
Claremont Colleges
Scholarship @ Claremont

HMC Senior Theses HMC Student Scholarship

2018

Evaluating Flexibility Metrics on Simple Temporal
Networks with Reinforcement Learning
Hamzah I. Khan
Harvey Mudd College

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Claremont

https://core.ac.uk/display/215289204?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarship.claremont.edu
https://scholarship.claremont.edu/hmc_theses
https://scholarship.claremont.edu/hmc_student

Evaluating Flexibility Metrics on Simple
Temporal Networks with Reinforcement

Learning

Hamzah I. Khan

Susan E. Martonosi, Advisor

James C. Boerkoel, Jr., Reader

Department of Mathematics

May, 2018

Copyright © 2018 Hamzah I. Khan.

The author grants Harvey Mudd College and the Claremont Colleges Library the
nonexclusive right to make this work available for noncommercial, educational
purposes, provided that this copyright statement appears on the reproduced
materials and notice is given that the copying is by permission of the author. To
disseminate otherwise or to republish requires written permission from the author.

Abstract

Simple Temporal Networks (STNs) were introduced by Tsamardinos (2002)
as a means of describing graphically the temporal constraints for scheduling
problems. Since then, many variations on the concept have been used to
develop and analyze algorithms formulti-agent robotic scheduling problems.
Many of these algorithms for STNsutilize a flexibilitymetric, whichmeasures
the slack remaining in an STN under execution. Various metrics have been
proposed by Hunsberger (2002); Wilson et al. (2014); Lloyd et al. (2018). This
thesis explores how adequately these metrics convey the desired information
by using them to build a reward function in a reinforcement learning
problem.

Contents

Abstract iii

Acknowledgments xi

1 Introduction 1
1.1 Scheduling as a Problem . 2

2 Representations of Simple Temporal Networks 5
2.1 Scheduling with Simple Temporal Networks 5
2.2 Representations for Simple Temporal Networks 7
2.3 Properties of Simple Temporal Networks 11
2.4 Conclusion . 16

3 Flexibility as a Measure of Slack 17
3.1 Sequential and Concurrent Classes of STNs 17
3.2 Desiderata for Flexibility Metrics 19
3.3 Flexibility Metrics . 20

4 Introduction to Reinforcement Learning 25
4.1 Motivating the Reinforcement Learning Problem 25
4.2 Components of Reinforcement Learning Problems 26
4.3 Value Estimates & Tabular Monte Carlo Methods 32
4.4 Applying Reinforcement Learning to Simple Temporal Net-

works . 34

5 Empirical Evaluation of Flexibility Metrics 37
5.1 Motivation . 37
5.2 Reinforcement Learning for Scheduling in STNUs 38
5.3 Running Through Two Examples 43

vi Contents

5.4 Results . 50
5.5 Conclusions . 50

Bibliography 51

List of Figures

1.1 The output of a scheduling algorithm can be visualized as a timeline. In
the image above, the boxes represent events that have been scheduled by
assigning them times at which they should occur. The brackets represent
the constraints given to the scheduler - they dictate the intervals of time (i.e.
domains) within which the events must be scheduled. Note that domains
for events can overlap. 3

2.1 The simple temporal network from our refueling example can
be interpreted geometrically as shown. The red lines on the
graph indicate absolute constraints and the black, dotted ones
indicate relative constraints. The resulting region describes
which values for t1 and t2 form valid schedules. The space of
valid schedules is the highlighted region in green. Each point
in this feasible region represents a valid schedule. 8

2.2 The simple temporal network from our refueling example can
be interpreted as a directed distance graph as shown. As in
Figure 2.1, absolute constraints are denoted by the color red,
and relative constraints are by the color black. Vertices 0, 1,
and 2 respectively represent the events of the truck arriving,
beginning the refueling process, and ending it. The edge from
event 0 to event 1 can be interpreted as requiring event 1 to
occur at most 5 minutes after event 0 (i.e. t1 − t0 ≤ 5). 9

viii List of Figures

2.3 The simple temporal network from our refueling example
can be interpreted as a compact distance graph as shown. As
in Figures 2.1 and 2.2, absolute constraints (i.e. self-loops)
are denoted by the color red, and links representing relative
constraints colored black. The zero event, the arrival of the
truck, is not shown, but vertices 1 and 2 respectively represent
the beginning and end of the refueling process. The link from
event 1 to event 2 can be interpreted as requiring event 2 to
occur between 0 and 5 minutes after event 1 (i.e. 0 ≤ t2− t1 ≤ 5). 10

2.4 A comparison of a feasible and infeasible STN. 12
2.5 A comparison of a minimal and nonminimal STN. 13
2.6 A simple temporal network under uncertainty, with two

contingent edges between events pairs (1, 2) and (3, 4). There
is a constraint that events 2 and 4 must end within 2 time
steps of one another. The contingent edges take a uniformly
distributed duration, which makes scheduling more difficult. 15

3.1 Two different STNs for the truck delivery example defined
in Chapter 3. The values boxed in red are those which differ
between the two examples, marking the distinction between
concurrent and sequential STNs. 19

3.2 The orange triangle contains a smaller inscribed circle than
does the green triangle (both representing feasible regions of
arbitrary STNs), implying that it has a lower sphere flexibility 22

4.1 A feedback loop describing the order of events in a rein-
forcement learning system. The agent selects an action
based on its observations of the environment. The action
changes the environment in some way. Then, the agent
receives some reward signal that indicates how good the
new state is (i.e. is it a goal state or a failure state). Im-
age taken from https://en.wikipedia.org/wiki/Reinforcement_
learning#/media/File:Reinforcement_learning_diagram.svg . . . 30

5.1 At t � 0, the state of the agent S0 � ({1, 3}, {0}). The agent
selects action A0 � 3 from the action spaceA(S0) � {∅, 1, 3}. 44

https://en.wikipedia.org/wiki/Reinforcement_learning#/media/File:Reinforcement_learning_diagram.svg
https://en.wikipedia.org/wiki/Reinforcement_learning#/media/File:Reinforcement_learning_diagram.svg

List of Figures ix

5.2 At t � 1, the agent gets a reward R1 � 0 since no events were
executed at time 0. The state of the agent S1 � ({1}, {0, 3}).
The agent then chooses action A1 � ∅ from the action space
A(S1) � {∅, 1}. 44

5.3 At t � 2, the agent gets a reward R2 � 2 since contingent
event 4 was executed in the previous time step. The state of
the agent S2 � ({1}, {0, 3, 4}). The agent then chooses action
A2 � ∅ from the action spaceA(S2) � {∅, 1}. 45

5.4 At t � 3, the agent gets reward R3 � 0 since no events were
completed in t � 2. The state of the agent S3 � ({1}, {0, 3, 4}).
The agent then chooses action A3 � ∅ from the action space
A(S3) � {∅, 1}. 45

5.5 At t � 4, the execution fails as a constraint is violated, so the
reward is R4 � −16. 46

5.6 At t � 0, the state of the agent S0 � ({1, 3}, {0}). The agent
then chooses action A0 � 1 from the action space A(S0) �
{∅, 1, 3}. 47

5.7 At t � 1, the agent gets a reward R1 � 3 since event 1 was
executed at time 0. The state of the agent S1 � ({3}, {0, 1}).
The agent then chooses action A1 � ∅ from the action space
A(S1) � {∅, 3}. 47

5.8 At t � 2, the agent gets a reward R2 � 0 since task 3 has been
executed. The state of the agent S2 � ({}, {0, 1, 3}. The agent
then chooses action A2 � ∅ from the action spaceA(S2) � {∅}. 47

5.9 At t � 3, the agent gets a reward R3 � 2 since task 1 has been
executed. The state of the agent S3 � ({}, {0, 1, 3}. The agent
then chooses action A3 � ∅ from the action spaceA(S3) � {∅}. 48

5.10 At t � 4, the agent gets a reward R4 � 1 since contingent
event 2 has concluded in time step 3. The state of the agent
S4 � ({}, {0, 1, 2, 3}. The agent then chooses action A4 � ∅

from the action spaceA(S4) � {∅}. 48
5.11 At t � 5, the agent gets a reward R5 � 0 since contingent

event 4 has concluded in time step 4. The state of the agent
S4 � ({}, {0, 1, 2, 3, 4}. The episode then concludes since the
schedule has been successfully executed. 48

Acknowledgments

First and foremost, I’d like to thank God for giving me the opportunities I
have received at Harvey Mudd and the energy to pursue them. Secondly,
I’d like to thank my parents, Imtiaz and Humaira Khan, for their constant
support and love throughout college (and my life).

I’d like to thank my advisor Susan Martonosi for her support of my
growth as a researcher through this thesis process. I’d also like to thank
my second reader, Jim Boerkoel, for introducing me to this field of study
and encouraging my growth as a researcher in robotics. Thank you to my
peers in the HEATlab and on the NASA Ames Clinic team, especially Jordan
Abrahams, Marina Knittel, Amy Huang, Liam Lloyd, and Brenner Ryan, for
their feedback and help throughout the year.

Finally, thank you to Lisette de Pillis and all of my classmates in math
thesis for sitting through my presentations and providing feedback.

Chapter 1

Introduction

Adisaster strikes! NewExampletown has been hitwith amassive earthquake
and requires aid immediately in order to search for survivors in thewreckage.
As a drone network operator, you have been given the task of using this
swarm of unmanned aerial robots to locate as many people as possible.
Your central computer relays commands and receives position and timing
updates. Each drone collects information vital to these efforts, but due
to damaged infrastructure, the large amounts of data can only be shared
when two or more drones are within 10 feet of one another or the central
computer. In order to circumvent this difficulty, you assign each robot to
a set of apartment buildings to explore the relevant areas. To maximize
the efficiency of the search, you constrain the times at which each building
search can start or end.

This example illustrates a classic constraint-based scheduling problem,
where the drone network operator (you) must assign (i.e. schedule) the
start and end times for searching each building and set up precisely timed
meetings between your drones to maximize saving lives.

In this situation, you might wonder which data transfer strategy would
be best. Should you favor large meetups, where one of k drones collects
information from the others and brings it to the central location? Or should
you instead consider amore natural data transfer strategy inwhich two robots
that happen to be near one another share data at convenient times, where
data would propagate through the network back to the central computer?
More importantly, which strategy best maintains your drones’ ability to
satisfy the original schedule in the event of an unexpected delay?

This circumstance illustrates a need for scheduling. This thesis aims
to build on research done for using simple temporal networks (STNs) in

2 Introduction

scheduling problems. It attempts to evaluate flexibility metrics over STNs
with reinforcement learning.

In the remainder of Chapter 1, we present an overarching scenario from
which we will consider smaller examples in later chapters. In Chapter 2, we
review existing literature regarding the definition and representations of
simple temporal networks. Chapter 3 introduces prerequisite knowledge
about flexibility, a metric that measures slack within simple temporal net-
works. Chapter 4 briefly discusses reinforcement learning, and Chapter 5
builds on this knowledge with a design of an experiment, as well as future
work and next steps for the project. A basic familiarity with graph theory,
operations research, and probability is assumed for the content of this work.

1.1 Scheduling as a Problem

For the purposes of this thesis, we will refer to examples relating to OnTime
Trucking, whose motto is “We’ll deliver it, as long as our scheduling works
perfectly!” Consider the case of a single truck driver delivering cars from
a supplier in San Francisco to a dealership in Portland, OR. If our driver
drove without break at 60 miles per hour, such a trip would take 12 hours,
a difficult trip to make in one sitting. In addition, the truck would need to
refuel and the driver would need to eat and relieve herself at these stops.
Suppose we divided up the trip into segments between San Francisco, gas
stations, and Portland. We would then face the question of when, given the
distances between stops and the amount of rest our driver might require, we
might attempt to plan when our driver should reach each of these stops, and
when she should leave. Thinking more abstractly for a moment, we might
consider classifying each decision to leave (beginning from the decision in
San Francisco) and each decision to stop (ending with our destination in
Portland) as events indexed from 1 to n. We can then define a schedule over
a set of events to be an assignment of times~t ∈ Rn at which each event (i.e.
stopping for gas, leaving) during the driver’s trip should happen. Once we
have such a schedule, we can imagine plotting the times assigned to each
event onto a timeline, as in Figure 1.1.

Such a schedule could have been produced by a different actor, perhaps
another employee, working for the same trucking company. In this case, the
employee that designs the schedules for truck drivers might be considered a
scheduler. The truck company, after signing the contract to deliver these

Scheduling as a Problem 3

Figure 1.1 The output of a scheduling algorithm can be visualized as a timeline. In
the image above, the boxes represent events that have been scheduled by assigning
them times at which they should occur. The brackets represent the constraints given to
the scheduler - they dictate the intervals of time (i.e. domains) within which the events
must be scheduled. Note that domains for events can overlap.

cars, would request a schedule from the scheduler for a trip consisting of
these events. Furthermore, the truck company might provide a number of
constraints on the resulting schedule. It could be that the delivery would
need to be made within one day of the driver departing, the driver might
need enough chances for rest (e.g. two 1-hour breaks) along the way, or the
driver might need to travel on average between 50 and 60 miles per hour on
the highway, among others. A schedule is valid if the time assigned to each
event satisfies all of the temporal constraints. The space of times assignable
to each event is called its domain. Once the truck company receives a valid
schedule, it becomes responsible to execute it by having the truck driver
to follow the schedule. The truck company is an example of an executive
because it is in charge of monitoring the schedule (using drivers as a means
to do so).

In a perfectworld, the driverwould follow this schedule exactly. However,
in our uncertain world, she might run into traffic that delays her or she
might arrive early. In both of these cases, she might not be able to perfectly
follow the schedule. Once she informs her superiors of her situation, the
truck company (i.e. the executive) might request a new schedule from
the scheduler, who would then reschedule the trip and adapt to the new
conditions that the truck driver faces. We can easily imagine expanding this
system to allow for scheduling the routes of many truck drivers.

In summary, the executive requests and monitors the execution of

4 Introduction

a schedule subject to temporal constraints, and the scheduler identifies
a schedule that satisfies all of those constraints. When the schedule is
executed, but the realized time for an event differs with the scheduled time,
the schedule may have been violated. If the realized time has not violated the
constraints of the schedule, then a new schedule from the space of remaining
possible schedules is required to adjust.

Chapter 2

Representations of Simple
Temporal Networks

Before we can discuss multiagent scheduling, we must first consider the
existing methods to solve constraint-based scheduling problems. In this
chapter, we introduce a data structure that has been used in the scheduling
literature to model deterministic, constraint-based scheduling problems.
This chapter summarizes work from Dechter et al. (1991); Vidal and Ghallab
(1996); Tsamardinos (2002); Wilson et al. (2014); Lund et al. (2017).

Recall that our example trucking company from Chapter 1, OnTime
Trucking, requires scheduling for many of its daily tasks. OnTime Trucking
has recently struck a deal with SuperFast Gas to prioritize refueling their
trucks. As part of the deal, SuperFast Gas has promised that all trucks will
be refueled within five minutes of arrival. However, they need help from
OnTime Trucking to schedule the refueling process to satisfy this promise.

2.1 Scheduling with Simple Temporal Networks

The refueling process consists of two events once a truck arrives at a station:
beginning the fueling process and removing the pump from the truck upon
completion. Both of these events must occur within five minutes of the
truck arriving. Furthermore, we note that ending the fueling process must
occur after the beginning of the fueling process. Through describing the
refueling process, we have identified a set of events, each of which must be
assigned times to create a schedule and a set of temporal constraints on the
times that can be assigned to those events. However, note that there are still

6 Representations of Simple Temporal Networks

many possible schedules that can satisfy these constraints. We can imagine
that there exists a structure describing the space of schedules that satisfy
all constraints. To this end, Dechter et al. (1991) introduce simple temporal
networks to describe the space of valid solutions.

Definition 2.1. Dechter et al. (1991) defines a simple temporal network (STN)
to be a 2-tuple 〈T, C〉, where

• T denotes the set of events 0, 1, . . . , n ∈ T to be scheduled at times
t0 , t1 , . . . , tn subject to

• temporal difference constraints ci j ∈ C, each of which represent a bound
on the elapsed time t j − ti ≤ bi j between events i and j. Note that bi j ∈ R.

In addition, we typically describe event 0 as the zero event of the temporal
network. The zero event always occurs at time t0 � 0, which grounds the
schedule against a clock time. For our example, the zero event might
correspond to a truck entering the refueling station.

We can see that the set of valid schedules {[t1 , . . . , tn]T ∈ Rn |ti ∈

T, c jk ∈ C} for refueling can then be described as a simple temporal network
represented equivalently as the following constraint satisfaction problem.
This example of an STN was first introduced by Wilson et al. (2014), and will
be used throughout the remainder of Chapter 2 as a motivating example of
an STN.

T � {0, 1, 2}
C � {t1 − t0 ≤ 5, (refueling begins under 5 minutes after truck enters)

t0 − t1 ≤ 0, (truck enters prior to the start of refueling)
t2 − t0 ≤ 5, (refueling ends under 5 minutes after truck enters)
t0 − t2 ≤ 0, (truck enters prior to the end of refueling)
t2 − t1 ≤ 5, (refueling ends under 5 minutes after starting)
t1 − t2 ≤ 0, (refueling must begin prior to ending)

From the interpretations of each constraint, we can see that some con-
straints refer to the clock time (i.e. the zero event at which the truck enters the
refueling station). For the remainder of this work, we call these constraints,
which are between t0 and ti , absolute temporal constraints, absolute con-
straint for short. Absolute constraints explicitly limit the domain of possible

Representations for Simple Temporal Networks 7

times for an event (i.e. “event i must occur between 3pm and 4pm” corre-
sponds to 3 ≤ ti − t0 ≤ 4). Constraints between other events i and j which
do not reference a clock time are then called relative temporal constraints
because they implictly constrain the domain of possible times for the events
in question (i.e. “event j must occur at most 5 minutes after i” corresponds
to t j − ti ≤ 5).

2.2 Representations for Simple Temporal Networks

In this section, we reviewother, equivalent representations of STNs that allow
us to draw upon other bodies of mathematical knowledge when analyzing
STNs. In total, STNs can be described by four representations. STNs have
been represented in the literature geometrically as convex polyhedra (Lloyd
et al., 2018) and in graphical form as directed, weighted graphs (Dechter
et al., 1991; Wilson et al., 2014). The graphical form can be described more
compactly and abstractly as a fourth representation (Lund et al., 2017), which
I refer to as the compact graphical representation (Tsamardinos, 2002; Vidal
and Ghallab, 1996; Lund et al., 2017).

2.2.1 Constraint Satisfaction Representation

In the refueling example, we represent the STN as a constraint satisfaction
problem (CSP). Doing so allows us to draw upon concepts (i.e. feasibility)
relating to CSPs. Note, with respect to the CSP representation, that each
constraint is a linear inequality between the times assigned to two events.

T � {0, 1, 2}
C � {t1 − t0 ≤ 5, (refueling begins under 5 minutes after truck enters)

t0 − t1 ≤ 0, (truck enters prior to the start of refueling)
t2 − t0 ≤ 5, (refueling ends under 5 minutes after truck enters)
t0 − t2 ≤ 0, (truck enters prior to the end of refueling)
t2 − t1 ≤ 5, (refueling ends under 5 minutes after starting)
t1 − t2 ≤ 0, (refueling must begin prior to ending)

However, we can also represent STNs in other ways.

8 Representations of Simple Temporal Networks

2.2.2 Geometric Representation

Since each constraint is a linear inequality between the times assigned to two
events, the entire problem can be described as a linear system of inequalities.
Lloyd et al. (2018) used this description to visualize the system of linear
inequalities geometrically. Consider the region described by our refueling
example, as shown in Figure 2.1.

Figure 2.1 The simple temporal network from our refueling example can
be interpreted geometrically as shown. The red lines on the graph indicate
absolute constraints and the black, dotted ones indicate relative constraints.
The resulting region describes which values for t1 and t2 form valid schedules.
The space of valid schedules is the highlighted region in green. Each point in
this feasible region represents a valid schedule.

Lloyd et al. (2018) noted that the shape formed by the intersection of all
these linear inequalities forms a convex polygon in two dimensions (i.e. two
events) with finite area. Furthermore, this concept generalizes for n events,
where the linear inequalities act as hyperplanes that bound an n-dimensional
convex polyhedron. Note that the space is convex and any point in this
feasible region represents a valid schedule. This representation allows us to
leverage results concerning the geometry of linear programming feasible
regions.

Representations for Simple Temporal Networks 9

2.2.3 Distance Graph Representation

Recall that each constraint in a simple temporal network denotes an upper
bound on the amount of time that can elapse between two events. Such
a description of time can be thought of as a maximum distance between
events, and generalized for events that are not adjacent. Using this train of
thought, we can represent an STN as a directed graph with edges weighted
by distance (Dechter et al., 1991; Wilson et al., 2014).

Given an STN 〈T, C〉, we then define the distance graph representation
as graph 〈T, E〉 such that each event i ∈ T is represented by a vertex in
the graph. In order to define edges in this graph, consider an edge ei j ∈ E
from event i to event j in the graph. This edge represents the constraint
ci j , which takes the form t j − ti ≤ bi j for some bi j ∈ R. Since an edge ei j
already indicates a relationship between i and j, we can then weight ei j
with the distance bi j in order to form our directed graph and preserve all
information between the two representations. Figure 2.2 is the distance
graph representation of our refueling example.

1

2

0 5 0
5

0

5

0

Figure 2.2 The simple temporal network from our refueling example can be
interpreted as a directed distance graph as shown. As in Figure 2.1, absolute
constraints are denoted by the color red, and relative constraints are by the
color black. Vertices 0, 1, and 2 respectively represent the events of the truck
arriving, beginning the refueling process, and ending it. The edge from event
0 to event 1 can be interpreted as requiring event 1 to occur at most 5 minutes
a�er event 0 (i.e. t1 − t0 ≤ 5).

This representation allows us to draw on graph theoretical knowledge to
sovle STNs.

10 Representations of Simple Temporal Networks

2.2.4 Compact Graphical Representation

The distance graph representation can be made more concise (Lund et al.,
2017). In the distance graph representation of a simple temporal network,
each pair of edges ei j , e ji ∈ E represent upper and lower bounds on the times
of the same two events. The constraints formed by ei j and e ji are

t j − ti ≤ bi j

ti − t j ≤ b ji ,

which is more succintly described as

−b ji ≤ t j − ti ≤ bi j .

For this reason, ei j and e ji can also be more compactly represented by a
single edge li j , without loss of generality, from event i to event j. To avoid
confusion with edges in the directed graphical representation, we shall
refer to the edge li j as a link. The link could then be labelled [−b ji , bi j] for
conciseness.

Furthermore, we remove the zero event from the graph. An absolute
constraint on event i can then be represented as a link from i to itself, a self-
loop. In this case, the link would be labelled [−bi0 , b0i] and be interpreted
identically to the labels on links representing relative edges. Note that these
self-loops limit our ability to use graph theoretical concepts directly on this
compact graph. However, this graph improves the legibility of an STN.

The STN for the refueling problem is shown in compact graphical form
in Figure 2.3.

1 2
[0,5]

[0,5] [0,5]

Figure 2.3 The simple temporal network from our refueling example can be
interpreted as a compact distance graph as shown. As in Figures 2.1 and 2.2,
absolute constraints (i.e. self-loops) are denoted by the color red, and links
representing relative constraints colored black. The zero event, the arrival of the
truck, is not shown, but vertices1and2 respectively represent thebeginningand
end of the refueling process. The link from event 1 to event 2 can be interpreted
as requiring event 2 to occur between 0 and 5 minutes a�er event 1 (i.e. 0 ≤
t2 − t1 ≤ 5).

We note that all of the STN representations described thus far are
equivalent: an STN is a set of constraints between the times assigned to

Properties of Simple Temporal Networks 11

events just as much as it is a convex polyhedron in n-dimensional space and
a directed distance graph with weighted edges that each describe the upper
bounds on the duration between pairs of events. It is important that we are
able to analyze a given STN using all of its representations.

2.3 Properties of Simple Temporal Networks

In this section, we describe two important properties of simple temporal
networks, referring to our refueling example to motivate the properties.

2.3.1 Consistency

Definition 2.2. An STN is consistent, or feasible, if there exists an assignment
of times to all events that satisfies all constraints. Identically, a consistent STN
contains a valid schedule. If an STN is not consistent, then it is called inconsistent
or infeasible.

Let S be the STN that describes the refueling scheduling problem. One
schedule that satisfies all constraints within S is

t0 � 0, t1 � 2.5, t2 � 5,

as shown below.

C � {t1 − t0 � 2.5 ≤ 5,
(refueling begins under 5 minutes after truck enters)

t0 − t1 � −2.5 ≤ 0, (truck enters prior to the start of refueling)
t2 − t0 � 5.0 ≤ 5,

(refueling ends under 5 minutes after truck enters)
t0 − t2 � −5.0 ≤ 0, (truck enters prior to the end of refueling)
t2 − t1 � 2.5 ≤ 5, (refueling ends under 5 minutes after starting)

t1 − t2 � −2.5 ≤ 0} (refueling must begin prior to ending)

Therefore, since we have found a valid schedule in the space of schedules
described by this STN, this STN is consistent. Now, suppose we replace the
label on the link between events 1 and 2 with the label [6, 10] to create a
different STN S′. Figure 2.4 illustrates the polyhedra representing S and S′.
Because there are no points in S′, the volume of its polyhedron is 0; S′ is

12 Representations of Simple Temporal Networks

a. Polyhedral representation of STN S: The
green shaded area indicates that the poly-
hedron formed by the STN contains valid
schedules. This STN is feasible.

b. Polyhedral representation of STN S′: The
black shaded area is the space of solutions
satisfying only the relative constraints. The
red shaded area is the space of solutions
satisfying only the absolute constraints.
Since neither of them overlap, then the
space of solutions satisfying the STN is
empty; the polyhedron has no volume.

Figure 2.4 A comparison of a feasible and infeasible STN.

inconsistent and has no valid schedules. Dechter et al. (1991) and Boerkoel
et al. (2012), among others, have introduced graph-based algorithms to
confirm consistency within STNs.

2.3.2 Minimality

Definition 2.3. A simple temporal network is minimal if every event i can be
assigned any time ti within its domain such that there exists a valid schedule
containing ti . That is, there is no event i for which the selection of some ti in its
domain would force a failed schedule. For a minimal STN, if event i is scheduled, then
there exist scheduling assignments for all other events that satisfy all constraints.
By contrapositive, if there does not exist a valid schedule containing ti , then it is not
within the valid domain of times for event i in the minimal STN.

Figure 2.5 illustrates the concept of minimality. The polyhedral represen-
tation of STN S shown in Figure 2.5a is minimal: if any constraint boundaries
are pushed inward (corresponding to eliminating elements of an event’s
domain), valid schedules are removed from the polyhedron. By contrast,
STN S′′ shown in Figure 2.5b is not minimal: the constraint boundary t1 � 6

Properties of Simple Temporal Networks 13

can be pushed inward without removing valid schedules from the interior
of the polyhedron.

a. Polyhedral representation of STN S:
Note that no constraint boundary can be
“pushed” inwardwithout eliminating some
valid schedules from the STN. Therefore,
this STN is minimal.

b. Polyhedral representation of STN S′′: Note
that the constraint boundary t1 � 6 can be
“pushed” inward to be t1 � 5without elim-
inating any valid schedules from the STN.
Since we can perform such an operation,
this STN is notminimal.

Figure 2.5 A comparison of a minimal and nonminimal STN.

2.3.3 Extensions of Simple Temporal Networks

Simple temporal networks provide a powerful way to describe scheduling
problems which are deterministic, ignoring details such as the uncertainty
in the real world. In this section, we describe an extension to STNs from the
literature that better describes a stochastic model of scheduling.

2.3.4 RepresentingUncertaintywithinSimpleTemporalNetworks

Activities within the real world are subject to uncertainties that are not
modeled well by the formulation of STNs that has been described thus
far. Current extensions to STNs include simple temporal networks with
uncertainty and probabilistic simple temporal networks (Vidal and Ghallab
(1996); Tsamardinos (2002)). Both representations tie uncertainty to the idea
of executability, that agents don’t necessarily control the duration of every
activity (i.e. the amount of time to cross an edge in the distance graph). For
example, Nature might (through slippage, localization error, etc.) change

14 Representations of Simple Temporal Networks

the amount of time executing an activity requires. We rely heavily on the
compact graphical representation for the following discussion of STNs that
model uncertainty.

Consider events i , j ∈ T constrained such that event i directly precedes
event j. If the duration of event i is random, then once event i is executed at
time ti , we cannot directly assign the execution time, t j , of event j. Thus,
the constraint that −b ji ≤ t j − ti ≤ bi j is not directly controllable by the
agent executing the schedule. In such a case, we refer to constraint ci j as a
contingent constraint. Since the realized execution time for event j would
then also not be directly controllable, we describe it as a contingent event.
Constraints for which the duration can be controlled are called requirement
constraints, and events which are controllable are called executable.

We denote the set of

• contingent constraints as CC,

• contingent events as TC,

• requirement (i.e. temporal difference) constraints as CR, and

• executable events TX ,

where the set of events T � TC ∪ TX ∪ {0}.

Simple Temporal Networks with Uncertainty

A simple temporal network with uncertainty (STNU) (Vidal and Ghallab,
1996; Morris et al., 2001) is defined as a tuple 〈TX , TC , CR , CC〉 where the set
of all events T � TC∪TX∪{0} and the set of all constraints C � CR∪CC . Note
that for contingent constraints in an STNU, we have one interval between
every pair of vertices that describes the range, not necessarily uniformly-
distributed, of possible durations for the activity described by the link. Note
that we could transform an STNU into an STN by ignoring the distinction
between contingent and requirement constraints and events. We show an
example STNU in Figure 2.6.

2.3.5 Dispatch Strategies

Recall that feasibility allows us to understand whether an STN describes
a space with at least one valid schedule. When dealing with uncertainty,
feasibility may not be a strong enough condition for us to guarantee solutions

Properties of Simple Temporal Networks 15

1 2

3 4

[4,8]
U(4,8)

[0,10]

[-2,2]

[0,10]

[1,3]
U(1,3)

[0,10] [0,10]

Figure2.6 A simple temporal networkunder uncertainty, with two contingent
edges between events pairs (1, 2) and (3, 4). There is a constraint that events 2
and 4 must end within 2 time steps of one another. The contingent edges take a
uniformly distributed duration, which makes scheduling more di�icult.

in STNUs. For this reason, we introduce additional properties that guarantee
these properties and help characterize the circumstances under which an
STNU is solvable.

Controllability in Uncertain STNs

An STNU is strongly controllable if any assignment of values for executable
events is guaranteed to be consistent under any realization of uncertainty
along contingent edges. The strong controllability of an STNU is checkable
beforehand via an algorithm (Lund et al., 2017).

An STNU is dynamically controllable if executable events can be as-
signed values online during execution and is guaranteed to be successful.
The dynamic controllability of an STNU is checkable beforehand via an
algorithm (Lund et al., 2017).

An executable event i is live if the current time is within its bounds. i
is enabled if it can be executed at the current time without violating any
constraints (such as all previous points having been executed).

A contingent event i is live if the event preceding its contingent link has
been executed. Note that contingent links assign times to their end events.

We assume dynamic controllability for the remainder of this document,
which implies that we are able to do online scheduling, which would be
required for our reinforcement learning setup described in Chapter 5.

16 Representations of Simple Temporal Networks

2.4 Conclusion

In this section, we have described a variety of previous work delineating
the definitions and representations of simple temporal networks and simple
temporal networks under uncertainty and a few of their properties. From this
review, and especially through the description of multiple representations,
we have expanded the number of tools with which we can analyze STNs
and STNUs.

Chapter 3

Flexibility as a Measure of
Slack

Thus far, we have introduced simple temporal networks as a data structure
that represents a solution space of valid schedules. Many online algorithms
for solving STNs and STNUs during execution rely on sequential approaches
that cannot account for future events. For any given decision to begin
executing an event i at time ti , it is unknown whether this decision will
contribute to the schedule becoming inconsistent at a future time. Thus,
we need a tool that quantifies the likelihood that the remaining events
in a partially executed STN or STNU still define a consistent scheduling
problem. Previous works have used the concept of flexibility to quantify
this value (Hunsberger, 2002; Wilson et al., 2014; Lloyd et al., 2018). However,
each proposed flexibility metric fails to capture some important element of
this likelihood. In this chapter, we review two classes of STNs, sequential
and concurrent, that were introduced by Wilson et al. (2014) and used by
Lloyd et al. (2018) in defining desiderata, or desired properties for flexibility
metrics.

3.1 Sequential and Concurrent Classes of STNs

Both Wilson et al. (2014) and Lloyd et al. (2018) use two specific extremal
classes of STNs in order to develop intuitions about flexibility. We draw the
example STNs in this section from those papers. As motivation, consider
OnTime Trucking’s service in which its trucks move containers from the
dock to desired destinations within the city. Suppose that OnTime Trucking

18 Flexibility as a Measure of Slack

has guaranteed that it delivers within 5 hours of a container being ready
for shipment. Suppose that we have a single truck that must deliver 3
packages. In an STN describing the schedule, we might have 3 nonzero
events. Furthermore, we might guarantee that each nonzero event occurs
within 5 hours of the zero event and that each pair of nonzero events occur
within the same five hour timespan. An example of this STN is shown in
Figure 3.1a. We can define a class of STNs that generalizes this concurrent
structure.

Definition 3.1. Let N � 〈T, C〉 be an STN, and let d , n ∈ R. Then, the class of
concurrent STNs Cconsist of STNs where for each pair of nonzero events i , j ∈ T,
the relative constraint ci j ∈ C exists and is described as

−d ≤ t j − ti ≤ d

and, for each nonzero event i, the absolute constraint c0i ∈ C exists and is described
as

0 ≤ ti − t0 ≤ d.

We denote N as Cdn if N is a concurrent STN with n events and a maximum
duration of d. All events can happen at any time between 0 and d.

Alternatively, the company might instead desire a sequential structure in
which the second and third deliveries would occur within five hours of the
first and the third within five hours of the second. The absolute constraint
would still indicate a maximum five hour duration for the deliveries. An
example of this STN is shown in Figure 3.1b. We can define a second class
of STNs that generalizes this sequential structure.

Definition 3.2. Let M � 〈T, C〉 be an STN, and let d , n ∈ R. Then, the class of
sequential STNs Sconsist of STNs where T is ordered such that for each nonzero
event i ∈ T, the relative constraint ci j ∈ C exists and is described as

0 ≤ t j − ti ≤ d (where i < j ∈ T)

and the absolute constraint c0i ∈ C exists and is described as

0 ≤ ti − t0 ≤ d.

We denote M as Sdn if M is a sequential STN with n events and a maximum
duration of d.

Note that these two classes do not cumulatively describe the entire set of
simple temporal networks, but two significant (albeit small) classes within it.
In the next section, we describe how Lloyd et al. (2018) uses these classes to
propose the desiderata for flexibility.

Desiderata for Flexibility Metrics 19

a. An example of an STN from the concurrent
class of STNs (Wilson et al., 2014).

b. An example of an STN from the sequential
class of STNs (Wilson et al., 2014).

Figure 3.1 Two di�erent STNs for the truck delivery example defined in Chap-
ter 3. The values boxed in red are those which di�er between the two examples,
marking the distinction between concurrent and sequential STNs.

3.2 Desiderata for Flexibility Metrics

Lloyd et al. (2018) proposed four desiderata for flexibility metrics. This sec-
tion introduces their desiderata, with their context for why each desideratum
is necessary to match the geometric inutition we hold for STNs.

3.2.1 Simplicity

Simplicity captures the idea that increasing the number of events in an
STN implies that more events have the possibility of failing, which reduces
flexibility.

Definition 3.3. (Lloyd et al., 2018) If S is an STN, and we add an event to create a
new STN S′, where the new event is independent (no constraints on it exist except
the absolute constraint) from all existing events, then

f lex(S′) ≤ f lex(S).
Additionally, a metric exhibits strong simplicity when f lex(S′) � f lex(S) if
and only if the new event can be assigned any time in R(i.e. has domain of ∞).
Otherwise, we say it exhibitsweak simplicity.

20 Flexibility as a Measure of Slack

3.2.2 Density

Density captures the idea that as events are added to a sequence, then
scheduling must be ever more precise to be successful, which implies a
reduction in flexibility.

Definition 3.4. (Lloyd et al., 2018) For STNs Sn ∈ S composed of a set of n
sequential events that occur within a fixed, finite interval [a , b], a flexibility metric
f lex is dense if it has the property

lim
n→∞

f lex(Sn) � 0.

3.2.3 Sphericality

Sphericality captures the idea that the flexibility of an STN is limited by the
least flexible event within the STN.

Definition 3.5. (Lloyd et al., 2018) A flexibility metric is spherical if and only if
for two STNs with the same number of events and whose solution spaces are the
same size (in other words, their polyhedra have the same dimension and volume),
the STN with the larger inscribed sphere is considered to be more flexible.

3.2.4 Containment

Containment captures the idea that if every valid schedule for STN S is valid
for STN S′, then S′ is as or more flexible than S.

Definition 3.6. (Lloyd et al., 2018) Consider two STNs S and S′ that have the
same number of events and where the polyhedron of S is a proper subset of the
polyhedron of S′. A flexibility metric captures strong containment if

f lex(S′) > f lex(S),
and it captures weak containment if

f lex(S′) ≥ f lex(S).

3.3 Flexibility Metrics

In this section, we describe four flexibility metrics which will each be
evaluated with the system described in Chapter 5 used later to define
different reward functions. Each of these metrics build off the previously
listed metrics.

Flexibility Metrics 21

3.3.1 The Naïve Flexibility Metric

The naïve flexibility matric simply sums over the range of the feasible
intervals of each event in the STN.

f lexN(S) �
∑
i∈T

lst(i) − est(i) (3.1)

The metric, however, fails to differentiate between some examples of concur-
rent and sequential STNs.

3.3.2 The Hunsberger Flexibility Metric

Hunsberger (2002) improved upon naïve flexibility by considering flexibility
between pairs of events i , j using the distance matrix, which led to improve-
ments using the metric with regards to concurrent and sequential classes of
STNs.

f lexH(S) � f lexN(S) +
∑
i∈T

∑
j∈{k∈T |tk>ti}

(DS[i , j] + DS[j, i]) (3.2)

However, Wilson et al. (2014) shows that this improvement still fails to
capture the dependencies between events.

3.3.3 The Wilson Flexibility Metric

Wilson et al. (2014) propose another metric that is used to temporally
decouple events in the STN. By doing so, the metric maximizes the sum of
the intervals in the decoupling.

f lexW (S) �
∑
i∈T

t+i − t−i (3.3)

3.3.4 Sphere Flexibility

Lloyd et al. (2018) introduced sphere flexibility, a metric that satisfies every
desideratum and is computationally efficient using a linear program.

Definition 3.7. (Lloyd et al., 2018) The sphere flexibility of an STN is the nth
root of the volume of the inscribed sphere of its polyhedron.

22 Flexibility as a Measure of Slack

Figure 3.2 The orange triangle contains a smaller inscribed circle than does
the green triangle (both representing feasible regions of arbitrary STNs), imply-
ing that it has a lower sphere flexibility

.

For example, in Figure 3.2, both triangles have the same area of 12.5 units
squared, but the orange one is narrower. Thus, the inscribed circle is smaller
(radius 1.26) in the orange region than in the green one (radius 1.45) and has
a lower sphere flexibility.

Each of these metrics were analyzed using the desiderata developed in
Lloyd et al. (2018). The results of their analysis are shown in Table 3.1

Flexibility Metrics 23

Naïve Huns. Wilson Sphere
Simplicity × × × X*
Density × × × X
Sphericality × × × X
Containment X* X X* X*

Table 3.1 Xdenotes a desideratum that is satisfied by the given flexibility
metric, while ×denotes a desideratum that is not satisfied. * indicates that the
flexibility metric satisfies a weaker version of the desideratum, as given in Lloyd
et al. (2018).

Chapter 4

Introduction to Reinforcement
Learning

In this chapter, we introduce the problem of reinforcement learning. We
use the classical reinforcement learning problem, the multi-armed bandit
problem, to introduce the core concepts of the problem. In addition, we
address some challenges and existingworkarounds, particularly surrounding
large or time-varying problems.

4.1 Motivating the Reinforcement Learning Problem

Consider a young child that loves to play with blocks. This child might
know that there are many different types of blocks, and that they can be
stacked and placed together in many different ways. If the child wants to
make a tower, for example, then he might stack four blocks on top of one
another. Alternatively, for a bus, he might place a long block on top of two
cubes. Suppose that the child is able to construct k different types of objects
with the blocks.

Suppose now that we want the child to construct certain objects. We
might request the child to make these objects, but the child is devious and
would likely make another object purely to annoy us. Instead, we might
consider giving the child a piece of candy each time he makes an object,
regardless of whether we want that particular object. Then, we might
incentivize him by rewarding him more preferable candy when he makes
objects that we want. If we continued this arrangement for a long enough
time, the child would slowly learn which configuration to place the blocks

26 Introduction to Reinforcement Learning

to achieve his favorite candy.
It is easy to imagine a child, or even any other biological system, learning

to exploit this system of incentives very quickly. Learning from interaction,
in fact, underlies every theory of learning and intelligence (Sutton and Barto,
2018) . Reinforcement learning is a field that attempts to use the same system
of incentives to teach computers how to identify the correct action to take to
maximize some incentive signal. This general problem formulation, that of
an agent learning by manipulating its surroundings to reach some goal, is
the core of the problem of reinforcement learning.

4.1.1 A Classic Example of Reinforcement Learning: the Multi-
Armed Bandit Problem

We can now use the example situation from Section 4.1 to introduce the
classic reinforcement learning problem: the multi-armed bandit problem
(Sutton and Barto, 2018). In the multi-armed bandit problem, our agent
(i.e. the child) can select one of k levers (i.e. place blocks in one of k
configurations). After the ith lever is pulled, the agent receives a reward
(i.e. candy) indicating how “good” the choice of lever was. The agent’s goal
is to maximize the reward earned over a long (potentially infinite) number
of rounds. However, the reward can be nondeterministic, meaning that
the agent is unable to simply try each lever once and then select the best
repeatedly. The agent must learn which lever offers the best expected reward.
We will describe each of its components in more depth in Section 4.2.

4.2 Components of Reinforcement Learning Problems

The multi-armed bandit problem introduces a number of interesting ques-
tions that are relevant to any reinforcement learning problem. In this section,
we begin by defining the components of a reinforcement learning problem
and the key considerations that need to be made to maximize the success
of an agent within this problem. We will see later that these components
are contained within a feedback loop that describes how they interact in a
reinforcement learning problem (Figure 4.1).

Components of Reinforcement Learning Problems 27

4.2.1 Environment, Agent, and Reward

Environment

Any reinforcement learning problemmust be contained within some context,
which we call the environment. For the child mentioned in Section 4.1, the
environment could be defined as the configuration of the blocks. We note
here that the agent can not sense nor affect everything in the world, and
very little, if anything, beyond the the configuration of the blocks is truly
necessary to understand the situation as we have described it. Similarly,
for the multi-armed bandit problem, the environment can be described
succinctly as the k levers, each of which dispenses some possibly random
amount of reward.

The state of an environment is a description of the current condition of
the environment. The environment must be malleable under action from the
agent. An action is something that the agent can do to change the state of
the environment. If the agent is unable to take actions that change the state
of the environment, then the agent will be unable to learn how to manipulate
the environment to its advantage. We can then define a state-action pair to
be a pair consisting of a state and an action the agent could take in that state.

To describe the environment, we may build a model containing relevant
information about it (i.e. configuration of blocks). For example, describing
the environment of the multi-armed bandit problem may require us to
specify a model of the random distribution from which the rewards for each
lever are drawn. We might model the reward from the ith lever as being
drawn from a normal distribution N(σi , µi). This reward would then be
returned by the environment to the agent upon each action being taken. We
now have a simple description of an environment that enables us to describe
the multi-armed bandit problem (Sutton and Barto, 2018).

However, we might wonder if σi and µi are functions of time, in which
case we would call the environment of the multi-armed bandit problem
nonstationary because the reward function changes over time. If neither
the standard deviation nor the mean change over time, then we would
instead call the multi-armed bandit problem stationary. This definition can
be generalized to any problem (Sutton and Barto, 2018).

Definition 4.1. An reinforcement learning environment is stationary if the
function describing the reward signal does not change over time. Otherwise, it is
called nonstationary.

Wenote that it is generallymoredifficult to assign credit in anonstationary

28 Introduction to Reinforcement Learning

reinforcement learning problem than it is for a stationary problem (Sutton
and Barto, 2018).

Agent

Fromourdescription thus far, we see that the boundary between environment
and agent is not necessarily clear. This boundary can be defined in many
ways, and we encourage the reader to see Sutton and Barto (2018) for
additional information. Consider the child manipulating the blocks. Such
a child would not be able to perceive the entire known universe at every
moment. It would then be unhelpful to define our environment as the world
and everything in it. From this realization, we begin to understand that
while the environment is the one being manipulated, the perception of an
agent is key a limitation for how an agent may interact with the environment
(Sutton and Barto, 2018).

The agent is the part of a reinforcement learning solution that learns to
act correctly in different environments - we train it, by designing a reward
function for the environment, to learn to reach the desired goal state. Upon
interacting with the environment, the agent can collect its rewards and
process these in some way to retain experience about how different actions
went in different states. It can use this experience (usually as a metric) to
identify the best course of action upon returning to the state.

Oneof themajorproblemswithin reinforcement learning is theexploration-
exploitation problem. The problem can be summarized as follows. When
an agent arrives at a state, it has two choices: to exploit its previous experience
andmake a greedy choice based on what its experience suggests is best, or to
explore actions it has never taken as a means of gaining more experience and
identifying whether there exist better alternatives to its currently preferred
action. The problem remains unsolved (Sutton and Barto, 2018), but the
ε-greedy method is one way that reinforcement learning agents can train
to balance this tradeoff. With the ε-greedy method, we select an 0 ≤ ε ≤ 1
to be a probability with which the agent selects randomly from among its
possible next actions. If ε � 0, then the agent uses its initial idea of the best
action for every state it reaches and never chooses anything else. At the other
extreme, if ε � 1, then it always chooses randomly from among the possible
actions - it never uses its prior experience and always explores. There exist
variations on the method, such as reducing ε with the number of actions
the agent has taken or the number of times a state has been reached, but
the method tends to work well for addressing the exploration-exploitation

Components of Reinforcement Learning Problems 29

problem (Sutton and Barto, 2018).

Reward

The core of a reinforcement learning problem is the reward signal, which is
a function that converts a state-action pair of an environment (described in
Section 4.2.1) into a real number that can is returned to the agent (described
in Section 4.2.1) acting in the environment. The reward is a measure of how
“good” the state-action pair is as a waypoint towards the goal state of the
environment.

In some problems, there is a very clear reward signal. For example, in
the multi-armed bandit problem, our reward signal is obvious - it is defined
to be the reward given after each pull of the lever. However, there exist more
complicated problems, such as in a game like Tic Tac Toe, where there is
no obvious reward scheme. One possible reward scheme could be +1 for a
win, 0 for a tie, and −1 for a loss (Sutton and Barto, 2018). However, even
in such a simple game, there exist other reward schemes (i.e. +1,−0.1,−1)
which may be more conducive to reinforcement learning, or even a reward
scheme which rewards different states at different amounts as judged by a
human expert. A good reward function, in the end, must maximize the information
from which an agent can identify which interactions with the environment (i.e.
actions) made progress towards the goal (Sutton and Barto, 2018). Identically,
we say that a good reward function has a high signal-to-noise ratio, which
implies that states that lead to successful solutions consistently return higher
rewards with less variability. We also note that reinforcement learning
algorithms tend to overfit to the reward function (Sutton and Barto, 2018),
which maps a state and an action from that state to a reward. This means
that reinforcement learning can often behave unexpectedly (i.e. learn to
take unexpected actions) in achieving a desired result because the reward
function enables behavior unintended by the designer of the reward scheme.

This example also hints at a deeper challenge in more complicated
problems. In the multi-armed bandit problem, every action in the space of
possible actions is available in every round. However, in the Tic Tac Toe
example mentioned previously, a square can only be selected once, so the
number of possible actions decrease by one for each round of the game. We
could easily imagine how, given a reward function, an early move that does
not inherently signify progress towards the goal is given a low reward. The
same action could, however, be crucial for a later move that results in high
reward. The problem of identifying the impact of the early move on the

30 Introduction to Reinforcement Learning

success of the agent is called the credit assignment problem. We discuss
one way to address it in Section 4.2.2. The credit assignment problem is one
of the main difficulties in reinforcement learning (Sutton and Barto, 2018).

The Reinforcement Learning Feedback Loop

In summary, a reinforcement learning agent learns by observing its environ-
ment and taking an action to change its environment. After each action, the
agent receives a new state (i.e. observation) of the environment as well as a
reward signal that indicates how “good” the action that led to the new state
was, with respect to the objective of reaching the goal state. The process
is shown visually in Figure 4.1. In Sections 4.2.2 and 4.3, we describe the
specifics of how the agent selects the best action, These components form a
feedback loop that describes how they interact in a reinforcement learning
problem (Figure 4.1).

Figure 4.1 A feedback loop describing the order of events in a reinforcement
learning system. The agent selects an action based on its observations of the
environment. Theaction changes theenvironment in someway. Then, theagent
receives some reward signal that indicates how good the new state is (i.e. is it a
goal state or a failure state). Image taken from https://en.wikipedia.org/wiki/
Reinforcement_learning#/media/File:Reinforcement_learning_diagram.svg

https://en.wikipedia.org/wiki/Reinforcement_learning#/media/File:Reinforcement_learning_diagram.svg
https://en.wikipedia.org/wiki/Reinforcement_learning#/media/File:Reinforcement_learning_diagram.svg

Components of Reinforcement Learning Problems 31

4.2.2 Value and Return

In this section, we address the credit assignment problem and introduce the
idea of the value of a state.

Suppose that an agent makes a sequence of decisions that result in a
large reward. Recall that the credit assignment problem is the question of
identifying which decision enabled the agent to reach a state in which it
received a large reward. We can begin to address this problem by considering
the return, or the total reward over an episode of a problem. One simple
way to formally define the return is as follows.

Definition 4.2. (Sutton and Barto, 2018) The return Gt in the tth time step is
given by the sum of all future rewards (where Rt is the reward given by action At−1
from state St−1),

Gt � Rt+1 + Rt+2 + · · · + RT ,

where T is the final time point in the episode.

We note that this definition of return allows us to tackle the credit
assignment problem by identifying the total reward we can expect as a result
of this action. However, we may not want to consider only the long-term
benefit in selecting an action. Wemay, at times, want to balance the long-term
return and the next reward. In order to allow this choice, we can simply
discount future rewards by generalizing our definition of return.

Definition 4.3. The discounted return (Sutton and Barto, 2018) Gt in the tth
time step is given by the sum of all future rewards

Gt � Rt+1 + γRt+2 + γ2Tt+3 + · · ·

�

∞∑
k�0

γkRt+k−1

� Rt+1 + γGt+1 ,

where T is the final time point in the episode and 0 ≤ γ ≤ 1 is a parameter that
indicates how focused an agent should be on maximizing long term reward (if γ � 1)
as opposed to immediate reward (if γ � 0).

From now on, we use return to refer to the discounted return parame-
terized by γ. We might now consider using the return from a state s as the
value V(s) of that state. Recall that the value of a state is meant to be a metric
with which larger values indicate more proximity to the goal state. Now
that we have defined the return, we can formally define value as follows.

32 Introduction to Reinforcement Learning

Definition 4.4. (Sutton and Barto, 2018) The value V(s) of state s in a reinforce-
ment learning problem can be defined as the expected return given that the agent
reaches state St at time t:

V(s) � E [Gt | St � s] .
Using the return to define the value with which we wish to make our

action decisions introduces a new problem for the agent. The agent doesn’t
know the return of a state without progressing through the remainder of the
episode and then propagating the result backwards along the states that it
visited. We can solve this problem optimally with a dynamic programming
approach that relates values of adjacent time steps using the following
Bellman’s Equation (Sutton and Barto, 2018) for identifying a value function
mapping states to real numbers. In order to define our value function, we
must first define a policy.

Definition 4.5. A policy π : S → A is a function that maps states to actions.

A reinforcement learning agent is attempting to develop a policy that
allows it to optimally solve the problem at hand. We might then consider
that an optimal policy π∗ for a reinforcement learning problem might rely
on having an optimal value function V∗ to make decisions with. To find this
optimal value function, we can use a system of equations defined by the
following Bellman’s Equation (Sutton and Barto, 2018).

V∗(s) � max
a∈A(s)




R(s , a) + γ
∑
s′∈S

P(s′ | s , a)V∗(s′)


, (4.1)

where R is the reward of taking action a from state s to reach state s′. Using
dynamic programming techniques, we can directly solve for the optimal
value function and use it to identify the optimal policy (Sutton and Barto,
2018). We note, however, that such an approach can be computationally
intensive and prohibitively so. In Section 4.3, we explore some methods by
which we can estimate the value function to approach an optimal policy
through Monte Carlo methods.

4.3 Value Estimates & Tabular Monte Carlo Methods

We can now note that some state or actions spaces are too big to use a
dynamic programming approach to solve for the optimal value function.

Value Estimates & Tabular Monte Carlo Methods 33

In this section, we introduce value and policy estimation algorithms that
converge, given enough computation, to optimal value and policy estimates.
We limit the computational requirements by using tabular Monte Carlo
methods.

Monte Carlo methods, generally speaking, are a class of computational
methods that use random sampling to find solutions to deterministic prob-
lems. With respect to reinforcement learning, Monte Carlo methods often
rely on being able to generate many sample episodes quickly (Sutton and
Barto, 2018). Through simulation, we can do so for many reinforcement
learning problems. Once we generate each sample episode, we can simulate
it with a policy π that maps each state s to an action a that maximizes the
sum of the reward of the action and the value estimate of the resulting state
(Sutton and Barto, 2018). As the value estimate becomes closer to the true
value, our policy would constantly select the highest-value action to take.

π(s) � max
a

{reward(s , a) + V(s′)} ,

where s′ is the state the system arrives at after choosing action a in state s.
Once each episode has completed, we need to update our value estimate
for each state Si that was visited in the simulation. One common method
of keeping track of a value estimate while using Monte Carlo methods
is through sample averaging. When sample averaging, we first select a
learning rate α, which can also be defined as a function of the number of
episodes of training. We initialize a table V , our value estimates, that map
states to some initial value R0, which could be either a constant or a function
on the state space. After the episode, we can calculate the return, and use it
to update the value estimates for the next policy with the return from the
episode using the following update rule (Sutton and Barto, 2018),

Vπ′(Si) � Vπ(Si) + α (Gi+1 − Vπ(Si+1)) .
We call this step policy evaluation. We can then update the policy π using
the new value estimates (Sutton and Barto, 2018). We call this new policy π′.

π′(s) � max
a

{reward(s , a) + Vπ′}

We call this steppolicy improvement. By using this algorithm, we constantly
update our value estimates to be closer, by the law of large numbers (Sutton
and Barto, 2018), to the true value. We call this algorithm iterative policy
evaluation, and it is a common way to iterate simultaneously towards an

34 Introduction to Reinforcement Learning

optimal policy and an optimal value function estimate. We can prove that
the algorithm converges, given enough computation, to the optimal values
(Sutton and Barto, 2018).

We note that a Monte Carlo approach using randomly generated samples
may not explore every possible state, which may not result in the best
possible policy. The agent can not exploit what it hasn’t explored. Given
that many algorithms require initial value estimates, we might consider
whether we could alter these estimates to initially bias for exploration, which
might accelerate learning. Using optimistic initial estimates biases an agent
to explore early in training (Sutton and Barto, 2018). For intuition, we
might imagine setting the initial value estimate to be equal for each state,
and significantly larger than is realistic. Then, upon simulation of a state,
our value for that state will be significantly worse than we suggested our
agent should expect, which would result in a large drop in value estimate
during the policy evaluation step of the iterative policy evaluation algorithm.
Initially, the policy improvement step would select unexplored actions for
each state. However, once each state has been explored a few times, then we
should see states with high true values losing less of their value estimate
than states with low true values. Over time, this will result in a well-explored
state space and well-estimated value function and policy.

4.4 Applying Reinforcement Learning to Simple Tem-
poral Networks

In Chapter 5, we use the tools that have been described in this chapter to
design and train a reinforcement learning agent that is able to learn an
estimate of the value of various states. We can then use this estimate with a
policy that maximizes the value at each step of execution to schedule simple
temporal networks under uncertainty by learning from the flexibility of the
STNUs being scheduled.

In this section, we provide a brief overview of the reinforcement learning
agent that will evaluate the flexibility metrics. The core of this idea is
designing reward functions as a function of the flexibility metric under test.
The exact reward function is shown in Chapter 5.

The environment consists of the STNU that is being executed, as well as
the current time, and lists of enabled and completed events. The agent is
attempting to build a value estimate of the states in this system that enables
it to maximize success in scheduling for the STNU on which the agent is

Applying Reinforcement Learning to Simple Temporal Networks 35

being trained. It does so by taking actions according to its policy, which is
based on the maximal-value action available to it. Upon success or failure of
each episode, the values of each state along the way will be updated using
the SARSA update rule, as described in (Sutton and Barto, 2018). At the end,
the agent will be able to use its value estimate to choose which action to take
at each state to solve the STNU.

Implementation details for all of these components of the reinforcement
learning problems will be given in Chapter 5.

Chapter 5

Empirical Evaluation of
Flexibility Metrics

5.1 Motivation

In Chapter 3, we introduced four flexibility metrics: naïve, Hunsberger,
Wilson, and spherical flexibility. These metrics were developed sequentially
in the literature (Hunsberger, 2002; Wilson et al., 2014; Lloyd et al., 2018).
Hunsberger defined naïve flexibility and found inconsistencies in it, as shown
in Chapter 3. Instead, he designed his Hunsberger metric, which solved
one of these inconsistencies. Wilson flexibility was a response to flaws with
the Hunsberger flexibility metric, which still led to some inconsistencies in
edge cases, as shown in Lloyd et al. (2018). Sphericality was then developed
out of an attempt to rigorously describe properties of flexibility metrics
(Hunsberger, 2002; Wilson et al., 2014; Lloyd et al., 2018) and use a polytope
to consider the space of schedules. Some of these flexibilitymetrics were then
evaluated through their use in heuristic algorithms (Hunsberger, 2002) in
which algorithms selected the next action to maximize each type of flexibiltiy.
However, we are unaware of any attempts to directly evaluate each flexibility
metric with reinforcement learning. Doing so may enable a more direct
comparison between these metrics as to which one is best suited to describe
the flexibility of a simple temporal network. In this chapter, we describe an
attempt at a direct empirical evaluation of these flexibility metrics.

38 Empirical Evaluation of Flexibility Metrics

Prior Work

Lloyd et al. (2018) attempted to evaluate spherical flexibility by running
a linear regression to identify the correlation between spherical flexibility
and each of the other metrics. They found that spherical flexibility was
poorly correlated (r2 ≤ 0.471 for all of the metrics). Lloyd et al. (2018) also
confirmed, empirically, which metrics satisfied specific desiderata as shown
in Figure ??.

5.2 Reinforcement Learning for Scheduling in STNUs

Recall from Chapter 4 that a good reward function should have a high signal-
to-noise ratio; they should quantify, with minimal variance which states lead
to the desired result Sutton and Barto (2018). Good reward functions can
enable faster training and more accurate results in reinforcement learning
agents. To the author’s knowledge, there has been no work in using
reinforcement learning as a means to gauge the relative signal-to-noise
ratios of flexibility metrics for STNs and STNUs nor to use reinforcement
learning to identify schedules to satisfy STNUs. In this section, we describe
a reinforcement learning agent that learns how to schedule events given a
simple temporal network under uncertainty (STNU).

5.2.1 Hypothesizing the Results of the Reinforcement Learning
Solution

We expect that the more recent flexibility metrics, and in particular, spher-
icality, should have the highest signal-to-noise ratio of the metrics under
test. It should enable the agents to train the fastest and most successfully if
it describes the benefit of a state-action pair in the problem, for getting to a
goal state. We note that sphericality satisifies at least a weak form of every
desideratum proposed by Lloyd et al. (2018), whereas the naïve, Hunsberger,
and Wilson flexibilities all fail at least one of the desiderata (Lloyd et al.,
2018).

5.2.2 Structuring the Reinforcement Learning System

In this section, we describe the structure of the reinforcement learning
problem - its environment, agent, state space, action space, and reward - that

Reinforcement Learning for Scheduling in STNUs 39

is being trained and evaluated.

Environment

The environment of our reinforcement learning systems consists of the STNU
with which events must be scheduled. We model the environment as a
simple temporal network under uncertainty that is being executed. We use a
timeline-based execution of the STN similar to that which was developed in
Knittel et al. (2018). One time step in the environment is shown in Algorithm
1. We assume that each uncertain edge is accurately described by a uniform
distribution parameterized by the constraint interval for the edge.

40 Empirical Evaluation of Flexibility Metrics

Data: Current time t
Data: Execution Time Resolution ∆t
Data: Internal STNU state S
Data: A valid action to take a
Result: An updated STNU state T
Result: A float reward R
Result: A boolean indicating termination isDone
pq ← priority queue prioritized by time of completion;
if a is an enabled event then

Execute a in S;
if e′ is an event contingent on a then

Realize a duration for the edge between them ;
Add e′ to pq with the realized completion time ;

end
if there is a constraint between a and event e′ then

Identify when the constraint would fail ;
Add e′ to pq with the time for the requirement to fail ;

end
end
t ← t + ∆t;
Update all absolute constraints to begin at time t or later ;
while next event to be completed has time t do

e ← next event in priority queue;
if e is a contingent edge then

Execute contingent event indicated by e;
Add adjacent contingent and requirement edges to pq;

else
If events not complete, a constraint has failed;

end
end
Update list of enabled edges;
Episode is done if all events are executed or a constraint has failed ;
if episode not done then

S ← S \ {all vertices adjacent to only executed events};
minimize S ;
check whether S is consistent ;

end
Episode is done if all events are executed or a the STN is inconsistent ;
Reward← number of newly completed events · f lex(S);
if episode has failed to schedule the STNU then

R ← R − n · f lex(original STNU)
end

Algorithm 1: A description of one step in the execution of an STNU with
the action chosen by the reinforcement learning agent.

Reinforcement Learning for Scheduling in STNUs 41

Agent

As described in Section 4.4, the agent is attempting to build a value estimate
of the states in this system that enables it to maximize success in scheduling
for the STNU on which the agent is being trained. It does so by taking
actions according to its policy, which is based on the maximal-value action
available to it. The agent is described more be Algorithm 2.

We use ε−greed to deal with the exploration-exploitation problem. This
method works by first selecting a parameter 0 ≤ ε ≤ 1. When the agent
is selecting an action, it chooses an action by exploiting the current policy
with probability 1 − ε. Otherwise, it randomly selects among all actions to
explore what could happen. If ε � 0, then the agent only exploits what it
already knows. Similarly, if ε � 1, then the agent only explores (randomly
taking actions). We choose ε � 0.1 for this agent.

Data: An STNU, S
Result: A reinforcement learning agent with an updated value

function Q′

Initialize a list of visited states;
while the current episode of the STNU is incomplete do

get all possible actions;
select which action to take using ε-greed;
call Algorithm 1 with an action to get a reward and new state;

end
check whether the episode succeeded or failed;
for each state visited along the way, use the return to update value
estimate V ;

Algorithm 2: A description of using Monte Carlo methods for training a
reinforcement learning agent to schedule simple temporal networks with
uncertainty.
We note that not every state will need to be visited. For example, a state

depending on many previous states before it can be executed is unlikely to
be executed at t � 0, so Monte Carlo methods help us narrow down the set
of states we might actually need to have value estimates for.

Reward

The third part of any reinforcement learning problem is the reward function.
Designing a reward function for any problem is particularly tricky, but
crucial for a reinforcement learning agent to train well. Reinforcement

42 Empirical Evaluation of Flexibility Metrics

learning algorithms tend to overfit to their reward functions, which can lead
to reward functions resulting in unexpected behavior from an agent (Mnih
et al., 2016). Some of these behaviors may work well and maximize the
reward, but behave in surprising ways unanticipated and undesired to the
designers of the system.

For this problem, we describe the reward function as follows, where s is
a state that contains an STNU S in the environment, a is an action taken by
an agent, f lex is the flexibility metric under test, n is the number of events
completed in the step, and N is the total number of events in the original
STNU S0.

R(s , a) �
{

n · f lex(S) if step does not end in episode failure
n · f lex(S) − N · f lex(S0) else

This function returns a high value when many events end on the same time
step without the episode failing. If the episode fails, it penalizes by a large
amount when the episode fails to complete successfully.

One example of a possible unanticipated issue in our reinforcement
learning agent would occur if the agent ends up in a local maximum in
which it gets more reward than any other route it has explored, but is never
able to successfully schedule for an STNU.

Running Through Two Examples 43

5.3 Running Through Two Examples

In this section, we run through two example episodes, one failure and one
successful run to show how the value function changes over each episode.
Recall that the learning rate of a reinforcement learning algorithm is used
to identify how much the vaue estimate should change given a new data
point from the return of a single run. Let α � 0.1 be the learning rate of our
agent. Let the flexibility metric f in the following examples be defined by
the number of unexecuted states in the given STN (this metric is not helpful
for the actual problem, but is used as a simple flexibility function for the
following examples).

We also note that the time step resolution r � 1 minute.
Let St = (E, C) be a state, where t is the time, E is the set of enabled

events and C is the set of executed events.
We note that our training run of the example STNU begins, after the zero

event is executed, in the state

S0 � ({1, 3}, {0}).
In this example (which is modified from Lund et al. (2017)), we have two

robots which must reach a location within some specified time (2 minutes,
in this case) of one another. The times for each robot to travel from its initial
point to the final location is described by a uniform distribution as shown in
Figure 5.1.

5.3.1 A Failure Episode Example

Let Qi be our state-action value estimate function after the ith training run,
where the value estimates are initially the total amount of reward we can get
from the STN.

Q0(s , a) � f (S0) � 4 (∀(s , a))
Given that the value estimates of every state are equal, then our agent

chooses randomly from the set of actions {∅, 1, 3}. In this example, the agent
initially selects action 3 (see Figure 5.1).

The new state S1 � ({1}, {0, 3}). Since event 3 has been executed in this
time step, the reward R1 � 3. Once again, maxa∈A(S1) Q0(S′1 , a) does not
distinguish between the remaining actions, so the agent randomly selects
between starting event 1 and doing nothing. In this example, the agent
chooses nothing (see Figure 5.2).

44 Empirical Evaluation of Flexibility Metrics

1 2

3 4

[4,8]
U(4,8)

[0,10]

[-2,2]

[0,10]

[1,3]
U(1,3)

[0,10] [0,10]

Figure 5.1 At t � 0, the state of the agentS0 � ({1, 3}, {0}). The agent selects
actionA0 � 3 from the action spaceA(S0) � {∅, 1, 3}.

1 2

3 4

[4,8]
U(4,8)

[1,10]

[-2,2]

[1,10]

[1,3]
U(1,3)

[1,10] [1,10]

Figure 5.2 At t � 1, the agent gets a reward R1 � 0 since no events were
executed at time 0. The state of the agent S1 � ({1}, {0, 3}). The agent then
chooses actionA1 � ∅ from the action spaceA(S1) � {∅, 1}.

At t � 2, the agent receives information that contingent event 4 has been
executed. The new state S2 � ({1}, {0, 3, 4}), so the agent has received the
reward R2 � 2 from the previous time step. maxa∈A(S2) Q0(S′2 , a) does not
distinguish between the remaining actions, so the agent randomly selects
between starting event 1 and doing nothing. In this example, the agent
chooses to do nothing (see Figure 5.3). We also note that the constraint that
requires events 2 and 4 to occur within 2 minutes of one another is active
(which is not explicitly represented within the state).

At t � 3, the agent finds that no events have terminated, so the agent
receives the reward R3 � 0. maxa∈A(S3) Q0(S3 , a) does not distinguish
between the remaining actions, so the agent randomly selects between
starting event 1 and doing nothing. In this example, the agent chooses to do
nothing (see Figure 5.4).

At t � 4, the state S4 � ({1}, {0, 3, 4}). The agent finds that the constraint

Running Through Two Examples 45

1 2

3 4

[4,8]
U(4,8)

[2,10]

[-1,0]

[2,10]

[1,3]
U(1,3)=2

[2,10] [2,10]

Figure 5.3 At t � 2, the agent gets a reward R2 � 2 since contingent
event 4 was executed in the previous time step. The state of the agent S2 �

({1}, {0, 3, 4}). The agent then chooses actionA2 � ∅ from the action space
A(S2) � {∅, 1}.

1 2

3 4

[4,8]
U(4,8)

[3,10]

[0,0]

[3,10]

[1,3]
U(1,3)=2

[3,10] [3,10]

Figure 5.4 At t � 3, the agent gets reward R3 � 0 since no events were
completed in t � 2. The state of the agent S3 � ({1}, {0, 3, 4}). The agent then
chooses actionA3 � ∅ from the action spaceA(S3) � {∅, 1}.

between events 2 and 4 failed in the previous time step. Since it is no longer
possible to satisfy the constraint between events 2 and 4 and therefore (see
Figure 5.5) the agent has identified that the STNU has failed to schedule our
problem, the agent receives a large negative reward R4 � −n f (S0) � −16,
where n is the number of events in the original STN. This reward guarantees
the return is negative.

Now that we have simulated this episode, we can update the value
estimate Q1. The agent visited the states in the following order, took certain
actions, and received the rewards listed afterward.

0. S0 : ({1, 3}, {0}), A0 � 3 ,R1 � 3

1. S1 : ({1}, {0, 3}), A1 � ∅, R2 � 0

46 Empirical Evaluation of Flexibility Metrics

1 2

3 4

[4,8]
U(4,8)

[4,10]

[1,0]

[4,10]

[1,3]
U(1,3)=2

[4,10] [4,10]

Figure5.5 At t � 4, the execution fails as a constraint is violated, so the reward
is R4 � −16.

2. S2 : ({1}, {0, 3, 4}), A2 � ∅, R3 � 2

3. S3 : ({1}, {0, 3, 4}), A3 � ∅, R4 � −16

Since the episode has ended, we can update the value estimates. They are
updated according to the following update rule.

Q1(St ,At) � Q0(St ,At) + α [Rt+1 + Q0(St+1 ,At+1) −Q0(St ,At)] .
So, the following state-action pairs from this episode are updated as follows.

Q1(S3 , ∅) � 4 + 0.1 · (−16 + 4 − 4) � 2.6
Q1(S2 , ∅) � 4 + 0.1 · (2 + 4 − 4) � 4.2
Q1(S1 , ∅) � 4 + 0.1 · (0 + 4 − 4) � 4.0
Q1(S0 , 3) � 4 + 0.1 · (3 + 4 − 4) � 4.3

We can see that the state-action pairs in which we earned rewards were rated
as more valuable, but those in which we lost reward lost value.

5.3.2 A Successful Episode Example

In the following figures (5.6, 5.7, 5.8, 5.9, 5.10, 5.11), we show a successfuly
example and the value estimate update from that example.

Now that we have simulated this episode, we can update the value
estimate Q1. The agent visited the states in the following order, took certain
actions, and received the rewards listed afterward.

0. S0 : ({1, 3}, {0}), A0 � 1 ,R1 � 3

Running Through Two Examples 47

1 2

3 4

[4,8]
U(4,8)

[0,10]

[-2,2]

[0,10]

[1,3]
U(1,3)

[0,10] [0,10]

Figure 5.6 At t � 0, the state of the agent S0 � ({1, 3}, {0}). The agent then
chooses actionA0 � 1 from the action spaceA(S0) � {∅, 1, 3}.

1 2

3 4

[4,8]
U(4,8)

[1,10]

[-2,2]

[1,10]

[1,3]
U(1,3)

[1,10] [1,10]

Figure 5.7 At t � 1, the agent gets a rewardR1 � 3 since event 1was executed
at time 0. The state of the agent S1 � ({3}, {0, 1}). The agent then chooses
actionA1 � ∅ from the action spaceA(S1) � {∅, 3}.

1 2

3 4

[4,8]
U(4,8)

[2,10]

[-2,2]

[2,10]

[1,3]
U(1,3)

[2,10] [2,10]

Figure 5.8 At t � 2, the agent gets a reward R2 � 0 since task 3 has been
executed. The state of the agent S2 � ({}, {0, 1, 3}. The agent then chooses
actionA2 � ∅ from the action spaceA(S2) � {∅}.

1. S1 : ({3}, {0, 1}), A1 � ∅, R2 � 0

48 Empirical Evaluation of Flexibility Metrics

1 2

3 4

[4,8]
U(4,8)

[3,10]

[-2,2]

[3,10]

[1,3]
U(1,3)

[3,10] [3,10]

Figure 5.9 At t � 3, the agent gets a reward R3 � 2 since task 1 has been
executed. The state of the agent S3 � ({}, {0, 1, 3}. The agent then chooses
actionA3 � ∅ from the action spaceA(S3) � {∅}.

1 2

3 4

[4,8]
U(4,8)=4

[4,10]

[0,1]

[4,10]

[1,3]
U(1,3)

[4,10] [4,10]

Figure 5.10 At t � 4, the agent gets a reward R4 � 1 since contingent event 2
has concluded in time step 3. The state of the agent S4 � ({}, {0, 1, 2, 3}. The
agent then chooses actionA4 � ∅ from the action spaceA(S4) � {∅}.

1 2

3 4

[4,8]
U(4,8)=4

[5,10]

[0,0]

[5,10]

[1,3]
U(1,3)=3

[5,10] [5,10]

Figure 5.11 At t � 5, the agent gets a reward R5 � 0 since contingent event
4 has concluded in time step 4. The state of the agent S4 � ({}, {0, 1, 2, 3, 4}.
The episode then concludes since the schedule has been successfully executed.

Running Through Two Examples 49

2. S2 : ({3}, {0, 1, }), A2 � 3, R3 � 2

3. S3 : ({}, {0, 1, 3}), A3 � ∅, R4 � 0

4. S4 : ({}, {0, 1, 2, 3}), A4 � ∅, R5 � 1

Since the episode has ended, we can update the value estimates. They are
updated according to the following update rule.

Q1(St ,At) � Q0(St ,At) + α [Rt+1 + Q0(St+1 ,At+1) −Q0(St ,At)] .
So, the following state-action pairs from this episode are updated as follows.

Q1(S4 , ∅) � 4 + 0.1 · (1 + 4 − 4) � 4.1
Q1(S3 , ∅) � 4 + 0.1 · (0 + 4 − 4) � 4.0
Q1(S2 , 3) � 4 + 0.1 · (2 + 4 − 4) � 4.2
Q1(S1 , ∅) � 4 + 0.1 · (0 + 4 − 4) � 4.0
Q1(S0 , 1) � 4 + 0.1 · (3 + 4 − 4) � 4.3

We can see that the state-action pairs in which we earned rewards were
rated as more valuable, but those in which we lost reward lost value. We
note that the values here are not much higher than the new values for the
failed examples. Part of this is due to this example running a single iteration
of training. Much more would be necessary to converge to a useful value
estimate.

50 Empirical Evaluation of Flexibility Metrics

5.4 Results

The proposed reward scheme, in initial testing did not seem to be learning a
successful policy. However, more testing is required before any conclusions
can be drawn, as well as potential alterations of the reward function. One
possibility for the reward function is that it may be too sparse, meaning that
the agent doesn’t get enough reward to be able to learn a useful value estime.
This may happen because it gets no more than n pieces of reward, often less.
Shaping the reward signal to provide more consistent reward may help with
this problem.

The data for these tests was taken from the dataset generated by Lund
et al. (2017), but each contingent probabilistic edge was modified to include
a one-sigma interval around the mean of the normal distribution.

5.5 Conclusions

This thesis can not make significant conclusions for lack of data to analyze
the performance of the proposed reinforcement learning agent. The next
step for this thesis is to train these agents on STNUs.

In order to proceed with the thesis, the author suggests the following
steps.

• Collectmoredata -Collectingmoredatawill allow for a better diagnosis
of the issues with the current system.

• Tweak the reward signal - One of the problems with reinforcement
learning is reward signal design. It is unclear whether the signal is too
sparse to be useful at the moment.

• Extend system to PSTNs - PSTNs have normally distributed contingent
edges, and do not use flexibility. It may be interesting to try to learn to
solve PSTN scheduling as a means to identify metrics on PSTNs.

Add Sutton and Barto to list

Bibliography

Boerkoel, James C., and Edmund H. Durfee. 2013. Distributed reasoning
for Multiagent Simple Temporal Problems. Journal of Artificial Intelligence
Research 47:95–156. doi:10.1613/jair.3840.

Boerkoel, James C, Leon R Planken, Ronald J Wilcox, and Julie A Shah. 2012.
Distributed Algorithms for Incrementally Maintaining Multiagent Simple
Temporal Networks. Proceedings of the Autonomous Robots and Multirobot
Systems workshop (at AAMAS-12) 59(June 2013):256–263.

Brooks, Jeb, Emilia Reed, Alexander Gruver, and James C. Boerkoel. 2015.
Robustness in probabilistic temporal planning. In Proc. of AAAI-15, 3239–
3246.

Dechter, Rina, Itay Meiri, and Judea Pearl. 1991. Temporal constraint
networks. Artificial intelligence 49(1-3):61–95.

Hunsberger, Luke. 2002. Algorithms for a temporal decoupling problem in
multi-agent planning. In Proc. of AAAI-02, 468–475.

Knittel, Marina, Liam Lloyd, Grace Diehl, Judy Lin, David Chu, Jeremy
Frank, and James C Boerkoel Jr. 2018. Trade-offs Between Communication
and Success Rate in Uncertain Multi-Agent Schedules.

Lloyd, Liam, Amy Huang, Mohamed Omar, and James C Boerkoel Jr. 2018.
New Perspectives on Flexibility in Simple Temporal Planning. Submitted
to ICAPS-18.

Lund, Kyle, Sam Dietrich, Scott Chow, and James C Boerkoel Jr. 2017.
Robust Execution of Probabilistic Temporal Plans. Proceedings of the 31th
Conference on Artificial Intelligence (AAAI 2017) 3597–3604. URL https:
//aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14641.

https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14641
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14641

52 Bibliography

Mnih, V., A. Puigdomènech Badia, M. Mirza, A. Graves, T. P. Lillicrap,
T. Harley, D. Silver, and K. Kavukcuoglu. 2016. Asynchronous Methods for
Deep Reinforcement Learning. ArXiv e-prints 1602.01783.

Mnih, Volodymyr, David Silver, and Martin Riedmiller. 2013. Playing Atari
with Deep Reinforcement Learning. Neural Information Processing Systems
1–9. doi:10.1038/nature14236. 1312.5602.

Morris, P., N. Muscettola, and T. Vidal. 2001. Dynamic control of plans
with temporal uncertainty. In Proc. of ĲCAI-01, 494–502.

Sutton, Richard S., and Andrew G. Barto. 2018. Reinforcement Learning: An
Introduction. Cambridge, Massachusetts: MIT Press.

Tsamardinos, Ioannis. 2002. A probabilistic approach to robust execution
of temporal plans with uncertainty. In Methods and Applications of Artificial
Intelligence, 97–108. Springer.

Vidal, T., and M. Ghallab. 1996. Dealing with uncertain durations in
temporal constraint networks dedicated to planning. In Proc. ECAI-96,
48–54.

Wilson, Michel, Tomas Klos, Cees Witteveen, and Bob Huisman. 2014. Flex-
ibility and decoupling in Simple Temporal Networks. Artificial Intelligence
214:26–44. doi:10.1016/j.artint.2014.05.003.

1602.01783
1312.5602

	Claremont Colleges
	Scholarship @ Claremont
	2018

	Evaluating Flexibility Metrics on Simple Temporal Networks with Reinforcement Learning
	Hamzah I. Khan

	Abstract
	Acknowledgments
	Introduction
	Scheduling as a Problem

	Representations of Simple Temporal Networks
	Scheduling with Simple Temporal Networks
	Representations for Simple Temporal Networks
	Properties of Simple Temporal Networks
	Conclusion

	Flexibility as a Measure of Slack
	Sequential and Concurrent Classes of STNs
	Desiderata for Flexibility Metrics
	Flexibility Metrics

	Introduction to Reinforcement Learning
	Motivating the Reinforcement Learning Problem
	Components of Reinforcement Learning Problems
	Value Estimates & Tabular Monte Carlo Methods
	Applying Reinforcement Learning to Simple Temporal Networks

	Empirical Evaluation of Flexibility Metrics
	Motivation
	Reinforcement Learning for Scheduling in STNUs
	Running Through Two Examples
	Results
	Conclusions

	Bibliography

