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Abstract of the Dissertation  
 

Computational analysis of genomic variants affecting predicted microRNA:target 

interactions in prostate cancer 

By Angélica Paola Hernández Pérez  
 

Keck Graduate Institute of Applied Life Sciences: 2018 
 
 

Prostate cancer (PCa) is the most common cancer of men in the United States and is third only to 

lung and colon as a cause of cancer death. Clinical behavior of the disease is variable and the combination 

of prostate-specific antigen (PSA) screening and Gleason score staging are currently the best available 

molecular and pathology tools to predict outcomes. Cancer biology research establishes microRNAs 

(miRNAs) as key molecular components in both normal and pathological states. Thus, elucidating miRNAs 

perturbed by genomic alterations will expand our understanding of the molecular taxonomy of PCa with the 

aim to complement current practices in the diagnosis, prognosis, and treatment of the disease. This study 

reports the computational analysis of genomic variants affecting the seed sequence of five miRNAs, 

changing the prediction of microRNA:target interactions in PC3, an androgen-independent cell line that 

closely resembles prostatic small cell neuroendocrine carcinoma (SCNC). Genomic variants were detected 

via deep-sequencing of PC3 and further computational work focused on mapping changes within the seed 

sequence of predicted mature miRNAs. Five microRNA candidates (from now on denominated microRNA*) 

with changes in the g2-g8 seed region were selected: miR-3161*-5p with rs35834266 G>insA; miR-3620*-

5p with rs2070960 C>T; miR-1178*-5p with rs7311975 T>G; miR-4804*-5pwith rs266435 C>G; and miR-

449c*-3p with rs35770269 A>T. Subsequently, the computational prediction of miRNA*:target interactions 

revealed 643 new relationships. After functional enrichment analysis of new targets, seven genes were 

associated with endocrine resistance (ABCB11, CDKN1B, NOTCH2, SHC4, CCND1, SP1, ADCY2) and 

five genes with endocrine and other factor regulated calcium reabsorption (ATP1A2, ESR1, PRRKCB, 

AP2B1, SLC8A1) categories. A gene-disease association literature search was performed for each of the 

aforementioned genes in order to understand if they have been implicated in cancer, where CDKN1B, 

NOTCH2, CCND1 have been reported to participate in prostate cancer progression. Microarray gene 

expression analyses showed that few predicted microRNA* targets were underexpressed in untreated PC3 

samples versus prostate epithelial cells from the GEO database. However, after assessing the frequency of 

observed underexpressed genes per candidate microRNA* using a Fisher’s exact test, miR-4804*-5p target 

genes (TNKS and GUCY1A3) were statistically significant. Next steps included the comparison between 
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groups of genes subject to non-mutated microRNA and mutated microRNA* regulation using a Kruskal-

Wallis non-parametric test. Results were consistent with the microRNA-gene expression regulation model 

despite the genomic variant in the seed region, nevertheless the effect of miR-3161*-5p, miR-3620*-5p, 

miR-1178*-5p, miR-4804*-5p, and miR-449c*-3p cannot be predicted solely with the indirect experimental 

approach that microarray gene expression platforms provide. For this reason, the assessment of recurrent 

pairwise microRNA-mRNA expression associations was performed using CancerMiner, an online tool from 

The Cancer Genome Atlas (TCGA) based on a multivariate linear model and rank transformations. Only the 

relationship of miRNA-3161:CDKN1B was retrieved as a recurrent expression association in uterine corpus 

endometrial carcinoma (UCEC). In the context of this study, results suggest that CDKN1B (p27Kip1) 

dysregulation by miR-3161*-5p would be leading to PC3 super proliferation due to the lack of cell cycle 

arrest from phase G1 to S. Prostate cancer cell line PC3 has shown to share features with prostatic small 

cell neuroendocrine carcinomas (SCNC) with the implication that molecular mechanisms and therapeutic 

efficacies observed with PC3 cells are likely applicable to SCNC1. Prostatic small cell neuroendocrine 

carcinoma is a variant form of prostate cancer often characterized by an aggressive course with a poor 

response to conventional androgen deprivation therapy (ADT), consistent with the lack of the androgen 

receptor in prostatic small cell carcinoma (SCC)2. In some men treated with ADT, development of small cell 

carcinoma might represent the “escape” of a subpopulation of hormone-independent cells resulting from the 

selective pressure of hormonal therapy3. Hence, the suggestion of CDKN1B dysregulation by miR-3161*-5p 

might go beyond the idiosyncrasy of the PC3 cell line, but rather an interesting future direction to investigate 

prostate cancer patients with SCNC rendering to an adverse disease outcome due to uncontrolled cell 

proliferation.   
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Chapter 1 – Organization of the Thesis 
 
Context of Study  
 

Prostate cancer is the most common cancer among men in the United States and is third 

only to lung and colon as a cause of cancer death. In 2017, an estimated 161,360 new cases of 

prostate cancer were newly diagnosed while 26,730 people succumbed to this disease4. Multiple 

genetic and demographic factors, including age, family history, genetic susceptibility, and race, 

contribute to the high incidence of prostate cancer4. Clinical behavior of the disease varies from 

treating localized tumors with surgery, radiation, and initial hormone therapy to other more 

aggressive metastasis stages that do not respond to previous hormone treatments5. The 

combination of clinical assessments and pathological parameters such as prostate-specific 

antigen (PSA) screening and Gleason score staging are currently the best available tools to 

predict outcomes6.  

Despite advances in therapy options, the diagnostic landscape has remained relatively 

static due to poor specificity and sensitivity of screening tools. This results in the over diagnosis of 

the disease’s early-stages and the overtreatment of benign conditions7. Hence, there is an urgent 

need for novel biomarkers to develop alternatives to address these clinical challenges. One of 

these alternatives are microRNAs, which are small non-coding RNA ~19-25 nucleotides in length 

that regulate gene expression at the post-transcriptional level8. Since the discovery of hundreds of 

microRNAs in mammals, research on microRNAs has focused on providing evidence in favor of 

their involvement in normal and diseased conditions. In particular, there has been a community 

effort to understand their functional implication in the pathogenesis of cancer9,10. Thus, elucidating 

the use of microRNAs as candidate biomarkers can further complement current practices in the 

diagnosis and prognosis of prostate cancer. 
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Statement of Problem 
 

The emergence of microRNAs in cancer biology has established them as key molecular 

components in both normal and pathological states9,11. The literature on microRNAs has 

remarkably expanded, with research ranging from assessing the effects of a single microRNA 

perturbation to understand tumor growth and invasion12,13, up to systemic genome-scale 

reconstructions of cancer hallmarks that include the expression of microRNA signatures14–16.  

microRNA molecules work as guides to the RNA-induced silencing complex in mRNA 

destabilization and translational inhibition pathways17–21. Once the RNA-induced silencing 

complex (RISC) is assembled, the Argonaute (Ago) protein binds the mature microRNA which 

guides the target-recognition process to one or more mRNAs8,22,23. microRNAs bind through direct 

base pairing to potential target sites, prominently in the 3′ untranslated region (3′-UTR) of the 

mRNA24,25. A core of 6 nucleotides extending from position 2 to 8 (g2-g8) at the 5′ end of the 

microRNA, termed as the seed sequence, are the most critical for initial target binding26,27.  

The importance of microRNAs in cancer has been emphasized by the identification of 

genetic alterations affecting microRNA target sites and the microRNA processing machinery in 

tumor cells28,29. However, it is equally important to understand the effect of genetic variants 

mapping within the seed sequence of microRNAs. A focus on the gain and loss of 

microRNA:mRNA interactions due to these variants, especially in the g2-g8 location, is essential 

to help predicting how a small genetic change can influence target recognition, binding, and the 

regulation of gene expression profiles in oncogenic events.  

 
Aim and Scope 
 

The aim of this study is to computationally predict the loss and gain of microRNA:mRNA 

interactions due to variants mapping in the seed sequence of microRNAs (miRNA*) in prostate 

cancer cell line PC3. The scope of this research is limited to variations in the g2-g8 seed 

sequence positions associated to functional implications of microRNA fine-tuning of mRNA. This 

assessment is done in the context of prostate cancer cell line PC3, which closely resembles 
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prostatic small cell neuroendocrine carcinoma (SCNC), a variant form of prostate cancer that is 

extremely aggressive and does not respond to hormonal therapy1,30.  

 
Significance of the Study 
 

The central hypothesis of the present thesis is that a genomic variant mapping within the 

seed sequence of a microRNA will have an effect on the recognition of microRNA-binding sites 

thus gaining or losing microRNA:target interactions. If the microRNA:target interaction is lost, the 

former target gene is expected to be upregulated. If a new microRN:target interaction is gained, 

the new predicted target gene is expected to be downregulated. This study systematically 

describes the computational identification of a set of affected microRNAs in the g2-g8 seed 

sequence region that gain interactions with genes associated with endocrine resistance and 

reported to be underexpressed in the context of cancer. Results indicate that miR-3161*-5p (with 

a rs35834266 G>insA in the seed region) might lead to CDKN1B dysregulation, leading to cell 

cycle arrest from phase G1 to S thus creating PC3 proliferation. Molecular mechanisms and 

therapeutic efficacies observed with PC3 cells are likely applicable to small cell neuroendocrine 

carcinoma (SCNC), a variant form of prostate cancer often characterized by an aggressive course 

with a poor response to conventional androgen deprivation therapy (ADT). The suggestion of 

CDKN1B dysregulation by miR-3161*-5p might go beyond the idiosyncrasy of the PC3 cell line, 

but rather an interesting future direction to investigate prostate cancer patients with small cell 

neuroendocrine carcinoma rendering to an adverse disease outcome due to uncontrolled cell 

proliferation.     

 
Overview 
 

This thesis is arranged into five chapters. Chapter 1 contains the introduction 

encompassing the context, statement of the problem, aim and scope, as well as the significance 

of the study to guide the reader on a concise, clear and logical structure of the material. Chapter 2 

includes the literature background of the clinical assessment of prostate cancer, the current status 



4 
 

of microRNA, and the description of the interplay of microRNA, genomic variants, and prostate 

cancer. Chapter 3 is a breakdown of the research approach and the description of the 

computational methods used to fulfill the stated aim of this study. Chapter 4 is the presentation of 

results. Chapter 5 is the discussion of the study’s results and explores possible future research 

directions. This project has been in collaboration with the Sanford Burnham Prebys Medical 

Discovery Institute (Lake Nona, Florida), and the Human Systems Biology Laboratory at the 

Instituto Nacional de Medicina Genómica (CDMX, México).  
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Chapter 2 – Background 
 

Clinical Assessment of Prostate Cancer  

Prostate cancer is the most common cancer among men in the United States and is third 

only to lung and colon as a cause of cancer death. In 2017, an estimated 161,360 new cases of 

prostate cancer were newly diagnosed while 26,730 people succumbed to this disease4. Prostate 

cancer mostly affects men in the range of 60 to 80 years old and considering that the worldwide 

trend is a higher number of aging populations, the disease is predicted to significantly increase in 

the next decade31,32.  

Multiple genetic and demographic factors, including age, family history, genetic 

susceptibility, and race, contribute to the incidence of prostate cancer4. Almost 60% of the 

diagnosed cases are in men 65 years old33 in average, and the United States the disease is 

especially frequent in men of African origin, as incidence rates in African Americans are >1.5–fold 

greater than rates in European Americans34. Prostate cancer presents the greatest racial disparity 

of any cancer in the U.S., and research suggests that environmental influences such as diet and 

nutrition may have a profound effect on the development and progression of histological cancer to 

a clinically detectable cancer35,36.  

The prostate is a walnut-shaped organ that contributes fluid to semen and helps expel 

semen during ejaculation. Because the prostate lies below the bladder and surrounds the urethra, 

most prostate cancer signs are tied to urinary disfunction33, similar to lower urinary tract 

symptoms (LUTS)37, with a combination of weight loss, bone pain, and lethargy31. In general, the 

earlier the disease is detected, the better the outlook for treatment and arresting cancer 

progression in patients. Besides the advances, we have to be aware of the risks and adverse 

effects on the quality of life related to the over-diagnosis and immediate treatment of benign 

conditions such as prostatitis, inflammation of the prostate and benign prostatic hyperplasia 

(BPH), a noncancerous enlargement of the prostate gland38,39.  
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Most prostate cancer suspects are identified via digital rectal examination (DRE)40 (Figure 

1) and by raised-levels of prostate specific antigen (PSA). PSA is a glycoprotein secreted by the 

epithelial cells of the prostate gland, and it is produced to liquefy semen allowing sperm to swim 

freely. It is expressed in both normal and neoplastic prostate tissues, thus elevated levels of PSA 

are not specific for malignancy and can be found in conditions such like BPH41,42, prostatitis38, and 

urinary tract infections40. Approximately 25% of men with PSA levels above 4 ng/mL are 

diagnosed with prostate cancer, and the risk increases to more than 60% in men with PSA levels 

above 10 ng/mL31. Limitations of PSA screening are well known43–45 and controversies on its 

clinical utility are mostly about  the “one test, several roles” screening practice. PSA can be used 

during early detection, risk stratification and staging, as well as in post-treatment monitoring. 

Thus, recommendations on when and how to use it are beyond our scope and can be reviewed 

elsewhere46,47.  

 

 

 

 

 
Figure 1 Digital rectal examination (DRE) is performed by feeling the posterior portion of the gland 
(peripheral zone) provided that the tumor is sufficiently large to be palpable. Once the tumor metastasizes 
and migrates to other tissues, biopsies and imaging techniques become resources to locate other tumors 
with prostate cancer etiology. Image used and modified from Kirby, R. S. and Patel, M. I.31 
 
 

The combination of age-specific PSA, along with pathological findings (Gleason score 

staging) are currently the best available tools for prognosis and to assess potential treatments for 

the disease6,48,49. Clinical behavior of prostate cancer is variable, with patients having localized 

tumors that can be treated with radiation therapy (external beam or brachytherapy), several 

months of hormone therapy, and active surveillance4,33,46. The ability to treat many others with 
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aggressive stages that include bone metastasis and resistance to previous hormone treatments is 

limited5,50.  

Androgens and androgen receptor (AR) signaling are necessary for prostate development 

and homeostasis. AR signaling also drives the growth of nearly all prostate cancer cells. The role 

of androgens and AR signaling has been well characterized in metastatic prostate cancer, where 

it has been shown that prostate cancer cells are exquisitely adept at maintaining functional AR 

signaling to drive cancer growth51. Current strategies to restrict its activity are via androgen 

deprivation therapy (ADT), a standard of care for men with advanced metastatic and recurrent 

prostate cancer. Dihydrotestosterone (DHT), or 5α-dihydrotestosterone (5α-DHT), is an 

endogenous androgen sex steroid and hormone essential for normal prostate growth which also 

plays a role in the development of the disease52–54. ADT acts by blocking DHT and stopping 

cancer progression with substantial clinical response in conjunction with surgery or radiation55. 

However, ADT becomes less effective over time and does not work in patients with castration-

resistant prostate cancer (CRPC)56, in which AR is frequently reactivated in the absence of 

androgens. During intense antiandrogen therapy, a small percentage of men develop treatment-

emergent AR-negative small cell/neuroendocrine prostate cancer (SCNC)57, a highly aggressive, 

androgen-independent PCa type that does not respond to ADT at all58. Resistance to hormone 

therapies is a major challenge in PCa creating the need for new prognostic biomarkers and 

consequently therapeutics targeting signaling pathways that directly or indirectly affect hormone 

driven gene expression regulation in different levels of the signaling pathways. 

 
Genomic Variants in Prostate Cancer 

The biological basis of inherited and acquired genetic variants associated with prostate 

cancer has been studied by several research consortia utilizing genome-wide association studies 

(GWAS)34,59, exome sequencing60, and candidate gene studies61 (Fig 2). Genetic variants that 

predispose an individual to a particular disease can be attributable to genetic mutations that are 

rare but highly penetrant, or genetic variants that confer moderate-to-low risk for developing the 
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disease, or a combination of these factors62. Early studies in prostate cancer genetics focused on 

identifying high-risk loci because these were deemed to have obvious clinical usefulness in terms 

of identifying a direct causal effect for this disease in individuals, and were easier to identify with 

existing technologies, like gene expression microarrays63. 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Summary of research strategies currently employed by the associated consortia to evaluate the 
clinical utility of prostate cancer susceptibility loci. In addition, The Cancer Genome Atlas (TCGA) and The 
International Cancer Genome Consortium (ICGC) are the two main consortia providing cancer genomics 
information related to fifty different cancer types, including prostate cancer (PRAD projects). Image used 
and modified from C.L. Goh et al62. 

 

Next-generation sequencing (NGS) offers the advantage to identify variants already 

annotated and to discover new variants present in the NGS sample of diagnostic interest. Various 
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published studies using this platform have explored the molecular basis of prostate cancer during 

the clinical progression of the disease using profiled tumors and model cell lines63–65. Reports 

include multiple recurrent genomic alterations like somatic point mutations, DNA copy-number 

changes, gene fusions, epigenetic and transcriptomic pathway alterations66,67. One NGS tumor 

sample gives us millions of potentially biologically relevant variables, reminding us that tumor 

genomics is far more complex and heterogeneous than expected. 

The vast majority of our knowledge about cancer genomics comes from the two largest 

cancer-sequencing consortia, The Cancer Genome Atlas (TCGA) and The International Cancer 

Genome Consortium (ICGC). The aim of both consortia is to completely sequence the genomes 

of the 50 most important tumor entities. In regards of prostate cancer, The Cancer Genome Atlas 

reported a comprehensive molecular analysis of 333 primary prostate carcinomas showing seven 

major genomic subtypes defined by ETS gene fusions (ERG, ETV1/4, and FLI1) or mutations in 

SPOP, FOXA1, and IDH1 genes. Also, the authors revealed potentially therapeutically actionable 

lesions in the phosphatidylinositol 3-kinase, mitogen activated protein kinase, and DNA repair 

genes that are valuable for clinical management67. Of high clinical relevance is that each 

molecular subgroup is defined by a single distinct molecular alteration such as gene fusions or 

mutations which sets the expectation for a molecular re-classification of prostate cancer.  

Despite some evidence of disease-associated coding single nucleotide polymorphisms 

(SNPs)68, the molecular basis of how the majority of the prostate-cancer-associated SNPs 

function is largely unknown because most are noncoding, lying in intronic or intergenic regions. 

These SNPs might exert their influence by mapping in regions responsible for fine-tuning 

regulation of gene expression. Other postulated mechanisms of action include structural 

rearrangements and changes in DNA structure 23,66, and RNA structure69.   
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What is a microRNA? 

 

microRNAs are small non-coding RNAs ~19-25 nucleotides in length that regulate gene 

expression at the post-transcriptional level8. The biogenesis of animal microRNA is a multistep 

coordinated process, in which structural and sequential prerequisites are needed for the correct 

expression of mature microRNA70. MicroRNAs are transcribed by RNA polymerase II, resulting in 

a primary microRNA (pri-miRNA) transcript that is processed by cleavage in the nucleus by a 

complex involving Drosha and DGCR8 microprocessor complex subunit (DGCR8)71. This step 

forms the precursor microRNA (pre-miRNA) stem loop structure where the 5p strand is present in 

the forward (5'-3') position and the 3p strand (which will be almost complimentary to the 5p strand) 

is located in the reverse position.   

This pre-miRNA is exported into the cytoplasm by exportin-572,73 (XPO5) where it is 

cleaved by Dicer, the RNase that is found in a multiprotein complex along with the trans-

activation-responsive RNA-binding protein (TRBP). In this stage, mature microRNA sequences 

are formed in a duplex and one strand is incorporated into the RNA-induced silencing complex 

(RISC)9 by loading to the Argonaute (AGO1-4) protein (Fig 3). The mature microRNA guides the 

target-recognition process to one or more mRNAs8,74. This step causes the mRNA to be more 

rapidly degraded or leads to inefficient protein production by reducing protein output75. 
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Figure 3 Overview of microRNA biogenesis pathway leading to mRNA destabilization and translational 
repression. In terms of which strand is functional following Dicer cleavage of the stem loop to produce the 
two mature strands, either the 5p or 3p strand could be functional. The stability of the mature strand may 
influence its function and ability to enter the RISC complex to then bind to its target gene. In general, the 
more stable strand will be functional, and the less stable strand will be degraded. In some cases, even both 
strands could be functional76. Image redrawn and modified from Shuibin Lin and Richard I. Gregory74.  

 

 

Understanding the basics of microRNA:mRNA binding mechanisms and its dependence 

on sequence complementarity is crucial to assess the biological and functional implications in 

gene expression at the post-transcriptional level. It is well established that microRNAs load on 

Argonaute proteins77–80 (in human, AGO2) and are further organized into even smaller segments 

with thermodynamic81–83 and kinetic properties84–90 more typical of RNA-binding proteins than of 

nucleic acids27,79. MicroRNAs bind through direct base pairing to potential target sites prominently 

in the 3′ untranslated region (3′-UTR) of the mRNA. A core of 6 nucleotides extending from 

position 2 to 8 at the 5′ end of the microRNA, termed as the seed sequence, are the most critical 

for initial target binding26,27.  
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Biochemical and computational analyses of preferentially conserved animal microRNAs 

have revealed how miRNA-pairing motifs interact leading to the identification of several classes of 

target sites8. In the first group, which includes most biologically functional microRNA:target 

interactions, microRNAs bind to their targets only through their seed regions (the canonical 

binding). This group can be subdivided into three seed-matching classes: (a) 7mer-A1 site, with 

sequence complementarity over positions g2-g7 in the guide, plus an A at position 1 on the 

corresponding sequence on the target mRNA (termed t1); (b) 7mer-m8 site, with sequence 

complementarity over positions g2–g8; and (c) 8mer site, with sequence complementarity at 

positions g2–g8 plus an A at t1 (Fig 4). 

In the second group, less typical seed matches (the marginal sites) are enclosed: (a) 6mer 

site, with complementarity at positions g2–g7 but lacking an A at t1; (b) offset 6mer site, with 

complementarity at positions g3–g8. Whereas most microRNAs bind their targets either 

canonically or marginally, there exists a third group much less numerous of microRNA:target 

configuration in which RISC extends the base pairing beyond the seed-match. This type of pairing 

(atypical sites) either supplements the 6, 7, or 8mer sites described above, or complements for 

mismatches in the seed region8,91.  

 

 

 

 

 

 

 

 

 

 



13 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 microRNA seed sequence categorization and canonical binding sites in the 3'-UTR in mRNA. 
Most functional microRNAs fall within this categorization. Vertical dashes indicate contiguous Watson–Crick 
pairing. The probability of conserved targeting and predicted structural accessibility are considered two of 
the main targeting features in target prediction models such as context++. Image used and modified from 
David Bartel8. 

 

In mammals, Argonaute organizes the guide RNA geometry in a way that positions g2–g7 

are in pre-helical form creating a unique configuration that determines whether RISC simply binds, 

or both binds and cleaves26,27,87,88. Argonaute assigns greater value to mismatches before position 

g5 than from g5–g8. Pairing of g2–g5 with a target appears to be ‘‘all or none,’’ with both central 

and terminal dinucleotide mismatches disrupting binding to a similar extent (Figure 5). Notably, 

the structure of human AGO2-RISC bound to a seed-matched target suggests that pairing beyond 

g5 requires a conformational rearrangement in the protein27,79.  
 
 
 
 
 
 
 
 
 
 
 
 

g1-

g1-g8 

g1-g8 

g1-g8 
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Figure 5 Kinetic model for AGO2-RISC function and the impact on target binding. Argonaute assigns 
greater value to mismatches before position g5 than from g5–g8. TargetScanHuman v7.1 includes 
predicted seed-pairing stability in the context++ ruled-based algorithm and other fourteen targeting features 
(Agarwal et al 201591) that make this approach at least as predictive as the most in vivo cross linking 
approaches such as PAR-CLIP and HITS-CLIP. Image used and modified from William E. E. Salomon79. 

 

Accurate target prediction remains a challenge. Most computational approaches are based 

on indirect measurements of microRNA and mRNA expression fold changes that are irrelevant to 

the mechanism of targeting92–94. Although numerous advances have been made95,96, only 

TargetScanHuman v7.1 has developed an improved quantitative model (context++) of targeting 

efficacy using a compendium of 74 experimental datasets pre-processed to minimize confounding 

biases91. The model uses a stepwise regression to identify the most informative features from a 

large set of potential targeting features91 (Figure 6). This approach allows context++ to be more 

predictive than any other published model and at least as predictive as the most informative in 

vivo crosslinking approaches, such as PAR-CLIP and HITS-CLIP97.  
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Figure 6 Context++ algorithm diagram describing the score features of microRNA, score features of sites, 
and score features of microRNA families taken into consideration to calculate the context++ score for each 
microRNA binding site and summary of microRNA:target predictions. Image used from Vikram Agarwal et 
al91.  

 
MicroRNA, Genomic Variants, and Prostate Cancer 

Nearly every microRNA has been associated with abnormal gene expression changes in 

cancer versus normal cells98–100. microRNAs may serve as tumor suppressors, oncogenes, and as 

housekeeping regulators working as locks or switches when found as signatures9. Most of them 
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are encoded in clusters and work as cooperative functional units with a tendency to target the 

same gene or different genes in the same pathways22. Tissue-specific and stage-specific changes 

in microRNA targeting are reported to be driven to equilibrate dominant oncogenic signaling 

pathways active in prostate cancer97. Evidence suggests that microRNAs, even in advanced 

prostate cancer, adapt to regulate continuing alterations to balance oncogenic molecular 

changes101–103.   

As any other gene, microRNAs loci are exposed to mutations, amplifications, deletions 

and genomic translocations. These changes could trigger aberrant expressions of microRNA 

genes and consequently the dysregulation of target mRNAs11. Other indirect causes of 

dysregulation have been emphasized by the identification of genetic alterations affecting 

microRNA target sites23 and the microRNA processing machinery in tumor cells28,29 such as 

Drosha104,105 and Dicer106. Understanding genomic alterations in regulatory agents like microRNAs 

expressed in different stages of prostate cancer are a promising opportunity to add value to 

current clinical and pathological assessment methods107,108 (Fig 6).  

Since each microRNA generally targets many distinct gene products, genomic variants 

within the seed  of microRNA could produce subtle or drastic changes in the behavior of the cell 

by perturbing many different genes simultaneously29,109–111. The present study identifies, using 

genome wide targeted deep sequencing, variations within the seed sequence of microRNAs in 

PC3, an androgen-independent prostate cancer cell line resembling small cell neuroendocrine 

carcinoma. It provides a novel understanding of the molecular mechanisms behind how signaling 

pathways related to hormone resistance can be explained by altered microRNA:target interactions 

due to sequence variations. 
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Figure 7 Approaches to study microRNA and their impact in the clinical management of prostate 
cancer. Evidence suggests that microRNAs dysregulation contributes to prostate cancer initiation and 
metastatic progression101–103. Image used and modified from Josie Hayes9 
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Chapter 3 – Research Approach and Methods 
 

The goal of this chapter is to introduce the research strategy and methods to perform the 

computational analysis of genomic variants affecting predicted microRNA:target interactions in the 

androgen-independent cell line PC3. Genomic variants include single nucleotide polymorphisms, 

deletions or insertions with at least 1% mutation frequency in the population112 that have been 

assigned an rs accession number in the Single Nucleotide Polymorphism database (dbSNP). The 

central hypothesis of the present thesis is that a genomic variant mapping within the seed 

sequence of a microRNA will have an effect on the recognition of microRNA-binding sites thus 

gaining or losing microRNA:target interactions. If the microRNA:target interaction is lost, the 

former target gene is expected to be upregulated. If a new microRN:target interaction is gained, 

the new predicted target gene is expected to be downregulated  (Figure 7).  

 
Figure 8 Diagram representing the central hypothesis of the present thesis. 

 

To test this hypothesis, prostate cancer cell line PC3 and prostate epithelial cells hPrEpiC 

were compared to select for unique variants. Sequence capture libraries of precursor microRNAs 

and genomic variants were designed by Dr. Ranjan Perera and Dr. Bongyong Lee at the Sanford 

Burnham Prebys Medical Discovery Institute (Lake Nona) in collaboration with NimbleGen113. 

Deep sequencing of PC3 and hPrEpiC sequence capture libraries was performed. Unique 

genomic variants were filtered computationally focusing on SNPs mapping within the seed 
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sequence of predicted mature microRNAs. Next steps included the computational prediction of 

microRNA:target interactions of non-mutated microRNAs (termed microRNA or N) and mutated 

microRNAs (termed microRNA* or M) with potential targets which 3ʹ-UTR mRNA were also 

sequenced from PC3. The computational prediction of microRNA:target and microRNA*:target 

interactions was performed using the rule-based algorithm context++ from TargetScanHuman 

v7.1. In addition, functional enrichment analysis focused on the genes involved in the gained 

interactions of microRNA*:target predictions via WebGestalt114. Gene expression microarray data 

from untreated PC3 and hPrEpiC from the Gene Expression Omnibus (GEO) were retrieved and 

analyzed using the affy package115 from R Bioconductor. A Fisher’s exact test via GraphPad 

Prism software116 was used to assess if the observed downregulation of candidate target genes 

was statistically significant. Finally, the top gained microRNA*:target interactions derived from this 

study were queried in CancerMiner, an online repository of statistically recurrent microRNA:mRNA 

associations in different cancer types profiled at The Cancer Genome Atlas (TCGA).  

 

Methods 

Cell Lines 
 

Prostate cancer cell line PC3 (CRL-1435) was purchased from ATCC117. PC3 was derived 

from a bone metastasis of a grade IV prostatic adenocarcinoma from a 62-year-old Caucasian 

male. PC3 cells do not express AR and PSA and their proliferation is independent of androgen, 

similar to small cell neuroendocrine carcinoma (SCNC)1. Genomic DNA (gDNA) from PC3 was 

processed according to ATCC CRL-1435 product sheet118. Genomic DNA from human prostate 

epithelial cells (hPrEpiC) was purchased from ScienCell Research Laboratories119. HPrEpiC 

gDNA was prepared from early passage human prostate epithelial cells using the Qiagen Allprep 

DNA/RNA Mini Kit120. The quality and purity of PC3 and hPrEpiC gDNA was tested by 

spectrophotometer and gel electrophoresis by Dr. Ranjan Perera and Dr, Bongyong Lee from 

Sanford Burnham Prebys Medical Discovery Institute (Lake Nona).  
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Custom Target Enrichment Design and Sequence Capture Libraries 
 

In collaboration with NimbleGen Corporation, Dr. Ranjan Perera and Dr. Bongyong Lee 

from Sanford Burnham Prebys Medical Discovery Institute (Lake Nona) developed a custom 

target enrichment design113 and sequence capture libraries to identify genome-wide mutations in 

microRNA and their target binding sites in the 3'-UTR region of mRNAs in PC3. From the entire 

genome, 1523 microRNA genes annotated in miRBase v.18 were selected to design capture 

probes of precursor microRNA. For target regions along human UTRs, 67943 non-redundant 

features of RefSeq genes were selected to design 3'-UTR capture regions. A constant window of 

nucleotide bases upstream of ATG and a second constant window downstream of the stop codon 

of each splice variant were downloaded corresponding to each RefSeq sequence. Combined 

microRNA precursor sequences added up to approximately 124 Kb, and 3ʹ-UTR mRNA regions 

were approximately 42 Mb. Pairs of unique probe sequences for each identified region were 

determined using the SSAHA algorithm121. Precursor microRNA and 3ʹ-UTR mRNA regions were 

physically enriched by hybridization following NimbleGen SeqCap Target Enrichment protocols113. 

Nonspecifically bound materials were removed by washing and pull-down materials were 

amplified and end-repaired for sequencing library preparation and deep sequencing. Figure 9 

provides an example of the custom target enrichment design of 3ʹ-UTR mRNA and figure 10 

provides an example of the custom target enrichment design of precursor microRNA regions.  

 

  

 

 

 

 

 

 

 

Figure 9  Example of a custom target enrichment design of 3ʹ-UTR mRNA region. 42 Mb Human UTR 
Design. Capture regions:  3'-UTR. Non-redundant: 67,943 features. Image source: Ranjan Perera and 
Bongyong Lee.   
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Deep Sequencing and Variant Calling  

 
The detection of pre-microRNAs and variant calling analysis in PC3 was done by Dr. 

Ranjan Perera, Dr. Bongyong Lee, and the Sanford Burnham Prebys Medical Discovery Institute 

Bioinformatics Unit (Lake Nona) using NextGENe v2.3.1122. One limitation of this thesis was the 

lack of provision of BAM and VCF files, adding the need to retrieve precursor sequences from 

miRBase and to create a purpose-built VCF file by querying dbSNP. Regarding the detection of 

variants in the 3ʹ-UTR of mRNAs, the same limitation was encountered by the lack of provision of 

BAM and VCF files. The NextGENe v2.3.1 report of 3ʹ-UTRs included the gene ID associated to 

one or more transcripts from deep sequencing. These gene IDs were key to retrieve the 

representative 3ʹ-UTR sequence from the TargetScanHuman v7.1 database. The following 

sections describe in detail the steps taken to overcome the above technical limitations. 

 

Precursor microRNA Sequence Retrieval and Mature microRNA Curation  
  

The microRNA deep sequencing NextGENe v2.3.1 report contained information of 

precursor miRBase v.18 identification tags and precursor genomic coordinates based on the hum 

an genome assembly version GRCh37/hg19. The identification tags allowed for the corroboration 

of annotated precursor sequences in miRBase, however the newest version this database (v.21) 

is based in GRCh38/hg18. Hence, genomic coordinates had to be converted from GRCh37/hg19 

Figure 10 Example of a custom target enrichment design of precursor microRNA region. 124 kb 
microRNA design.  Capture regions:  microRNA genes. miRBase version 18: 1,523 features. Image 
source: Ranjan Perera and Bongyong Lee.   
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to GRCh38/hg18 using the command-line version of the UCSC Genome Browser LiftOver tool123. 

miRBase is the main online repository of microRNA sequence data and acts as an independent 

arbiter of microRNA gene nomenclature124. Each entry in miRBase v.21124 represents a predicted 

hairpin of a microRNA transcript with information on the location of the mature microRNA form. 

Since each pre-microRNA can have more than one mature form either from the 5ʹ or 3ʹ end of the 

precursor hairpin, the correct identification of mature sequences is calculated using a coordinates 

system under miRBase v.21124 nomenclature.  

Take for example hsa-mir-21b. The “hsa” indicates that it is a human microRNA, “mir” 

refers to its precursor form, and “21” attributes the hairpin to the 21st family that was named in the 

repository and that most likely was discovered earlier. The “b” indicates that it is related to another 

microRNA probably called hsa-mir-21a. hsa-mir-21b has two mature products, named hsa-miR-

21b and hsa-miR-21b*. The capital R in “miR” indicates the mature sequence form of a 

microRNA. In this example, miR-21b arises from the 5ʹ arm of the mir-21b hairpin, and miR-21b* 

arises from the 3ʹ arm. The (star) “*” using miRBase nomenclature attributes miR-21b* as a 

“minor” product, which means that miR-21b* can be found in the cell at a lower concentration 

compared to miR-21b. The final nomenclature for each mature microRNA form would be hsa-miR-

21b-5p and hsa-miR-21b-3p, respectively. Now, consider that hsa-mir-21b is located in the 

chromosome position chr5:195699401-195699497 in regards of the GRCh38/hg18 assembly. 

However, miRBase reports the location of the ~22 nt long hsa-miR-21b-5p (mature microRNA) 

ranging from nucleotide 14 to 36 within the pre-microRNA. In order to resolve coordinate systems 

discrepancies, each pre-microRNA nucleotide has to be counted starting in position 0, to finally 

get the mature microRNA sequence ranging from nucleotides 14 to 36. This is a computationally 

exhaustive step which needs to be carefully automated to avoid adding or subtracting nucleotides 

that will have an impact locating and retrieving the mature microRNA seed sequence. Once 

genome coordinates for each mature microRNA were located, each sequence was corroborated 

as a reverse (+) or complementary (-) strand to map the seed sequence. The first eight positions 
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starting from the 5ʹ end were considered as the seed sequence region, and subsequently verified 

by comparing to a list of microRNA families from the TargetScanHuman v7.1 database. This 

reverse-engineering step was crucial for retrieving conserved microRNA family sequences with 

seed-match canonical binding. Figure 11 describes the process of curating precursor hsa-mir-21b 

and its corresponding mature microRNA sequences using miRBase coordinates. It represents the 

integration of both miRBase v.21 and GRCh38/hg18 coordinate systems and already includes 

how the seed sequence and variant change could be mapped within a predicted mature 

microRNA.  

 

 
Figure 11 Example of precursor hsa-mir-21b and the curation process of its predicted mature microRNA 
sequences. It represents the integration of both miRBase v.21 and GRCh38/hg18 coordinate systems. The 
seed sequence region is determined as the first eight nucleotides starting on the 5ʹ end verified by 
comparing to a list of microRNA families from the TargetScanHuman v7.1 database. The star represents 
the location of the genomic variant mapping within the seed sequence of the predicted mature microRNA 
with canonical-binding.  

 

Genomic Variant Mapping in microRNA and Candidate Selection 
 

For the purpose of the present study, PC3 was compared to hPrEPiC to identify unique 

genomic variants mapping in PC3 microRNA sequences. Changes at the precursor and mature 

microRNA sequence level were done by replacing, inserting or deleting the reference nucleotide 
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to the alternate allele reported by NextGENe v2.3.1. Only genomic variants with an associated 

Reference SNP (RefSNP) or rs accession number from dbSNP were considered to map 

statistically significant alleles with a mutation frequency of at least 1% in a population. The 

definition of variant, mutation, and SNP has generated a lot of discussion and even some 

contentious disagreement in the research community. However, this is important to understand 

from the extent of evolutionary conservation. Mutations were originally defined as heritable 

changes in phenotype and divided either as somatic (non-inherited) or germline (inherited) 

changes. Variants typically arose as mutations and spread into the population resulting in more 

than one form termed as "Variant/Alternative form (Allele)”. If the mutation frequency is least 1% 

in a population it can termed as "Polymorphism", mostly Single Nucleotide Polymorphism (SNP). 

dbSNP is the main information repository of germline and somatic variations in the human species 

and assigns a RefSNP or rs accession number that appears on maps or graphic representations 

of the GRCh38/hg18 human genome assembly112. In this thesis, each SNP reported by 

NextGENe v2.3.1 was mapped within the precursor sequence using the chromosome location 

associated to the rs accession number. If the alternate allele mapped within the region of the 

potential mature microRNA, then it was verified if it also traced within the g2-g8 region of the seed 

sequence.  

 
Sequence Retrieval of 3'-UTR of mRNAs  

The verification of 3'-UTR of PC3 mRNAs from deep sequencing was not possible due to 

the lack of provision of BAM and VCF files. At this stage, two limitations were encountered, 1) the 

proper identification of delimited 3'-UTR regions from PC3, and 2) the complexity of mapping each 

potentially affected microRNA binding site without the risk of including false-positives. Using the 

gene names provided by the NextGENe v2.3.1 report, the representative 3'-UTR sequences of 

the reported mRNAs were downloaded in FASTA format from the TargetScanHuman v7.1 

database. Figure 12 summarizes TargetScanHuman v7.1 annotation process of representative 3'-

UTRs using 3'-UTR profiles, and provides an example of a UTR profile for human UBE2D3. The 
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annotation of each representative 3'-UTR started with the longest Gencode 3'-UTR, extended 

using information from 3P-seq or other annotation sources125,126. 

 

TargetScanHuman v7.1 database uses 3'-UTR profiles which represent the prevalence of 

tandem 3'-UTR isoforms of differing lengths, all of which share the same stop codon126. The 3'-

UTR profile (red line in Figure 12) drops with each set of clustered 3P-seq tags, indicating the 

fraction of transcripts that includes that segment of the 3'-UTR. Each TargetScan 3'-UTR profile 

also shows the location of the most distal end of a Gencode annotation (blue vertical line with 

Ensembl transcript ID in Figure 12)91. It is well known that 3'-UTR regions are shorter in 

cancerous phenotypes127,128, however the decision to use representative 3'-UTR sequences in the 

present thesis was mainly to create a purpose-built file of verified 3'-UTR sequences for the 

computational target prediction using the context++ model from TargetScanHuman v7.1.  
Target Prediction  
 

Two computational target predictions were performed using TargetScanHuman v7.1. 

Since this tool does not have an interface to query a set of mutated microRNAs, the Perl script of 

the context++ model was downloaded for a custom microRNA:target prediction analysis (code 

available at: http://www.targetscan.org/cgi-bin/targetscan/data_download.vert71.cgi). The first 

prediction was using the set of candidate microRNAs with the alternative allele identified in the 

seed sequence (from now on termed the mutated microRNA, MN, or miRNA*:target interactions). 

The second prediction was using the set of candidate microRNAs without the variant (from now 

Figure 12 TargetScanHuman v7.1 sample UTR profile for human UBE2D3. The 3'-UTR profiles were constructed 
using 3P-seq tags (with the number of tags for the 3'-UTR labeled on the y-axis on), which indicate the location 
and usage of mRNA cleavage and polyadenylation sites. 3P-seq tags from multiple cell lines or tissues were 
normalized to each other (to account for variable sequencing depth), and then aggregated into one consensus set 
of counts. Normalized 3P-seq tags were assigned to the representative 3'-UTR of each stop codon and summed 
(as indicated at the left side of the profile) to provide quantification for the usage of that stop codon. This sum 
(2312 in the UTR profile shown above) also includes 5 pseudocounts added at the distal end of the Gencode 
annotation. Image source: http://www.targetscan.org/docs/UTR_profiles.html 
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on termed the non-mutated microRNA, NN or miRNA:target interactions) using the reference 

nucleotide from the NextGENe v2.3.1 report. The input files for the microRNA:target prediction 

using the Perl script were: 1) the microRNA family name, species ID, and the microRNA family 

seed sequence; 2) the 3'-UTRs sequences of potential targets. For the present thesis, the 

purpose-built files for the computational target prediction of microRNAs with a genomic variant 

mapping within the seed sequence included: 1) the microRNA family seed sequences modified 

with the alternate allele in the g2-g8 positions; and 2) the representative 3'-UTR sequences 

downloaded from the TargetScanHuman v7.1 database. In order to compare if the target 

predictions of NN versus MN were different due to the genomic variant, the BEG Venn diagram 

tool129  was used to calculate the intersection of the list of elements (MN ∩ NN) and those that 

were specific to the MN or NN lists. The unique elements of miRNA:target interactions (NN – [NN 

∩ MN]) were considered lost interactions. The unique elements of miRNA*:target interactions (MN 

– [NN ∩ MN]) were considered gained interactions. 

 
Functional Enrichment Analysis  

 
Functional enrichment of a set of genes was evaluated by the WEB-based Gene SeT 

AnaLysis Toolkit (WebGestalt)130,131, an integrated data mining system for the visualization and 

statistical analysis of large sets of genes using functional modules within WebGestalt database114. 

A hypergeometric test was performed to assess for an over-representation analysis (ORA) and 

corrected for multiple hypotheses testing by the Benjamini-Hochberg method132. All p-values lower 

than 0.05 were considered as significant. In addition, a gene-disease association literature search 

was performed of each gene enriched for endocrine resistance and endocrine and other factor-

regulated calcium reabsorption categories. 

 
Gene Expression Analysis 

The public Gene Expression Omnibus (GEO) repository was systematically searched for 

untreated samples of prostate cancer cell line PC3 and for human prostate epithelial cells 
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(hPrEpiC) with the focus on a single DNA microarray platform to obtain easily compared data. For 

this purpose, the hgu133plus2 human DNA array (Affymetrix Inc., Santa Clara, CA, USA) 

containing 20,535 DNA probes was selected. Three samples of untreated PC3 (GSM86079, 

GSM86080, GSM86081) and two samples of human prostate epithelial cells (GSM1095876, 

GSM1060763) were identified on the hgu133plus2 platform. CEL data files were retrieved from 

the public GEO repository and processed using a robust multi-array (RMA)133 normalization 

protocol with the affy package115 in R Bioconductor. Annotations and attributes were imported 

from the hgu133plus2 annotation files provided by Affymetrix Inc. (Santa Clara, CA, USA). New 

predicted target genes from microRNAs*:target gained interactions were corroborated to have an 

associated Entrez Gene ID corresponding to any of the 20,535 genes assessed by the 

hgu133plus2 platform. Overexpressed and underexpressed target genes were assessed using 

the limma package134. Differentially expressed genes (DEG) of PC3/hPrEpiC were plotted using a 

log2 fold change (log2FC) and a p-value < 0.01 

Statistical Analysis 

A Fisher’s exact test was applied to each set of new predicted microRNA*:target 

interactions to assess if the observed gene expression changes were statistically significant. 

Contingency tables were built using Prism v7 (GraphPad Software, La Jolla, CA, USA) and p-

values lower than 0.05 were considered as significant. In addition, the non-parametric test 

Kruskal-Wallis was performed using R in order to evaluate if there were statistically significant 

differences between groups of PC3 expressed genes assessed by the hgu133plus2 platform. 

These groups were organized as follows: group A included all PC3 genes inquired by the 

Affymetrix hgu133plus2 microarray minus the total number of genes of gained and lost predicted 

microRNA:target interactions from mutated and non-mutated microRNAs (total hgu133plus2 

genes – genes from the MN list + genes from the NN list). Group B included all gained predicted 

microRNA*:target interactions (genes from the MN list). Group C included all lost predicted 

microRNA:target interactions (genes from NN list). Group D included the predicted 
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microRNA:target interactions that remained the same regardless of the genomic variant affecting 

the seed sequence (genes from the MN ∩ NN lists). Groups A, B, C, D data are available at: 

https://github.com/microRNA-PCa/PC3/ under the branch names data.A_BoxPlot, 

data.B_BoxPlot, data.C_BoxPlot, and data.D_BoxPlot. For the Kruskal-Wallis test, six 

comparisons were performed using one degree of freedom (df = 1), where p-values lower than 

0.05 were considered as significant. 

Recurrent microRNA-mRNA Expression Associations from TCGA  

Top candidate microRNA*:target interactions from TargetScanHuman v7.1 which genes 

were enriched for endocrine resistance and endocrine and other factor-regulated calcium 

reabsorption from WebGestalt, were queried against the CancerMiner database14. CancerMiner is 

an online resource encompassing a statistical method used to evaluate recurrence of microRNA-

mRNA expression association (REC) across cancer types from The Cancer Genome Atlas 

(TCGA). Figure 13 provides an overview of CancerMiner statistical approach135. In individual 

cancer types, pairwise miRNA-mRNA relationships are evaluated using a multivariate linear 

model, which also factors in variation (noise) in mRNA expression induced by changes in DNA 

copy number and promoter methylation at the mRNA gene locus. Associations are rank 

transformed in individual cancer types, and the method subsequently evaluates the null 

hypothesis that no association exists between the miRNA-mRNA pair in all cancer types14. 
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Figure 13 CancerMiner an online tool based on REC, a statistical approach evaluating recurrence of 
microRNA-mRNA expression association across cancer types from The Cancer Genome Atlas (TCGA). 
Image used from A. Jacobsen et al14.  
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Chapter 4 – Results 
Summary 

 
In this chapter, the outcomes of the study are thoroughly described starting with variant 

mapping and microRNA* selection for further computational target predictions. miR-3161*-5p, 

miR-3620*-5p, miR-1178*-5p, miR-4804*-5p, miR-449c*-3p with a SNP in the g2-g8 position of 

the seed sequence gained 643 new interactions with genes sequenced from PC3. We provide 

evidence that alternative alleles mapping within the seed sequence of microRNA do affect the 

prediction of microRNA*:target interactions, thus losing or gaining new seed-match canonical 

binding. After functional enrichment of new targets, ABCB11, CDKN1B, NOTCH2, SHC4, 

CCND1, SP1, ADCY2 were associated with endocrine resistance. In addition, ATP1A2, ESR1, 

PRRKCB, AP2B1, SLC8A1 were associated with endocrine and other factor regulated calcium 

reabsorption. A gene-disease association literature search was performed for each of the 

aforementioned genes in order to understand if they have implicated in cancer, where CDKN1B, 

NOTCH2, CCND1 have been associated to prostate cancer progression. Microarray gene 

expression results showed that few predicted microRNA* targets were underexpressed in 

untreated PC3 samples versus prostate epithelial cells from the GEO database. Hence, a Fisher’s 

exact test was performed to assess the frequency of observed underexpressed genes per 

candidate microRNA*. Only miR-4804*-5p was statistically significant with TNKS and GUCY1A3 

as target genes. However, neither TNKS, nor GUCY1A3 were part of the group of genes enriched 

for endocrine resistance. Next steps included comparisons between groups of genes subject to 

non-mutated microRNA and mutated microRNA* regulation using a Kruskal-Wallis non-parametric 

test. The effect of miR-3161*-5p, miR-3620*-5p, miR-1178*-5p, miR-4804*-5p, and miR-449c*-3p 

cannot be predicted solely with this indirect experimental approach. For that reason, the 

assessment of recurrent pairwise microRNA-mRNA expression associations was performed using 

CancerMiner, an online tool from The Cancer Genome Atlas (TCGA) based on a multivariate 

linear model and rank transformations. Results indicate that miR-3161*-5p and CDKN1B are 

strong candidates for experimental validation in the context of prostate cancer cell line PC3. 
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Deep Sequencing of pre-microRNA in PC3 and Variant Calling 
 

The NextGENe v2.3.1 report of pre-microRNA deep sequencing of PC3 contained the precursor accession number in miRBase 

v.18, which allowed for the retrieval of precursor sequences from miRBase v.21. In addition, the report included the reference nucleotide 

(Ref nt), the mutation call (PC3 Mutation Call), and the rs accession number associated to a SNP within dbSNP (SNP db_xref), allowing for 

the retrieval of genomic coordinates for each SNP unique to PC3 from the aforementioned database. Table 1 provides a sample of the 

NextGENe v2.3.1 report and exemplifies genomic variants mapping within precursor microRNAs in PC3 that were not shared with human 

prostate epithelial cells.  

 

Index Chr Mutation 
Chr 

Position 

Ref 
nt 

SNP 
db_xref 

PC3 
Covera

ge 

PC3 
Geno
type 

PC3 
Scor

e 

PC3 
Muta
tion 
Call 

EPIC 
Cove
rage 

EPIC 
Score 

EPIC 
Gen
otyp

e 

EPIC 
Muta
tion 
Call 

Precursor 
miRNA 

Precursor 
Accession 

chr1:228
284991 

1 228284991 C rs2070960 35 CT 12.3 C>C
T 

    hsa-mir-
3620 

MI0016011 

chr10:10
5154089 

10 105154089 A rs7911488     71 13.1 TC T>T
C 

hsa-mir-
1307 

MI0006444 

chr10:12
695177 

10 12695177 A rs7896283     130 6.9 GG A>G hsa-mir-
4481 

MI0016842 

chr10:13
5061112 

10 135061112 C rs12355840 21 AA 6.8 G>A 19 6.6 AA G>A hsa-mir-
202 

MI0003130 

chr10:29
833998 

10 29833998 A rs2368393 15 CC 6.1 T>C     hsa-mir-
604 

MI0003617 

chr10:29
834003 

10 29834003 G rs2368392 14 TT 6 C>T     hsa-mir-
604 

MI0003617 

chr11:48
118350 

11 48118350 G rs35834266 113 insA 15.1 insA 65 6.4 insA insA hsa-mir-
3161 

MI0014191 

chr11:81
601786 

11 81601786 T NULL 492 AT 17.9 A>T
A 

    hsa-mir-
4300 

MI0015831 

 
Table 1 NextGENe v2.3.1 report sample of pre-microRNA deep sequencing and variant calling. A phred-score of QV >30 was considered for all SNP 
calls. 
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Unique Genomic Variants in microRNA Seed Sequence  
 
 The hypothesis of the present thesis is that a genomic variant mapping within the seed 

sequence of a microRNA will have an effect on the recognition of microRNA-binding sites thus 

gaining or losing microRNA:target interactions. Unique genomic variants in PC3 were filtered from 

the NextGENe v2.3.1 report by mapping within precursor sequences using genome coordinates 

from the GRCh38/hg18. From 52 pre-microRNAs captured in the enrichment design library, 27 

genomic variants were unique to PC3 in comparison to human prostate epithelial cells. Only 18 

unique variants mapped within predicted mature microRNA sequences, where 12 SNPs mapped 

within the mature microRNA derived from the 5ʹ end of the reported precursor (-5p) and 6 within 

reverse/complementary strands derived from the 3ʹ end of reported precursors (-3p).  

The molecular mechanism of microRNA:mRNA interaction includes the Argonaute protein, 

which organizes the guide RNA geometry in a way that positions g2–g7 of the seed sequence end 

in a pre-helical form. This structural configuration determines whether RISC binds, or binds and 

cleaves to the target mRNA27,79,136. In addition, based on seed-pairing categorization it is known 

that most microRNA with canonical binding sites in the 3'-UTR in mRNA are functional. With this 

rationale, only genomic variants mapping within the g2-g8 positions of the seed sequence were 

considered for the selection of microRNA candidates for target prediction. A total of 5 single 

nucleotide polymorphisms with an associated RefSNP mapped within the g2-g8 positions of the 

seed sequence region of miR-3620, miR-3161, miR-1178, miR-4804, and miR-449c. Figure 14 

provides a schematic representation of the mapping process of genomic variants from the 

precursor sequence level to the seed sequence region of predicted mature microRNAs in PC3. 
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Figure 14 Schematic representation of the process of mapping unique genomic variants of PC3 at the 
precursor, mature microRNA, and seed sequence sequence level.   
 

 
The five candidate microRNA sequences were retrieved from miRBase v.21 and verified to 

have an association to a confidently annotated microRNA family in TargetScanHuman v7.1 

database. The reported alternative alleles identified from deep-sequencing were mapped and 

changed within each mature microRNA candidate sequence as summarized in Table 2.  

 
microRNA Sequence 5′-3′ dbSNP Variant call Seed 

sequence 
position 

miR-3620-5p gugggCugggcugggcugggcc rs2070960 
 

C → T 
 

 
g6 

miR-3161-5p cugauaa--gaacagaggcccagau rs35834266 insA g8 

miR-1178-5p cagggucAgcugagcaug rs7311975 
 

T → G 
 

g8 

miR-4804-5p uuggaCgguaagguuaagcaa rs266435 
 

C → G 
 

g6 

miR-449c-3p uUgcuaguugcacuccucucugu rs35770269 
 

A → T 
 

g2 

Table 2 Seed sequences of normal and mutated microRNA are shown in this table with the corresponding 
alternative allele insertion reported from PC3 deep-sequencing experiments. 
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Target Prediction 
 

Two computational target predictions were performed using the Perl script of the 

context++ algorithm from TargetScanHuman v7.1. Each of the mutated microRNAs was termed 

with a * (star) to differentiate the nomenclature between mutated microRNA (microRNA*) and 

non-mutated microRNA. The first prediction was using miR-3620*-5p, miR-3161*-5p, miR-1178*-

5p, miR-4804*-5p, and miR-449c*-3p with the reported alternate allele mapping within the seed 

sequence from the deep-sequencing analysis as summarized in Table 2. The output file of this 

first prediction was renamed miRNA*:target interactions or MN list.  

The second target prediction included miR-3620-5p, miR-3161-5p, miR-1178-5p, miR-

4804-5p, and miR-449c-3p with the reported reference nucleotide from the deep-sequencing 

analysis as summarized in Table 2. The output file of the second prediction was termed 

miRNA:target interactions or NN list. Both computational target predictions were constrained to 

only assess for canonical binding sites. Finally, both output files were compared (MN list vs NN 

list) where: 546 interactions were identified as unique elements of the NN list and considered lost 

interactions; 643 interactions were identified as unique elements of the MN list and considered 

gained interactions; and 15 interactions were identified as shared elements between the MN and 

NN lists and were considered as unchanging interactions. Figure 15 provides the Venn diagram of 

the comparison of the predicted microRNA:target interactions (NN elements) versus 

microRNA*:target interactions (MN elements). TargetScanHuman v7.1 predictions results 

summarized as MN and NN lists are available at https://github.com/microRNA-PCa/PC3 
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Nomenclature: 

• N first position: non-mutated microRNA 

• N second position: non-mutated 3′-UTR mRNA 

• M first position: mutated microRNA 

• N second position: non-mutated 3′-UTR mRNA 

 
Figure 15 Venn diagram summarizing the 546 lost interactions (NN), 643 gained interactions (MN), and 15 
interactions that were still predicted for both mutated and non-mutated microRNAs (MN ∩ NN).  
 

Functional Enrichment Analysis  
 

A functional enrichment analysis was performed on gained target genes (from predicted 

microRNA*:target interactions) and lost target genes (from predicted microRNA:target 

interactions). Both gene sets were queried for an over-representation analysis (ORA) using 

WebGestalt. Inherent limitations of the ORA method include the mandatory selection of a 

threshold in the analysis of gene subsets and the statistical assumption that all genes are equal, 

which might result in loss of information. From 546 predicted genes interacting with non-mutated 

microRNA, only 510 had an associated Entrez gene ID which was used by WebGestalt for the 

ORA analysis (Supplementary Table 1). From 643 predicted genes interacting with mutated 

microRNA*, only 598 had an associated Entrez gene ID which was used by WebGestalt for the 

ORA analysis. As multiple tests were carried out simultaneously, a gene was considered to be 

over-represented if the p-value was < 0.05 after the Benjamini-Hochberg adjustment. No 

enrichment was found for miR-449c*-3p gained targets, probably due to the small number of 

candidate targets available from the computational prediction of miR-449c*-3p:target interactions. 
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Table 3 summarizes the ORA results of enriched genes from gained microRNA*:target 

interactions.  

 

 

 

 

 

 

 

 

Seven genes were enriched for endocrine resistance with a p-value < 1.28e-02: ABCB11, 

CDKN1B, NOTCH2, SHC4, CCND1, SP1, ADCY2. And five genes were enriched for endocrine 

and other factor-regulated calcium reabsorption with a p-value < 1.64e-02: ATP1A2, ESR1, 

PRRKCB, AP2B1, SLC8A1. A genes-disease association literature search was performed for 

each of the aforementioned genes in order to identify which genes have been implicated in 

cancer. From the literature search CDKN1B, NOTCH2, CCND1 were identified to participate in 

prostate cancer progression. Table 4 summarizes the gene enrichment analysis results organized 

by microRNA*:target and subdivided by enrichment category. In addition, a brief description of the 

gene-disease association is included with its corresponding literature reference.  

 

  

Table 3 Summary of the functional enrichment analysis of gained target genes. 598 Entrez gene IDs out 
643 predicted genes were enriched using a hypergeometric analysis. These set of genes have been 
predicted to interact with miR-3620*-5p, miR-3161*-5p, miR-1178*-5p, and miR-4804*-5p due to an 
alternate allele in the seed sequence region. The first column ID corresponds to the KEGG pathway ID 
annotated in the human species (hsa), the second column corresponds to the enrichment category, and 
the third column corresponds to the number of genes that have been associated to each enrichment 
category.  
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Table 4 Gene enrichment analysis results of genes predicted to be targets of mutated microRNAs. Gene-
disease associations include different cancer types where CDKN1B, NOTCH2, and CCND1 have been 
implicated in prostate cancer progression.  
 

 
Gene Expression Analysis 
 

To further assess the hypothesis of the present thesis, if genomic variants significantly 

affect the seed sequence of microRNA*, then the expression of genes associated to endocrine 

resistance should be perturbed in PC3 versus prostate epithelial cells (EPIC). In other words, 

gained targets are anticipated to be downregulated given the microRNA*-mediated model for 

gene expression regulation at the post-transcriptional level. Microarray gene expression analyses 

of predicted new targets were performed using three untreated PC3 samples and 2 human 

prostate epithelial cells samples from the GEO database (see Chapter 3 Methods for accession 

number). Differentially expressed genes (DEG) were assessed by comparing prostate cancer cell 

microRNA Enrichment category Predicted targets Disease Association Ref 
  
  
miR-3161*-5p 

Endocrine resistance ABCB11 Liver diseases such as 
cholestasis 

137,138 

CDKN1B Multiple endocrine 
neoplasia, prostate cancer, 
breast cancer 

139–142 

NOTCH2 Angiogenesis and 
metastasis, prostate cancer 

143–145 

SHC4 Urethral structure and male 
reproductive organ cancer 

146,147 

Endocrine and other 
factor-regulated calcium 
reabsorption 

ATP1A2 Migraine and familial 
hemiplegic 

148–150 

ESR1 Breast, endometrial, and 
ovarian cancer 

67,151–153 

  
miR-3620*-5p 

Endocrine resistance CCND1 Multiple myeloma, breast 
and prostate cancer  

142,154–156 

SP1 Huntington disease, gastric, 
breast, and colorectal 
cancer 

157–160 

miR-1178*-5p Endocrine resistance ADCY2 Adrenal gland disease and 
colorectal cancer 

161,162 

Endocrine and other 
factor-regulated calcium 
reabsorption 

PRKCB Glioblastoma 163,164 

  
miR-4804*-5p 

Endocrine and other 
factor-regulated calcium 
reabsorption 

AP2B1 Ataxia telangiectasia,  
rhabdomyosarcoma  

165–167 

SLC8A1 Long qt syndrome, heart 
diseases 

168,169 
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line PC3 versus human prostate epithelial cells (hPrEpiC or EPIC). Gene expression analysis 

results are displayed in figure 16 using a volcano plot with a p-value < 0.01 and a log2 Fold 

Change. The color coding indicates the overexpression of 374 genes (red) and the 

underexpression of 152 genes (green) in prostate cancer cell line PC3. The list of overexpressed 

genes is available at https://github.com/microRNA-PCa/PC3/blob/master/DEG_over and the list of 

underexpressed genes is available at https://github.com/microRNA-

PCa/PC3/blob/master/DEG_under 

 

Figure 16 Differentially expressed genes (DEG) from PC3-EPIC microarray data using the Affymetrix 
hgu133plus2 platform, where 374 genes were overexpressed (red) and 152 genes were underexpressed 
(green).  
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From 643 predicted microRNA*:target interactions, a total of 592 Entrez gene IDs were 

assessed by the hgu133plus2 microarray platform. From those 592 Entrez gene IDs, only few 

genes had expression changes according to the microRNA*:target model. Table 5 provides a 

summary of predicted new targets from TargetScanHuman v7.1 by microRNA* and the number of 

observed underexpressed genes from those predicted interactions. 

 
Mutated  
microRNA* 

TargetScanHuman v7.1 
(predicted gained interactions)  

Affymetrix hgu133plus2 platform 
(underexpressed genes of 
predicted gained interactions)  

miR-3161*-5p 220 2 
miR-3620*-5p 90 2 
miR-1178*-50 122 3 
miR-4804*-5p 156 4 

miR-449c*-3p 55 1 

Total new interactions 643 12 
Table 5 Summary of predicted new targets by TargetScanHuman v7.1 and the number of observed 
underexpressed genes from those predicted interactions in the DEG Affymetrix hgu133plus2 data. 

 

The small amount of observed changes was most likely due to the low number of 

untreated PC3 and human prostate epithelial cell samples in the GEO database. A Fisher’s exact 

test was needed to translate the frequency of perturbed targets into a p-value to assess for 

statistically significance. 

 

Statistical Analysis  
 

A Fisher’s exact test was used to assess if the observed gene expression changes of 

gained targets were statistically significant (p-value < 0.05). For each microRNA* a contingency 

table was built using the Prism v7 software116 with the values provided in table 5. For example, the 

contingency table for miR-4804*-5p has 156 predicted interactions from TargetScanHuman 

(column A) where only 4 genes are observed to be underexpressed assuming that they are 

downregulated due to miR-4804*-5p (column B). The hgu133plus2 platform inquires a total of 

20,535 genes (column A) where 152 genes are observed to be underexpressed in PC3 (column 

B). The Fisher’s exact test p-value was 0.0324, meaning that the observed underexpressed 

genes of miR-4804*-5p:target interactions are statistically significant (Table 6).  
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Data analyzed Column A Column B Total 

Containing binding sites 156 4 160 
All genes in microarray  20535 152 20687 
  Total 20691 156 20847 

  p-value 0.0324   

  One- or two-sided Two-sided   

  Statistically significant  
  (p < 0.05)? 

Yes   

 
Table 6 Contingency table miR-4804*-5p predicted targets. The observed underexpressed genes of miR-
4804*-5p:target interactions are statistically significant.  
 

Contingency tables were built for each microRNA* using the Prism v7 software and results were 

as follows:  

 

Table 7 recapitulates the Fisher’s exact test results for miR-3161*-5p with a p-value of 0.6802, 

meaning that the observed underexpressed genes of miR-3161*-5p:target interactions are not 

statistically significant. 

Data analyzed Column A Column B Total 

Containing binding sites 220 2 222 
All genes in microarray 20535 152 20687 
  Total 20755 154 20909 

  p-value 0.6802   

  One- or two-sided Two-sided   
  Statistically significant  
  (p < 0.05)? 

No   

 
Table 7 Contingency table miR-3161*-5p predicted targets. The observed underexpressed genes of miR-
3161*-5p:target interactions are not statistically significant. 
 

Table 8 recapitulates the Fisher’s exact test results for miR-3620*-5p with a p-value of 0.1489, 

meaning that the observed underexpressed genes of miR-3620*-5p:target interactions are not 

statistically significant. 
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Data analyzed Column A Column B Total 

Containing binding sites 90 2 92 
All genes in microarray 20535 152 20687 
  Total 20625 154 20779 

  p-value 0.1489   

  One- or two-sided Two-sided   
  Statistically significant  
  (p < 0.05)? 

No   

 
Table 8 Contingency table miR-3620*-5p predicted targets. The observed underexpressed genes of miR-
3620*-5p:target interactions are not statistically significant. 
 
 
Table 9 recapitulates the Fisher’s exact test results for miR-1178*-5p with a p-value of 0.0668, 

meaning that the observed underexpressed genes of miR-1178*-5p:target interactions are not 

statistically significant. 
Data analyzed Column A Column B Total 

Containing binding sites 122 3 125 
All genes in microarray 20535 152 20687 
  Total 20657 155 20812 

  p-value 0.0668   

  One- or two-sided Two-sided   
  Statistically significant  
  (p < 0.05)? 

No   

 
Table 9 Contingency table miR-1178*-5p predicted targets. The observed underexpressed genes of miR-
1178*-5p:target interactions are not statistically significant. 
 
 
Table 10 recapitulates the Fisher’s exact test for miR-449c*-3p with a p-value 0.3398, meaning 

that the observed underexpressed genes from miR-449c*-3p:target interactions are not 

statistically significant. 
Data analyzed Column A Column B Total 

Containing binding sites 55 1 56 
All genes in microarray 20535 152 20687 
  Total 20590 153 20743 

  p-value 0.3398   

  One- or two-sided Two-sided   
  Statistically significant  
  (p < 0.05)? 

No   

 
Table 10 Contingency table miR-449c*-3p predicted targets. The observed underexpressed genes of miR-
449c*-3p:target interactions are not statistically significant. 
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Finally, only the observed underexpressed genes of miR-4804*-5p:target interactions were 

statistically significant. The genes predicted to be interacting with miR-4804*-5p and 

underexpressed in PC3 were: TNKS, a poly (ADP-ribose) polymerase involved in the regulation of 

Wnt/beta-catenin signaling and that has been implicated in the pathology of various forms of 

cancer170. And GUCY1A3, a paralog gene of GUCY1A1, which is a soluble guanylate cyclase that 

catalyzes the conversion of GTP to 3',5'-cyclic GMP and pyrophosphate, and that has been 

implicated in progressive cerebral angiopathy171. However, neither TNKS, nor GUCY1A3 were 

enriched for endocrine resistance via WebGestalt. 

In addition, two box plots were built using log2 ratios and p-values to compare the 

expression of all PC3 genes assessed by the hgu133plus2 platform versus the expressed genes 

of untreated PC3 samples involved in the 643 gained interactions, 546 lost interactions, and 15 

remaining interactions despite the genomic variant affecting the 5 candidate microRNAs* seed 

sequence. Figure 17 summarizes the aforementioned groups, which were organized as follows: 

group A included all genes inquired by the hgu133plus2 microarray minus the total number of 

genes of gained and lost predicted microRNA:target interactions from mutated and non-mutated 

microRNAs (total hgu133plus2 genes – genes from the MN list + genes from the NN list). Group B 

included all gained predicted microRNA*:target interactions (genes from the MN list). Group C 

included all lost predicted microRNA:target interactions (genes from NN list). Group D included 

the predicted microRNA:target interactions that remained the same regardless of the genomic 

variant affecting the seed sequence (genes from the MN ∩ NN lists). It was not apparent from the 

box plots that the average expression levels of gained targets were lower than the total average 

expression, and this could not be deduced either by comparing different quartile distributions as 

shown in the box plots.  
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Hence, the Kruskal-Wallis non-parametric test was used to determine if there were 

statistically significant differences between groups. Table 11 summarizes the Kruskal-Wallis test 

results, where only the comparison of Group A vs Group B, and the comparison of Group A vs 

Group C were statistically significant. In other words, Group A is not subject to the present study 

five candidate microRNAs regulation, while Group B is subject to miR-3620-5p, miR-3161-5p, 

miR-1178-5p, miR-4804-5p, and miR-449c-3p and Group C is subject to miR-3620*-5p, miR-

3161*-5p, miR-1178*-5p, miR-4804*-5p, and miR-449c*-3p. These results are consistent with the 

microRNA-gene expression regulation model, despite the genomic variant in the seed region.  

 

 

 

 

Figure 17 Gene expression analysis using box plots to compare the expression of all PC3 genes 
assessed by the hgu133plus2 platform (Group A) versus the expressed genes of untreated PC3 samples 
involved in the 643 gained interactions (Group B), 546 lost interactions (Group C), and 15 remaining 
interactions (Group D) despite the genomic variant affecting the 5 candidate microRNAs* seed sequence.
It was not apparent from the box plots that the average expression levels of gained targets were lower 
than the total average PC3 gene expression. 
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Comparison Kruskal-Wallis 

chi-squared (H) 
p-value  

by group 
Statistically significant 

(p < 0.05)? 
Group A vs Group B 60.915 5.959e-15 Yes 
Group A vs Group C 30.332 3.641e-08 Yes 
Group A vs Group D 3.8363 0.05015 No 
Group B vs Group D 0.80014 0.3711 No 
Group B vs Group C 1.9647 0.161 No 
Group C vs Group D 1.5744 0.2096 No 
    

Degrees of freedom (df = 1) 

Table 11 Kruskal-Wallis test results. Only the comparison of the medians of all PC3 expressed genes 
inquired by the hgu133plus2 platform (Group A) versus the expressed genes of untreated PC3 samples 
involved in the 643 gained interactions (Group B) and 546 lost interactions (Group C) were statistically 
significant.  

 

Recurrent microRNA-mRNA Expression Associations from TCGA 

The small number of untreated PC3 and prostate epithelial cell samples available at the 

GEO database, and the limitation of not having pairwise microRNA-mRNA expression data in the 

same physiological conditions made it difficult to garner meaningful information to support 

functional implications of computationally predicted microRNA*:target interactions. For that 

reason, miR-3620*-5p, miR-3161*-5p, miR-1178*-5p, miR-4804*-5p, and miR-449c*-3p and the 

alternate alleles from PC3 deep-sequencing reports were queried using The Cancer Genome 

Atlas (TCGA) Data Portal interphase. None of the candidate microRNAs or genomic variants 

retrieved any results, probably because these microRNAs have been newly annotated based on 

their miRBase nomenclature, their low abundance in different profiled tumor types at TCGA, or 

lost information due to the lack of uniformity in data generation in TCGA172. 

However, Jacobsen et al. developed a statistical method to evaluate recurrence of miRNA-

mRNA expression association across ten epithelial cancer types from TCGA. This method 

considers pairwise miRNA-mRNA relationships in individual cancer types and evaluates these 

relationships using a multivariate linear model, which also factors in variation (noise) in mRNA 

expression induced by changes in DNA copy number and promoter methylation at the mRNA 

gene locus. Associations are rank transformed in individual cancer types, and the method 
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subsequently evaluates the null hypothesis that no association exists between the miRNA-mRNA 

pair in all cancer types14.  

The twelve candidate microRNA*:target interactions summarized in Table 4, were queried 

against the CancerMiner database. Only the relationship of miRNA-3161:CDKN1B was retrieved 

as a recurrent expression association in uterine corpus endometrial carcinoma (UCEC) with an 

association score (REC) by individual cancer type of -0.44 and a p-value of 0.366. Although the 

REC score did not provide a very strong association at the individual level, the result supports that 

miRNA-3161:CDKN1B interaction is likely to be functionally relevant in the cancer context.  
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Chapter 5 – Discussion and Future Directions 

The present thesis systematically analyzes microRNA seed polymorphisms in prostate 

cancer cell line PC3 and infers possible effects on microRNA:target interactions with functional 

implications relevant in the cancer context. MiR-3620*-5p, miR-3161*-5p, miR-1178*-5p, miR-

4804*-5p, and miR-449c*-3p with a SNP mapping in the g2-g8 seed sequence region gained 643 

computationally predicted microRNA*:target interactions with canonical binding features. After 

functional enrichment, seven new targets were genes associated with endocrine resistance (p-

value < 1.28e-02) and five genes were associated to endocrine and calcium reabsorption (p-value 

< 1.64e-02) categories. At least three genes involved in new microRNA*:target interactions 

(CDKN1B, NOTCH2, CCND1) are consistent with current gene-disease association literature 

related to their downregulation in prostate cancer progression. These results support the central 

hypothesis of this thesis, as microRNA gene variability interferes with the complementarity of 

microRNA:mRNA, perturbing target recognition leading to the downregulation of genes associated 

to disease susceptibility.  

One of the biggest challenges for computational studies is to predict a phenotype as 

accurately as possible and to reconcile results with high-throughput experimental approaches 

such as microarrays, RNA-seq or AGO-PAR-CLIP in case of microRNA:target interactions. In 

order to provide evidence of gene expression changes due to mutated microRNAs, a microarray 

expression analysis of PC3 versus prostate epithelial cells was performed using untreated 

samples using the hgu133plus2 platform from the GEO database. A low number of expected 

targets were observed to be underexpressed in PC3, probably due to the small sample size of 

data sets available at GEO. Hence, a Fisher’s exact test was used to translate the frequency of 

perturbed targets into a p-value for the assessment of statistically significance. Only microRNA-

4804*-5p observed underexpressed targets TNKS and GUCY1A3 were statistically significant (p-

value < 0.05). However, neither TNKS nor GUCY1A3 were in the group of genes previously found 

to be enriched for endocrine resistance via WebGestalt. This indirect method assessed the effect 
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of microRNAs* over predicted target expression assuming the untreated PC3 samples have 

enough microRNA expression abundance for repression to be detectable91. Due to the lack of 

pairwise microRNA and gene expression data in PC3, we cannot completely predict the effect of 

our candidate microRNAs* solely with this indirect experimental approach.  

Furthermore, four groups of genes assessed by the hgu133plus2 platform were organized 

based on their predicted interactions with non-mutated microRNA and mutated microRNA. A 

Kruskal-Wallis non-parametric test was performed in order to assess for statistical significance 

between groups, where Group A (genes not subject to the regulation of the present study 

microRNA candidates) versus Group B (genes regulated by candidate non-mutated microRNAs), 

and Group A versus Group C (genes regulated by candidate mutated microRNAs) showed 

differences regarding group medians. It would have been interesting to observe statistical 

significance comparing Group B versus Group C, but with AGO-PAR-CLIP experimental data to 

assess the effect of SNPs affecting the seed region of miR-3620*-5p, miR-3161*-5p, miR-1178*-

5p, miR-4804*-5p, and miR-449c*-3p.  

A third statistical assessment was performed by querying twelve candidate 

microRNA*:target interactions summarized in Table 4 against the CancerMiner database. 

CancerMiner is an online tool from The Cancer Genome Atlas (TCGA) which evaluates 

recurrence of miRNA-mRNA expression association across ten epithelial cancer types from 

TCGA135. This method considers pairwise miRNA-mRNA relationships in individual cancer types 

and evaluates these relationships using a multivariate linear model. Associations are rank 

transformed in individual cancer types, and subsequently tested with the null hypothesis that no 

association exists between the miRNA-mRNA pair in all cancer types14. Only the relationship of 

miRNA-3161:CDKN1B was retrieved as a recurrent expression association in uterine corpus 

endometrial carcinoma (UCEC) with an association score (REC) by individual cancer type of -0.44 

and a p-value of 0.366. Although the REC score did not provide a very strong association at the 

individual level, the result supports that miRNA-3161:CDKN1B interaction is likely to be 
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functionally relevant in different cancer types. In the context of this study, results suggest that 

CDKN1B dysregulation by miR-3161*-5p would be leading to PC3 proliferation due to the lack of 

cell cycle arrest from phase G1 to S (Figure 18). CDKN1B (p27Kip1) is a member of the cip/kip 

family of cyclin-dependent kinase inhibitors that phosphorylate the retinoblastoma protein (Rb) 

through binding to cyclin-cdk complexes: cyclin E-cdk2; cyclin A-cdk2; and cyclin D-cdk4173,174. 

Failure of cell cycle arrest secondary to alterations in cdk inhibitor expression has been implicated 

in prostate cancer progression175,176 and luminal breast cancer (LBC)177. CDKN1B has been found 

to be mutated in few other neoplasia such as small intestine neuroendocrine tumors, a rare 

carcinoma arising from endocrine precursor cells in which CDKN1B represents the most 

frequently mutated gene139. In addition, CDKN1B germline mutations have been also proposed to 

be the cause of Multiple Endocrine Neoplasia type 4 (MEN4), an autosomal dominant disorder 

characterized by the occurrence of tumors in endocrine glands178.  

Prostate cancer cell line PC3 has been described in thousands of publications over the 

last four decades and has shown to share features with prostatic small cell neuroendocrine 

carcinomas (SCNC) with the implication that molecular mechanisms and therapeutic efficacies 

observed with PC3 cells are likely applicable to SCNC1. Prostatic small cell neuroendocrine 

carcinoma is a variant form of prostate cancer often characterized by an aggressive course with a 

poor response to conventional androgen deprivation therapy (ADT), consistent with the lack of the 

androgen receptor in prostatic small cell carcinoma (SCC)2. In some men treated with ADT, 

development of small cell carcinoma might represent the “escape” of a subpopulation of hormone-

independent cells resulting from the selective pressure of hormonal therapy3. This phenomenon 

has been observed in other hormone-driven cancer types such as human basal like breast cancer 

cells with the downregulation of p27Kip1 which abrogates antiestrogen-mediated cell cycle arrest179. 

Hence, the suggestion of CDKN1B dysregulation by miR-3161*-5p might go beyond the 

idiosyncrasy of the PC3 cell line, but rather an interesting future direction to investigate prostate 
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cancer patients with small cell neuroendocrine carcinoma rendering to an adverse disease 

outcome due to uncontrolled cell proliferation.  

 
Figure 18 CDKN1B dysregulation by miR-3161*-5p might lead to PC3 proliferation due to the lack of cell 
cycle arrest from phase G1 to S. Molecular mechanisms and therapeutic efficacies observed with PC3 cells 
are likely applicable to small cell neuroendocrine carcinoma (SCNC), a variant form of prostate cancer often 
characterized by an aggressive course with a poor response to conventional androgen deprivation therapy 
(ADT). The pathway from CDKN1B to E2DFP was obtained from KEGG.    
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Appendix 
Supplementary Table 1: 

From 546 predicted genes interacting with non-mutated microRNA, only 510 had 

associated Entrez gene IDs which were considered by WebGestalt for the ORA analysis. Table 4 

summarizes the ORA results of genes from gained microRNA:target interactions.  
 
 
 
 
 
 
 

 

 

Summary of the enriched categories of 510 Entrez gene IDs out 546 predicted genes interacting with 
miR-3620-5p, miR-3161-5p, miR-1178-5p, miR-4804-5p, and miR-449c-3p without a SNP mapping within 
the seed sequence region. The first column ID corresponds to the KEGG pathway ID annotated in the 
human species (hsa). 
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