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Abstract

Real world tasks, in homes or other unstructured environments, require interacting

with objects (including people) and understanding the variety of physical relation-

ships between them. For example, choosing where to place a fork at a table requires

knowing the correct position and orientation relative to the plate. Further, the

quantity of objects and the roles they play might change from one occasion to the

next; the variables are not fixed and predefined. For an intelligent agent to navigate

this complex space, it needs to be able to identify and focus on just those variables

that are relevant. Also, if a robot or other artificial agent can learn such physical

relations from its own experience in a task, it can save manual engineering effort

and automatically adapt to new situations.

Relational learning, while often focused on discrete domains, applies to situations

with arbitrary numbers of objects by using existential and/or universal quantifiers

from first-order logic. The field of reinforcement learning (RL) addresses learning

task execution from scalar rewards based on agent state and action. Relational

reinforcement learning (RRL) combines these two fields.

In this dissertation, I present an RRL technique emphasizing relations that are

merely implicit in multidimensional, continuous object attributes, such as position,

color, and size. This technique requires analyzing permutations of possible object

comparisons while simultaneously working in the multidimensional spaces defined

by their attributes. Existing similar RRL methods query only one dimension at a

time, which limits effectiveness when multiple dimensions are correlated.

Specifically, I present a representation policy iteration (RPI) method using the

spatiotemporal multidimensional relational framework (SMRF) for learning rela-

xii



tional decision trees from object attributes. This SMRF-RPI algorithm interleaves

the learning of relational representations and of policies for agent action. Further,

SMRF-RPI includes support for continuous actions. As a component of the SMRF

framework, I also present a novel multiple instance learning (MIL) algorithm, which

is able to learn parametric, existential decision volumes within a feature space in a

robust manner.

Finally, I demonstrate SMRF-RPI on a variety of developmentally motivated

blocks world tasks, as well as effective transfer and sample efficient learning in

a standard keepaway soccer benchmark task. Both domains involve complicated,

simulated world dynamics in continuous space. These experiments demonstrate

SMRF-RPI as a promising method for applying RRL techniques in multidimen-

sional, continuous domains.
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Chapter 1

Introduction

The real world is a complicated place. For example, a robot working in an everyday

kitchen needs to avoid obstacles, retrieve items, open containers, and combine and

mix ingredients, among other activities. In these tasks, each action involves only

a subset of the objects in the environment. When pouring flour into a bowl, the

relative positions of the bowl and measuring cup are important. The pouring edge

should be approximately centered above, but not too far above, the bowl. Other

nearby objects might also interfere, but the exact locations of items on the spice

shelf are probably irrelevant, and different objects might be present at different

times. Some attributes of key objects also are likely irrelevant, such as the color

of the bowl. For the objects and attributes that do matter, rather complicated

world dynamics are at play, including gravity and the dispersion of flour in the air.

The robot’s own developmental experience (see Fagg, 1993) can help it to form the

concepts needed to successfully perform tasks such as these. For example, from its

experience dropping of objects on each other, the robot can learn to interpret the

world, for this specific kind of action, in terms of just the variables most likely to

be relevant.

For an intelligent agent to learn to accomplish such tasks on its own, a num-

ber of questions are salient. What high-level relations or predicates (such as over

or between) might exist in the raw physical data? Which are the key objects or

participants in a particular situation or scene? How should the agent behave to

accomplish its task, and how do its actions affect the world? Learning discrete
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predicates in a continuous space (such as for position or color) requires finding a

meaningful decision volume in the space. Discovering which objects take on which

roles requires iterating through permutations of possible assignments. Although

it is computationally untenable to optimize across all possible solutions, an agent

learning on its own still needs to answer these questions in an effective and efficient

fashion.

A variety of research areas come to bear in answering these questions. Reinforce-

ment learning (RL) addresses learning to perform multistep tasks, where the agent’s

decision-making policy is defined by the outcome of each agent action, including a

scalar reward signal, which might be positive or negative. Representation learning

addresses the construction of features whereby to interpret the environment. Rela-

tional learning addresses environments in which the relationships between multiple

objects is important for making predictions or taking actions, and where the num-

ber of objects might change in different situations. Relational concepts can be used

as representations for task execution. For example, when considering passing the

ball in a soccer game, I might care if there exists an opponent between me and a

teammate. This concern is relevant no matter how many players are on the field. In

first-order logic, this is called existential quantification. Relational learning might

also address first-order universal quantification, which asks whether some property

holds for all objects. For example, are all the appliances in the kitchen in work-

ing order? Again, this question is meaningful no matter how many appliances are

present.

Relational reinforcement learning (RRL) combines relational learning and rein-

forcement learning (Blockeel and De Raedt, 1998; van Otterlo, 2005, 2012). RRL is

ultimately concerned with how an agent should behave in relational worlds. How-

ever, traditional relational learning methods do not emphasize continuous, multidi-

mensional environments. Often, they rely on hand-crafted predicates (e.g., Pasula

2



et al., 2007) or query continuous variables in only one dimension at a time (e.g.,

Blockeel and De Raedt, 1998). These limitations can prove detrimental when mul-

tiple dimensions are correlated. For example, the color yellow in the RGB color

space requires covariance between the red and green color channels. Approximating

a covariant volume with single dimensional queries may require numerous conjunc-

tions. Methods that seek to learn relations that directly model multidimensional

data sometimes do so without the ability to consider either existential or univer-

sal quantification during the relation learning process (e.g., Kulick et al., 2013).

These methods also commonly consider only binary relations, such as those based

on relative positions of pairs of objects.

In this dissertation, I present a method for RRL that addresses multidimensional

continuous variables in a fashion that is unique among relational learning systems.

In this approach, I both utilize and contribute a key component to the spatiotempo-

ral multidimensional relational framework (SMRF) of Bodenhamer (2014), which

learns relations to answer existential questions. The SMRF learning algorithm

builds a decision tree from binary-labeled samples, where each sample is a set of

objects. Each object has associated real-valued, multidimensional attributes, such

as position or color. Such attributes increase the complexity of relational learning,

which must already address permutations of objects in the scene when considering

their possible roles. Concerning permutations, Bodenhamer (2014) demonstrates

SMRF’s effectiveness at pruning the search space when high numbers of irrelevant

objects are present. Often, only a small fraction of object permutations needs to be

considered. Bodenhamer also demonstrates that SMRF’s ability to learn decision

volumes in multidimensional spaces can be more effective than working in individual

dimensions, especially when covariance exists in the data.

The SMRF learning algorithm is a binary classifier that learns high-level relations

(such as over or between) beginning from continuous object attributes. To do

3



this, the SMRF framework uses mapping functions of the attributes of two or more

objects to provide relative measures. As an example, a mapping function of relative

position could provide a set of vectors corresponding to the relative positions of

all pairs of objects in a scene. A relational existential question, such as whether

any object exists above another, then becomes a question of which vectors are

important among a set where most are irrelevant. The field of multiple instance

learning (MIL) addresses this existential learning problem (Dietterich et al., 1997).

In this dissertation, I contribute a novel multiple instance learning (MIL) algorithm

called covariant aggregation, which includes direct support for covariance between

dimensions. This algorithm is used for learning existential decision volumes within

SMRF.

As a prelude and potential complement to relational reinforcement learning

(RRL), I also present a learning method, using SMRF, to predict binary success

or failure of actions. I approach this action outcome prediction in light of Gibsonian

affordances (Gibson, 1977); if an action is likely to be successful, then one might

consider it as an affordance provided to the agent. In predicting outcomes, trees

learned by SMRF provide representational features for other learning algorithms,

such as support vector machine (SVM) classification or approximate reinforcement

learning (e.g., Lagoudakis and Parr, 2003). Among these features, in a matter rem-

iniscent of relational model trees (see, e.g., Vens et al., 2007), I also present a novel

method for extracting continuous, radial features from SMRF trees.

For reinforcement learning, I apply a representation policy iteration (RPI) mech-

anism (Mahadevan, 2005a), wherein representation learning is interleaved with pol-

icy learning. Across RPI iterations, a forest of SMRF trees is built for each kind

of action (e.g., placing one object on another vs. rotating an object). In my work,

I also present a method for continuous actions, rather than considering only ac-

tions parameterized on the discrete objects in a scene. My method for continuous

4



actions involves sampling possible actions as virtual objects. To summarize, key

contributions of this dissertation include the following:

� a novel multiple instance learning (MIL) algorithm, emphasizing support for

covariant decision volumes and instance labeling, and which provides the

method for learning decision volumes in SMRF;

� an affordance-oriented method for relational learning to predict action success

or failure in multidimensional, continuous domains;

� an algorithm for relational reinforcement learning (RRL) in multidimensional,

continuous domains, using a representation policy iteration (RPI) framework;

� a mechanism for automatic extraction of continuous, radial features from

SMRF trees;

� demonstration of ternary mapping functions in continuous domains that con-

sider the relative positions of three objects; and

� demonstration of a mechanism for continuous actions in RRL.

In experimental evaluation, I minimally adapt parameters for the core learning sys-

tem between different tasks. I test relational learning primarily in 2D simulated

soccer and block stacking domains. In a keepaway soccer benchmark task (Stone

et al., 2006), I show sample-efficient learning, compared to common, existing tech-

niques. I also show effective transfer between tasks with different numbers of ob-

jects/participants.

Going forward in this dissertation, Chapter 2 discusses related prior work, includ-

ing the reinforcement learning methods on which I base my work, and also discusses

other relational reinforcement learning methods. Chapter 3 presents my covariant

aggregation MIL algorithm. Chapter 4 discusses the SMRF relational tree learning

5



algorithm of Bodenhamer, which I use for relational learning in agent tasks, and to

which I have contributed the MIL method for learning decision volumes. Chapter 5

presents my SMRF-forest-based method for binary action outcome prediction, in-

cluding the use of ternary mapping functions. Chapter 6 presents my SMRF-RPI

method for RRL. This chapter also presents my method for extraction of continuous,

radial features and also my method for support of continuous actions. Chapter 7

presents experimental results for the SMRF-RPI method. Chapter 8 discusses con-

clusions and future work.

6



Chapter 2

Related Work

This work is primarily concerned with the learning of relational representations

for reinforcement learning. Therefore, I first address the topic of reinforcement

learning, with a focus on least squares policy iteration (Lagoudakis and Parr, 2003),

a method for evaluating actions using linear approximation, given a feature basis

for representing states and actions. My primary contribution in this dissertation is

a technique for iteratively learning relational features using multidimensional object

attributes to form such a basis for approximation. I therefore follow the discussion

of approximate reinforcement learning with a review of representation learning and

relational learning, especially as applied to relational reinforcement learning.

2.1 Reinforcement Learning

2.1.1 Markov Decision Processes and Q Learning

Multistep tasks occur regularly in daily life. Such tasks sometimes involve reaching

a particular goal, such as in driving to work. Others involve maximizing some

quantity, such as the amount of work performed during the day. An agent might

also receive negative rewards (corresponding, perhaps, to costs or punishment) while

working through a task. The reward framework adapts easily to goal-oriented tasks

simply by, for example, providing positive reward for reaching a goal. Multistep

tasks involving reward are often formulated as a Markov Decision Processes (MDPs),

in which the current world state and agent action fully determine the probability
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of next state and reward. That is, the MDP model assumes that the future is

independent of the past, given the present. This assumption is called the Markov

property. Formally, an MDP is a tuple of (S,A,P , R) where:

� S is the set of states,

� A is the set of actions available to the agent,

� P(s′, s, a) = Pr (st+1 = s′|st = s, at = a) is the state transition function where

s′ ∈ S, s ∈ S, a ∈ A, and t is the current time step, and

� R(s′, s, a) = E[rt|st+1 = s′, st = s, at = a] is the expected reward function,

where rt is the reward at the state transition (Bellman, 1957a; Sutton and

Barto, 1998).

For MDPs, commonly, the goal is for the agent to learn policy:

π(s, a) = Pr (at = a|st = s)

such that expected long-term reward is maximized. Deterministic policies might be

represented simply as functions from S to A. The cumulative reward, or return, to

be maximized could perhaps be the total reward for finite tasks or the discounted

future reward for infinite horizon tasks. The latter option,

Rett =
∞∑
i=0

γirt+i,

is perhaps most common, where γ ∈ [0, 1) is the reward discount factor.

More generally, actions can take arbitrary amounts of time. An MDP with tem-

porally extended actions is called a Semi-Markov Decision Process (SMDP, Sutton

et al., 1999), and such extended actions are called options. In discrete-time SMDPs,

options consist of a sequence of primitive actions where each primitive action takes
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one time step. The reward for option o taken during agent experience at time t is

merely the discounted sum of rewards for the individual actions in the sequence:

ro,t =
D−1∑
i=0

γirt+i,

where D is the duration of the option, and subsequent primitive actions or options

are discounted as for D time steps in the future. For the sake of RL formalisms

discussed in this section, I ignore the issue of temporally extended actions, as the

discount modifications are straightforward.

For learning policies, different techniques exist. Forward planning (such as in

Fikes and Nilsson, 1971) is a common technique to solve such tasks in ad hoc situ-

ations. Another common technique is reinforcement learning (RL, see Sutton and

Barto, 1998), which seeks to learn proper behavior for all situations based on past

experience. RL is commonly based on dynamic programming (DP) theory (Bellman,

1957b). The learning process includes estimation of the values of states and state-

action pairs. The value of a state for a given policy π gives the expected return for

starting in state s and following π afterward:

Vπ(s) = E[Rett|st = s, π].

Making use of a state value function requires knowledge of P . That is, the agent

needs to know which action leads to which next state in order to choose the best

next state. On the other hand, by knowing the value of state-action pairs, it is

possible to choose an action without explicit knowledge of future states. The Q

function (Watkins and Dayan, 1992),

Qπ(s, a) = E[Rett|st = s, at = a, π],
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is the expected return for choosing action a in state s and following policy π after-

ward. Given the MDP definitions for state transition and reward functions:

Qπ(s, a) =
∑
s′

P(s′, s, a)

(
R(s′, s, a) + γ

∑
a′

π(s′, a′)Qπ(s′, a′)

)
. (2.1)

Techniques such as the popular Q-learning (Watkins and Dayan, 1992) are able

to learn an optimal policy π∗ for an MDP without explicitly modeling P . Indicating

the Q function for π∗ as Q∗ and noting that π∗ always chooses the action that

maximizes Q∗, Equation 2.1 becomes:

Q∗(s, a) =
∑
s′

P(s′, s, a)
(
R(s′, s, a) + γmax

a′
Q∗(s′, a′)

)
.

Q∗ can be learned iteratively for finite states and actions during interaction with

the world by the update rule:

Qt(s, a) = (1− αt)Qt−1(s, a) + αt

(
rt + γmax

a′
Qt−1(s′, a′)

)
,

where αt is the learning rate at time t. Given certain conditions on αt and explo-

ration, Qt converges in the limit to Q∗. The optimal policy then is:

π∗(s) = argmax
a

Q∗(s, a). (2.2)

2.1.2 Least Squares Policy Iteration

For discrete states and actions, given conditions on αt and repeated sampling of all

actions in all states, the Q learning algorithm converges in the limit to Q∗ and π∗

(Watkins and Dayan, 1992). However, for large or continuous state-action spaces, it

might be infeasible to calculate an exact Q function. Standard function approxima-

tion techniques can be applied in such cases; for an overview, see Sutton and Barto
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(1998, Chapter 8).

One common method is to learn a linear combination of nonlinear features that

capture sufficient information about the world:

Q̂π(s, a) = φ(s, a)ᵀwπ,

where φ(s, a) is a k × 1 vector of arbitrary features, and wπ, also a k-vector, is of

feature weights. The dimensions of φ are presumed to be linearly independent.

One high-profile method for linearly weighted Q-learning is Least-Squares Temporal-

Difference Q-learning (LSTDQ) of Lagoudakis and Parr (2003). For reinforcement

learning in this dissertation, I use LSTDQ as well as the Least Squares Policy It-

eration (LSPI) method (Lagoudakis and Parr, 2003) for iteratively bootstrapping

feature weights from a fixed batch of experience. In the remainder of this section, I

present an overview of these methods.

Assuming rewards don’t depend directly on next state, Equation 2.1 can be

expressed as follows:

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

P(s′, s, a)
∑
a′∈A

π(s′, a′)Qπ(s′, a′).

For finite states and actions, this can be expressed in matrix form:

Qπ = R+ γPΠπQπ,

where Qπ andR are column vectors of size |S||A|×1, P is a matrix of size |S||A|×|S|

where:

P((s, a), s′) = P(s′, s, a),
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and Ππ is a matrix of size |S| × |S||A| where:

Ππ(s, (s, a))) = π(s, a).

Then PΠπ is a matrix of size |S||A| × |S||A|, where the rows indicate the current

state and action, and columns indicate the next state and action. That is, if the

agent is in a given state and takes a given action, what is the probability that it will

be in a given next state and take the given next action? Rows of P, Ππ, and PΠπ

each sum to 1.

As mentioned earlier, we can approximate Qπ by introducing abstract state

features, now in matrix form:

Q̂π = Φwπ,

where Φ is a |S||A| × k matrix of transposed feature vectors for every state and

action. This approximation gives:

Q̂π ≈ R+ γPΠπQ̂π and

Φwπ ≈ R+ γPΠπΦwπ.

Note that choosing Φ as the identity matrix is equivalent to using original states

and actions as the features for a finite state-action space.

Lagoudakis and Parr emphasize a least squares fixed-point solution to this sys-

tem, which finds weights that minimize the distance between Q̂π and R+ γPΠπQ̂π

using projection onto the space spanned by Φ:

Φwπ = Φ (ΦᵀΦ)−1 Φᵀ (R+ γPΠπΦwπ) .
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Algorithm 2.1 Least Squares Temporal Difference Q-learning (LSTDQ)

procedure LSTDQ(D, k, φ, γ, π) . D is a bag of data samples from any agent
behavior.

Ã← 0k×k
b̃← 0k×1

for (s, a, r, s′) ∈ D do

Ã← Ã + φ(s, a)
(
φ(s, a)− γφ

(
s′, π(s′)

))ᵀ
b̃← b̃+ φ(s, a)r

end for
w̃π ← Ã−1b̃
return w̃π

end procedure

Algorithm 2.2 Least Squares Policy Iteration (LSPI)

procedure LSPI(D, k, φ, γ, ε, w0)
w′ ← w0

repeat
w ← w′

w′ ← LSTDQ(D, k, φ, γ, πw)
until ‖w − w′‖ < ε
return w

end procedure

This yields the solution:

wπ = (Φᵀ (Φ− γPΠπΦ))−1 ΦᵀR.

To express that some states and actions have greater importance or are visited more

frequently than others, a diagonal weighting matrix ∆µ may be included (which is

equivalent to nonorthogonal projection):

wπ = (Φᵀ∆µ (Φ− γPΠπΦ))−1 Φᵀ∆µR.

The above solution requires an enumeration of all states and actions, whether

or not they are encountered. It also requires knowledge of P. Alternatively, the

following components can be approximated iteratively over examples from actual
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agent experience:

A = (Φᵀ∆µ (Φ− γPΠπΦ)) , and

b = Φᵀ∆µR,

where wπ = A−1b. Algorithm 2.1 shows the LSTDQ algorithm, which approximates

these components (as Ã−1 and b̃) and calculates wπ. Finally, Algorithm 2.2 shows

the Least Squares Policy Iteration (LSPI) algorithm for bootstrapping policy learn-

ing from a fixed set of examples D. Each iteration of LSTDQ provides a new policy,

which in turn affects the next calculation of Ã. Here, w0 contains initial weights,

which might be zero, small random values, or based on prior learning, if any, and ε

is a cutoff level to test for approximate convergence.

2.2 Representation Learning

In reinforcement learning, linear approximations of Qπ depend intimately on feature

space φ(s, a). Features could be manually specified in a domain-dependent fashion,

or perhaps in a somewhat generic form such as polynomials, radial basis functions,

overlapping tilings (Sutton and Barto, 1998), or cosine waves (Konidaris et al.,

2011). Alternatively, features can be automatically derived from knowledge of the

task space or learned from agent experience.

Feature selection and construction are both common concerns in the general

field of machine learning (Guyon and Elisseeff, 2003), not just for representations

for RL. Feature selection assumes an existing set of features, some of which might

be better for the task at hand than others. Many selection techniques are classi-

fied as either filter methods, operating before the primary learning mechanism is

used, or else wrapper methods, selecting features by testing the performance of the

primary learner given different feature subsets. Feature construction assumes that

the best representation might be (possibly nonlinear) functions of one or more of
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the originally available features. Newly constructed features might be aggregated

to the existing set, increasing dimensionality, or they might be used to replace ex-

isting features, possibly decreasing dimensionality (such as for principle component

analysis). Also, the recent explosion in deep learning methods (Bengio, 2009), build-

ing on older work such as multilayer artificial neural networks (Hornik et al., 1989;

Schmidhuber, 2015), is largely concerned with the topic of feature construction.

2.2.1 Feature Construction for RL

Early work in automatic feature or basis function construction specifically for rein-

forcement learning includes the Proto-Value Functions (PVFs) of Mahadevan (2007),

which generates basis functions from the state adjacency matrix. Another common

technique is to build functions based on the Bellman error (BE) of the current Q

function (Parr et al., 2008; Wu and Givan, 2010). For any particular example of

agent experience

BE = r + γQπ(s′, a′)−Qπ(s, a). (2.3)

As earlier discussed, the Bellman error is 0 in expectation for the correct Qπ. Fea-

tures constructed in this fashion are sometimes called Bellman Error Basis Features

(BEBFs). Mahadevan and Liu (2010) shows that BEBFs converge slowly for high γ

and suggests the use of Bellman Average Reward Bases (BARBs) as an alternative.

Features can also be constructed based on actual agent performance (Girgin and

Preux, 2008b). The techniques above are immediately useful to LSPI, although it is

worth noting that feature learning techniques also exist that are more directly tied

to other RL methods (e.g., Girgin and Preux, 2008a; Kersting and Driessens, 2008).

Finally, feature selection (in addition to construction) is also a concern in RL (for

example, Kolter and Ng, 2009).

The technique of interleaving feature learning and policy learning is called Rep-
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Algorithm 2.3 Generic Representation Policy Iteration (RPI) using LSTDQ

procedure RPI(γ, ε, w0)
repeat

Gather agent experience D.
Learn representation φ, whose dimensionality is k.
w′ ← w0

repeat
w ← w′

w′ ← LSTDQ(D, k, φ, γ, πw)
Optionally adapt the basis.

until ‖w − w′‖ < ε
until converged, if desired
return w

end procedure

resentation Policy Iteration (RPI) by Mahadevan (2005b). Although, in his work, he

primarily focuses on particular forms of basis function construction, this framework

is applicable to a full variety of techniques, as discussed above. I give a modified

RPI overview in Algorithm 2.3. When using LSTDQ, the inner loop of RPI is very

similar to LSPI, except with the added optional step for basis adaptation. Ma-

hadevan also leaves the outer loop optional, and other small variations also exist in

different presentations of the framework. Within my present work, I use the term

RPI generally to mean any interleaving of representation and policy learning.

2.3 Relational Reinforcement Learning

2.3.1 Relational Learning

In many real-world contexts, multiple objects exist with relationships between each

other. For example, a plate could be on a table, or one person might be standing

between two others. Such contexts are often described via first-order logic. For

example:

∃X plate(X) ∧ on(X, table)
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expresses that there exists at least one plate such that is on the table, which, here,

is presumed to be a constant. First-order logic, which includes quantifiers ∃ and ∀,

differs from propositional logic, which operates on fixed constants.

Logical quantifiers loop over possible objects in a scene. Importantly, the number

of objects in a scene might not be constant from one situation to the next. This

is often touted as a benefit of relational learning over propositional learning, where

relational also is often taken to mean first-order (Blockeel and De Raedt, 1998;

Džeroski et al., 2001). This same perspective consideres traditional machine learning

algorithms, operating on vectors of fixed length, to be propositional.

TILDE

While much of the field of Inductive Logic Programming (ILP; see Muggleton, 1991;

De Raedt and Kersting, 2008) includes some amount of first-order logical learning,

the most relevant alternative to my present work is the TILDE (Top-down Induction

of Logical Decision Trees) algorithm of Blockeel and De Raedt (1998). TILDE

recursively builds a decision tree, choosing query nodes that maximize some metric

(such as information gain) with respect to the training examples and background

knowledge. Each training example is a graph with objects and propositions giving

information about them, including relations between objects.

The types of queries available are manually given in the form of refinement

specifications. These specifications indicate how many variables may be introduced,

which may be reused from existing variables, which predicates can be used, and so

on. Further, manual lookahead specifications allow multiple queries to be introduced

at the same time (Blockeel and De Raedt, 1997), which otherwise is prohibited due

to exponential growth in the search space. For example, when playing soccer, it

might be relevant that an opponent is nearby. However, that some player is nearby

might not be very meaningful on its own, and that some player is an opponent
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might also be meaningless for making a decision, without also emphasizing where

that player is. However, asking all pairs (or more) of questions in a row without

having some meaningful distinctions made along the way is a deep search problem.

Therefore, a lookahead specification might be given to allow asking about team

membership followed by specific kinds of questions about location.

Free variables are implicitly existentially quantified. A query succeeds if it has at

least one true binding of constants to the variables. A recursive query down a tree

follows only one path, so if a query fails, it means that there exists no binding. In

this fashion, TILDE also supports universal quantifiers, although negative forms of

predicates need to be explicitly specified to allow positive universals. For example,

to say that all parts of a machine are working, a specification needs to be given to

allow asking that a part is not working, and a query can then test that there exists

no broken part. That is, the query would fail, and the example would proceed down

the negative branch, thus saying that all parts are in working order.

Core TILDE works with discrete data rather than with continuous values. There-

fore, continuous values must be discretized into bins before learning a tree or query-

ing an existing one (Blockeel and De Raedt, 1997). TILDE usually determines

thresholds in a supervised fashion based on information entropy in the training

set. For multidimensional attributes (e.g., position in 3D space), each dimension is

discretized as a separate variable, and a single query can also ask about only one

dimension. Multiple queries down a single branch a required to carve a volume in

multidimensional space.

TILDE has also been used for regression, in a batch-learning algorithm called

TILDE-RT (Blockeel et al., 1998) or an incremental version called TG (Driessens

et al., 2001). For TILDE regression, each scene has a single real-valued label. Each

leaf has a value which is the prediction for scenes arriving there. In learning, the

goal is typically to minimize mean squared error. Queries are selected that minimize
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this, where leaf values are selected as the mean of values of the scenes arriving at

them. Finally, ReMauve (Vens et al., 2007) is a variation that allows for linear

regression in the leaves by selecting aggregate or single values from the constants

bound to variables in a tree.

Other Relational Learning Approaches

As mentioned above, a variety of other relational learning systems exist. Most

notable for my present work is the Spatiotemporal Multidimensional Relational

Framework (SMRF) of Bodenhamer (2014), which I use for relational learning for

the methods presented in this dissertation. SMRF is a decision tree framework

that operates directly on multidimensional continuous attributes, as opposed to

the discretization and single-dimensional approach of TILDE. SMRF has also been

shown to handle large numbers of distractor objects better. I cover this framework

in detail in Chapter 4.

Additionally, a large body of work also exists in the field of Multiple Instance

Learning (MIL), which most commonly addresses simple existential questions in

multidimensional continuous spaces. As demonstrated by Bodenhamer (2014), such

algorithms can be applied to pairwise relational learning problems, again by creating

instances as pairs of existing objects, with attributes as relative measures. I address

MIL in more detail in Chapter 3.

2.3.2 Combining Relational Learning with Reinforcement Learning

As relational learning inherently addresses worlds with variable numbers of objects,

much work exists in the use of relational representations for reinforcement learning

(van Otterlo, 2005, 2012). Of course, relational planning mechanisms are one of the

traditional foci in artificial intelligence (e.g., Fikes and Nilsson, 1971).

In this dissertation, my own focus is on model-free reinforcement learning, typi-
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cally centered on variations around Q-learning. As seen earlier, learning the Q func-

tion allows policy learning without explicit modeling of the state following agent

action. From a relational perspective, one common Q-learning strategy is to employ

relational regression methods to approximate the Q function as experience increases.

One of the seminal works in this field is the relational reinforcement learning work of

Džeroski et al. (2001). This work uses TILDE-RT, where each training example con-

sists of (si, ai, qi), and each qi = ri+γmaxa′ Q̂j(si+1, a
′), in standard fashion. The Q

function is subscripted here by experience iteration j. Specifically, the agent gath-

ers a batch of experience based on current function Qj, and this generates learning

examples as described. With each new batch of examples, TILDE-RT learns a new

tree. After the first iteration, each new batch is aggregated to prior examples. Each

old example has its associated qi updated to match the latest Qj. Using the entire

set of examples, a new tree is learned which replaces the old tree. This provides

the Q-RRL algorithm. Džeroski et al. (2001) also present the P-RRL algorithm

which learns an additional tree predicting the policy directly and generalizes better

to environments where the Q function itself might be inconsistent.

Later work in this vein employs other relational regression algorithms in addi-

tion to incremental variations on the algorithms using TG (Driessens et al., 2001).

When incremental, each new MDP sample (s, a, s′, r) can be immediately used for

updating the Q function. Other relational regression algorithms employed includ-

ing relational instance-based regression (RIB) of Driessens and Ramon (2003) and

the TRENDI method of Driessens and Džeroski (2005), which learns trees via TG,

but uses RIB in the leaves rather than a constant mean value. The kernel-based

relational regression (KBR) method of Gärtner et al. (2003) uses graph kernels and

Gaussian processes for Q-function regression. Kersting and Driessens (2008) dif-

fer in learning relational trees (using TG) to follow a probabilistic policy gradient;

Natarajan et al. (2011) use this same method for imitation learning. Wu and Givan
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(2010) use a beam search through relational expressions finding those that corre-

late with Bellman error within a representation policy iteration framework. Jetchev

et al. (2013) use a relational nearest neighbor approach to learn grounded symbols

for MDP planning techniques. Zaragoza and Morales (2009) employ an RRL sys-

tem for robot navigation that discretizes state and action space but also constructs

continuous actions by interpolation. Many other techniques for RRL have also been

employed (van Otterlo, 2012).

Of note, across these techniques, while various algorithms other than trees have

been introduced for RRL, tree learning, and especially TILDE in various forms,

is one of the common methods that continues to be employed, suggesting its ver-

satility and effectiveness. However, as noted, SMRF has been shown to be more

effective than TILDE in multidimensional, continuous domains for binary classifi-

cation (Bodenhamer, 2014), but prior to my current work, it has not been used for

reinforcement learning.

2.3.3 Other Continuous, Relation-Oriented Task Learning

Of note beyond model-free RRL, other planning and RL techniques exist for con-

tinuous, multidimensional tasks of a relational nature. Some are relational in the

first-order sense, and some merely consider physical relations without support for

quantifiers. Some emphasize learning of abstract predicates and symbols, and others

use human-designed, high-level representations.

One notable work in relational MDPs for continuous tasks is that of Pasula et al.

(2007), which employs human-designed predicate representations of a 3D physics-

based, simulated block-stacking domain. Their algorithm learns rules predicting the

outcomes of actions, thus yielding a relational model useful for MDP planning. Lang

and Toussaint (2010) explore more advanced planning algorithms built atop models

learned by the method of Pasula et al. (2007). Kulick et al. (2013) continue this
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work, learning specific relations as noted earlier, working from simulated and real

robot action. They work from specific pairs of objects, though, rather than being

concerned with quantification when learning relations. Of note, they also include an

action with a continuous parameter (not associated with an actually present object),

but this action is used only for active learning and not for relational task planning.

Mugan and Kuipers (2009), Modayil and Kuipers (2008), and Konidaris et al.

(2014) also learn symbolic grounding of various sorts from multidimensional, con-

tinuous data, but only in propositional form. Mugan and Kuipers (2009) is also

an example of the field of Qualitative Reasoning (QR), which focuses on the use of

high-level representation for perhaps otherwise continuous values. QR can include

first-order relational work as well (for example Zhang and Renz, 2014). Xu and

Laird (2011) learn symbolic, relational rules and also continuous, non-relational ac-

tion models, fusing information from the two in making predictions about action

outcomes.

As yet another and much different approach, Verbancsics and Stanley (2010) use

the evolutionary HyperNEAT learning algorithm with a grid-based representation,

where objects in the scene are marked onto the grid. This inherently supports an

arbitrary number of objects in the grid, although the technique has a different nature

than the set-based approach of standard relational representations.
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Chapter 3

Multiple Instance Learning via Covariant Aggregation

A primary concern in relational learning is identifying the objects that play partic-

ular roles. For example, in soccer, does there exist an opponent between me and

the teammate to which I want to pass the ball? Such an opponent has the role

of a potential interceptor, and the opponent has this role because of the physical

relationship of being between me and my teammate. There are other players on

the field who do not have this role. Mathematically, calculating the positions of all

opponents relative to me and my teammate yields a set of vectors, and only those

vectors within a particular region represent potential interceptors. In learning how

to play, I need to determine what is in common between the cases where I make a

successful pass as opposed to when I lose control of the ball.

This becomes an existential binary classification problem, commonly called a

multiple instance learning (MIL) problem. For the larger relational setting, many

relationships might need considered. Is there someone between the passer and the

receiver? Is an opponent near the ball? Are multiple opponents nearby? Each such

question becomes a MIL classification problem, and the specific nature of the layout

of vectors for each question might vary. We might also want to ask more than one

question about the same players or objects. Also, because of the multidimensional

nature of physical attributes, it is possible that correlation exists between multiple

dimensions. These are among the concerns at hand in solving the MIL problem

for the relational tasks of interest in this dissertation. Therefore, in this chapter,

I contribute a novel MIL algorithm for learning simple, covariant decision volumes
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which performs robustly and quickly in a variety of example MIL data sets, without

parameter tuning to each case.

3.1 Introduction

Machine learning, including classification, usually addresses inputs of individual,

fixed-length feature vectors. In contrast, multiple instance learning (MIL) addresses

unordered sets or bags of instances, where each instance is commonly a feature vector

(Dietterich et al., 1997). Binary MIL classification problems commonly consider a

bag positive if it has at least one instance that is a positive example of some concept;

in other words, at least one instance is in a positive region of the vector space. In

this formulation, MIL is an existential classification problem:

positive(B) = ∃x∈B positive(x), (3.1)

where B is a bag, and each x is an instance. MIL therefore goes beyond ordinary

vector-based learning, in that the learning algorithm must identify relevant instances

while also learning to classify them. It also therefore provides a foundation for

existential relational learning, as will be further discussed in Chapter 4.

Common examples of MIL include that of molecule classification, where each

molecule has a set of potential foldings, and any one of those foldings might signify

the key behavior of the molecule. Image classification is another example, where

the task is to identify whether or not an image contains a particular object, given

a bag of visual features, where it does not matter where an object is in the image

or if other objects are present. A third example, relevant to relational task learning

within the scope of this dissertation, in playing a game of soccer, passing a ball

is likely to fail if there exists an opponent between the passer and the potential

receiver; positions of other opponents might be less relevant.
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Early MIL algorithms include axis-parallel rectangles (APR) of Dietterich et al.

(1997) and diverse density (DD) of Maron and Lozano-Pérez (1997). APR greedily

selects discriminating features, choosing minimum and maximum bounds for each

feature value to ensure that at least one instance from each positive bag is included.

DD defines a probabilistic metric emphasizing instances with many positive and

few negative bags nearby. Using the DD metric, gradient ascent selects the best

central feature vector and the scaling for each feature. Many other MIL algorithms

and multiple-instance problem formulations (beyond just existential queries) have

since been developed (see Foulds and Frank, 2010). These include such concerns as

bag distance metrics and MIL-oriented kernels and constraints for support vector

machines. While many of these techniques are often quite effective, learned models

are not always intuitively clear to humans. Further, some techniques, including

DD and APR, label individual instances as positive or negative, while others focus

exclusively on labeling each bag as a whole.

In our work, we seek to determine instance labels, as well as to provide a simple

description of the relevant volume in the feature space, such as those provided by

APR and DD. However, neither APR nor DD acknowledge covariance that can occur

across features. Covariance can arise, for example, in color models (such as yellow

in RGB space, which contains equal parts red and green) or in spatial configurations

(where interesting cases have some object along a particular vector). In MIL, simply

realigning data to principal components is not ideal, as the representative instances

might align very differently than the aggregate set of instances from positive bags.

While Zhao et al. (2013) address learning of covariant distance metrics within MIL,

they focus neither on simple decision volumes nor instance classification. Most

similar to our own work is the recent work of Kandemir and Hamprecht (2014),

who learn a Gaussian mixture model for MIL instance prediction using a Bayesian

formulation. In this chapter, we present a learning technique that directly addresses
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the learning of simple, covariant decision volumes for instance label prediction, and

we show that our method is robust across a variety of learning problems without

parameter tuning.

In the remainder of this chapter, we describe our MIL algorithm, which learns

a covariant decision volume via iterative aggregation of volume-describing instances

from positive bags. We then evaluate our method, on both synthetic and real-world

data sets, against other well-known algorithms (including DD) that either describe

ellipsoidal regions or else use radial feature kernels.

3.2 Learning Algorithm

We follow the common existential, instance-classifying MIL formulation established

in Equation 3.1. In this form, the classifier’s job is to classify individual instances.

If any instance in a bag is found to be positive, then the bag itself is labeled as

positive.

The differentiating aspect of our approach is that of covariant decision volumes.

This contrasts with the axis-aligned volumes of APR and DD. Specifically, we de-

scribe a decision volume by its mean µ, covariance V , and radius r. Parameters µ

and V provide the Mahalanobis distance from the volume center:

DM(x|µ, V ) =
√

(x− µ)TV −1(x− µ). (3.2)

Any instance x within radius r is considered positive:

positive(x|µ, V, r) ⇐⇒ DM(x|µ, V ) ≤ r. (3.3)

Throughout our discussion, we treat instances as feature vectors within a Eu-

clidean topology. As such, we also refer to instances as points.
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We now describe an algorithm for learning covariant decision volumes from train-

ing data with labeled bags. Algorithm 3.1 gives informal pseudocode for the learning

process, and Figure 3.1 shows several steps of the process using a synthetic data set

in which positive bags are more likely to have at least one instance along the diago-

nal. In summary, our algorithm seeks a set of key points, K, from which to estimate

parameters µ and V . This process begins with a single key point from one sampled

positive bag. At each iteration, the algorithm chooses a new key point from an

unrepresented positive bag to add to this set, where the candidate key point from

a bag is its point nearest to the current decision volume center (by Equation 3.2),

also called the bag’s witness point. Given the new potential set of key points, µ and

V are reestimated, and a new radius, r, is chosen to maximize the training accuracy

(similar to the method of Auer and Ortner, 2004). Key point aggregation continues

while training set accuracy across recent iterations suggests possible improvement.

In the remainder of this section, we elaborate on each step of the algorithm.

3.2.1 Covariance Estimation

Our algorithm determines a covariant, ellipsoidal decision volume starting from a

single key point. Additional key points are aggregated iteratively. We calculate µ

as the mean of the key points. However, when there are few key points relative

to the dimensionality, covariance V is poorly defined. To condition the covariance,

we begin with an inverse Wishart prior based on all points from all positive bags.

The inverse Wishart distribution is conjugate prior to the multivariate covariance

matrix (see Gelman et al., 2013). That is, given additional observations defining a

covariance matrix, the posterior distribution is still inverse Wishart.

The inverse Wishart distribution has two parameters: a scale matrix, Ψ, and

degrees of freedom, ν. The matrix Ψ represents a prior observation of covariance
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Algorithm 3.1 Covariant Aggregation

Begin set K with one initial key point.
Let BR be all positive bags not containing initial point.
Estimate µ and V from K.
LetW be witness points of minDM(x|µ, V ) for all bags.
Choose radius r to maximize training set accuracy.
Remember (µ, V, r) as initial best.
while progress continues do

Let BS be M sampled bags from BR.
for all B in BS do

Let K ′ be K ∪ the witness point from W for B.
Determine µ′, V ′, W ′, and r′ using K ′.
Evaluate training accuracy for K ′.

end for
Update K, µ, V , W , and r for best B sampled.
Update BR to exclude best B.
if new training accuracy ≥ previous best then

Remember new best (µ, V, r).
end if

end while
Return best (µ, V, r).

scaled by ν presumed observations. The posterior Ψpost is given by:

Ψpost = ncov(X) + Ψ

where

ncov(X) = (X − E[X])(X − E[X])T (3.4)

is a scale matrix based on observations as column vectors in the matrix X.

Usually, the magnitude of the posterior covariance depends on the sum of ν and

the number of new observations. However, in our case, we use our estimate of V

only for the shape and orientation of the decision volume. Radius r is determined

at a later step.

Also, because our learning problem is multiple-instance, there is no necessary

relationship between all instances from positive bags and the final decision volume.
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(d) At 24 key points, the final decision
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Figure 3.1: Overview of the learning process. Circles indicate points from positive
bags, and squares indicate negatives. Pale circles indicate key points. Larger mark-
ers indicate witness points: the nearest point from each bag, given the current mean
and covariance.

Therefore, we treat the weight of the prior as independent of both the number of

bags and the number of instances. Instead, we use a hand-selected parameter, w,

to influence the overall weight of the prior. Our effective posterior covariance is

therefore:

Vpost = ncov(K) + w ncov(P )/p, (3.5)

where K represents the key points and P represents all points (quantity p) from all

positive bags. Figures 3.1(a) and 3.1(b) show an initial covariance based entirely
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on the prior, while Figures 3.1(c) and 3.1(d) show how an increasing number of key

points can increasingly change the volume shape.

However, the covariance could still be poorly conditioned, especially in situations

of high dimensionality. If the condition number of the covariance matrix is above a

particular threshold c, we add a constant diagonal to this covariance:

V =


Vpost if

∣∣max Λ
min Λ

∣∣ ≤ c

Vpost + max Λ−cmin Λ
c−1

I otherwise,

(3.6)

where Λ is the set of eigenvalues of Vpost, and I is the identity matrix. This yields

a covariance matrix with a maximum condition number of c.

3.2.2 Decision Volume Radius

To choose decision volume radius r, we follow the optimal ball algorithm of Auer

and Ortner (2004). Specifically, we select the radius that maximizes classification

accuracy across all bags in the training set. Because each bag is classified as to

whether any of its points lie within the decision volume, only the nearest point to

the volume center is of interest. This nearest point is called the witness point for its

bag. We differ from Auer and Ortner primarily in our use of Mahalanobis distance.

Formally, our set of witness points W is defined as:

W =

{
argmin
x∈B

DM(x|µ, V )

∣∣∣∣B ∈ B} , (3.7)

where B represents all training bags (both positive and negative).

To choose radius r, we first sort W by increasing distance, and then perform

a linear scan for maximal accuracy, also as suggested by Auer and Ortner. Fig-

ure 3.1(a) illustrates training set accuracy as a function of radius, and Figure 3.1(b)

shows the corresponding radius maximizing accuracy.
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3.2.3 Key Point Aggregation

Before the outer loop of Algorithm 3.1, the algorithm samples a single positive bag.

For each point in the bag, using only the covariance prior as V , a radius is chosen to

maximize training accuracy. Iterative covariant aggregation, shown in Figure 3.1,

begins from the point yielding highest accuracy.

At each aggregation step, the algorithm samples M positive bags currently un-

represented among the key points, where M is an algorithm parameter. Further,

to keep the search localized, only bags whose witness points lie inside the current

decision volume are sampled, where, as suggested in Figure 3.1, the set of candidate

bags changes as the volume changes. The witness point (and no others) from a

sampled bag is tentatively added to the key points, and a new decision volume is

constructed. Among sampled bags, the tentative key point set with highest accuracy

is selected, and the aggregation process repeats.

Early in the search process, with few key points, the decision volume’s shape is

very flexible. It becomes more established as the number of key points increases.

Therefore, to terminate the aggregation process, we make a linear least squares

estimate of training accuracy over the most recent A aggregation steps, where A is

an algorithm parameter. We continue aggregation if the accuracy slope is positive

and if, continuing the current slope through remaining positive bags, the accuracy

would surpass the previous best (including across restarts, as discussed shortly).

Otherwise, aggregation stops, retaining the model with the highest accuracy. If

decision volumes at multiple iterations have equal accuracy, we select the one with

the most key points, as this presumably better describes the volume. At minimum,

a full window of A iterations is required before termination.

As is common for stochastic algorithms, we restart the learning process multiple

times. After each aggregation process, we sample another positive bag for the next
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restart. Algorithm parameter N determines the number of restarts. Of the N

resulting models, the volume with the highest accuracy with respect to the training

set (or, again, in case of a tie, the one with the most key points) is selected as the

final volume.

3.3 Experimental Evaluation

We test our method on two types of data sets: (1) synthetic data in two or three

dimensions, of which some exhibit covariant regions of interest (discussed below),

and (2) standard third-party MIL data sets, which usually have high dimensionality

and do not necessarily exhibit interesting covariance.

We compare against other algorithms with ellipsoidal decision boundaries or

ellipsoidal kernels. Techniques with ellipsoidal boundaries include the non-boosted

optimal ball algorithm of Auer and Ortner (2004), and the DD (Maron and Lozano-

Pérez, 1997) and EM-DD (Zhang and Goldman, 2001) algorithms. None of these are

capable of expressing covariance, although DD and EM-DD scale original axes. We

use the Weka (Hall et al., 2009) implementations of these algorithms with default

parameters.

We also compare against SVM techniques mi-SVM, MI-SVM (Andrews et al.,

2002), and MILES (Chen et al., 2006). For mi-SVM and MI-SVM, we use (isotropic)

RBF kernels, and the MILES feature set is also based on a radially decaying measure.

All three are therefore capable of expressing arbitrarily nonlinear surfaces, including

approximations of covariance. Unlike other techniques compared here, MILES is a

bag-only classifier rather than an instance classifier, but we include it because it is

simple and performs well. We use the MISVM package of Doran and Ray (2014)

for implementations of mi-SVM and MI-SVM. We use our own implementation of

the MILES feature set with LIBLINEAR (Fan et al., 2008) as the SVM classifier,
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using the L2-loss L1-regularization option, which differs from the L1-loss of standard

MILES.

In testing the algorithms, we are primarily concerned with performance “in the

wild.” That is, we assume that new learning problems need to be addressed without

the opportunity for extensive analysis and parameter tuning. We therefore hold all

parameters constant for our learning algorithm. Specifically, we hold constant the

progress window size A at 8, covariance prior weight w at 10−1, max covariance

condition c at 105, and both number of restarts N and number of aggregation

bags sampled M at 4. We have chosen these parameters based upon exploratory

investigations with some of the synthetic data sets, as well as the well-known Musk

1 data set (Dietterich et al., 1997).

Using a similar amount of exploration, we have also selected parameters C and

γ for evaluation of SVM-based techniques. For C, we use a constant value of 104.

We choose γ = 1/2σ2 using a heuristic calculation for σ as the mean of the tenth

and ninetieth percentiles of all (positive and negative) inter-point distances in the

training set (e.g., as used as a starting point by Takeuchi et al., 2006).

Also, in exploration with DD and EM-DD, we found it necessary to filter the

Musk data sets for meaningful learning results. Specifically, we divide the values of

each feature dimension by their standard deviation. For consistency, we do this for

all data sets for DD and EM-DD. We have not performed such filtering for other

learning methods, although mechanisms such as the inverse Wishart prior used by

our method provide a similar effect.

For our synthetic data sets, in addition to the heuristically-chosen SVM param-

eters, we also test against tuned SVM parameters. In these cases, we search across

a grid of C values from 10−4 to 109 (stepping by powers of 10) and factors of our

heuristically-chosen γ, from 2−7 to 27.

Our reported results use different random seeds for data generation, shuffling,
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and/or stochastic learning than those used during exploratory evaluation or param-

eter selection.

3.3.1 Synthetic, Low-Dimensional Data Sets

Our method is designed for use in low-dimensional (often physical) settings with

potentially covariant classification volumes. We have therefore designed multiple

synthetic learning problems that exhibit interesting characteristics in two or three

dimensions. Summarized in Table 3.1, these data sets consist of the following mix-

ture distributions:

� Covariant 1, depicted in Figure 3.1, is a 2D problem where negative instances

come from one of two isotropic Gaussians of standard deviation 1 and means

of (−2, 2) and (2,−2), respectively. Positive instances come from a covariant

Gaussian along the orthogonal diagonal, centered at (0, 0). Eigenvalues of the

positive distribution are 1 and 1/52. All bags have 3 instances, where exactly

1 of the 3 is drawn from the positive distribution for each positive bag.

� Covariant 2 is the same as Covariant 1, except that there is a single nega-

tive distribution, centered at (0, 0) along with the positive distribution. This

problem is therefore very noisy.

� Color is a 3D problem where each distribution represents a red, green, blue,

or yellow color in RGB space. The distributions are based on photographs of

printed color patterns, and thus represent data with real-world characteristics.

Red, green, and blue are negative distributions. Yellow is the positive con-

cept and is inherently covariant in RGB space. All bags contain 5 instances.

Positive bags again contain exactly one instance drawn from the positive dis-

tribution.
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Dimensions Covariant # Pos Dists # Neg Dists Bag Size
Color 3D Yes 1 3 5
Covariant 1 2D Yes 1 2 3
Covariant 2 2D Yes 1 1 3
Disjunctive 2D No 2 1 10

Table 3.1: Summary of synthetic data sets. Each positive bag contains exactly one
instance drawn from a positive distribution.

� Disjunctive is a non-covariant data set, designed to challenge our proposed

approach by drawing positive instances from a non-compact set. A single neg-

ative, isotropic distribution is centered at (0, 0) with a standard deviation of 1.

The positive distribution is a mixture of two, isotropic Gaussian distributions,

centered at (±3, 0), each with a standard deviation
√

1/2. All bags contain

ten instances, filling up the negative space thoroughly. Positive bags contain

exactly one instance drawn from either side of the mixture (both are equally

probable).

For all synthetic data sets in this work, we generate 100 training bags (50 positive

and 50 negative) and 100 test bags. Because the data is synthetic, rather than

doing n-fold cross-validation, we generate 100 independent training and test sets for

calculating statistics.

3.3.2 Standard MIL Data Sets

In addition to our synthetic cases, we also test using several standard data sets.

Specifically, we use MIL data sets provided by the Weka project, including most of

those evaluated by Foulds and Frank (2008). We specifically evaluate performance

on the well-known data sets Musk 1 and Musk 2; other chemical classification sets

Thioredoxin and Mutagenesis Atoms, Bonds, and Chains; the Corel image data sets

Elephant, Fox, and Tiger; and the train direction classification problem East-West.

From the Weka-distributed sample files, we exclude the Component, Function, and
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Process data sets because they are very large. We also exclude two data sets for

applicability reasons: Suramin, because some instances contain unspecified values

and West-East, because it is a universal rather than an existential problem. Note

also that any artificial tuning to Musk 1 performance imposed by our exploratory

selection could have negative consequences on the remaining datasets.

Of the third-party data sets we test, the least number of dimensions (for Thiore-

doxin) is 8. Some data sets (such as Fox or Musk) have more than one hundred.

Furthermore, we have no expectation in advance of which data sets are well repre-

sented by covariant volumes. As such, these standard sets are outside the designed

use case of our method. Still, we include test results here for comparison with other

MIL algorithms. For synthetic data sets, statistics are computed using stratified

10-fold cross validation.

3.3.3 Evaluation Method

We perform statistical comparisons using a standard two-sample, two-tailed t-test

using α = 0.05. For cases where the mean score of our method is better than

that of another, we additionally apply Šidák correction for multiple comparisons:1

αcorrected = 1 − (1 − α)1/n. For our 9 comparisons, αcorrected ≈ 0.00568. When

another method outperforms ours, we retain the original α. This has the effect of

not overestimating the performance of our approach, whether our approach performs

better or worse than another.

We report algorithm performance using the Peirce Skill Score (PSS), which pe-

nalizes merely reporting the most common label (Stephenson, 2000). In binary

classification, this score is equivalent to the hit rate minus the false alarm rate. A

PSS of 1 is perfect, 0 is random or majority class assignment, and −1 is a perfectly

incorrect labeling. Many of our evaluated data sets have balanced or nearly-balanced

1Jensen and Cohen (2000) refer to this correction as Bonferroni adjustment.
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labels. Therefore, higher PSS here often implies higher accuracy, but not in every

case.

3.3.4 Results

As shown in Table 3.2, our method, labeled CovAgg, outperforms the other methods,

with the exception of MI-SVM, on the three explicitly covariant data sets. Across

these sets, MI-SVM performs about as well as our approach. As further shown

in Table 3.3, the default parameter values for MI-SVM on these sets are already

near the best performing parameters. Parameter tuning brings mi-SVM to nearly

the same performance level. It therefore also seems that, even in noisy settings,

our method extracts covariant volumes very effectively. As expected, Optimal ball

(“OptBall” in the table), DD, and EM-DD fail to support covariance, as exhibited

by the low performance.

On the other hand, all methods seem to do fairly well on the Disjunctive set, per-

haps with the exception of EM-DD. While CovAgg performs below the level of some

others, the difference isn’t great. Most of the techniques, including CovAgg, extract

volumes covering one of the two positive areas. Notably, mi-SVM and MILES-LL

seem capable of extracting both areas. It is unsurprising that an SVM with an RBF

kernel could accomplish this, because support vectors with radial influence can be

chosen on both sides. Interestingly, MI-SVM, even with parameter tuning, is unable

to find both positive regions.

Across the standard, third-party data sets, CovAgg performs approximately as

well as the other methods. It does fall behind most techniques on Tiger and behind

MI-SVM and MILES-LL on Elephant. The SVM techniques, on the other hand,

perform poorly overall on the Mutagenesis data sets using the default parameters.

That is, our heuristic SVM parameter selection works well for some problems, but

tuning is needed for others.
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mi-SVM* MI-SVM* MILES-LL*
Color 0.92± 0.01 < 0.95± 0.01 > 0.90± 0.01
Covariant 1 0.76± 0.02 0.78± 0.01 0.73± 0.02
Covariant 2 > 0.20± 0.02 0.22± 0.03 > 0.22± 0.02
Disjunctive < 0.65± 0.02 < 0.35± 0.06 < 0.56± 0.02

Table 3.3: Mean PSS, using SVM parameters chosen by grid search. Bounds
represent 95% confidence intervals presuming a t-distribution. Inequalities, where
present, indicate a statistical difference relative to CovAgg.

Overall, the SVM techniques compare in performance to ours on covariant prob-

lems, but only if tuned properly. Across the board, the simpler techniques (such as

CovAgg and Optimal Ball) are less likely to completely degenerate, as do the SVM

methods on the Mutagenesis data sets.

Further, Table 3.4 shows CPU user-space execution time. At least for these

implementations, mi-SVM and MI-SVM are usually fast but are occasionally very

slow at converging. In the case of Thioredoxin, the mi-SVM and MI-SVM runs failed

to finish (cut off at over 24 CPU hours). Tuning SVM parameters requires additional

time, unless this cost is amortized in prior analysis of a data set. (Note that we

do not report running time for the tuned SVM results reported here.) Finally, we

also find that DD, as reported by Zhang and Goldman (2001), can be very slow

at times. It should also be noted that each training and testing of Weka-based

implementations includes overhead Java VM startup time, which is probably most

notable in the faster-running synthetic data sets.

3.4 Discussion

We have presented a method for multiple instance learning of covariant volumes

that provides labels for indiviudal instances in a bag and uses a simple, parametric

representation for the decision volume. Without performing problem-specific pa-

rameter tuning, our approach performs particularly well relative to other, standard
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MIL approaches on problems in which the data exhibit covariant properties. Our

approach also performs competitively on typical MIL data sets. As such, we believe

our algorithm to be a viable and effective MIL approach, especially when robustness

to covariance is required, and when parameter turning is not a practical option.

Going forward, we are interested in the application of MIL methods to learning in

multi-attribute, relational settings (e.g., Blockeel and De Raedt 1998; Bodenhamer

et al. 2009). In these contexts, the MIL classifier is applied repeatedly for each

potential relational question, and must be efficient and robust in finding effective

decision volumes. While algorithms such as MI-SVM could perform better for some

specific problems, the additional time required to select problem-specific parameters

and the potential complexity of the resulting decision volumes could yield these

alternative approaches ineffective in the broader relational settings.

In future work, we expect to apply our method to non-Euclidean topologies, such

as orientation in two or three dimensions. While we have emphasized covariant

aggregation here, the technique is easily applicable to other forms of parametric

distance.
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Chapter 4

The Spatiotemporal Multidimensional Relational Framework

The world can be viewed in terms of objects and their relationships. In cluttered

indoor environments, one object might be on or beside another. In a sports game, an

opponent might be between two teammates. Key relationships are important to an

agent when making decisions, and many potential relations need considered within

the context of a task.

For its relational representation and learning capabilities, this work incorpo-

rates the Spatiotemporal Multidimensional Relational Framework (SMRF) of Bo-

denhamer (2014; see also Bodenhamer et al. 2009, Palmer et al. 2012). Primarily,

this chapter serves as an overview of prior work by Bodenhamer. However, the co-

variant aggregation (CovAgg) multiple instance learning (MIL) algorithm, detailed

in Chapter 3, forms a key component of the SMRF learning algorithm and is one of

the primary contributions of this dissertation. I explain the role played by CovAgg

later in this chapter.

4.1 SMRF Trees

SMRF expresses relational concepts in the form of decision trees. These trees assess

the probability that a given collection (or scene) of objects contains an instance of

a particular target concept. The objects have associated attributes, which can be

either discrete or continuous scalar or multidimensional. Figure 4.1 shows the types

of nodes that can appear in a SMRF tree:
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Instantiate A

Is red(A)?

Is atOrigin(A)?

Yes

Instantiate B

No

0.0

Error

0.99

Yes

0.04

No

0.0

Error

Is near(A, B)?

0.01

Yes

0.98

No

0.0

Error

Figure 4.1: Hand-crafted SMRF tree encoding a disjunctive concept that identifies
either a red object at the origin, or an object that is not red and has another object
not near it. Predicates such as red and near are defined in terms of decision volumes
in the RGB color and physical distance metric spaces, respectively.

� Instantiation nodes, shown as parallelograms, bind an object from a scene to

a variable. An ordered sequence of such bindings is called an instantiation se-

quence, which is derived by a sequence of instantiation nodes down a particular

branch of a tree.

� Question nodes, shown as rounded boxes, sort instantiation sequences down

various branches of the tree, based on the attributes of the objects in that

sequence. If a question is true for a particular instantiation sequence, it is

sorted down the Yes branch, or if false then down the No branch. The Error

branch is used for cases when an attribute is undefined or if not enough objects

exist for instantiation. Different instantiation sequences from the same scene

can be sorted down different branches.

� Leaf nodes, shown as rectangles, give the probability of membership in the

target concept for instantiation sequences arriving there. The probability that

a scene contains an instance of the target concept is the highest probability
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assigned to any instantiation sequence from the scene.

In this way, SMRF trees resemble existentially quantified logical expressions. For

example, the SMRF tree in Fig. 4.1, given some probability decision threshold, is

equivalent to the following first-order logic expression:

∃A
[
(red(A) ∧ atOrigin(A)) ∨

(¬red(A) ∧ ∃B [¬near(A,B) ∧ A 6= B])
]
.

In SMRF, each object has attributes that can be multidimensional and contin-

uous. Relations are implied as functions of attribute values. For example, objects

may include a position attribute, as defined within some fixed coordinate frame. In

addition, the position of one object may be described relative to that of another.

Each object also has a distinct identity, and subsequent instantiations down a branch

of a tree do not repeat objects earlier in the sequence (hence, A 6= B in the exam-

ple). Such sequential instantiations produce permutations of the objects. These are

pruned, however, by the question nodes between them. Often, only a small subset of

earlier instantiation sequences filter down to branches with additional instantiation

nodes (Bodenhamer, 2014, Section 7.2.4).

The SMRF approach allows complex question node models to be defined in

terms of the multidimensional attributes of the objects in the training data. While

a decision surface in a multidimensional space can be represented in a variety of

ways, we choose to define them in terms of three components:

� φ(I), a mapping function, which computes some quantity over a subset of the

attributes of a subset of the objects in instantiation sequence I,

� p(•|θ), a probability density function (pdf) defined over the codomain of the

mapping function, and
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� Θ, a probability density threshold, which determines the sorting at the ques-

tion node.

A mapping function maps an instantiation sequence to a value in a metric space.

It does this by selecting some number of objects out of an instantiation sequence,

and performing a numeric operation on their attributes. For instance, a mapping

function might compute the relative difference of the color attributes of the first and

second objects in the sequence. Another mapping function might, as an identity

function, simply return the value of the location attribute of the fourth object in

the sequence.

For defining a decision boundary in Euclidean spaces, the Gaussian distribution

is a convenient choice of pdf. Combined with a likelihood threshold, this defines an

ellipsoidal volume in the space; points falling within this volume are considered as

satisfying the question. For 2D orientation, we use a von Mises distribution (Mardia,

1975). The representative power of the SMRF approach is found in the different

possible mapping functions that are available, and the ability to create an appro-

priate decision volume based on the training data. If, for example, the distance

between two objects is a central aspect of the target concept, a “distance” mapping

function allows this relationship to be expressed, and the pdf/threshold pair allows

the appropriate distance between the objects to be modeled from the training data.

Formally, in the classification process, a question node computes p(φ(I)|θ) for

each instantiation sequence I sorted to that node. For each I, if p(φ(I)|θ) ≥ Θ,

then I is sorted down the Yes branch. If p(φ(I)|θ) < Θ, I is sorted down the No

branch. If φ(I) is undefined for I (e.g., if insufficient objects exist for instantiation

or if an attribute used by φ is absent), then I is sorted down the Error branch.
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Algorithm 4.1 SMRF Learning Algorithm

Begin with a stub tree consisting of one leaf.
repeat

Pick the leaf with best potential to improve L.
for all n attempts each of all possible expansions do

Create a new candidate tree with leaf expanded.
Expand instantiations for new instantiation nodes.
Calculate mapping values for all instances.
Determine decision volume using L-aware CovAgg.
Determine leaf node probabilities.
Calculate p for likelihood ratio test.

end for
Select the candidate tree with the lowest p if < αcorrected.

while the expansion was successful
Return the best tree accepted.

4.2 SMRF Learning Algorithm

The objective of the SMRF tree learning algorithm is to grow a tree that accurately

predicts the label of novel object scenes and, in the process, distinguish which objects

in each scene play an important role. Because scenes are probabilistically classified,

the algorithm seeks to build a tree that maximizes likelihood over the training set.

The likelihood (L) of a tree given the training data is defined as follows:

L =
∏
S∈S+

Pr (W(S))
∏
S∈S−

(1− Pr (W(S))) , (4.1)

where S+ and S− denote the set of positive and negative scenes, respectively, labeled

based on whether or not they contain an instance of the target concept. W(S) de-

notes the highest-probability leaf in the tree into which some instantiation sequence

from scene S is sorted. Pr (`) denotes the probability value that leaf ` assigns to

instantiation sequences that reach it. Of course, the learning algorithm operates in

log likelihood space for numerical reasons.

The SMRF learning algorithm, overviewed in Algorithm 4.1, expands one leaf at
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each iteration. Each expansion includes zero or more instantiation nodes followed

by one question node. The set of mapping functions and rules governing their usage

are configurable, in a somewhat similar fashion to the refinement specifications of

TILDE (Blockeel and De Raedt, 1998). The best expansion is accepted if it passes a

likelihood ratio test (Huelsenbeck and Crandall, 1997) with Šidák correction (called

Bonferroni adjustment by Jensen and Cohen, 2000) for the repeated expansion at-

tempts.

The construction of decision volumes (which consist of a pdf and likelihood

threshold) in the SMRF learning algorithm differs from common relational learning

methods such as TILDE in that SMRF directly addresses multidimensional con-

tinuous attributes. For a given expansion, the sampled mapping function φ under

consideration (e.g., relative position), transforms tuples of objects from the current

instantiation sequences into points in some metric space. Each positive or negative

scene (from S+ or S−, respectively) contributes an unordered set of such points.

As SMRF addresses existential questions, we wish to find the volume within this

metric space containing at least one point from as many positive scenes and from

as few negative scenes as possible. This is the common formulation of the multiple

instance learning (MIL) problem (Dietterich et al., 1997). Because of our concern

for potential covariance, we employ the covariant aggregation (CovAgg) learning

algorithm as detailed in Chapter 3.

To use CovAgg for SMRF, we first need to (1) map the SMRF context into the

CovAgg context and (2) alter the optimization metric used by CovAgg. To map

SMRF into CovAgg, every instantiation sequence at a question node provides an

instance point from its scene, which constitutes a MIL bag. For pragmatism, at

the time a question volume is being learned, we entirely ignore other leaves in the

tree. Error sequences also do not participate. We alter the metric used by CovAgg

because of the probabilistic nature of SMRF classification. Specifically, we seek to
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maximize L, as defined by Equation 4.1, rather than classification accuracy. As L is

defined in terms of leaves, we presume the existence of virtual leaves during CovAgg

learning. Instances within any particular volume are sorted to a virtual Yes leaf, and

those outside to a virtual No. Then, the fraction of positive scenes represented inside

the volume gives the probability for the virtual Yes leaf. Scenes entirely outside the

volume determine the probability for the No. These probabilities allow calculation

of L. Also, given a center and covariance for a decision volume, we can calculate

logL for varying threshold distances efficiently in the same fashion as described for

accuracy in Section 3.2.2. The adaptation of CovAgg to SMRF, in addition to the

CovAgg learning algorithm itself, is a key contribution of this dissertation.

Once the decision volume is in place, the instantiation sequences are sorted

accordingly, and the leaf node probabilities are assigned. Algorithm 4.2 gives an

overview of how this is done. Because each scene is assigned a probability based on

leaf with max probability across all instantiation sequences for the scene, each scene

participates in assigning probabilities for only one leaf. We first iterate across each

leaf, tentatively choosing a probability for each based on the fraction of positive

scenes with instantation sequences present. There is no additional effect if a scene

has multiple sequences present. The leaf with the highest tentative probability has

the assignment retained. We then repeat the process for remaining leaves, assigning

a probability to only one leaf at a time. At each outer iteration, all instantanti-

ation sequences from all scenes represented in the assigned leaf are removed from

consideration in remaining leaves.

Bodenhamer (2014) presents further details of the SMRF tree learning algorithm.

Bodenhamer also empirically demonstrates SMRF’s advantage over TILDE and sev-

eral MIL algorithms when addressing multidimensional, continuous attributes or

when large numbers of distractor objects exist in scenes.
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Algorithm 4.2 SMRF Leaf Probability Assignment

Let LR be the set of leaves that need probabilities assigned, initialized to all leaves.
Let SR be the set of scenes unassigned to a winning leaf, initialized to all scenes.
while LR 6= ∅ do

for all leaves in LR do
Assign a tentative probability to the leaf using only scenes from SR.

end for
Let `W be the leaf from LR with highest tentative probability.
Assign the tentative probability of `W as its final probability.
Remove `W from LR.
Remove scenes at `W from SR.

end while

4.3 Mapping Functions

The core SMRF framework depends on a set of mapping functions to access data

about objects in a scene. While the precise set of function can be specific to a

domain or task, some are common for basic physical properties. In particular, all

tasks using SMRF in this work make use of the following functions or some subset

of them:

� Identity Location (A), which returns the vector location or position of the

center of A, denoted here as xA,

� Distance Location (A,B), which returns the distance betweenA andB, ‖xB − xA‖,

� Difference Location (A,B), which returns the relative location between A and

B, xB − xA,

� Identity Color (A), which returns the RGB 3-vector color of A, denoted here

as cA,

� Difference Color (A,B), which returns the relative color difference between A

and B, cB − cA,
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� Identity Extent (A), which returns the distance in each dimension from the

center of A to the edge, somewhat corresponding to a radius,

� Identity Extent Ratio 2D (A), which is only defined for 2D space and which

returns the ratio of of the extent of dimension 2 of A to that of dimension 1,

� Reframe 2D Unscaled Location (A,B,C), which returns the location of C in

a coordinate frame where A is the origin and the x axis points toward B and

which ensures against reflection in the reframe,

� Reframe 2D Scaled Location (A,B,C), which also reframes without reflection

and additionally scales all dimensions equally in the new coordinate frame

such that B is one unit from the origin, and

� Identity Orientation (A), which is also only defined for 2D space and which

returns the angle of rotation of A.

The final four mapping functions listed here are tailored to 2D space, although

variations for higher dimensionality could be defined.
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Chapter 5

Learning Affordances by One-Step Action Outcomes

5.1 Introduction and Related Work

The SMRF framework, discussed in Chapter 4, provides a foundation on which

to learn relational concepts about continuous, multidimensional worlds. In this

chapter (based on Palmer et al., 2012), I use such relational learning for predicting

the success or failure of agent actions, as this ability can form the component of a

higher-level planning or learning system. As an example of such a planner, Stulp

et al. (2012) learn position boundaries that predict success or failure of actions such

as robotic grasping of objects on a table. Identification of probable action success

can also be viewed as a form of affordance (Gibson, 1977). Stulp et al., however,

do not address the learning of relations for arbitrary numbers of objects, except in

certain ad hoc fashions. Many other recent works also address learning consequences

of agent actions in continuous, multidimensional domains, often predicting detailed

world state (e.g., Mugan and Kuipers, 2009; Modayil and Kuipers, 2008; Brunskill

et al., 2009). However, such works commonly avoid arbitrary object relationships.

For addressing relational concerns, logical formulations are a common and tra-

ditional technique. Such representations are frequently purely discrete or, perhaps,

include one-dimensional continuous attributes. Learning in such domains is also well

established (Shen, 1993; Pasula et al., 2007; Wu and Givan, 2010). This includes the

general field of relational reinforcement learning (RRL) which adapts reinforcement

learning (RL) techniques to such relational, logical domains and representations (van
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Otterlo, 2005). However, when applied to multidimensional continuous attributes,

many of these approaches depend on hand-crafted predicates. For example, a pred-

icate for above(A,B) might help in predicting the outcome of agent actions such

as pour(A,B). This requires manual effort and may fail to consider the specific

requirements of such concepts in a highly detailed and unstructured world. Among

relational learners supporting continuous attributes, the TILDE algorithm of Bloc-

keel and De Raedt (1998) makes use of entropy-based discretization. This has been

employed recently for feature learning in RL (Kersting and Driessens, 2008) and

imitation learning (Natarajan et al., 2011) contexts, but only for one-dimensional

domains or for one-dimensional attributes (e.g., angles and distances).

Some approaches combine relational and multidimensional, continuous learning

of world dynamics. These include Verbancsics and Stanley (2010), who evolve neural

networks capable of learning physical relationships given a grid-based world repre-

sentation of somewhat flexible resolution. With this representation, among other

test domains, they learn to play a 2D simulated soccer keepaway game (Stone et al.,

2006), scaling to more players in test than in training, even before additional learn-

ing. Another example of combined continuous and relational dynamics learning is

that of Xu and Laird (2011), who learn separate continuous and relational models

using a form of case-based reasoning and allow interaction between the two models

using human-defined predicates.

In our work, we use the spatiotemporal multidimensional relational framework

(SMRF) of Bodenhamer (2014) to predict the probability of binary outcomes of

world dynamics, including those of parameterized actions. SMRF includes the abil-

ity to explicitly reason about specific object instances across multiple question nodes

of a tree. This is not common to all multidimensional, continuous relational decision

tree methods (e.g., Neville et al., 2003; McGovern et al., 2008), although conjunctive

question nodes in the enhanced spatiotemporal relational probability tree (SRPT)
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method of McGovern et al. (2014) allow asking a pair of questions about an object

or set of objects. Like Džeroski et al. (2001), we use explicit object instance refer-

ences to focus attention on action parameters. In the pour(A,B) example, A and

B identify certain participant objects in each use (or potential use) of this action.

Another key aspect of our work is that the SMRF learning algorithm is stochastic.

Repeated training runs produce a variety of trees, and to further promote this, we

use random subsampling of training data for each learned tree. Such variety can

increase generalization accuracy (Breiman, 2001), although, unlike Breiman, we do

not force variety by limiting the types of questions that a tree can ask. Given an

ensemble (or forest) of SMRF trees, we apply the forest to new scenes to predict

binary outcomes. In this way, the trees form a basis for representing the world and

its dynamics.

In the remainder of this chapter, I describe the learning method in more detail,

including differences in the earlier version of the SMRF learning algorithm, as ap-

plied in this work. I then show results for three different problems in 2D simulated

physical worlds.

5.2 Method

Real-world physical relations are originally implicit in continuous, multidimensional

data, and predicting action outcomes depends on detailed issues of world dynamics.

We present a method for predicting binary outcomes of actions in such continuous,

relational worlds. The core of our approach is based on Spatiotemporal Multidimen-

sional Relational Framework (SMRF) trees (Bodenhamer et al., 2009; Bodenhamer,

2014), and we begin with an overview of this algorithm as it applied to the exper-

iments in this chapter. We then address the use of action parameters within the

SMRF framework and how a forest of SMRF trees forms a basis to learn outcome
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prediction in new situations.

5.2.1 SMRF Learning

The work in this chapter (see Palmer et al., 2012) predates the version of the SMRF

learning algorithm presented in Chapter 4 and differs primarily in that it uses a

different method for constructing decision volumes than the covariant aggregation

algorithm described in Chapter 3. Here, to learn volumes, we initially rank sampled

volume centers using the well-known diverse density metric of Maron and Lozano-

Pérez (1997):

( ∏
S∈S+

max
I∈IS

Pr (φ(I))

)
×

( ∏
S∈S−

(
1−max

I∈IS
Pr (φ(I))

))
,

where IS denotes all instantiation sequences from scene S and Pr (φ(I)) refers to

the probability volume center and shape under consideration. Volume covariance

still is initialized based on the covariance of points from all positive scenes. All

pdf parameters are then refined iteratively in a fashion inspired by expectation

maximization (EM; Dempster et al., 1977), using only one point at maximum pdf

density from each positive scene. Following from Friedman (1977), we determine

the pdf threshold Θ by the point that maximizes the Kolmorogov-Smirnov (KS)

distance of positive and negative scenes, again counting only one point per scene.

5.2.2 Parameterized Actions

We apply SMRF to the learning of outcomes for parameterized actions. When

learning the outcomes of such actions, we include in each training scene, not only

the world state, but also the arguments of the action. For the pour(A,B) example,

training samples include the identification of A (the thing being poured from) and

B (the thing being poured into).
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To use this information when learning SMRF trees for a k-ary action, we con-

strain the objects selected for the first k instantiation nodes of any branch in the

tree, in a fashion similar to the action argument binding of Džeroski et al. (2001).

When predicting the outcomes of the same action in future situations, we again bind

the action arguments to the first k instantiation nodes. Any additional instantiation

nodes produce permutations of other objects in the scene per standard SMRF eval-

uation. For example, if the SMRF tree in Figure 4.1 were for some action act(A),

A would only be bound to the action argument, but all remaining objects could be

bound to B.

5.2.3 Forest-Based Classification

Because question node expansions are sampled, tree growth is a stochastic process.

Therefore, while each SMRF tree yields probabilities from a fixed set of leaves,

multiple SMRF trees together, all learned for the same classification task, provide a

richer representation. Ensemble techniques (aggregating individual classifiers) have

also been shown to improve accuracy when applied to new data (Breiman, 2001).

The existential nature of SMRF concepts is another reason to use multiple trees.

Sometimes absence, rather than existence, is what determines action success. For

example, passing a ball in soccer is likely to be successful if no opponent is between

the passer and receiver. Such negative existential concepts depend on universal

quantification. For instance, ¬∃Xt(X) is logically equivalent to ∀X¬t(X). Because

SMRF currently has no support for universal quantification, we instead learn trees

for both the original and negated labels.

Therefore, to predict world outcomes, we learn a set of n trees, each using a

subset of data sampled from an original training set. Half of the trees are learned

using the original labels and half using negated labels. Each tree provides a pre-

dicted probability of outcome for a scene. We can thereby transform any domain
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state of arbitrary dimensionality (referring to objects and their attributes) into a

new abstract state s ∈ [0, 1]n. An aggregate classifier can then be learned on new

scenes converted into n-dimensional vectors. Specifically, we use support vector

machine (SVM) classification because it is effective and has readily available imple-

mentations, such as LIBSVM (Chang and Lin, 2011). For the present work, we use

only discrete classification from LIBSVM, although it and other techniques are also

able to provide probability estimates, a capability that might be valuable for more

advanced applications. Further, as shown to be effective by Breiman (2001), simple

aggregate voting could also be employed. However, again, SVM implementations

are readily available, and SVM learning is able to select relative weighting among

available trees, according to the data.

5.3 Experimental Results

In this section, we present results for three problems: two in a 2D simulated physical

blocks world and one in 2D simulated soccer. SMRF has been applied to concept

learning in 3D domains as well (Bodenhamer et al., 2009; Bodenhamer, 2014). In

all experiments, we provide the mapping functions to SMRF that are previously

identified in Section 4.3: absolute and relative position, distance, reframed posi-

tion (translated and rotated according to the location of two other objects), scaled

reframed position (scaling the coordinate frame such that one unit is between the

reference objects), absolute orientation, size, elongation, and individual and relative

color. Some of these fit more naturally to some tasks than others, but are included

in all cases to demonstrate that the algorithm is able to choose appropriately.

All data sets consist of between 560 and 1000 total scenes, depending on the task,

and we subsample 500 scenes without replacement for all SMRF and SVM training

sets. For each task, we learn 50 SMRF trees with original labeling and 50 with
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negative labeling. This gives us a core set of learned representations. To observe

variance resulting from the set of trees learned, we then subsample 25 positive and

25 negative trees, and perform 10-fold cross validation with LIBSVM using a second

data set. We perform SMRF tree subsampling and SVM cross-validation 100 times.

For the SVM, we use a linear kernel. Within each training set, we choose the SVM

cost parameter C by means of internal 10-fold cross-validation, evaluating options

for C by powers of 10. Our performance measure, which also drives the choice of

C, is the Peirce Skill Score (PSS) (Stephenson, 2000), as described in Section 3.3.3.

We base each PSS value on aggregate results across the 10 test folds.

5.3.1 Blocks World

We first demonstrate our method on two tasks in a simulated blocks world built

using the JBox2D physics engine (Murphy, 2010). This world is governed by a

hidden gravity vector. For both tasks, no agent actions occur after each initial

state. Only gravity and collisions affect the outcome.

The first of these two experiments is inspired by Siegler’s classic developmental

cognitive psychology work on human learning of rules for predicting the outcome of

placing a set of weights on a balance scale (Siegler, 1976). The dynamics question

is whether the spatially distributed weights will cause the scale to tip left, tip right,

or remain balanced. This task focuses on an unstable world state rather than a

parameterized agent action, although similar active tasks could be imagined. Also,

while SMRF’s capabilities are different than Siegler’s proposed human rules, this

task still provides an interesting case for comparison between human developmental

learning of world dynamics and that of our method.

Here, we simplify the problem to whether the scale tips left or right, and do

not consider balanced cases. For classification, we arbitrarily label tipping left as

true, effectively defining a tipsLeft predicate, which is to be learned. An example
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Figure 5.1: Example starting states for the three tasks evaluated. The balance
scale (a) tips either left or right, where we arbitrarily label tipsLeft as true. The
dropOn(A,B) action (b) is successful if dropped block A comes to rest anywhere
above B, here the elongated horizontal (cyan) block. The keepaway pass(A,B)
action (c) is successful if the “keepers” (yellow) retain possession of the ball (white)
after the pass from A (here, lower left) to B (lower right).

initial state is shown in Fig. 5.1(a). We construct each initial scene with one to four

randomly placed weights of equal size and mass along the horizontal beam. Weights

that would otherwise overlap are stacked upward, approximately centered above the

base of the stack. The constant-sized balance scale is always at the same location,

and, while it clearly affects world dynamics, we leave it out of the scene description

because it is constant. The absolute positions of weights directly indicate whether

they are to the left or the right side.

To predict tipping left or right, learned SMRF trees commonly focus on the

positions of the weights. For example, weights to the left suggest tipping left.

Absolute position is indeed the most common mapping function in learned trees

for this task. However, such weights cannot always be considered in isolation. With

a small number of weights present, SMRF uses error branches, where failures to

instantiate imply that there must be no counterweight on the opposite side. Relative

mapping functions, especially distance, also appear in the trees. With more weights,

high vertical positions imply large stacks, a heuristic perhaps usable by humans in

approximate counting. Such issues are somewhat visible in the “heat map” shown in
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Figure 5.2: SVM decision values showing sample evaluations for the three experi-
mental tasks, where value 0 is the decision boundary. For the balance scale (a), the
value is for the scale tipping left rather than right, if a new block is added centering
on varying locations. For dropOn(A,B) (b), the value is for different drop locations
of A. For pass(A,B) (c), the value is for attempting to pass from the yellow player
A to a receiver B at varying locations, where opponents are shown in blue.

Fig. 5.2(a). Also, note that, as all training scenes involve blocks properly stacked on

the scale, no strict distinctions have been learned for areas outside such conditions.

The narrow horizontal bands are indicative of the constant size of the weights. Only

certain vertical positions appear in the data. Overall, the learned trees are effective

for the learning scenario, and our method performs nearly perfectly in this task.

Our second blocks world task is for an agent action, dropOn(A,B), where block

A is dropped on support block B. This action is considered successful if the dropped

block indeed comes to rest over the support, even if other blocks are stacked between

them. An example initial state is shown in Fig. 5.1(b). We choose a uniformly

randomly distributed length and horizontal position for the support block, within

certain bounds, as well as its orientation. We place the block to be dropped with

normally distributed horizontal and uniformly distributed vertical position relative

to the top of the support. The block to be dropped is a square of constant size. Zero

to three potentially interfering blocks are dropped according to the same distribution

in advance of the block drop action to be classified.

In this experiment, relative position is crucial. Learned trees often ask whether
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Figure 5.3: Mean and standard deviation of classification performance, including
cross testing for scenes with different numbers of objects than occurred during train-
ing. Small scenes contain fewer objects, and large scenes contain more.

the dropped block is above the support block. Questions often follow about the

elongation and orientation of the support. For branches identifying a narrow sup-

port block, questions constraining the dropped block’s relative horizontal variance

sometimes appear. Other structural forms of trees also occur, but often with similar

kinds of questions. Rarely do trees instantiate additional interfering blocks. Such

blocks seem to help as much as hinder, and seem more just to provide noise to the

system. In Fig. 5.2(b), such noisy effects are visible. While the highest decision val-

ues are in a narrow horizontal band, areas predicting positive outcomes are scattered

in a large region above the support block.

Both block problems generalize to higher numbers of objects in test scenes than

in training data (p ≈ 0 by one-sample t-tests), as shown in Fig. 5.3. In the balance

scale case, we place five to six blocks for “large” scenes. Counting via error branches
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does not scale to larger scenes, but classification scores remain strong, implying that

positional questions are still helpful. For the drop action, large scenes contain four to

five interfering blocks, and even for trees learned in the larger scenes, such interfering

blocks are rarely instantiated.

5.3.2 Soccer Domain

Our second experimental domain is that of the RoboCup 2D soccer simulator, which

at this time we use only for the keepaway benchmark task (Stone et al., 2006). While

we do not attempt to scale to full soccer here, subtasks such as this have an eye

toward learning some of the representations needed for the full game or other similar

activities.

The keepaway game consists of two teams: keepers and takers. The keepers

begin in possession of the ball, and an episode ends when the takers take possession

or the ball goes out of bounds. The common configuration is 3 vs. 2, meaning three

keepers and two takers, on a 20m by 20m playing area, as shown in the example

state in Fig. 5.1(c). At each decision step, the keeper in control of the ball chooses

either to hold the ball or to pass to a chosen teammate. All other players, including

the takers, follow manually scripted behavior, as provided by Stone et al. (2006).

We represent the pass action as pass(A,B) where A is the player with the ball

and B is the intended recipient of the pass. For the purposes of producing training

experience, we select the random policy for the keeper with the ball, meaning a

uniformly random choice among all available pass and hold actions. The objects in

the world are the players themselves. In this work, we do not include the ball itself

in the scene description, although the player with the ball is always identified by

parameter A.

In keepaway, there is no inherent up or down, unlike the situation with gravity

in the blocks world. On the other hand, opponents between passer and receiver are
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important, and the scaled reframed position mapping function, placing the passer

at the origin and the receiver at (1, 0), commonly appears in learned trees. In this

coordinate frame, potential interceptors appear near the x axis between coordinates

0 and 1. Exact boundaries depend on world dynamics, including agent behavior.

Because interceptors cause failure rather than success, identifying them depends on

negative labeling. Although rare, some learned trees consider multiple interceptors

down the same branch. Fig. 5.2(c) shows inherent existential queries of each inter-

ceptor. Interestingly, with large SMRF training sets (such as the 500 scenes used

here), we also see many learned trees for positive labeling, focusing initially on the

position of the passer or the relative position of the receiver.

For keepaway, “large” scenes are based on 4 vs. 3 play on a 25m by 25m field.

As for the blocks world, we again transfer somewhat to the larger game without re-

training (p ≈ 0). We show performance in Fig. 5.3. Perhaps surprisingly, prediction

is actually better on 4 vs. 3 play when transfering from 3 vs. 2 than when learning

directly in the larger game (p ≈ 0 by two-sample t-test). This seems to be due to

a frequent inability of the algorithm to learn any tree expansions in 4 vs. 3 beyond

the initial tree with one leaf. Such a tree provides only an unconditioned probability

and is therefore uninformative about world state. Because so many trees learned in

4 vs. 3 are uninformative, a larger sampling of trees is necessary to ensure that at

least some informative trees are included. Fig. 5.4 shows this effect, including the

wide variance depending on the quantity of informative trees sampled. Note, how-

ever, that in 3 vs. 2 keepaway, PSS saturates quickly with relatively small forests.

Other learning contexts evaluated in this chapter have similarly quick saturation.
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Figure 5.4: Mean and standard deviation of performance as a function of forest size
(number of trees) for the pass(A,B) action. Half of the trees in each forest are for
positive labeling and half for negative (i.e., varying from 1× 2 through 25× 2).

5.4 Discussion and Conclusion

To function in an unstructured world, agents must understand the consequences

of their actions. In this chapter, we have demonstrated a robust method for ac-

tion prediction on continuous tasks with arbitrary numbers of objects and implicit

relations between them. This method learns trees using a technique similar to ex-

istentially quantified logic but which supports stochastic outcomes and also avoids

the need for hand-crafted predicates. We employ a forest of trees to transform

an object-attribute state representation of arbitrary dimensionality into a robust,

fixed-dimension space usable in standard vector-based machine learning algorithms.

We have successfully applied our method, using a fixed set of mapping functions,
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to simulated domains with substantially different dynamics. We have also shown

scalability, without retraining, to scenes with both more and fewer objects than are

present in the training data.

Returning to Siegler’s work on human prediction of balance scale outcomes

(Siegler, 1976), SMRF’s tree expansion process is somewhat reminiscent of Siegler’s

progression to more advanced rules. However, Siegler suggests that humans use

state features outside the kinds of mapping functions that we can currently apply in

SMRF. For example, his rules include direct counting of blocks on each side of the

scale. Both for group attributes, such as quantity, and for the many other varieties

of potentially useful mapping functions, the number of compared tree expansions

could increase substantially. We use a wide variety of mapping functions here, to

good effect, but each carries a cost in the form of the multiple comparisons correction

needed for tests of the significance of learned tree expansions. Learning time also

increases with more mapping functions. Therefore, to increase flexibility, additional

sampling and pruning techniques for mapping functions might be valuable.

Finally, going forward in the next chapter, we extend this framework for use in

actual agent control.
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Chapter 6

SMRF-Based Representation Policy Iteration

6.1 Introduction

In the preceding chapter, I present a mechanism for learning to predict success

or failure of individual actions in relational domains. Here, I present a mecha-

nism using SMRF to learn relational representations for agent decision making in

multistep reinforcement learning (RL) tasks. In this work, I approach RL from a

model-free, Q-learning perspective. To support arbitrary reward structures in con-

tinuous spaces, the Q function must be approximated via some kind of regression

mechanism. However, SMRF learning algorithms currently incorporate only binary

classification. Here, I propose the use of a forest of SMRF trees to provide a fixed-

size feature space for Q function regression, not unlike the use of SMRF forests in

the previous chapter. For learning policies, I use the least squares policy iteration

(LSPI) method of Lagoudakis and Parr (2003), which includes the least squares

temporal difference Q (LSTDQ) learning algorithm for Q function regression, as

detailed in Chapter 2. Finally, I employ an instantation of the representation policy

iteration (RPI) framework of Mahadevan (2005b), to interleave representation and

policy learning. Because I use SMRF as the representation learning algorithm, I

term the overall method SMRF-RPI.

The high-level SMRF-RPI technique I present here, in addition to using SMRF as

its relational feature learner, also differs from existing relational RL (RRL) feature-

learning techniques in at least four ways: (1) I employ multiple rounds of represen-
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tation and policy learning between iterations of experience gathering, (2) I employ a

wrapper feature selection technique for the stochastically learned trees, (3) I extract

continuous, radial features from SMRF question nodes for use in the state-action

feature vector, and (4) I present a mechanism for continuous actions.

On repeated learning, Parr et al. (2007) learn multiple basis functions in RPI

fashion on a single batch of experience, but this is outside the relational setting. In

contrast, Wu and Givan (2010) generate a new batch of experience for each relational

feature learned.

For feature selection, various well-known techniques exist (Guyon and Elisseeff,

2003), and techniques safeguarding against overfit are used in RRL, such as stan-

dard tree pruning or depth limitations in TILDE (Blockeel and De Raedt, 1998).

However, with the stochastic nature of SMRF tree learning and the noisy labels of

stochastic domains, SMRF-RPI opts for learning multiple possible trees and then

selecting from them. Concerning the feature space itself, the relational regression

tree algorithm ReMauve (Vens et al., 2007) is at least one example of extracting

continuous features for regression at leaf nodes. Specifically, ReMauve uses linear

regression on the attributes used in query nodes, but it does not address multi-

dimensional continuous attributes in the same way as SMRF. As for ReMauve,

SMRF-RPI uses continuous features to be able to fit real-valued functions with less

overall model complexity.

Turning to the action space, continuous actions have seen some attention in

RL (e.g., Smart and Kaelbling, 2000; van Hasselt and Wiering, 2007; van Hasselt,

2012) but are less explored for the relational setting. Zaragoza and Morales (2009)

interpolate continuous actions for RRL from discrete actions, and while Kulick et al.

(2013) include a continuous action, it is not used for RRL. In contrast, SMRF-RPI

evaluates and selects continuous actions directly as part of the RRL process.

Going forward in this chapter, I explain in detail the SMRF-RPI method, in-
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cluding further explanation of the key points of distinction from other techniques.

6.2 Action Types

Fundamental to SMRF-RPI is the action-oriented view it makes of world state.

As in Section 5.2.2, SMRF-RPI binds action arguments to the initial instantiation

nodes of a SMRF tree. However, different types of actions might have different

numbers of parameters and different meanings for them. For example, in soccer, a

player might choose either to hold a ball or to pass it to another player. Passing

a ball includes the additional information of which player is the intended recipient.

In TILDE or similar techniques, actions are part of the asserted propositions for a

scene. SMRF-RPI, however, represents each action type as a different set of trees,

so as to promote the significance of the distinction and to guide the learning process.

SMRF-RPI also makes a slight modification to the tree learning process used in

Chapter 5, with respect to action parameters. Ordinarily, SMRF requires asking

immediate questions in connection with every new instantiation node in a branch.

For example, there is no value in adding a new instantiation node for variable B

unless the added question also immediately addresses the new variable. The question

might also address variables added in previous expansions (e.g., variable A), but the

new question is required to reference the newly added instantiation node. However,

SMRF-RPI dismisses this requirement for instantiation nodes that represent action

parameters. It does this because objects instantiated at these nodes have already

been identified. For example, when placing one block on another, perhaps the block

being moved is not as interesting as other blocks near the destination, depending on

the task at hand. Therefore, it might make sense to ask questions about the other

blocks first.
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Algorithm 6.1 SMRF-RPI

repeat . Experience loop
Gather test experience, as desired.
Gain training experience.
repeat . RPI loop

for all action types do
Apply binary labels by Bellman error.
Learn n SMRF trees.
Learn n SMRF trees with negated labels.
for all learned trees do

Apply LSPI for each tree with old representation.
Calculate F-test p for scaled Bellman error of each.

end for
Select the tree with lowest p, if p < αcorrected.
Otherwise, no trees are selected.

end for
Learn a new policy using LSPI with all selected trees.

until no new trees have been selected
until converged, or as desired

6.3 Learning Algorithm

The goal of SMRF-RPI is to learn a set of trees for each action type, and weights for

features extracted from the trees to yield an agent policy. Algorithm 6.1 presents

an overview of the SMRF-RPI algorithm.

At each iteration of the outer “experience” loop, SMRF-RPI first gathers expe-

rience. Training experience commonly begins with random actions, usually either

uniformly selected from all possibilities, or first by a multinomial distribution to

weight certain action types over others. Training experience could, however, also

include expert demonstration for more guided learning (Schaal, 1996; Argall et al.,

2009). After the first iteration, training experience is guided more by the agent’s

own policy, although with continued exploration, such as by the simple ε-greedy

method (Sutton and Barto, 1998).

Following collection of experience, SMRF-RPI repeats a cycle of representation
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and policy learning (the “RPI loop”), until no new representations are accepted. I

define no formal criterion for ending the experience loop, although a convergence

test could be employed, or one could simply repeat the loop a fixed number of times.

The representation learning phase begins once training experience has been gath-

ered. Depending on the configuration, each learning phase might include examples

from only the most recent experience or perhaps all iterations or some subset. Expe-

rience contributes a set of (s, a, r, s′, D) SMDP examples, as discussed in Chapter 2.

To learn representations, the experience is divided by action type, and a set of can-

didate trees is learned for each action type. Because SMRF is a binary classifier, to

learn a SMRF tree, we must first provide a binary label for each example. In Chap-

ter 5, I do this based on immediate success or failure of the action. In generalizing

to full reinforcement learning, I use the common practice of labeling each SMDP

sample by Bellman error (BE):

BE = r + γDQπ(s′, a′)−Qπ(s, a).

For the present work, to learn SMRF trees correlated with BE, I label based on

whether an example is above or below the mean BE for that action type. Once

binary labels have been assigned to the training data, SMRF-RPI learns a set of trees

with both that labeling and negated versions of the labels, just as in Chapter 5. The

latter allows the representation of negative existential concepts, which is equivalent

to universal quantification. Also, note that SMRF itself may fail to find a meaningful

expansion and output merely a “stub” without question nodes. Because these stub

trees do not make any distinctions, SMRF-RPI discards them, and therefore the

total number of candidate trees learned for an action type might be less than the

number attempted, including none at all.

Once a set of candidate trees has been learned for an action type, SMRF-RPI
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then selects at most a single tree to aggregate into the representation for that action

type. It is possible, and eventually likely, that none of the trees is selected. Among

other matters, a useful tree is both linearly independent from existing features and

also effective at reducing overall BE. Because the tree learning phase ignores exact

BE values, the tree selection phase addresses fit at a more precise level by attempting

to learn a new policy including each candidate tree individually, one at a time. In

feature selection literature, this is known as a wrapper method.1

Before testing each tree, SMRF-RPI first calculates the sum squared BE for a

policy learned using the current representation. (For the first round of learning, no

previous features exist, and the policy is learned using only one bias feature for each

action type.) Then, each candidate tree is tested by aggregating it alone into the

current representation, learning a new policy, and calculating the new sum squared

BE. Because different features might result in substantially different magnitudes

for the Q values themselves (especially early in learning when representation is

lacking), I also scale BE by the standard deviation of the Q values. Finally, an

F-test is performed for each new aggregate representation, adjusting for the number

of degrees of freedom in the tree and the total number of trees attempted. The tree

with the lowest p-value is selected if it falls below a corrected α threshold.

Policy learning itself is simply an application of the Least Squares Policy Iter-

ation (LSPI) method of Lagoudakis and Parr (2003), as discussed in Chapter 2.

Optionally, diagonal regularization can be applied to condition the A matrix. As

mentioned above, policy learning, using LSPI, forms part of the current feature se-

lection method. LSPI is also used for learning the final policy of the iteration, using

all selected trees (at most one for each action type). See Figure 6.1 for a simple

1Alternative filter methods could be employed, such as by using feature correlation with labels
or various successful information theoretic techniques (Brown et al., 2012). Mahadevan (2007) also
suggests basis adaptation even within the LSPI loop itself, such as by discarding individual fea-
tures with low weights. Of course, standard dimensionality reduction techniques such as principle
component analysis (PCA) could also be used.
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Figure 6.1: SMRF-RPI policy after one iteration of learning for an example 1D
corridor task, where the agent is rewarded for reaching a 0.1 unit zone at either
edge. The curves at top show Q values for each action. The policy is given by the
action with maximum Q for each horizontal position. Individual points show the
Bellman error (BE) for each training example. Dotted lines show mean BE for each
action. The bars at bottom show regions for which different leaves are active.

example of a policy learned after one iteration.

As described in Algorithm 6.1, the subloop of representation and policy learning

continues so long as new SMRF trees are learned and accepted for any action type.

The motivation for this is that, if the training experience represents a large fraction

of relevant state-action space, multiple iterations of RPI learning might benefit the

learning process, even without new experience. For example, if an agent is rewarded

for reaching some point in a maze, at first the only BE indicates when the goal is

reached. After this, a learned Q function has higher values also for the states and

actions that lead to the goal. In cases where learning is limited to the most recent

71



batch of experience, it is vital that later agent experience continue to fill relevant

areas of the state-action space, and this is dependent on learning approximately

useful policies at each iteration.

After all learning ends for an iteration of the outer loop, it repeats, first gathering

new experience again. If a valuable policy has been learned, it may explore new areas

that present new opportunities for learning. Over multiple iterations, it is expected

that the number of new trees learned and/or the complexity of the learned trees will

be reduced.

6.4 Features from SMRF Trees

The overall SMRF-RPI framework is independent of the actual features extracted

from the SMRF trees themselves. In Chapter 5, I use SMRF probability predictions

as features, yielding one real-valued feature for each tree. This might be appropriate

in some cases, including for prediction of binary success or failure. On the other

hand, two leaves in the same tree with similar probabilities might represent very

different configurations. For SMRF-RPI, I instead identify each leaf as its own

binary feature. One tree then contributes a vector of mutually exclusive binary

values.2 A forest effectively provides a set of overlapping tilings reminiscent of

CMAC representations (Sutton and Barto, 1998).

However, unlike CMAC, SMRF-RPI begins with no tilings defined and instead

needs to learn bins for every region of interest. As a result, bootstrapping represen-

tation could be inefficient. Therefore, I also propose a set of nonlinear, continuous

features extracted automatically from relevant state features. Specifically, SMRF

question nodes reference exactly those continuous state variables found to be rel-

evant in predicting binary labels. However, rather than using the raw attributes

2This feature set is strictly richer than the probabilities used in Chapter 5, because feature
weights corresponding to leaf probabilities would yield the probability-based feature space.
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(for example, relative location of two objects), I instead use the probability den-

sity from the pdf model at the question node. In Euclidean space, as detailed in

Chapter 3, this is a Gaussian distribution with arbitrary covariance defined by the

key points. By directly using pdf densities from question nodes, SMRF-RPI incor-

porates a form of RBF representation in addition to the CMAC bins of the leaves.

Figure 6.1 demonstrates the effects of these nonlinear features on both the learned

Q values and policy.

This leads us to the same question addressed by Vens et al. (2007): If multiple

instantiation sequences from a scene define the label for the scene, which one should

be used? In the case of soccer, for example, we might have multiple opponents

within a decision volume relevant to the decision of whether or not we should pass

the ball that direction. Which opponent or opponents should provide the continuous

features? LSPI and other similar approximation techniques require a fixed number

of features, and the purpose of the SMRF forest representation is to provide such a

fixed-length feature vector. Therefore, because the number of opponents might vary,

it is not possible to present a separate feature for each one. One could average the

values, but that might dilute key information. Vens et al. (2007) present a method

capable of selecting representative instances or aggregate functions of them. For

SMRF-RPI, I simply choose the most representative instance from the winning leaf.

Specifically, each instantiation sequence has a pdf density associated with it for each

question node. A higher density indicates a more representative instance. Treating

each density as independent, given the instance, I take the product of all densities

for an instantation sequence. The sequence with the highest product (calculated in

log space) is the representative, and its densities are used in the feature vector. Non-

winning leaves contribute 0 for each question above them in addition to contributing

the binary 0 for the leaf itself.

In all, a tree contributes one feature for each leaf and one feature for each question
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node above each leaf (traversing rootward). The feature set for each action type

consists of all trees accepted in the learning process for that action type and also

a single constant bias feature. The entire feature action-state feature vector is

composed of the features for all action types. When computing φ(s, a), features for

action types not matching a are set to zero.

6.5 Continuous Action Spaces

While SMRF-RPI works directly in the continuous state spaces derived from object

attributes, I so far have discussed only discrete actions. That is, if all actions are

parameterized with respect to objects in the scene, and there is a finite number

of objects, then there is a finite number of possible actions as well. This makes

choosing the action with maximum Q (as shown for example in Equation 2.2) a

straightforward process. However, some tasks may require actions not directly re-

lated to the enumerated objects. For example, to set a table, a robot needs to be

able to choose where to put a plate when the table is empty or where to put a spoon

relative to the plate.

Certainly, many techniques exist for choosing continuous actions, either using

direct continuous prediction, optimizing across Q values, or some combination of

the two (e.g., DeJong, 1994; Davies et al., 1998; Palmer and Goodrich, 2002; Xu and

Laird, 2011; Kulick et al., 2013). For the present work, SMRF-RPI accommodates

continuous action spaces through the use of virtual objects. These entities represent

attributes corresponding to potential actions. For example, the table-setting robot

imagines a potential plate location as if it were an entity in the scene. Such virtual

objects can then be instantiated and queried by SMRF just as for observed objects.

Any appropriate optimization algorithm might be employed for choosing attributes

(such as position) for virtual objects. Given a Q function, these attributes are the
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input, and the Q value is the output. Depending on the representation, the Q

function might be generally or locally nondifferentiable in addition to containing

local maxima. For the current scope, I employ a simple beam search across sampled

actions, where the action sampler is a parameter of the task at hand.
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Chapter 7

Experimental Results

7.1 Domains

SMRF-RPI is concerned with multistep tasks in continuous, multidimensional do-

mains with multiple objects and interesting relationship between them, much like

many concerns in the real world. In this chapter, I test SMRF-RPI in multiple

simulated domains. I begin with a propositional 1D corridor domain, for convenient

testing and analysis. I then follow up with well-known domains having relational

concerns, specifically those already presented in Chapter 5, those of block stacking

and soccer. Here, I present different (and multistep) tasks for the block stacking

and soccer domains, appropriate for the evaluation of SMRF-RPI.

7.2 SMRF-RPI and Experimental Configuration

For these experiments, I use the same mapping functions as listed in Section 5.3.

Except where otherwise noted, I gather 500 episodes of training (as well as test)

experience per iteration of SMRF-RPI, SMRF receives a maximum of 500 randomly

sampled scenes for each tree (without replacement), and LSPI receives a maximum

of 105 SMDP examples, also sampled without replacement. For SMRF tree learning,

only the latest batch of training experience is used, but all batches are available for

sampling for LSPI. For the CovAgg MIL algorithm, I use the same parameter values

as mentioned in Section 3.3, except that the number of aggregation bags sampled

M depends on the number of positive bags, varying between 4 and 6. For LSPI,
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I enforce a condition number on matrix A of no greater than 105, using singular

values for the calculation. At each iteration of representation learning, two trees

with original labels and two with negated labels are attempted for each action type.

I use α = 0.05 for the F-test on tree selection, adjusted to 0.0125 by Bonferroni

correction for the four trees per action type. Additionally, as some tree features

often go unused (particularly for error branches), features with no data yield rows

and columns of zero for LSPI. I trim these entirely from the computation and assign

weights of zero to these features. For statistical purposes, each experiment includes

30 independent runs of SMRF-RPI.

Throughout this chapter, I report rewards as mean undiscounted total reward

per episode. In the case of the keepaway benchmark task, specifically, and in other

RL research, this is common, even when discounted future rewards are used during

the learning process.

Also, throughout results in this chapter, all statistical comparison tests consist of

one-tailed, two-sample t-tests, unless otherwise stated. When comparing methods,

I most often compare performance after the first iteration of learning when demon-

strating which learns faster. I also commonly compare method performance after

the last iteration to demonstrate which ultimately achieves higher reward. For the

SMRF-RPI learning process itself, I also compare final performance to the random

performance before learning, to demonstrate that learning as occured.

7.3 Corridor Domain

7.3.1 Domain and Task Description

1D “chain walk” or “corridor” domains, whether discrete (Lagoudakis and Parr,

2003) or continuous (Kersting and Driessens, 2008), are common testbeds for rein-

forcement learning because of their simple nature. The corridor I use is unit-length
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and continuous, with rewards given at either end. The agent begins at a uniformly

selected position and can move either left or right at any time step. The mean

step distance is 0.1 units, with a environmental noise effect added by a Gaussian of

standard deviation 0.05. The agent receives 0 reward for ending an action at any

location other than a 0.1 unit window on either side of the corridor. In an edge

window, it receives a reward of 1. Episodes are of 10 equal-duration time steps.

Even once reaching an edge, the agent can continue to take more actions. An op-

timal policy consists of going left when already left of position 0.5 and going right

otherwise. As this world consists of a fixed number of variables (specifically, 1), it

is not relational in nature. However, it provides an opportunity to test convergence

of SMRF-RPI in an easily diagnosable domain.

7.3.2 Corridor Results

Because this is a straightforward task with only a single 1D variable, I expect that

sufficient experience and appropriate features allow learning an optimal policy. Fig-

ure 7.1 shows a sample Q function and resulting policy for the corridor task, after

just one RPI iteration. In this first round, all Bellman error (BE) is either 0 or 1,

depending on the immediate reward achieved, where Q values before learning are

initialized to 0. After this round, Q values are no longer constant and BE is no longer

binary. Also after the first round, mean BE for each action is often near 0, because

LSPI produces Q functions with low BE magnitude. Later RPI iterations, includ-

ing after further experience iterations, continue to refine the Q function, although

certain regions (as defined by tree leaves) fit better than others. Figure 7.2 shows

algorithm performance as a function of experience iteration, for different experi-

ence batch sizes. Here, with a single batch of 500 episodes, SMRF-RPI consistently

learns a policy that is approximately optimal. This optimal policy achieves mean

total reward of about 8.68, which is not significantly higher than that achieved by
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Figure 7.1: SMRF-RPI policy after one iteration of learning for an example 1D
corridor task, where the agent is rewarded for reaching a 0.1 unit zone at either
edge. The curves at top show Q values for each action. The policy is given by the
action with maximum Q for each horizontal position. Individual points show the
Bellman error (BE) for each training example. Dotted lines show mean BE for each
action. The bars at bottom show regions for which different leaves are active. This
figure is repeated from Figure 6.1 for convenience.

the SMRF-RPI learned policy (p < 0.5). Note that the lower standard deviation

for batches of 500 episodes is due in part to taking the mean across many more

episodes. I include the demonstration of 10-episode batches to show the effect of

experience on the learning process.

Figure 7.1 also shows how a single tree for each action type can produce nearly

optimal policies on this task. Here, the decision boundary near 0.5 is solely due

to the nonlinear pdf density features. Immediate reward is only visible near edges,

but the key decision point is the center. With binary features (bits) alone, more

RPI iterations are needed to find larger regions of positive Q near the edges and to
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Figure 7.2: Mean total reward, across 30 independent runs, for different numbers
of episodes per iteration for the corridor task. Error bars show standard deviation
across runs.

gradually learn distinctions near the middle. Because of the multiple iterations of

learning for each batch of experience, SMRF-RPI with bits alone does not perform

significantly worse than with the density features (p < 0.5 at the final iteration), as

shown in Figure 7.3. However, Figure 7.4 shows that using bits alone performs well

at the cost of more total tree complexity, as measured by the total number of leaves

across all trees (p < 10−11 at the final iteration). Note that in both cases, while later

iterations add fewer features than earlier iterations, some still are learned. Among

other matters, this can be due to SMRF-RPI’s attempt to match the Q function

itself and not just to learn an optimal policy. In other words, the policy converges

before the Q function does.
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Figure 7.3: Mean total reward for representations of pure bits and for pdf densities
with bits for the corridor task, using 10 episodes per iteration. Error bars show
standard deviation across runs.

In a further experimental configuration, in order to demonstrate the value of the

wrapper selection method discussed in Chapter 6, I evaluate tree selection without

this mechanism. Instead, I select the tree with minimum p value from the SMRF

learning process itself. If SMRF-RPI’s representation learning loop produces at least

one tree, then at least one tree is kept. In this configuration, at least to a certain

limit, SMRF-RPI never finishes the first loop of representation and policy learning.

SMRF keeps learning new trees, perhaps due to having enough noise in a stochastic

domain that inhibits perfect fit and also due to SMRF having access only to a binary

approximation of BE error from which to work. In any case, this demonstrates the

value of the wrapper selection process, which can reject trees that fail to reduce BE
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Figure 7.4: Cumulative leaf count for representations of pure bits and for pdf densi-
ties with bits for the corridor task, using 10 episodes per iteration. Error bars show
standard deviation across runs.

error.

7.4 Blocks World Domain

A very traditional domain for the study of artificial intelligence is that of the blocks

world (Slaney and Thiébaux, 2001). Block arrangement can represent a simplified

form of many manipulation tasks and is very relational in nature. Historically, the

blocks world is entirely symbolic. The world state is often defined by predicates

such as on(A,B) with derived predicates such as clear(A) when no block is on

A. A special constant called table exists on which any number of blocks may be

placed. The primary action is put(A,B), which puts A on T , given, for example,
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the precondition clear(A) ∧ clear(B) or if B = table.

While fruitful research still exists in symbolic blocks world domains, recent re-

search also exists in physical block stacking domains, both simulated and real world

(Pasula et al., 2007; Lang and Toussaint, 2010; Toussaint et al., 2010; Kulick et al.,

2013). This also includes two-dimensional dynamics simulations (e.g., Zhang and

Renz, 2014).

For my present work, I consider a 2D simulated blocks world (Palmer, 2015)

based on the JBox2D dynamics engine (Murphy, 2010), with a variety of rectan-

gular block proportions and sizes. Specific properties affecting dynamics (such as

friction) and user interaction (for example, pull force being proportional to mass and

grasps being more stable closer to block centers) have been selected for a somewhat

predictable world with simple, but rich, pointer interaction capabilities. Having

been tailored for human interface, the world dynamics are also compelling for au-

tomatic agent interaction as well. The software implementing the 2D blocks world

here is the same as that used in Chapter 5, although, in this chapter, I address

different tasks.

Specifically, I test SMRF-RPI on three tasks: (1) “high towers,” (2) color group-

ing, and (3) arch building. The high towers task is titled and described by Lang

and Toussaint (2010), and based on an earlier task by Pasula et al. (2007). The goal

of this task is to build stacks as high as possible. The color grouping task has the

goal of grouping blocks with similar colors. It is based on the “desktop clearance”

of Lang and Toussaint (2010), although I address the matter of multidimensional,

continuous color in my version. Finally, the arch building task, inspired by the clas-

sic work of Winston (1970), requires building arches out of three blocks, where arch

quality is based on the area under the arch.

The blocks worlds of Pasula et al. (2007) and Lang and Toussaint (2010) are 3D

rather than 2D. Both include blocks of different sizes. Lang and Toussaint (2010)
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use two different sizes, and they include both cubes and spheres. Pasula et al.

(2007) include only spheres although still of “varying size.” In contrast with these

domains, I include non-square blocks, such that block orientation matters more.

Also, whereas the other works use separate grab(A) and puton(B) actions, I use the

more traditional put(A,B) to unify the two. This puts less emphasis on the deictic

context emphasized by Pasula et al. (2007), as my focus is on other matters. Also,

I emphasize 2D because of the ease of human analysis and interaction, although

SMRF is designed to work in higher dimensions as well.

In all tasks, selected high-level actions (options) end after all block translational

and rotational velocities drop below a certain absolute magnitude. 100 time steps

occur per simulated second. SMDP discounting occurs by simulated second; al-

though fast-finishing actions aren’t of highest importance here, they are preferred

to otherwise equivalently positive but slower actions. Because the duration of an

episode is potentially many seconds, and because some of these tasks receive reward

only at the end, I use discount factor γ = 0.99 for this domain. (For other domains,

I use γ = 0.9.)

Also, while I present some amount of detail on each of these tasks, many of

the choices are also somewhat arbitrary. High-level purposes exist for the inclusion

of each task and its structure, of course, but the details here are often merely for

reference.

7.4.1 High Towers Task

The high towers task is meant to be somewhat straightforward but still relational.

The reward is the mean height of the center points of all blocks. A small block on

a large one yields greater reward than a large on a small. Before each episode, the

width and height for each block is chosen randomly to be between 1 and 10 units.

The width is considered to be the greater of the two, and I use a representation of
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orientation that acknowledges the rotational symmetry of the blocks. Specifically,

angles near 0 are horizontal and near π are vertical. Five blocks are dropped to

start each episode, drawing the x coordinate from a uniform distribution between

−30 and 30 units, where 0 is the center of the table.

The following options are available:

� put(A,B): Puts block A on block B, by first grasping block A at its center

point. After grasping the block, the option chooses a height to lift the block

of 5 units of clearance above the highest block other than A, and it lifts the

grasped block to that height. It then moves the block horizontally to center

over the x coordinate of B, lowers the block until it has a clearance of 2 units,

then drops the block. There might be other blocks above B. If so, these

determine the clearance rather than B itself. Even A is not required to be

the top of the stack; others above it might be carried or, more often, thrown

as the option moves A. For the initial grasp, 2D Gaussian noise of standard

deviation 0.5 in each dimension is added to the intended grasp point, retrying

if the grasp point falls outside the block. This noise model implies the grasp

position of smaller blocks might be closer to the edges than the center, causing

the grasp to be less stable on average. All goal positions, intermediate and

final, have a 2D Gaussian noise component with standard deviation 1.

� rotate(A,B): Because grasps further from the center are less stable, this action

can position the grasp near one edge and lift to change the rotation of the block.

First, the option determines if the block is primarily vertical or horizontal to

determine its grasp point. It chooses a point straight out from the center 0.7

of the way to the edge. The block is then lifted twice the distance needed

for clearance of its lowest corner from the height where it started. It is then

lowered and dropped as for put. 2D Gaussian noise is added to the grasp
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point, with standard deviation of 0.025 times the distance in units from the

target grasp point from the center. A fair amount of precision is required for

the action to be usually successful. The same noise model as for put is applied

to all goal positions.

For this task, I use a constant episode duration of 5 actions and also a shaping

reward in accordance with Ng et al. (1999). Specifically, the agent receives a reward

which is the difference in average block height before and after each the option,

which might be positive (for an increase) or negative.

Random exploration actions select from a multinomial of 0.75 for put and 0.25

for rotate. Once an action type is selected, all possible instantiations of that action

are selected from uniformly.

High Towers Results

To demonstrate agent behavior in the high towers task, Figure 7.5 shows two ex-

ample episodes from the same relatively high performing policy at the last test

experience iteration, where block identification numbers increment across episodes.

The first example is a case where the agent stacks all blocks in an effective, though

suboptimal, fashion within the time limit. While not depicted, the agent’s action at

the first time step is to place block 38 on block 39. Then, in choosing to place block

37 on block 39, it topples the existing stack. Overall, this results in an improved

final configuration, although by chance. In placing the remaining blocks, however,

it begins with block 36, which is a better choice than the other remaining options.

The final total reward for this episode is about 14.98.

The second example episode is less effective in its result. Not shown here, the

agent repeatedly attempts to place block 57 on block 59, failing three times due to

environmentally imposed noise. It finally succeeds and then chooses to stack block

56. The final total reward is about 6.17. These two examples suggest that somewhat
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Figure 7.5: Two examples episodes for the high towers task, showing (a) the starting
state and (b) the ending state for each.

unpredictable policies can be learned, perhaps due in part to the amount of noise in

the dynamics of the environment. Still, the policies can be effective in some cases.

Also, for both example episodes, the agent attempts to place blocks on the highest

existing stack at every time step.

Looking at additional episodes, higher performing SMRF-RPI policies emphasize

creating a single stack. It is difficult to analytically determine an optimal policy in

this noisy and time-constrained setting, but the single stack might be a reasonable

strategy. Even with the time limit, analysis suggests that rotate might occasionally

be put to good use. However, while observed SMRF-RPI policies do sometimes use

rotate, it does not seem to be used effectively. Occasionally, degenerate cycles arise

where a policy rotates a single block repeatedly while other meaningful stacking

possibilities still exist. Perhaps the agent uses this as a form of “no op” when it fails

to observe more useful alternatives. Also, SMRF-RPI seems rarely to rotate blocks

that would cause other blocks to fall.

To help provide intuition about learned representations, Figure 7.6 shows the

learned tree selected for put in a first RPI iteration. The first question tests for a

block whose center is less than about 6.7 units in altitude (where mean block edge
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Figure 7.6: Example tree for put(A,B) on the high towers task, where the first
question is effectively both one-dimensional and an inequality, due to the nature
of the task. Later questions express more covariance. Extent columns show scaled
eigenvectors.

length is 5.5 units), irrespective of the x coordinate. SMRF location questions are

multidimensional, but by supplying a large variance in the x direction, it effectively

makes this coordinate irrelevant. Also, because blocks exist only at positive alti-

tudes, this question effectively becomes an inequality. The second question asks for

a relatively large block for the destination. The larger size is always used for the

first dimension of extent (which, here, is half the length of a side), and the maxi-

mum extent used in this task is 5 units. The final question asks about a third block

beyond the potential destination. This might be due either to overfit or a subtle
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Figure 7.7: Example tree for “not” rotate(A) on the high towers task, learned on
negated labels. The first question identifies other blocks above A. Such blocks could
presumably be at risk of being toppled. Extent columns show scaled eigenvectors.

effect of task dynamics.

Figure 7.7 shows the learned tree selected for “not” rotate (i.e., using negated

labels) in the same first RPI iteration as for the put tree. This tree identifies the

existence of other blocks vertically aligned with and above the block A, the one

being rotated. Specifically, the first question asks if B is within about 6 units of

A horizontally and from about 2 to about 9.5 units above it, because the altitude

of A minus that of B is negative. The second question asks if B is about 5 to 16

units above another block C, though without regard to the horizontal difference.

In the highest probability leaf, B is at risk of being toppled from a high altitude,

which would provide a negative reward to the agent. While this tree makes some

sense, it presumably only helps to avoid mistakes rather than to constructively build
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Figure 7.8: Mean total reward, across 30 independent runs, for high towers task for
500 episodes per iteration. The “large first” and “small first” policies both are fixed
and hand-coded. Dotted lines around SMRF-RPI results show the test performance
of the runs with the maximum and minimum training performance for SMRF-RPI
after each iteration. Error bars show standard deviation across runs.

higher towers. Trees learned in the second RPI iteration for this run are shown and

discussed in Appendix A.

Looking at overall performance, SMRF-RPI is still expected to consistently learn

beyond random behavior in this task, despite the task being complicated over pre-

vious incarnations by including the rotate option. Figure 7.8 shows mean total

reward for this task. SMRF-RPI does learn to improve on its initial random play

(p < 10−43, according to a one-tailed, two-sample t-test, as also used for all other

statistical comparisons in this chapter, unless stated otherwise).

In addition to SMRF-RPI, this figure shows results for two manually designed

90



policies. The “large first” policy tries to put the largest blocks at the bottom of

the stack, knowing that this will result in more blocks later at a higher altitude.

The “small first” policy starts by moving the smallest blocks first. Both place blocks

onto the highest point available, thereby attempting a single stack of blocks. Neither

uses rotate, although it could result in raising a block’s center. SMRF-RPI mean

performance is below both the large first (p < 10−40) and small first (p < 10−16)

manual policies. However, the high end of the SMRF-RPI runs seems perhaps to

border on the mean performance of the small first policy. This is visible in the dotted

lines of Figure 7.8, which show the test performance of the runs with the maximum

and minimum training performance. As a common theme throughout the results in

this chapter, some SMRF-RPI runs actually do learn better policies than others. To

test this, I subtract the overall mean test reward for each experience iteration from

the corresponding mean training and test reward for each SMRF-RPI run, to allow

grouping together of all experience iterations for comparison. Yielding 30 points

per experience iteration, the correlation between training and test performance for

SMRF-RPI for this task is R = 0.81 (p < 10−77). In contrast, variance in fixed

policy performance is due entirely to noise in the environment.

7.4.2 Color Grouping Task

The color grouping task is an opportunity to require the use of both color and posi-

tion in a natural context. While inspired by the “desktop clearance” task from Lang

and Toussaint (2010), the color grouping task here is substantially different. First,

rather than the single explicit goal (exact grouping), the reward here is continuous.

Related to this, color matching here is also multidimensional and continuous. I fur-

ther complicate the grouping process in the means of determining color similarity.

In the SMRF learning process, I use an RGB colorspace, in the same fashion as

Bodenhamer (2014). However, reward calculation for this task uses the industry
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standard CIEDE2000 color distance formula (Luo et al., 2001), which is designed

to approximate human perception of color differences. This formula is neither axis

aligned with nor a linear transformation of RGB space. Further, CIEDE2000 does

not correspond to a proper metric space at all (Ridolfi et al., 2010; Kinsman et al.,

2012). Therefore, for the present work, this task is an opportunity to observe how

RGB color might be still be used for modeling a complicated and inconsistent, but

human-oriented, transformation of the multidimensional space.

The initial state of each episode begins with five blocks, in the same fashion as for

the high towers task. This task, like high towers, uses a relative score from option

start to end for a shaping reward. The overall score for a group of individually

isolated blocks is zero. A stack of blocks might receive a positive or negative score.

Stacks are defined by any group of blocks that include some horizontal overlap

between the midpoint of one block and the horizontal extrema of any other block

in the stack. For any stack, each block’s RGB color is converted to the CIE Lab

color space (which also forms the foundation of the CIEDE2000 distance formula),

and the mean Lab color is calculated. The block who’s color is most similar to the

mean, according to CIEDE2000, is the prototype member. All other blocks in the

stack add a score based on their CIEDE2000 distance to the prototype.

The score for a block is based on the following formula

scorelinear =


(Θmid − distance)/Θmid if distance ≤ Θmid

max(−1, (Θmid − distance)/(Θmax −Θmid)) otherwise,

score = sin (scorelinear π/2) ,

where I choose Θmid = 30 and Θmax = 120 for CIEDE2000. In other words, distances

less than 30 contribute a positive score, and distances greater a negative. Distance 30

is near the 25th percentile of distances sampled (and the median at about 45). There
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is no maximum CIEDE2000 distance, but using both random sampling and evenly

spaced grids of various resultions in RGB space, the effective maximum distance for

this domain is approximately 120. The linear spaces between 0 and 30 and between

30 and 120 are adjusted to a sine curve for smoothness at the boundary and to

group the highs and lows somewhat.

In addition to put(A,B), the additional following option is available:

� isolate(A): This option takes a block and places it separately from other

blocks. Commonly, in blocks world domains, this might be accomplished by

put(A, table). However, to simplify the view of relevant objects, I exclude the

table from the scene description. Therefore, we need a special option to sup-

porting isolating blocks. Random initial arrangements and other complicated

interactions sometimes result in blocks being stacked without agent control.

This provides a chance to separate blocks that don’t belong in any stack. This

option is implemented the same as for put(A,B), except for the choice of the

goal x position. To choose the goal, it first determines the horizontal extent

of the block and looks for a gap between existing blocks with enough space

for a buffer zone of 2 units on either side. If no such gap exists, the block is

positioned to either the left or right of all existing blocks, whichever is closest

to the center of the table. If the block was already isolated, the action merely

delays a mean of 1 simulation second, with Gaussian deviation of 0.2 and a

resampling minimum of 0.5.

Random exploration for this task is that same as for high towers, except that

isolate takes the place of rotate.
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Figure 7.9: Two examples episodes for the color grouping task, showing (a) the
starting state and (b) the ending state for each.

Color Grouping Results

Figure 7.9 shows learned behavior with example episodes from the final test experi-

ence iteration of a relatively high performing SMRF-RPI policy. The first example

is the first episode of this test experience. In this example, the agent successfully

builds two groups, leaving out block 5 in the end, whose color does seem distinct

from either group. The final action of the episode is, in fact, to isolate block 5,

although it is already alone. In this sense, the agent seems to use isolate appro-

priately as a “no op” in some cases. Within the episode some ineffective behavior

occurs; the agent first places block 6 on block 9 and then block 9 on block 6. In

this case, no harm results, but similar behavior in other episodes may have hurt

performance. The final total reward for this episode is about 1.61.

The second example is the third episode of the same policy as before. This

example demonstrates how particular block arrangements can hamper effective per-

formance. Block 19 is not the only one that has moved here. In fact, the agent

moves both block 19 and block 15 multiple times during the episode, but the in-

terference of block 18 results in unstable stacking. The SMRF mapping functions

in use have no clear way to appreciate exactly when blocks overlap, and apparently

the situation here is too subtle. In the end, only blocks 19 and 17 are considered to
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be in the same group, and the final total reward is about 0.28.

Looking at additional behavior, SMRF-RPI policies do sometimes isolate blocks

from groups when they do not match well. It is also fairly common to use isolate

as a “no op” just as in one of the examples examined above. Degenerate policies

use isolate far too often. Higher performing policies also sometimes fail to group

blocks of similar colors, or sometimes even group colors effectively then subsequently

separate them. Some poor matches are occasionally made as well. Still, overall,

higher performing policies do often effectively group similar colors.

As an example of learned representations, Figure 7.10 shows the tree learned for

the put action in the first RPI iteration from the first of 30 independent runs of

SMRF-RPI for this task. The first question asks if the two blocks have a similar

color, using a clearly non-axis-aligned covariance matrix. Also, oddly, the leaf with

highest probability exists down the No branch of the relative color question. Rather,

the highest probability leaf results from a question about the configuration of two

other blocks. On closer inspection, the number of original scenes matched for the

high probability leaf is low. Perhaps these cases might have been due to situations

where nonmatching blocks were knocked out of a group.

Figure 7.11 shows the tree learned for “not” isolate (i.e., with negated labels)

in the same RPI iteration and run as the previous tree. There is a difference color

question here that seeks at least some nonuniformity in the green axis. The questions

about block configuration are enigmatic. In particular, the reframe question is asking

about a block D, which is far from the one being isolated, where block A is also

somewhat near the center of the table and low down.

Looking at overall performance, Figure 7.12 shows mean total reward for the

color grouping task. As expected, SMRF-RPI is able to able to improve behavior

over random play (p < 10−19). On the other hand, SMRF-RPI performs worse than

a manually designed policy (p < 10−33 at the final iteration). The manual policy
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Figure 7.10: Example tree for put(A,B) on the CIEDE2000 color grouping task,
where the first question asks about color similarity. Extent columns show scaled
eigenvectors.

has access to an accurate list of block groups, according to the scoring rules, and

understands the idea of a prototype member of each group. However, as SMRF

has no direct understanding of CIEDE2000, the manual policy determines each

group’s prototype and distances between colors using RGB space rather than by

the CIEDE2000 formula. After determining a prototype for each group, the manual

policy first looks to see if any block in any group is too dissimilar from the prototype,

and isolates it if so. When isolating a block, the manual policy ignores the vertical

position within the group. Once no groups with dissimilar blocks remain (and

commonly none exist to begin with), the manual policy then finds already isolated

blocks and chooses the best group to put each in. The manual policy presumes
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Figure 7.11: Example tree for “not” isolate(A) on the CIEDE2000 color grouping
task, learned on negated labels. The color question expresses similarity, but with
some nonuniformity in the green axis. Extent columns show scaled eigenvectors.

an RGB distance threshold of 0.5 between positive and negative rewards, which

is approximately the 25th percentile of RGB distances when measuring each axis

of RGB from 0 to 1. In the end, while both SMRF-RPI and the manual policy

use RGB calculations, the manual policy is very aware of exact grouping and the

concept of a prototype within each group. Although SMRF can ask about other

blocks approximately vertically aligned with a target destination, it has no ability to

reason directly about groups nor key members of them. It is therefore unsurprising

that this manual policy outperforms SMRF-RPI.

Still, as mentioned above, SMRF-RPI does learn somewhat how to perform this

task. However, during the learning process, around experience iteration 6, some runs
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Figure 7.12: Mean total reward, across 30 independent runs, for the CIEDE2000
color grouping task for 500 episodes per iteration. Dotted lines around SMRF-RPI
results show the test performance of the runs with the maximum and minimum
training performance for SMRF-RPI after each iteration. Error bars show standard
deviation across runs.

performing many more RPI iterations than usual, creating a large number of trees,

which are perceived by SMRF-RPI as reducing the TD error and are therefore kept.

Because of its non-metric nature, I hypothesize that this is due to the CIEDE2000

distance formula. To test this, I also perform a version of the task with scoring

based on RGB distance. This version of the task uses an RGB distance of 0.5 for

the cutoff between positive and negative scores. Figure 7.13 shows the performance

of SMRF-RPI and the same manual policy (which now always correctly identifies

group prototypes and score cutoffs) on the RGB color grouping task. However, as

before, SMRF-RPI does improve its performance through learning (p < 10−19), and
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Figure 7.13: Mean total reward, across 30 independent runs, for the RGB color
grouping task for 500 episodes per iteration. Dotted lines around SMRF-RPI results
show the test performance of the runs with the maximum and minimum training
performance for SMRF-RPI after each iteration. Error bars show standard deviation
across runs.

the manual policy outperforms SMRF-RPI (p < 10−35).

Too many factors exist for simple comparison of reward achieved between the two

versions of the task. However, it still makes sense to compare representation size,

which motivates the RGB version. Figure 7.14 shows mean cumulative leaf counts

for both versions of the task. By the final experience iteration, the CIEDE2000

version has a larger mean total leaf count (p < 0.05). Only some of the runs suffer

from the apparently degenerate sublearning, but they are enough to offset the overall

mean.

As this task is primarily concerned with color distance rather than relative colors,
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Figure 7.14: Mean cumulative leaf counts, across 30 independent runs, for the
CIEDE2000 and RGB color grouping tasks. Error bars show standard deviation
across runs.

there might be value in including a mapping function for color distance in SMRF

tree learning here. However, following Bodenhamer (2014), I do not include color

distance among available mapping functions (as listed in Section 4.3). Given per-

formance of the manual policies, it seems likely that both versions of the task could

take advantage of such a function, especially in that it has fewer degrees of freedom

than relative color (having only 1 dimension rather than 3). It would also be in-

teresting to compare the use of a color distance function in learned representations

between the RGB and CIEDE2000 versions of this task.
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Figure 7.15: Example arch with scored area in light gray with dotted border.

7.4.3 Arch Building Task

My final blocks world task is building arch configurations, as inspired by the classic

symbolic-level work of Winston (1970). Most substantially different from the other

two blocks tasks in this chapter, I allow arbitrary x coordinate placement of blocks.

Also, unlike the other blocks tasks here, building an arch can inherently require

multiple steps to achieve a goal. I define an arch as a block (the top) entirely above

rather than resting on the table, with no other block under its center point, and

touching two other blocks (the supports) whose midpoints are less than the altitude

of that of the top block. To encourage arch quality, different arches can receive

different rewards. If an arch has been built, the score is equal to the open axis-

aligned rectangular area under the arch, as shown in Figure 7.15. Taller, wider

arches (if successful!) with flat tops score best.

For this task, I always drop three blocks, each 8 units wide and 4 units high.
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While dropped at uniformly random rotations, world dynamics result in most of

the blocks resting horizontally at first, although some initially come to rest in an

upright pose.

For this task, I allow the rotate option, as previously described, in addition to

the following options:

� move(A,X): Moves A to the given x coordinate, following the same behav-

ior pattern as for put(A,B). This is a continuous action, in that any goal

coordinate can be chosen.

� done: This option performs no action within the scene. It merely terminates

the task after a mean 1 simulation second delay, with deviation 0.2 and a

resampling minimum of 0.5. Further, during the learning process, the agent

must use this action to declare the task done in order to perceive any reward.

This action provides an opportunity for the agent to model more directly the

goal of the task as well as to demonstrate full lookahead in the learning process.

It also provides a chance for the agent to say when it thinks moving blocks is

likely to do more harm than good.

The action sampling process described in Section 6.5 is customized for this con-

tinuous action space. Further, the action sampler is different for training and learn-

ing than for testing. The continuous space prevents sampling all possible actions.

For test behavior, I initially sample (1) moving each block between each other pair

of blocks, (2) moving to the same x as (on top of) each other block, (3) closing 0.5

of the distance toward each other block, and (4) moving 0.1 farther away from each,

counting from centers. After this initial sampling, later iterations of exploration

beam search make additional steps of 0.5 toward or 0.1 away from each other block.

Random exploration for test trials use a multinomial probabilities as for the high

stacks task, with a probability of 0.1 for done, 0.9 × 0.75 for move, and 0.9 × 0.25
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for rotate.

For training experience and in the learning process, the sampling is more directed

toward arch-building outcomes, to provide more learning opportunity. In the first

iteration, instead of the choices provided by the testing sampler, the training sampler

chooses positions nearby other blocks (specifically, 0.75 times sum of the current

horizontal size of the two), such that a successful arch might be built in the next

round. It also samples cases of putting a block between two others, as for the testing

sampler. Later iterations of action sampling need only relative offsets and therefore

proceed the same as for the testing sampler.

In addition to the training action sampler, I also use a custom exploration policy

for this task rather than random behavior. This policy is used wherever random

behavior is used in other tasks during training sessions. This policy has competence

in building successful arches; some of its failures are purposely coded just to provide

variety. Specifically, it expects 3 or more blocks, chooses one to be the arch top

and two others to be the supports. As episode duration might be limited, it selects

an existing horizontal block, if present, to be the top. All else equal, it prioritizes

block selection from left to right, according to their current positions. It rotates

horizontal supports upright, although, with probability 0.5, it skips the rotation.

It places supports at just the right distance apart, with a buffer zone of 1 unit on

each side, for the chosen top. If any arch as been built, it selects done with proba-

bility 0.5. Finally, with probability 0.1, it selects at random from training-sampled

actions, using the same multinomial as for test trials, rather than following the ex-

pert behavior at all. The careful training policy (and training sampler) somewhat

resemble an expert teacher, allowing the learner to see examples of successful (and

unsuccessful) behavior. Alternatives to careful demonstration could include active

learning (Cohn et al., 1996; Settles, 2009; Kulick et al., 2013) or intrinsic motivation

(Singh et al., 2004; Oudeyer et al., 2007; Schmidhuber, 2010; Barto, 2013), but such
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Figure 7.16: Two examples episodes for the arch building task, showing (a) the
starting state and (b) the ending state for each.

are beyond the scope of this work.

Arch Building Results

Figure 7.16 shows learned behavior with example episodes from test experience

iteration 3 of the highest performing SMRF-RPI policy at that iteration. The first

example is the first episode of this test experience. In this example, the agent builds

an arch after three actions and then declares the task done. The target x coordinate

for placing the top block is about −16.7, but environmental noise seems to have

resulted in it being placed farther to the left. The resulting diagonal top results in

a final total reward of about 28.36. Encouragingly, SMRF-RPI demonstrates that

it can use rotate in forward-looking fashion for this task.

The second example shown is the third episode from the same test experience

iteration. In this case, the agent again successfully builds an arch, and, again,

environmental noise results in the top being less centered than planned. (The agent

here attempts to place the top at an x of about 30.0.) For this episode, the agent

uses all five actions before building the arch, leaving no chance to declare the arch
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done. In learning, the agent would perceive no reward. In test, however, this episode

receives a total reward of about 40.66.

Looking at additional episodes, better performing SMRF-RPI policies commonly

attempt to build upright arches. This includes using blocks that happen to be up-

right, or else setting blocks up if needed. Policies often make unhelpful choices, too,

and the reason is often unclear. One common, unhelpful pattern I observed is an

unwillingness to call an arch done if the supports were somewhat close together.

Instead of attempting to separate the supports (perhaps due to short episode du-

ration), it just repeatedly moves the top block to approximately the same position.

For the first episode in Figure 7.16, the supports are somewhat well spaced. Perhaps

the agent called this arch done because it failed to perceive the actual issues result-

ing in lower reward (i.e., the tilted top and support). Across the 500 test episodes

of iteration 3 of the top-performing SMRF-RPI policy, it successfully ends 53% of

episodes having built an arch. Of these successes, the mean total reward is about

40.87. Therefore, it seems possible that the key factor in the overall performance

isn’t the quality of built arches but rather the episodes with no arch at all.

As an example of learned representations, Figure 7.17 shows the learned tree

selected for done in a first RPI iteration for this task. The high probability leaf is

active when two blocks are about 9 units apart in x and when another block is about

10 units off the ground, at any x coordinate. This definition of an arch makes sense

when there are only ever 3 blocks in a scene, which is the case for the task used

here. Also in this case, as expected, the only tree learned on first RPI iteration is

for done. On the second iteration of RPI, still before another batch of experience,

SMRF-RPI adds another tree for done and one for move, both learned on negated

labels. These trees are shown and discussed in Appendix A.

Considering overall performance, Figure 7.18 shows the mean total reward of

SMRF-RPI as well as that of both a fixed policy closely matching the training policy
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Figure 7.17: Example tree for done on the arch task, which asks about two blocks
spaced beside each other and another at an appropriate altitude to form an arch
top. Extent columns show scaled eigenvectors.

and an additional manual policy that excludes the noisy actions of the trainer. As

discussed earlier, because of the wide-ranging nature of the task, the training policy

is not purely random. Rather, it is a semi-expert demonstration, still with occasional

noise added. The careful manual policy, on the other hand, makes no purposeful

errors. Because of the block size used in this task, the theoretical maximum score

is just shy of 64. However, due to noise in the move and rotate options and also

the imposed time step limit, it becomes more difficult to construct a policy that

achieves near that maximum.

Figure 7.18 demonstrates that SMRF-RPI has learned to improve its perfor-

mance on this task (p < 10−14), with some individual runs performing much better

than the mean after the third iteration of learning. Some runs even outperform
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Figure 7.18: Mean total reward, across 30 independent runs, for arch building task
for 500 episodes per iteration. The “manual” and “training” policies both are fixed
and hand-coded. Dotted lines around SMRF-RPI results show the test performance
of the runs with the maximum and minimum training performance for SMRF-RPI
after each iteration. The final iteration consists of only 29 runs, as one run has not
finished as of the time of writing. Error bars show standard deviation across runs.

the training policy mean, although, as of experience iteration 4, the training mean

leads over the SMRF-RPI mean (p < 0.05). Still, the SMRF-RPI mean at experi-

ence iteration 4 is above that at iteration 3 (p < 0.01), and it seems likely that the

mean may continue to rise in later experience iterations. However, as the number

of SMRF representations also rises, and with the need to sample actions in contin-

uous space, the learning process runs slowly. Therefore, later iterations have not

been completed to determine asymptotic performance. The speed bottleneck is cur-

rently in the SMRF tree query process, and preliminary attempts at higher speed
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SMRF query implementation suggest that large scalar speed improvements are very

possible.

7.5 Soccer Domain

7.5.1 Keepaway Task

As in Chapter 5, my final domain for testing SMRF-RPI uses the third-party 2D-

RoboCup-based keepaway benchmark task (Stone et al., 2006). Here, I employ the

standard multistep task, which represents a portion of the full game of 2D RoboCup

simulated soccer. In the common formulation of this task, 3 “keepers” and 2 “takers”

compete on a 20m × 20m field. Each time step represents 0.1 simulation seconds.

The keepers begin with possession of the ball. If the ball ever leaves the playing

bounds or the takers take possession of the ball (for at least 4 time steps), the

episode ends. The total reward is the duration of the episode in time steps, and the

reward for any one action is the geometrically discounted sum of time units occuring

during the action.

Also of note, in this dissertation, I use only the fully observable version of the

task. Another common variation of the task, which I do not investigate here, limits

the information visible to the players by restricting their field of vision.

All players are controlled by human-designed policies, except for the keeper clos-

est to the ball when a new option is to be selected. Options include the following:

� hold(A): Player A attempts to keep individual control of the ball. This op-

tion involves kicking the ball nearby so as to prepare for a subsequent kick.

Alternatively, if an opponent is nearby (within 5m), this option results in a

kick nearby but away from the nearest opponent.

� pass(A,B): Player A attempts to kick the ball to player B.
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World dynamics include some noise, such that attempted kicks do not always go

where planned. Heuristic control algorithms, including option implementation, are

unchanged from original sources, although I maintain a fork that continues to com-

pile against current RoboCup Soccer Server code, incorporates the CMAC SARSA

learning code of Stone et al. (2006), and has some minor modifications for bug fixes

and conveniences in plugging in third-party SMDP agent implementations (Palmer,

2011).

The standard keepaway task includes a standard feature vector, which consists

of 13 variables for the 3 vs. 2 case, sorting keepers by distance from the keeper with

the ball:

� the distance from each player to the center of playing field,

� the distance from each player to the keeper with the ball,

� the distance from each keeper to its closest opponent, and

� the minimum angle for each teammate between the keeper with the ball and

any opponent.

Standard actions are integers, indexed according to the distance to each teammate;

action 0 always holds, action 1 always passes to the nearest teammate, and so on.

In contrast, my raw relational attributes identify players directly and include the

position, orientation, and team color of each player. Alternatively, team membership

could be represented by a categorical variable, but I choose against this option to

restrain the scope of SMRF algorithm for my present work. Further, this set of

variables corresponds to blocks world variables in a straightforward fashion and

reduces the amount of custom configuration needed.

In keepaway, the random policy is simply a uniform selection of available actions.

In the common 3 vs. 2 configuration, this includes holding the ball or passing to one
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Figure 7.19: Two slices of an example policy learned by SMRF-RPI for the keepaway
task. The number 1 indicates the keeper with the ball, and the asterisks indicate
taker locations. The color darkness shows Q value difference from the winning action
to that with next highest Q. Each position corresponds to changing the center of the
position of the takers while retaining keeper poses unchanged. Red regions indicate
where hold is the preferred action, green indicates pass to teammate 2, and blue
indicates pass to teammate 3.

or the other of the two teammates.

7.5.2 Keepaway Results

In 3 vs. 2 keepaway, the takers are coded to both chase the ball rather than to split

apart. Because of simulation dynamics, without two opponents nearby, a keeper

can hold on to the ball indefinitely. As a result of this taker behavior, a good

keeper policy involves holding the ball until takers come too close. At this point,

the keeper with the ball should pass to the teammate who is most open. The

standard manual policy for keepaway follows this heuristic (Stone et al., 2006).

Higher performing SMRF-RPI policies also follow this general pattern, as seen by

example configurations of an example learned policy in Figure 7.19. The exact

boundaries are noisy, but this policy shows that when takers are near the keeper

with the ball, it chooses to pass to the most open opponent, while at farther the
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Figure 7.20: Example tree for “not” pass(A,B) on the keepaway task, learned on
negated labels. The first question identifies another player aligned somewhat with
the vector between the passer and receiver. Extent columns show scaled eigenvec-
tors.

distances, the agent often chooses to hold on to the ball.

As an example of learned representations, Figure 7.20 shows the “not” pass tree

learned on negated labels in the first RPI iteration of one of the 30 independent

runs of SMRF-RPI for this task. For SMRF reframe mapping functions (as detailed

in Section 4.3), the first parameter is the origin, so the first question asks if there

is a another player C in a region centered about 3.8 units toward the passer from

the potential receiver. The region extends much more in the direction toward the

passer than in the reframed y axis. The second question invokes another participant

D where C does not refer to someone in the former region. This could either be an
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example of overfit or an actual case of attention payed to subtle task dynamics. For

this run, no hold representation is learned until the second RPI iteration, which is

still before the next batch of experience. Trees learned in the second RPI iteration

for this run are shown and discussed in Appendix A.

Performance Comparison

As described previously, RoboCup keepaway is a standard benchmark task. How-

ever, because of ambiguities in exact software configuration, for comparison with

SMRF-RPI performance, I report on my own runs of the CMAC Sarsa learning

software provided by Stone et al., rather than referencing previously published re-

sults. Figure 7.21 shows mean performance for both learning algorithms for 50

episodes per batch. As the Sarsa learning algorithm for the CMAC representation

is an online learner, each “batch” consists of 50 episodes of online learning. The

test performance shown is a snapshot of the policy before each new round of online

learning begins. Also, SMRF-RPI uses all experience from a batch from all keepers,

but the standard CMAC Sarsa implementation has each keeper learn independently

from just its own experience. To put the algorithms on equal footing, I implement

an experience sharing mechanism so that all keepers learn from each other’s expe-

rience online. Unlike the report by Taylor et al. (2006), I find that learning does

go much faster when the agents share learning. Still, from Figure 7.21, it is clear

that in these early stages, SMRF-RPI clearly outperforms CMAC Sarsa, given the

same number of episodes (p < 10−7 at iteration 1, and comparisons through itera-

tion 5 yield smaller p-values than this). SMRF is able to draw ellipsoids covering

key regions, whereas CMAC tilings need to update weights for small regions at a

time. This seems a likely cause for the initial lead of SMRF-RPI. After 10 iterations,

however, the difference is no longer significant (p < 0.1).

Giving CMAC Sarsa more time to learn, Figure 7.22 shows a different configu-
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Figure 7.21: Mean total reward, across 30 independent runs, for both SMRF-RPI
and CMAC Sarsa learning for 50 episodes per iteration. Error bars show standard
deviation across runs.

ration at 500 episodes per batch. From the Sarsa perspective, where learning occurs

online, this is merely 10 times the experience, and therefore provides a “zoomed out”

view. Because SMRF-RPI actually works in batches, there could be additional, sub-

tle effects. In particular, the entire first training batch of 500 SMRF-RPI episodes

is entirely random play.

As stated earlier, higher performing SMRF-RPI policies often are better, rather

than the performance being due merely to noise in execution. Subtracting out the

mean test performance at each experience iteration, the SMRF-RPI runs for this task

have high correlation between training and test performance (R ≈ 0.85, p < 10−91).

In contrast, for CMAC Sarsa the training-test correlation, while significant, is lower
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Figure 7.22: Mean total reward, across 30 independent runs, for both SMRF-RPI
and CMAC Sarsa learning for 500 episodes per iteration. Dotted lines around
SMRF-RPI results show the test performance of the runs with the maximum and
minimum training performance for SMRF-RPI after each iteration. Error bars show
standard deviation across runs.

(R ≈ 0.20, p < 10−3). The better SMRF-RPI policies approach the lower end of

the CMAC Sarsa range, as demonstrated by dotted margins in Figure 7.22. Still,

this figure shows enough learning time to clearly demonstrate that CMAC Sarsa

asymptotes at a higher level than SMRF-RPI (p < 10−14). This leads to the question

of why SMRF-RPI learns faster early on but then levels off too soon.

Potential explanations include: (1) that the policies SMRF-RPI learns early on

prevent it from behaving in a fashion to learn better policies later, (2) that Sarsa is

more effective than LSPI for policy learning, and (3) that SMRF-RPI learning fails

to home in on key distinctions that enable higher performance. Other possibilities
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may exist, but I investigate these explanations here.

As one method for investigating combined effects of both experience and RL

algorithm, I conduct an experiment using the Sarsa implementation of Stone et al.

(2006) with fixed, previously learned SMRF representations. No further represen-

tation learning occurs in this experiment. Specifically, I use representations after

two iterations of SMRF-RPI with 500 episodes per batch. Each of 30 runs using

SMRF representations in this experiment uses representations from a corresponding

run with results shown in Figure 7.22. Further, this experiment uses the standard

configuration where each agent learns independently, rather than sharing experi-

ence. Figure 7.23 shows the results of this experiment, where the horizontal axis is

simulation time rather than corresponding to the number of episodes. Using simu-

lation time is more common in previous work with keepaway when portraying the

online learning process. Overall, this figure clearly shows the same general trend as

before; the representations from SMRF-RPI learn quickly, outperforming CMAC at

first (p < 10−8), but are then surpassed (p < 10−8 at the final time here, although

the CMAC performance has yet to reach its asymptote). Of note, with SMRF rep-

resentations, the online Sarsa learners almost immediately develop a certain level

of competence. This suggests that a fair amount of domain knowledge is already

encoded in the SMRF representations. That the representations have value for

learning new policy weights also suggests that transfer of representations learned by

SMRF-RPI might have value between similar tasks or domains. Also note, however,

that the asymptote here for SMRF representations is below that of full SMRF-RPI,

suggesting perhaps that Sarsa’s performance is below that of LSPI. This experiment

also suggests that perhaps the cause of both SMRF-RPI’s higher initial performance

and lower asymptotic performance is in the representations rather than in the RL

method.

When comparing the performance of SMRF-RPI and CMAC Sarsa in this regard,
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it is worth noting that for CMAC Sarsa, the features for standard keepaway learning

(as detailed in Section 7.5.1), the CMAC tile sizes for each feature, and the number

of tilings have all been hand selected for this task (Stone et al., 2005). Further, it

is commonly understood in machine learning applications that feature engineering

has clear impact on performance (Provost and Kohavi, 1998; Domingos, 2012). In

contrast, SMRF-RPI must learn its own representations in a fashion general enough

that the same algorithm can be applied to a variety of different tasks, including the

other tasks addressed in this chapter. Compared to hand-selected features for each

task, SMRF-RPI is bootstrapping more of its own learning process and relying less

on human intelligence.

As a final comparison with CMAC Sarsa learning on keepaway, I also test trans-

fer learning from the 3 vs. 2 case to 4 vs. 3. This equates to ”small tested on large”

case in Chapter 5. Figure 7.24 shows the results. For SMRF-RPI, this experi-

ment tests untouched transfer from 3 vs. 2 representation and policies. For CMAC

Sarsa, this experiment tests learning online from scratch as before. No transfer case

exists for SMRF-RPI for iteration 0 because there is no policy to transfer. The

asymptote SMRF-RPI achieves when learning from 500 episodes of random play is

also seen in the 4 vs. 3 case. Importantly, transfered SMRF-RPI policies outper-

form CMAC Sarsa again in the early iterations (p < 10−18 at iteration 1), despite

having been learned in a different configuration of the task. Also, while, as in 3

vs. 2, CMAC Sarsa does eventually overtake SMRF-RPI (p < 10−15), the highest-

performing SMRF-RPI policies are closer to mean CMAC Sarsa performance than

before. As stated previously, transfer to differing numbers of objects is one of the

key benefits of a relational approach. For SMRF-RPI, this is the only transfer case I

test, although results in Chapter 5 suggest that this expected benefit might be seen

in other tasks as well. Of course, without carrying out additional experiments, it is

hard to predict the exact quality of transfer for other tasks.
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Figure 7.23: Smoothed total reward for Sarsa learning, by simulation time rather
than episodes, for previously learned SMRF representations and for standard CMAC
tilings. Rewards are smoothed by applying an acausal Gaussian kernel with standard
deviation of 0.1 simulation hours for evenly spaced intervals, for each individual run.
Error bars show standard deviation across runs.

SMRF-RPI Variants

One of the features of SMRF-RPI is the RPI loop that iterates multiple times

for each batch of experience. Analytically, in some cases, this inner RPI loop is

required for learning about multiple action types from a single batch of experience.

For example, in the arch building task, this is required for learning representations

for any action other than done. This is because there is no Bellman error to speak

of for other actions until meaningful Q values exist for done.

In this section, I empirically investigate the consequences of this feature for the

keepaway task. Figure 7.25 shows the mean total reward for different configurations
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Figure 7.24: Mean total reward, across 30 independent runs, for SMRF-RPI transfer
learning from 3 vs. 2 keepaway to 4 vs. 3 keepaway, with no additional learning, com-
pared with CMAC Sarsa learning from scratch on 4 vs. 3 keepaway, using batches
of 500 episodes each. Dotted lines around SMRF-RPI results show the test per-
formance of the runs with the maximum and minimum training performance for
SMRF-RPI after each iteration. Error bars show standard deviation across runs.
Random play (iteration 0) results are missing for SMRF-RPI, because there is no
policy to transfer.

of SMRF-RPI. In the legend, “multiple” and “single” iterations refer to the RPI

iterations for a single iteration of experience. Also, “single tree” refers to a con-

figuration where only one tree for positive and only one for negative is attempted

for a single RPI iteration at each experience iteration. The main result here is that

multiple RPI iterations help substantially for SMRF-RPI to take advantage of a

batch of 500 episodes of random play. Specifically, after the first batch of experi-

ence, the “Multiple Iterations – 500 Episodes” configuration outperforms each other

118



0 1 2 3 4 5 6 7 8 9 10
Iteration

0

20

40

60

80

100

120

140

160

M
ea

n 
To

ta
l R

ew
ar

d

Multiple Iterations - 500 Episodes
Multiple Iterations - 50 Episodes
Single Iteration - 500 Episodes
Single Iteration - 50 Episodes
Single Tree - 500 Episodes
Single Tree - 50 Episodes

Figure 7.25: Mean total reward across 30 independent runs, for various configura-
tions of SMRF-RPI on keepaway task. Error bars show standard deviation across
runs.

configuration (p < 10−8 for the least significant comparison, after correcting for

multiple comparisons). By the final experience iteration, however, the “Multiple

Iterations – 500 Episodes” configuration no longer has a significant lead over any

other configuration (p < 0.05 at lowest, which is not significant after correcting for

multiple comparisons).

Looking at cumulative leaf counts in Figure 7.26, the multiple RPI iterations

versions both start and end with more leaves than the single RPI iteration versions

(p < 10−10 in the least significant case). Leaf count matters minimally because of

execution speed, but concerns about excessive dimensionality are well understood

in machine learning. Given equivalent performance, it is common to prefer simpler
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Figure 7.26: Cumulative leaf count, across 30 independent runs, for various configu-
rations of SMRF-RPI on keepaway task. Error bars show standard deviation across
runs.

representations. Results here show that repeated RPI can indeed help with perfor-

mance, but some fine tuning to task needs might be helpful if representation size is

truly a concern.
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Chapter 8

Conclusion

8.1 Discussion

8.1.1 Reinforcement Learning in Implicitly Relational Worlds

Many real-world tasks require agents to interact with objects in the environment.

Such objects might be items on a table, players in a team sport, or any others

relevant to a task. Objects also have relationships between them. For example, one

object might be on another, or an opponent might be between two teammates. As

humans, we can describe these situations in discrete terms, but the relationships

originally are implicit in the relative physical measures of the objects. What counts

as “between” for one task might be different than for another. The number of

objects in a situation, as well as the roles played by particular objects, might also

change from time to time. This prevents immediate use of a simple, fixed list of

variables with consistent meaning.

Instead, for an agent to perform tasks in such environments, it must be able

to identify key variables from these objects and relations. Further, it should be

possible for an agent to learn from its own experience how to perceive the world

to accomplish its tasks. Reinforcement learning (RL) allows agents to learn how to

accomplish multistep tasks from a scalar reward signal. Relational learning works

with object relationships and also scales to differing numbers of objects by sup-

porting quantifiers from first-order logic. For example, in soccer, does there exist

a potential interceptor for the pass I want to make? This question is relevant no
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matter how many players are on the field. Relational reinforcement learning (RRL)

combines RL and relational learning (see, e.g., Džeroski et al., 2001; van Otterlo,

2005, 2012).

However, traditional relational learning methods do not emphasize continuous,

multidimensional environments. Often, they rely on hand-crafted predicates (e.g.,

Pasula et al., 2007) or address continuous variables only in one dimension at a time

(e.g., Blockeel and De Raedt, 1998). Those methods which seek to learn relations

from physical data sometimes do so without the ability to reason over quantified

variables during the relation learning process (e.g., Kulick et al., 2013).

In this dissertation, I present SMRF-RPI, a method for RRL in continuous,

multidimensional domains. SMRF-RPI is an instantiation of the representation

policy iteration (RPI) framework of Mahadevan (2005b), where the representation

learning capabilities are provided by the spatiotemporal multidimensional relational

framework (SMRF) of Bodenhamer (2014). In particular, SMRF-RPI emphasizes

domains where no explicit relations exist in the data. Rather, objects have a variety

of attributes, such as location, color, size, and orientation, and relations between

objects must be inferred from relative measures. Using such attributes, the SMRF

learning algorithm builds probabilistic decision trees for binary, existential classifi-

cation. SMRF-RPI provides class labels based on the Bellman error (BE) of sample

agent experience (see Parr et al., 2007; Wu and Givan, 2010). By these means,

SMRF-RPI builds its own grounded, n-ary predicates from physical data in the

process of learning to accomplish tasks.

Further, within SMRF-RPI, I present a method for sampling and evaluating

actions with continuous parameters. Specifically, SMRF-RPI uses a beam search

based on the learned Q function, which evaluates potential actions for a particular

world state. For example, an agent might select from continuous goal locations for a

pick-and-place task. My method differs from the few existing examples of continuous
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actions for RRL. For example, Zaragoza and Morales (2009) use interpolation from

discretized actions, and Kulick et al. (2013) present a continuous action for use in

constructing examples for active learning of grounded predicates, but not in their

relational planning task. In contrast, SMRF-RPI searches for possible actions in

continuous space during the process of relational reinforcement learning.

Also, building on the earlier work of Bodenhamer (2014), I show in this work the

effective use of ternary, reframe mapping functions. Other relational learning meth-

ods sometimes restrict relative measures to functions of two objects (e.g., Jetchev

et al., 2013). Because objects might take on arbitary roles, permutations of object

assignments need to be considered. SMRF’s tree nature allows for pruning of these

object instantiation sequences down different branches, thereby reducing the total

number of permutations that needs to be considered in practice. This reduces the

cost of functions of more than two parameters. Further, the tree nature allows for

multiple questions of differing arity. Alternatively, to consider all relative measures

in a single vector space, merely allowing for ternary relations requires all permu-

tations of three objects to be present, even if in the end, for some cases, a binary

relationship is all that matters. The vector space would also need to be of higher

dimensionality to accommodate all the relative measures of varying arity under con-

sideration. Trees simplify these concerns by dividing the larger question space into

parts.

8.1.2 Experimental Results

In this dissertaton, I have demonstrated application of SMRF-RPI to a variety of

tasks and domains with minimal tailoring of algorithm parameters. In addition

to a 1D corridor domain, I test SMRF-RPI in three separate tasks in a simulated,

physical 2D “blocks world” domain: building high towers, grouping blocks by similar

colors, and building arches. The blocks world tasks address a variety of physical and
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color relationships. Among these, the arch building task requires multiple steps of

lookahead and also involves a move action with a continuous horizontal goal location

parameter.

Further, using the standard RoboCup keepaway benchmark task (Stone et al.,

2006), I have shown that SMRF-RPI can be sample efficient in learning initial

representations. I compare the performance of SMRF-RPI with the existing online

Sarsa learning algorithm coupled with a CMAC tiling representation and a hand-

designed feature vector (Stone et al., 2005, 2006). SMRF-RPI outperforms CMAC

Sarsa in the early stages of learning, but CMAC Sarsa asymptotes at a higher level.

Experiments suggest that both differences are due to the representations in use.

SMRF-RPI learns ellipsoidal representations of much lower dimensionality overall

the the full CMAC tilings. However, the grid tilings can allow for more careful fine

tuning.

Of note, the CMAC grid sizes and tilings, in addition to the features themselves,

are also human-designed and tailored (Stone et al., 2005). On the other hand,

SMRF-RPI bootstraps its own representation in a fashion that is also applicable to

other domains, including for the blocks world tasks presented in this dissertation.

As a result, it requires less human engineering effort to adapt to new tasks. This

increased adaptability is a key benefit to my approach. I also show that the repre-

sentations and policies learned by SMRF-RPI in 3 vs. 2 play transfer immediately to

the 4 vs. 3 setting, outperforming the early learning of CMAC Sarsa. Such transfer

a result of the existential nature of SMRF representations.

Finally, I demonstrate the effectiveness of SMRF-RPI’s repeated iterations of

representation policy learning between each batch of experience. In the arch building

task, some runs substantially increase their performance using experience from the

initial training demonstration. In the first iteration of RPI, the only Bellman error

results from correct claims that an arch is completed, by use of the done action. Only
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after this RPI interation does Bellman error indicate what actions and conditions

lead to the state of a completed arch. A single batch of experience allows these

multiple steps of learning, and mean performance across runs also continues to

improve with further iterations of experience. In the case of the keepaway benchmark

task, when a batch of experience is sufficiently large, multiple iterations of RPI are

necessary to make full use of the available experience.

8.1.3 Additional Contributions

For SMRF to learn discrete relations from physical data, it needs a method for

determining decision boundaries in multidimensional space. Mapping functions in

SMRF extract a set of vectors for each scene from object instantiation sequences.

For example, this set might be the relative positions of all pairs of objects, and the

question becomes which of these is relevant to the task at hand? The scene as a whole

is labeled, based on Bellman error for the case of SMRF-RPI, but the individual

instance vectors are not. This existential classification problem is the common

formulation of multiple instance learning (MIL, see Dietterich et al., 1997; Maron

and Lozano-Pérez, 1997). In this dissertation, I present a novel MIL algorithm

called covariant aggregation. In comparison with other MIL algorithms, covariant

aggregation performs robustly with minimal parameter tuning, while also providing

support for instance label prediction and simple yet covariance-sensitive decision

boundaries. I have also empirically demonstrated its consistently fast execution

in comparison with other capable methods. Covariant aggregation provides the

decision volume learning method within the SMRF tree learning algorithm, and

robustness and speed are important when repeatedly learning decision volumes for

a variety of potential tree expansions.

Finally, as a prelude and potential complement to relational reinforcement learn-

ing, I also present a method for learning binary outcomes of actions in relational
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settings. Commonly, this is question of action success or failure. For example, will a

pass from player A to player B be successful? If so, the pass might be viewed as an

affordance (Gibson, 1977) available to player A. Therefore, these predictive models

indicate to an agent when particular actions might lead to successful outcomes in

a decision-making process. I also demonstrate transfer of learned models to tasks

with both more and fewer objects than present in the learning process.

8.2 Future Work

There are a number of potential directions for taking this work forward. This

includes both focused performance matters in addition to big picture ideas. SMRF-

RPI’s performance, while encouraging, still asymptotes below optimal in all but

the 1D corridor task, and some policies learned by SMRF-RPI perform better than

others. Therefore, in this section, I begin with potential directions for improving

performance. Next, looking at the larger picture, I discuss potential investigations

into transfer of representations between tasks, as well as possible avenues for in-

creasing the richness of the SMRF’s representational capabilities.

First, there would be clear value in finding ways to achieve high performance

more consistently. Differences between SMRF and CMAC representations in the

keepaway task suggest that SMRF-RPI might need to draw finer distinctions in

state space. Several other relational reinforcement learning algorithms use direct

regression for approximating the Q function (Driessens et al., 2001; Driessens and

Ramon, 2003; Driessens and Džeroski, 2005; Gärtner et al., 2003). In contrast,

SMRF-RPI assigns binary labels before learning a tree. If the actual Bellman error

value were present for each scene, then different branches could learn question nodes

associated specifically with the subset of instantiation sequences present in each

branch. Sophisticated regression might also include continuous models in the tree
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itself (e.g., Vens et al., 2007). Another possible direction is that of policy gradient

learning, which allows for stochastic policies and, thus, a smoother gradient in the

learning process. Kersting and Driessens (2008) suggest that this allows for more

consistent learning of higher-performing policies in their experiments.

Also, other mechanisms for feature selection might be appropriate to explore.

Filter feature selection techniques (e.g., Guyon and Elisseeff, 2003; Brown et al.,

2012) might be less processing intensive than, and at least as effective as, the wrap-

per method I use in this work. Also, no feature selection in this work actually

evaluates trees on their performance in actual task execution. Rather, their effec-

tiveness is inferred for the future based on previous experience. Feature selection

based on actual performance relates to evolutionary computation methods (e.g., Gir-

gin and Preux, 2008b; Verbancsics and Stanley, 2010), although the representation

and policy learning components could still employ standard reinforcement learning

techniques. Of course, testing direct performance of potential features might be less

sample efficient than my current technique.

Looking beyond this matter, several other areas of RRL seem valuable for future

research. In this dissertation, I have tested transfer only between differing numbers

of objects. There could also be value in representation transfer between different

types of tasks, such as for the put action, from the high towers to the color grouping

task. Transfer might also apply to different agents in the same task. For example,

the pass(A,B) action in soccer contains information not only about passer A but

also about receiver B. Representations and perhaps even Q functions learned for

passing the ball might inform teammates about the best places to go to receive the

ball.

There could also be value in addressing fundamental relational capabilities. For

example, SMRF currently has no direct mechanism for mixed existential and uni-

versal quantification, whereas TILDE (Blockeel and De Raedt, 1998) at any branch
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can ask about negative existence. A related topic is that of grouping (aggregation)

and deconstruction. That is, object-hood can be somewhat arbitrary. A group of

people or objects might matter as a single entity in a scene, or perhaps part of some

object (edges, corners, etc.) might be best addressed independently. When address-

ing groups, universals and existentials become more interesting. For example, one

might ask, are all the wheels on car X in good shape? This concern might also be

visible in the color grouping task in Chapter 7 of this present work. The field of

multi-relational data mining (MRDM) suggests approaches to this subject (Knobbe

et al., 1999; Blockeel and Sebag, 2003). However, the intersection of MRDM and

RL seems mostly unexplored.

Blockeel and Sebag (2003) also raise the important question of efficiency as the

size of a search space increases. The space of questions and functions of object

attributes is intractable. Bias and efficient search are vital. On this matter, both

SMRF and TILDE prohibit arbitrary lookahead in tree growth (multiple, sequential

questions added simultaneously) because of the exponential growth. On the other

hand, some questions can only be answered in original attribute space by lookahead

(see, e.g., Blockeel and De Raedt, 1997; Struyf et al., 2006). Lifelong learning

(e.g., Thrun and Mitchell, 1995; Hawasly and Ramamoorthy, 2013) is perhaps one

approach to learning the kinds of biases necessary to address these concerns. On

another matter of efficiency, while SMRF attempts to prune instantiations before

combinatorial expansion, some questions nodes must still filter large quantities of

instantiation sequences. While only a small spatial area might be of interest, all

instantiation sequences present must be tested in the current algorithm. Spatial

indexing (e.g., Jensen et al., 2004) is a promising approach to make such queries

more efficient.
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Stulp, F., Fedrizzi, A., Mösenlechner, L., and Beetz, M. (2012). Learning and
reasoning with action-related places for robust mobile manipulation. Journal of
Artificial Intelligence Research (JAIR), 43:1–42.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction.
The MIT Press.

Sutton, R. S., Precup, D., and Singh, S. (1999). Between MDPs and SMDPs: A
framework for temporal abstraction in reinforcement learning. Artificial Intelli-
gence, 112:181–211.

Takeuchi, I., Le, Q. V., Sears, T. D., and Smola, A. J. (2006). Nonparametric
quantile estimation. Journal of Machine Learning Research (JMLR), 7:1231–
1264.

Taylor, M. E., Whiteson, S., and Stone, P. (2006). Comparing evolutionary and
temporal difference methods in a reinforcement learning domain. In Conference
on Genetic and Evolutionary Computation (GECCO), pages 1321–1328. ACM.

Thrun, S. and Mitchell, T. M. (1995). Lifelong robot learning. Robotics and Au-
tonomous Systems, 15(1–2):25–46.

136



Toussaint, M., Plath, N., Lang, T., and Jetchev, N. (2010). Integrated motor con-
trol, planning, grasping and high-level reasoning in a blocks world using proba-
bilistic inference. In IEEE International Conference on Robotics and Automation
(ICRA), pages 385–391.

van Hasselt, H. (2012). Reinforcement learning in continuous state and action spaces.
In Wiering, M. and van Otterlo, M., editors, Reinforcement Learning, volume 12
of Adaptation, Learning, and Optimization, pages 207–251. Springer Berlin Hei-
delberg.

van Hasselt, H. and Wiering, M. A. (2007). Reinforcement learning in continu-
ous action spaces. In IEEE International Symposium on Approximate Dynamic
Programming and Reinforcement Learning (ADPRL), pages 272–279.

van Otterlo, M. (2005). A survey of reinforcement learning in relational domains.
Technical report, Centre for Telematics and Information Technology (CTIT) Uni-
versity of Twente.

van Otterlo, M. (2012). Solving relational and first-order logical Markov decision
processes: A survey. In Wiering, M. and van Otterlo, M., editors, Reinforcement
Learning: State-of-the-Art, volume 12, pages 253–292. Springer Berlin / Heidel-
berg.

Vens, C., Ramon, J., and Blockeel, H. (2007). ReMauve: A relational model tree
learner. In Muggleton, S., Otero, R., and Tamaddoni-Nezhad, A., editors, Induc-
tive Logic Programming (ILP), volume 4455 of Lecture Notes in Computer Science
(LNCS), pages 424–438. Springer Berlin Heidelberg.

Verbancsics, P. and Stanley, K. O. (2010). Evolving static representations for task
transfer. Journal of Machine Learning Research (JMLR), 11:1737–1769.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning. Machine Learning, 8:279–
292.

Winston, P. H. (1970). Learning structural descriptions from examples. PhD thesis
AITR-231, Massachusetts Institute of Technology (MIT).

Wu, J.-H. and Givan, R. (2010). Automatic induction of Bellman-error features for
probabilistic planning. Journal of Artificial Intelligence Research (JAIR), 38:687–
755.

Xu, J. Z. and Laird, J. E. (2011). Combining learned discrete and continuous action
models. In AAAI Conference on Artificial Intelligence (AAAI), pages 1449–1454.

Zaragoza, J. H. and Morales, E. F. (2009). A two-stage relational reinforcement
learning with continuous actions for real service robots. In Mexican International
Conference on Artificial Intelligence (MICAI), volume 5845 of Lecture Notes in
Computer Science (LNCS), pages 337–348. Springer Berlin Heidelberg.

137



Zhang, P. and Renz, J. (2014). Qualitative spatial representation and reasoning in
Angry Birds: The extended rectangle algebra. In International Conference on
Principles of Knowledge Representation and Reasoning (KR).

Zhang, Q. and Goldman, S. A. (2001). EM-DD: An improved multiple-instance
learning technique. In Advances in Neural Information Processing Systems
(NIPS), volume 2, pages 1073–1080.

Zhao, H., Cheng, J., Jiang, J., and Tao, D. (2013). Multiple instance learning
via distance metric optimization. In IEEE International Conference on Image
Processing (ICIP), pages 2617–2621.

138



Appendix A

Additional Example Trees

This appendix demonstrates additional example trees learned by SMRF-RPI for

some of the tasks discussed in Chapter 7. Example trees provide some intuition

into the variety of representations learned by SMRF-RPI, although this still is a

very small sampling of the many trees learned during experimental evaluation. Of

note, the trees here are selected from arbitrary runs of SMRF-RPI. They do not

necessarily represent either high performing, low performing, or typical cases.

A.1 High Towers Task

For the high towers task, Figures A.1 and A.2 show the trees learned in the second

RPI iteration following the example trees in Section 7.4.1. Interestingly, both of

these trees begin by asking about objects other than the action parameters. The

put(A,B) tree in Figure A.1 asks no questions about the parameters at all. While

the size (extent) of object C can say nothing directly about A or B, there might

be sequences of activity that cause the size or configuration of other blocks to be

relevant. The rotate(A) tree in Figure A.2 does ask a second question about the

relative position of rotated block A and another block. The question places B

above A just as for the rotate tree in Section 7.4.1, but in this case, there is a wide

horizontal variance. Perhaps this tree in some ways allows refinement of the region

described by the earlier tree.

139



A

B

C

Identity Extent (C)

Mean: Extent:

3.792
2.876

1.073 -0.228
0.584 0.419

D

Yes

0.394

No

0.000

Error

E

Reframe 2D Scaled Location (C, D, E)

Mean: Extent:

0.653
0.030

-0.104 -0.111
0.104 -0.111

1.000

Yes

0.619

No

0.000

Error

Figure A.1: Example tree for put(A,B) on the high towers task for a second RPI
iteration. In this case, the tree asks no questions about the action parameters at
all. Extent columns show scaled eigenvectors.

A.2 Arch Building Task

For the arch building task, Figures A.3 and A.4 show the trees learned in the sec-

ond RPI iteration following the example trees in Section 7.4.3. In this iteration, a

“not” done tree, shown in Figure A.3, is included along with the previous tree for

representing done, such that features from both trees are concatenated in the full

representation. The new “not” done tree asks one question about all three blocks in

the scene. The configuration space described by this reframe question likely refines

the somewhat open-ended arch definition described by the done tree in Section 7.4.3.
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A

B

Identity Extent (B)

Mean: Extent:
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0.000

Error
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Yes
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No

0.000
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Figure A.2: Example tree for rotate(A) on the high towers task for a second RPI
iteration. While the tree begins asking about a block other than parameter A, it
follows up the first No branch by asking about the relative position with A. Extent
columns show scaled eigenvectors.

Because a done tree has already been added in the first RPI iteration, Bellman

error now allows for learning the consequences of other actions. The newly learned

and selected “not” move(A,B) tree in Figure A.4, like the additional trees for the

high stacks task above, asks only about blocks other than the one being moved. It

does ask one question about target location B, but not at first. The first questions

ask about whether an unmoved block C is horizontal, or at least not vertical. Per-

haps this is also preventative. Moving one block when another is horizontal could

risk destabilizing an existing arch. For blocks C that are vertical, additional ques-

tions are asked about both unmoved blocks that allow further understanding of the

context in which the action is being taken.

In the third RPI iteration, a rotate(A) tree is finally learned for the task, in

addition to another done tree and another “not” move(A,B) tree. These are shown
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Mean: Extent:

-6.026
2.652
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2.967 2.754
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0.157

No

0.000

Error

Figure A.3: Example tree for “not” done on the arch building task for a second RPI
iteration, learned on negated labels. This tree asks about all three blocks with a
single reframe question. Extent columns show scaled eigenvectors.

in Figures A.5, A.6, and A.7, respectively. The rotate(A) tree, in Figure A.5, does

not ask directly about the orientation of A. Instead, this tree looks for another block

horizontally offset and whose center is about 2 units above A. All blocks for this

task are the same size and shape, and this offset is the right amount to imply that

A is horizontal and B is vertical. In this case, rotating A gives a second upright

support. However, a higher probability leaf exists when some B not matching the

previous condition is instead at a great distance (some 38 to 49 units) from A. Such

a distance could be due to the random original placement at the beginning of the

episode. Only when there exists no B matching either above condition is the third

block queried.

The new done tree, in Figure A.6, asks for one block offset both horizontally

and vertically from another, an apparent refinement of the arch condition. The new

“not” move(A,B), in Figure A.7, tree first examines whether A is horizontal. Note

that, for its branch, instantiation C here represents the target move location, the
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same as B does for its branch. Both are the second instantiation in their respective

branches. When A is horizontal, the arrangement of both other blocks relative to

the target location is considered. When A is vertical, there is merely a check to see

if another block is near (some 4.5 to 8 units from) the target.

A.3 Keepaway Task

For the keepaway benchmark task, Figures A.8 and A.9 show the trees learned

in the second RPI iteration following the example trees in Section 7.5.1. In the

first RPI iteration, a “not” pass(A,B) has already been learned, which provides

additional lookahead into the consequences of hold actions. This is perhaps what

allows learning of the “not” hold(A) tree shown in Figure A.8. The scaled reframe

suggests that a player C is much closer than B to player A, who has the ball. In

the 20 × 20 meter field, C is no more than 3 meters away from A and possibly

much closer. Usually, only an opponent would be so close to the active player. The

radial density feature extracted from the question node also theoretically allows a

continuous measure of how far the opponent is. Perhaps a scaled distance function

would be more appropriate than the scaled location used here, but such a mapping

function is not provided to the learning agent in this work.

Figure A.9 shows an additional learned “not” pass tree that is also selected at

the second RPI iteration. As for the tree learned in the previous iteration (and

discussed in Section 7.5.1), this tree seems to emphasize potential interceptors and

perhaps refines the previous representation.
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A

B

C

Identity Orientation (C)

Mean: Extent:
0.000π 0.907π

0.979

Yes

D

No

0.000

Error

Reframe 2D Unscaled Location (B, C, D)

Mean: Extent:

24.613
2.943

26.218 -1.577
5.906 7.002

1.000

Yes

Distance Location (D, C)

Mean: Extent:

45.399 34.377

No

0.000

Error

0.992

Yes

Difference Location (D, C)

Mean: Extent:

4.409
-2.903

6.578 -0.203
0.442 3.018

No

0.000

Error

1.000

Yes

0.170

No

0.000

Error

Figure A.4: Example tree for “not” move(A,B) on the arch building task for a
second RPI iteration, learned on negated labels. This tree emphasizes configuration
of the blocks not being moved, although it also considers target location B. Extent
columns show scaled eigenvectors.
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Difference Location (B, A)

Mean: Extent:
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24.277 -0.002
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Yes

Distance Location (B, A)

Mean: Extent:
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No

0.000

Error
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Yes
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Difference Location (C, B)

Mean: Extent:
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0.400

Yes
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No

0.000
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Figure A.5: Example tree for rotate(A) on the arch building task for a third RPI
iteration. The first question asks about horizontal offset and also implies that A
is horizontal and B vertical for the first Yes branch, by use of the vertical offset
amount. Extent columns show scaled eigenvectors.
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A

B

Difference Location (B, A)

Mean: Extent:

-5.407
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2.994 0.812
-1.188 2.045

0.545

Yes

0.000

No

0.000

Error

Figure A.6: Example tree for done on the arch building task for a third RPI iteration.
This tree asks about one block offset both horizontally and vertically from another.
Extent columns show scaled eigenvectors.
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Mean: Extent:
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Error
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F

Reframe 2D Scaled Location (D, B, F)

Mean: Extent:
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Distance Location (E, C)
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Yes
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No

0.000
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Figure A.7: Example tree for “not” move(A,B) on the arch building task for a third
RPI iteration, learned on negated labels. This tree has two different conditions, de-
pending on whether A is horizontal or vertical. Either B or C represents the second
parameter, depending on the branch. Extent columns show scaled eigenvectors.
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B
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Reframe 2D Scaled Location (A, B, C)

Mean: Extent:

0.003
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0.065 0.016
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1.000
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0.002

No

0.000
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Figure A.8: Example tree for “not” hold(A) on the keepaway task for a second
RPI iteration, learned on negated labels. The scaled relative position suggests that
another player, commonly an opponent, is very near player A, who has the ball.
Extent columns show scaled eigenvectors.
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Mean: Extent:

4.366
-0.176

8.377 -0.017
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Figure A.9: Example tree for “not” pass(A,B) on the keepaway task for a second
RPI iteration, learned on negated labels. These questions focus on potential in-
terceptors in somewhat different, but overlapping, regions. Extent columns show
scaled eigenvectors.
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