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Abstract: In the early 1980s computer graphics revolutionized the teaching of
ordinary differential equations (ODEs). Yet the movement to teach and learn
the qualitative methods that interactive graphics affords seems to have lost
momentum. There still exist college courses, even at big universities, being
taught without the immense power that computer graphics has brought to
differential equations. The vast majority of ODEs that arise in mathematical
models are nonlinear, and linearization only approximates solutions suffi-
ciently near an equilibrium. Introductory courses need to include nonlinear
DEs. Graphs of phase plane trajectories and time series solutions allow one to
see and analyze the crucial behaviors, whether or not analytic solutions exist.
Furthermore, interactivity is key to experimenting with parameters in order
to modify behaviors. Now, a quarter of a century later, we have far more
technology—but many features of the original software have been lost in the
rush to the future. We have both educational and software concerns. This
is not only an academic issue—scientists at multiple nonacademic agencies
(e.g., FDA, NIH, USCGS) immediately took up our software tools in the late
1980s, and increasingly more of our students come from fields that did not
traditionally require mathematics background. We should not be depriving
today’s students of the skills to analyze behaviors of solutions to ODEs.

1 Introduction

Modeling is essential in today’s world—problem solving depends on exploration with
changing parameters. But how can you do that without interactive graphics that allows
and encourages experimentation?

In the early 1990s (a quarter of a century ago!) the revolution of readily accessible
interactive computer graphics opened up the ability to do just that sort of problem solving
with orderinary differential equations (ODEs). Suddenly we could plot direction fields,
and by clicking on any point as initial condition, see the trajectories evolve. In seconds
you could fill the plane with trajectories, see the singularities/equilibrium points, and
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analyze behaviors. Then you could just as quickly see the effects of changing parameters
(coefficients and constants).

A few quick examples (two from talk slides, one from a colleague) show how behaviors
change as parameters change, and how visualization makes a huge leap in understanding
a solution.

Example 1. A refined population model. Consider a population x with a variable fertility
rate, subject to crowding and a constant rate of decrease (for example, by hunting licenses).
Changing only the parameter C gives vastly different behaviors .

x'= (2+cost)x — 05x2 - C
—_———— ——

Population Constant rate of
decrease due to decrease due to
crowding hunting

Natural, positive rate
of growth, with
seasonal fluctuation

C = 1: Many sustainable solutions C = 2: NO sustainable solution

Example 2. Predator/Prey. Standard population equations for two interacting species
are based on P’ = P (birth rate — crowding term =+ interaction term). For x predators and
y prey we show 2 cases where only the predation rate (shown in red) has changed. Are
you an ecologist or a pest control specialist? Which outcome do you want?

-y), Yy =y(l-y-kx)

X' = x(2-x-y)
* = y1-y-x/4)

02 04 06 08 12 14 16 18 22 24 26 28



Example 3. Interpreting Obscure Formula Solutions. Analytic solutions may be given
in functions that are otherwise difficult, if not impossible, to interpret. With graphics, one
can see them!

A simple example of this, due to David Tall, from a national mathematics examination
paper in the UK [20]:

dx 9
x—sec2t=1—-x
dt

x
1—x2

It is easily “solved” by separating the variables to get dx = cos 2tdt, and integrated

to give the “general solution”
—1n|1 —x2| =sin2t + C,
but what does this mean? A graph of solutions on the direction field is invaluable.

X" = (cos(2*tN(1-x")/x

X

Seeing the solutions shows much simpler behavior than we might expect from the
formula; it gives something we can wrap our heads around, and offers the question of
how it relates to the formula.

“The symbolic solution in this case is of little value without a graphical interpreta-
tion of its meaning, whilst the graphical interpretation alone lacks the precision of the
symbolism.” [20]

2 History

The tremendous excitement caused by this graphics revolution completely changed the
ODE curriculum, and gave immense power to students, as well as to researchers within
and without the mathematical and academic communities.

How so?

The Federal Drug Administration (FDA), National Institutes of Health (NIH), U.S.
Coast and Geodetic Survey (USCGS), and other entities were quick to start using our



first interactive graphics software MacMath [28], which emphasized its usefulness. My
colleague John Hubbard gained some renown when he testified before a U.S. Congressional
Committee re NSF funding and stated that “differential equations are the interface of
mathematics with the real world!” While this may be an exaggeration, certainly DEs
are a major interface, and at that Congressional Hearing, the presenters for chemistry
and physics agreed that the models of which they had spoken were exactly differential
equations models. Hubbard liked to tell how he could feel the status of mathematics rising
in that room full of politicians!

Throughout the United States new textbooks and supporting software packages were
created, based on the tremendous power of the graphics approach. Those by Blanchard,
Devaney & Hall; Borrelli & Coleman; Farlow; Harvey Mudd; Hohn; Hubbard & West; and
M.IT. are listed in Sections 7 and 8. Other authors that quickly joined the new standard
included Boyce & diPrima; Danby; Edwards & Penney; Goode; Hale & Skidmore; Kohler
& Johnson; Lomen & Lovelock; Nagle, Saff, & Snider; Noonburg; Polking; Strang; Strogatz;
and Zill.

In 1991 CODEE (an NSF-funded Consortium for ODEs with Experiments) [5] came
into being to inform and help our colleagues teaching ODEs how to take advantage of the
sudden amazing new capabilities—we were a consortium of seven diverse institutions:
Harvey Mudd College, Cornell University, Rensselaer Polytechnic Institute, Washington
State University, St. Olaf College, West Valley Community College, Stetson University.

Over the next 4 summers, consortium members at each CODEE institution gave a
weeklong summer workshop at their school for 30 faculty from all over the U.S. These
were wildly successful, and participants went on to give dozens of talks and workshops
at department colloquia, regional meetings, and conferences. For many years we had
contributed paper sessions at every JMM (Joint Mathematics Meetings) and International
Conference for Technology in Collegiate Mathematics, which engendered much excite-
ment and progress. CODEE produced a newsletter, and then in a second grant, a powerful
ODE software package called ODE Architect [33]. Finally in 2007 under yet another NSF
grant, we reorganized, using the same acronym and web address, as the Community of
ODE Educators, creating a website with a refereed electronic CODEE journal and many
other features to support the teaching of ODEs. See the Article Evolution of the Modern
ODE Course in the CODEE Journal [5]. We felt that everyone was getting on board.

However we have now encountered two problems:

Problem 1: Everyone is not on board. Our initial enthusiasm and success was
misleading—it seems we ended up preaching to the choir! For many recent years prior
to 2016 there were no ODE sessions in the MAA part of JMM, or at ICTCM (which is
much smaller now). Other “fashions” in other fields have taken over the attention of many
instructors. We have been stunned and saddened to find that there are still many students
taking ODEs in the traditional fashion, with no computer component, and no attention to
nonlinear systems (beyond teaching linearization, which is useful only if you can see how
far in a given direction that linearization might give a decent approximation). Some of
the reasons that so many students are losing out are:

. institutional inertia,

« holding on to traditional texts that authors have (painstakingly) created,
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« instructors who resist computers (fear of distraction, time commitment)

« large course loads where mathematicians with specialties outside ODEs might be
forgiven for taking the easy way out and just teaching the extra course in DEs in
the cookbook manner in which they were taught.

I assert that it is a crime to deprive students of the power enabled by the computer
graphics revolution. They will be at a total disadvantage compared to students who can
easily attack and analyze behaviors for any nonlinear system.

There are many ways to overcome these objections.

- single sessions, workshops, or minicourses can bring faculty on board quickly;

« computer work on homework—today’s students can handle it, with simple, straight-
forward software dedicated to ODEs; no extra class time required,;

« timesaving in lecturing—e.g., a quick showing (either in lecture or homework) of a
linear classification animation tool such as Interactive Differential Equations (IDE)
[27] or MIT Mathlets [31]* fosters faster and better understanding of concepts;

- timesaving in syllabus See [8], Preface section by Jean Marie McDill re how com-
puter work assigned as homework before lecture eliminates confusion and miscon-
ceptions, thus saving valuable syllabus time;

« timesaving in grading—wrong graphs immediately point to errors.

We do not need to throw out all the traditional material, but we can make teaching and
learning much easier, for instructors and students alike.

We must also keep in mind that students taking ODEs are majoring increasingly in
“nontraditional” fields (e.g., biology, ecology, meteorology, finance, economics), not just
the “usual” mathematics, physics, and engineering.

Problem 2: Software crisis. Our “old” dedicated graphic DE solvers (such as MacMath
[26, 27]) became outdated as operating systems evolved and left them behind. It is difficult
from academia to find funding that will keep software updated.

Java has been a solution for some years (for programs such as ODE Toolkit [26],
Polking’s Dfield and Pplane [34], Tutsch’s OdeFactory [35], or Blanchard/Devaney/Hall’s
Differential Equations [25] software package that accompanies their text), but now these
run into problems with newer security policies, or the lack of “Apple Certification”

Worse, Java will not run on mobile devices such as iPads or Google ChromeBooks.
These newer devices, which are becoming ever more ubiquitous, require JavaScript, (which
is entirely different from Java), or some other newer language; a simple translation is not
possible.

True, we have much larger computer algebra systems (CAS) such as MatLab, Maple,
and Mathematica that do many other things, as well as much more specialized (but

1Both IDE and the MIT Mathlets were originally developed by Hubert Hohn, a master programmer at
the Massachusetts College of Art. They were then reprogrammed in Java, and now, in the latter case, in
JavaScript for mobile devices.



powerful) packages like Scicos and XPP for dynamical systems. But these require much
syntax and computer smarts, so although they are appropriate for research, they are too
overwhelming for introductory courses (unless one is operating in a department that
already uses such software for other courses, in which case many colleagues have made
good use of them). Problems with these powerful multi-purpose programs at schools
where they are not entrenched include

« Cumbersome slow processes to enter equations and graph a number of trajectories,
(See Example 4 for a most disappointing attempt to use Wolfram Alpha.)

+ A tendency to simply put up finished phase portraits—students don?t have the
grip they get when they see solutions evolve; they must do a lot more “figuring
out” to comprehend what they are seeing. (This objection could be ameliorated by
introducing concepts with interactive illustrations in class or on homework, such
as can be provided by IDE [27] or MIT Mathlets [31].)

Amazingly (to us), with all the applications that abound on the internet, by the end of
2015 we had found a number of specialized DE examples, but nothing that did what our
old MacMath programs did in the 1980s — the ability to enter any DE, see a vector field,
and point/click to start solutions. The simple ideas simply have not carried forward, or
have been obscured by adding too many other options. Newer software like GeoGebra
has potential, but we did not find a general DE application that would do what we want.
TI-Nspire by Texas Instruments is multipurpose mathematics software that does run on
iPads, and does handle ODEs, but I have only seen heavy use of this with colleagues in
Denmark, not the U.S.

At the JMM 2016 CODEE sessions, I acknowledged that I was preaching to the choir,
but I think we all have to work to make access, and use, of simple graphic DE solvers the
norm in an introductory DE classroom. Note: Since I made this speech, we have been
alerted to two new possibilities—see the Good News at the end of Section 5.

The revolution of the late 1980s vastly empowered students and practitioners of
differential equations (and of iterative or difference equations). The majority of real-world
differential equations are nonlinear, and without formula solutions. Students should not
have to wait until a later course to encounter these in a global pictorial form.

With graphic solutions to differential equations, one can now attack (the majority
of ) DEs that do not have analytic solutions by the traditional cookbook methods. Now
that we can see previously invisible solutions to DEs, we can concentrate on the global
behaviors, and how to analyze them.

3 Motivating Examples

Example 4. Necessity of a Qualitative Approach. Our favorite example, dx/dt = x* — t,
looks very simple, but this differential equation is not separable, linear, or exact. In fact,
by a continuous version of Galois theory, there exists no solution expressible in terms of
elementary functions [11].

But, that does not mean there exist no solutions! We can see them!



-t=1
Vi x>=t=0
/ X2 —t=-1

It is now easy to observe the overall behavior of solutions. In fact, we can observe, and
prove, many statements, such as

« Solutions either fall into a “funnel” and are attracted asymptotically to the lower
half of the parabola x* — t = —1, or they fly off to infinity.

« The upper half of the parabola x? — t = 1 bounds a separatrix that divides these two
behaviors, as you might conjecture.

« Solutions at the top and bottom of the graph (in forward and/or backward time)
have vertical asymptotes.

Compare these insights with how, on the next page, Wolfram Alpha responds to an
innocent student request for solution to the same simple equation, dx/dt = x* — t:

General Differantial Equation Solver x

Specify Differential Equation

y' =y~ 2-x
Differential equation solution:
l'_\"-‘:[—clJ s(Zix®R) ey J2(2ixx®R)—20 ;2 ix® '-'|] —c J 1 (2 ix3R)
-3 '3 33 -5'3 -3 '3
Yix) = -
2_\'tc|J |I—'i.\J:i+J|I=x.\’3:|]
-3'3 3
3 3
Plots of sample individual solution: Sample solution family:

[ x
* ¥ GOS8 000 615 0.3 025 0,50 0.5%

Take a closer look. This formula solution from Wolfram Alpha is incomprehensible
(and as promised by Hubbard’s result [10], is not in terms of elementary functions)?.

*We are aware that solutions of this sort can be found by recognizing the original equation as a special
case of a Ricatti equation, and using a lot of manipulation with change of variables. See Blanchard, Devaney
and Hall [4], pp 731-732, for a particularly nice treatment.



Worse, this presentation gives no clue of the overall behaviors! The “sample” solution
(who decides that?) cannot be called “typical”—there is no suspicion of the funnel behavior
for an initial condition with t, > 0. The individual solution axes have no numerical labels;
the sample family solution does have numerical labels, but they are of such different scales
as to be incomparable with the plots given on p.7.

Example 4 is a sober reminder of how badly we need to give students the power to
handle such a “rogue” DE. We can so easily prepare them. We only need software that
does not overreach, that keeps within bounds students can comprehend.

At the same time that we are begging for qualitative treatment of behaviors of solutions
to differential equations, we must emphasize that we are not throwing out the traditional
quantitative approaches. We are simply stretching their capabilities in very important
ways. Let me paraphrase John Hubbard in [10]:

An explicit solution is a wonderful thing, especially if the formula is analyzed
and graphed to emphasize the behavior of the solution. Solutions of differen-
tial equations are functions, and we seek to know where they are increasing
or decreasing, are stable or unstable, have maxima or minima, have vertical
asymptotes, or show oscillatory behavior.
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Example 5. Linear Systems. One can see eigenvectors. The worksheet on the previous
page is from a lab asking students to compute eigenvalues and eigenvectors of the matrices,
then make phase portraits showing the eigenvectors and direction arrows.

They could see that

« for positive eigenvalue A, trajectories point away from the origin;

« for negative eigenvalue A, trajectories point toward the origin;

« for zero eigenvalue A, trajectories still cannot cross each other;

« for complex eigenvalues A, trajectories spiral, toward or away from the node de-

pending on whether the real part of A is negative or positive, respectively.

That is, for linear differential equations with constant coefficients, the behavior of solutions
is controlled by the signs of the real parts of eigenvalues.

This use of linear algebra really comes to life when studying nonlinear DEs and
linearizing them near their zeroes.

Example 6. Linearizing a Nonlinear System. Consider the nonlinear system 3

=y, ¢y =-025x+x"—0.2y

The nonlinear analog of the eigenvectors are the separatrices, which separate regions of
different behavior. Understanding separatrices (also called stable and unstable manifolds)
is the most powerful tool we have to study nonlinear equations. In Exammple 6 The
separatrices of the left hand saddle are shown in red, those of the right hand saddle in
blue. Note the warped basin of the stable equilibrium that results. Linearizing about an
equilibrium shows the familiar patterns seen in linear equations, but we see that these
approximations are good only in an asymmetric region of the appropriate equilibrium.

3This system is an example in Blanchard/Devaney/Hall [2]—they give a nice (crude) earthquake model
on the structure of a building, with very lopsided neighborhoods of the equilibria, emphasizing the fact that
one needs to know where a linearization might give a good approximation.



Linearization about spiral node at (0, 0) | Linearization about right hand saddle at (0.5, 0)
f = e A 2 A
. i i \\
...... : i e LR
______ Yo
i R o el e s //’ """" X
dx dx
a7 Y
Y 025x- 0.2y Y _ 5 - 0.2y — 0.25
dt dt

For the majority of differential equations in real world applications, solutions may not
be expressible in elementary terms, or even as integrals of elementary functions. Any
course in differential equations can and should provide tools to describe the behaviors of
solutions without finding them explicitly.

Moreover, we must be careful to assess our numerical methods that create the graphical
solutions—to know that the solutions we are airily describing actually exist. We can do
this by proving that an effective approximation procedure converges. For example, see

(4], [12], [13].

Example 7. Comparing Numerical Methods. In the text by Hubbard and West [12] we
use Euler, midpoint Euler, and 4th order Runge Kutta methods. Software is essential
to see how these methods work in practice, and what sorts of convergence one finds.
The MacMath [28] program Numerical Methods was essential to convey what the various
methods do, how they can behave and misbehave. An unforgettable impression from [12]
illustrates the fact that eventually any numerical method breaks down, emphasizing the
need for theory that pays attention to bounding errors, as shown on the next page.

4 Software Questions

What simple ODE software do we want?

The focus must be just on simple operations, made most transparent, to:

Enter any differential equation or system, especially nonlinear.

« Put up a direction field, or vector field in the phase plane for a system.
Click on the direction field to choose an initial condition.

See solutions evolve, one by one (quickly, but not too quickly).

10



Euler's methed

Loss of stability in funnel

>

“real" solution

Runge Kutta

i 1 Less of stability in funnel
|

t=0 t=25

Iterating x’ = x? — t by different methods, for fixed stepsize h = 0.4.

This gives the student control that interprets what he or she is seeing. My previous
examples depend on these features.
The next level, also made simple, is to allow:

+ Choosing numerical method and stepsize (important for analysis).
« Numerical entry of initial conditions when it is critical.

With a little linear algebra behind the scenes, we can also

« Locate, and identify equilibria.

« Find eigenvectors at equilibria.

« Draw separatrices of a saddle (as initial conditions, take tiny steps in the eigenvector
directions on either side of the saddle, for a total of four initial conditions).

These are all simple requests. Additional nice features included on many of the simple
original software packages were the abilities to

« Add (in a different color or line style) a parametric curve (e.g., isoclines, nullclines).

11



+ Clear trajectories (all, or just a selected trajectory).
« Color or thicken any particular curve on screen for highlighting.
« Flow a region of initial conditions.

Yes, this is a downright plea for dedicated DE software (apps?) that can do these things
for any DE system that one can enter (in normal mathematical syntax)!

5 More Examples and Questions
Look at what was done 30 years ago, with only the most basic technology:

Example 8. Brief Code on Cash Register Tape. By 1983 Michelle Artigue and Veronique
Gautheron in Paris [1] were doing all of this, with high resolution results on a plotter, by
short programs written on a couple of inches of cash register tape!

dr fdi = cos dridr =sinr
ayfdi = sinxv] N T Ta

Example 9. System Pictures in just 7 Kilobytes. By 1985 David Tall at University of
Warwick in England had also done these things, even for second degree differential
equations, on a BBC computer with just seven kilobytes of memory (and in color, too). [34]
(See next page.)

Why do we want this simple ODE software?

« For student understanding:

“Lets you feel it in your bones” (Rod Smart, University of Wisconsin)

12



« For the ability to explore and experiment:

What happens if ...?

What can we change (coefficients, or entire model), by how much, to get a
desired result?

Predator/Prey or Competition models ? e.g., we can change the food supply
coefficients, import more predators, include effects of hunting, etc.

Creative assignments—e.g., Borrelli and Coleman at Harvey Mudd [2, 3] gave
a problem to “Draw a Cat”—i.e., to find a system of differential equations that
would give a phase portrait resembling some kind of cat. This assignment
gave lots of different results, fun teamwork, and an understanding of what
equations are needed to produce equilibria in desired spots, with spirals or
nodes.

Serious problem solving.
« To give students more immediate access to real world applications.
See Example 10 is for a pharmacokinetic model.

A list of Software Resources that allow these simple graphing techniques appears on
pages 20-21.

The Good News

Since this was given as a talk at the JMM 2016, we have been alerted to two software efforts
of simple straightforward packages that extend to mobile devices! Darryl Nester [32] of

13



Bluffton University has created SlopeFields, a wonderful app in JavaScript that runs on
both computers and mobile devices. One enters a DE in one or two independent variables,
the vector field appears, and with a point/click entry of initial conditions, solutions evolve.
This app is freely available on the web, which should be most helpful in our campaign
to get the power of computer graphics into every DE course. At JMM 2017, Tim Lucas
of Pepperdine University introduced Slopes [30], which includes additional capabilities.
Currently available for the iPad and iPhone, adaptations of Slopes for other platforms are
in the works.

Let me conclude my arguments with two final examples of the power enabled by
interactive computer graphics—the sort of facility that our introductory DE courses can,
and should, give to all students. Those in nontraditional fields are particularly in need of
simple and clear visualizations. These graphical techniques are especially valuable and
easy to use with systems of nonlinear differential equations, which are the dominant type
in real world modeling.

Example 10. Pharmacokinetics. Ed Spitznagel presented in an early CODEE newsletter
[19] an analysis of a simple two-compartment model that gives a good approximation of
how drugs move through the gastro-intestinal tract and then the bloodstream (the two
compartments, quantified by subscripts G and B respectively).

Half lives determine decay rates k = ﬁ
An input function f(t) gives a pulse (width 3, height 2) every 6 hours.

For a common over-the-counter cold drug having two components, with x = the
amount of decongestant and y = the amount of antihistamine, the resulting ODE

system is
dx
— =f(t) -k
== f) ~kox,
d
d_!z{ = kgx — kpx.

Resulting graphs for each component, and both compartments, are easily comprehended.

n-u,'v;n:mg-c'-d:mt Antihistamine
PPA Concentrafion in Gl and Blaod CPM Concanbration in Gl and Blood
. iy
(s
B o
half lives: ¥ hr, 5 hrs half lrves: | hr, 30 hrs
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Many simple questions are ripe for exploration with this system:

« What are the effects of skipping a dose? Doubling a dose?
« Would a larger initial “loading” dose be effective?

« How would it work with sustained release tablets (small beads in resins of various
dissolution rates)?

Notes:

« The FDA requires the same graphical results for dispersal of drugs through a multi-compartment
model in order to certify a generic version of the combination drug.

+ Two sophomore pharmacology students got so excited with this project that they created a
(fictitious) “designer drug” and went so far as to prove that the prescribed dosages would
not exceed a certain limit!

Example 11. Extensions of Predator/Prey Problems. Tony Danby [6,7] noted that a third
species, having population z , can be introduced into a Volterra predator/prey model in
many ways. For instance, it might prey on both of the others, but be preyed upon by
neither. An example is

dx 0.2

— =X — XUy —UV.AXZ

dr y

dy + 0.1

_ = = Xy — 0. zZ
=Yy - 0.1y
dz + 0.8xz + 0.1
—_— = —Z .0XZ . zZ
dr y

A good exercise is to interpret each of the graphs (on the next page) in terms of the
populations in the model. Then one could suggest how changing coefficients would alter
the results.

Software dedicated to differential equations (as in this example, by MacMath [28]) can
produce a collection of graphs like this instantly; then playing with coefficients to explore
modifications is easy.

6 Call To Action

Please encourage and help your colleagues with efforts to visualize the behaviors of
solutions to differential equations. Do anything you can to bring about appropriate simple
software, especially for mobile devices. Nester’s Slope Fields App [32] and Lucas’s Slopes
[30] give a good start.

Please carry on the fervor for qualitative analysis of solution behaviors. This is
especially essential for nonlinear differential equations, which should be covered in all
introductory differential equations courses. For an article on this point in particular, see
[24], as well as [10] in the collection, Dynamical mathematical software and visualization
in the learning of mathematics, edited by Samer Habre [9].

Sample resources are listed below in two sections, first for text and then for software.
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Resources (text):

[1] M. Artigue and V. Gautheron. Systémes Differentiels: Etude Graphique, CEDEC,
Paris, 1983.

[2] P.Blanchard, R.L. Devaney, and G.R. Hall. Differential Equations, 4”’ edition, Brooks
Cole. CEngage, 2011.

[3] R. Borrelli and C. Coleman. Mathematical Methods, Models and Applications for
Engineers, Mathematicians and Scientists, 1977. The “monster” text, archived on line
at URL http://ccdl.libraries.claremont.edu/col/mmm.

[4] R. Borrelli and C. Coleman. Differential Equations, A Modeling Perspective Wiley,
2004.

[5] CODEE (Community of Ordinary Differential Equations Educators). URL http:
//www.codee.org, 2007. Website with CODEE journal for articles, projects, and
reviews. Includes newsletters from 1994, from original NSF Consortium for Ordinary
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Differential Equations Experiments, and other archives. See the article Evolution of
the Modern ODE Course in the CODEE Journal.

[6] J.M.A. Danby. Computing Applications to Differential Equations: Modeling in the
Physical and Social Sciences, Reston Publishing Co, 1985. A classic—the best source I
have found of many models, with variations on each.

[7] J.M.A. Danby. Computer Modeling: From Sports to Spaceflight ... From Order to Chaos,
Willman Bell, Inc., 1997. An update of the above classic; includes CD-ROM, with
IBM-PC Software.

[8] J. Farlow, J. Hall, J. McDill and B.H. West. Differential Equations and Linear Algebra,
Prentice Hall (2002), second edition Pearson, 2007. Incorporates IDE [28].

[9] S.S. Habre (Editor). Enhancing Mathematics Understanding through Visualization:
The Role of Dynamic Software. IGI Global, 2013. Twelve chapters by fifteen interna-
tional specialists provide valuable insights on this phenomenon.

[10] J.H. Hubbard. Technology and Differential Equations, Enhancing Mathematics Un-
derstanding through Visualization: The Role of Dynamic Software. IGI Global, 2013.

pp. 1-11.

[11] J.H. Hubbard and B.E. Lundell. A First Look at Differential Algebra American
Mathematical Monthly, March 2011. pp. 245-261.

[12] J.H. Hubbard and B.H. West. Differential Equations, A Dynamical Systems Approach,
Part I: The One-Dimensional Theory. Texts in Applied Mathematics #5, Springer
Verlag, 1991.

[13] J.H. Hubbard and B.H. West. Differential Equations, A Dynamical Systems Approach,
Part II: Higher Dimensional Systems. Texts in Applied Mathematics #18, Springer
Verlag, 1995.

[14] J.H.Hubbard and B.H. West, Equations Différentielles et Systémes Dynamiques. Cassini,
Paris, 1999. A translation and adaptation by V. Gautheron combining books [13] and

[14].

[15] H.R. Miller and D.S. Upton. Computer manipulatives in an ordinary differential
equations course: development, implementation, and assessment, Journal of Science
Education and Technology #17, 2008, pp. 124-137. Available at URL http://math.
mit.edu/mathlets/wp-content/uploads/cet-published.

[16] MIT Open Courseware. 2001-2018. URL http://ocw.mit.edu.

[17] MIT OCW Differential Equations Course. 2010. URL http://ocw.mit.edu/courses/
mathematics/18-03-differential-equations-spring-2010/.
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[18]

[19]

[20]

[23]

[24]

SIMIODE (Systematic Initiative for Modeling Investigations and Opportunities with
Differential Equations). URL http://simiode.org. 2013-2018. An active open
community of teachers and learners using modeling first for differential equations
in an original way. Website includes valuable resources including course materials,
newsletters, blog, and information about ongoing SCUDEM competitions.

E. Spitznagel. Two-Compartment Pharmacokinetic Models. CODEE Newsletter Fall
1992, pp. 2-4.

D. Tall. Recent developments in the use of the computer to visualize and symbolize
calculus concepts The Laboratory Approach to Teaching Calculus, M.A.A. Notes

#20, 1991. pp. 15-25.

D. Tall and B.H. West. Graphic Insight into Calculus and Differential Equations,
The Influence of Computers and Informatics on Mathematics and its Teaching (ICMI
Study Series, Strasbourg). Cambridge University Press, 1986. pp. 107-119.

B.H. West (Editor). Special Issue on Teaching Differential Equations, College Mathe-
matics Journal Vol 25 No.16. (1994)

B.H. West. Technology in differential equations courses: my experiences, student re-
actions, Revolutions in Differential Equations, MAA Notes 50. Math. Assoc. America,
Washington, DC., 1999. pp. 79-89.

B.H. West. Nonlinear is essential, Linearization is not enough, Visualization is
absolutely necessary, Enhancing Mathematics Understanding through Visualization:
The Role of Dynamic Software. IGI Global, 2013. pp 89-112.

Resources (software):

[25]

[28]

P. Blanchard, R L. Devaney, and G.R. Hall. Differential Equations, 4'" edition, Brooks
Cole, 2011. CEngage Software available to those who purchase this text includes both
interactive illustrations (originated by Hubert Hohn) and simple graphic solvers.

Harvey Mudd College ODE Toolkit. 2011. URL http://odetoolkit.hmc.edu/.
An update of the original program from the late 1980s.

H. Hohn, with B.H. West, S.H. Strogatz, ].M. McDill, and J. Cantwell. Interactive
Differential Equations. Addison Wesley, 2000. Available at URL https://media.
pearsoncmg.com/aw/ide/index.html. Interactive illustrations with labs; not a
“solver”, but incredibly useful in conveying understanding of concepts. Incorporated
in text by Farlow et al [8], and bundled with two Addison Wesley differential
equations texts (by Nagel, Saff & Snider, and by Kohler & Johnson).

J.H. Hubbard and B.H. West. MacMath 9.2. New York, N.Y. Springer Verlag, 1992.
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[29]

[30]

J.H. Hubbard and B.H. West. MacMath 10.0. unpublished, 1999. It only runs on the
Mac Classic operating system. But the programs for 2D differential equations and
2D maps are available at URL http://www.math.cornell.edu/~dynamics/
BenHinkle/index.html.

T. Lucas, J. Haug, et al. Slopes: A Differential Equations Graphing Environment.
2017-2018. There are five parts—Slope Fields, Phase Planes, Systems, Waves, and
Methods—that create an interactive “playground” for ODEs. You can use it for
homework, in-class activities or a new research project. Slopes is currently available
for the iPad and iPhone via the App Store; the authors hope to expand to other
platforms in the future. See full description at URL
https://sites.google.com/a/pepperdine.edu/slopes/home,.

MIT Mathlets. 2009-2018. Also originated by Hubert Hohn, with Haynes Miller.
These are available for free at URL http://math.mit.edu/mathlets/.

D. Nester. Slope Fields. 2016. Gives slope or vector fields for any user-entered 1D
or 2D differential equation, with multiple solutions drawn by point/click on these
graphs. Includes choice of numerical method and step size. Works on all mobile de-
vices, and Google ChromeBooks. Available for free on the web at URL http: //www.
bluffton.edu/homepages/facstaff/nesterd/java/slopefields.html.

ODE Architect. by CODEE (NSF Consortium for Ordinary Differential Equations
Educators). John Wiley & Sons, 1998. Dynamic software package built around
very powerful graphic solvers. URL http://www.math.hmc.edu/resources/
odes/odearchitect. ODE Architect (ODEA) won the distinction of being named
by Forbes Magazine as one of the “nine best digital projects on the planet” in
December 1998. This was not just a list of math programs—ODEA was the only
math program so honored. There had been 1,080 entries in 40 categories submitted
to the New Media INVISION 98 Awards and ODEA was one of only nine given
an Award of Excellence. ODE Architect also won a gold medal in the category of
Higher Education.

[34] J.C.Polking. Dfield, and Pplane. 2005. Available at URL http://math.rice.edu/

[35]

~dfield/dfpp.html. Written in Java, so cannot run on mobile devices.

D. Tall. Graphic Calculus for the BBC Computer. Glentop Publishers, London, 1985.

[36] J.H. Tutsch. Ode Factory. 2011. Available at URL http://odefactory.com/.

Another graphic solver program, in Java, with many additional features under
construction, for both differential and iterative equations.
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