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CHAPTER I 

INTRODUCTION 

The economical impact of galvanic corrosion dictates that large amounts of capital 

and engineering time be invested in the design and construction of protection systems. 

Rational and accurate application of these systems can result in significant savings 

for industry. Certainly, misdesign of protection systems may result in accelerated 

damage. It is important, therefore, that accurate methods for prediction of corrosion 

activity and for design of protection systems be developed. The boundary element 

method (BEM) has been used successfully in. the design and analysis of cathodic 

protection systems [1]. 

The boundary ele~ent method is a numerical procedure for the solution of par­

tial differential equations (PDEs), where only the boundary of the analysis region is 

modeled. BEM may be used to predict the electropotential distribution across an 

electrolyte in a galvanic cell, which is governed by Laplace's PDE. The electropoten­

tial values on the electrolyte surfaces are an essential element in the design of cathodic 

protection systems. Ease in the development of models, speed in the analysis, and 

accuracy of the results are all important considerations which make BEM a preferred 

alternative to other numerical procedures for the solution of PDEs, such as finite 
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element (FEM), and finite difference (FDM) methods. 

The major shortcoming common to all current BEM applications is their limita­

tion to applications in which the electr~lyte is homoge~eous with constant resistivity. 

In fact, electrochemical resistivity is not constant in most real world problems. Ex­

amples of structures existing in nonhomogeneous electrolytes include underground 

storage tanks, offshore oil rigs, and reinforcing steel in chloride contaminated con­

crete. The resistivity of the soil in which storage tanks are embedded may vary with 

each soil layer and even within each layer. The resistivity of the seawater in which 

offshore oil structures exist may vary significantly with depth, and the difference in 

the electropotentials obtained from analyses performed with and without accounting 

for material nonhomogeneity is significant [2]. The resistivity of chlorine contami­

nated concrete varies with depth, since it is dependent on the chloride concentration 

and moisture (3]. 

The need for a BEM system which accounts for nonhomogeneous electrolytes is 

apparent. Such a system would take advantage of the superiority of BEM over FEM 

and FDM while enhancing its current capabilities. It is this kind of system that is 

developed in this work. 



CHAPTER II 

LITERATURE REVIEW 

General Aspects of Corrosion and Cathodic 
Protection 

In this section, a general overview of galvanic corrosion with emphasis on cathodic 

protection is presented, based on the books by Morgan, and Fontana and Greene [4,5]. 

Electrochemical corrosion of a metal, such as iron, is the result of an chemical 

reaction occurring with a non-metal such as oxygen. For example, the chemical 

reaction which occurs when iron is immersed in water can be expressed as: 

(1) 

The resulting ferrous salt, 2Fe(OH)2, oxidizes into the ferric salt 2Fe(OH)s, which 

is the familiar rust. This reaction may be thought of a combination of two separate 

reactions, occurring simultaneously and at the same rate on the metal surface: 

Oxidation (anodic reaction) Fe -t Fe+2 + 2e 

Reduction (cathodic reaction) 0 2 + 2H20 + 4e -t 40H- (2) 

3 
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Two dissimilar metals, if electrically connect~d and immersed in an electrolyte, will 

produce an electron fl~w and the ensuing corrosion reactions. On the surface of the 

more resistant metal, the cathodic reaction will take place, and the metal surface will 

experience deposition. On the surface of the less resistant metal the anodic reaction 

will take place causing the metal to corrode. Accordingly, the resistant metal is called 

the cathode and the active metal is called the anode. The resulting system is called 

a galvanic cell. 

The electropotential difference existing between two different locations within an 

electrolyte is the driving force behind the galvanic corrosion reaction. This potential 

difference may exist either at a macroscopic level or at a microscopic (molecular and 

crystal) level. Macroscopic galvanic cells are generally created in the presence of two 

dissimilar metals submerged in an electrolyte~ Microscopic galvanic cells generally 

exist at small imperfections within a single metal submerged in an electrolyte. 

Selection of the proper material for a particular corrosive environment, alteration 

of the environment to make it less corrosive, and coating materials used to isolate 

the affected material from the hostile medium are all effective methods which may 

be used to prevent corrosion. In many cases, economic and/or physical constraints 

prevent the use of any protective measures and the engineer may prefer to design the 

structure with allowances for corrosion. An alt~rnative to these methods is cathodic 

protection, briefly described below. 

A metal which w~uld normally experience uniform corrosion by the formation 
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of microscopic galvanic cells on its surface can be forced to become a cathode in a 

macroscopic galvanic cell. This can be accomplished by introducing a sacrificial piece 

of material which is anodic with respect to the material to be protected, thus assuring 

that the protected metal acts as a cathode throughout its surface and eliminating the 

microscopic cells. A suitably defined electropotential distribution determines which 

segments of a structure act cathodically and which segments act anodically. Thus, 

the surface of a particular metal is said to be "cathodically protected" if the potential 

is raised to a level greater than any potential difference that can possibly exist on the 

metal surface. 

Since the cathodic reaction is achieved by supplying electrons to the cathode, as 

seen in Equation 2, cathodic protection may also be achieved by creating a current 

with an external power supply instead of galvanic coupling. Therefore, two methods 

of cathodic protection may be used to force the protected material to become a 

cathode in a macroscopic galvanic cell: imposed current methods and sacrificial anode 

methods. The type of cathodic protection used is determined by each particular 

situation. 

While cathodic protection may not be the only method to prevent corrosion, for 

many cases it is the most effective. Mudd [6] quotes the Federal Highway Admin­

istration as concluding that the only technique capable of completely stopping the 

corrosion of the reinforcing steel in concrete is cathodic protection, either alone or 

in combination with other corrosion preventing techniques. Offshore structures are 
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routinely protected from corrosion using cathodic protection; the weight and cost of 

coatings prevent their use, and the alteration of the seawater environment is impos-

sible. 

Mathematical Modeling 

From the previous discussion on the general aspects of corrosion, we can con-

elude that the rate of corrosion of a particular anode depends on i~s electrochemical 

properties, its electrochemical potential, and the ele~trochemical properties of the 

electrolyte in which it is immersed. For most cases encountered in engineering prac-

tice, the properties of the anode and the electrolyte can be determined experimentally. 

The electrochemical potential ( i!>) over the electrolyte in a galvanic system is governed 

by the familiar Laplace equation: 

(3) 

Several researchers have been able to verify measured potential distributions utilizing 

analytical procedures. Successful applications have, however, been limited to simple 

cases where the boundary conditions and geometries allow a closed-form solution to 

Laplace's equation [7-17]. In general, real structures or components have complex 

boundary conditions and geometries. Therefore, numerical approximations, such as 

FEM and FDM, are required. FEM and FDM have both been used to calculate 
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potential distributions in galvanic cells [18-22], for the design of cathodic protection 

systems of offshore platforms [23-26], and for the analysis of cathodic protection 

systems for reinforced concrete structures [27]. 

In the analysis of cathodic protection systems, the primary objective is to evaluate 

the electropotentials at the cathodes and the anodes, i.e. the metal surfaces within the 

electrolyte. Electropotential distribution throughout the electrolyte is unimportant. 

Unfortunately, both FEM and FDM require that the electrolyte body be modeled. 

A large amount of computation time is therefore used to calculate nonessential infor­

mation: the potentials throughout the electrolyte body. An alternative - in which 

computation time and, more importantly, modeling time are used to calculate only 

the essential information (the electropotentials at the anode and cathode)- is BEM. 

The boundary element method, based on Green's third formula to transform the 

volume derivative in Laplace's equation into a surface integral over the boundary of 

the domain, has been shown to be the superior analysis technique for the corrosion 

problem [1,28]. The boundary element method requires only that the boundaries 

of the domain be modeled and that only the potentials on the boundary surfaces 

are initially calculated. This is an important advantage, since both modeling and 

computation times are reduced considerably. BEM has proven to be very effective for 

predicting the electropotential in galvanic cells [21,29,30]. Several researchers have 

also used the method very effectively for the design and analysis of cathodic protection 

systems for offshore platforms [1,31-33]. 
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Nonhomogeneous Electrolytes 

The successful application of BEM is directly dependent on the availability of a 

Green's function associated with the equation governing the physical problem [34]. 

The potential distribution of a galvanic corrosion process within a homogeneous elec­

trolyte is governed by Laplace's equation subject to nonlinear boundary conditions 

[31]. The Green's function associated with Laplace's equation is well known. Green's 

functions for equations governing galvanic corrosion systems with nonhomogeneous 

properties, however, are not readily available. 

Darcy's equation, the governing equation for the flow of groundwater through non­

homogeneous soils, may also be applied to galvanic corrosion problems with varying 

resistivity. This equation may be written as 

V·(kV~)=O (4) 

where k is the spatially varying conductivity (inverse of the resistivity) of the elec­

trolyte, and ~ is the electropotential. If k is constant throughout the electrolyte, 

Equation 4 reduces to Laplace's equation. Cheng (35] has demonstrated that a Green's 

function may be obtained for Equation 4 for the case where v'k satisfies Laplace's 

equation: 

(5) 
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There are numerous functions satisfying this contraint on k which may be easily used 

·to model measured resistivity data. 



CHAPTER III 

BEM SYSTEM DEVELOPMENT 

Boundary Element Methods for the Solution 
of Laplace's Equation 

Laplace's equation, without reference to electropotential theory and without ref-

erence to any particular coordinate system, is expressed as: 

(6) 

where <I> is the potential distribution over the region n, shown in Figure 1 reproduced 

from Gipson [36]. The region n is bounded by a surface r on which two types of 

boundary conditions exist. The entire surface r will be composed of the cartesian 

sum of two surface types, rl and r2, on which the different boundary conditions are 

specified. The related boundary conditions are: 

..1'.. if. r d a<I> · r 
'.1' = '.1' on t" an an - q = ij on 2 (7) 

10 
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n ;; outward directed 
unit normal vector 

Figure 1. Nomenclature For General Laplace's Equation 
Problem 

where 88n is the derivative in a direction normal to the surface r, defined as: 

11 

(8) 

and n is a unit vector pointing in the outward direction normal to the surface r. q 

is then defined as the flux in the outward normal direction. ~ and q are specified 

boundary conditions. It is important to understand that, in a well-posed problem, 

the entire boundary surface is either of the r 1 or of the r 2 type. 
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Using a weighted residual method, Laplace's equation is converted into surface 

integral form. The weighted residual statement may be written as: 

(9) 

where~ and q are the approximations to <I? and q, respectively. W, W, and Ware 

the weighting functions. Integrating by parts twice, and, without loss of generality, 

making the following restrictions on. the weightjng functions: 

- aw -·w = - on r 1 and w = - w on r2 an 

we obtain what is called the inverse statement: 

(10) 

where the Laplacian operator (\72) is now acting on the weighting function W. Since 

no restrictions have been placed on the weighting function, we can now choose W 

such that: 

(12) 
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where 8 is the Dirac Delta function, and rand ri are position vectors: This restriction 

on W produces the basic equation used for boundary element analysis: 

(13) 

which is strictly in terms of surface integrals. The function satisfying Equation 12 is 

the fundamental solution for the Laplacian operator, also referred to as the Green's 

function for Laplace's equation in unbounded space. Equation 13 holds for any par-

ticular point Tt whether or not it is on the boundary. The constant Cis 1.0 for points 

inside the boundary, zero for points outside the boundary, and some fraction of unity 

for points on the boundary [34]. 

The idea now is to discretize the boundary into a system of elements, each of 

which have a defined behavior of <1> and q. In order to achieve this, a set of shape 

functions is defined. The shape function set consists of one normalized function per 

node, and is used to approximate <1> and q in the following manner: 

<1> =< <l>n > {N} and q =< qn > {N} (14) 

where < q>n > and < qn > are row vectors containing the values of <1> and q at the 

nodes of the element, and {N} denotes a column vector containing the shape functions 

corresponding to each node. The notation used here to differentiate between row ( < >) 

and column ( { } ) vectors will be used throughout the rest of this work. 
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Equation 13, after substituting the approximations to <P and q, may be rewritten 

as: 

A 1aw 1 
C<P(~) =< <Pn > lr on {N} dr- < qn > lr W{N} dr (15) 

where the vectors < <Pn > and < qn > have been factored out of the integrals. By 

evaluating Equation 15 at every node, we obtain a set of simultaneous equations 

relating the unknown <P's with the known q's and the unknown q's with the known 

<P's. The equations thus obtained have the form: 

[H]{<P} = [G]{q} (16) 

where the matrices [H] and [G] depend only on the boundary definitions and geometry, 

i.e., the integrals over the boundary. 

As mentioned previously, in a well-posed boundary value problem, either <P or q 

is known at a point on the boundary. With the .boundary conditions defined, one can 

rearrange E;quation 16 to obtain a system of simultaneous equations of the form: 

[A]{x} = {y} (17) 

in which the { x} vector contains all the unknown quantities and the {y} vector 

contains all the known quantities. This system of fully-populated equations can be 

solved to obtain the unknown boundary values at the nodes. Once all the unknown 

boundary data are calculated, Equation 15 may be reused to calculate values for the 
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potential at any internal point. Also, by differentiating Equation 15, values of the 

components of the fluxes may be obtained at any internal points. 

The success of the method depends on one being,able to find a !V'eighting function 

W which satisfies Equation 12. As mentioned previously, a function which satisfies 

this restriction on W, and allows the most latitude for program development, is the 

fundamental solution for Laplace's equation. The Green's function in unbounded 

two-dimensional space, or fundamental solution, for Laplace's equation is given by: 

(18) 

In three-dimensional space, the Green's function for Laplace's equation is expressed 

as: 

(19) 

Using these two expressions, the solution to Laplace's equation is obtained after 

performing the integrals involved in Equation 15. For a complete discussion of this 

procedure see Gipson [36]. 

Galvanic Corrosion 

The equation governing the electropotential distribution within the electrolyte 

in a galvanic corrosion process is derived from the steady state charge conservation 
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equation [20] 

v ·i = 0. (20) 

where i is the current .density per unit volume. By substituting Ohm's law 

i = kE (21) 

where E is the electric field intensity and k is the conductivity of the electrolyte, the 

steady state continuity equation becomes 

(22) 

Including the relationship for electric field density 

(23) 

where cp is the electropotential, the continuity equation becomes: 

(24) 

which is also known as Darcy's equation, the equation governing the flow of ground­

water through nonhomogeneous soils. This equation reduces to the better known 

Laplace's equation for homogeneous electrolyte~ with constant conductivity k. 
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The reduction and oxidation reactions occurring at the electrodes determine the 

corrosion rates in a galvanic cell. The corrosion rate at an electrode is a function 

of its material composition, the current density and electropotential existing on its 

surface, and the electrolyte in which it is immersed. This relationship, also referred 

to as the polarization behavior of the chemical reaction occurring on the electrode, 

may be expressed as a mathematical function in the form of: 

(25) 

where qe represents the current density at the electrode, <Pe is the electropotential at 

the electrode, and fe is a function of a variety of chemical factors depending on how 

the electrode behaves in the particular electrolyte in which it is immersed. Thus, the 

corrosion rates for a galvanic corrosion process may be predicted if the electropotential 

<I? is known on the affected area. 

For most metals in commonly encountered electrolytes, the polarization behavior 

can usually be expressed as an approximation of <I? in terms of linear functions of the 

logarithm of q. Figure 2 shows a typical polarization function for reinforcing steel in 

chloride contaminated concrete, where <I? is with respect to a Cu/CuS04 (half cell) 

[27]. 

Equation 25 determines the boundary conditions at the electrodes used in the 

mathematical analysis. Using the BEM, as shown in the previous section, the solution 

to Darcy's equation is reduced to solving the set of equations in Equation 16, repeated 
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Figure 2. Typical Polarization Behavior of Steel in Concrete 

here: 

[H]{ <I>} = [G]{ q} (16) 

where the matrices [ H] and [ G] depend only on the geometry of the electrolyte 

boundary, and the column vectors {<I>} and { q} represent the electropotential and the 

current density, respectively, at the boundary nodes. With the boundary conditions 

defined in Equation 25, Equation 16 may be rearranged into a standard system of 

nonlinear equations of the form: 

[A]{ x'} = {y'} (26) 

in which the vectors { x'} and {y'} are related through the polarization curve in 
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Equation 25. This system of nonlinear equations may be solved by using the Newton-

Raphson iteration technique briefly described below. 

Using the same notation used in the work by Press, et al. [37], the solution to a 

set of N functions Fi, in the same number of variables Xi 

(27) 

to be zeroed, may be found by solving the system of equations 

[a]{ Sx} = {,i3} (28) 

where 

(29) 

for the corrections 8 xi. These corrections are then added to the solution vector { x}: 

Xl .. new = x,·old + 'x,· ,; _ 1 N u ·- , ••• , (30) 

and the process is repeated until convergence is reached. 

In applying the Newton-Raphson method, it should be noticed that not all of the 

equations in the system in Equation 26 contain nonlinear functions, since not all of 

the boundaries of the electrolyte will be electrodes. There may be some boundaries 

in the corrosion cell which have specified electropotential values (such as anodes 
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with impressed currents) and some boundaries with specified current density (such 

as insulated surfaces, which would have a zero flux boundary condition). To take 

advantage of this fact, the following scheme may be used to implement the Newton­

Raphson iterative solution to the resulting system of nonlinear equations. 

Using the known polarization behavior, the electropotential !I? may be expressed 

as a function 9e of the current density q: 

(31) 

We may rewrite Equation 16 as 

[H']{ u} = [G']{ v} (32) 

where the { u} vector. contains the unknown qe's at the electrode surfaces and the 

unknown data at the nonelectrode boundaries, the { v} vector contains known quan­

tities on the nonelectrode boundary and the values of !f?e = 9e(qe) at the electrodes, 

and the matrices [H'] and [G'] are the properly adjusted matrices [H] and [G] from 

Equation 16. The right hand side of Equation 32 may be rewritten as the sum of two 

matrix multiplications: 

[ G'] { v} = [ G'] { v'} + [ K] {!I? e} (33) 

The vector { v'} contains the actual known quantities on the boundaries and zeros 

in place of the calculated values !Pe. The matrix [K] contains only those terms from 
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[G'] which would be multiplied by the values of <Pe in vector { v }. The terms in 

[K] are actually the negatives of the corresponding columns from the matrix [H] in 

Equation 16, thus, [K] is not a square matrix. The number of rows in [H] is equal 

to the number of equations in the system, and the number of columns is equal to the 

number of electrolytes with specified polarization functions. The vector { <Pe} contains 

only the values <Pe = 9e(qe), and its length is equal to the number of electrolytes with 

specified polarization functions. 

If we multiply the matrix [G'] by the vector { v'}, we obtain the vector {y} in 

Equation 17 from the previous section, where any value which corresponds to a node 

at an electrode has been zeroed. Notice that the matrix [H'] is equal to the matrix 

[A], also from Equation 17. This is an important consideration, since the matrix 

[A] and the vector {y} in Equation 17 are used in the solution of Laplace's equation 

without nonlinear boundary conditions. Thus, the only new complexity that we have 

added to the normal solution of Laplace's equation is the formation of the [K] matrix 

and the vector { <P e}. 

After th~ [K] matrix is formed, the [a:] matr.ix from Equation 28 is then obtained 

fro.m 

0: .. - H'··- K· 8ge 
IJ - IJ J a 

qj 
(34) 

since the polarization function g at a node is only a function of the value of q at that 
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node. The vector {.8} in Equation 28 is obtained from 

f3i = -[H']{u} + {y} + [J<]{q,e} (35) 

Solving for { 8x} and using 

{ Unew} = { Uold} + >.{ b'x} (36) 

we can start an iteration process which is ended when the norms of the vectors { F} 

and {b'x} are less than a tolerance given by the user. In this work, the norm llvll of 

any vector { v} is defined as the eucledian £ 2 norm, given by 

llv II = ~ t. v;2 (37) 

where N is the size of the vector { v }. The initial value for { Uold} is obtained by 

assuming a value of q = 0 in Equation 32 and solving for the vector { u }. The factor 

), is used as a correction on the vector { 8x} to prevent the "step" size of the iteration 

process from becoming too large. >. is calculated by computing the norm I!Foldll of 

the vector { F} (in Equation 27) using { Uold} and halving the initial value of >. = 1 

until the norm I IF new II, computed using { Unew h is smaller than I !Fold II· 

This self-correcting Newton-Raphson technique prevents the solution from diverg­

ing when the computed { 8x} becomes too large, which occurs when the gradients in 
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the nonlinear system of equations are large. This is often the case when singularities 

are present in the problem to be solved. 

Nonhomogeneous Electrolytes 

As seen in the previous section, the fundamental solution for the particular dif­

ferential equation to be solved is essential for the success of the boundary element 

method. Laplace's equation governs the electropotential distribution within a homo­

geneous electrolyte in a galvanic cell. The governing equation for distribution of the 

electropotential within a nonhomogeneous electrolyte is Darcy's equation: 

(38) 

where k is the conductivity of the electrolyte, which may or may not be constant 

throughout the region. Generally, the Green's function corresponding to Equation 38 

does not exist if k is completely arbitrary. For some specific cases, however, where 

the behavior of the conductivity k is known, the governing Green's functions are 

obtainable. 

For example, consider the case of an orthotropic two-dimensional domain, where 

the conductivity does not vary with position, but is different in each of the cartesian 

directions x and y. The governing equation,. Darcy's equation with the specified 
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conductivity k, is given by: 

(39) 

where kx and ky are the constant conductivities in the x andy directions, respectively. 

The Green's function W governing this equation may be obtained, as seen previously, 

from the solution of 

(40) 

where rand rt are position vectors in the x-y plane. By making a coordinate trans-

formation of the form 

X y 
X= rr.:- and Y = 11:: 

vkx yky 
(41) 

and substituting into Equation 40, we obtain ~he following equation: 

(42) 

with 

R... X A y A d R... Xi A Yl A 

= rr.:-z + 17::J an l = rr.:-z + . 17::J 
V kx y ky V kx y ky 

(43) 

where i and J are unit vectors in the x and y directions, respectively [36]. The 

only difference between Equation 42 and Equation 12 (from which we obtained the 

Green's function for Laplace's equation) is the multiplicative factor . ~- Therefore, 
ykxky 

the solution to Equation 42 is given by the Green's function for Laplace's equation 



in two dimensions multiplied by . ~: 
yk:rky 
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(44) 

Thus, the Green's function is obtained for the specific case where the constant con-

ductivity k is different in each of the cartesian directions. Substituting this function 

for W into Equation 15, the solution to Darcy's equation in orthotropic media may 

be obtained by using the boundary element method. 

Orthotropic electrolytes, governed by the particular case of Darcy's equation just 

discussed, are observed mostly in underground s1tuations. Drilling wells, underground 

pipes, and underground tanks are all affected by corrosion. The ground, actiri.g as the 

electrolyte in the corrosion process, behaves like an orthotropic material: the conduc-

tivity may be different in the horizontal and vertical directions. More importantly, 

the different layers within the soil may each have different properties. This leads to 

the consideration of corrosion processes occurring across different electrolytes. 

If the corrosion process occurs across electrolytes with different properties, each 

electrolyte must be treated as a separate subregion, each having its own distinct 

boundary element mesh, as shown in Figure 3. At the interfaces of the different elec-

trolytes, the subregions share nodes and elements where both the electropotential and 

the current flux values are unknown. The boundary element equations are assembled 

separately for each region in the same manner as that described previously. However, 

the resulting equations cannot be solved until the physical conditions of compatibility 



Figure 3. Nomenclature for BEM Problem Consisting of Two 
Different Regions 
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and equilibrium are enforced at the interfaces. Mathematically, this involves invoking 

the constraint across an interface I, connectingregions labeled 1 and 2, as follows: 

(45) 

where <.P Ii and qli represent the values of the electropotential <.P and the current flux 

q at the interface I as computed from the ith electrolyte region. The resulting set 

of equations may then be solved for the solutions at each boundary including the 

interface. Again, for a more detailed explanation of the treatment of zoned media, 

the reader is referred to Gipson [36]. 

What may be even more common with nonhomogeneous electrolytes are cases in 

which the conductivity k actually varies with some known behavior throughout the 
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electrolyte. For instance, within reinforced concrete bridge decks, the conductivity 

will vary according to the saline concentration within the concrete matrix. Since 

the concrete deck is affected by deicing salts, the concentration of salt will be higher 

at the top of the deck, where infiltration starts, than it will be toward the bottom. 

This leads to a variation in the electrical conductivity along the vertical distance of 

the deck. Another example of an electrolyte with varying conductivity is seawater. 

The electrochemical conductivity of water changes with temperature; thus, in deep 

water situations, the conductivity at the bottom of the structure may be very different 

from the conductivity at the seawater surface level (2]. Such variations in conductivity 

cannot be handled as easily as the cases where the conductivity is constant throughout 

the electrolyte. However, as previously mentioned, it has been shown that for the 

special case where the square root of the conductivity satisfies Laplace's equation, a 

Green's function Wsp for the specialized Darcy's equation may be obtained (35]. 

This particular Green's function is obtained using the following identity: 

(46) 

w~ere g and f are functions. Equation 38 (Darcy's equation), repeated here for 

convemence 

(38) 
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may be rewritten, using the identity in Equation 46, as 

(47) 

If the square root of the conductivity k satisfies Laplace's equation, in other words, 

if we place the restriction on the conductivity k 

(48) 

then Equation 4 7 becomes 

(49) 

Thus, Darcy's equation is reduced to 

1 2 1 
k2 V' (k2<P) = 0 (50) 

which involves the Laplacian operator for which we have already defined a Green's 

function. By making the substitution 

(51) 
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we are left with simply finding a Green's function W' for the Laplacian equation 

(52) 

which is done using the same technique used previously. We simply find a solution 

to .the equation 

(53) 

which differs from Equation 12 only by the multiplicative factor k-! ( fl). Therefore, 

the solution to Equation 53 is given by the Green's function for Laplace's equation 

W multiplied by k-!(f't) 

(54) 

and since <I> = k-! ( r) \ll, we conclude that the Green's function Wsp for the specialized 

Darcy's equation with the restriction on k in Equation 48, is 

(55) 

thus enabling one to use the boundary element method to approximate a solution to 

Darcy's equation for the special case where the conductivity k satisfies the restriction 

imposed by Equation 48. 

As mentioned in the previous chapter, there exist simple functions satisfying the 

restriction placed on the conductivity by Equation 48 which may be used to model 
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field resistivity data. Among these is the square of the general trilinear polynomial: 

(a+bx+cy+dz+exy+fxz+gyz+ hxyz? (56) 

where a through g are constants. The resulting polynomial may be easily used to 

model measured resistivity data. Figure 4 shows some examples of possible repre­

sentations for k using this function. The conductivity k in Figure 4 varies only with 

the depth y:, typical of underground, underwater, and concrete situations (2,3,38]. 

In Figure 4, k has been nondimensionalized with respect to a reference conductivity 

k0 , and the y depth has been nondimensionalized with respect to a reference depth 

d. The examples clearly illustrate that conductivity functions satisfying Equation 

48 may be used to represent field data of more commonly known functions. Using 

the new Green's function Wsp, the boundary element method may therefore be ef­

ficiently applied to solve galvanic corrosion problems in which the electrolyte is not 

homogeneous. 

Element Types 

In BEM, the boundary is discretized into a series of distinct elements and a certain 

number of nodes associated with each element. We represent the elements using 
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parametric curves or surfaces which are defined by the nodes on the element by: 

q> =< q;n > {N} and q =< qn > {N} (57) 

where the shape function set { N} is composed of parametric functions which vary 

along the element curve or surface according to their prescribed order. < q;n > and 

< qn > are vectors containing the values of q> and q at the nodes of the element. 

The shape f~ction set {N} is also used to define the geometry of the element. The 

generalized coordinate Xi is represented by 

(58) 

where < Xin > is a vector containing the values of the coordinate Xi at each node 

of the element. The resulting parametric curves or surfaces are such that they give 

the nodal values of the variable under consideration when they are evaluated at the 

nodes, and vary between the nodes according to the order of the shape functions. 

The parametric curves used to define the elements used in two-dimensional analy­

sis are constructed by fitting a simple polynomial through the nodes associated with 

the element. The order of the polynomial used to define the element is determined 

by the number of nodes associated with the element [39]- it is equal to the number 

of nodes defining that element minus one. 

The parametric surfaces used to define the elements used in three-dimensional 
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analysis are constructed by fitting a polynomial surface through the nodes associated 

with the element. The elements used in this work are defined by nodes which lie 

strictly on the edges of the element. In FEM analysis, this family of elements is 

referred to as the serendipity family [40]. The advantage of using this type of element 

lies in its lack of nodes internal to the element and not shared by any other element. 

Elements which contain nodes internal to an element lead to an undesirable increase 

in the total number of nodes used in a model, as compared to a similar model using 

the serendipity family of elements. 

The following sections describe the different element types used in the BEM system 

developed for this work. The techniques for performing the integrations over the 

~lements are also described. 

Two-Dimensional Elements 

In any BEM modeling, the selection of the element type affects modeling and 

computation time, as well as the accuracy of the analysis. In the current system, 

four elements have been implemented: linear, quadratic, standard cubic, and the 

Overhauser cubic element. It has been shown previously that while adequate results 

can be obtained using simple linear elements, the use of higher ordered elements leads 

to more accurate results [41,42]. The Overhauser elements [42,41] have the added 

advantage of maintaining C1 continuity at the interelement connections, leading to a 

more accurate representation of curved boundaries than can be achieved with linear 

and standard higher order elements, and thus more accurate results. 
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A problem encountered with the higher ordered elements is a nonunique mapping 

of the function under consideration, also called '~overspill" [40]. As shown in Figure 5, 

4igher ordered curves may produce overspills when the geometry of the nodal spacing 

of the nodes within an· element is not regular. These distortions may also appear near 

singularities and locations where high gradients in the field variable are present. Care 

must be taken when using these elements so as to not cause unwanted distortions. 

Nodes should be equally spaced within an element, and in some cases, it may be 

preferable to use linear elements near singularities. 

The simplest element is the standard linear element, defined by two nodes. The 
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two corresponding shape functions are 

t (59) 

where tis the parameter defined in element coordinates, normalized to be zero at the 

first node of the element and 1 at the second node. 

The next element, in order of complexity, is the standard quadratic element, 

defined by three nodes. Its three corresponding shape functions arc 

N1 - 2t2 - 3t + 1 

N3 - 2t2 - t (60) 

where the first node of the element lies at t = 0, the second node lies at t = ! and 

the third at t = 1. 

There exist two types of cubic ~lements, bpth defined by four nodes. One is a 

standard cubic element, with shape functions gl.ven as 

N1 
9 3 2 11 --t + 9t - -t + 1 
2 2 

N2 - 27 t3 - 45 t2 + 9t 
2 2 

N3 
27 3 2 9 

- --t + 18t - -t 
2 2 
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(61) 

where the four nodes lie at t = 0, t = -l, t = ~' and t = 1, in order. The other cubic 

element is the Overhauser element, developed by Ortiz et al. in previously published 

work [41,42]. The corresponding shape functions for the Overhauser element are 

N1 1 3 2 1 - --t + t - -t 
2 2 

N2 - ~t3 - ~t2 + 1 
2 2 

N3 
3 3 2 1 - --t + 2t - -t 
2 2 

N4 
1 3 1 2 

(62) -t - -t 
2 2 

where the second node lies at t = 0, the third node lies at t = 1, and the first and 

fourth nodes lie outside of the element (Figure 6). The first and fourth node are used 

to define the parametric derivatives existing at the two end nodes (the second and 

third nodes). By overlapping the Overhauser elements, where the second, third and 

fourth nodes of one element are the first, second and third nodes of the next element, 

we insure that the parametric derivative is continuous at the nodes where the elements 

are joined together. For a more detailed explanation of the use of Overhauser elements 

in BEM analysis, see Ortiz et al. (41,42], and Walters et al. (43,44]. 

As may be seen from the previous sections, integrations are major tasks in bound-

ary element analyses. Performing these integrations accurately and quickly is essential 
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to the success of any boundary element system. The numerical integrations in the 

current BEM system are performed using Gaussian integration formulas developed 

by Stroud and Secrest [45]. Gaussian integration is relatively fast and, for most of the 

integrals occurring in BEM, is the only practical way of performing the integrations. 

Planar Analysis. The solution of Laplace's equation will be used here to il-

lustrate the integration scheme used in the current BEM system. The solution to 

Darcy's equation, whether it involves orthotropic regions, or regions with variable 

conductivity, is approached in the same manner. 

Substituting the fundamental solution of the two-dimensional Laplace's equation 

(63) 
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and its normal derivative 

aw 1 (r- rt) . n 
-an 2?r JT- fil 2 

(64) 

into Equation 15, repeated here for convenience 

A Jaw J Cci>(fl) =< ci>n > -a {N} dr.:.. < qn > W{N} dr 
r. n . r 

(15) 

we obtain the following 

A 1 fr (r-fi)·n 1 fr Cci>(fl) =- < ci>n > -2 1... .... 12 {N} dr- < qn > -2 ln JT- fii{N} dr (65) 
1r r r- rt 1r r 

Evaluations of the integrals are done in a localized coordinate system. Utilizing 

the Jacobian transformation 

where x and y are defined by Equation 58, the integrals in Equation 65 become: 

and 

- ~ ! 1 (r: fl.!· n {N} IJ(t)l dt 
21r lo lr- rtl 2 

~ r ln JT- r'ti{N} IJ(t)l dt. 
21r lo 

(66) 

(67) 

(68) 
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All integrals are evaluated using standard Gaussian quadrature formulas [45] ex-

cept for the case where the source node is actually on the element being integrated. If 

the source node is on the element being integrated, one must deal with a singularity 

in the Green's function, since r = ft at t = 0. The normal derivative of the Green's 

function is also singular in this case, but the singularity is canceled because the shape 

functions which do not correspond to the.node in question are exactly zero at the 

point of singularity (at t = 0). The shape function corresponding to node 1 is exactly 

one at the point of singularity, thus not canceling it; but this integral does not need 

to be calculated - it is determined using physical considerations [36]. 

The singular integrals which need to be performed, those containing the Green's 

function,· are evaluated using the formula developed for singular logarithmic integrals 

by Stroud and Secrest [45] 

(69) 

where g( x) is a function of x, Wi are the n Gaussian weights, and Xi are the corre-

spending Gaussian points. Simply using the Pythagorean theorem to find the mag-

nitude of the vector inside the logarithm, the integral involving the Green's function 

in Equation 68 becomes 

(70) 
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Expanding the terms inside the logarithm (which are defined by the shape functions) 

to a polynomial p, we obtain 

where 

__!__ ! 1 {N} ln[p(t) ]IJ(t)l dt 
47r lo (71) 

(72) 

and the constants c0-c4 are defined by the coordinates of the nodes on the element 

and the source node. By factoring a t2 from the polynomial p inside the logarithm, 

the integral can now be written as two separate integrals: 

1 r 1 ·r 
47r lo {N} ln(I) IJ(t)l dt + 21r·'io {N} ln(t) IJ(t)l dt (73) 

where 

(74) 

The first of these integrals is evaluated using standard Gaussian integration, and 

the second is evaluated using the previously discussed formula developed for singular 

logarithmic integrals (45]. 

The integrations involving the Green's functions developed for Darcy's equation 

are treated similarly. The idea is to isolate the singularity involved with the logarith-

mic term and use the special Gaussian logarithmic quadrature, in combination with 
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Axisymmetric Analysis. Domains defined by solids of revolution and having 

a field variable (in our case, the electropotential ci>) which lacks angular dependency 

may be modeled as curves in the two-dimensional r-z plane (Figure 7). Thus, the 

same elements which are used for the two-dimensional planar analysis may be used 

for axisymmetric. analysis .. 

The fundamental solution for Laplace's eq~ation expressed in polar coordinates 

is not angularly independent. Therefore, in order to model axisymmetric domains 

using BEM, the Green's function for the general three-dimensional problem must be 

specialized to take advantage of the axial symmetry. The following description of how 

to obtain the Green's function for axisymmetric analysis of Darcy's equation, where 

the square root of the spatially varying conductivity k satisfies Laplace's equation, is 

based on Gipson's text [36], where a detailed explanation is provided. 
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The Green's function associated with Darcy's equation, as previously defined, 

-1 w = --===--==---
471" .jk(f5 Jk(ft) If- fti 

(75) 

may be expressed in r, (), z polar coordinates as 

Equation 15, once again repeated here for convenience, 

A row r 
Cci>(ft) =< q,n > lr on {N} dr- < qn > lr W {N} dr (15) 

may be expressed, for axisymmetric analysis, as 

A fr ow fr Cci>(r,z) =< q,n > ~{N}rdre- < qn > W{N}rdre 
r~ un r~ 

(77) 

where the boundary has been discretized into curved elements on the r-z plane, and 

the integrations around the surface will be performed across the elemental boundary 

dre and around the circular-strip surface r~ (Figure 8). The integrals which need 

to be evaluated are then 

fr aw fr -8 {N}rdre and W{N}rdre 
r~ n r~ 

(78) 
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which, because both the shape functions and the outward pointing normal n are 

independent of the f) coordinate, may be rewritten as 

The integral over B 

may be written as 

(81) 
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where K(a) is an elliptic integral of the first kind, and its argument a is 

a= (82) 

Thus, the integrals which need to be evaluated 

aw 
{ W{N}rdre and { -8 {N}rdre 
lr~ lr~ n 

(83) 

can be rewritten as 

and 

Therefore, we can take the Green's function for axisymmetric analysis to be 

(86) 

and its norii,lal derivative 

with ;n defined as n · "\7 k. It can be shown that the normal derivative of the specialized 
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Green's function for axisymmetric analysis is 

DWax Jk(r, z) 

an 7rVk(r,_, z~_) R3 

{ K(a) [(r,_2
- r2 + (z- z~_)2 + (r + r~_) + R ak(r, z)) nr+ 

2r 2k(r,z) or 

R ak(r,z) l E(a) [( ) r,_2- r2 + (z- z~_)2 1J} 
2k(r, z) OZ nz + (1- a2) Z- Zt nz- 2r nr (88) 

where nr and nz are the components of the outward normal vector n in the r and z 

directions, respectively, E(a) is the elliptic function of the second kind, and 

(89) 

With the Green's funct~on and its derivative specialized for axisymmetric analysis, 

the solution to Equation 15 may be obtained by accurately performing the integrations 

involved. The specialized Green's function Wa!' and its derivative are well behaved 

and can be efficiently integrated using standard Gaussian quadrature, except where 

r and fi. are at the same location. 

The elliptic function of the first kind (K(a)) is singular when its argument a 

is equal to 1. The argument a to the elliptic functions is equal to 1 when r = 

r,_. Therefore, integrals involving the elliptic function of the first kind, may not 

be evaluated using standard Gaussian quadrature when rand r,_ are at the same 

location. It can be shown that these are the only integrals which become singular in 

axisymmetric analysis. 



46 

To evaluate the integrals involving K (a), we will use the following technique. K (a) 

is expanded as [46] 

4 
K(a) =A+ Bin-

a' 
(90) 

where a' is equal to vl - a2, and the factors A and Bare dependent on a' as follows: 

and 

A 

B 

fo ( ~ ) (-bm)(a')'m 

fo ( ~) (a')'m 

(91) 

(92) 

(:) =(-l)m(-x)(-a-1)(-a:}···(-a-m+l) (93) 

The factors A and B have been approximated by Abramowitz and Stegun [47] as 

A (94) 

B (95) 



in which ao-a4 and b0-b4 are [47]: 

ao - 1.38629 436112 bo 0.5 

a1 0.09666 344259 b1 - 0.12498 593597 

a2 - 0.03590 092383 b1 - 0.06880 248576 

a3 0.03742 563713 b1 - 0.03328 355346 

a4 0.01451 196212 b1 - 0.00441 787012 
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The integral of any function F multiplied by K(a) (where a is defined in Equation 

82) over a the parameter t (along one of the previously defined elements) is given by 

fo1 F K(a) dt = fo1 F [A+ Bln ~] dt- fo1 2F B lntdt (96) 

where I is given by Equation 74 in the previous section, and R is given by Equation 

89. Of these two integrals, only the second is singular, but it can be evaluated using 

the formula developed for singular logarithmic integrals by Stroud and Secrest (45], 

discussed in the previous section. The first integral may be evaluated using standard 

Gaussian quadrature- it is not singular. 

Using this procedure, the singular integrals which arise in axisymmetric analy­

sis may be effectively evaluated and the analysis of axisymmetric problems can be 

performed as easily as the planar analysis. As a matter of fact, all of the singular 

integrals in two-dimensional analysis can be evaluated using the same routines, since 

they are all very similar: one integral which is singular due to the logarithmic term 
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and one integral which is not singular. By taking advantage of this fact, only one 

efficient integration routine is needed for all element types and all two-dimensional 

Green's functions. 

Three-Dimensional Elements 

Four different types of surface elements for three-dimensional analyses were de­

veloped for the system. Again, the different element types are necessary to create 

a flexible and efficient BEM analysis system. Linear and quadratic serendipity-type 

elements of both triangular and rectangular shapes are used in the system developed 

in this work. 

As mentioned in the previous sections, the elements consist of surface patches in 

space connected by nodes; the number of nodes determines the order of the parametric 

surface in ( and 'TJ (Figure 9). The parameters ( and 'TJ are normalized such that 

they both vary from 0 to 1 for rectangular elements. For triangular elements the 

parameter ( is normalized to vary from 0 to 1, while 'TJ varies from 0 to 1- (. Each 

shape function is associated with a node, such that the shape function value is equal 

to 1 at its corresponding node and zero at any other node. 

The integrations of the fundamental solution and its derivative over the surface 

patches have been found to be very sensitive to element distortion [48]. Therefore, 

care must be taken to ensure that the elements do not deviate considerably from their 

original parametric shape. In other words, elements which are defined as rectangles 
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in parameter space, should closely resemble rectangular surface patches in three­

dimensional space, and elements which are defined as triangles in parameter space 

should also resemble triangles in three-dimensional space. Also, nodes located at 

corners of the element in parameter space should map into nodes at vertices of the 

element in three-dimensional space, and one can say the same about nodes which lie 

on the sides of the elements. Therefore, it is important to know the order in which 

the nodes are on the element in parameter space. The element definitions, including 

figures depicting the location of the nodes on the element in parameter space, are 

given in the following discussion. 

The simplest element of the system consists of a triangular planar surface de­

fined by three nodes. This element linearly interpolates the value of the unknown 

function between each node. As previously mentioned, the integrations over the ele­

ment are performed in a localized coordinate system. Mapping of the element from 

three-dimensional space to the localized ( -TJ system is achieved through the use of 

the parametric shape functions. These shape functions corresponding to the planar 

element are: 

N1 - ( 

N2 - TJ 

N3 - 1-(- TJ (97) 
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where the first node lies at (( = 1,'17 = 0), the second node at((= 0,'17 = 1), and and 

the third node at ( ( = 0, '17 = 0), as shown in Figure 10. 

The four-noded rectangular element, or bilinear element, interpolates the value 

of the unknown function with a bilinear surface between the nodes of the element. 

The mapping from three dimensional space to the localized coordinate system used 

to perform the integrations is achieved with the following parametric shape functions: 

N1 - 1 - ( - '17 + ('17 

N2 - (-('17 

N3 ('17 

where the nodes are placed on the element in the order shown in Figure 11. 

(98) 

· The six-noded triangular element interpolates the value of the unknown function 

and surface geometry with a quadratic surface connecting the nodes on the element. 

Mapping of the element from three dimensional space to the localized ( -Tt coordinate 

system used for integration is done through the following parametric shape functions: 

N1 = 2(2 - ( 

N2 4(rt 

N3 2'172 - rt 
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(99) 

where the order of the nodes on the element is shown in Figure 12. As Figure 12 

indicates, the first, third, and fifth nodes of a triangular element must always be at 

the corners of the triangle; and the second, fourth, and sixth nodes should be at 

approximately the midpoint of the sides of the 'triangle. 

. The eight-noded rectangular element interpolates the value of the unknown func-

tion with a semi-cubic surface between each node on the element. Figure 13 shows 



54 

the order of the nodes for the eight-noded rectangular element. The shape functions 

for the eight-noded element are: 

N1 - -2ry2( - 2ry(2 + 2ry2 + 2(2 + 5ry(- 3ry - 3( + 1 

N2 = 4ry2 - 4ry2 - 4ry( + 4ry 

N3 -2ry2( + 2ry(2 + 2ry2- TJ(- 'fJ 

N4 - -4ry(2 + 4ry( 

Ns - -2ry2( + 2ry(2 - 3ry( 

N6 - -4ry2( + 4ry( 

N1 - 2ry2(- 2ry(2 + 2(2- TJ(- ( 

Ns = 4ry(2 - 4(2 - 4ry( + 4( (100) 

As with the two-dimensional analysis, performing the integrations over each ele-

ment accurately and efficiently is imperative for the success of the BEM system. 

Gaussian quadrature is the most effective way to perform most of the integrations 

involved. 

Equation 15 is repeated here for convenience: 

A row r 
C<I>(rt) =< q,n > Jr on {N} dr- < qn > lr W {N} dr (15) 



Figure 12. Six-Noded Triangular Element in Localized (-TJ Co­
ordinate System 
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Figure 13. Eight-Noded Rectangular Element in Localized (-TJ 
Coordinate System 

55 



56 

By substituting the fundamental solution of the three dimensional Laplace's equation 

(101) 

and its normal derivative 

aw 1 (r- rl) . n 
an - - 471" If'- f'tl 3 

(102) 

into Equation 15, we obtain 

The inte~rations of Equation 103, which m~st be performed over the surface ele-

ments in space, are evaluated in the localized coordinate system, using the following 

Jacobian transformation: 

(104) 

where 

8y8z 8y8z 
91 - --.---

8( 8q 8q 8( 
8z8x 8z8x 

92 -----
8( 8q 8q 8( 
8x8y 8x8y 

(105) 93 - -----
8( 8q 8q 8( 
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For rectangular elements, the two integrals from Equation 103 that must be evaluated 

become 

~ /1 /1 (r- f't). n {N} IJ(~" )I d d~" 
47r lo lo If'- fil 3 ., ' 'fJ 'fJ ., 

and 

1 la1la1 1 -4 1
-.. _.i{N}IJ((,TJ)idrJd( 

1r o o r- rt 

(106) 

For triangular elements, the upper limits of the integral over the rJ-coordinate becomes 

1-(. Numerically, the integrations are evaluated using two one-dimensional Gaussian 

quadratures over the elemental surface. This integration technique provides accurate 

results as long as the integrals are not singular. 

Singular integrals arise when integrating the Green's function over an element 

which contains the source node. These singular integrals cannot be evaluated accu-

rately with standard Gaussian quadrature and 'care must be taken to obtain accept-

able results. 

·Several different techniques have been developed to evaluate the singular integrals 

arising in boundary element analysis [48-54]. The most effective of these analytically 

cancel the singularity [49-51]; with this technique, errors as low as 0.0001% have been 

found for plane triangles and rectangles. This method is used in the current system. 

For all four element types, only the case where the singularity is located at the 

first node need be considered. The nodes may be renumbered for each different case 
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· in such a way that the source node always lies on node one. This is done internally 

by the current BEM system. 

Consider the linear element with the vector fi. placed at the same location as 

node 1 of the element. In this case, the integrand of Equation 106 is singular at 

(( = 1, 1J = 0). The integrals to be evaluated are: 

- ~ {
1 r-c (r' .:- rl] "/~ {N} IJ((, 17)1 d1] d( 

47r lo lo lr- rtl 
(107) 

and 

. 1 lo1 lo1-C 1 -4 1 
____ 

1
{N}IJ((,7J)Id7Jd( 

1r o o r- rt 
(108) 

The singularity may be removed analytically by mapping the triangular element into 

a square, as shown in Figure 14. As seen from Figure 14, node 1 of the element 

becomes a side of the square, in the new u-v coordinate system, the three sides of the 

triangle becoming the other three sides of the square. This mapping is achieved by 

the coordinate transformation 

(=u d( ='du 
(109) 

17 = (1 - u )v d1] = {1 - u )dv 

The integrals to be evaluated now become: 

1 11 11 (r' _ fi.) . n 
- _, _, 3 {N}IJ(u,v)l(1-u)dvdu 
47r o o lr- rtl 
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and (110) 

1 1111 1 -4 I_, _,I{N}IJ(u.,v)l(1-u)dvdu 1r o o r- rl · 

It is simple to show that the 1i- rll term appearing in both integrals can be written 

in the form: 

li-r'tl = (1-u)F(u,v,r1,f2,T3) (111) 

where the vectors rll r2, T3 are simply the coordinates of the nodes of the elements. 

The function F is: 

(112) 

The offending term, (1- u), in the denominator may now be canceled with the 

(1- u) term in the numerator; thus, the integrals in Equation 110 may be written as: 

1 11 11 (f'- rl) . n 
-- ( ) 2F 3 {N}!J(u,v)ldvdu 

47r 0 0 1- u 
(113) 

and 

1 {1 {1 1 
41rlo lo F{N}!J(u,v)ldvdu (114) 

These integrals may now be evaluated using standard Gaussian quadrature- neither 

one is singular since F is not zero at any point :of the element. Even though the first 

integral still contains the (1 - u)2 term in the denominator, it is not singular. A 
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(1 - u) term may be factored out of the numerator, canceling one of the (1 - u) 

terms in the denominator. The shape functions {N} are exactly zero at the singular 

point (except the shape function corresponding to node one, but this integral may be 

calculated using physical considerations [36]), canceling the last of the (1 - u) terms 

in the denominator. 

The four-noded, six-noded, and eight-noded elements are treated in a similar 

fashion, except that one must deal with nodes which are not at corners of a triangle. 

For example, consider the four-noded element, ~ith rllocated at node 1 of the element 

(see Figure 11 for location of the node). To deal with the singularity at this node, 

th~ element must be divided into two other triangular elements as shown in Figure 

15. This mapping is achieved by using the following coordinate transformations: 

( - VI 

1- ui (115) 

and 

( 1- ui 

'f/ - 1- UI- VI (116) 

These two triangles, with the singularity at node 1 of each, are then mapped into 

squares as is done with the linear element. 
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The six-noded triangle is treated exactly the same as the linear element when the 

singularity exists at node 1 of the element. If the singularity exists at one of the 

mid-side nodes, the element must be split into two triangles as shown in Figure 16, 

where the singularity is at node 2. The mapping is achieved using the coordinate 

transformations: 

( 
1 
-ui 
2 
1 , 2UI +VI (117) 

and 

( 
1 . 

- 1- -UI:_ VI 
2 

1 
(118) , -ul 2 . 

The resulting two triangles, once again, are mapped into squares, as done with the 

linear element. 

The eight-noded rectangle is treated the same as the four-noded bilinear element 

when the singularity exists at node 1. The element is split in the same way as the 

bilinear element, using the same coordinate transformations. If the singularity exists 

at the second node (or at any mid-side node), the element must be split into three 
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rectangles as shown in Figure 17, using the following coordinate transformations: 

and 

1 
( - -ul 2 . 

'T/ - 1- Ut, 

1 
1- -u1 

2 

(119) 

(120) 

(121) 

The three triangles in the u1-v1 , u2-v2 , and u3-v3 coordinate systems are then mapped 

into squares, and the integrals are evaluated in the same manner as the linear trian-

gular elements. 
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Computer Implementation 

The BEM system was implemented in a computer program, using the C program­

ming language, under the Ultrix operating system, on a VAXstation 2000 minicom­

puter. The program consists of a general purpose boundary element system capable of 

solving Darcy's equation, for the special cases discussed, in two- and three-dimensional 

space. The program is also capable of solving axisymmetric problems, where only the 

curved boundary in the r-z plane is .defined. It .is a batch-oriented system, where the 

tiser creates ·an input file which is read by the program. Interactive graphical analysis 

of .the input data, and the results are also provided, using the X-windows system 

under Ultrix. 

The input data for the BEM system resides in a file created by the user. The 

file contains: the locations of all the nodes, including their boundary conditions; the 

element topology information; the material property information; and the type of 

analysis which is to be performed. 

Readability of the input and output file was one of the main considerations which 

influenced the creation of the input/output routines. The user of the system should be 

able to read the contents of the file and easily recongnize what everything represents. 

To achieve this, keywords are used throughout the input file, indicating to both the 

user and the BEM system what each part of the data represents. All of the data may . 

be written in "free format", where none of the numbers or keywords needs to be lined 
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up in colurrms. Blank lines, as well as comment lines (identified by placing a % sign 

in the first colurrm of the line), are also allowed, helping to improve readability for 

the user. Keywords may be written in upper or lower case, and for the most part, 

only the first few letters of the keyword are necessary. 

The interactive graphical previewer and post-processor are invoked with a com­

mand line argument, given at run time. A window is created and the program enters 

a "command mode", where the user is prompted for commands which determine the 

action of the program. From this command mode, the user can: view the model from 

any angle desired; begin the analysis process; view isopotential maps of the solution 

within the domain for two-dimensional problems; view isopotential maps on the sur­

face of three-dimensional models; select specific points within the domain and obtain 

potential values there in two-dimensional problems; and produce PostScript files of 

the current contents of the window which can then be printed out on any PostScript 

laser printer. An online "help" command, which simply lists the commands and their 

syntax, is also provided. 



CHAPTER IV 

VERIFICATION 

The initial verification of any numerical analysis system is achieved by comparing 

results from numerical analyses with results from analytical (exact) analyses. Exact 

solutions are available for only relatively simple problems. Therefore, additional com-

parisons must be made with experimentally obtained data. In the following sections, 

the BEM system is used to analyze a number of example problems. Comparisons are 

made with analytical results and with experimentally obtained data. 

Electropotential Distribution Over Coplanar 
Electrodes 

In this example, the results of the current BEM system are compared with the 

.analytical work of Waber and Fagan [12], where the electropotential distribution 

throughout an electrolyte above infinitely long narrow electrodes, juxtaposed and 

alternating in an infinitely long array along a horizontal plane (Figure 18), is studied. 

This semi-infinite galvanic cell may be modeled as a two-dimensional problem, as 

shown in Figure 19. 
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Figure 18. Infinite Array of Infinitely Long Electrodes on the 
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Figure 19. Two-Dimensional Model of the Semi-Infinite Gal­
vanic Cell 
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The boundary conditions are given by: 

lim a<P = 0 
y-b ay 

a<P I = a<P I = o 
ax x=O ax x=c 

{ 
E + K-a<P 1 

<P(x, 0) = a oy y=O 

K. a<P I ay y=O 
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where K. is a "polarization parameter" [7], and Ea is the difference in potentials be-

tween the anode and the cathode extrapolated to zero current flow. The electropo-

tential distribution in the the two-dimensional problem is expressed by Waber as a 

Fourier series of the form: 

E 2E 00 sin (.!:!?!!!.) cos (~) cosh [.!!!: (b - y)] 
<P(x,y) =~+--a L c c c 

C 7r n=l n [cosh ( n:b) + ( n;tt) sinh ( n:b)] 

The problem was modeled using the BEM system with a mesh as shown in Figure 

20. The parameters a, b, and c were 0.5, 0.5, and 1.0, respectively. The polarization 

constant Ea was set to 1.0. The model contained 44 nodes and 42 elements. The 

electrodes were modeled using Overhauser elements, while the sides and top of the 

electrolyte were modeled using linear elements . 

. The BEM system converged to a solution after only one iteration. The rapid 

convergence occurred because the polarization behavior of the electrodes was given 
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Figure 20. BEM Mesh of Electrolyte Boundary 

by a linear function and the resulting set of equations to be solved by the BEM system 

was linear. 

The dimensionless quantity C*, representing current density at the electrode sur-

faces, is defined by Waber as: 

C* = (- 2a) a~ I 
Ea oy y=O 

The results for C* on the electrodes, at y = 0, are shown in Figure 21. As 

seen from the figure, the results of the BEM analysis are extremely accurate, even 

at the singularity located at xI c = 0.5, where C* changes sign. The results of the 

dimensionless potential P* = ~I Ea are shown in Figure 22, where, again, it can be 

seen that the results of the BEM an,alysis agree with the Fourier series solution. 
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Figure 21. Dimensionless C* Current Flux at Electrode Sur­
faces 
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Comparison of Two-Dimensional Analysis 
With Experimental Results 

74 

A simple galvanic cell involving stainless steel (SUS-304) and gray cast iron (FC-

20) immersed in an NaCl solution is used to compare the results of the current BEM 

system with experimental data. The work of Aoki, et al. [29], involving such a galvanic 

system, is used here. 

The galvanic cell is shown in Figure 23, where the top and sides were assumed 

to be insulated. To measure the current density, the electrodes were split into strips 

along the width, separated by very thin insulation. After the galvanic cell reached a 
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Figure 23. Experimental Stainless Steel-Cast Iron Galvanic 
Cell 

steady state, the current density was measured· at each electrode strip. 
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The polarization behavior of the two metals was given by the following curves 

[29]: 

and 

cl>elsteel = -48(log qe) 2 -137log qe- 372 

where the electrode potential cl>e is measured in m V and the current density qe at 

the electrode is measured in 11A/ cm2• The polarization curves are approximations 

to the measured polarization behavior of stainless steel and cast iron in the N aCl 

solution. Aoki et al. [29] did not specify the concentration or the conductivity of the 
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NaCl solution used in this experiment. For the BEM analysis, the conductivity of the 

electrolyte was taken as 0.000357 rr.ilio/ em. This value is given in the work by Aoki 

et al. (55] for a 0.016 wt% NaCl solution and is consistent with other values found in 

the literature [21]. 

For this analysis a two-dimensional BEM model of the galvanic cell, composed of 

74 nodes and 70 elements, was used. The mesh is very similar to the one shown in 

Figure 20 for the previous problem and therefore it is not shown here. Linear elements 

were used to model the sides and top of the electrolyte and Overhauser elements were 

used to model the electrodes. Convergence was· achieved after 8 iterations. The 

results are shown in Figure 24 where it can be observed that the general behavior of 

the results obtained using the BEM system is the same as that of the experimental 

results. The actual values differ by as much_ as 100% at some points, but this is 

attributed to the fact that the conductivity values used in this work may not be the 

same as those used in the experimental work, which were not available at the time. 

Comparison of Axisymmetric BEM Analysis 
With Experimental Results 

The work by Fu and Chow [56] is used in this example for the purpose of comparing 

the results obtained using the axisymmetric formulation of the BEM system with 

experimental results. 

The analysis consists in finding the electropotential distribution in a cathodically 
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protected plastic cylindrical tank with a copper bottom, as shown in Figure 25, repro-

duced here from Fu and Chow [56]. The bottom of the tank holds a 1 em dia. graphite 

anode, at which an impressed current of 20 rnA was supplied using a potentiostat, 

and concentric copper rings separated by thin (1 mm) insulation material. The tank 

was filled to a depth of 10 em with an aerated 0.05 N NaCl solution with a specific 

conductivity of 0.0033 mho/ em. 

The BEM analysis was performed using the mesh as shown in Figure 26. 

A total of 64 nodes and 62 linear elements were used in the axisymmetric model. 

The boundary conditions specified were: an outward normal flux on the graphite 

anode of -25.46 J.LA/cm2 ; a zero normal flux on ~he top, sides, and insulation between 
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Figure 26. Axisymmetric BEM Mesh of Electrolyte Boundary 

Graphite and copper; and ~ = fe( qe) on the copper surface. The approximation of 

the polarization curve fe(qe) given in the work by Fu [56] is shown in Figure 27. The 

polarization curve shown in Figure 27 is an approximation of the curve given in the 

work by Fu [56]. This approximation is given by: 

where the values of a and (3 are given in Table 1. 

The BEM analysis converged after 9 iterations. The results obtained from the 

BEM analysis and the experimental data for the electropotential and the current 
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Table 1. Coefficients Used to Approximate Polarization 
Curve of Copper in 0.05 N NaCl Solution 

Current Density Range a {3 
(J.LA/cm2) 

-oo < i :5 3.162 -2.0 -1.275 

3.162 < i :::; 5.623 -3.0 -1.825 

5.623 < i :::; 1.000 -8.0 -4.450 

1.000 < i:::; 17.78 -7.0 -3.951 

17.78 < i:::; 31.62 -7.0 -3.950 

31.62 < i :::; 100.0 -3.0 -2.150 

100.0 < .i < 00 -2.5 -1.950 
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density along the bottom of the tank are shown in Figures 28 and 29. For the elec-

tropotential along the copper surface, there is generally excellent agreement between 

the experimental results and the BEM analysis results. For the current density, 

agreement is generally not as good. This is probably because the experimental mea-

surements for the current density may have been flawed. As Fu postulates in his work 

(56], the experimental measurements may be flawed by hydrogen bubbles formed on 

the copper ring surfaces, especially close to the· graphite surface. 
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Comparison of Three Dimensional BEM 
Analysis With Experimental Results 
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The cylindrical tank shown in Figure 30, reproduced from Aoki et al. [55], is used 

to compare the results of the three-dimensional BEM analysis with experimental 

results. The experimental results are based on the work of Aoki et al. [55]. 

The tank consists of a cylindrical stainless steel (AISI 304) shell with a silicone 

rubber bottom. A cast iron, 20 mm semi-circular strip is attached to the bottom of 

the stainless steel side. A small piece (20x20 mm) of aluminum is also attached to the 

bottom of the cylinder side (Figure 30). The tank is filled to 160 mm with a 0.0165 

wt% NaCl solution with a conductivity of 0.000357 moh/cm. 

An approximation of the polarization curves in the work by Aoki et al. is shown 
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in Figure 31. It is important to note that, although the defined boundary conditions 

specify a negative current density for anodic surfaces and a positive current density for 

cathodic surfaces, they are both represented on the positive axis in the log-scale graph. 

Although the polarization curve of cast-iron appears to be a multiply-valued function, 

it should be noted that the top portion of the curve represents the anodic behavior, 

and the bottom of the curve represents the cathodic behavior. The polarization 

behavior of aluminum is also plotted on the positive axis, though in this case it acts 

strictly anodically. 

The polarization curves are approximated in a piece-wise fashion according to 

for each segment of the curve. <I>e is measured in Volts (vs. SCE). The values of a: 

and f3 for each material are given in Table 2. 

The three-dimensional BEM model used in the analysis is shown in Figure 32. The 

mesh consists of 226 nodes and 384 linear elements. Zero flux boundary conditions 

were specified at the bottom and top of the cylinder. The boundary condition specified 

at the remaining nodes was <I> = fe( qe), where fe is determined by the electrode 

material pertaining to each element, whose locations are shown in Figure 32. 

The BEM system converged after 7 iterations. The results for the electropotential 

along the 8 direction at a z distance of 10 mm are shown in Figure 33. Averages were 

calculated for the elemental node values of <I> for each element. It is these average 
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Figure 31. Polarization Curves for Stainless Steel, Cast Iron, 
and Aluminum in 0.0165 wt% NaCl Solution 
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Table 2. Coefficients Used to Approximate Polarization 
Curves for Stainless Steel, Cast Iron and Aluminum 
in 0.0165 wt% NaCl Solution 

Material Current Density Range a (3 
(p.A/cm2 ) 

-oo < i ~ 22.36 -0.152 -0.270 

22.36 < i ~ 50.00 -0.272 -0.108 
Stainless Steel 

50.00 < i ~ 70.71 -0.332 -0.006 

70.71 < i < 00 -1.860 2.821 

-00 < i ~ -100.0 -0.105 -0.865 

-100.0 < i ~ -50.0 -0.076 -0.808 
Cast Iron 

-50,.0 < i ~ -5.0 -0.002 -0.681 

-5.0 < i ~ 30.9 -0.009 -0.684 

' 
30.9 < i < 6o -0.121 -0.519 

Aluminum -00 < i < 00 0.002 -0.946 
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Figure 32. BEM Mesh of Cylindrical Tank- 226 Node and 384 
Elements 
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values, for elements along the bottom row of elements along the side of the tan~, 

that are plotted as the BEM solution in Figure 33. An average value for q was also 

calculated in the same ·manner as the average cp values, and the results for the same 

elements in Figure 33 are shown in Figure 34. 

An isopotential map of the BEM results on the boundary of the tank is shown in 

Figure 35, where the boundaries of the different metal surfaces are clearly defined by 

the potential values. It can be seen that the effects of the aluminum and iron on the 

stainless steel are very localized. Despite the localized effect of the anodic metals, 

the stainless steel still acts as the cathode in the galvanic cell. The magnitude of the 

potential value of all of the nodes in the model is above 300 mV, indicating that the 
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Figure 35. Isopotential Map of BEM Results Along Tank Sides 

stainless steel is always acting cathodically. 

The results of this example clearly indicate that the current BEM system is very 

accurate and may be used to calculate electropotential and current density values in 

galvanic corrosion cells. 
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The follo;wing example is used to compare the results of the system with analytical 

results. The problem consists of an electrolyte body which is infinitely long in the z 

direction and has a square boundary in the x-y plane (Figure 36). The electrolyte 

is insulated at y = 0 and y = 1. Electrodes exist at x = 0 and x = 1. Assuming that 

the conductivity, k, of the electrolyte behaves according to (ax + b )2, the problem 

reduces to one dimension, and may be cast in the following manner: 

~[k(x)d<P] = 0 
dx dx 
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with boundary conditions: 

<P(O) = aq(O) 

<P(1) = E~ + f3q(1) 

where <P is the electropotential, q is the electric flux, a and (3 are polarization pa-

rameters as defined by Wagner [7], and Ea is the difference between the electrode 

potentials extrapolated to zero current density. The electric flux is defined by: 

d<P 
q(x) = k(x) dn 

where n is the direction of the outward pointing normal to the electrolyte surface. 

The solution to this problem, easily found by integration, is: 

<P x _ Ea(b + a)[(aba- l)x + ab2] 

( ) - (ax+ b)[(b2 + ab)((3 +a)- 1] 

Results were obtained for a= (3 = -~, b = 1, a= 2, and Ea = 1. The electrolyte 

surface was modeled with a total of 34 nodes .. The top and bottom were modeled 

with a combination of quadratic and Overha~ser [42] elements, while the left and 

right sides were modeled using linear elements. A comparison of the electropotential 

vaiues obtained from the BEM system and from the analytical solution are shown in 

Figure 37. As can be seen from the figure, the agreement between the two solutions 

is excellent. The exact value of the flux, constant throughout the electrolyte, is 0.75. 
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Figure 37. Comparison of Results with Analytical Solution 

The calculated value of .the :flux is accurate to 5 decimal places - an error less than 

0.01 %, indicating that the currentBEM system is very accurate indeed. 



CHAPTER V 

USE OF THE BEM SYSTEM 

To show how the current BEM system may be used for analysis and design of 

cathodic protection systems, two sample analyses are performed. The first sample 

consists of the analysis of a hypothetical cathodic protection system for a reinforced 

concrete deck under the influence of deicing salts. The second sample is an analysis 

of a cathodic protection system for a culvert valve. The following sections describe 

the problems, BEM results, and conclusions about the BEM system which may be 

made from the sample problems. 

Concrete Bridge Deck Under the Influence of 
Deicing Salts 

A hypothetical problem will be used to illustrate the advantages of using a BEM 

system which explicitly accounts for electrolyte nonhomogeneities. The problem con­

sists of a cathodically protected reinforced concrete deck (which is under the influence 

of deicing salts), as shown in Figure 38. The steel used is ~ in. diameter steel, with 

21 • a 2 m. cover. An anode-net system is used for cathodic protection ~f the deck. 

The anode-net system consists of a continuous thin layer, or net, of anodic material 

covering the top of the deck, with an impressed current applied to it. 
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Anode-Net With Impressed Current 

• • • 
Top steel at 12 in. on center 

• T 
12 in 

Bottom steel at 8 in. on center . . . . l 
L---.---------1 

• • 
48 in. 

Figure 38. Cathodically Protected Reinforced Concrete Deck 

The resistivity of the concrete is inversely related to the chloride concentration 

within the concrete [6], which decreases with depth. For simplicity, other factors such 

as moisture, temperature, and concrete density, which affect the conductivity, are 

ignored. The electrochemical resistivity of this example is assumed to increase with 

depth from 50 ohm-em at the top to 10,000 ohm-em at the bottom of the deck. This 

resistivity variation is taken from the work by Vrable [27], and is approximated by 

k = (0.0024 + 0.0003y )2 

where y is the height, in inches, measured from the bottom of the deck. 

· Typicallong:.term polarization behavior for steel in concrete is assumed [27], as 

shown in Figure 39. This behavior is represented by piece-wise sections of the form 

<P = a: log q + j3 
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Figure 39. Polarization Behavior of Reinforcing Steel in Con­
crete 
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where <Pis measured in mV (to Cu/CuS04 half cell), and q is measured in J.LA/in. 2 • 

The constants o: and f3 are given in Table 3. 

The impressed current applied to the system is 1.55 J.LA/in. 2 • This is the recom-

mended maximum current density for cathodically protected concrete structures, and 

it is the operating current density for most net-anode systems now in use [6]. 

Two different models were used for the analysis of the deck: the first model 

discretizes the concrete deck into four different regions, each of which is assumed to 

have a constant conductivity; the second mode~ treats the deck as one region with a 

variable conductivity. Figure 40 shows the different conductivity functions used for 

each of the two models. 

The model with different regions, with a total of 134 nodes and 174 elements, 



Table 3. Coefficients Used to Approximate Polarization 
Curve of Reinforcing Steel in Concrete 
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Current Density Range 
(J.LA/in2 ) 

-oo < i ~ 4.00 

4.0 < i ~ 50.0 

50.0 < i ~ 80.0 

80.0 < i < 00 

I I 

f3 

-1.0514 -0.2000 

-0.0612 -0.7962 

-0.3233 -0.3507 
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Figure 41. BEM Model of Reinforced Concrete Deck With 
Multiple Homogeneous Regions 
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is shown in Figure 41. The model with variable conductivity, with 100 nodes and 

100 elements, is shown in Figure 42. In both models, each reinforcing steel rod was 

modeled using four Overhauser elements [42] (Figure 43); the remaining boundaries 

were modeled using linear elements. 

The BEM system converged in eight iterations for both cases. The total run time 

was approximately 20 minutes for the variable conductivity model and approximately 

26 minutes for the multiple region model. An isopotential map of the results for the 

variable conductivity mesh is shown in Figure 44. Similar results were obtained for 

the multiple homogeneous regions mesh. 

For the multiple region model, the average potential value on the top steel was 

calculated to be -820 m V, while on the bottom steel the average potential calculated 



Figure 42. BEM Model of. Reinforced Concrete Deck With 
Variable Conductivity 

Figure 43. Close Up View of Overhauser Model of Each Rein­
forcing Steel Rod 
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Figure 44. Isopotential Map of Results for Reinforced Con­
crete Deck With Variable Conductivity 
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was -730 m V. For the variable conductivity model, the average potential value on the 

top steel w~s calculated as -815 m V, while the average potential calculated on the 

bottom steel was -735·mV. The results obtained from both models indicate that the 

bottom steel is not being protected from corrosion - an electropotential of -770 m V 

on the steel is generally assumed to be the minimum magnitude needed for cathodic 

protection of reinforcing steel in concrete [6]. 

The results obtained using the two models are very similar. It is observed though 

that the total run time for the model with multiple regions is about 30% greater than 

the run time for the variable conductivity model. More importantly, creation of the 

input file for the more complex multiple region model is much more time consuming 
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for the system user. Thus, the variable conductivity model is more effective for 

analysis and design purposes than the multiple region model. 

Cathodic Protection of Culvert Valve 

The cathodic protection system of an existing culvert valve is analyzed in this 

section. The culvert valve is a pressure head releasing device, submerged in fresh 

water, and made out of ASTM-A36 steel (Figures 45, 46, 47). The radius of the 

valve is 17 ft. 6 in. from the center of the pivot to the outer edge of the ~ in. thick, 

10 ft. 6 in. wide shell. The shell covers an angle of 48.5°. The inside face of the 

valve is protected from corrosion by a sacrificial anode cathodic protection system. 

The outside face is protected by a 20% corrosion resistant cladding in combination 

with a sacrificial anode cathodic protection system. The sacrificial anodes are 7.5 lb. 

magnesium blocks attached to the shell. 

Because the effects of the cathodic protection system are mostly localized to the 

shell, the culvert valve can be idealized for BEM analysis as a partially cylindrical 

shell submerged in an infinite electrolyte. Due to lack of polarization and resistivity 

data for the particular materials involved with this problem, the shell is assumed to be 

stainless steel, the anodes are assumed to be aluminum, and the electrolyte is assumed 

to be a 0.0165 wt% NaCl solution. The assumptions are not entirely unfounded; the 

electrochemical behavior of aluminum is very similar to that of magnesium [4,5], 

and the resistivity of the 0.0165 wt% solution, taken as 2500 ohm-em, is the same 
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Figure 45. Culvert Valve Submerged in Fresh Water- Eleva­
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Figure 46. Culvert Valve Submerged in Fresh Water- Section 
A-A 
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as that used for the original design of the culyert valve cathodic protection system. 

The polarization curves used, the same as those used in the fourth problem of the 

verification chapter (page 84), are repeated here in Figure 48 for convenience. 

The boundary element mesh is shown in Figures 49 and 50, where the anode 

arrangement is depicted by the filled-in anodic surfaces. The BEM mesh consists of 

504 nodes, and 1004 triangular linear elements. It is an "external " problem, in the 

sense that the boundary of the electrolyte is the shell itself- the electrolyte medium 

extends to infinity in all directions. 

The BEM system converged to a solution in 7 iterations, after running on the 

VAXstation 2000 system for approximately 21 hours. The results are depicted in the 
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Figure 49. Perspective View of Inside Face of Culvert Valve 
HEM Mesh 
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Figure 50. Perspective View of Outside Face of Culvert Valve 
BEM Mesh 
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contour map of equipotentials in Figures 51 and 52. 

For complete cathodic protection, the galvanic reaction must be such that the 

electropotential of the complete surface area of the steel shell is forced far enough 

into the cathodic region of the polarization curve to ensure that the steel is acting 

cathodically. A criteria for the maximum potential value for cathodic protection can 

therefore be taken as -300 m V, a value which is well within the cathodic region of the 

polarization curve. Based in this value, Figures 51 and 52 indicate that the outside 

edges of the shell may not be protected from corrosion. 

An alternative BEM mesh and anode arrangement for the front of the valve is 

shown in Figure 53. This arrangement contains one more anode at the center of 

the shell, and the anodes on the outer edges of the shell have been placed closer to 

the borders. For the alternative mesh, the BEM system converges to a solution in 

8 iterations, after running for approximately 22~ hours. The results are shown in 

Figure 54, where it can be seen that the electropotential values at outside edges are 

almost completely under -300 m V. Though, according to the criteria chosen here, the 

front face of the shell is still not completely protected from corrosion, the alternative 

anode arrangement results in a larger cathodically protected surface area. 

The original anode arrangement was used to test the cathodic protection proper­

ties of aluminum with respect to cast iron. Using the same mesh shown in Figures 
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Figure 52. Topographic Map of Calculated Electropotential 
Values of Back Face of Culvert Valve Shell 
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Figure 53. Perspective View of Inside Face of Culvert Valve 
BEM Mesh With Alternative Anode Arrangement 
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49 and 50, but assuming that the valve shell was cast iron instead of stainless steel, 

another program run was made. Convergence was achieved after 4 iterations and 20 

hours. 

Using the same criteria as that used for choosing the critical electropotential 

value for cathodic protection of stainless steel, the maximum electropotential value 

for cathodic protection of cast iron is taken as -700 m V. The results shown in Figure 55 

indicate that only those areas very close to the aluminum anodes have electropotential 

values bellow -700 m V. It can be concluded that, based on the criteria chosen here, 

the aluminum anodes are not very good choices for the cathodic protection of cast 

iron in fresh water. 

Although no concrete conclusions can be made about the cathodic protection sys­

tem used for the culvert valve, due to insufficient polarization data, it is possible to 

see how the system BEM can be used as an aid for design of cathodic protection 

systems. Once the polarization data are obtained and programmed into the polar­

ization database of the BEM system, it is simple to create new models for different 

anode arrangements, and even different anodic materials, in order to find a suitable 

cathodic protection system. 



Figure 55. Topographic Map of Calculated Electropotential 
Values of Front Face of Cast Iron Culvert Valve 
Shell 
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CHAPTER VI 

CONCLUSIONS 

A BEM system which accounts for domains with variable resistivity is advanta­

geous because the alternatives may be too costly in both man-hours and computer 

time. FEM and FDM differences suffer from the fact that the domain must be 

discretized. Though domain discretization facilitates the approximation of nonhomo-

geneities, it leads to large systems of equations to be solved, and large amounts of time 

consumed in creating the model, especially for three-dimensional problems. Accurate 

modeling of nonhomogeneous regions with standard BEM systems requires division 

of the domain into several homogeneous zones, adding to the number of equations to 

be generated and solved, as well as adding to the time in which the model can be 

created. 

In addition to the aforementioned advantages, the current BEM system, which ex­

plicitly treats nonhomogeneous domains, may lead to more accurate results than its 

alternatives. In general, the resistivity of a particular region must be obtained exper­

imentally. The resistivity function is then approximated by fitting curves through the 

obtained data. Using either FEM, FDM, or BEM with multiple zones, these curves 

are then approximated again by discretization of the domain. Using a BEM system 
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which explicitly treats nonhomogeneous domains, no discretization of the conductiv­

ity function within the electrolyte is needed. The functions used to approximate the 

experimental data may be the same as those used in the BEM analysis. 

It is important to note that successful application of this method, and any other 

numerical method, is highly dependent on the 'accuracy of the mathematical model 

used. In previous work, it has been shown that Laplace's equation accurately governs 

the distribution of electropotentials within an electrolyte in a galvanic cell, but the 

boundary conditions, given by the electrode polarization functions, have not been 

as thoroughly investigated. The behavior of the electrode surfaces is dependent a 

multitude of factors, including temperature, dissolved oxygen within the electrolyte, 

and Hydrogen ion concentration. The polarization curves used in the analysis of 

corrosion problems by numerical techniques mu_st take all of these factors into account. 

Inaccurate polarization curves will invariably lead to erroneous results. 

In a large number of applications, the electrode polarization functions will change 

over time, due to a build up of calcareous deposits. Therefore, quasi-static capabilities 

for this type of problem would be an important addition to the current BEM system. 

This type of analyses would use a family of polarization curves, each corresponding 

to a particular time period. A more accurate representation of the corrosion process 

would thus be obtained, improving the design and analysis of cathodic protection 

systems. 



117 

Additional work could to improve the user-friendliness of the system is also de­

sirable. A specialized Green's function, capable of explicitly modeling symmetric 

problems, and tube elements, which would model cylindrical voids within the elec­

trolyte with few nodes, could both be incorporated into the current BEM system in 

the future. The advantages of these two additions would be a reduction in modeling 

and computation time required to solve problems. 
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1 Introduction 

The program CPOIS is a general purpose boundary element n1ethod (BEM) analysis 

system for the solution of Laplace's equation, Poisson's equation, and some special 

cases of Darcy's equation. Two and three dimensional problems, as well as axisym­

metric problems modeled with two dimensional elements in the r-z plane, can be 

solved using CPOIS. Non-linear boundary conditions, multiple regions with different 

material properties, and point sources are additional capabilities of the BEM system. 

Several element types in both two and three dimensions are available. 

CPOIS is a file oriented program which r~ads in one input file and writes the 

results into one output file. A command line argument to the program permit the 

user to activate the interactive graphics previewer and postprocessor. The interactive 

previewer permits the user to visually check the input data for modeling accuracy and 

errors. Full two and three dimensional graphics are provided for this purpose. Auto­

windowing, hidden surfaces, zooming and selective display are all included features 

of the inter~ctive graphics previewer. 

Postprocessing commands may be invoked upon termination of the system solu­

tion without exiting the previewer, or the postp~ocessor may be invoked after a batch 

run, for large problems which are not suitable for interactive analysis. The postpro-

1 
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cessing capabilities of .CPO IS include: plotting of isopotential maps throughout the 

domain for two dimensional problems, including axisymmetric analyses; plotting of 

isopotential :maps throughout the boundary of three dimensional problems; selection 

of points within the domain for the calculation of the potential value at that location; 

and creation of PostScript output to external files. 

This manual is intended for those who are already familiar with the boundary 

element method and its applications. This manual does not attempt to teach BEM 

concepts nor does it attempt to inform the user of the various applications of Laplace's 

equation to engineering problems. 

2 Program Capabilities 

The BEM system, CPOIS, can solve the general two dimensional Laplace's equation 

in two and three dimensions. Also, axisymmetric problems may be modeled in the r-z 

plane using the two dimensional elements. The program CPOIS contains a series of 

additional capabilities making it a powerful tool for the solution of general diffusion­

type problems. 

Problems with piece-wise homogeneous regions are treated by creating a sub­

domain with specific material properties for eafh different region. The nodes on the 
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interface between the regions do not have any specific boundary condition specified; 

CPOIS will internally impose the physical restrictions existing at the interface. The 

conductivities of each material must be given in each particular direction, thus al­

lowing for materials with orthotropic properties. Problems involving materials with 

spacialy varying conductivities, in which the square root of the conductivity function 

satisfies Laplace's equation, can also be solved ~sing CPOIS. The conductivity func­

tion may be explicitly. defined by the user as a C function (including its derivatives 

with respect to each coordinate) or the coefficients of the general trilinear function 

may also be specified in the input file. 

The general Poisson's equation, in two dimensional and axisymmetric problems, 

can also be solved using CPOIS. Poisson terms which satisfy Laplace's equation are 

treated using a boundary integration technique; Poisson terms which do not satisfy 

Laplace's equation are treated using the Monte Carlo method developed by G. S. 

Gipson. The user must supply the program with the Poisson function, as well as its 

derivatives in both the x and y directions as functions written in C. Concentrated 

point sources, a special case of Poisson terms which satisfy Laplace's equation, is 

another available option in CPOIS. 

Phreatic surface problems are treated using an integration procedure in which the 

y coordinate of the phreatic surface, equivalent to the 'head' pressure, is found with 
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respect to a reference 'head' pressure of zero. Galvanic corrosion problems are solved 

by specifying an electrode type as a boundary condition, where the electropotential 

is given as a function of the current density. A Newton-Raphson iteration procedure 

is used to solve the resulting system of non-linear equations. 

3 Element Types 

3.1 Two Dimensional Elements 

Five different types of two dimensional elements are available. All of the elements 

may be connected to one another at will. For maximum efficiency, it is recommended 

that linear elements are used for linear geometries where the behavior of the field 

variable is expected to behave in a more or less linear fashion, and the higher order 

elements be used for more complex boundaries. 

The elements described in this section are used for both axisymmetric and two 

dimensional planar problems. 

3.1.1 The Constant Element 

This very crude element, which assumes a constant distribution of the field variable 

across the element, consist of 3 nodes, two of which are "dummy" nodes. These 
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. ' 

dummy nodes are not actual nodes, but locations which define the endpoints of the 

elements. The middle node, which is not one of the "dummy" nodes must be located 

between the other two nodes of the element. It is recommended that these elements 

not be used on a routine basis, due to the lac~ of accuracy obtained when they are 

used. A large number of constant elements is needed to obtain accurate results for 

all_ but the most simple of problems. The constant element was originally included 

in the system only as a debugging tool for the author, and remains in the system for 

the same purpose. 

3.1.2 The Linear Element 

The linear element linearly interpolates the field variable between the two nodes of 

the element, located at the endpoints of the element. The linear element works very 

well for linear geometries where the resulting potential is close to linear, and, due 

to the speed at which the integrations are calculated using this element, it is very 

efficient. Curved geometries must be defined with a large number of linear elements 

to obtain accurate results, thus it is recommended that the higher ordered elements 

be used for curved geometries. 
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3.1.3 The Quadratic and Cubic Elements 

These higher ordered elements are very effective for modeling curved and linear ge-

ometries. They interpolate the field variable between the nodes using a polynomial 

of order n- 1, where n is the number of nodes on the element. The difference be-

tween the results obtained using higher ordered elements and those obtained using 

the linear and constant elements is impressive, specially for problems with curved 

geometries. The quadratic element is compose~ of three nodes, two at the endpoints 

of the element and one at the center. The cubic" element is defined by four nodes, two 

of which are located at the endpoints and the other two evenly spaced between the 

endpoints. 

Higher ordered elements may lead to a phenomenon known as "overspill". This 

phenomenon is encountered when the nodal spacing within an element is very un-

. . 
even, causing a non-unique mapping of the function under consideration and creating 

unwanted warping of the element. These distortions may also appear when the values 

of the calculated variable vary greatly within an element, as may occur near singular-

ities and locations where high gradients in the field variable are present. Care must 

be taken when using these elements so as to not cause unwanted distortions, in other 

words, the nodes within an element should be equally spaced and linear elements 

should probably be used near singularities. 
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3.1.4 The Overhauser Element 

The Overhauser element, which interpolates the field variable with a cubic polynomial 

between the nodes, produces the most accurate results out of all the element types. 

It is constructed by four nodes, where the two internal nodes are the endpoints of 

the elements, and the two outside nodes lie outside of the element. The external 

nodes are used to define the parametric derivatives existing at the two end nodes (the 

middle two nodes). By overlapping the Overhauser elements, where nodes 2, 3 and 4 

of one element are nodes 1, 2 and 3 of the next element, we insure that the parametric 

derivative is continuous at the nodes where the elements are joined together. 

Overspill problems are not as severe with the Overhauser element as with the 

other higher, ordered elements. Still, nodal spacing should be kept as even as possible 

between the four nodes that define the element to ensure that the element behaves 

as expected. 

3.2 Three Dimensional Elements 

There are four different types of elements available: linear triangles, bilinear rect­

angles, six-noded quadratic triangles, and eight-noded semi-cubic elements. Not all 

of the elements may be used in the same mesh though. Only combinations of lin­

ear/bilinear elements, and six-noded/eight-noded elements are possible. There are 
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no transition elements between the linear and bilinear elements and the higher order 

elements. 

All of the surface elements used for three dimensional analysis are created by 

nodes which are numbered in a counterclockwise fashion around the edges of the 

element. The order in which the nodes are placed on the element is important, since 

it determines where the domain to be analyzed is located in space. The direction 

of a vector normal to the surface element which points away from the domain to 

be modeled is determined by using the right-hand rule: using your right hand wrap 

your fingers in the direction the elemental nodes and your thumb should point in the 

outward normal direction. 

3.2.1 The Linear and Bilinear Elements 

The linear elements are constructed with 3 nodes, which form a plane triangle in 

space. The linear element linearly. interpolat~ the field variable between the two 

nodes of the:element, located at the vertices of the triangle. The linear element works 

ve~y well for fiat geometries where the resulting potential behaves in a more or less 

linear fashion. Due to its low number of nodes, and hence, low number of calculations 

needed in the integrations, the computation times for models using the linear element 

are comparably lower than those for models using higher ordered elements. 
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·The bilinear elements represent a mild improvement over the linear elements. Four 

nodes are used to create a bilinear rectangular element, the nodes of the element 

located at the corners of the rectangle. The bilinear element linearly interpolates the 

field variable in each parametric direction, hence the name "bilinear". 

The linear element can be used only in conjunction with other linear element or 

with bilinear elements, and vice-versa. 

3.2.2 The Six-Noded and Eight-Noded Elements 

In general, results obtained .using the higher ordered elements are more accurate than 

results obtained using the linear and bilinear· elements. The six- and eight-noded 

elements are especially suited for curved geometries and problems in which the field 

variable does not behave in a linear fashion. 

The six-noded triangular element interpolates the field variable with a quadratic 

surface between the nodes six nodes it is composed of. The first node of the element 

must be at one of the vertices of the triangle which is formed by the nodes. Thus, 

nodes 1, 3, and 5 of the triangle are at the vertices, and nodes 2, 4 and 6 are at the 

midpoints of the sides of the triangle. 

The eig~t-noded rectangular element interpolates the field variable with a semi­

cubic surface between-the nodes eight nodes it is composed of. The first node of the 
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element must be at one of the corners of the rectangle which is formed by the nodes. 

Thus, all even numbered nodes, within the element, are located at the midpoints of 

the sides of the rectangle, and the uneven numbered nodes are located at the corners · 

of .the rectangle. 

4 Data Input 

This section explains how to create the input file for the program CPOIS. The un­

derlying principles of the input file is readability: the user should be able to read the 

contents of the file and easily recognize what everything represents.· To achieve this, 

keywords are used through out the input file, indicating to both the user and the 

BEM system what each part of the data represents. 

All of the data may be written in "free format", where none of the numbers 

or keywords need to be lined up in columns. Blank lines, as well as comment lines 

(identified by placing a % sign in the first column of the line), are also allowed, helping 

to improve readability for the user. Keywords may be written in upper and/or lower 

case, and for the most part, only the first few letters of the keyword are necessary. 

The general order of the data is: (1) title, (2) problem type, (3) control data, (4) 

nodes, and (5) regions. This order must be followed. Except for the title, the problem 
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type, and the control information, each major section of data is identified by a key 

word on the line before it. 

The elements, material properties, internal points, etc. are all defined in the region 

data. The order in which this information is listed is not important, but again, each 

section of data is identified by a key word on t~e line before it. 

. The following sections describe each sectioti of data and how the information is 

included in the input" file. Keywords in the following sections are given in upper 

case boldface (LIKE THIS), and an asterisk appears where the keyword may be 

terminated, as in AXIS*YMMETRIC, wher~ only the first four letters AXIS are 

required by the program. 

4.1 Title 

There must be a title line at the top of the file. No comments or blank lines are 

allowed before the title line. The title line can be up to 80 characters long. 

4.2 Problem Type 

This line must be after the title line. It defines the type of analysis to be performed, 

which may be either planar two dimensional analysis (TWO), axisymmetric analysis 

(AXIS*YMMETRIC), or three dimensional analysis (THREE). Examples: 
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. ' 
three 

Two Dimensional 

AXIS 

Notice that once the required part of the keyword is recognized by the program, the 

rest of the keyword is ignored. Also, it does not matter whether the words are in 

upper or lower case, or a mixture of both. 

4.3 Control 

Several of the program's options may be invoked by the optional control data. The 

control data determines (a) whether to echo the input data, or not (ECHO or NOE-

CHO, (b) the value of the tolerance used in the ~teration solution of galvanic corrosion 

' 
problems (TOLE*RANCE), and .(c) the ma?cimum number of iterations allowed 

(ITER* ATIONS). 

Examples: 

tolerance n 

iterations n 

echo 

noecho 
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where n is a number specifying the number of iterations or the tolerance. 

4.4 Nodal Points 

The nodal point information should be after the problem type line and before the 

material lines. The keyword NODE*S must precede the coordinate line list. Each 

coordinate line also contains the boundary condition at each node. Nodes may be 

generated in a straight line, therefore, the nodes must all be input in ascending order. 

Syntax: 

n X y z be v 

where n is the node number, x, y, and z are the coordinates of the node, be is the 

keyword specifying the boundary condition ty'pe, and v is either the value of the 

~oundary condition or the electrode metal type. The z coordinate must be omitted 

for three dimensional·analysis. For axisymmetric analysis, the x and y coordinates 

are the r and z coordinates in polar coordinates, respectively. The keyword used 

to specify the boundary condition type are: PC?TE*NTIAL, FLUX, DUMM*Y, 

INTER*FACE, or ELEC*TRODE, which are self explanatory. Only nodes with 

either the potential or the flux must have a specified boundary condition value v. Elec­

trodes must have a metal type specified which may be: TESTA, TESTB, STEELS, 

STEELC, COPPERS, SSTEELS, ALUMINUMS, IRONS, SUS304, FC20, 
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INS STEELS , or IN AL UMINUMS. The file 'initmetals.c' contains the definitions 

and sources for the polarization curves corresponding to each of these metal types. 

Examples: 

1 1.0 5 30.25 temperature 1.0 

2 10.0e+03 l.Oe+02 10 flux 10.0 

3 11 1 dumm 

4 20000.003 20.0 20 PHRE 

5 3 3 3 INTERFACE 

6 1.0 1.0 11.0 electrode ssteels 

4.5 Materials 

Each material must have its own list of elements, internal points and properties. 

The keyword MATE*RIAL must be specified before the properties, elements and 

internal points of each material is given. The material number must also be given. 

Materials must be in order, i.e. material 2 mus~ follow material 1, and so on. If the 

material is an external one this must also be specified. 

Syntax: 

material n code 
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where n is the materi~l number, and code is the optional keyword EXTE*RNAL. 

Examples: 

MATE 1 external 

material 2 

4.5.1 Elements 

The element line list must be preceded by the key word ELEM*ENTS. Each element 

line contains the element type, topology information and number of Ganss points used 

for integration. Elements are generated when the difference between two consecutive 

element numbers is greater than one, therefore, all elements must be in order. 

Syntax: 

n type n1 n2 . . . nN ngauss 

where n is the element number, type is the keyword for the element type. For two di­

mensional elements these may be CONS*TANT, LINE* AR, QUAD*RATIC, 

CUBI*C, or OVER*HAUSER. For three dimensional elements they may be: 

LINE* AR, BILI*NEAR, TRIA *NGULAR, or RECT* ANGULAR. 

n1 n 2 ... nN are the N nodal point numbers which define the element. The nodal 

points which define the element must be in order, and remember that for regular prob­

lems they go counterclockwise and for external problems they go clockwise. ngauss 
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is the n~mber of Gauss points used for integration, which is· optional- the default 

value is four (4), the maximum value is fifteen (15). 

Examples: 

1 LINE 1 2 

2 quadratic 2 3 4 

3 CUBIC 4 56 7 12 

4 over h 6 7 8 9 5 line 1 2 3 

6 hili 45 57 34 22 10 

7 TRIANG 34 22 12 23 45 67 
: ,_, 

8 rectangular 1 2 3 4 5 6 7 8 5 

4.6 Material Properties 

The optional list of material properties lines must be preceded by the key word 

PROP*ERTIES. The default is no Poisson terms or sources, conductivities of 1.0 

in all directions and 0.0 angle of orthotropy. Orthotropic properties, conductivities, 

Poisson terms, and points sources are all included in this section. 
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4.6.1 Conductivities 

The conductivity COND*UCTIVITYof each material is by default 1.0 in all di­

rections. They may be changed and different conductivities may be given in different 

directions. For two dimensional and axisymmetric problems, only the conductivities 

of the x and y direction may be given. 

Syntax: 

COND*UCTIVITY Cx Cy Cz 

where ex, cy, and Cz are the values of the conductivities in the x, y, and z directions 

respectively. You must omit Cz for two dime~sional and axisymmetric problems. 

Variable conductivities are also allowed, as long 'as the square root of the conductivity 

satisfies Laplace's equation, and it is the same conductivity in all directions (i.e. varies 

only with respect to position). The variable conductivity may be specified either as 

a the coefficients of the square of the general trilinear polynomial function, 

(a+bx+cy+dz+exy+fxz+gyz+ hxyz? 

where a-h are constants, or as a specific function written in C. 

Syntax: 

COND*UCTIVITY type h g f e d c b a 
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where type is either TRILI*NEAR or VARI* ABLE (used for specific variable 

function) and the constants a-h, correspond to the coefficients of the trilinear function 

given above (not given if VARI*ABLE is used. Note the order of the coefficients 

when specifying trilinear conductivity functions. The file 'kfun.c' contains the variable 

conductivity function and its derivatives. 

Examples: 

conductivity 0.5 0.5 0.5 

cond trilinear 0 0 0 0 0 5.0 0 5.0 

cond variable 

4.6.2 Poisson Terms and Point Sources 

Poisson terms are classified into three different types in CPOIS, and each type must 

be differentiated in the input file. The three classifications are: general Poisson 

t~rms, treated with the Monte Carlo method; cases in which the Poisson term satisfies 

Laplace's equation, treated by a surface integration; and concentrated sources, which 

are treated with a simplified boundary integration. Poisson terms are specified in the 

file 'fun.c' which contains the Poisson term function and its derivatives. 
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Monte Carlo Method Specifying the total number of random points to be used 

for Monte Carlo integration of the Poisson term automatically indicates to CPOIS 

that a general Poisson term exists. The keyword is RAND*OM POINTS. 

Syntax: 

RANDOM POINTS n 

where n is the number of random points used. 

Poisson Terms Which Satisfy Laplace's Equation The boundary integration 

technique is implemented when a Poisson terms which satisfy Laplace's equation is 

specified by using the keyword POIS*SON, with no other parameters. 

Syntax: 

POISSON 

Point Sources For. point sources, the information needed by the program is the 

location of the source and its intensity. The keyword SOUR *CES is used with a 

list of the location of source points, with their intensity, following. 

Syntax: 

SOURCES n x y z val 
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where n is the number of the source, x, y, and ·z are the source location coordinates 

(:Z coordinat~ not specified for two dimensional or axisymmetric analyses), and val 

is the value of the intensity of the point source (may be negative for concentrated 

sinks). Sources may be generated in a straight line similar to the nodes, which is the 

only reason why there is a number specified with each source. 

4. 7 Internal Points 

The list of internal points must be preceded by the keyword INTE*RN AL POINTS. 

Internal points may also be generated in a straight line, as the nodes are, which im­

plies that each internal point has a number associated with it, and that the numbers 

must be in order. 

Syntax: 

nxyz 

where n is the internal point number, starting with one (1) for each material, and 

x, y, and z are the coordinates of t~e internal,point (omit the z coordinate for two 

dimensional: and axisymmetric problems). 
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5 Sample Data Files 

A sample data file follows. It is the data file used for the first verification problem in 

the previous text. 

Verification Test -- Waber 1956 paper (no. IV) 
twod 
Y. 
Y.· 

Y. 
Y. 
Y. 
Y. node 
nodes 

1 
2 
3 
4 
5 

10 
13 
16 
17 
20 
23 
28 
29 
30 
31 
32 
35 

X 

o:.o 
0.0 
0.08 
0.14 
0.20 
0.40 
0.46 
0.49 
0.51 
0.54 
0.60 
0.80 
0.86 
0.92 
1.00 
1.00 
1.00 

This is the control data 

no echo 
tolerance 1.0e-10 
iterations 10 

These are the nodal points 

y BC BC VALUE/ELECTRODE TYPE 

0.0 flux 0.0 
0.0 electrode testa 
0.0 electrode testa 
0.0 electrode testa 
0.0 electrode testa 
0.0 electrode testa 
0.0 electrode testa 
0.0 electrode testa 
0.0 electrode testb 
0.0 electrode testb 
0.0 electrode testb 
0.0 electrode testb 
0.0 electrode testb 
0.0 electrode testb 
0.0 electrode testb 
0.0 flux 0.0 
0.3 flux 0.0 
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36 1.00 0.5 flux 0.0 
41 0.00 0.5 flux 0.0 
42 0.00 0.3 flux 0.0 
43 0.00 0.2 flux 0.0 
44 0.00 0.1 f.lux 0.0 

Y. 
Y. This is the material data 
material 1 
properties 
conductivity 1.0 1.0 
Y. 
Y. These are the elements 
Y. 
Y. NUMBER TYPE ELEMENT NODES GAUSS POINTS 
elements 

1 line 2 3 15 
2 over 2 3 4 5 15 
28 over 28 29 30 31 15 
29 line 30 31 15 
30 line 32 33 15 
41 line 43 44 15 
42 line 44 1 15 

end 
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