturing errors

occurring in a workpiece is important for sampling
methods.

The form evaluation of flat surfaces has been
studied by Kim [10] who illustrated a comparison
of sampling methodologies in terms of measurement
discrepancy and time; Badar [11–13] developed
adaptive sampling methods based on optimization
techniques and on the quality of the surfaces gener-
ated by end- and face-milling processes. Yang [14]
applied the uniform sampling method to determine
the form of error of flat surfaces. The surfaces were
machined using boring, end milling, fly cutting,
grinding, and shaping processes, and were analysed
using the Shannon sampling method and the mini-
max algorithms. The Shannon sampling provided a
better estimation of the form error than the mini-
max algorithm, since the first uses an infinite degree
spline function to reconstruct the inspected surface.
Round forms were studied by Rossi [4] who devel-
oped an adaptive sampling procedure to minimize
the inspection time of round parts based on the infor-
mation collected from a pre-sampling procedure.
The screening procedure helped to detect cyclic and
non-cyclic deviations such as waviness and ran-
dom error that was used later on to adjust the point
distribution over the surface of the inspected part.

Chetwynd [15] studied a method for offsetting a
circle from the origin using limacons. The latter
was adapted to spherical surfaces by Samuel [5] in
which he also developed a method of determining
the residuals of the sphere. Roundness measure-
ments with a CMM were evaluated by Chan [16] to
see how many points are required to truly deter-
mine circularity. Conical surfaces were studied by
Prakasvudhisarn [17] and toroidal surfaces by
Aguirre-Cruz [18]. Both of these studies utilized the
least squares and linear optimization fitting algo-
rithms. The least squares is a ‘best fit’ method of esti-
mating the regression coefficients by reducing the
sum of the squares while the minimum zone
(LOPT) is a method of reducing the maximum devia-
tion and is illustrated more in-depth by Winston
[19]. Prakasvudhisarn [20] proposed a new data fit-
ting procedure, support vector regression, which is
not sensitive to the normality assumption. It was
observed that the least squares is capable of over-
estimating the tolerance zone since it is very sen-
sitive to outliers, while the minimum zone method
is more robust since it minimizes the maximum
deviations.

2 OVERVIEW OF PRESENT WORK

Two new methods have been developed in this
paper for three-dimensional shapes. These methods
are the Spiral method, and the Hamspi method.
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These will be explained in detail in the following
sections. The Spiral method is a very promising
new method of sampling that has some properties
similar to existing systematic sequences but is an
improvement over the aligned systematic sampling.
Instead of lines that descend along the side of the
surface, it uses the curves of the Archimedean spiral.
Due to the fairly even distribution of points, it
enables the sampling of the entire surface without
leaving large holes in the sampling area. Depending
on the parameters that one sets, the shape and
tightness of the spiral are easily changeable. The
advantage of using the Spiral method on a flat plate
is that it could capture the pattern of the milling
process. This allows for the method to focus on
the machining imperfections along the surface. The
advantage of using this method on spherical surfaces
is that it focuses on the centre of the workpiece
where much deviation could occur. There has appar-
ently been very little research done in the area of
using spirals to sample during form tolerance verifi-
cation. Wieczorowski [21] has done research using
spirals with a profilometer, and he found that this
method greatly reduced the amount of time spent
performing the experiment. No other studies over
this method were found.

The Hamspi method combines both the Spiral and
the randomized Hammersley methods to capture
points on the surface. This method allows for various
characteristics of a surface to be considered. The
points on the origin of the workpiece are generated
using the spiral method. Randomized Hammersley
points attempt to cover the rest of the manufactured
part. This permits for the centre cutting zone to be
examined in detail while allowing for an even distri-
bution of points along the rest of the surface. Such
a sampling scheme could be especially useful in
inspecting plates, which are clamped on the outside
during machining. It has been found that surfaces
tend to exhibit more minima in the middle in such
cases. Hamspi is a new approach that was developed
to find more specifics of what manufacturing error
occurs on a surface.

Another method, called the pie method, was also
studied; it utilized both the aligned systematic and
random sampling to capture points along the surface
of the machined part. This method has not been used
in literature. Using the aligned systematic method,
the surfaces were divided into equidistant areas
resembling slices of a pie, such as in Prakasvudhisarn
[17]. The regions contained in these areas were
sampled by the random sampling method, such as
in Aguirre-Cruz [18]. This was supposed to allow
for more coverage of the surface than the Aligned
Systematic. However, this method was not pursued
further due to the lack of coverage of the surface
with small sample sizes.

3 SAMPLING METHODS

3.1 Spiral method

The Spiral method follows some simple concepts.
The sampling sequence follows the behavior of the
Archimedean spiral, and was chosen due to its ease
of manipulation and ability to reverse the direction
of the spiral. The Archimedean spiral has three
variables that govern the shape of the spiral: the
constant a, which affects the radius of the spiral,
the angle �, which determines the rotation of the
spiral, and the constant n, which determines
the shape of the spiral [22]. Equation 1 shows the
relation between these three variables.

r ¼ a�
1
n ð1Þ

The magnitude and sign of the variable n affects
the direction and tightness of the spiral, for example
n¼ 1 provides the shape of the Archimedes spiral,
n¼�1 provides the shape of a hyperbolic spiral,
and n¼ 2 provides the shape of a Fermat’s spiral
[22]. The magnitude and step size of the angle �
affect the shape of the spiral; for example, if the step
size of the angle is very small, then the shape of the
spiral will be perfectly round; however, if the step
size of the angle is set very large, then the spiral will
look similar to the Aligned Systematic strategy. It
can be said that the shape of the spiral depends on
the combination among these three variables, as
seen in Figs 1 and 2.

Figure 1 illustrates a very simple but useful design.
The constants are set with n equalling 1 and a equal-
ling 0.001 969. These were set to provide simplicity
and to have bounds within the actual radius of the
test part, in this case, a circular plane with radius of
1.25. The shape of the spiral in Fig. 3 makes it appear
very similar to the aligned systematic since it looks
like five separate spiral lines, whereas in reality, it is
a single spiral. An example of the aligned systematic
is shown in Fig. 4. It is much more limited in scope
than the spiral method. It only yields values in a
line, which leaves large empty areas where much
deviation could occur.

Fig. 1 Spiral with parameters 1.25 � (left), and Spiral with
parameters 0.5 � (right)
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The value for �was set at increments of five radians.
This is an arbitrary value that can very much affect
the shape of the spiral. The increment can make the
spiral appear similar to the Hammersley method,

the aligned systematic method, or a combination of
the two. The value of five radians per increment was
useful to make a pattern that was very similar to the
aligned systematic method but that would be able to
yield more useful data. Once the increment value is
set and the constants are determined, the values of r
can be determined. Figure 5 shows the actual spiral
used in the experiment. It has a more even distribu-
tion about the surface of the object, thus allowing
for the measurement of the whole surface.

The shape of the spiral is easily modified depend-
ing upon what parameters are desired. For this
experiment, the value for � was equally distributed
to the number of points desired to be collected.
The r value was set as the ideal radius of the object
while the a value was determined with these values.
A numerical example of this is setting r equal to
1.25 and � equal to 64, adding a random number to
� such as 0.67, and using equation (1) with n equal-
ling 1 to yield the value 0.019. This allowed for
easy determination of scale. The following proce-
dure explains the steps needed to convert the
polar coordinates of the spiral method into Cartesian
coordinates. This procedure is necessary since the
coordinate measuring machine used in this research
uses Cartesian coordinates.

The Spiral sampling sequence can be transformed
to 2D Cartesian coordinates by using equations (2)
and (3).

x ¼ ri cosð�iÞ ð2Þ

y ¼ ri sinð�iÞ ð3Þ
Table 1 gives an example of ten points generated

by the Spiral method with the previously stated
constants being implemented, where the � value was
set to increments of 1, the r was set as the ideal

Fig. 5 Spiral parameter- � with 1 spacing

Fig. 2 Spiral with parameters .3 � (left), and Spiral with
parameters 9 � (right)

Fig. 3 The Spiral method

Fig. 4 Aligned Systematic method
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radius of the object, and the a was found by solving
equation (4).

a ¼ r

�1=n
ð4Þ

From equation (1), n was set at 1, the a was set at
0.125, and the � was set as 10, which is the number
of the points being measured for the following
tables. This yielded the r value, which was used to
compute the x and y values.

Similar to the manner in which Lee [3] randomized
the Hammersley sequence, the Spiral sequence was
randomized. This allows for multiple samples to be
taken without always using the same points. The
origin (0, 0) should be maintained throughout the
samples since the origin of the part is very important
to the study of its surface. To allow for this, equation
(5) is used to randomize the value for a. The r value
is held constant as the ideal radius of the object, the
� value is set as the total number of points being
taken, and a random number between zero and one
is added to the � value. This gives the equation

a ¼ r

ð�þ randÞ ð5Þ

Table 2 shows the Spiral sequence with rando-
mized points with the a value being randomized
with the addition of 0.645758 and using as a value of
0.003178.

The Spiral method is very useful. By taking
samples that spiral around an object, the object’s

integrity and conformation to the desired shape
can be determined. In turning processes, many pro-
blems can arise, such as machine misalignment, tool
wear, and machine imperfection. By adapting this
strategy to the surfaces in question, it may be possible
to help predict which errors the machine might be
making. By combining this sampling strategy with
the minimum zone fitting algorithm, much useful
data can be interpreted.

3.2 Hammersley method

The Hammersley method is a well used sampling
method. It is viewed as one of the better methods
of sampling surfaces since it allows for a nearly
quadratic reduction of points while presenting simi-
lar accuracy when compared to the uniform method
[2, 3]. It is useful since it has a fairly even distribu-
tion, and yet could be limited while measuring in
the centre of the object. This leads to a loss in relia-
bility since this is a critical area for surface determi-
nation. The origin is often where cuts either begin or
end. Figure 6 illustrates how this centre of the object
can be missed.

The Hammersley method uses the following
equations for determining points

xi ¼ si ¼ i

N
ð6Þ

yi ¼ ti ¼
Xk�1

j¼0

bij2
�j�1 ð7Þ

Table 2 Ten randomized spiral points

Theta þ rand Theta r x y cos (�) sin (�)

0.645 758 0 0.002 52 0.002 01 0.001 52 1.000 00 0.000 00
1.645 758 1 0.006 42 �0.000 48 0.006 40 0.540 30 0.841 47
2.645 758 2 0.010 32 �0.009 08 0.004 91 �0.416 15 0.909 29
3.645 758 3 0.014 22 �0.012 45 �0.006 87 �0.989 99 0.141 12
4.645 758 4 0.018 13 �0.001 21 �0.018 08 �0.653 64 �0.756 80
5.645 758 5 0.022 03 0.017 70 �0.013 11 0.283 66 �0.958 92
6.645 758 6 0.025 93 0.024 24 0.009 19 0.960 17 �0.279 42
7.645 758 7 0.029 83 0.006 17 0.029 18 0.753 90 0.656 98
8.645 758 8 0.033 73 �0.024 00 0.023 69 �0.145 50 0.989 35
9.645 758 9 0.037 63 �0.036 72 �0.008 25 �0.911 13 0.412 11

Table 1 Ten spiral points

Theta r x y cos (�) sin (�)

0 0.000 00 0.000 00 0.000 00 1.000 00 0.000 00
1 0.125 00 0.067 54 0.105 18 0.540 30 0.841 47
2 0.250 00 �0.104 04 0.227 32 �0.416 15 0.909 29
3 0.375 00 �0.371 25 0.052 92 �0.989 99 0.141 12
4 0.500 00 �0.326 82 �0.378 40 �0.653 64 �0.756 80
5 0.625 00 0.177 29 �0.599 33 0.283 66 �0.958 92
6 0.750 00 0.720 13 �0.209 56 0.960 17 �0.279 42
7 0.875 00 0.659 67 0.574 86 0.753 90 0.656 99
8 1.000 00 �0.145 50 0.989 36 �0.145 50 0.989 36
9 1.125 00 �1.025 00 0.463 63 �0.911 13 0.412 12
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where N stands for the total desired number of
points, i determines the ith point that is found on
a range between 0 and N� 1, and bj is the binary
position where j goes from 0 to k. The k value is the
total number of bits and is found by equation (8).

k ¼ log2 N½ � ð8Þ
For easy computing, a chart is made to list these

values. To randomize the points, a random number
is generated in MicroSoft ExcelTM between 0 and 1
and is added to the numbers for the points. All of
the points will have the same randomnumber added.

There are four main steps in generating points for
round surfaces.
Step 1 Create the points with equations (6) and (7).
Step 2 Randomize the points.
Step 3 Convert the points into polar coordinates
using the following equations

ri ¼ ffiffiffiffi
yi

p
R ð9Þ

where R is the ideal radius of the sphere.

�i ¼ 2pxi ð10Þ
Step 4 Convert these points back to Cartesian
coordinates using equations (2) and (3).
This procedure is necessary due to the way that the
CMM interprets input information.

3.3 Hamspi method

A machinist must always check for errors in the
machine that could affect the making of a workpiece.
The Hamspi sampling method was developed with
this consideration. To study tool wear, vibration, mis-
alignment, and machine imperfection, the start and
the end of the workpiece should be analysed when
performing the sampling studies. Utilizing both

the Hammersley and Spiral methods, the Hamspi
method will take these areas into consideration.

The surface and centre of round workpieces should
be considered when verifying the tolerance zones.
The Hammersley method has proven to be reliable
in its ability to verify a surface, [6, 12, 17, 18]. How-
ever, it does not place enough emphasis on the centre
of the workpiece. The Hammersley method is utilized
on the outer areas of the workpiece for its broad and
even distribution of points along the surface. To inten-
sify the sampling towards the centre of the workpiece,
the spiral method is incorporated at the centre. The
focus of this sampling strategy is to better obtain
the errors found at the centre of the workpiece, where
the tool touches the manufactured part either first
or last. A diagram of the Hamspi method is shown
in Fig. 7.

The spiral points are found by using equations (1)
and (2). The areas covered by the Spiral method were
set at the centre of the surface. The Hammersley
two-dimensional measuring points are found by
the same equations as the normal Hammersley
method, except that equation (9) is changed with
the following adaptation to make room for the spiral
points and to avoid overlapping.

ri ¼ ffiffiffiffi
yi

p
R þ C ð11Þ

Here C is the radius taken up by the Spiral method.
The spiral follows equation (1) with the desired
radius set as C. The measuring points for each part
are found by the same equations as for that
particular method.

In this research, one quarter of the total points
were set as spiral points while the remaining were
set for the Hammersley sequence. This distribution
is reasonable for practice. It is expected to place
emphasis on the centre of the object while still

Fig. 7 Hamspi method showing the Hammersley
approach

Fig. 6 Hammersley method
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having a good distribution over the rest of the sur-
face. This should yield more information than using
Hammersley alone.

4 JUSTIFICATION OF SAMPLING METHODS

For justifying the use of these methods, it is neces-
sary to show the distribution of points in a way that
will illustrate the dependability of sampling the
surface. Woo [2] used a method of determining
the residual of the Hammersley method to prove
that it presented a good distribution of points that
would be reliable. The proposed error followed
equation (12).

residual ¼ t1 � t2 �
XN
i¼1

x Pið Þ ð12Þ

The above equation (12) illustrates the difference
between the inspected area and the number of
points enclosed in that region. The values of t are
scaled to be from 0 to 1. Each value of t corresponds
with a square of sides of distance t. These squares
enclose points that are within that given region and
thus are used to determine the point distribution.

The origin is set to the centre of this square.
Figure 8 illustrates the differences in point distribu-
tion between the Hammersley, Spiral, and Hamspi
methods. The Hammersley method has a good dis-
tribution but lacks some emphasis on the 20 per
cent closest to the origin. The Hamspi method shows
a similar pattern to the Hammersley method while
placing more emphasis on the 20 per cent closest
to the origin. The Spiral method shows a slight curve
giving a fairly even distribution of points. Both the
Spiral and Hamspi place more emphasis on the
20 per cent area closest to the origin. Path planning
and fitting for flatness have been investigated signif-
icantly in the literature and are not repeated here.
The spherical form measurement is detailed in the
next section. However, it must be noted that the
sampling strategy is the subject of this paper.

5 SPHERICAL FEATURE MEASUREMENT

Spherical surfaces are used frequently for many part
features in industry. Industrial applications include
parts in engines, bearings, and Van de Graaf genera-
tors. While inspecting spheres for tolerance error,
usually the radius, origin, roughness, and sphericity
are evaluated. Forging, turning, form turning, mill-
ing, grinding, and lapping can each be employed to
make spherical features with varying levels of finish
and tolerances.

The CMM employed in this research has the cap-
ability of inspecting an object in an automatic
mode. The automatic inspection requires the user to
input three types of coordinates: the z plane, the posi-
tioning, and the measuring coordinates, which are
used by the machine to follow a collision-free path.
The z plane coordinates are located at the same
height and are located exactly above the positioning
coordinates, which means that they share the same
x and y values. The height of the z plane is determined
according to the highest point of the inspected part,
for example, if the measuring part is a sphere with
radius of 30mm, then the location of the z plane
will be at 40mm, which is 10mm above the inspected
sphere. The distance between the sphere and the
z plane is used by the CMM to position the stylus
probe above the positioning coordinates. The posi-
tioning coordinates are obtained from the values of
the measuring coordinates and follow the same
shape as the object being inspected. Once the CMMFig. 8 Distribution of points per area
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locates the positioning point on the z plane, the
machine lowers the stylus probe until it reaches the
positioning coordinate. Then, the machine moves
the probe closer to the inspected object until it rea-
ches the measuring point. The approaching vector
from the positioning point to the measuring point
is normal to the surface. Thus, the measuring and
positioning coordinates are located over the normal
vector of the surface.

The xyz components of the measuring coordinates
are determined separately. First, the x and y values
are obtained from the sampling method, while the
z values are determined based upon the shape of
the object in question. For a sphere, the zi measuring
values are found following equation (13)

zi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2i þ y2i

� �q
ð13Þ

where R is the ideal radius of the sphere and xi, yi
are obtained from the sampling method.

As mentioned before, the positioning coordinates
are also an important part to the sampling strategy,
since they create a safety zone for the probe. The
steps needed to find the positioning coordinates
are as follows.
Step 1 Calculate the angle gi that determines the
position of the normal vector of the ith measuring
point, which is found using equation (14)

gi ¼ tan�1 ziffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ y2i

q
0
B@

1
CA ð14Þ

where xi, yi, and zi are the value of the measuring
coordinates obtained above.
Step 2 Calculate the horizontal xyp and the vertical
zp components of the positioning coordinates, which
are obtained from equations (15, 16).

xyp ¼ ðR þ AÞ cosðgÞ ð15Þ

zp ¼ ðR þ AÞ sinðgÞ ð16Þ
where R is the ideal radius of the sphere and A is

the offset distance between the measuring and
positioning coordinates.
Step 3 Break up the horizontal components into xp
and yp, as shown in equations (17, 18).

xp ¼ xyp cosð�Þ ð17Þ

yp ¼ xyp sinð�Þ: ð18Þ
Step 4 Calculate the z plane coordinates, which
allow for a zone where the CMM can move quickly
between that plane and the positioning coordinates.
The z plane greatly reduces the time required for the
sampling while still keeping a safety zone so that
the machine will not break the tip of the stylus. The
horizontal components of the z plane coordinates

are the same as the positioning points, while the
vertical component depends on the highest point of
the inspected part, as mentioned before.

The measuring coordinates obtained from the
CMM are analysed using a linear sphericity model
obtained from Samuel [5]. The model obtains the
deviation by comparing the Euclidian distance ri of
the ith measuring point against an ideal value R of
the radius of the sphere and the origin offsets x0,
y0 and z0. Equation (19) shows the model used to
calculate the form deviations of the sphere.

di ¼ ri � Rþ xo cos � cosaþ yo sin � cosaþzo sina�½
ð19Þ

Finally, the tolerance zone h is calculated as the
maximum deviation minus the minimum deviation,
as seen in equation (20). The tolerance zone for the
sphere is illustrated in Fig. 9.

h ¼ di max �di minð Þ ð20Þ

6 FLAT FEATURE MEASUREMENT

The process needed to verify the form tolerance of
the flat surface does not differ too much from the
procedure to verify spheres. The three types of coor-
dinates, z-plane, positioning, and measuring coordi-
nates, are still needed. The main difference is the
location of the positioning coordinates, which uses
the form of a plane instead of a sphere. Therefore,
the x and y components of the measuring, position-
ing and z plane coordinates will be the same. The z
component will change according to the buffer
zone required by the CMM.

The measuring coordinates obtained from the flat
surface are analysed using the linear flatness model
obtained from Badar [11], as seen in equation (21).
Finally, the tolerance zone of a flat surface is calcu-
lated following equation (20), which is the same
way the sphericity error was calculated.

di ¼ ½zi � lxi þ myi þ c½ ��=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þm2 þ 1

p
ð21Þ

Fig. 9 Minimum zones of a sphere
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7 EXPERIMENTAL DESIGN

The two forms that were used in the experimental
design to evaluate the sampling strategies were the
sphere and the plate. The workpieces used for this
experiment were randomly selected among a selec-
tion of identical workpieces. A Brown and Sharpe
MicroVal PFx� 454 coordinate measuring machine
was used for this experiment, which holds a sapphire-
tipped stylus with a diameter of 0.7mm (M2 A-5003–
0577). The accuracy and repeatability of the machine
is within 0.00381mm. The same fixtures were used
to hold both the sphere and the plate. The factors
surrounding the CMM at all times included the
room temperature, fixtures, tightness of the work-
piece, and the point utilized for the ‘Home’ function.
The software used by the CMM to measure the points
was TUTOR� for Windows� 98. The probe qualifica-
tion consisted of determining the stylus radius. Before
initializing the experiment, the reference offset was
established to maintain the same parameters for all
measurements. In addition, the origin of the machine
was translated to the geometrical origin of the inspec-
ted part, in this case, to the centre of the sphere and to
the centre of the flat plate. This procedure was neces-
sary due to the fact that the Spiral and Hamspi strate-
gies generate the measured points with respect to
the origin of the part. However, it can be said that
the points obtained from the sampling strategies can
be modified in order to comply with the geometrical
origin of the inspected parts.

Independent variables consisted of three sample
sizes, three sampling strategies, and two fitting algo-
rithms. The sample sizes were 16, 128, and 512. The
three sampling strategies evaluated were rando-
mized Hammersley, spiral, and the Hamspi method.
The algorithms used for fitting were the least squares
and the linear optimization, which were used only
in the analysis of the dependent variable called
‘minimum zone’, defined as the difference between
the measured value and the fitted value. The second
dependent variable was the time of inspection that
occurs from the time the machine starts to operate
to when it stops moving.

The point coordinates collected from all factor
combinations by the CMM were prepared for analy-
sis using Microsoft Excel�. Then, the data were
imported into Matlab� that was used to calculate
the zone of error of the sphere and flat plates. The
calculated tolerance zones were analysed using the
statistical procedure analysis of variance (ANOVA).
The evaluation was performed using SAS� for
Windows�. The level of significance for the statistical
evaluation in ANOVA was set to 0.05. A review of
the data was needed in order to determine the
significant interactions for this experiment.

8 RESULTS AND ANALYSIS

The independent factors were analysed to determine
their effect on the dependent variables through
ANOVA. For the dependent factor of the time of ins-
pection, it was found that the sample size, the work-
piece shape, and the interaction between these two
factors were significant. It can be seen that the sam-
pling strategies were not significant; however, this
means that the two proposed sampling strategies,
spiral and Hamspi methods, are as time-efficient
as the well known Hammersley method. These are
illustrated below in Figs 10–12.

The analysis of the dependent variable minimum
zone was performed twice since it was found that
the hemispherical specimens used in this study
were not manufactured according to specifications.
The specimens should have been machined with
radii of 31.75mm (1.25 inches); however, it was
found that the specimens had a radial height of
28.575mm (1.125 inches), which was the cause of
outliers in the data collected on the edges of the
hemisphere. For this reason, the spherical specimen
was verified using a more accurate inspection equip-
ment, called the Accordion Fringe Interferometer,
which uses the projection of laser fringes with

Fig. 11 Main effect plot of sample size on time

Fig. 10 Main effect of sample size on time
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different thicknesses to capture the inspected part.
Figure 13 shows the form deviations on the edge
of the hemisphere that was verified using the laser
interferometer.

The first analysis showed significant differences
for the factor sample size, shown in Fig. 14. The sec-
ond analysis was performed by removing the outliers
from the data, which were found only in sample
sizes of 128 and 512. A total of six and eight outliers
were removed from sample size 128 and 512, respec-
tively. The results obtained from the experiment
showed significant differences in factors sample size
and fitting algorithm: the sample size showed the
same effect as the first analysis, while the fitting
algorithm showed that the minimum zone outper-
formed the least squares method.

The residuals were plotted with respect to the x
and y Cartesian coordinates taken on the surface,
which provided important information regarding

each shape. The plate was found to have a saddle
shape and the sphere was found to have significant
regions of over- and under-machining in the begin-
ning and ending cutting zones. This in itself provides
justification for non-uniform sampling. Table 3 gives
the results for the minimum zone values and Table 4
summarizes the results for the inspection times.

9 CONCLUSIONS AND RECOMMENDATIONS

With regards to the inspection time, the statistical
analysis using SAS� showed significant differences
for the main factors of shape and sample size and
the interaction between them. As was expected, the
sample size of sixteen was the fastest. For all sample
sizes, the sphere was slightly faster than the plate.
With regards to the minimum zone, the only statis-
tically significant factor determined by SAS� was
sample size. The sample size of 512 typically produ-
ced the largest minimum zones, since it was collect-
ing more information from the surface of the part.
The sphere showed a higher zone of error than the
plate. This confirms that the sphere is more complex
to manufacture than the plate and therefore prone
to more errors. The output revealed that the sam-
pling method is not a key component in determining
the better minimum error estimation among these
methods. The large outliers that occurred are the
reason that the SAS program did not detect any sig-
nificant differences between the linear optimization
and the least squares fitting algorithms.

The spiral and Hamspi methods are very promis-
ing new techniques for sampling surfaces. They are
powerful procedures that will be able to provide
more useful information about a surface while
optimizing the efficiency. They present similar point
distribution to the well known Hammersley method,
while emphasizing the centre of the workpiece, and
hence, show much promise for development and
application.

Fig. 14 The main effect of sample size on MZFig. 12 The two-way interaction of sample size and
shape on time

Fig. 13 Form errors of hemispherical specimen
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For future studies there are many areas and
factors to inspect. There is much use to determin-
ing whether or not a global pattern exists in the
characteristics of beginning and ending cutting
zones in spherical surfaces. This would mean that
by emphasizing these two regions, sample sizes
could be reduced saving time. The Hamspi method
could be very useful in this by increasing the
distance between the Spiral and the Hammersley
parts. This would place more emphasis on each
zone. The intensification and diversification must
however be applied after suitable experience with
the process used to produce the surface. Experimen-
tation with other forms will enhance the application
domain.
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APPENDIX

Notation

�i angle that describes the position of the ith
point on the xy plane � [0, 2�]

�i angle that describes the position of the ith
point with respect to the z axis � [0, �]

A offset distance between the measuring
and the positioning coordinates

a constant that defines the shape of the
spiral

bij binary position of the ith point and jth bit
C the radius taken up by the Spiral method
di form deviation of the ith point
h width of the tolerance zone
k total number of bits needed to generate

N points
l slope of the axis of assessment between

xz axes
m slope of the axis of assessment between yz

axes
N total number of points
n constant that determines the direction of

the spiral
R ideal radius of the sphere
ri radius of the ith measuring point
ri Euclidian distance of the ith measuring

point
si horizontal component obtained from

Hammersley strategy
t1 value that determines the side of a square

t1 [0, 1]
t2 value that determines the side of a square

t2 [0, 1]
ti vertical component obtained from

Hammersley strategy
x(Pi) function that determines the number of

points enclosed in a t1 � t2 area
x0, y0, z0 Cartesian coordinates of the origin offsets
xi, yi, zi Cartesian coordinates of the ith measured

point
xp, yp, zp Cartesian coordinates of the ith position-

ing point
xyp horizontal component of the positioning

coordinates
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