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CHAPTER I 

INTRODUCTION 

1.1 Statement of the Problem 

The nullator and the norator have been of much interest in active-

network studies since they were proposed in 1961. Network analysis and 

synthesis with such elements have been reported. 

The nullator is a two-terminal element for which the voltage across 

and the current through this element are always zero. The norator is a 

two-terminal element for which the voltage across and the current 

through this element are arbilrary and can independently take on any 

values which are determined by external circuits. The two elements are 

shown schematically in Figure 1.1.1. 

i i 

+ + 

Null a tor Nora tor 
v = o, i = O v, i arbitrary 

Figure 1.1.1. Definition of a Nullator and 
a Norator 
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From the above definition, the behavior of the nullator and 

norator seems paradoxical, and it appears unlikely that there exists any 

meai,ing;ful physical realizations for them, when considered individually. 

However, they are useful in active-network theory. For example, ap 

ideal transistor can be represented by a nullator-norator pair as shown 

in Figure 1.1.2 (28). In addition, a negative i111pedance··cci11v'erter-'(NIC) 

and an ideal gyrator can be realized by using nullator-norator pairs. A 

""' two-port with a nullator as port 1 and a norator as pa,rt 2 is called a 
\ 

nullor. The representation of an ideal transistor using a ituli-e:r also 

has been reported (26). 

e -----..... ---•c e.-----... -1 

b b 

Figure 1.1.2. Nullator-Norator Model of an 
Ideal Transistor 

c 

Because of tne extraordinary behavior exhibited by the nullator and 

norator, the conventional node-mesh techniques of analysis of networks 

containing such elements will fail. Thus, it requires certain modifica-

tions to convention~! methods. l3lackweU and Grigsby (5) have presented 

a theorem discussing the topological configqration of a system contain-

ing components with both through.and across variables spe~ified. They 
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found that there exist two formulation trees, each consisting of proper 

components, if the system equations have a unique solution. This formu

lation can be applied in analyzing a network containing the nullator and 

norator. 

The results presented in (5) do not cover the synthesis, but their 

formulation procedure gives an insight into the design of active net

works containing nullators and norators. In this thesis, a systematic 

network synthesis procedure using resistors, capacitors and nullator

norator pairs is derived. The state model is used in the synthesis 

procedure. 

'1.2 Review of the Literature 

Carlin and Youla (9) first proposed the nullator and norator in 

1961 to demonstrate the use of negative resistors in network synthesis. 

Carlin (10) combined these two elements to form a two-port, the nullor, 

which is a unique active building block. 

Since the nullator, norator and nullor were proposed, many papers 

have been written on these elements. Some of these papers are concerned 

with the analysis of networks containing such elements and others with 

the synthesis. In dealing with the synthesis, the task always is to 

obtain equivalent network using the nullator and norator for a particu

lar physical device. 

Davies (14) presented a topological method of analysis of networks 

containing the nullator and norator, whereas a simplified topological 

solution of such networks was presented by Brayshaw (7). Martinelli 

(26) presented some properties of the nullor, and described the possi

bility of synthesizing any rational immittance or scattering matrix by 



means of only positive resistors, nullors, and lossless elements which 

can be inductors or capacitors. Davies (15) demonstrated the signifi

cance of nullators, norators and nullors in active-network theory, 

including a brief description of the synthesis of immittance matrices. 

Davies (16) also obtained nullator-norator models of controlled sources. 

Antoniou (1) used the equivalence of an infinite-gain controlled 

source to a nullor to obtain new gyrator circuits. A procedure to 

generate all gyrators of a certain class using the nullator and norator 

was developed by Daniels ( 12), who also has presented a novel technique 

to derive the converter-inverter circuits using the nullator and 

norator (13). Bendik (4) used the nullator and norator as network ele

ments to obtain gyrator circuits. 

Martinelli (26) demonstrated the nullor model of an ideal transis

tor, whereas Myers (30) gave the nullator-norator T-model of an ideal 

transistor. Braun (6) obtained equivalent NIC networks using nullators 

and norators. 

A synthesis procedure to realize non-reciprocal networks using 

unitors, which are essentially equivalent to three-terminal nullors, 

has been presented by Keen (23), who showed that classical passive net

work synthesis procedures can be unified and generalized by the intro

duction of unitors. 

1.3 Technical Approach 

The synthesis presented in this thesis is based upon a theorem 

which ensures the existence of a unique solution for networks containing 

nullators and norators. State-model approach is used to obtain the 

realization. The realization of the state model is achieved by first 



considering the realization of the operator matrix which is normally 

called the A-matrix. This obviously corresponds to source-free 

networks. 

The A-matrix considered is in the companion matrix form and its 

realization is obtained by using the following steps. 

(1) Start with an arbitrary network consisting of resistors, 

capacitors, nullators and norators, without any sources. 

(2) Write the cut-set, circuit, and component equations in 

symbolic form. 

(3) Derive the state model, thus obtaining the A-matrix in 

symbolic form. 

(4) Compare the given A-matrix in companion matrix form 

with the A-matrix in symbolic form just derived to 

obtain the topology and the element values of the 

desired network. 

(5) Simplify the realized network, if possible. 

The above procedure results in a realization with a simple topology. 

From this, a scheme to realize any entry of the A-matrix is derived. 

This is used to obtain the realization of an arbitrary A-matirx. A 

special case is the A-matrix in tridiagonal form, whose realization 

resulted from using the above steps, possesses another simple topology. 

Further, there exists another scheme to realize any entry of the A

matrix in tridiagonal form. 

The synthesis of transfer functions is considered next. Given a 

transfer function, a corresponding state model is first derived. Now 

that the A-matrix realization is accomplished, it remains to take into 

account the input (source) and the output in realizing the state model. 

5 
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By inserting the source into and obtaining the output from the realized 

network for the A-matrix, the realization of the state model is achieved 

(32). In some cases, controlled sources using the nullator-norator cir

cuits may be required to do this. 

Regarding the synthesis of immittance matrices, main efforts are 

devoted to develop the synthesis procedure for short-circuit admittance 

matrices. After some manipulations, a "new A-matrix" is obtained from 

the state model corresponding to a short-circuit admittance matrix, and 

this new A-matrix is readily realized by the technique developed 

earlier. A simple modification in the realization of this new A-matrix 

gives the realization of the short-circuit admittance matrix. For an 

open-circuit impedance matrix, it is realized through the use of 

gyrators connected with the realization of a short-circuit admittance 

matrix which is taken to be the given open-circuit impedance matrix. 

The results of the realizations of admittance and impedance 

matrices are used in the synthesis of hybrid matrices. Realization of 

voltage and current transfer-function matrices is similar to that of 

scalar transfer functions. 

The realization of the A-matrix in tridiagonal form is found useful 

in the synthesis of gyrators using the state-model approach since the 

short-circuit admittance matrix describing a gyrator can be regarded as 

in tridiagonal form. It results in a three-transistor realization that 

coincides with one obtained by using other methods (28). 

Since it is well known that tridiagonal matrices are related to 

ladder networks (25), the realization of the A-matrix in tridiagonal 

form also finds application in realizing low-pass filters. By simply 

inserting the source and identifying the output at the proper location 
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of the realized network for an A-matrix in tridiagonal form, its trans

fer function can be determined to belong to that of a ladder network. 

ln this way, various kinds of transfer functions of low-pass filters can 

be synthesized using networks containing the nullator and norator. 

1.4 Organization of the Thesis 

Chapter II presents the analysis of a class of networks containing 

nullators and norators by means of a theorem. Based upon the condjt;ions 

described in this theorem, a state model is derived. Then, under some 

topological constraints, this state model is simplifed such that it is 

suitable for the use of synthesis. 

Chapter III presents the synthesis of the A-matrix. This is impor

tant in itself and is fundamental to the synthesis considered in the 

next chapter. 

Chapter IV presents the synthesis of transfer functions, immittance 

matrices and gyrators. 

Chapter V presents the synthesis of low-pass filters. A related 

topic of RLC low-pass filters with prescribed terminal resistances is 

also treated. 

Chapter VI gives a summary and suggestions for further study. 



CHAPTER IL 

ANALYSIS -- THEOREM AND STATE MODELS 

2.1 Introduction 

In this chapter, analysis of a class of networks containing nulla

tors and norators will be presented. The analysis is presented in 

terms of a theorem which gives sufficient conditions for this class of 

networks to have a unique solution of their network equations. This 

theorem is derived from an analysis about systems containing through

across type drivers by Blackwell and Grigsby (5). Corresponding to this 

theorem, a state model for such a class of networks is derived. The 

derivation of the state model is somewhat different from that used in 

classical RLC networks because of the presence of nullators and norators; 

the state model formulation requires two properly selected trees. Then, 

the state model is to be simplified with respect to a subclass of net

works, so that it can be used in developing the synthesis procedure in 

later chapters. 

2.2 Analysis 6f'Networks Containing 

Nullators and Norators 

Davies (15) has given four methods to analyze networks containing 

nullators and norators; namely, the nodal analysis method, the loop 

analysis method, the practical method, and the topological method. He 

has demonstrated that analysis of networks containing nullators and 
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norators is straightforward, and requires only slight modifications to 

conventional methods. He has also given examples to show that signifi-

cant simplifications in active-network analysis may be achieved by 

replacing conventional active elements by equivalent nullator-norator 

models before commencing the analysis. Blackwell and Grigsby (5) pre-

sented a more generalized formulation for the analysis of double-driver 

systems containing through-across drivers and no-specification compo-

nents, which determines the network topology when a unique solution of 

the system equations exists. Since, for the nullator, both the across 

and through variables are zero, and for the norator, the across and 

through variables are arbitrary and independent, these two devices can 

be identified as "through-across driver" and "no-specification 

component", respectively. The results presented in (5) do not cover the 

synthesis problem, but their formulation procedure gives an insight into 

the design of active networks containing nullators and norators. The 

following theorem is given in (5) and is presented here for ease of 

reference. The elements used in this theorem are classified in Table 

2. 2.1, where the number of VC-,.e1ements is assumed to be equal to the num-

ber of N-elements, and the element variables are displayed in Table 

2.2.2. 

Theorem (Blackwell and Grigsby). Let a double-driver system, made 

up of e elements and containing v vertices, have a one-part linear graph 

If the system equations A W t = o, BbM t = o, and M t = Q W t have a av · v v qv 

unique solution; then: 

(1) there exists some tree T1 of Gb which contains the 

M-elements and the N-elements and for which the 
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TABLE 2.2.1 

CLASSIFICATION OF ELEMENT TYPES 

Classification Description 

VC-element 

Q-element 

M-element 

W-element 

N-element 

Matrix 
Variable 

M 
m 

w 
m 

M 
w 

w 
w 

M 
n 

w 
n 

M vc 

w 
vc 

M 
q 

w 
q 

Both through and across variables specified 

Through and across variable related 

The across variable specified (across driver) 

The through variable specified (through driver) 

No specifications 

TABLE 2.2.2 

DESCRIPTION OF ELEMENT TYPES 

Description 

The specified across variable associated with M-element 

The through variable associated with M-element 

The across variable associated with W-element 

The specified through variable associated with W-element 

The across variable associated with N-element 

The through variable associated with N-element 

The specified across variable associated with VC-element 

The specified through variable associated with VC-element 

The across variable associated with Q-element 

The through variable associated with Q-element 
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W-elements and the VC-elements form a subgraph of 

the cotree; 

(2) there exists some tree T2 of Gb which contains the 

M-elements ~nd the VC-elements and for which the 

W-elements and the N-elements form a subgraph of 

the cotree, 

where Wvt and Mvt denote vectors containing component matrix variables 

in rable 2.2.2, respectively, and Aa, Bb, and Qq denote associated 

matrices. 

Now, a theorem which covers the analysis and the synthesis of net-

works containing nullators and norators is presented. The element types 

and symbols used in the theorem below and hereafter are shown in Table 

. 2.2.3. 

TABLE 2.2.3 

ELEMENT TYPES AND SYMBOLS 

No. of Voltage Variable Current Variable 
Element Type Symbol Elements Vector Vector 

Null a tor vc n v I vc vc VC 

Nora tor N n v I 
n n n 

Capacitor c n v I 
c c c 

Resistor R n v I 
r r r 

Inductor L nt v f, If, 

Voltage Source v n v I v v v 

Current Source I n. v. I. 
1 1 1 
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Theorem 2.2.1 Network Topology to Have a Unique Solution. Let a 

network have e elements and v vertices with the types of the elements 

as indicated in Table 2.2.3 and let the graph Gh corresponding to this 

network be connected. In this network, it is assumed that the number of 

the nullators, n , is equal to the number of the norators, n. Let: 
vc n 

( i) there e,xi·sts some tree T1 of Gh which contains the 

voltage sources and the norators and for which the 

current sources and the nullators form a subgraph of 

the cotree; 

ti.i) there exi'sts some tree T2 of Gh which contains the 

voltage sources and the nullators and for which the cur-

rent sources and the norators form a subgraph of the 

cotree. 

Let the cut-set, circuit and component equations now.be written as: 

Cf1vt = 0 (2.2~1) 

BfVvt = 0 (2.2.2) 

v - RI = 0 (2.2.Ja) r r r 

v - Z I = 0 (2.2.Jb) 
c c c 

Vi, - Zi,Ii, = 0 (2.2.Jc) 

where Cf and Bf represent, respectively, the cut-set matrix and the cir

cuit matrix; Ivt and Vvt represent the current vector and the voltage 

vector containing component current variable vectors and voltage vari-

able vectors as specified in Table 2.2.3, respectively; and R, Z, and r c 

Zi, are diagonal matrices with the diagonal entries representing the 
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values of resistances, capacitances, and inductances, respectively. 

Then, the set of Equations (2.2.1), (2.2.2), and (2.2 • .3) has a 

unique solution for some sets of element values of the resistors, 

capacitors, and inductors. 

Proof. Equation (2.2.1), in general terms, can be written as 

CI +CI +CI +CI + Cnln + C ~ , + C.I. = 0 (2.2.4) v v n n cc r r ~ ~ vc vc 1 1 

where C, C, ••• , and C. denote the submatrices of the cut-set matrix v n 1 

Cf. There are v- 1 equations in Equation (2.2.4). Since I = O and vc 

I. is specified, Equation (2.2.4) can be rewritten as 
1 

= -C. I .• 
1 1 

Similarly, Equation (2.2.2) can be written as 

(2.2.5) 

(2.2.6) 

where B, B, ••• , and B denote the submatrices of the circuit matrix 
c r v 

There are e - v + 1 equations in Equation (2.2.6), where V is 
v 

specified. 

Let the specified variables be expressed in the form 

v = VC 
0 (2.2.7a) 

I = 0 (2.2.7b) vc 

I. = J. (2.2.7c) 
1 1 

v = E (2.2.7a) v v 

where J. and E are known quantities. 
1 v 



Equations (2.2.5), (2.2.6), (2.2.7), and (2.2.3) can be written in 

matrix equation form; 

C C C Cr Cn • v n c )v 
I -C.J. v 1 1 

B. B B B B;, . 
1 n r c 

I -BE 
n v v 

. -R u I 0 r c 

. -Z u I 0 
c r 

u I;, 0 

u v. J. 
1 1 

u v 0 
n 

u v E 
r v 

u v 0 
c 

V;, 

I. 
1 

I 
vc 

v 
v 

v (2.2.8) 
VC 

Consider the coefficient matrix in Equation (2.2.8). By hypothesis, 

some tree T1 can be selected according to Condition (i). This is suf

ficient to ensure that the matrix [c C] has maximum rank. Since 
v n 

n + n < v - 1, the rank of [c C] is equal ton + n. Hence, the 
v n- v n v n 

first nv + nn columns of the coefficient matrix are._,,linearly inde-

pendent. Similarly, some tree T2 can be selected according to Condition 

(ii), which implies that the matrix [B. B] has maximum rank equal to 
1 n 

n. + n • Note that n. + n < e - v + 1. Thus, the n. + n columns corre-
1 n 1 n 1 n 

sponding to V, and V are linearly independent. As a result, the only 
1 n 

possible linear dependence that can occur is between the nc + nr + n;, 
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columns corresponding to Ic, Ir, and It and the nr + nc + nt columns 

corresponding to V, V, and Vn• In fact, this depends upon the entries r c x, 

in the submatrices R, Z, and Zn• r c x, 

Consequently, with some sets of values of the resistors, capaci-

tors, and inductors, all the columns of the coefficient matrix in 

Equation (2.2.8) are linearly independent and the coefficient matrix has 

maximum column rank. Since the coefficient matrix is a square matrix, 

it follows that it is nonsingular and the set of Equations (2.2.1), 

(2.2.2), and (2.2.3) has a unique solution. The theorem is now proved. 

Theorem 2.2-..1:provides a tool for derivation of the synthesis pro-

cedure using the state-model approach. The state model for a class of 

networks containing nullators and norators corresponding to Theorem 

2.2.1 will be derived in the next section. 

2.3 State Model .of a Class of Networks 

The state models of classical RLC networks have been extensively 

discussed (35). The fundamental cut-set matrix [u cf1] and the funda

mental circuit matrix [Bf1 U] referring to a same tree of an RLC n@twork 

T 
are known to have the relationship as cf1 = -Bf1• In this section, the 

state model of a class of networks consisting of resistors, inductors, 

capacitors, nullators, norators, voltage sources, and current sources is 

derived. Although the inductors are not used in the synthesis proce-

dures to be developed later, they are included in the state model for 

completeness. 

The class of networks under consideration is assumed to satisfy 

Conditions (i) and (ii) of Theorem 2.2.1. Therefore, the first step in 

the analysis is to select two trees T1 and T2 stated in Theorem 2.2.1. 



16 

For reasons to be evident later, it is appropriate to write the funda-

mental cut-set matrix for tree T1 and the fundamental circuit matrix 

for tree T2• Some relationship does exist between the entries of these 

two matrices, but different from that mentioned in the preceding 

paragraph. 

The general form of the state model of a network in symbolic form 

is 

d 
~(t) 

y(t) 

d 
= Ax(t) + Bu(t) + Adt u(t) 

d Cx(t) + Du(t) + fdt'-1(t) 

(2.3.1a) 

(2.3.1b) 

where x represents a state vector consisting of branch capacitor voltage 

variables and chord inductor current variables; y is the output vector 

which can be a current vector or a voltage vector or a combination of 

these two vectors; u is a vector consisting of specified drivers 

(excluding nullators); and the matrices A, B, /1., C, D, and fare, in 

general, rectangular matrices, and some of them may be zero matrices in 

certain cases. The matrix A in Equation (2.3.1a) is of special interest 

and is called the operator matrix or the A-matrix of the network under 

consideration. Equation (2.J.1a) and Equation (2.J.ib) are referred, 

respectively, as the differential set and the algebraic set of the state 

model. But sometimes, for convenience, the former will be called the 

state equation, and the latter the output equation. 

Before the derivation of the state model, it is to be noted that 

nothing has been said about topological locations of the resistors, 

inductors, and capacitors in the networks corresponding to Theorem 

2.2.1. In general, the capacitors and the resistors are distributed 
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among the branches and the chords for both T1 and T2 , and the distribu

tion for T1 may not be the same as that for T2 • However, the state 

model will be derived under the restriction that the distributions be 

the same for both T1 and T2 • 

The fundamental cut-set equations in symbolic form for T1 are 

u c11 c12 c13 c1l.i: c15 I 
v 

u c21 c22 c23 c2l.i: c25 Ibc 

u 0 c32 c33 c34 c35 I 
n 

u 0 cl.i:2 cl.i:3 cl.i:l.i: cl.i:5 Ibr = 0 (2.3.2) 

u 0 0 0 c54: c55 Ib,e 

I 
cc 

I 
er 

I 
VC 

Ic.e 

I. 
1 

where Ibc, Ibr, and Ib.R, denote the current vectors of branch capacitors, 

branch resistors, and branch inductors, respectively; and I , I , and cc er 

Ic,e denote the current vectors of chord capacitors, chord resistors, and 

chord inductors, respectively. Note that in Equation (2.3.2), c51 = 

c52 = c53 = o, since each inductive branch defines a cut-set containing 

only current sources and inductors; and c31 = c41 = c51 = o, since if 

the fundamental circuit equations are written for T1 , each capacitive 

chord defines a circuit containing only voltage sources and capacitors. 

The fundamental circuit equations in symbolic form for T2 are 
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BU B12 0 0 0 u v 
v 

B21 B22 B23 ;824 0 u vbc 

l\1 BJ2 B3;3 B34 0 u v 
VC 

B41 B42 B43 B44 B45 u V! 
br 

0 (2.3.3) 

B51 B52 B53 B54 B55 u Vb£ 

v 
cc 

v 
er 

v 
n 

v c.R, 

v. 
1 

where Vbc' Vbr' and Vb£ denote the voltage vectors of branch capacitors, 

branch resistors, and branch inductors, respectively; and V , V , an.d cc er 

Ve£ denote the voltage vectors of chord capacitors, chord resistors, 

and chord inductors, respectively. In Equation (2.3.3), B13 = B14 = 

B15 = B25 = B35 = o, for the same reasons as above. 

and 

The component equations in symbolic form are 

[Cb J d~ ~:~ " ~:] 

[~ cJd~ ~:j" ~j (2.J.4b) 

(2.J.4c) 
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where Cb, Le' Lb, Cc'~, and Ge are diagonal matrices with positive 

entries. 

The state model can be derived by using Equations (2.3.2), (2.3.3),. 

and (2.3.4). Eliminatihg the branch current variables Ibc and Ib;, and 

the chord voltage variables V and V n in Equations (2.3.4a) and 
CC C.(J 

(2.3.4b), and combining the resulting equations gives: 

0 

(2.3.5) 

Note that in obtaining Equation (2.3.5), the terms associated with V 
VC 

and I are dropped out because V = 0 and I = 0. Substituting Ibr 
VC VC VC 

from Equation (2.3.2) and V from Equation (2.3.3) in Equation (2.3.4c) er 

results in 

(2.3.6) 

where the inverse can be found by using the generalized algorithm of 

Gauss (21) and is 
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Combining Equations (2.3.5), (2.3.6), and (2.3.7) yields 

(2.3.8) 

The differential set of the state model can be obtained after 

taking the inverse of the coefficient matrix in the left-hand side of 

Equation (2.3.8). The existence of the inverse of this coefficient 

matrix can be proved by showing that the diagonal submatrices of this 

matrix, Cb - c 21ccB12 and Lc - B45Lbc54 , are positive definite matrices. 

To do this, first note that B .. 'sin Equation (2.3.3) and C .. 'sin 
1J 1J 

Equation (2.3.2) are related. These relationships are derived as 

follows. 

The fundamental circuit equations .in symbolic form for T1 are: 
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T -CT -C11 0 0 0 u v 21 v 

-CT T T T 
0 u v 

12 -C22 -C32 -C42 be 

T -CT T T u v = 0 (2.3.9) 
-C13 -C33 -C43 0 n 23 

T T T T T u vbr -C14 -C24 -C34 -C44 -C54 

T T T T T 
-C15 .-C25 -c35 -C45 -C55 u vb..e 

v 
cc 

v 
er 

v 
VC 

V ci 

v. 
1 

where T denotes the transpose. Solving for V from Equation (2.3.9) 
VC 

gives 

v 
VC 

anq-it follows that 

(2.3.10) 

T 1 T -1 T T -1 T T -1 T 
vn = (c33 )- vvc- (c33 ) c 13vv- (c33 ) c23vbc - (c33 ) c43vbr" 

(2.3.11) 

-1 In Equation (2.3.11), it is assumed that c33 exists. This is a neces-

sary topological constraint. Solving for V , V , V n, and V. from cc er c~ 1 

Equation (2.3.9) and substituting in V from Equation (2.3.11) yields 
n 
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Thus, Equation (2.3.9) can be rewritten as 

T T. 0 
-C11 -c21 0 0 'u 

I 
v v 

-1 )T { -1 )T ( -1 )T 

<c1f33c32 - c12 c23c33c32-: c22 - C33Cja 

· -1)T -1? -(C1iT 
(C1f33 

(c23c33 . 33 

-1 iT -1 )T ( -1 . ) T 
(C1JC3f34 - C14 (C2f33c34 - c24 - C3f34· 

( -1 )T 0 c43c33c32 - c,.2 u 
-t)T 0 (c43c33 

-1 l -CT I 
(C4.f3f34 - C44 54. I 

vbc 

u v vc 

u vbr 

-1 . )T -1 iT -<c;icj5? <c1f33c35 - c15 (C2JCJJC35 - C25 
( -1 )T -CT I 
c,.3 cJJ c35 - c,.5 55 I 

u vb.e, = 0 

v cc 

v er 

v 
n 

Vc.e, 

V. 
]. 

(2.3.12) 

Now, the arrangement of the voltage variables in Equation (2.3.12) 

corresponds to tree. T2 , and compa~ing this equation with Equation (2.3.3) 

results in: 

-1 T -1 . T T -1 )T 
B43 = -(C33C34> ; B44 = <c,.3c33c3,. - c,.,.> ; B45 = -C54; B51 = (C1JCJJCJ5 - c15 ; 

-1 )T -1 T -1 )T T 
B52 = (C2JCJJCJ5 - c25 ; B53 = -(CJJCJ5) ; B54 = <c,.3c33c35 - C45 ; B55 = -C55 

(2.3.13) 

Thus, by expressing B~5 and B12 in terms of Cij' the diagonal sub-

matrices become 
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(2oJ.14:a) 

(2.J.14:b) 

which are obviously positive definite matrices and the inverse of the 

coefficient matrix in the left-hand side of Equation (2.3.8) exists. 

Hence, the differential set of the state model is 

d 
dt 

0 

0 

d 
dt 

V* 
v 

(2.3.15) 

where V* and I~ are terminal variables and are related to the driver 
V 1 

variables V and I. by V* = V and I!= I .• 
V 1 V V 1 1 

+ 

+ 



The algebraic set of the state model also can be derived by using 

Equations (2.3.2), (2.3.3), and (2.3.4). From Equations (2.3.2) and 

(2.3.3), 

·{Ij "" [ o -C1J4lvbc]+ [ o -C11J· ·[vbj ·.+ I-o . -c1j···[vbr] +·[_ o -c15J· [V.v] 
V -B O I t -B S O I B5 ,_ 0 I B51 0 I. · 52 c . 5 cc '* · er · 1 

(2. 3.16) 

Note again that Vvc = 0 and Ive= O. After substituting Vbt and lee 

from Equation (2.3~4b), and Vbr and Icr from Equation (2.3.6) in 

Equation (2.3.16) and collecting terms, it results in 

fc12<u- GCB24J\C42>-1GcB21 

l-B,.",, c42 (Y - G 0 1\,,. v 42>'1o c '\at - ",, 

-C12<u- GCB24J\C42>-1GcB24J\C44 - c14 l [vbcl 

B54[U + J\C42(U- GcB24J\C42)-1GcB24]J\C44 Ic~ ~-

t[ .. J 0 , .v 
v 

. 

B55~C5 . Ii 

(2.3.17) 

where the derivative -0f the state variables, 
d b'c · 

'~ ~ dt · , can be eliminated 

by using Equation (2.3.15). 
I ~. 
· CXt 

Now, it follows that the algebraic set is giveri by 



[I;] [·C12(U-GcB21,ll1,C4zr16c 822· C11CcB1iCb-C21CcB12)-iC23(U-GcB241\,C42)-tGcB22 . 

Vi li541\, C42 (U ~ Gcl\i41\, C42 )·1GcB22 + B5.2 + B551, C5',0,c-1\51,C54rt,,.1\,C42il!-Gc\l.'1i,C.\ll1Gc\2 + B42] 

C12(U- (\,ll241\,C,d•\a241\iCi,i, + C14 + C1fcB12(<;,- C2fJ\1r 1[C22(U - Gc\41\,C42)-1lclla',8i,C44 + C24] llybc1 

-B54[u + C4:1'1i,(U-GcB:l',1\,<;,2f 1GcB21.)\<;.,.- BSlbc54 (L,,.• '\s1, c51/\,.[u+\C1,2(U·6cB:1t\<;,2f\s24]Rb~ 11~ 

[

·C12<u- 6c82i.1\,C42>-16c1321 - c11cc812<cb - c21cc812>-1c22(U- 6c82i.1\,C42>-16c821 

B541\,c,.2(U-GcB241\,c,.2)-1GcB21 + B51 + B551,c5JLc - 8,.s1,C54f1'.\J.\C,.2<u- Gc\i-1\i c,.z1\a21+ B1,1] 

[::] 

25 

(2.3.18) 

where I* and V! are terminal variables and are related to the driver 
V 1 

variables I and V, by I* 
V 1 V 

-I and V* 
v i -V 

i. 

2.4 Simplified State Model 

The state model derived in the preceding section, which includes 

the differential s~t in Equation (2.3.15) and the algebraic set in 

Equation (2.J.18), is for a class of networks containing resistors, 

inductors, capacitors, nullators, norators, and sources with the 

topology as stated in Theorem 2.2.1 and with the constraint that the RLC 

elements are distributed in both T1 and T2 in the same manner. This 

state model will be simplified by using additional restrictions on the 

topology. These restrictions are discussed below. 
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Earlier, it was mentioned that inductors will not be used in the 

synthesis. Furthermore, for simplicity, all the capacitors will be 

assumed to be contained in the branches and all the resistors will be 

assumed to be contained in the chords of both T1 and T2 • Corresponding 

to this topology, the state model derived above can be simplified by 

substituting lei~ o, Cc= O, and~= O. Now, the state model for the 

above topology without any sources can be obtained by equating V = 0 v 

and I.= O. It follows that the differential set of the state model for 
1 

the above simplified portless network is given by 

(2.4.1) 

where B22 can be expressed in terms of Cij using the relationships in 

Equation (2.3.13). Thus, Equation (2.4.1) can be written as 

(2.4.2) 

· The synthesis of an A-matrix is considered in the next chapter, 

where the A-matrix in symbolic form in Equation (2.4.2) will be used in 

developing the synthesis procedure. 



CHAPTER III 

SYNTHESIS OF THE A-MATRIX 

3.1 Introduction 

Since a state model provides sufficient information for the charac-

terization of the behavior of a given network at any instant of time, 

the state-model theory has received a rather thorough mathematical 

development and has practical applications. In this chapter, network 

synthesis using state-model approach will be presented. 

Given a scalar transfer function, T(s) ins-domain with no poles 

at infinity, the corresponding general form of the state model in 

Equation (2.3.1) reduces to 

such t.hat 

d 
dt x(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) + Du(t) 

T(s) = D + C(sU - A)- 1B 
n 

(3 .1.1a) 

(3.1.1b) 

(3.1.2) 

where U represents an n X n identity matrix with n the degree of T(s) 
n 

(40); x denotes the state vector consisting of n state variables 

... , and x ; u and y, the input and output vectors, respectively; 
n 

and A, B, C, D, the constant coefficient matrices of appropriate dimen-

sions for linear, time-invariant networks. Note that the state model 
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in Equation (3.1.1) is not unique. The derivation of a set of the 

matrices [A, B, c, D} in Equation (3.1.1) can be readily obtained (32). 

To realize T(s), one needs to realize the. set of the matrices 

[A, B, c, D} in Equation (3.1.1). 

In Chapter II, the state model corresponding to a class of networks 

with the network topology specified in Conditions (i) and (ii) of 

Theorem 2.2.1 was derived. The simplified state model in Equation 

(2.4.2) with respect to a subclass of networks defined previously will 

be used in this chapter to obtain the synthesis procedure in realizing 

networks containing nullators and norators. Synthesis of the A-matrix 

is considered first and the results will be used later in the synthesis 

of transfer functions and immittance matrices. 

J.2 Preliminary Considerations 

The A-matrix plays an important role in the state model of a net

work. It was introduced by Bashkow (3) in 1957 as a new network 

description. The use of the A-matrix in describing a network is conven

ient because it relates the network in·a natural way to a canonical 

mathematical form. For example, the characteristic polynomial of a net

work is given by I sU - A I , and its zeros give the natural frequencies of 

this network. Because of its importance, a lot of work has been done on 

the A-matrx. Bryant (8) obtained an explicit form of the A-matrix for 

RLC networks. Dervisoglu (17) discussed the A-matrix for a restricted 

class of active RLC networks. 

The realization of an A-matrix by passive networks has been exten

sively discussed. Rauch (34) has solved the problem for a special class 

of RL and RC networks. Dervisoglu (18) has obtained the realization of 
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the A-matrix using a class of half-degenerate RLC networks. Silverman 

(36) presented the realizability of an A-matrix as a passive reciprocal 

network. 

The synthesis of the A-matrix is now considered using a class of 

active RC networks containing nullators and norators, where the nullator 

and the norator appear as a pair with a common vertex. Since a pair of 

nullator and norator with a common vertex can be replaced by an ideal 

transistor, the realization is equivalent to using resistors, capacitors, 

and ideal transistors. 

To realize an A-matrix, an arbitrary network consisting of resis-

tors, capacitors, nullators, and norators, but no sources, is assumed. 

The arbitrary network is such that Conditions (i) and (ii) of Theorem 

2.2.1 are satisfied. Furthermore, as assumed earlier, all capacitors 

are contained in the branches and all the resistors are contained in the 

chords for both T1 and T2 • 

The simplified state model in Equation (2.4.2) is in accordance 

with the topology as assumed above. For ready reference, Equation 

(2.4.2) is repeated below: 

(3.2.1) 

where the symbols were defined in Chapter II. Hence, the A-matrix in 

symbolic form is 

A (3.2.2) 

The synthesis procedure is first considered when A in Equation 

(3.2.2) is in companion matrix form. Then, it will be extended to an 

arbitrary A-matrix. The special case of the A-matrix in tridiagonal 
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form deserves another section to discuss its realization. 

J.3 Synthesis of an A-Matrix in 

Companion Matrix Form 

This is considered first because when the specification is in 

terms of a characteristic polynomial, such as the denominator of a 

transfer function, the corresponding A-matrix in companion matrix form 

can be obtained by inspection. Furthermore, the realization of an A-

matrix in companion matrix form gives insight into the realization of an 

arbitrary A-matrix. 

Consider the A-matrix in companion matrix form: 

such that 

A 
c 

0 

0 

== 

0 

1 

0 

0 

-a 
2 

0 

1 

0 

-a 
3 

0 

0 

0 

-a 
n-1 

0 

0 

1 

-a 
n 

(3.3.1a) 

(J.J.1b) 

wher a 1 , a 2 , ••• , an are assumed to be positive constants and x con-

sists of n state variables x1 , x2 , •.• , and xn. Its realization can be 

extended to the case that some of the a. 's in A. 
1 C 

are negative. 

In order to make all the entries 
. th 
ui. the n row of A positive, c 

Equation (J.J.1b) is augmented by introducing a new state variable 

x 1 such that 
n+ 



31 

x1 0 1 0 0 0 x1 

x2 0 0 1 0 0 x2 

...2.. = . dt 

x 0 0 0 0 1 x n n 

0 a1 a2 aJ a 1 xn+1-n 

x1 

x2 

(J.J.2) 

x 
n 

:?Cn+1 

d 
where dt xn+i = O. The reason for the above augmentation will be 

explained later. Note that Equation (J.J.2) is equivalent to Equation 

(J.J.1b). 

The synthesis procedure is obtained by first equating the A-matrix 

in symbolic form in Equation (J.2.2) to the matrix A2 in Equation 

(J.J.2). For obtaining the specific terms in Equation (J.2.2), A2 is 

decomposed into a matrix triple prod~ct: 

where U denotes a unit matrix of order n; J an 1X (n~1) matrix n n+1' 

[1 1 1 ••• 1]; K, an 1x (n+1) matr:i,x [1 0 0 o]; 

H ~ [o1 Un] with o1 representing a zero column matrix; and 



D1 = di~g (a1 , a 2 , ••• , an, 1). The decomposition of A2 into a triple 

product is simple and follows the algorithm below: 

(1) Form the augmented (2n + 2) X (2n + 2) matrix A3 as 

.32 

(J.J.4) 

where each of the matrices n2 and n3 represents a diagonal 

(h + 1) X (n + 1) submatrix whose diagonal entries are the 

sum of absolute values of other entries in the respective 

rows of A3• 

(2) Now, A3 can be decomposed by using the Cederbaum's 

algorithm (11) in the form 

where 

Ab = t~J 
with 

Ab1 = ~n 

and 

0 

Ab2 = 
u n 

0 

J 
n+1 

K 

H 

Thus, the decomposition of A2 in-~uation (3.3.3) can 

be obtained from Equation (3.3.5). 

(3.3.5) 

(3.3.6) 

(3.3.7) 



Note that the decomposition in Equation (J.J.5) is essentially 

unique (11). However, the decomposition of A2 into A2 = Ab1n4A!2 is 

not unique as the selection of D2 and n3 in A3 in Equation (J.J.4) is 

not uniq,ue. 

.33 

Now, comparing A2 in Equation (J.J.3) with the matrix A in Equation 

(3.2.2) with the choice of Cb as a unit matrix for simplicity results in 

(3.3.8) 

and 

(J.J.10) 

The choice of Cb as a unit matrix implies that each capacitor in 

the realization is of unit element value. Later, another solution will 

be described with each capacitor having element value other than unity. 

The sum of the matrices Ab1 and Ab2 given in Equations (J.J.8) and 

(3.3.10), respectively, yields 

(3.3.11) 

At this point, it should be noted from the fundamental cut-set equations 

I 

in Equation (2.3.2) that c33 relates the locations of the nullators to 
! 

the locations of the norators. Since each nullator and norator must 

exist as a pair, it is logical to set c33 to be a unit matrix, which 



implies that every cut-set of a norator involves a nullator. This 

choice make the solution simple. Furthermore, th:i,s ensures that in the 

realization each nullator and norator form a pair so that it can be 

replaced by an ideal transistor. 

Upon decomposition, Equation (3.3.11) can be written in the form, 

with c33 set to be a unit matrix, 

(3.3.12) 

where U is a unit matrix of appropriate order. A possible choice for 

c2J [Ab1 u] (J. J .1J) 

u 

CJ2 :,::: (j.J.t/,i,) 

Ab2 

Obviously, the decomposition in Equation (3.3.12) is not unique 

and, therefore, there are many solutions. The above solution gives one 

particular realization. 

Now, form the fundamental cut-set matrix: 

I I 
Ab1 u u 0 I c22 I c23 u 0 0 I Ab1 I 

----'---'--- ------,----.-
(J .3 .15) = o u o 1 u :u o 

I I 
0 u I c32 I c33 0 0 u I Ab2 I 0 u 

I I I I 

It can be shown that the above fundamental cut-set matrix is always 

realizable by simply constructing the graph (27) which is shown in 
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Figure 3.3.1. The resulting synthesized network is shown in Figure 

J.J.2, where the element values of the conductors in mhos are obtained 

from the matrix G in Equation (J.J.9) and each capacitor has unit ele
c 

ment value because the matrix Cb has been assumed to be a unit matrix. 

Note that unless stated otherwise, for the element values in the figures 

from here on, the conductors in mhos and capacitors in farads will be 

used. Note that in Figure J.3.1, the arrowhead on a line indicates the 

direction of the current of the element associated with that line. This 

will hold true for the network graph hereafter. 

~ .. 

Figure J.J.1. Network Graph 
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1 

••• 

Figure 3.3.2. Synthesized Network 

As shown in Figure 3.3.2, the state variable x. and the derivative 
1 

of the state variable x., i. (dot denotes derivative with respect to 
1 1 

time), can be considered to be the voltage across and the current 

through the capacitor C., i = 1, 2, ••• , n. In addition, the introduced 
1 

state variable x 1 can be considered to be 
n+ 

"t C H . d - O capaci or n+i" owever, since dt xn+i = 

the voltage across the 

as assumed previously in 

Equation (3.)".2), the capacitor C 1 should be open-circuited. 
n+ 

After the capacitor C 1 is removed, the network in Figure 3.3.2 
n+ 

can be simplified. It is observed that the nodes j 1 , j 2 , .•. , jn' and 

J. can be combined to form only one node as far as the current-
n+1 

voltage operation at each of these nodes is concerned, since the adjoin-

ing nullators act as short circuits and open circuits. Further, the use 

of the equivalence shown in Figure 3.3.3, and the fact that a nullator 

in series with a norator is equivalent to an open circuit (30) 
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simplifies the network in Figure J.J.2 to that shown in Figure J.J.4. 

• 
~ 

• 
• 0 • 

• 
~ 

• 
• CD • 

Figure J.J.J. Two Equivalences 

. 
~ .... 

Figure J.J.4. Simplified Synthesized Network 

The following example illustrates the synthesis procedure. 

Example J.J.1 Consider the third-order companion matrix 
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0 1 0 

0 0 1 (3. 3 .16a) 

-a 
3 

such that 

x1 0 1 0 x1 
d 
dt x2 = 0 0 1 x2 (3.3.16b) 

x3 -a1 -a2 -a 
3 x3 

where a 1 , a2, and a3 are positive constants. The first step is to 

augment Equation (3.3.16b) such that all its entries in the coefficient 

matrix are positive. This gives 

x1 0 1 0 0 x1 

d x2 0 0 1 0 x2 
= (3.3.17) dt 

X3 0 0 0 1 X3 

0 a1 a2 a3 1 X4 

where x~ is the introduced state variable. The equivalence of Equations 

(3.3.17) and (3.3.16b) is obvious. Decompose the coefficient matrix in 

Equation (3.3.17) into a matrix triple product corresponding to Equation 

(3.3.3): 

0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 OT 
1· 

0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 
= a1 

0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 
a2 

a1 a2 a3 1 0 0 0 1 1 1 1 a3 0 0 1 0 0 0 1 

·1 

(3.3.18) 

Now the matrices c22 , G c' and Ab2 can be identified from Equation 

(3.3.18) as: 
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1 0 0 0 0 0 0 

0 1 0 0 0 0 0 

c22 = = A]:)1 (3.3.19) 
0 0 1 0 0 0 0 

0 0 0 1 1 1 1 

1 
1 

1 
G = a1 (3.3.20) 

c 

a2 
,,,a ,, 3 

·1 

0 0 0 1 0 0 0 

-1 
1 0 0 0 1 0 0 

c23c33c32 - c22 = = Ab2° (3.3.21) 
0 1 0 0 0 1 0 

0 0 1 0 0 0 1 

The submatrices c 23 and c 32 can be constructed from Equations (3.3.13), 

(3.3.14), (3.3.19), and (3.3.21): 

1 0 0 0 0 0 0 1 0 0 0 

c23 
0 1 0 0 0 0 0 0 1 0 0 

::,:: 

0 0 1 0 0 0 0 0 0 1 0 
(3.3.22) 

0 0 0 1 1 1 1 0 0 0 1 

1 0 0 0 0 0 0 

0 1 0 0 0 0 0 

0 0 1 0 0 0 0 

0 0 0 1 0 0 0 

0 0 0 0 1 0 0 

C32 = 0 0 0 0 0 1 0 . (3. 3. 23) 

0 0 0 0 0 0 t -----------0 0 0 1 ·O 0 0 

:t 0 0 0 1 0 0 

0 1 0 0 0 1 0 

0 0 1 0 0 0 1 



4:o 

Note that c33 is assumed to be a unit matrix. Hence, 

1 11 I 1 1 
1 I 1 I 1 1 

1 1 I ·_1 1 
1 111;1, I 111;1. -1 

1 1 - I i -

~ I I ~ 
1 t I 1 

0 I c22 I c23 1 1 I 1 
I = 1 1 1 --,-- I u : c32 1 c33 1 1 

I 
1 

;I. 1 1 
1 1 I 1 

1 1 I 1 
1 ;I. 1 I 1 

1 1 1 I 1 
1 1 1 I 1 

(3.3.24:) 

Corresponding to the above fundamental cut-set matrix, the network 

graph is constructed in Figure 3.3.5. 

Figure 3.3.5. Example Network Graph 
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After the simplifications described earlier in this section are 

made, the network corresponding to the graph in Figure 3.3.5 is shown in 

Figure 3.3.6. 

Figure 3.3.6. Example Synthesized Network 

The reason for the augmentation in Equation (3.3.2) can now be 

explained. If the decomposition procedure discussed earlier is applied 

directly to Ac in Equation (3.3.1a), then the matrices Ab1 and Ab2 may 

not be submatrices of a cut-set matrix (11). Therefore, the cut-set 

matrix in Equation (J.3.15) may not be realizable. The augmentation 

in Equation (3.3.2) allows for the direct realization of Equation 

(J.3.1b). 

It should be observed that for a given A-matrix, there are several 

realizations corresponding to different sets of the matrices c22 , c23 , 

c32 , and c33 , and thus there is a choice in networks. 



3.4 Building Blocks 

Examination of the realization in Figure 3.3.4 reveals that there 

is a basic topology. This basic topology will be discussed in ter~s of 

building blocks. There are two such building blocks; one is for the 

operation of integration, which will be identified as an "integrator", 

and the other is for the operation of summation (or inversion), which 

will be identified as a "summer" (or an inverter), as shown in (a) and 

(b) of Figure J.4.i, respectively. As far as their operations are con-

cerned, these are similar to the integrator and the summer usually used 

in an analog-computer simulation, where an operational amplifier in 

conjunction with resistors and capacitors is implemented to achieve the 

operations of integration and summation. 

xi 

( a) 

d 
dt XO 

---<> 

d -dt x 
0 

1 

XO 

(b) 
x 

0 

xi 
a.1 

x 
n 

a 
n 

a 

n-=-
= - 1, \ a.x. al, l. i. 

1::::1 

Figure J.4. i. (a) Circuit for Integration; (b) Circuit 
for Summation (or Inversion) 



In Figure 3.1±.1, x. represents an input or an output, and is a 
1 

state variable corresponding to some capacitor voltage in the realiza-

d 
tion, and dt x0 is the current through the capacitor in the integrator. 

Note that for the operation of integration (Figure 3.4.1(a)), the 

output is of the same polarity as the input; whereas, for the operation 

of summation (or inversion) (Figure 3.4.1(b)), the output is out of 

phase with the input. Note further that the nullator and the norator 

appear as a pair in both the integrator and the summer, and, thus, 

allowing for the replacement of the nullator-norator pair by an ideal 

transistor. 

The building block in Figure J.4.1(a) may be extended to obtain a 

summing integrator as shown in Figure J.4.2. 

x 
n ---"'" "..----.. a 

n 

d 
- x :c 
dt O 

n 

\ a.x. L 1 1 

1 

Figure J.4.2. Summing Integrator 



3.5 Use of the Building Blocks 

When some of the a.'s in the matrix A of Equation (3.3.1) are 
1 C 

negative, the first step of the synthesis procedure is again to augment 

the matrix Ac such that all its entries are positive. Note that if all 

the entries of A in Equation (3.3.1) are positive, there is no such c 

need to augment it. For both of these two cases, a synthesis procedure 

similar to that discussed in Sect'ion 3.3 can be carried out to obtain 

the realization. 

However, in view of the two building blocks shown in Figure 3.4.1 

and the summing integrator in Figure 3.4.2, any A-matrix in companion 

matrix form can be synthesized immediately, without going through the 

detailed synthesis procedure. This is illustrated in the following 

example. 

Example 3.5.1 Consider the A-matrix in the following equation: 

x1 0 1 0 x1 

d 
0 0 1 dt x2 = x2 (3.5.1) 

X3 b1 b 
2 -b 

3 X3 

where b1 , b2 , and b3 are all positive constants. 

Writing three state equations from Equation (3.5.1) gives: 

d 
dt x1 = x2 (3.5.2a) 

d 
dt x2 = X3 (3.s.20> 

(3.5.20) 

With the aid of the two building blocks in Figure 3.4.1 and the summing 



integrator in Figure 3.4.2, the realization is obtained readily by 

using Equation (3.5.2), as shown in Figure 3.5.1. 

Figure 3.5.1. Example Synthesized Network 

3.6 Change of Capacitor Element Values 

In the realizations of Figure 3.3.4 and thereafter, each capacitor 

has element value of unit magnitude. In this section, a method will be 

described such that each capacitor can independently take on element 

value different from unity if desired. 

Consider the general network in Figure J.J.4 for illustration. 

The results will hold true for other networks discussed so far. The 

method is to multiply both sides of Equation (J.J.1b) by a diagonal 

matrix Cb= diag (c1 , c2 , ••• , Cn) consisting of capacitance values to 

be determined. 

/ ,.; 



Thus, 

(3.6.1a) 

or 

c1 x 0 c1 0 . • . 0 0 x1 1 
c2 x2 0 0 c 

2 • . . 0 0 x2 

d . . . • 
dt -

c 
n-1 xn-1 0 0 0 0 c 

n-1 xn-1 
c x -Ca -Ca ... ca . . . -Ca .. ca x n n n 1 n 2 n 3 n n-1 n n n 

(3.6.1b) 

The coefficient matrix on the right-hand side of Equation (3.6.1) is now 

taken to be the new A-matrix. Realizing this new A-matrix using the 

technique developed in the preceding section yields the network shown in 

Figure 3.6.1. The A-matrix of this network, of course, is the same as 

that of the network in Figure 3.3.~, i.e., A. Each of the capacitances 
c 

c 1 , c 2 , ••• , and Cn can take independently on any suitable value, and 

some of the conductance values are accordingly changed. Note that if a 

summer (or an inverter) is used, each of the two corresponding conduc-

tance values still has unit magnitude as shown in Figure 3.6.1. This 

can be seen if the detailed synthesis procedure described in Section 3.3 

is worked out to obtain the realization. 



C a 
n 1 

c x 
.l!....ij. 

x 
n ... 

c • 
A 

Figure 3.6.1. Synthesized Network Corresponding to 
Figure 3.3.4 

The above method can be considered to be the "current-scaling 

method" because it is the change of the current through each capacitor 

that makes every capacitor element value different from unity. 

3.7 Synthesis of an Arbitrary A-Matrix 

The above results can be extended to synthesize an arbitrary A-

matrix. The two building blocks in Figure J.4.1 can be combined to 

obtain a scheme for the realization of an arbitrary A-matrix. Figure 

3.7.1 shows this scheme for drawing the circuit for a general entry a .. 
1J 

in an A-matrix. The entry a .. relates a state variable x. to the 
1J J 

derivative of other state variable xi, 
. 
x .• 

1 
The pattern is repeated for 

each entry of the A-matrix. 



q2 = 21( I a1. J, I - a . .) .. 1J 

1 .. 
q =-<1-_..!l,) 
3 2 ja. ,I 

1J 

= 21<la .. l + a .. ) 
1J 1J 

1 

Figure 3.7,1. Scheme for Synthesizing Network 

x. 
J 

x. 
1 
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It can be seen that the scheme in Figure 3.7.1 consists of the two 

building blocks in Figure 3.~.1. Hqwever, since q1 , q2 , and q3 repre

sent conductances, when a .. is negative, the branch of q1 is open-
-- 1J 

circuited; whereas, when aij is positive, the branches of both q2 and q3 

are open-circuited, thus causing the summer (or inverter) to be dis-

connected; and when aij is zero, the branches of q1 , q2 , and q3 are all 

open-circuited. 

The following example illustrates the synthesis of an arbitrary 

A-matrix using the scheme in Figure 3.7.1. 

Example 3.7.1 Consider the source-free state equations: 

x1 0 1 0 x1 x1 

d 
5 0 2 A (3.7.1) 

dt x2 = x2 x2 

X3 -2 0 -2 X3 X3 

where the A-matrix is as identified. It is desired to realize this 
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A-matrix. 

By using the scheme in Figure 3.7.1 for every entry in this A-

matrix, the realized network ts shown in Figure 3.7.2. 

Figure 3.7.2. Example Synthesized Network 

In the scheme for synthesizing an arbitrary A-matrix in Figure 

3.7.1, the element value of the capacitor is unity, and, therefore, in 

the realization, each capacitor has unit magnitude. If in the realiza-

tion of an A-matrix, each of the capacitors with element value different 

from unity is desired, the following scheme in Figure 3.7.3 can be used 

to achieve this, where x. and x. have the same meaning as before. For 
1 J 

example, the A-matrix in Example 3.7~1 can be synthesized by using this 

scheme. This is shown in Figure 3.7.1±. The capacitances c1 , c2 , and c3 

can assume any suitable values. 



q2= 21 C. ( la .. j - a .. ) ' 
1 1J 1J 

Figure 3.7.3. Scheme for Synthesizing Network 
Corresponding to Figure 3.7.1 

Figure 3.7.4. Example Synthesized Network 
Corresponding to Figure J.7.2 

x. 
1 
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Perhaps it is worthwhile to make a comment about classical A-matrix 

realizations using operational amplifiers. The realization in terms of 

operational amplifiers first, and then replacing the operational 
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amplifiers by nullator-norator equivalents (28) results in a network 

composed of resistors, capacitors, and nullatator-norator pairs. In 

some cases, the operational-amplifier approach may require fewer 

nullator-norator pairs. For example, when a .. is negative, a single 
1J 

pair is sufficient to realize it. However, from the operational ampli-

fier equivalent circuit using a nullator-norator pair, it is known that 

the common vertex of the pair always corresponds to a ground potential. 

The nullator-norator synthesis used here does not have this restriction 

in general. 

J.8 Synthesis of a Tridiagonal A-Matrix 

Tridiagonal matrices are related to ladder networks (25) (39). A 

special case of interest is the tridiagonal A-matrix 

0 

-a n-2 
0 

-an-1 -a 
n 

(J.8.1) 

where all the a.'s are positive constants. It has been found that such 
1 

a matrix is useful in the synthesis of a transfer function of a ladder 

network (20). This matrix can be derived from a Hurwitz polynomial by 

using the Navot's method (J1) and some transformation (19). 

The tridiagonal A~matrix AT in Equation (3.8.1) can be realized by 
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using the method discussed in the preceding section. However, since the 

tridiagonal A-matrix has a special form, a simpler realization can be 

achieved with a network topology different from that previously obtained. 

This realization uses fewer number of elements compared to that by the 

method for an arbitrary A-matrix. 

The procedure is similar to that developed in Section 3.3. How-

ever, it is not necessary to augment the tridiagonal A-matrix such that 

all its entries are positive because of its special form. The synthesis 

is obtained by first decomposing the tridiagonal A-matrix into a matrix 

triple product; then comparing with the A-matrix in symbolic form 

derived in Equation (3.2.2) to obtain the network topology and its ele-

ment values. 

The synthesis procedure is described below. It will be discussed, 

respectively, when the order n of AT is even and odd. 

(I) n even 

The first step is to decompose AT into a matrix triple product. 

One possible method of decomposition is the same as that given in 

Section 3.3. The decomposition is given by: 

a ) 
n 

(3.8.2) 

where E .. represents an n X 2 submatrix with both of the two entries 
11 

in the ith row as 1 and the remaining entries as zero; F .. , i ;,ln-1, 
1J 
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j f n, represents an n x 2 submatrix with the entry in the i th row of the 

first column as -1 and the entry in the jth row of the second column as 

1 and the remaining entries as zero, and F(n-1 )n represents an n X 2 

submatrix with both nonzero entries in the (n-1)th row of the first 

1 ' th th ft 1 1 co umn and in en row o he second co umn as - • Note that F12 

always exists. Note also that Equation (3.8.2) cannot be applied when 

n = 2 since for this case in the decomposition, there will be an F02 

which is not defined. When n = 2, the decomposition is 

The above decomposition in Equation (3.8.2) or (3.8.3) can be verified 

by multiplying out the three matrices in the right-hand side. 

To illustrate the decomposition, consider a fourth-order A-matrix. 

It follows from Equation (3.8.2) that AT = [E11 E.33 !E22 E41) • diag (ao, 

a1, a2, a3, a1, a2, a3, a4) 0 [F12 F24IF13 F34JT, or equivalently 

0 0 1 1 0 0 0 0 0 0 
ao 

-ao a1 a1 

-a1 0 a2 0 0 0 0 0 1 1 0 0 a;3 
= 

0 -a2 0 a3 0 0 1 1 0 0 0 0 a3 

0 0 -a -a4 0 0 0 0 0 0 1 1 
a1 

3 a2 

a3 

a4 

-1 0 0 0 -1 0 0 0 T 

0 1 -1 0 0 0 0 0 
(3.8.4) 

0 0 0 0 0 1 -1 0 

0 0 0 1 0 0 0 -1 
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Now, comparing the matrix AT in Equation (3.8.2) with the A-matrix 

in symbolic form in Equation (3.2.2) with Cb again chosen to be a unit 

matrix yields 

and 

E(n-3)(n-3) E(n-1)(n-1): E22 E44 E66 ••• 
I 

E E ] 
(n-2) (n-2) . nn (3.8.5) 

(3.8.6) 

(3.8.7) 

From Equations (3.8.5) and (3.8.7) with c33 set to be a unit matrix for 

the same reason as before, the following equation is obtained: 

+ F ) (E + F ) 
(n-4)(n-2) (n-1)(n-1) (n-2)n 

(E + F ) (E + F ) ] 
(n-2)(n-2) (n-J)(n-1) nn (n-1)n 

... H 1 H] 
n- :n 

••• , and H 
n 

E nn 

(J.8.8) 

+ F (n-1)n" 
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Equation (3.8.8) is then decomposed as 

(H(n+2)/2H(n+4)/2 • • • H ) ] 
n 

u] ~ 0 

(H H (n+2)/2 (n+4)/2 

(3.8.9) 

Therefore, a choice for c23 and c32 is 

C23 :::; [(H1 (3.8.10) 

c32 "~ 

0 

(3.8.11) (H H (n+2)/2 (n+4)/2 

It should be pointed out that the first column of H1 , or of c23 in 

Equation (3.8.10) is a zero column and will be deleted. After deleting 

this column, the matrix H1 will be denoted by H~, and c23 by c~3• The 

corresponding first row of c32 in Equation (3.8.11) also will be 

deleted. After deleting this row, the matrix c32 will be denoted by 

c;2 and is 

o' 

(H H (n+2)/2 (n+4)/2 

I I 
where U and O are the corresponding unit matrix and zero matrix, U and 

o, in Equation (3.8.11) with the first row deleted. 

The fundamental cut-set matrix can now be obtained as 



= ~ olc lc'j I 22 I 23 
--T-,--

u I c I I CJJ 
I ) 2 I 

U O . O : E11 EJ3 • •• E(n"-1) (n-1) E22 E4,4 ••• Enn: H~ 8 2 ••• 8n/2 U 

- '-:-1----- ,-----, --- . -1-------
= o u o 1 u o I u o 

0 0 U I O H H HI O U I (n+2)/2 (n+4)/2 ••• n 
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(J.8.12) 

Again, it can be shown that the above fundamental cut-set matrix 

is always realizable by simply constructing the graph. The resulting 

graph and the synthesized network are shown in Figures J~8.1 and J.8.2, 

respectively, where the element values of the conductors are obtained 

from G in Equation (J.8.6) and all the capacitances are of unit magni
c 

tude because the matrix Cb is assumed to be a unit matrix. Dashed lines 

are indicated in Figure J.8.2 to enclose the fundamental blocks L1 , L2 , 

••• , L 1 • Among these blocks, there are only two basic types. For 
n-

example, L1 and L2 form these two basic types. The block L. is of the 
1 

same form as L1 if i is odd and of the same form as L2 if i is even. 



rr-
1 

I 

Figure J.8.1. Network Graph With n Even 

Figure J.8.2. Synthesized Network 
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n 

When n = 2, it proceeds in the same way as above, and the realiza-

tion will be as shown in Figure J.8.2 with n = 2. 

(II) n odd 

A decomposition of AT with n odd in Equation (J.8.1) into a matrix 
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triple product is 

(3. 8.13) 

where E .. and F .. are as defined in Case (I) above. The case for n = 1 
11 1J 

is trivial, and is not considered here.· Note that F12 always exists. 

For illustration, consider the case of the decomposition of AT in 

Equation (J. 8. tJ) when n = 5. It follows that AT = [E11 E33 E55 )E22 E'=i:1) 
I 

• diag (a0 , a 1 , a2 , a3 , a'*, a5 , a 1 , a2 , a3 , a'*)[F12 F2'* F'*5 IF13 F35 JT, 

or equivalently 

-ao a1 1 1 0 0 0 ala 0 0 0 
I 

-a1 0 a2 0 0 0 0 0 o I 1 1 0 0 
I 

-a 0 aJ = 0 0 1 1 0 olo 0 0 0 
2 I 

-a 0 a'* 0 0 0 0 0 olo 0 1 1 
3 I 

-a'* -a5 0 0 0 0 1 1 lo 0 0 0 

ao 
-1 0 0 0 0 o'-1 0 00 T a1 I ·a 

2 0 1-1 0 0 ol o 0 00 a . 
.3 I a'* 

·a 0 0 0 0 0 ol 0 1-10 
5a I 1 0 0 0 1-1 ol 0 0 00 a2 

I a3 
a'* 0 0 0 0 0-1! 0 0 01 

(3. 8.1'=i:) 
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Now, comparing Equation (3.8.13) with Equation (3.2.2), setting 

Cb to be a unit matrix, results in 

E ] 
(n-1) (n-1) (3. 8.15) 

(3.8.16) 

and 

F F ] (n-4) (n-2) (n-2)n (3.8.17) 

Substituting c22 from Equation (3.8.15) into Equation (3.8.17) with c33 

set as a unit matrix gives 

+ F ) (E . + F ) ] 
(n-4:)(n-2) (n-1)(n-1) (n-2)n 

= [K K K K K I K K 1 2 3 • • • (n-1)/2 (n+.1)/2 I (n+.3)/2 ln+5)/2 

K(~+7)/2 ••• Kn-1 Kn] (J.8.18) 

+ F( ) n-2 n. , 

Equation (J.8.18) is then decomposed as 



u]~ 

Therefore, choose c23 and c32 as 

uJ 

0 

(K(n+J)/2 ••• Kn-1 

K K )] 
n-.1 n 

0 

(K(n+J)/2 K 
n-1 

60 

(J.8.19) 

(J.8.20) 

(J.8.21) 

Note that in Equation (J.8.20) the first column of K1 , or of c23 , and 

the second column of K(n+i)/2 or the (n+1)th column of c23 are both zero 

columns and, therefore, these two columns can be deleted without losing 

any information. The resulting K1 and K(n+i)/2 will be identified by 

K~ and K(n+i)/2 , respectively, and the resulting c23 will be identified 

by c~3 • Furthermore, the corresponding first and (n+1)th rows of c32 in 

Equation (3.8.21) will also be deleted. After these two rows are 

deleted, c32 will be identified by c;2 and is 

u' o' 

0 

Now, combine c22 , c~3 , c;2 obtained above and c33 which is assumed 

to be a unit matrix to form the fundamental cut-set matrix 
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U: O O I E11 EJJ • • • Enn E22 E44 • • • E(n-1) (n-1):K~ K2 • • • K(n+1)/2 U 

= o,uof---u,------a'-----:-- _u ___ -o-

o l O U I O K(n+J);2 K(n+5)/2 ••• Kn l O U 

(3.8.22) 

The above fundamental cut-set matrix can be shown to be re1;1.lizable by 

constructing the graph. The resulting graph and the synthesized network 

are shown in Figures J.8.3 and J.8.4, respectively. Again, dashed lines 

are used to enclose the fundamental blocks L1 , L2 , ••• , 'Ln_ 1 • The 

statements about the fundamental blocks in Case (I) hold true for 

Figure J.8.4. That is, there are two basic types of the fundamental 

blocks, such as L1 and L2 ; the block Li is of the same form as L1 if i 

is odd and of the same form as L2 if i is even. The difference between 

the two synthesized networks of Figures J.8.4 and J.8.2 lies in the 

right-most pair of nullator-norator across the capacitor C, where one 
n 

is switched around to get the other. 

It may be observed that since the realization in Figure J.8.2 or 

J.8.4 has fundamental building blocks, it can be obtained just by 

inspection of the given tridiagonal A-matrix. Nevertheless, for illus-

tration of the synthesis procedure, an example is given below. 

Example 3.8.1 Consider the tridiagonal A-matrix 

-0.08 0.709 0 

1.53 (3.8.23) 

0 -1.53 -1.92 



62 

figure J.8.J. Network Graph With n Odd 

Figure J.8.~. Synthesized Network 



6.3 

where the corresponding characteristic polynomial is P(s) = I sU - A I 
p 

= s 3 + 2s2 + Js + 1, which is strictly Hurwitz. First, decompose A into a 
p 

matrix triple product, using ~quation (.3.8.13) and is 

0.08 

1 1 0 0 0 0 0.709 
-1 0 0 0 -1 0 

T 

1.5.3 
A = 0 0 0 0 1 1 

1.92 
0 1 -1 0 0 0 

p 

0 0 1 1 0 0 0.709 0 0 0 -1 0 1 

1. 5.3 

(3.8.24) 

By comparing Equation (J.8.24) with Equation (3.2.2), setting Cb as 

a unit matrix, the following equations are obtained: 

1 1 0 0 0 0 

c22 0 0 0 0 1 1 (3.8.25) 

0 0 1 1 0 0 

0.08 

o. 79 

G 1.5.3 = c 
1.92 

(J. 8. 26) 

0.709 

1.53 

-1 0 0 0 -1 0 

-1 
- c 1 -1 0 0 0 c23c.33c32 = 0 

22 
(J.8.27) 

0 0 0 -1 0 1 

Combining Equations (3.8.25) and (3.8.27) with c33 chosen to be a unit 

matrix results in 



c23c32 = 

0 1 0 o I -1 
I 

0 1 -1 ol 1 
I 

0 0 1 01 0 

o 1 o o I 1 
I 

= o 1 -1 o I o 
I 

o o 1 o I o 

~eleted__J 

0 

1 

1 

0 

1 

0 

1 0 0 o: 0 00 ~ 
o a 1 a a, a I 

I deleted 
a a a 1 a 1 a a I 
1 O O O 11 O O c:r---1 -----'--

0 0 0 0 '-1 0 
I 

o o o ol 1 1 

J 
0 0 0 01 0 1 

0 1 0 01 0 0 

1 o 1 o o o o 1 al o o 

64 

= 1 -1 o 1 o ~~-0-~:~1-~ (3.8.28) 

o 1 o o 1 o o o ol 1 1 
I 

o o o ol o 1 

Henc~, choose c23 and c32 as 

1 0 1 0 0 

c23 = 1 -1 o 1 0 (3.8.29) 

0 1 0 0 1 

0 1 0 0 0 0 

0 0 1 0 0 0 

0 0 0 -1 0 (3.8.30) 

0 0 0 0 1 1 

0 0 0 0 0 1 
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Now, form the fundamental cut-set matrix: 

1 0 0 .I I 1 1 0 0 0 0 I 1 0 1 0 0 
I I I 

o 1 o I · 0 Io o o o 1 1 11-1 o 1 o 
I I I f : o : c22 I c2~ -. o o 1 I I o o 1 1 o o I o 1 o o 1 

~rul~32 :-CJ~ - : 1 0 0 _ 0 0 : 0 1 0 0 0 0 : 1 O O O O 

:o 1 .o O O : 0 0 1 0 0 0 : 0 1 0 0 0 

O Io o 1 o o Io o o o -1 o Io o 1 o o 
I I I 
lo o o 1 o lo o o o 1 1 lo o o 1 o 
I I I 
10 0 0 0 1 10 0 0 0 0 1 10 0 0 0 1 

(3.8.31) 

Figures J.8.5 and J.8.6, respectively, show the graph and the synthe-

sized network corresponding to this fundamental cut-set matrix. 

Figure 3.8.5. Example Network Graph 
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0.709 1.53 

0.08 1 1 1.92 

Figure J.8.6. Example Synthesized Network 

It is noted that in the tridiagonal A-matrix AT in E;quation 

(J.8.1), n even or odd, the entries a .. and a .. , j = i+1, i=1, 2, ••• , 
1J J1 

or (n-1), have the same value, but a .. is positive and a .. is negative. 
1J J1 

As a matter of fact, for these two entries, a .. and a .. , as long as one 
1J J1 

is positive and the other is negative, the resulting tridiagonal 

A-matrix will possess the same characteristic polynomial and will have 

the same realization as the tridiagonal A-matrix in Equation (J.8.1). 

For example, each of the following two matrics has the same characteris-

tic polynomial as the matrix A in Equation (J.8.23), and their realiza
p 

tions, respectively, are the same as that of A, which is shown in 
p 

Figure J.8.6. This can be proved by carrying out the detailed synthesis 

procedure. 

-0.08 -0.709 0 

A = 
P1 

0.709 0 1.53 

0 -1.53 -1.92 

L0.08 -0.709 _:_5~ A = 0.709 0 
P2 

0 1.53 -1.9 



Note further that corresponding to the two entries a .. and a .. 
1J J1 

mentioned in the preceding paragraph, there are two conductances a. 
1 

which are not distinguished in the fundamental block L. of the general 
1 

synthesized network shown in Figure 3.8.2 or 3.8.4. In fact, the a .. 's 
1J 

and the a .. 's may not be equal, but if a tridiagonal matrix is derived 
J1 

from a characteristic polynomial which is strictly Hurwitz, the rela-

tionship a .. a .. = f., j = i + 1, i = 1, 2, ••• , n-1, should be held. 
1J J1 1 

Note that f. is obtained from the Navot•s method (31) of deriving a 
1 

tridiagonal matrix. This will be discussed later in Subsection 5.4.1. 

From the network graph shown in Figure 3.8.1 or 3.8.3, it can be seen 

that the fundamental block L. has the configuration shown in Figure 
1 

3.8.7, where a .. may or may not be equal to a ..• 
1J J1 

1 

,--
1 

I 
I 
I 
I 

Cil 1 

I 
L: ____ _ 

i - odd i - even 

Figure 3.8.7. Fundamental Blocks 

1 
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3.9 Comparison of the Synthesis Procedures 

If the tridiagonal A-matrix AT of Equation (3.8.1) is synthesized 

using the procedure developed in Section 3.7, the number of nullator-

norator pairs used is greater than that using the procedure in Section 

3.8. In general, for a tridiagonal A-matrix of order n as in Equation 

(3.8.1), n even or odd, the former procedure needs 3n pairs of nullator-

norator; whereas, the latter procedure needs (2n-1) pairs of nullator-

norator; that is, the former procedure needs n+1 more pairs of 

nullator-norator than the latter procedure. In view of the equivalent 

ideal transistor realization of a nullator-norator pair, the use of the 

procedure in Section 3.8 to synthesize a given tridiagonal A-matrix is 

desirable. 

For the purpose of comparison, the realization of A in Equation 
p 

(3.8.23) by the procedure of Section 3.7 is shown in Figure 3.9.1 where 

9 pairs of nullator-norator are used. However, in the network of 

Figure 3.8.6 obtained by using the procedure of Section 3.8 only 5 pairs 

of nullator-norator are used. 

0.709 

1.53 0.08 

Figure 3.9.1. Network for Comparison 



It is noted that the specification may be given in terms of a 

characteristic polynomial instead of an A-matrix. From this character

istic polynomial, the A-matrix in companion matrix form can be obtained 

easily by inspection; whereas, the derivation of the tridiagonal A

matrix is more involved. However, the realization of the latter uses 

fewer number of nullator-norator pairs than that of the former. 

Generally, for a characteristic polynomial of degree n, it needs 2n+1 

pairs of nullator-norator to realize the corresponding A-matrix in 

companion matrix form, and 2n-1 pairs to realize the corresponding 

tridiagonal A-matrix. Furthermore, the tridiagonal A-matrix is consid

ered to be the best as far as the sensitivity of the elements in the 

realized network is concerned (38). 

The procedures discussed in the preceding sections are for source

free networks. They will be extended to include sources. These are the 

cases of realization of transfer functions, immittance matrices, and 

gyrators and are considered in the next chapter. 



CHAPTER IV 

SYNTHESIS OF TRANSFER FUNCTIONS, IMMITTANCE 

MATRICES, AND GYRATORS 

4.1 Introduction 

The realization of an A-matrix has been considered in the preceding 

chapter. It will be used in the synthesis of transfer functions 9 

immittance matrices 9 and gyrators by means of state models in this 

chapter. The transfer functions to be synthesized are voltage-ratio 

transfer functions, current-ratio transfer functions 9 transfer admit-

tance functions, and transfer impedance functions. The immittance 

matrices to be synthesized are short-circuit admittance matrices 9 open-

circuit impedance matrices, hybrid matrices, voltage transfer-function 

matrices and current transfer-function matrices. The synthesis of 

transfer functions is considered first and is given in the next section. 

4.2 Synthesis of Transfer Functions 

Efforts are directed to synthesize voltage transfer functions. The 

results will be extended to other types of transfer functions. 

Consider the voltage-ratio transfer function 

T(s) 
V (s) 

0 

n-1 n-2 
b s + b s + ••• + b 2s + b 1 = d + n n-1 

n n-1 
s + a s 

n 

70 
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where V (s) and V. (s) are the Laplace-transformed load and source 
o 1.n 

voltage, respectively; a 1 , a 2 , ••• , b, b, ••• , b, and dare real 
1 2 n 

constants. Corresponding to Equ~tion (4.2.1), many forms of the state 

model exist. Perhaps the simplest one is the following (22) with the 

A-matrix in compansion matrix form: 

0 1 0 

0 0 1 

= 

x 
n-1 

0 0 0 

x -a1 -a2 -a . . 
n J 

y = r1 b2 bJ 

0 0 

0 0 

0 1 

. -a 
n-1 

-a 

b bin 
n-1 ~ 

n 

x1 

x2 

x 
n 

x 
n-1 

x 
n 

+ du 

0 

0 

+ u (4.2.2a) 

0 

1 

(4.2.2b) 

where u = v. and y = v0 , the input function and the output function in 
in 

the time domain. 

As mentioned previously, to realize the transfer function in 

Equation (4.2.1), one needs to realize the corresponding state model 

such as in Equation (4.2.2); that is~ to realize the set of matrices 
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[A,B,C,D} in Equation (4.2.2). The realization of an A-matrix has been 

achieved and the realization of a state model can be obtained with the 

use of the two building blocks shown in Figure 3.4.1 and the summing 

integrator in Figure 3.4.2, in addition to the A-matrix realization. 

The synthesis procedure is illustrated in the following example. 

Example 4.2.1 Consider the voltage-ratio transfer function 

(4.2.3a) 

which can be rewritten as 

-o.1s + o.8 1 + ~~---'---~~~~ 

s 2 + o.1s + 1.2 
(4.2.3b) 

The state model corresponding to Equation (4.2.3) is, from Equation 

(4.2.2), 

d 
dt 

y = ~-8 

where u = v 1 and y = v 2 • 

(4.2.4a) 

(4.2.4b) 

The realization of the state model in Equation (4.2.4) can be 

obtained by first realizing the A-matrix. This can be done by inspec

tion from Figure 3.3.4 and the realization is shown in Figure 4.2.1. 
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0.1 

Figure 4.2.1. Example A-Matrix Realization 

Now, the source u must be incorporated into the realization of the A

matrix in Figure 4.2.1, and the algebraic set of the state model, i.e., 

the output equation, in Equation (4.2.4b) must be realized. 

It is seen from Equation (4.2.4a) that the source u is related to 

! x2 which represents the current through the capacitor c2• This will 

be implemented by using a summing integrator shown in Figure 3.4.2 in 

the same way as a voltage source is applied to the operational amplifier 

of an integrator in an analog-computer simulation diagram. To realize 

the output equation in Equation (4.2.4b), two summers shown in Figure 

3.4.1(b) will be used, the first being served as an inverter. The real

ization of the transfer function in Equation (4.2.3) is shown in Figure 

Earlier it was pointed out that there exist several realizations 

for a given A-matrix and, therefore~ it follows that there are several 

realizations corresponding to a given transfer function. 

If the transfer functions to be synthesized are of types other than 

the voltage-ratio transfer functions~ then various kinds of controlled 
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sources (transducers) may be implemented at the source end and/or the 

output end when incorporating the source to and obtaining the output 

from the realization of the A-matrix. The representation of various 

controlled sources using nullator-norator circuits can be found in a 

book written by Mitra (28). 

0.1 

1 

+ 

Figure 4:.2.2. Example Synthesized Network 

In the case of a transfer admittance function, a current-to-current 

transducer (CCT) which is an ideal current-controlled current source is 

needed at the output end. For a transfer impedance function, a current-

to-voltage transducer (CVT) which is an ideal current-controlled voltage 

source is required at the source end. For a current-ratio transfer 

function, the CVT and CCT are needed at the source end and the output 

end, respectively. 
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The reasons for the possible use of these controlled sources are 

given as follows. At the source end, a summing integrator shown in 

Figure 3.4.2 will be used, and the inputs to this summing integrator 

always are voltages. Thus, if the source is a voltage source, no con-

trolled sources are required; but if the source is a current source, a 

CVT is needed at the source end. At the output end, a summer shown in 

Figure 3.4.1(b) will be used, and the output of this summer is a volt-

age. Hence, if the output is a voltage, no controlled sources are 

required, but if the output is a current, a CCT is needed at the output 

end (another summer served as an inverter will be used, if necessary). 

The following example illustrates the synthesis of a current-ratio 

transfer function. 

Example 4.2.2 Consider the current-ratio transfer function 

which can be rewritten as 

I (s) 
,2 
- .............. = 
l/s) 

4(s2 + 2) 

2 
s + s + 1 

4 + 
-4s + 4 

2 
s + s + 1. 

(4.2.5a) 

(4.2.5b) 

A state model corresponding to Equation (4.2.5) can be derived as 

d ~J b: _J ~:J · GJ 
(4. 2.6a) 

dt = u 

y = [4 -4] C:1. ~ (4.2.6b) 



76 

where u = i 1 and y = i 2 • The realizations of the A-matrix and of the 

state model in Equation (4.2.6) are shown in Figures 4.2.3 and 4.2.4, 

respectively. 

1 

Figure 4.2.3. Example A-Matrix Realization 

1 

1 

,------
' I I 
I 

--1 
I 
I 
I 
I 

__ __, _______ __.9+ ___ ~--------~----~----+-----~--~--...._--~-----...... ~--1 I 
L---,-CVT~ 

Summing -'Integrator Inverter tCT-

Figure 4.2.4. Example Synthesized Network 
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Note that in Figure 4.2.4 a CVT is used on the source end and a CCT 

is used on the output end. The CVT is applied to the summing integrator 

through a conductor of unit element value and the CCT just acts as a 

current-collecting device. 

The synthesis of short-circuit admittance matrices using resistor~, 

capacitors, and nullator-norator pairs will be considered in the next 

section. 

4.3 Synthesis of Short-Circuit 

Admittance Matrices 

A short-circuit admittance matrix Y(s)::: [y .. (s)J is defined by 
l.J 

I ( s) 
n 

or more compactly by 

::: 

• y 
nn 

I(s)::: Y (s) V(s) 

V (s) 
n 

where y .. 'in general are functions of s, the Laplace-transformed 
l.J 

variable. 

(4.3.1a) 

(4.3.1b) 

The first step of the synthesis procedure is to find a state model 

corresponding to Equation (4.3.1). For the time being~ it is assumed 

that the short-circuit admittance matrix Y(s) in Equation (4.3.1) has no 
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poles at infinity and, thus, the state model has the general form as in 

Equation (3.1.1) which is repeated below for ready reference: 

d 
dt x(t) = Ax(t) + Bu(t) (4.3.2a) 

y(t) = Cx(t) + Du(t) (4.3.2b) 

where xis the state vector corresponding to some capacitor voltages, u 

is the input voltage-source vecto'r, and y is the output source-current 

vector. As mentioned in Section 3.1, the derivation of a state model 

from a short-circuit admittance matrix is somewhat more involved and can 

be found in (32). 

The state model in Equation (4.3.2) is then modified such that its 

synthesis is reduced to the synthe.sis of a ne:w A-matrix, to be called a 

"modified A-matrix". The technique developed previously can be applied 

to realize this modified A-matrix. 

To achieve this, u(t) in Equation (4.3.2) is taken to be some other 

capacitor voltage vector u 1 ( t), and y( t) is taken to be the correspond-

ing capacitor currents d~ u•(t), assuming capacitors of unit element 

value. Therefore, Equat::i.on (4.3.2) is written as 

d 
dt x(t) = Ax(t) + B u•(t) (4.3.3a) 

d~ u• (t) :,,-Cx(t) ..... Du• (t) • (4.3.3b) 

The minus signs before the. matrices C and D in Equation (4.3.3b) are 

introduced because of the fact that the orientations of the source 

currents y(t) in Equation (4.3.2b) are opposite to those of the capaci

d 
tor currents dt u• (t) in Equation (4.3.3b) if the polarities of the 
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voltage sources u(t) and of the capacitor voltages u 1 (t) are kept the 

same. 

It follows from Equation (4.3.3) that 

d 
dt 

pct>l 
~'(t~ 

:::: [
A iil [x(t~ 

c -~ u' (tJ (4.3.4) 

where u 1 (t) is now part of the new state vector and the coefficient 

matrix 

A• = ~: -~ (4.3.5) 

is to be considered as the "modified A-matrixtr. This modified A-matrix 

can be synthesized using the technique developed in Section 3.7. The 

realization of the given short-circuit admittance matrix is obtained by 

simply replacing the capacitors identified with u 1 (t) in the realization 

of this modified A-matrix by voltage sources. 

The following example illustrates the synthesis of a short-circuit 

admittance matrix. 

Example 4.3.1 Consider the short-circuit admittance matrix 

1 
Y(s) = -----

2 
s + s + 1 

l3s2 + s + 2 

L -2( s _ 1) 

2-(s + 1~3) 

3s + s + J (4.3.6) 

A state model corresponding to this admittance matrix can be derived as 

( 4. 3. 7a) 



Bo 

(4.3.7b) 

where u 1 , u2 are voltage sources and y 1 , y 2 are output currents. 

The modified A-matrix in Equation (4.3.5) can now be formed from 

Equation (4.3.7): 

= 

0 1 I 1 

-1 -1 I 1 
I 

0 

1 

-1- ~ 1--=.;- -0 

I 
0 2 I o -3 

(4.3.8) 

This modified A-matrix can be synthesized using the scheme in Figure 

3.7.1. In its realization, replacing the capacitors corresponding to 

u 1 • and u2 • by voltage source v1 and v2 , respectively, yields the 

synthesized network of the given short-circuit admittance matrix of 

Equation (4.3.6) as shown in Figure 4.3.1. 

If the matrix Y( s) to be realized is a constant matrix, which means 

that in the realization there are no energy-storage elements, such as 

capacitors, then in the state model corresponding to this Y(s), there 

will be no state vector, and only the algebraic set such as Equation 

(4.3.2b) exists. In other words, only the matrix D of the set of 

matrices [A, B, c, D} needs to be considered. Then, in this case, the 

modified A-matrix defined in Equation (4.3.5) is 

A• = -D. (4.3.9) 
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2 

1 

1 

1 

1 

Figure 4.3.1. Example Synthesized Network 

The realization of the constant matrix Y(s) is obtained when every 

capacitor in the realization of the modified A-matrix in Equation 

(4.3.9) is replaced by a voltage source. 

The synthesis of driving-point admittance functions is of consider-

able interest (37). The above method can be used to obtain the realiza-

tion. This is illustrated in the following example. 

Example 4.3.2 Consider the realization of 

1 
s 

(4.3.10) 
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The corresponding state model can be derived as 

(4:.J.11a) 

y = -x • (4:.J.11b) 

Hence, the modified A-matrix is formed from Equation (4:.3.11): 

= (4: • .3.12) 

In the realization of this modified A-matrix, which can be obtained 

by using the scheme in Figure 3.7.1, replacing the capacitor correspond-

ing to u 1 by a voltage source results in the realization of the given 

admittance function as shown in Figure 4:.3.2. 

Figure 4:.3.2. Example Synthesized Network 
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In the above discussion Y(s) is assumed to be finite whens goes to 

infinity. When Y(s) has a pole at infinity, then it can be written as 

Y(s) = Y1 (s) + sH, where Y1 (s) has no pole at infinity and H is a real 
r r 

matrix. Note that there can be only simple poles at infinity for phys-

ically realizable networks. The realization of Y(s) can be obta~ned by 

realizing Y'·( s) and sH separately and combining the two realizations 
r 

with transformer coupling. The realization of transformers can be ob-

tained in terms of two cascaded gyrators (32} and the realization of 

gyrators is discussed in the next section. 

4.4 Synthesis of Gyrators Using 

State-Model Approach 

The ideal gyrator is a lossless, nonreciprocal multiport device 

which is described by the short-circuit admittance matrix 

Y(s) = 1° ~ 
~T ~ 

(4.4.1a) 

such that 

(4.4.1b) 

where G is called the gyration conductance matrix. 

Ideal gyrators can be used as impedance inverters; when terminated 

by an inductance (capacitance), a two-port gyrator can simulate a 

capacitance (inductance) because of its impedance inversion property. 

They can also be used as isolators and circulators under proper termina-

tions and when embedded in an RC network, can give rise to complex 
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natural frequencies. In addition, two cascaded multiport gyrators can 

simulate a multiport transformer. Practically, ideal gyrators are used 

in microwave systems as well as at low frequencies when their transistor 

realizations make them significant for integrated circuit synthesis. It 

is known that the networks employing gyrators can be made less sensitive 

with respect to parameter variation compared to other active devices 

( 28). 

As a consequence, the realization of gyrators is important. Syn-

thesis of the two-port gyrators has been extensively discussed (28) (321 

A good summary on realization of two-port gyrators is presented in 

(28). Some of the methods use controlled source models and then use the 

nullator-norator equivalent circuits for controlled sources. Here, a 

systematic synthesis procedure using resistors and nullator-norator 

pairs will be presented. 

The matrix Yin Equation (4.4.1a) is a constant matrix. Therefore, 

as described in Section 4.3, the modified A-matrix defined in Equation 

(4.3.5) is 

A1 = -D 

(4.4.2) 

The realization of the above modified A-matrix is illustrated in the 

following example. 

Example 4.4.1 Consider the realization of the two-port gyrator matrix 

Y(s) = 1° 91 
t_g ~ 

(4.4.3) 



where g is the gyration conductance. In this case, the A1 in Equation 

(4:.4:.2) is 

85 

(4:.4:.4:) 

First, this A-matrix is considered to be an arbitrary A-m~trix, and 

the technique developed in Section 3.7 can be applied to synthesize it. 

Using the scheme in Figure 3.7.1 to obtain the realization of this A

matrix, then replacing the two capacitors by voltage sources v1 and v2 

gives the realization for the two-port gyrator as shown in Figure 4:.4:.1. 

g 

Figure 4:.4:.1. Synthesized Network for a Gyrator 

Next, note that the matrix Yin Equation (4:.4:.3) is a skew

symmetric matrix, and can be considered as a tridiagonal matrix of the 

form shown in Equation (3.8.1). Hence, the technique developed in 

Section 3.8 can be applied to synthesize it. From Figure 3.8.2, with 

n = 2, replacing the capacitors by voltage sources as needed, the reali

zation is shown in Figure 4:.4:.2, where the two conductors at both ends 



as denoted by a and a in the general synthesized network of Figure 
o n 

3.8.2 disappear because a = 0 and a = 0 from Equation (4.4.4). This 
o n 

coincides with one of the classical realizations (28). 

v 
1 

+ 

g 

1 

g 

Figure 4.4.2. Another Synthesized Network 
for a Gyrator 

It is observed that the realization in Figure 4.4.1 uses five 

nullator-norator pairs; whereas, the realization in Figure 4.4.2 uses 

only three nullator-norator pairs. Since a nullator-norator pair can 

be replaced by an ideal transistor, as far as the number of nullator-

norator pairs used is concerned, the realization in Figure 4.4.2 is 
\ 

more desirable than that in Figure 4.4.1. 

To illustrate the use of the equivalent nullator-norator model of 

an ideal transistor, two possible transistorized conversions of the 

realization in Figure 4.4.2 a~e shown in (a) and (b) of Figure 4.4.J. 
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+ 

g 

g 

(a) 

g 

(b) 

Figure 4Q4.J. Equivalent Three-Transistor Realiza
tions of Figure 4.4.2 
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4.5 Synthesis of Open-Circuit 

Impedance Matrices 

The results obtained in Sections 4.J and 4.4 can be used to realize 

an open-circuit impedance matrix Z(s) = [z .. ( s) J defined by 
1J 

V (s) 
n 

or more compactly by 

= 

z z • • • z 
11 12 1n 

z z 
n1 n2 

z 
2n 

• z 
nn 

V(s) = Z(s) I(s) • 

\ ( s) 

I (s) 
2 

I (s) 
n 

(4.5.1a) 

(4.5.1b) 

The synthesis of Z(s) in Equation (4.5.1) will be achieved by first 

realizing this Z(s) as a short-circuit admittance matrix, ~d then 

connecting the realized n-port network by n two-port gyrators (32). 

In Figure 4.5.1, a multiport gyrator is shown to connect to a net-

work Nt which is described by a short-circuit parameter equation 

I 11 ( s) = Y ( s) vrr ( s) • (4.5.2) 



I I Im 

+ , + 
v' v " 

Figure 4.5.1. Block Diagram for Realizing an 
Open-Circuit Impedance Matrix 

The multiport gyrator is described by the set of equations: 

fv<s)l j° -RJ j1(s)J 
~ I ( sJ = l! T O ~ I ( s) . 

where R is the gyration resistance matrix and will"be taken as a unit 

matrix of order n for simplicity. By using the relationships V1 = vrr 

and 1 1 = -111 , it is easy to derive from Equations (4.5.2) and (4.5.3) 

that 

V(s) = RY(s)RTI(s) = Y(s)I(s) 

No~, comparing Equation (4.5.1b) with the above equation gives 

Y(s) = Z(s) .• 

The ~ynthesis procedure developed in Section·4.3 can be applied to 

realize this admittance matrix. 

As to the realization of the multiport gyrator corresponding to 

Equation (4.5.3), it is noted that Equation (4.5.3) can be decomposed 

into n equations, each of which describes a two-port gyrator with the 

gyration resistance equal to unity. Therefore; the realization of this 
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multiport gyrator is reduced to the realization of n two-port gyrators. 

The result in Example 4.4.1 of the preceding section can be used for 

each of these n two-port gyrators although the specification is in terms 

of open-circuit parameter equation here. 

After connecting then two-port gyrators to the realized network 

for the admittance matrix in Equation (4.5.5), the realization of the 

given Z(s) is obtained. Note that Z(s) may_have a pole at infinity. 

The above procedure can still be applied, since the realization of an 

admittance matrix with a pole at infinity has been discussed. 

The case of constant impedance matrix proceeds in a similar way. 

The following example illustrates the synthesis of an impedance 

matrix. 

Example 4.5.1 Consider the open-circuit impedance matrix 

Z(s) 

From Equation (4.5.5)', 

1 0 
Y(s) = Z(s) = 

2 
1 

2 
s + s + 1 

To realize this Y(s), 'the state model is first derived: 

:x:1 0 -1 x1 1 0 u 
d 1 

cit = + (4.5.8a) 

x2 1 -1 x2 0 0 u2 
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~j = [: :J ~:] + [: ,:] ~:] 

(4:.5.8b) 

where u 1 and u 2 are voltage. sources, and y 1 and y 2 are output currents. 

Synthesizing this state model with the technique of Section 4:.3, and 

then connecting two two-port gyrators in the way shown in Figure 4:.5.1, 

the realization can be obtained. This is shown in Figure 4:.5.2. 

1 

1 

Figure 4:.5.2. Example Synthesized Network 
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Note that if a given open-circuit impedance matrix is nonsingular, 

it may also be realized by first taking its inverse to obtain the short-

circuit admittance matrix, then realizing the resulting admittance 

matrix by the technique developed earlier. 

4.6 Synthesis of Hybrid Matrices 

Synthesis of short-circuit admittance matrices and synthesis of 

open-circuit impedance matrices have been discussed earlier. They will 

be applied here to realize a hybrid matrix H(s) defined by 

= = H(s) (4.6.1) 

where H(s) may have, in general, a pole at infinity. The realization 

of the H( s) is considered by using two cascaded networks: one is 

described by an open-circuit impedance parameter equation and the other 
I 

by a short-circuit admittance parameter.equation, both of which are 

derived from Equation (4.6.1). Derivation of an impedance matrix and 

an admittance matrix from the hybrid matrix H(s) is not unique; there 

are many solutions. One is given by 

= = Z(s) (4.6. 2a) 

and 

(4.6.2b) 
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with 

V/s) = v4 (s) 

13 ( s) = -I4 (s) 

Y44(s) = 0 

z33 (s) = 0 

z11(s) = H11(s) (4.6.3) 

-Z 13 ( s) y 42 ( s) = H12(s) 

Y24(s)Z31(s) = H2/ s) 

y22(s) = H22(s) 

From Equation (4.6.3), the Z .. 'sand Y .. 1 s in Equation (4.6.2) can be 
J.J J.J 

found. Of course, they are not unique. 

Realizing, respectively, the open-circuit impedance matrix Z(s) and 

the short-circuit admittance matrix Y(s) in Equation (4.6.2) by applying 

the techniques developed previously, and then cascading the two realized 

networks with v3 (s) = v4 (s) and r3 (s) = -I4 (s) yields the realization of 

the hybrid matrix H(s). 

The cases for hybrid matrices in g-parameters follows in a similar 

way. 

The following example illustrates the synthesis procedure. 

Example 4.6.1 Consider the constant hybrid matrix Hin the equation 

0 -1 
I 2 -1 i11 v11 I 

v I 4 i H11 I H12 1 v12 1 -2 -2 I I 12 
= = --- r--- = --t---

i21 3 .o I 0 0 v I 21 
12 I H21 I H22 

I 

i22 0 0 I 0 -1 v 
22 

(4.6.4) 



From this equation, a pair of z-parameters equation and y-parameter 

equation corresponding to Equations (4.6.2a) and (4.6.2b), respectively, 

can be determined by the use of Equation (4.6.3). There are many such 

pairs. One is given by 

r11 0 -1 -1 i11 

~:2- = 1 -2 -2 i12 (4.6.5a) 

----i--
i3 -1 0 0 

I 

and 

I 

i4 0 I 2 -1 v4 
--1----

(4.6.5b) i21 = .... 3 I 0 0 v21 

i22 0 
I 

0 -1 
I v22 

The constant impedance matrix and constant admittance matrix in 

Equation (4.6.5) are then realized by the techniques of Sections 4.5 

and 4.J, respectively. Cascading these two realized networks with 

v 3 = v 4 and i 3 = -i4 gives the realization of the hybrid matrix Hin 

Equation (4.6.4) as shown in Figure 4.6.1. 

4.7 Synthesis of Voltage and Current 

Transfer-Function Matrices 

State-model synthesis discussed in the previous sections can be 

applied to synthesize a voltage or current transfer-function matrix. 

To realize such a matrix, a state model is first derived. Then the 

realization of the given voltage or current transfer-function matrix is 

achieved by realizing the set of matrices (A, B, c, D} in the state 

model according to the discussion in Section 4.2. 
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1 

1 

1 ;,. 

3 

1 

Figure 4.6.1. Example Synthesized Network 



It is illustrated in the following example. 

Example 4:.7.1 Consider the voltage transfer-function matrix 

1 
s + 1 

T (s) = 
v 

1 
( s + 1)( s + 2) 

The state model corresponding to this matrix can be found as 

d 
dt 

where u is the input voltage source, and y1 and y2 are the output 

voltages. 

Realizing the A-matrix in Equation (4:.7.2a), then incorporating the 

source and obtaining the output by using Equation (4:.7.2b), yields the 

realization of the state model in Equation (4:.7.2) as shown in Figure 

4:.7.1, which is equivalent to the realization of the voltage transfer-

function matrix in Equation (4:. 7 .1). 

For the case of current transfer-function matrices, various kinds 

of controlled sources using nullator-norator circuits may be required 

in the realization as discussed in Section 4:.2. 
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1 

2 

+ f 

Figure 4.7.1. Example Synthesized Network 



CHAPTER V 

SYNTHESIS OF LOW-PASS FILTERS 

5.1 Introduction · 

In Chapter III, the synthesis of a tridiagonal A-matrix was dis-

cussed. It has been recognized that tridiagonal matrices are related to 

ladder networks (25) such as low-pass filters. Indeed, if a transfer 

function corresponding to the realized network for a tridiagonal A-

matrix is derived, it will fall into the class of transfer functions of 

ladder networks. This fact will be used in the synthesis of low-pass 

filters with networks containing nullators and norators in the present 

chapter. The related topic of prescribed source and load resistance 

in doubly terminated low-pass filters will also be discussed. 

5.2 Transfer Functions of Low-Pass Filters 

The class of low-pass filter transfer functions with all the zeros 

lying at infinity is of much interest. An example of such functions is 

given by 

n n-1 
s + d s + • • • + d , p >0 

n-1 o o 

(5.2.1) 

where the input variable and output variable are defined in Figure 5.2.1 

with R1 and R2 representing resistances in ohms. These functions are 

oR 
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important because they do correspond to the low-pass filters such as 

Butterworth, Chebyshev, etc. The synthesis of such functions by doubly 

terminated ladder networks has been extensively discussed (37). 

v 
1 

Lossless 
Network 

Figure 5.2.1. Network Configuration 
for Y21 (s) 

I 

Synthesis of transfer functions has been considered in Section 

~.2, where the realization of the characteristic polynomial of a trans-

fer function is achieved by synthesizing the corresponding A-matrix in 

companion matri:ic form. The transfer function in Equation (5.2.1) can 

be synthesized employing the techniques discussed in that section. 

However, as pointed out in Section 3.9, for the same characteristic 

polynomial, the realization of the corresponding tridiagonal A-matrix 

uses fewer number of nullator-norator pairs than that of the correspond-

ing A-matrix in companion matrix form. Hence, a synthesis procedure 

which makes use of the realization of a tridiagonal A-matrix is 

presented below. 

First, a brief review of the realization of a ,tridiagonal A-matrix 

in Chapter III and its relation to clas.sical low-pass ladder networks is 

given. The synthesis of a tridiagonal A-matrix of the form shown in 
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Equation (3.8.1) was discussed in Section 3.8. The realized networks 

were shown in Figure 3.8.2 for n even and Figure 3.8.4 for n odd, where 

n represents the order of the tridiagonal A-matrix. It will be demon-

strated qualitatively that the network shown in Figure 3.8.2 or 3.8.4 

is equivalent to a classical low-pass ladder network. 

The general form of an RLC low-pass ladder network is a lossless 

network terminated in resistance at both ends such as the one shown in 

Figure 5.2.1. The lossless network has shunt capacitance branches and 

series inductance branches. If every inductor of this lossless network 

is replaced by the grounded-gyrator equivalence (32) which, in turn, is 

replaced by the equivalent nullator-norator model obtained in Figure 

4.4.2, the resulting network wil~ have the same configuration as Figure 

3.8.2 or 3.8.4, depending on n being even or odd, respectively. 

When introducing a source, voltage source or current source, to the 

network realizing a tridiagonal A-matrix and specifying the output, it 

can be shown that the transfer function does correspond to a low-pass 

filter transfer function. This will be described in the following. 

5.2.1 Case I 

For this case, the source is a current source and the output is a 

voltage as shown in Figure 5.2.2, where the realization of the tri-

diagonal A-matrix in Figure 3.8.2 with n even is used. The current 

source is incorporated across the conductor a, and the output is taken 
0 

from the conductor a. 
n 
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T 
v 

2 11 ~_.__ ______ __._ ___________ 1 
Figure 5.2.2. Network for Determining the Transfer Function 

The transfer ;function is to be derived by using the state-model 

approach. Sinc·e the above network satisfies Conditions ( i) and ( ii) of 

Theorem 2.2.1, and furthermore all the capacitors can be selected in the 

branches and all the conductors (resistors) can be selected in the 

chords for both T1 and T2 , the state equation can be obtained directly 

by using the general state equation derived in Equation (2 • .3.15) with 

the simplication that Vv = o, Cc= 0 and Rb= o, and is 

where the symbols are as defined in Chapter Il. Note that in Equation 

(5.2.2), Cb has been assumed to be a unit matrix. for simplicity in 

Chapter III and therefore Equation (5~2.2) reduces to 

ay inspection of Figure 5.2.2, the output equation is 

= P vb 1 c 
(5.2.4:) 
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where P1 is an 1 x n matrix [O O ••• 0 1]. From Equations (5.2.4) and 

(5.2.3) the transfer function can be derived as 

v2 1 
~ - -P (sU - C GB )- C 
11 - 1 22 c 22 25 

wheres is the Laplace-transformed variable and U represents an identity 

matrix. 

If the submatrices of the cut-set matrix, c22 and c25 , and the 

submatrix of the circuit matrix, B22 , are evaluated from the graph of 

Figure 5.2.2, it will be found that the transfer function is given by 

= 

n-1 

(-1) (~ + .1) 1T ai 

i=1 
D (s) 

n 
(5.2.6) 

where A1 is the A-matrix in Equation (5.2.3) with a general form as AT 

in Equation (3.8.1), and is repeated below for convenience: 

-a 
0 

0 

-a O 
n-2 

-a -a 
n-1 n 

It is important to note that the a.'s in the numerator of Equation 
]. . 

(5.2.6) are from the lower off-diagonal entries in Equation (5.2.7)9 It 

should be pointed out that because of the arbitrarily assumed orienta-

tion of each element in the graph of the network of Figure 5.2.2, which 
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is constructed to calculate c22, c25 , and B22, the matrix A1 may be of a 

form with different sign distribution from that in Equation (5.2.7), but 

having the same characteristic polynomial as D (s). 
n 

In Equation (5.2.6) when v2/I1 is negative, it means that the 

orientation of the output v2 is opposite to that as assumed in Figure 

Now, by introducing a current source in the network of Figure 

3.8.4, if the same procedure as above is followed, the transfer function 

can be derived as 

(-i) (n-1)/2 

I -
1 

D (s) 
n 

D (s) 
n 

= lsU - A1 I, n - odd 

where A1 is defined in Equation (5.2.7) with n odd. 

5.2.2 Case II 

(5.2.8) 

In this case, the network has a current source and a current out-

put, and the network configuration shown in Figure 5.2.2 can also be 

used for n even. By making us·e of the result in Equation (5.2.6), the 

transfer function for this case is derived as 
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Similarly, using Equation (5.2.8) for n odd, it results in 

n 

rr ai 
(- 1 ) (n-1)/2 i=1 

D (s) 
( 5. 2.10) = 

n 

5. 2.J Case III 

For this case, the source is a voltage source and the output is a 

voltage. In order to use the results derived in Case I, the network 

configuration for this case will be obtained by applying the Thevenin 1 s 

theorem to Figure 5.2.2. It is shown in Figure 5.2.3 for n,even. 

= 
Figure 5.2.3. Network for Determining the Transfer Function 



Then, the transfer function for n even is 

= 
a V 

0 2 

1i 

n-:1, 

1T ai 
i=O 

In a similar way, the transfer function for n odd is 

n-1 

rr ai 
(-1) (n-1)/2 i:O 

= D (s) 
n 

5. 2.·4 Case IV 
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For this case the source is a voltage source and the output is a 

current with the same network configuration as shown in Figure 5.2.3 

for n even. From this network, the transfer function is 

v 
1 

a V 
n 2 

I 
1/a 

0 

a a V 
o n 2 

1i 



fra. 
(-1)n/2+1) . i~O 1 

D (s) 'Dn(s) = !sU - A1 1, n - even. = 
n 

,. 
Similarly, when n is odd ~he tr,ansfer function is 

= 

a a v2 o n 

11 

n 

Tf ai 
(-1) (n-1)/2 i=O 

D (s) 
n 

, D (s) 
n· = Jsu - A1 I, n - odd. 
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The above transfer. funct;i.ons will be used in the synthesis of low-,, 

pass filters in the next section. 

5 • .3 Synthesis of Low~Pass Filters 

Topology of the low-pass filters has already been derived. What 

remains to do is to calculate its element values for a given transfer 

function. As a matter of fact only conductor element values need to be 

determined. 

The transfer functions derived in Equations (5.2.6), (5.2.8), 

(5.2.9), (5.2.10), (5.2.11), (5.2.12), (5.2.1.3), and (5.2.1/,i,) w:i,11.be 

used to find the element value of every conductor in the low-pass 

filter. 'ro achieve this, the step,s below will be take~, and, the details 

will be discussed following these steps. 

(1) Draw the appropriate network configuration discussed in 

the pre~eding section, corresponding to the type of the 

g;i.ventranst:er :t\lnc~ion. 
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(2) Find a tridiagonal A-matrix by Navot's method (31) from 

the denominator Dn(s), i.e!, characteristic polynomial, 

of ;the given transfer function, two of whose entries are 

made to contain an undetermined factor. 

(3) Calculate this undetermined factor such that the transfer 

function has the proper numerator constant, thus obtaining 

all the entries of the tridiagonal A-matrix, from which 

the element values of the conductors are obtained. 

Now to describe these steps suppose a transfer admittance function 

such as Equation (5.2.1) with n even is given. This is a Case IV trans-

fer function and the network configuration in Figure 5.2.3 can be used. 

In order to adjust for the numerator constant of the given transfer 

function, a tridiagonal A-matrix in the following form 

A = s 

is derived such that 

-1 0 

-1 

-1 0 f 
n-1/k 

-k -a n 

D (s) 
n 

(5.3.1) 

(5.3.2) 

where k is a positive constant to be determined and a = f, a = f and 
o o n n 

f., i = o, 1, 2, ••• , n, are obtained from Navot's method which will be 
1 
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given in Subsection 5.~.1. For each constant c, O<c~a,, a.= 

min [lnn(jw) 12, O<W<oo}, there is a tridiagonal A-matrix such as A8 in 

Equation (5.3.1). Choose any one. The network at this stage is shown 

in Figure 5.3.1 which uses the fundamental blocks of Figure 3.8.7, since 

for this case the two entries a .. and a .. , j = i + 1, i = 1, 2, ••• , or 
1J J1 

(n-1), are not equal. 

. .. 

1 

Figure 5.3.1. Network for Synthesizing a Transfer Function 

Comparing the numerator constant of the given transfer function in 

Equation (5.2.1) with that in Equation (5.2.13), disregarding the sign, 

yields 

(5.3.3) 

where as pointed out earlier, the a., i = 1, 2, ••• , (n-2), (n-1) are 
1 

from the lower off-diagonal entries in Equation (5.2.7). Therefore, 



from Equation (5.3.1), ai = 1, i = 1, 2, ••• , (n-2), and an_1 = k. It 

follows from Equation (5.3.3) that 

and thus 

p0 = aka o n 

a a o n 

(5.3.4) 

By inserting the value of k above into Figure 5.3.1, the synthe-

sized network will be obtained. 

A numerical example is given below to illustrate the procedure. 

Example 5.3.1 Suppose that it is desired to realize the transfer 

function 

6 . (5.3.5} 
s 4 + 7s3 + 39s2 + 115s + 154 

This is a Case I transfer function, and the network in Figure 5.2.2 will 

be used. By Navot 1 s method, a tridiagonal A-matrix can be derived as 

-2 4 0 0 

-1 0 9 0 
A = 16 

(5.3.6) 
e 

0 -1 0 -k 

0 0 -k -5 

From Equation (5.2.6) with n = 4, the numerator constant is (-a1a2a3 ) 

where the negative sign means that the output voltage has a polarity 

opposite to that assumed. Equating th~ absolute value of this to the 

numerator constant of the given trans!er function in Equation (5.3.5) 

gives 



where, from Equation (5.3.6), a 1 = 

follows that 

= 6 

k = 6. 

110 

= k. It 

By using the general network in Figure 5.2.2 with n = '-!:, and using 

the fundamental blocks of Figure 3.8. 7 for determining the conductance 

element values, the realization is obtained as shown in Figure 5.3.2. 

2 5 

Figure 5.3.2. Example Synthesized Network 

T 
v 

2 

l 

It should be noted that in classical RLC low-pass filter synthesis, 

there is a constraint on the numerator constant of the transfer function 

(20); whereas, in the present case, there is no such constraint because 

active elements are used in the realization. 

In the design of classical RLC doubly terminated low-pass filters, 

it is not uncommon that in addition to the transfer function, both the 
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source resistance and load resistance are prescribed. This will be 

considered in the next section. 

5.4 Synthesis of RLC Low-Pass Filters With 

Prescribed Source and Load Resistance 

In this section, a constant, c, which ensures the realized RLC 

doubly terminated low-pass ladder network has the prescribed source and 

load resistance is given. This constant arises from Navot 1 s method of 

deriving a tridiagonal matrix from a strictly Hurwitz polynomial and is 

expressed in terms of terminating resistances. Thus, the synthesis of 

RLC low-pass ladder network with prescribed terminating resistances, 

which uses a tridiagonal matrix, can be worked out in a straightforward 

manner. 

In a recent paper, Fowler and Yarlagadda (20) presented a transfer 

function synthesis procedure using state-space approach. Given a trans-

fer function as in Equation (5.2.1), their synthesis procedure yields 

several sets of element values for the realized ladder network. Each 

set of the element values corresponds to a parameter c, where 

Note that the D ( s) is assumed to be a strictly Hurwitz polynomial. It 
n 

is the purpose of the following discussions to derive a value of c such 

that the realized network has the prescribed terminating resistances. 

It is shown that this c is related to the transmission coefficient t(s) 

which is used in the classical network synthesis. 
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5.4.1 Necessary Background 

In (20), 'the synthesis procedure) uses a tridiagonal matrix derived 

by Navot 1 s method (.31),1. The method is described in the following. In 

deriving this matri:xv, an auxiliary polynomial 

is used such that 

G ( s) 
n 

n 
= s + • • • + go 

G (s)G (-s) = D (s)D (-s) - c 
n n n n 

(5.4.J) 

where c is a constant bounded by the constraint in Equation (5.4.1). 

Forming the continued fraction expansion gives 

D ( s) - G ( s) 
n n 

A tridiagonal matrix 

-f -f 
0 1 

1 0 -f 
2 

f2 
s + ---------

1 0 

s + • 

-f 
n-1 

1 -f 
n 

f 
n-1 +---s + f 

n 

(5.4.4) 



is obtained such that 

D ( s) 
n 

n-1 

= sn+(f +f )sn- 1+( \' f .+f f )sn-2+ 
o n L J o n 

j=1 
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(5.'*.6) 

By a simple approach, a ladder network shown in Figure 5-'*·1, with 

m + r = n, m = r = n/2, is derived when n is even where R1 and R2 are 

resistances in ohms. 

+ 

2 

L 
r-1 

L 
r 

Figure 5·'*·1· Ladder Network With n Even 

The element values of this ladder network are related to f. by the 
l. 

following equations (20): 

f = (RC )-1, f = R L- 1 
f1 = (C1L1)-1, f2 :;:: (C L )-1 

0 1 1 n 2 r ' 2 1 

(5.'*-7) 

f3 = (C2L2)-1, . . . 
' 

f ::: (C L )- 1, f = (C L )-1. 
n-2 m r-1 n-1 m r 



When n is odd, the network in Figure 5.4:.1 can be used with L = O, 
r 

m + r - 1 = n, m = r = (n+1)/2. The element values are related to 

f •. by 
1. 

f = 0 
(R C )-1, f = 1 1 n 

(R2Cm)-1, f1 = (C 1L1)-1, f2 = (C L j 1 
2 1 

114: 

(5.4:.8) 

-1 (C L )-1, (C L 1)-1. f3 = (C2L2) ' . . . 
' 

f 
n-2 = f = m-1 r-1 n-1 m r-

For both cases, n even and odd, there are (n+1) equations with (n+2) 

unknowns. In addition to these equations, there is another constraint, 

that is 

which is obtained by considerings= 0 in the network· shown in Figure 

5.4:.1 and in Equation (5.2.1). Hence, the element values can be solved 

from Equations (5.4:.7) and 5.4:.9) or from Equations (5.4:.8) and (5.4:.9) 

in a simple manner (20). 

Note that the element values are not unique. For each c satisfying 

Equation (5.4:.1), there exists a particular set of source and load 

resistance. 

5.4:.2 Derivation of c 

A short-circuit transfer admittance function in Equation (5.2.1) is 

given with n even and it is desired to find a c satisfying Equation 

(5.4:.1) such that the realized doubly terminated ladder network has 
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prescribed source and load resistance which satisfy Equation (5.4:.9). 

Further, it is assumed that neither of these two resistances is 

identically zero. 

Equations (5.4:.2), (5.4:.3), (5.4.4:), and (5.4:.6) are used to solve 

for c. Substituting D (s) from Equation (5.4:.6) and G (s) from Equation 
n n 

(5.4:.2) in Equation (5.4:.4:) and simplifying, the following equation 

results. 

n-1 
s 

n-1 
n/2 n/2 

rT f2k-1 + TT f2..ego 
k=1 ko 

l fj + fofn - gn-2 

j=1 
+ --~---~----~ fo + fn - gn-1 

n-2 
s + ••• + ----------

fo + fn - gn-1 

n-1 n-2 
= s + f s + ••• 

n 

n/2 

+ 1T f2p 
p=1 

Equating the corresponding coefficients in Equation (5.4:.10) results in 

(n-1) equations. Two of these are 

and 

n-1 

L fj + fofn - gn-2 
j:1. 
----------- = f fo + fn - gn-1 n 

f 0 + f - g 
n n-1 

n/2 

= 1T f2p 

P=1 

(5.4:.11) 



In addition, since 

n-1 

D (s)D (-s) 
n n 

2n \ 
= s + [2( l f j 

j=1 

n/2 

2(n-1) 
s 

+ ••• 
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+ < IT f2k-1 
k=1 

(5.4:.13) 

and 

( ) ( ) __ 2n ( 2 ) 2(n-1) 
Gn s Gn -s s + 2gn_ 2 ,-, g n- 1 s 

Equation (5.4.J) yields n equations by comparing the corresponding 

coefficients. Two of these are 

and 

n/2 

c = < IT f2k-1 

k=1 

Equations (5.4:.11), (5.4:.12), (5.4:.15), and (5.4.16) are sufficient 

to solve for c. In the above discussion 7 only two equations are con-

sidered in each case when comparing the coefficients. If these equa-

tions are satisfied, then the remaining equations will be automatically 

satisfied. From Equations (5.4.11), (5.4.12), and (5.4.16), it follows 

that 

= f 
n 

- f 
0 
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and 

f -2k-1 

n/2 

Tf 
h=O 

Substituting Equation (5.4.18) in Equation (5.4.16) results in 

By using the expressions for f. from Equation (5.4.7), Equation (5.4.19) 
]. 

becomes 

(5.4.20) 

The numerator constant p in Equation (5.2.1) is related to the 
0 

element values by 

1 
m r 

l;l ( fTc.)( fTL.) 
1 ]. J 

i=1 j=1 

Substituting Equation (5.4.21) in Equation (5.4.20) gives 



When n is odd, the values for c and p in terms of the element 
0 

values are 

L. )2 
J 

1 
m r-1 

R 1 R2 ( 1T c i) ( TT L j ) 

i=1 j=1 
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From these, c can be derived for n odd, in terms of p, R, and R2 and 
0 1 

the expression is the same as the one in Equation (5.4.22). 

Note that the resistances R1 and R2 appear together as a sum in 

Equation (5.4.9) and as a product in Equation (5.4.22). Therefore, in 

some cases, the realized network may have source and load resistance 

interchanged. In these cases, it is a simple matter to obtain the 

correct source and load resistance by using the reciprocity theorem. 

If p /D (s) in Equation (5.2.1) is a transfer impedance function 
o n 

z21 (s), or a voltage-ratio transfer function T21 (s), then by a pro-

cedure similar to above, c is given, respectively, by 

or 

c = 

Note that c in Equations (5.4.22), (5.4.24), and (5.4.25) must 

satisfy Equation (5.4.1). It can be shown that this is always true if 

D ( s) is a polynomial with ex. occurring at w = O, such as the Butterworth, 
n 

the Bessel polynomial, and the Chebyshev polynomial for n odd. Further-

more, this c is related to the transmission coefficient t(s} which is 
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used to derive the synthesis procedure in the classical network 

synthesis. The relation is 

(5.4.26) 

Equation (5.4.26) can be depived by comparing the expression for c and 

the expression for t(s) (37). This provides some link between the syn-

thesis procedure in (20) and classical techniques (37}. 

The above results in Equations (5.4.22), (5.4.24), and (5.4.25) are 

derived by using an algebraic manipulation. Actually they can be de-

duced from physical considerations. For s = jw, Equation (5.4.3) is the 

same as the Feldtkeller equation (33) which can be written in different 

forms (33) (37). The Feldtkeller equation describes power relations in 

a lossless two-port teminated by resistances. Rewriting Equation 

G ( s)G (-s) D (s)D (-s) 
n n 

+ 1 = n n 
c c 

In filter theory literature (33) the function D (s)/ ~ is known n , v' I 

as the effective transmission factor and the function G (s)/Jc is known 
n 

as the characteristic function. The properties of these functions (33) 

for general lossless two-port are well known. By definition (33) 

D (s) v D (s) 
n 1 n 
Jc = = 

I J4R R POA'R1R2 2 1 2 

2 
Thus, it follows that c = 4p0 R1R2 • Equations (5.4.24) and (5.4.25) can 

be derived in a similar ma~ner. 
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For illustration, a numerical example is given below. 

Example 5.4:.1 Realize the transfer admittance func·tion 

5 

s 4: + 2s3 + 10s2 + 10s + 17 

16 1 with prescribed R1 = ""s"" ohms and R2 = 5 ohm. The prescribed R1 and R2 

satisfy the constraint in Equation (5.4:.9). Calculate the value of the 

constant c according to Equation (5.4:.22), and obtain 

16 1 x- x- = 
5 I 5 

64:. (5.4:.30) 

From Equation (5.4:.1) 

Therefore, the inequality O<c~a, is satisfied. 

By N~vot 1 s method with the constant c = 64:, a tridiagonal matrix 

can be derived as 

-1 2 0 0 

-2 0 1 0 

At = (5.4:.32) 
0 -1 0 2 

0 0 -2 -1 

From a procedure presented in (20), the realized network is shown in 

Figure 5.4:.2. 



+ 

16/5 

5 
4: 

Figure 5.4:.2. Example Synthesized Network 

1 
5 
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CHAPTER VI 

SUMMARY AND SUGGESTIONS FOR FURTHER STUDY 

6.1 Summary 

A new approach to network synthesis using resistors, capacitors, 

and nullator-norator pairs has been presented. The synthesis procedure 

is systematic and straightforward. A theorem is derived, which gi~es 

sufficient conditions for networks containing nullators and norators to 

have a unique solution. These sufficient conditions are given in terms 

of the topological locations of the nullators and the norators with 

respect to the other elements in the ·network as well as their element 

values. Then the synthesis procedure is developed based upon these 

conditions. 

Synthesis of transfer functions, short-circuit admittance matrices, 

open-circuit impedance matrices, and hybrid matrices is considered. The 

synthesis procedure is different from other techniques. The synthesis 

is by means of state models. In each case, a state model is obtained 

from the complex frequency domain specification. The synthesis of the 

A-matrix, which corresponds to a source-free state model, is first con

sidered. Then, the results are extended to the realization of a more 

general state model, thus obtaining the realization of transfer func

tions, immittance matrices, and hybrid matrices. Therefore, in the 

synthesis, the state model plays an important role • 

..,...,..., 



Some of the important aspects of this synthesis are: 

(1) The nullators and norators are used directly. 

(2) A simple topology exists in the realization. 

(J) Several realizations may exist in each case. 

(4) The realization can be obtained almost by inspection, 

without carrying out the detailed synetheis procedure, 

because of the simple topology. 

(5) The nullator and the norator appear as a pair with one 

vertex in common in the realization, so that it can be 

replaced by an ideal transistor. 

(6) The realized network is, in general, not minimal in 

the sense of the number of elements used. 

123 

One of the basic results obtained earlier is used in the low-pass 

filter synthesis. Some additional results are derived in the calcula

tion of a constant c. This constant arises from Navot's method of 

deriving a tridiagonal matrix from a strictly Hurwitz polynomial, and 

allows for the realization of a doubly terminated low-pass filter using 

the state-space approach. 

6.2 Suggestions for Further Study 

Since the realized network is not minimal in general, further study 

will be required to reduce the number of elements used, either resistors 

or nullator-norator pairs, or both. This might be accomplished by 

judicious selection of the free parameters. 

Another area of further study is concerned with the realization of 

open-circuit impedance matrices, hybrid matrices, and other types of 

matrices without using gyrators. 
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The practical aspects of the active network synthesis, such as the 

problems of biasing, stability, sensitivity, etc., are not considered in 

this thesis. Furthermore, the realized networks have been assumed to 

use ideal transistors. The synthesis procedure developed needs to be 

modified to allow for the use of practical transistors. Further study 

is suggested on these topics. The work done by Murray-Lasso and others 

(24) (29) should be helpful in these investigations. 
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