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Abstract

In Arizona, the North American Monsoon (NAM) supplies up to 50% of the 

region's annual rainfall. Although Arizona's diurnal precipitation climatology indi­

cates that precipitation follows a regular cycle, daily storm development patterns 

deviate from this periodicity. The purpose of this study is to investigate the 

intraseasonal variability of diurnal storm development and environment over Ari­

zona. Intraseasonal variability of diurnal storm development is investigated during 

the 1997 and 1999 NAMs using radar reflectivity moasics constructed from Phoe­

nix and Flagstaff Weather Surveillance Radar-1988 Doppler (WSR-88D) data. 

This investigation reveals five repeated storm development patterns or regimes, 

including the 1) dry regime (DR), 2) eastem mountain regime (EMR), 3) central- 

eastem-mountain regime (CEMR), 4) central-eastern-mountain and Sonoran 

regime (CEMSR), and 5) nondiumal regime (NDR), listed in the order of increas­

ing areal storm coverage across the domain. Although regions within these 

regimes overlap, they highlight different regions where storm development is most 

active, which, in tum, may prove useful for zone forecasts within the NWS. The 

environment associated with each regime is found by analyzing 12 UTC sound­

ings at Phoenix and 500-mb maps over the southwest United States. This analy­

sis shows that the spatial distribution of tropospheric moisture controls the areal 

extent of storm development over elevated terrain. In tum, the spatial distribution 

of tropospheric moisture is controlled by the synoptic-scale flow.
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A discriminant analysis of several 12 UTC sounding variables at Phoenix 

reveals that precipitable water provides strong discrimination of DR and EMR 

from each other, and, the more convectively active regimes (e.g., CEMR,

CEMSR, and NDR). On the other hand, 0-6-km shear offers the best discrima- 

tion of NDR from CEMR and CEMSR. Although this discriminant analysis 

becomes less skillful when considering the potential for one or more of the wet 

regimes (especially CEMR vs. CEMSR), as a whole, the combined discriminant 

analysis (Fig. 23) has more skill than a random forecast (HSS=0.43), and is more 

accurate than persistence or a one in five guess.

Another aspect of intraseasonal variability is the daily persistence of 

regimes. DR is the most persistent regime, followed by CEMR, NDR, EMR, and 

CEMSR. Occasionally, sharp changes in storm coverage precede or follow a 

given regime. At mid-opper-levels significant local changes in moisture arise 

mostly from quasi-horizontal advection, in response to changes in the synoptic- 

scale flow. In most cases, moistening corresponds with the westward or north­

ward expansion of the subtropical high, whereas drying corresponds with the pas­

sage of a shortwave trough. Occasionally, mid-upper-level moistening is 

enhanced by the vertical advection of moisture ahead of shortwave troughs. At 

low-levels in Phoenix, significant changes in moisture at 12 UTC are associated 

with three situations: precipitation in the vicinity of Phoenix the previous night 

(30%), surges from the Gulf of California (35%), and moisture advection east or 

southeast of Phoenix (35%).
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1. Introduction

Over 63% of Arizona's 5.13 million residents live in Phoenix-Mesa, a met­

ropolitan area with an explosive population growth of 45.3% between 1990 and 

2000 (http://www.census.gov). With this rapidly growing population, the potential 

impacts from summertime convective storms are increasing. Socio-economic 

impacts from storms can include damage to property and threat to life from high 

winds, flash flooding, and/or copious lightning (Hales 1975; Schmidli 1986), 

downed power lines resulting in loss of profits to power companies and disruption 

to life and businesses, and transportation delays.

Arizona receives 40-60% of its annual rainfall from summer storms. Farm­

ers and cattle ranchers depend on summer runoff to keep their vegetation thriving 

(Jurwitz 1953; Sellers and Hill 1974; C. Ester 2001, personal communication). 

This summer wet season occurs in response to the North American Monsoon 

(NAM), a reversal in circulation at low and midlevels over Mexico and the Desert 

Southwest every July and August (Fig. 2; Douglas et al. 1993). A map of the 

region is shown in Fig. la . During this wet season, precipitation exhibits a diurnal 

cycle. Arizona's summertime diurnal precipitation climatology is forced primarily 

by mountainous terrain surrounding the Sonoran Desert (Fig. 1b). In the morning, 

storms tend to initiate over the Mogollon Rim, White Mountains, and Southeast 

Highlands. Storms move and redevelop southward down the Mogollon Rim, and

http://www.census.gov
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Figure la. Terrain map of the southwest United States and Mexico, including radar sites 
and cities mentioned In text. The white box indicates the domain investigated In this study. 
Elevation data are gridded at 1-km resolution from 30 arc-sec USGS data.
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move southwestward from the White Mountains and Southeast Highlands during 

the afternoon, culminating in the Sonoran Desert near sundown. This evolution is 

ubiquitous: it appears in diurnal climatologies using precipitation-gauge (Balling 

and Brazel 1987), lightning (Watson et al. 1994b; King and Balling 1994) and 

radar reflectivity data (Hales 1972b; MacKeen and Zhang 2000). Despite this 

robust diurnal precipitation cycle, tremendous intraseasonal variations in the 

occurrence, timing, and location of convective storms are possible.

Intraseasonal variations in Arizona's precipitation during the NAM are cate­

gorized as wet and dry periods, or "bursts" and "breaks," respectively. Previous 

studies have identified differences between composited synoptic-scale patterns 

during these periods to help forecasters discern environments supporting or inhib­

iting precipitation (Carleton 1986; Watson et al. 1994a; Mullen et al. 1998). Such 

simple stratifications of synoptic-scale flows, however, find upper-air patterns with 

limited relevance to forecasts on individual days.

The purpose of this research is to investigate the variability in daily storm 

development patterns and atmospheric environment during the NAM over moun­

tainous and desert terrain in Arizona (Fig. 1b). This investigation is pursued by 

addressing the following questions: 1 ) What is the role of synoptic-scale flow on 

controlling the occurrence and location of storm development? 2) Do a variety of 

diurnal storm development patterns occur over Arizona, and if so, how persistent 

are they? and 3) Given such a variety, are some patterns easier to forecast than



others? It is anticipated that answers to such questions will lead to improved 

regional forecasts of storm likelihood that may, in tum, help residents and busi­

nesses prepare better for possible threats to life, damage to property, and loss of 

profit.

In Chapter 2, mechanisms associated with the development of Arizona's 

summer wet season are reviewed. Chapter 3 describes the radar data and meth­

odology used to identify the five repeated storm development patterns found in 

this study, Chapter 4 examines characteristics of Phoenix soundings that may be 

used to help discern the potential for a given storm development pattern, Chapter 

5 examines the relative importance of synoptic-scale forcing associated with the 

patterns, and Chapter 6 presents a conceptual model of storm development vari­

ability and the role of synoptic-scale flow in Arizona during the NAM. Chapter 7 

presents conclusions and discusses the relevance of this research to operational 

forecasting.



Chapter 2: Physical Processes In the North American Monsoon

Circulations comprising the NAM are described in Section 2.1. Section 2.2 

reviews the mean synoptic environments associated with bursts and breaks, and 

Section 2.3 discusses possible mechanisms for storm development.

2. f The AA4M

The NAM is defined by reversals in tropospheric wind direction that occur 

in response to interactions between the underlying topography and incoming solar 

radiation (lang and Reiter 1984). Owing to the annual early summer peak in solar 

insolution over the subtropics, the thermal gradient over the North American 

Hemisphere shifts northward. Differential heating of the land and sea results in the 

development of a thermal low over the deserts of Arizona, southeastern Califor­

nia, and northwestern Mexico, which results in a low-level (500 m AGL-850 mb) 

change in wind direction over Arizona from westerly to southerly (Tang and Reiter 

1984; Rowson and Colucci 1992; Douglas et al. 1993; Adams and Comrie 1997; 

Tucker 1999). The intensity of the thermal low is regulated, at least in part, by the 

evolution of synoptic-scale systems (Rowson and Collucci 1992) and the diurnal 

cycle (Douglas and Li 1996). During the summer, strong tropospheric heating 

results in deep tropospheric layers of constant pressure, and, hence, the develop­

ment of a mid-upper-level (700-100 mb) high pressure system over the south­

west U.S. (Fig. 2; Reed 1933,1939; Bryson and Lowry 1955; Douglas et al. 1993; 

Adams and Comrie 1997).



Interestingly, the NAM is only one of several monsoon systems. Like the 

NAM, the Asian, Australian, west African, and South American monsoons (SAM) 

have an annual cycle that has two distinct phases: wet-warm, and dry-cool 

(Magana and Webster 1998). Both the NAM and SAM, and Asian and Australian 

monsoons coexist, owing to the reversal in tropospheric flow between summer 

and winter seasons (Magana and Webster 1998). Although both the NAM and 

Asian monsoon are driven by similar mechanisms and occur during the summer 

months, several of their characteristics differ. First, the scale of the Asian mon­

soon is larger than that of the NAM (Magana and Webster 1998). This difference 

in scale appears related to the much larger Asian land mass, higher mountainous 

regions, and the larger coastal plain, compared to Mexico. In addition, the Asian 

monsoon is associated with three large, interacting circulations, including the 

Walker Circulation, the Transverse monsoon circulation, and the lateral monsoon 

circulation (Magana and Webster 1998), whereas the NAM is associated primarily 

with two interacting circulations, including the subtropical and North Pacific Highs. 

Composite troughs within these monsoons also show that confluent flow is north- 

south-oriented during the Asian monsoon, and east-west-oriented during the 

NAM. Given such differences in scale between the Asian and NAMs, do differ­

ences in precipitation characteristics occur as well?

Both the NAM and Asian monsoon consist of wet and dry periods. During 

the NAM, wet or dry periods generally last for 2-5 days, whereas during the Asian 

monsoon, these wet or dry periods generally last longer: 10-40 days (Magana



and Webster 1998). In addition, moisture anomalies associated with wet and dry 

periods of the Asian monsoon span larger spatial scales (east African coast to the 

date line!) than those associated with the NAM (Mexico and southwest US; 

Magana and Wester 1998; Schmitz and Mullen 1996). Furthermore, the longer 

wet periods associated with the Asian monsoon result in higher values of latent 

heat release, compared to the NAM (Magana and Webster 1998). These higher 

values of latent heat release, coupled with the more elevated heat source of the 

Himalaya mountains, apparently results in stronger easterlies than those found 

just south of Arizona, in the form of an easterly jet stream (Magana and Webster 

1998). The intensity of this easterly jet indicates the intensity of the Asian mon­

soon (1998). As described later, the intensity of the NAM may be closely related to 

the passage of waves in the easterlies, which induce a strong northward-moving 

jet over the Gulf of California.

The correspondence of the NAM to summer precipitation occurrence over 

western Mexico, Arizona, and New Mexico was recognized in the early 1920s, 

when scientists find that the development of this precipitation is related to both the 

development of the thermal low (Campbell 1906; Beals 1922; Blake 1923) and the 

transport of moisture from the Gulf of California into the southwest U.S. (Blake 

1923). More concrete evidence for this transport of moisture arises when Ras­

mussen (1967) finds a positive net annual flux of water vapor from the northern 

Gulf of California into Arizona. Soon afterward. Hales (1972a, 1974) and Brenner 

(1974) show that the transport of moisture from the Gulf of California into the

8
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southwest U.S. sometimes occurs as "surges" of low-level moisture. Surges 

approaching southern Arizona are characterized by relatively strong low-level

southerly winds (10-15 m s"^), cool temperatures, high pressure, high dewpoints, 

and low-mid-level cloudiness (Hales 1972a, 1974; Brenner 1974; Stensrud et al.

1997).

Hales (1972a) speculates that during surges, such low-level moisture is 

channelled northward—between the Sierra San Pedro Martir of Baja, California, 

and the Sierra Madre Occidental of Mexico—from the Gulf of California into south­

ern Arizona via an enhancement of the meridional pressure gradients that nor­

mally exist between the relatively cool air over the southern Gulf of California, and 

the relatively hot desert air over the southwest U.S. thermal low (Figs. 6, 7 of 

Hales 1974). After further investigation. Hales (1974) later finds that five-day run­

ning means of 850-mb temperature (°C) at Empalme and 850-mb relative humid­

ity at Tucson show a linear correlation at zero, 24- and 48- hour time lags, of - 

0.71, -0.76, and -0.69, respectively. Hales (1974) credits the relatively cool air at 

Empalme, and the associated increase in relative humidity at Tucson, to influxes 

of moist, cool tropical air following the passage of tropical disturbances over 

the southern part of the Gulf of California (Fig. 3). A more recent 9-yr climatology 

of surges at Empalme, Mexico, provides a more detailed spatial and temporal 

analysis of surge characteristics (Douglas and Leal 1989). The idea that the pas­

sage of tropical disturbances, or easterly waves over the Gulf of California are 

related to the development of surges over the Gulf of California, is corroborated
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by several authors (Brenner 1974; Stensrud et al. 1997; Douglas and Leal 1989; 

Anderson et al. 2000; Fuller and Stensrud 2000). For example, Fuller and Sten­

srud (2000) show that within three days following the passage of a tropical east­

erly wave westward of 110° W, 70% of easterly wave passages over a 14-y period 

are associated with a moisture surge at Yuma, Arizona. Interestingly, a numerical 

modeling study of surges by Stensrud et al. (1997), indicates that strong gulf 

surges, or those that affect Arizona, tend to occur a few days following the pas­

sage of a midlatitude trough over the western United States. Thus, both tropical 

and midlatitude systems may be important to the occurrence of gulf surges.

Since surges occur only occasionally during the NAM, a more continuous 

process is likely responsible for the positive water vapor flux that several authors 

find from the northern Gulf of California into Arizona (Rasmussen 1967; Houghton 

1979; Tang and Reiter 1984; Badan-Dagon et al. 1991; Douglas et al. 1993; 

Schmitz and Mullen 1996; Higgins 1997). Douglas (1995) uses data collected dur­

ing the 1990 Southwest Area Monsoon Project (SWAMP) to show that a daily 

nocturnal low-level jet (LU) develops below 700 mb over the northern part of the 

Gulf of California. Special pilot balloon reports and aircraft data indicate that this

LU  is characterized by a 12 UTC speed maxima (-7  ms'̂ ) at a height of 500 m 

AGL over Yuma, and at a height of 250-400 m AGL over the Gulf of California. 

Douglas (1995) surmises that this low-level southerly flow is forced by a pressure 

gradient force that develops in response to a mean temperature difference (6°C at 

900 mb) between the stations. This mean temperature difference is about half that
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Figure 3. Conceptual model of gulf surges from tlie Gulf of California, where surges are 
associated with either the passage of an easterly wave, south of the Gulf of Calfomia, or 
mesoscale convective systems drifting over the northem half of the gulf. Taken from 
Adams and Comrle 1997.
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calculated by Hales (10°C,1974) for a surge event in August 1972. Consequently, 

the pressure gradient force apparently forces both the LLJ and surges, and 

surges are an intensification of this channelled flow.

In the late 1920's, the collection of upper-air observations shift the attention 

of researchers from the thermal low to the newly observed mid-upper-level anti­

cyclone as a circulation important to the development of the NAM. Reed (1933,

1939) finds that the position of a 500-mb closed anticyclone, which develops in 

tandem with the thermal low, may be associated with precipitation occurrence 

over Arizona. He suggests that precipitation is more likely to develop over Arizona 

when the center of this high is located eastward rather than westward of the state 

because air transported into the region is likely more moist, and therefore, more 

conducive to storm development. Later, climatologies of the southwest U.S. sum­

mer 700- and 500-mb flow show that, in the mean, southerly-to-southwesterly 

winds from the Bermuda high anticyclone transport air into Arizona (e.g.. Fig. 2; 

Bryson and Lowry 1955; Douglas 1993). Based on this flow pattern, Bryson and 

Lowry (1955) surmise that moist air is transported into Arizona from the Gulf of 

Mexico, and that the Gulf of Mexico is the primary moisture source during NAM; 

similar reasoning arose from Jurwitz (1953), although no analyses are shown in 

his paper.

The idea that the Gulf of Mexico is Arizona's primary source of moisture 

during the summer is later discounted by several authors who reason that air
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transported northwestward from the Gulf of Mexico into Mexico by the Bermuda 

High is dried substantially after passing over the Sierra Madre Oriental and the 

Sierra Occidental prior to reaching Arizona (Hales 1972a, 1974; Brenner 1974; 

Douglas et al. 1993). Schmitz and Mullen (1996) address this issue quantitatively 

by analyzing European Center for Medium-range Forecasts (ECMWF) water 

vapor fields over Mexico and the United States. Differences in moisture transport 

between lower and upper levels are discerned by calculating vertically integrated 

moisture flux vectors for the surface-to-700-mb layer and the 700-to-200-mb layer 

(Fig 7. of Schmitz and Mullen 1996). The low-level flux is northward from the Gulf 

of California into Arizona, whereas the mid-level flux is northwestward from west­

ern Mexico into Arizona. A trajectory analysis shows that the moist air over west­

ern Mexico originates from the Gulf of Mexico. Based on these result, Schmitz 

and Mullen (1996) conclude that low-level moisture arises from the Gulf of Califor­

nia, and that mid-upper level moisture arises from the Gulf of Mexico. Owing to 

the ECMWFs relatively large grid spacing (1.125° lat x 1.125° Ion), mesoscale 

processes are poorly represented. Therefore, it is possible that midlevel moist air 

over Arizona may originate, at least in part, from vertical mixing of moist air from 

mesoscale convective systems (MCSs) that form over mountainous terrain in 

western Mexico (e.g., Brenner 1974; Douglas et al. 1993). This air may then be 

advected over Arizona by the southeasterly-to-southerly flow of the mid-level anti- 

cyclonic flow.

14



In summary, the circulations comprising the NAM include a heat low over 

Arizona and the northward-shifted Subtropical High. The establishment of these 

circulations allows the transport of moisture at low-levels by the daily low-level jet 

over the Northem Gulf of California and occasional surges, and the transport of 

moisture at mid-upper levels, in part, by the Subtropical High. While this relative 

enhancement of moisture over Arizona creates a large-scale environment sup­

portive of storm development, periods of wet and dry weather occur during the 

NAM, coinciding with variations in the mean synoptic environment (Carleton 1986; 

Watson et al. 1994a; Mullen et al. 1998). Mean synoptic environments associated 

with bursts and breaks are summarized below.

2.2 Mean synopf/c enwronmenfs assoc/afed w/fh bursts and breaks

During the NAM, Arizona experiences periods of wet and dry weather, 

called "bursts' and "breaks," respectively. Such bursts and breaks have been ana­

lyzed using three different data sets: 1980-1982 GOES-W infrared satellite data 

over the southwest U.S. (Carleton 1986), 1985-1990 Bureau of Land Manage­

ment lightning data over Arizona (Watson et al. 1994a), and 1985-1992 precipita­

tion data over southeastem Arizona (Mullen et al. 1998). A purpose of these 

studies is to identify the mean synoptic-scale environment responsible for periods 

of wet and dry weather. Although the mean flow at low-levels exhibits a heat low 

over Arizona during both bursts and breaks (Carleton 1986), differences appear in 

the mean mid-level flow. In breaks, 500-mb composites show an east-to-west-ori­
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ented longwave ridge over the southwest U.S., whose ridge axis is located south­

ward of central Arizona (Figs. 4b, 4d; Carleton 1986; Watson et al. 1994a; Mullen 

et al. 1998). The resulting westerly flow advects dry air into Arizona that sup­

presses storm development (Carleton 1986; Watson et al. 1994a; Mullen et al.

1998).

In bursts, two composites arise: an east-to-west oriented longwave ridge 

over the southwest U.S., whose horizontal ridge axis is located farther northward 

than during breaks (Fig. 4c; Watson et al. 1994a; Mullen et al. 1998), and a short­

wave trough in the westerlies approaching the southwest U.S. from the southeast 

Pacific, with the western edge of the Bermuda High located over Texas (Fig. 4a; 

Carleton 1986). The latter burst composite suggests that synoptic-scale forcing 

ahead of shortwave troughs is common during 1980-1982 NAMs. The absence of 

a shortwave trough in Watson et al.'s (1994a) and Mullen et al.'s (1998) burst 

composites suggests that other mechanisms, such as terrain forcing and/or 

mesoscale forcing, also play an important role.

Differences in moist transport at low- and mid- to upper-levels during bursts 

and breaks is investigated by Mullen et al. (1998). They find that similar amounts 

of moisture are transported from the northern Gulf of California into southern Ari­

zona during both bursts and breaks (Mullen et al. 1998). This result corroborates 

previous analyses showing a positive water vapor flux at low-levels from the 

northem Gulf of California into Arizona during the summer (Rasmussen
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Figure 4. Carleton's (1986) composite 500-mb heights (in gpdm) for three monsoon sea­
sons: 1980-1982, during a) bursts and b) breaks. Standard deviations (m) are dashed. 
Watson et al. (1994b) 500-mb analyses (m) for c) 12 monsoon bursts and d) 10 monsoon 
breaks. Temperature-dewpoint spreads of 5 °C or less are shaded and temperature isop- 
leths are contoured.

1 7



1967;Houghton 1979; Tang and Reiter 1984; Badan-Dagon et al. 1991; Douglas 

1995; Schmitz and Mullen 1996; Higgins 1997). In contrast, at mid-upper levels 

more moisture is transported into southeastem Arizona from the Gulf of Mexico 

during bursts than breaks (Mullen et al. 1998).

In summary, the occurrence of bursts and breaks in Arizona appears 

related to the mean mid-upper-level synoptic-scale flow and, in tum, the amount 

of moisture transported from the Gulf of Mexico into Arizona at mid-upper levels. 

Generally, less moisture is transported into Arizona during breaks because the 

mean mid-upper-level flow is westerly, whereas more moisture is transported into 

Arizona during bursts because the mean mid-upper-level flow is southerly. Since 

the amount of mean low-level moisture is similar during bursts and breaks, it 

appears that, on average, periods of precipitation are sensitive to the amount of 

available mean mid-upper-level moisture. In addition, during some NAMs, short­

wave troughs apparently play an important role toward the development of bursts.

These findings address two of the three ingredients necessary for storm 

development during bursts: moisture and lift (Johns and Doswell 1992). While 

short wave troughs are an important source of lift during some NAM seasons, 

other lifting mechanisms, such as terrain forcing, also play a role. The next section 

reviews such lifting mechanisms, as well as processes affecting instability in Ari­

zona.
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2.3 ,4dd/übna/ MecAian/sms for sform deye/opmenf

One significant source of lift in Arizona is mountainous terrain (e.g., Banta 

1990). Within this study's domain, areas of mountainous terrain are concentrated 

in the Southeast Highlands, the Central Mountains, and the Mogollon Rim, which 

surround the Sonoran Desert (Fig. 1b). During the afternoon, low-level flow over 

the Sonoran Desert is upslope, toward higher terrain (Douglas and Li 1996). In 

general, interactions between this flow and topographic features likely regulate 

daily storm development (e.g., Banta 1990; Fujita et al. 1962). For example, Fujita 

et al. (1962) discover that early-morning solar heating on the eastward facing 

slopes of the San Francisco Mountains (Fig. 1b) initiates a mesolow, which, in 

tum, creates localized convergence and lift for convective storm development. 

Additionally, they find higher rainfall totals occur when 600-mb winds contain a 

southerly rather than a northerly component, consistent with findings from burst 

and break studies.

The prominence of terrain forcing is evinced by Arizona's summer diurnal 

precipitation climatology, descrit)ed previously in the Introduction (Balling and 

Brazel 1987; Watson et al. 1994b; King and Balling 1994; Hales 1972b; MacKeen 

and Zhang 2000). Since summer storms are usually short-lived, the apparent 

movement of precipitating convective cells from higher toward lower terrain raises 

an unanswered question: "What mechanisms are responsible for this evolution?". 

Two plausible mechanisms for such storm redevelopment include diurnal terrain
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forcing and/or lift generated by downdrafts interacting with hot, moist upslope air 

(Watson et al. 1994b).

In practice, storm evolution from higher terrain into the Sonoran Desert 

does not occur daily, suggesting that at least one of the three ingredients needed 

for storm development is sometimes absent within the desert environment, includ­

ing Phoenix-Mesa (Fig. 1b). The likelihood for storm development in the desert 

depends, in part, on the characteristics of the planetary boundary layer. During 

the afternoon in Phoenix-Mesa, the lapse rate in the planetary boundary layer is 

oftentimes dry adiabatic. In the presence of sufficient moisture and lift, this neu- 

trally-stable environment must become conditionally unstable to support storm 

development. Hales (1977) hypothesizes that tropospheric destabilization in 

Phoenix may sometimes be instigated by the advection of mid-level cloud-cooled 

air, produced by afternoon thunderstorms over the mountains, over the hot desert 

landscape.

Stensrud (1993) finds two cases during the 1990 Southwest Area Monsoon 

Project (SWAMP) where elevated residual layers (ERLs) are advected by a north­

erly wind from the Mogollon Rim to the 800-650-mb layer over Phoenix by early 

evening. An ERL is defined as a boundary layer, which may or may not be well- 

mixed, that forms initially over elevated terrain and is later advected over bound­

ary layers developing over lower terrain (Stensrud 1993). In both cases, rawin- 

sondes launched three times between the late afternoon and early evening in
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Phoenix, show a warming and drying of the air between 800-650 mb, which 

decreases the convective potential substantially. The suppression of storm devel­

opment over Phoenix owing to an ERL is emphasized by a case where storms fail 

to develop even though a convergence boundary, produced by thunderstorms 

moving off the mountains toward Phoenix, moves across Phoenix without new 

storm development (Stensrud 1993). Since the associated ERL increased the

Convective Inhibition (CIN) from an expected value of 87 J kg'̂  to 264 J k g '\ it 

appears that stability within the planetary boundary layer is regulated, in part, by 

layers of air advected above this boundary layer during the diurnal cycle.

At times, more dramatic processes influence the potential for storm devel­

opment. For example, McCollum et al. (1995) discuss an event where significant 

changes in characteristics of Phoenix sounding and surface data occur over just a 

few hours. During the 1990 SWAMP, both NWS and National Severe Storms Lab­

oratory staff forecast incorrectly a dry evening over Phoenix on 23 July 1990— 

when instead a mesoscale convective system (MCS) developed. Later, detailed 

analyses of surface data, Phoenix soundings, and pibal wind reports from north­

em Mexico, suggested that a southerly LLJ bolstered low-level moisture and 

instability values. In combination with vertical motion arising from interactions 

between thunderstorm outflows moving into the desert, and opposing southerly 

flow south of Phoenix, such short-term changes made the Phoenix environment 

conducive to the development of a nocturnal MCS.
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2 4  S u m m a /y

The circulations of the NAM are instrumental to summer storm develop­

ment in Arizona. At low-levels, the temperature and pressure gradient between 

the southwest U.S. thermal low and the mesohigh over the mouth of the Gulf of 

California, constricted zonally by surrounding mountains, channels moist south­

erly flow in the form of a nocturnal LLJ—a flow intensified occasionally in the form 

of a surge. At mid-upper levels, the southeasterly-to-southerly flow over western 

Mexico and Arizona, respectively, transports water vapor into Arizona.

Within this environment, periods of wet and dry weather occur in response 

to variations in the synoptic-scale flow (Carleton 1986; Watson et al. 1994a; 

Mullen et al. 1998; Wallace 1997; Wallace et al. 1999). Although such burst and 

break studies find differences in synoptic-scale flow associated with wet vs. dry 

periods, the operational utility of such studies remains unverified. Unfortunately, 

burst and break studies provide little forecast guidance concerning where, when, 

and how storms may evolve on a given day. Mechanisms for storm development 

are addressed by a few Arizona case studies. These studies point to the impor­

tance of interactions between mountainous terrain and mid-level wind direction 

(Fujita 1962), mechanism for destabilization of the planetary boundary layer 

(Hales 1977; Stensrud 1993; McCollum et al. 1995), and interactions between 

thunderstorm outflows and the ambient desert flow (Watson et al. 1994b; McCol­

lum et al. 1995), for supporting convective storm development.
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The purpose of this study is to investigate the vanaW/fy in daily storm 

development patterns and the tropospheric environment in Arizona during two 

NAM seasons, and, in tum, improve forecast guidance concerning where, when, 

and how storms may evolve on a given day. In the next section, this investigation 

begins by using radar mosaics to study daily storm development patterns.



3. Radar Reflectivity Regimes

In this section, variability in summer storm development in Arizona is 

investigated using radar reflectivity data. First, Section 3.1 describes the radar 

data and techniques used to construct high-resolution reflectivity mosaics. Sec­

ond, Section 3.2 outlines the method used to assess variability of storm develop­

ment. Third, Section 3.3 describes the five storm development patterns found 

from this analysis.

3. f Radar Data and Mefhodo/ogy

Weather Surveillance Radar-1988 Doppler (WSR-88D) level II radar 

reflectivity data, collected from the Phoenix (KIWA) and Flagstaff (KFSX) sites, 

are used to investigate variability in diurnal storm development over Arizona. 

Radar reflectivity data from two NAM seasons, July and August 1997 and 1999, 

are examined. Although this study examines two NAMs only, it provides the first 

examination of intraseasonal variability using radar reflectivity data. During these 

periods, WSR-88D data are available for 111 of the 124 days (-90% of events), 

with 12 days (2 days) missing from the 1997 (1999) data set. The analysis period 

begins in 1997 because it is the first year where radar data are available from both 

the Phoenix and Flagstaff WSR-88D sites. As discussed in detail below, these 

radar sites are used to create radar reflectivity composites. Analyses span from 

July through August because precipitation associated with the NAM usually 

begins in early July, and dissipates during September (Sellers and Hill 1974). 

Since this study is also concerned with the variability in the tropospheric environ-
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ment, the 1998 summer season is excluded owing to large gaps in archived 

sounding data at Phoenix.

Quality control techniques are applied to minimize echo from non-mete- 

orological sources, including ground clutter and anomalous propagation. In this 

quality control process, a gate of radar reflectivity is considered ground clutter if its 

height is below the height of the hybrid reflectivity level (Gourley et al. 2001). The 

hybrid reflectivity level is defined as the height where one of the four lowest radar 

tilts is at least 500 ft above ground level (see Fig. 5 for heights of the KIWA and 

KFSX hybrid scan; Fulton et al. 1998). As illustrated in Fig. 5, the height of the 

hybrid reflectivity level increases most quickly with increasing range in regions 

where terrain blocks the radar beam.

A radar reflectivity observation is considered anomalous propagation, or 

surface-ducting of the radar beam, if it is nearly stationary (corresponding velocity

magnitude is less than or equal to 2.5 ms"^) and the magnitude of the reflectivity 

value above the observation is comparatively small (Gourley et al. 2001). Specifi­

cally, significant decreases in reflectivity with height are considered non-meteoro-

logical if the following condition is satisfied:------------ :----------- > 0.9, where
i - e f f j

is the reflectivity value in a bin at the hybrid tilt height, and i  is fhe

reflectivity value in a bin at the tilt above the hybrid level (Gourley et al. 2001).
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Thus, this second criteria is met when ^  ̂ is at least 90% smaller than

Radar reflectivity data identified as ground clutter or anomalous propaga­

tion are removed from the data set.

Once data quality control is completed, the polar-coordinate radar 

reflectivity volumes from each radar are interpolated to a three-dimensional (3-D 

Cartesian grid (Zhang 2000). The Cartesian grid has a cylindrical equidistant lati­

tude/longitude reference frame, such that only distance along standard parallels 

and meridians are true to scale. The Cartesian grid is 440 km x 440 km in the hor­

izontal dimension (Fig. 1b), with 1-km grid spacing in the horizontal and 21 

stretched levels in the vertical (surface to 12 km), such that height intervals 

increase hyperbolic-tangentially with increasing height.

The raw reflectivity factor, ^ is interpolated from polar coordinates,

/\( r , 8, (|)), to Cartesian coordinates, f  (%, y, z) , by performing an adaptive Bar­

nes interpolation scheme (e.g., Trapp and Doswell 2000):

AT
^ w /)(r ,8 , 4))

/g(;c,)',z) =  ------  , (1)

z-,-
i — 1

where the weighting factor w . is defined as:
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w = exp (2)

where r, 8, (|) represent polar coordinates of distance, azimuth, and elevation, x, 

y, z represent Cartesian coordinates of horizontal distance and height, the sub­

scripts / and g represent a bin of raw reflectivity data in polar and Cartesian coor­

dinates, respectively, N is the number of radar bins influencing the interpolated 

grid value, and Xg, and x . are the dimensional filtering parameters. These

I
#0 %

Figure 5. Height of hybrid scan, or lowest elevation above 500 ft (152 m) where data are collected 
for KIWA and KFSX WSR-88Ds (m AGL). The white box denotes this study's domain.
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dimensional filtering parameters are a function of ronly, and are defined in Appen­

dix A.

The influence region of is volumetric, and is defined in polar coordi­

nates, such that radar bins located within 5 km radial distance, two degrees azi­

muth, and within the two closest elevation scans above and below the grid point, 

contribute toward that point's weighted reflectivity value. Since the resolution of 

radar reflectivity data decreases in azimuthai and vertical directions with increas­

ing range from the radar, the region of influence applied to grid points iocated far 

from the radar is larger than the region of influence applied to grid points located 

near to the radar, but includes the same number of data points. Since azimuthal-

and elevation-length scaies increase with increasing range, filtering (K g(r) and

K ^(r) ) is range-dependent in these dimensions. The range dependence of filter­

ing, and hence the three-dimensional response function, is exemplified in Appen­

dix A.

In contrast to the adaptive Game's interpolation scheme applied here, 

Trapp and Doswell (2000) prefer non-adaptive Barnes interpolation schemes.

The main difference between adaptive and non-adaptive Game's interpolation 

schemes is that the non-adaptive scheme applies fixed length scales in both azi- 

muthal and vertical directions. Trapp and Dosweli (2000) suggest choosing fixed 

length-scaies at the outermost radial range of a particular analysis. Gy doing so.
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the highest-resolution reflectivity data, close to the radar, are lost, but the weight 

functions are independent in range. As a resuit, the growth or decay of a storm 

moving toward or away from the radar may be determined with greater certainty 

than that availabie from adaptive techniques. Since this study is concerned pri- 

mariiy with general patterns of radar reflectivity frequencies above a specified 

reflectivity threshold, effects of storm growth and decay are assumed minimal.

Once each volume scan of reflectivity from the KiWA and KFSX radars is 

interpolated to the Cartesian grid, a 3-D reflectivity mosaic is created by combin­

ing radar data at each Cartesian levei, z. Use of two radars minimizes radar data 

limitations such as beam blockage and decreasing resolution with increasing 

range, and composes a more complete depiction of storm structure and precipita­

tion than either radar alone could provide. At each level z, interpolated reflectivity 

values, are mosaiced to each grid point, in the domain using an

inverse distance-weighted average (Zhang 2000):

n ra d a rs

g  y, z) y, z)

' (3)

n = 1

where nradars is the number of radars that cover each grid point (here /?radars= 

2A is the interpolated reflectivity value from the nfh radar, and ^(x,%z) is

the mosaiced value at each grid point. The weight, , given to a radar observa-
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tion is dependent on the distance between the radar and the observation (i.e., 

Cressman weight function; Zhang 2000):

where R/nr's the farthest range at which a valid observation is attainable =

300 km), and dn(x,}^z) is the distance between a mosaic grid point and the 

radar. The final 3-D radar reflectivity mosaic is created every 10 min. A corhposite 

reflectivity mosaic is also computed, which compresses the 3-D Cartesian grid to 

a 2-D field of maximum reflectivity value within each 1 -km x 1 -km x 12-km column. 

This 2-D composite reflectivity mosaic is used to investigate the variability of 

storm development over Arizona.

3.2Assess/ng f/?e vanab/Z/fy of storm deve/opment

Arizona's summer diurnal precipitation climatology indicates a cycle of 

storm development from higher to lower terrain during the afternoon and into the 

early evening, culminating in the Sonoran Desert at night. This climatology pro­

vokes at least two questions: 1) How often does a this diurnal precipitation cycle 

occur over Arizona? and 2) What variety of diurnal storm development patterns 

tend to occur over Arizona? Answers to these questions are needed to build an 

understanding of daily storm development variability in Arizona.
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The variability in diurnal storm development patterns is investigated by 

examining daily storm evolution. First, for each day (a day is defined as the 24-hr 

period beginning at 12 UTC), the diurnal relative frequency of composite mosaics 

of reflectivity greater than or equal to 25 dBZ is calculated, beginning at the top of 

each hour. The 25 dBZ threshold serves as a proxy for storm development. Sec­

ond, animated loops of hourly relative frequency maps for each day are observed 

repeatedly, to assess the variability in diurnal storm development. By observing 

these relative frequency maps, it becomes apparent that similar diurnal storm evo­

lutions occur repeatedly over different geographic regions. For instance, on some 

days, storms develop over mountains in eastern Arizona only, whereas on other 

days storms develop over mountains in eastern Arizona and along the Mogollon 

Rim. On other days, storms evolve in a manner similar to the diurnal precipitation 

climatology. The fidelity of such repeated diurnal storm evolutions is elucidated by 

computing diurnal 3-hourly relative frequencies (e.g., 12-14 UTC, 15-17 UTC,

18-20 UTC, etc.) of composite radar reflectivity, 25 dBZ and higher, from the 10 

min mosaics for days comprising diurnal storm cycles over similar geographic 

areas, and then manually comparing similarities and differences in spatial and 

temporal patterns. The results of this analysis are reported next.

3.3 Reg/mes

Five repeated storm development patterns, or regimes (Table 1) are 

found over the domain. In four of the five reflectivity regimes, composite reflectiv­

31



ity evolves repeatedly over similar geographic regions, including: 1 ) eastern 

mountains (called eastern mountain regime (EMR);12 days or 10% of events), 2) 

central and eastern mountains (called central and eastern mountain regime 

(CEMR); 35 days or 28% of events), 3) central mountains, eastern mountains, 

and Sonoran Desert (called central mountains, eastern mountains, and Sonoran 

regime (CEMSR); 22 days or 18% of events), and 4) none of the domain (called 

dry regime (DR); 13 days or 10.5% of events).

The fifth regime is distinguished by storm development that is less 

closely tied to the climatological diurnal cycle, and therefore is called the non-diur- 

nal regime (NDR). Such events occur on 23 days, or 18.5% of the time, and are 

depicted by storms that move across Arizona with the prevailing steering-level 

flow, including westerlies, easterlies, and southerlies. Owing to such differences 

in storm movement, days within this regime are subcategorized according to 

direction of storm movement, including northward moving (NDR-N;11 days or 

48% of widespread events), eastward moving (NDR-E; 7 days or 30% of wide­

spread events), and westward moving (NDR-W; 5 days or 22% of widespread 

events). Six days or 5% of events occur over various isolated areas in Arizona 

(called unclassified), and thirteen days or 10.5% of the radar data set are missing. 

Both unclassified and missing events are excluded hereafter, such that 111 of 124 

possible events are examined.
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Table 1 : Distribution of reflectivity regimes during the 1997 and 1999 NAMs, 
where DR is the dry regime, EMR is the eastern mountain regime, CEMR is the 
central-eastern mountain regime, CEMSR is the central-eastern mountain and 
Sonoran Desert regime, NDR is the non-diumal regime, UNC is the unclassified 
regime, and MISS is days missing from the radar dataset. Shaded columns 
highlight the two regime types that occur most frequently in 1997 and 1999.

DR EMR CEMM CEMSR NDR MISS

July-August
1997

9
(14%)

6
(10%)

13
(21%)

7
(11%)

9
(16%)

6
(10%)

12
(18%)

July-August
1999

4
(6%)

6
(10%)

r /

(36%)
12

(19%)
N N M K

(26%)
3

(0%)
2

(3%)

Total 13
(11%)

12
(10%)

35
(28%)

19
(15%)

25
(20%)

6
:=%)

14
(11%)

The repeated diurnal storm evolutions elucidated by computing 3-hourly 

frequencies of composite radar reflectivity during the period of peak storm devel­

opment (i.e. 18-09 UTC), for each regime, are described below. The resulting 

pattems affirm the classification of repeated storm development patterns over dif­

ferent geographic regions in Arizona.

3.3.1 Eastern Mountain Regime (EMR)

The eastem mountain regime is characterized by storm development 

over the mountains of eastem Arizona. Storms develop first in the vicinity of the 

White Mountains and the Southeast Highlands in the early afternoon (18-20 UTC; 

Fig. 6a). By mid-aftemoon the areal extent of storm development is maximized, 

as storms begin to move toward lower elevations (22-00 UTC; Fig. 6b). Toward 

evening, storm development is most frequent over the Southeast Highlands (02-
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04 UTC; Fig. 6c), and by early morning storm development has ceased (06-08 

UTC; Fig. 6d).

Compared to other precipitating regimes, EMR occurs least frequently 

(only 10% of the time) and evolves over the least amount of terrain. Also, EMR's 

frequencies of radar reflectivity are comparatively low. These lower relative fre­

quencies may indicate high spatial and temporal variability in storm development 

within a relatively small sample size.

3.3.2 Central-Eastern Mountain Regime (CEMR)

The central and eastern mountain regime is characterized by storm devel­

opment over the Mogollon Rim, White Mountains, and Southeast Highlands (Fig. 

7). Storms develop first over the peaks of the Southeast Highlands and the higher 

elevations of the Mogollon Rim, such that a linear relative frequency pattern 

extends from the White Mountains to the San Francisco mountains (18-20 UTC; 

Fig. 7a). Like EMR, by mid-aftemoon the areal extent of storm development is 

maximized, as storms begin to move toward lower elevations (22-00 UTC; Fig. 

7b). Toward evening the areal extent of storm development over the Mogollon Rim 

is greatly diminished, while storms continue to move away from the Southeast 

Highlands (02-04 UTC; Fig. 7c). By early morning storms infrequently occur over 

the Southeast Highlands and White Mountains (06-08 UTC; Fig. 7d).
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Compared to other regimes, the CEMR occurs most frequently (28% of the 

time), demonstrating the environment's propensity for storm development over 

mountainous terrain. The major difference between the CEMR and EMR is the 

expanded storm development across the Mogollon Rim and larger areas of higher 

relative frequencies (7-14% vs. 3-5%) of radar reflectivity over elevated terrain 

(cf. Figs. 6 and 7).

3.3.3 Central-Eastern Mountain and Sonoran Regime (CEMSR)

The CEMSR is characterized by initial storm development over the Mog­

ollon Rim, Southeast Highlands, Central Mountains, and later development over 

the Sonoran Desert (Fig. 8). Storms develop first over the higher elevations of the 

San Francisco Mountains, Mogollon Rim, White Mountains, Southeast Highlands, 

and Central Mountains during the early aftemoon (18-20 UTC; Fig 8a). This early 

afternoon storm development is more widespread over mountainous terrain com­

pared to the CEMR, and there is a tendency for higher relative frequencies of 

radar reflectivity along the Mogollon Rim (11-14% vs. 7-10%) and in the vicinity 

of the White Mountains and San Francisco Mountains (15-18% vs. 7-10%; cf. 

Figs. 7a and 8a). By mid-afternoon the region of relative frequencies has 

expanded to the north and south and their magnitude has intensified along the 

ranges of the Central Mountains (20-00 UTC; Fig. 8b). Compared to the CEMR, 

this band of high relative frequencies is more distinct and intense, and relative fre­

quencies of
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radar reflectivity are higher and more widespread along the periphery of the Sono­

ran Desert (cf. Figs. 7b and 8b). This more intense band of high relative frequen­

cies, compared to CEMR, reflects the tendency for more organized storm 

development during CEMSR. Indeed, studies of 10 min reflectivity mosaic loops 

show that cell mergers and storm outflows are morejarolific during CEMSR than 

CEMR.

Unlike EMR and CEMR, toward evening storm development is abundant 

over the Central Mountains, Southeast Highlands, and the Sonoran Desert (02- 

04 UTC; cf. Figs. 6c, 7c, and 8c), with secondary relative frequency maximum in 

the vicinity of the Southeast Highlands and southwestern and western parts of the 

Sonoran Desert. By early morning storm development is diminished over the 

Central Mountains but remains somewhat active over the Southeast Highlands 

and the Sonoran Desert (Fig. 8d). The storm evolution of this regime is similar to 

that depicted by Arizona's diurnal climatology: capturing both the aftemoon pre­

cipitation maxima over elevated terrain and the late night precipitation maxima 

over the Sonoran Desert (Balling and Brazel 1987; King and Balling 1994; Watson 

et al. 1994b). Since three of the four precipitating regimes involve storm develop­

ment over elevated terrain during the aftemoon, the similarity between EMR, 

CEMR, CEMSR and climatology is hardly surprising.
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The CEMSR occurs less frequently (18% vs. 28% of the time) than 

CEMR, indicating that ingredients for storm development are present in the Sono­

ran Desert less often than over elevated terrain. The major difference between

3-4 %
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Figure 8. Same as in Fig. 6, except for CEMSR.
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CEMSR and CEMR during the afternoon is more frequent storm development 

across the Mogollon Rim, and especially the Southeast Highlands and Central 

Mountains which surround the Sonoran Desert.

3.3.4 Nondiurnal Regime (NDR)

The non-diumal regime (NDR) regime is characterized by storm develop­

ment that is tied less strongly to the topographicallyrinfluenced diumal precipita­

tion cycle than the previous three regimes (EMR, CEMR, and CEMSR; cf. Figs. 

6-9). Although relative frequencies of radar reflectivity show early-aftemoon 

storm development over higher terrain, including western portions of the Central 

Mountains and Mogollon Rim, and Southeast Highlands, storms may also occur 

over the Painted and Sonoran Deserts (18-20 UTC; Fig. 9a). By mid-afternoon, 

storm development is most frequent the Sonoran Desert (maximum of 19-22%), 

and less frequent over most of the Mogollon Rim, Central Mountains, Southeast 

Highlands, and Painted Desert (22-00 UTC; Fig. 9b). Such aftemoon storm 

development is unique because, climatologically, storm development over the 

Sonoran Desert is most frequent late at night. This maximum in aftemoon storm 

development suggests that forcing mechanisms, in addition to terrain-forcing, are 

significant. By early evening, storm development is most frequent over the Sono­

ran Desert and Southeast Highlands (11-14%), with lower frequencies over the
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Central Mountains, Mogollon Rim, and Painted Desert (3-10%; 02-04 UTC; Fig. 

9c). In the early morning, storm development is most frequent over regions within 

the Central Mountains and Painted Desert (7-10%), and infrequent over most of 

the Sonoran Desert and Southeast Highlands (06-08 UTC; Fig. 9d). Although 

NDR's diumal cycle of reflectivity frequency highlights the unique development of 

aftemoon storms over the Sonoran Desert, on a given day, storm development 

can differ markedly from that described above. Variations in diurnal storm devel­

opment arise owing to variability in storm movement, which may be categorized 

as northerly, easterly, or westerly on each day. In general, these storm systems 

are well organized, developing linear bands of convective cells that move with the 

mean flow.

The NDR occurs 20% of the time, a percentage slightly higher than that 

found for CEMSR (15%). In both regimes, diumal frequencies of reflectivity 

exhibit storm development over the Sonoran Desert, with maxima in the late after­

noon and evening hours. To verify further the propensity for precipitation over the 

Sonoran Desert during NDR and CEMSR, compared to DR, EMR, and CEMR, 

distributions of 24-h rainfall data associated with each regime are examined from 

the Automated Local Evaluation in Real Time (ALERT) rain gage network (http:// 

www.fcd.maricopa.gov/alert/alert.hml) within Phoenix-Mesa and the surrounding 

desert area. This region is defined by a domain extending latitudinally from 

32.83°-33.76°, and longitudinally from -111.39°- -113.12°. For each regime, per­

centiles of rainfall (0.5-0.95) are computed using the 1997 and 1999 ALERT data.
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As expected, no measurable precipitation is reported during DR or EMR (not 

shown). Measurable (nonzero) precipitation during CEMR appears first at the 

95th percentile, with a measly value of 0.04 in (Fig. 10). In contrast, nonzero pre­

cipitation values appear lower in the NDR and CEMSR distributions, at the 70th 

and 75th percentiles, respectively (Fig. 10). Thus, 4.8 (2.6) times more stations 

reported 24 h accumuiated precipitation of 0.04 in or higher during NDR (CEMSR) 

than CEMR. Furthermore, NDR's and CEMSR's 95th percentiles are at least 

eleven times higher than those reported during CEMR. In conclusion, the relative 

lack of 24 h accumulated precipitation over the northern Sonoran Desert and 

Phoenix-Mesa region strengthens the radar-only-based regime classification 

depicted above.

3.6 Summary

Repeated storm development over the Mogollon Rim, Southeast High­

lands, and Central Mountains illustrates the importance of terrain forcing in the ini­

tiation of moist convection in Arizona during the summer. Differences in 

geographic regions where storms develop repeatedly suggest that corresponding 

variations in environmental conditions may exist which help discern one regime 

from another. In the next section, this hypothesis is addressed by examining and 

comparing characteristics of composite upper-air maps and 12 UTC soundings at 

Phoenix associated with these regimes.
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4. Environmental conditions associated with regimes

Three ingredients necessary for deep moist convection include mois­

ture, lift, and instability (Johns and Doswell 1992). Regional and temporal differ­

ences in storm coverage associated with reflectivity regimes suggest that intrinsic 

variability in these ingredients may be related to the synoptic-scale flow. This 

speculation is investigated by analyzing characteristics of synoptic-scale flow 

over the southwest US and local tropospheric conditions at Phoenix associated 

with each regime.

4. f Compos/fe upper-a/rmaps

Composite 12 UTC maps of 500-mb geopotential height and specific 

humidity are employed to explore mean upper-air conditions associated with each 

regime. These composites are constructed using National Center for Environ­

mental Prediction / National Central for Atmospheric Research (NCEP/NCAR) 

Reanalysis data (Kalnay et al. 1996) at the Climate Diagnostic Center's Web site 

(http://www.cdc.noaa.gov). Characteristics of the composite map for each regime 

are described below, in order of increasing storm coverage.

During the dry regime (DR), flow at 500 mb is dominated by a low-ampli- 

tude ridge and relatively dry air, especially over southern California, Nevada, and 

Arizona (Fig. 11). These conditions result from the location of the subtropical
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high's horizontal ridge axis: 30°N. This pattern is similar to break composites 

found by Carleton (1986), Watson et al. (1994a), and k^ullen et al. (1998).

The 500-mb composites for the remaining "wet" regimes differ from DR in 

at least two significant ways. First, the horizontal ridge axis of the subtropical high 

is located farther northward, making the flow predominantly meridional rather than 

zonal (e.g., southerly rather than westerly; cf. Figs. 11 and 12-15). Second, 

owing to this southerly flow, the meridional moist axis expands farther northward 

than on dry days (cf. Figs. 11 and 11-15). Although these characteristics corre­

spond well with Carleton's (1986) and Watson et al.'s (1994a) burst composites, it 

is possible to discriminate more precisely among different regimes based on syn­

optic-scale flow.

During the eastem mountain regime (EMR), Arizona is located just west of 

a confluence zone that marks the transition in flow between the drier air of the 

North Pacific trough and the more moist air of the subtropical high (Fig.12). This 

transition zone is known as the monsoon boundary (Adang and Gall 1989). 

Adang and Gall (1989) show that this boundary extends vertically from the sur­

face to 400 mb, and is associated with a relatively weak temperature gradient. 

Conditionally unstable, warmer air is located east of the boundary (Adang and 

Gall 1989). By applying the two-dimensional, geostrophic momentum version of 

the Sawyer-Eliassen equation (Shapiro 1981), Adang and Gall (1989) show that
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these gradients of temperature and moisture are forced by confluence, 2
'

rather than by geostrophic horizontal shear, - 2 ^ - ^ - ^ .  Confluence is also the

primary forcing function responsible for the associated direct ageostropic stream- 

function, with rising (descending) air east (west) of the boundary (Fig. 9 of Adang 

and Gall 1989). Since the monsoon boundary is located near eastern Arizona 

during EMR, conditions are favorable for storm development over the eastem 

mountains, where orographic and/or thermal forcing may be enhanced by rising 

moist air from the ageostrophic circulation.

The composite synoptic-scale flow associated with the central-eastern 

mountain regime (CEMR) is dominated by a large-scale anticyclone (i.e., subtrop­

ical high), centered over the Texas Panhandle (Fig. 13). This flow is accompanied 

by a broad meridional axis of moist air, centered along the Arizona/New Mexico 

border (Fig. 13). The similarity of this synoptic-scale pattern to the EMR compos­

ite suggests the same processes as before, only shifted westward and expanded 

in scale. This change in environment implies conditions favorable for storm devel­

opment over both the central and eastern mountains (cf. Figs. 12 and 13).

During the central-eastern mountain and Sonoran regime (CEMSR), the 

composite 500-mb flow remains primarily anticyclonic over the southwest US, with 

a meridional axis of moist air centered over the border of Arizona and New Mexico
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(Fig. 14). Although this pattern is similar to the 500-mb CEMR composite, the 

ridge is shifted slightly northward and its axis is tilted toward the northwest, creat­

ing a flow with a stronger easterly component (cf. Figs. 13 and 14). In addition, 

specific humidity values are slightly higher within the meridional moist axis in Mex­

ico, and across Arizona (cf. Figs. 13 and 14). This incremental increase in mois­

ture may create a midlevel environment more favorable for storm development 

within the Sonoran Desert. Since the motion of convective cells is tied to the vec­

tor mean wind within the cloud layer (e.g.. Brooks 1946), the stronger easterly 

component found in the CEMSR composite, relative to the CEMR composite, is 

more favorable for storm movement from elevated terrain into the Sonoran Desert 

(cf. Figs. 13 and 14; Brooks (1946)). The relative importance of such differences 

is examined further in Section 4.2.

During nondiurnal regime (NDR), storm systems may move eastward, 

northward, or westward. Thus, synoptic-scale conditions are examined by creat­

ing a 500-mb composite for each type (Figs. 15a-c). A comparison of these com­

posites reveals that, within each pattern, the meridional moist axis is centered 

over central Arizona and extends northeastward into Colorado. This small west­

ward shift in the moist axis, relative to CEMR and CEMSR (e.g., cf. Figs. 14 and 

15a), results in the availability of deep moisture across the entire domain, includ­

ing the Sonoran Desert. Although the moisture field is similar among the three 

types, characteristics of their geopotential height composites differ. These pat­

terns are discussed below.
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Figure 15b. Same as Fig. 11, only for the nondiurnal regime, where storm movement is
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During NDR days with eastward storm movement, a shortwave trough in 

the westerlies is located just west of Arizona and the subtropical high is centered 

over Oklahoma and Texas (Fig. 15a). This pattern is conducive to large-scale 

forcing ahead of the shortwave trough, which, in turn, may enhance instability and 

lift in a region where orographic and/or thermal forcing is prevalent and deep 

moisture is abundant. In addition, the southwesterly steering-level flow, and anti­

cipated northeastward track of the shortwave trough, are likely responsible for the 

observed eastward storm movement.

On days where storms move northward, there is a broad high-amplitude 

ridge over the central plains and Rockies, separated from the North Pacific trough, 

by the monsoon boundary (Fig. 15b). Similar to EMR, CEMR, and CEMSR pat­

tems, the meridional moist axis is located just east of this confluence zone, with 

drier air to its west (cf. Figs. 12 and 15b). This synoptic-scale pattern provides 

southerly flow over Arizona, which favors northward moving storms.

On days where storms move westward, the North Pacific trough and large- 

scale ridge are shifted eastward, relative to the north-moving storm composite (of. 

Figs. 15b and 15c). In addition, the horizontal ridge axis is tilted toward the north­

west, creating southeasterly flow favorable for westward storm movement. Inter­

estingly, composite synoptic-scale pattems on northward- and westward-moving 

storm days are similar to CEMR and CEMSR composites, respectively (cf. Figs. 

13 and 15b; cf. Figs. 13 and 14c). The most dramatic difference between these
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nondiurnal regimes and CEMR and CEMSR is the westward shift and northward 

extension of the meridional moist axis. Given NDR's nondiurnal evolution of deep 

moist convection, another possible difference t)etween NDR and CEMR or 

CEMSR is the contribution of nonorographic lifting mechanisms. Since storm 

development within NDR is fairly well organized, synoptic-scale forcing may play 

an important role. The shortwave trough in the westerlies, shown in the east-mov­

ing NDR composite (Fig. 15a), provides evidence of such synoptic-scale forcing. 

The role of synoptic-scale forcing in NDR is investigated below.

The importance of large-scale forcing during the nondiurnal regime Is 

investigated by analyzing 12 and 00 UTC 500-mb maps of geopotential height 

and vorticity over the Southwest US during July and August 1997 and 1999. 

Large-scale forcing is considered relevant if storm development occurs within a 

region of differential vorticity advection within the 650-550-mb layer. Investigation 

of these conditions indicates that large-scale forcing for regimes occurs as fol­

lows: DR and EMR, absent (i.e., occurs 0% of the time), CEMR, 12.5% of the 

time, CEMSR, 70% of the time, and NDR, 88% of the time.

In summary, a study of 500-mb composites of geopotential height and 

specific humidity suggests that the occurrence of a given regime is connected to 

1) the location of the North Pacific trough, monsoon boundary, and center of the 

subtropical high, 2) the location of the meridional moist axis, and 3) the presence 

or absence of vorticity maxima embedded in the flow. These findings emphasize
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the importance of moisture and lift, or two of the three ingredients needed for deep 

moist convection over Arizona. The third ingredient, instability, is examined below 

using Phoenix soundings.

4.2 72 UTC Phoen/x Sound/ngs

Previous studies of thunderstorm development analyze Tucson sound­

ings in hopes of improving forecasts of convective and nonconvective days in 

Phoenix (Wallace 1997; Wallace et al. 1999). They find that characteristics of 12 

UTC Tucson soundings bear little relation to convective storm development in 

Phoenix (Wallace 1997; Wallace et al. 1999). The current study is the first to use 

Phoenix soundings to assess storm development. The 1997 dataset marks the 

first nearly complete record of sounding data recorded at Phoenix during the 

NAM, thanks to participants of SWAMP. Thereafter, the Salt River Project, a 

power company in Phoenix, began collecting sounding data at their facility. These 

data are now available operationally.

Morning sounding data (12 UTC) are used exclusively to study the pre­

storm environment of various regimes. Soundings that are incomplete (e.g., miss­

ing wind profiles or deep layers of thermodynamic data), contaminated by precipi­

tation, or lacking corresponding radar data are excluded, and the impact of 

outliers is diminished by applying a five-point filter to sounding data. Following 

this procedure, 89 soundings are available for analysis. The vertical structure of

5 8



Phoenix soundings associated with each regime's 500-mb composite map is 

investigated by constructing composite 12 UTC soundings. Each composite 

sounding is created by computing the average temperature, dewpoint, and wind 

vector, at each 25 mb level between 950 and 200 mb (e.g., 925, 900, 875 mb lev­

els). In ideal circumstances, the distribution of temperature and dewpoint temper­

ature at each examined level would be unimodal and leptokurtotic. However, in 

this study, the variance at most levels is too high to meet these criteria. Thus, 

these composite soundings do not represent the breadth of sounding characteris­

tics associated with each regime. Regardless, characteristics of these composite 

soundings do exemplify general similarities and differences in stability, tropo­

spheric moisture and wind among regimes.

4.2.1 Composite Soundings

One measure of instability is the magnitude of the low-mid-level lapse rate 

(e.g., 850-500 mb), where higher lapse rates indicate a more unstable atmo­

sphere. A comparison of 850-500-mb lapse rates among the five regimes shows

little variability, with values ranging from 7.1-7.5°C km "\ Hence, differences in 

instability are not strongly tied to lapse rate. However, the potential release of this 

instability is tied, in part, to the amount of available tropospheric moisture. For 

example, given two soundings with the same lapse rate structure, the sounding 

with more moisture within low-levels (e.g., lowest 100 mb) will have higher values 

of convective available potential energy (CAPE) or buoyancy, once a parcel
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reaches its level of free convection (LFC). Since the potential release of instability 

is related to the amount of tropospheric moisture within low-levels, I examine dif­

ferences in mean layer CAPE (k/ILCAPE; calculated using lowest 100-mb layer) 

among regimes. In addition, characteristics of tropospheric moisture and wind are 

described and interpreted in light of the composite synoptic-scale flow discussed 

in Section 4.1. Tropospheric moisture is measured by mean precipitable water 

values (PWTR), defined as the total atmospheric water vapor contained in a verti­

cal column of unit cross-sectional area extending between any two specified lev­

els (here, surface and 400-mb). Low-level moisture is assessed qualitatively by 

examining the difference in temperature and dewpoint temperature within the low­

est 100-mb layer.

During DR, the troposphere is particularly warm and dry (PWTR = 13 

mm), relative to other regimes (cf. Figs. 16 and 17-18). The lack of moisture at

low-levels results in a relative absence of mean MLCAPE (5 J kg"^). As indicated 

by the 500-mb composite, this dry air is associated with westerly winds on the 

northside of an anticyclonic circulation centered southward of Arizona (Fig. 11).

At Phoenix, tropospheric flow is represented by a wind profile that veers from 

southwesterly to westerly with height (Fig. 16).

In EMR, the troposphere is more moist compared to DR, where PWTR val­

ues are 25 mm and 13 mm, respectively (cf. Figs. 16 and 17). The increase in 

low-level tropospheric moisture, relative to DR, indicates an environment with

6 0



NOTE TO USERS

Page(s) not included in the original manuscript and are 

unavailable from the author or university. The manuscript 

was scanned as received.

61

This reproduction is the best copy available.

UMI



150

200

250

300

' A  \  /  \

/  \ , / w :  ^ / \ / A :/  A ; / \  \ /

y  \ /  . \

A

K \ /
\ X

/v

' X AAv^iAAi
/ \  \

/

A
 ̂ , X  '

10 20 30 40

Figure 17. Composite 12 UTC sounding at Phoenix for eastern mountain regime (EMR : 
orange, N=10), central-eastem mountain regime (CEMR: yellow, N=31), and centrai- 
eastem and Sonoran regime (CEMSR: blue, N=17).

6 2



higher MLCAPE (5 J kg'&s. 94 J k g '\ respectively). At midlevels, increased 

moisture corresponds with changes in the 500-mb flow, where the subtropical 

high is shifted farther northward and eastward, compared to DR, resulting in a 

resurgence of the meridional moist axis over western New Mexico (cf. Figs. 11 

and 12). At Phoenix, the tropospheric flow is represented by a wind profile that is 

nearly undirectional with height, with light south-southwesterly winds at low-levels, 

and stronger south-southwesterly winds at mid-upper levels (Fig. 17).

During CEMR, tropospheric moisture is even higher than in EMR (30 mm 

vs. 25 mm, respectively; Fig. 17), but is remarkably similar to CEMSR. Given the 

similarity in CEMR's and CEMSR's thermodynamic characteristics, they are dis­

cussed together. The increase in low-level moisture found in CEMR and CEMSR, 

relative to EMR, indicates an environment that contains higher values of mean 

MLCAPE (484 J kg'̂  during CEMR and 610 J kg"̂  during CEMSR). Interestingly, 

the 5 mm increase in mean precipitable water EMR to CEMR, is strikingly similar 

to perturbations of precipitable water associated with the monsoon boundary (-6 

mm; Adang and Gall 1998). Thus, the increase in moisture at midlevels reflects a 

westward shift in the location of the monsoon boundary (cf. Figs. 12 and 13; cf. 

Figs. 12 and 14).

Subtle differences in the orientation of the horizontal ridge axis between 

CEMR and CEMSR result in different 850-500-mb wind profiles (Fig. 17). During 

CEMR, the low-midlevel wind profile at Phoenix is characterized by light winds
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that veer from easterly to westerly from the surface to 700 mb, and slightly stron­

ger southerly winds within the 700-500-mb layer. In contrast, during CEMSR, the 

low-midlevel wind profile is characterized by light winds that back slightly from 

southeasterly to easterly from 925-500 mb (Fig. 17).

These results indicate that the 925-500 mb layer of easterlies found in the 

CEMSR sounding is more favorable for more organized storm development over 

elevated terrain and storm movement toward lower terrain than the southerlies 

associated with CEMR. Assuming that storm outflow evolves favorably for storm 

redevelopment (e.g., Weisman and Klemp 1986), interactions between outflows 

and the layer of easterlies within CEMSR's sounding may increase the lift avail­

able for new storm development. Smith and Gall (1989) also assert that midlevel 

easterlies (-700-400 mb) provide organized storm development over the Sono­

ran Desert, owing to ideal interactions (perpendicular) with the Southeast High­

lands.

During NDR, composite sounding characteristics are found for each storm 

movement category: eastward-moving, northward-moving, and westward-moving 

(Fig. 18). Of the five regimes, NDR soundings contain the most tropospheric 

moisture, making them the most unstable set of soundings, given sufficient lift. 

The striking similarity in tropospheric moisture and lapse rate among the 3 NDR 

types gives credence to their common classification (Fig. 18). As expected, com­

posite wind profiles show a strong relationship to storm movement, with south­
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westerly tropospheric winds associated with eastward-moving storm days, 

southerly tropospheric winds associated with northward-moving storm days, and 

a layer of easterly to southeasterly winds (925-500 mb) associated with west­

ward-moving storm days (Fig. 18). These results agree with the 500-mb compos­

ites discussed earlier (Fig. 15).

The 12 UTC composites discussed above give a physically-consistent pic­

ture of synoptic-scale conditions associated with each regime prior to its develop­

ment. Although these results show that intraseasonal variability in storm 

development is related to the location of the North Pacific trough, subtropical high, 

and meridional moist axis, forecasters rely also on sounding variables (e.g., Rol­

ler 2001) to anticipate the weather. Thus, several sounding variables are investi­

gated to determine their use in distinguishing among regimes.

4.2.2 Use of Sounding Variables: Box-and-Whlsker Plots

Ninety-nine sounding variables are computed for each regime using 

National centers-Advanced Weather Interactive Processing System Skew-f 

Hodograph Analysis and Research Program (NSHARP) scripts provided by John 

Hart of the Storm Prediction Center. Like the composite soundings discussed pre­

viously, these variables are computed from 12 UTC soundings at Phoenix. Distin­

guishing characterstics of these soundings are investigated by examining box- 

and-whisker plots of each variable by regime type. Box-and-whisker plots show 

the distribution of data, for each regime, within 1.5 times the interquartile range,
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with values outside that range considered outliers. Highlights from this analysis 

are discussed below.

A subjective examination of 99 box-and-whisker plots of NSHARP vari­

ables reveals that the three most discriminating variables include precipitable 

water (surface-400 mb), surface-G- km shear, and density-weighted 700-400-mb 

mean wind. The importance of precipitable water as a discriminating variable is 

apparent from the drastically different distributions found between DR and EMR, 

and between DR and EMR and other regimes (Fig. 19). These substantial differ­

ences in precipitable water reflect the tendency for median precipitable water val­

ues to increase with increasing storm coverage (Fig. 19). However, as storm 

coverage increases, distributions of precipitable water also become less distinc­

tive, making tropospheric moisture a relatively poor distriminating variable among 

CEMR, CEMSR, and NDR. As shown in Section 4.1, these differences in precipi­

table water are related to the location of the meridional moist axis during each 

regime.

The importance of surface-6-km shear as a discriminating variable is 

revealed by significantly different distributions between CEMSR and three other 

regimes: DR, EMR, and NDR (Fig. 20). Differences in shear between CEMSR 

and NDR reflect the tendency for median shear values to increase when synoptic- 

scale forcing is present (Fig. 20). In contrast, differences in shear between 

CEMSR and the two drier regimes (DR and EMR) reflect the tendency for median
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shear values to decrease with increasing storm coverage (Fig. 20). Why might 

this relationship arise? One possible answer to this question is tied to the thermal 

forcing of deep moist convection. The low shear of 12 UTC Phoenix soundings 

reflect an wind profile where winds remain light with increasing height. Thus, 

assuming that such light winds occur over elevated terrain also, the lack strong 

wind allows thermally forced circulations to moisten the environment and lift par­

cels to their LFC, without much mixing near the surface (e.g., Banta 1990). Since 

these regions of enhanced moisture are surrounded by drier air, stronger storms 

(updrafts), and, in turn, stronger outflows may be produced, relative to an environ­

ment with strong wind at mountain-level and high shear at Phoenix (owing to 

increasing wind speed with height; e.g., Banta 1990). These outflows and may 

move toward lower terrain and cause more productive storm redevelopment over 

lower elevations, compared to storms that develop under higher shear conditions.

Density-weighted 700-400-mb mean wind direction distinguishes well 

between DR and the other regimes (Fig. 21). Indeed, wind direction above 220° 

(25th percentile of DR) is almost always associated with a lack of precipitation 

across the domain. Along these lines, there is a tendency for storm coverage to 

increase as the median wind becomes more easterly, excluding NDR (Fig. 21). 

These differences in flow are related to the orientation of the ridge axis and the 

location of the center of the anticyclone, relative to Arizona and the North Pacific 

trough (of. Figs. 11-14). Interestingly, as storm coverage increases, so does the 

variability in wind direction (Fig. 21). The increased variability in wind direction
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during CEMR and CEMSR, compared to EMR and DR, likely represents higher 

variability in synoptic-scale pattern. Since the subtropical high determines mid­

upper-level wind direction during CEMR and CEMSR (Figs. 13 and 14), this vari­

ability in wind direction likely represents the meandering nature of anticyclonic 

centers during the NAM.

Given the dissimilarity in precipitable water and/or 0-6 km shear distribu­

tions among various regimes, these variables may help forecasters anticipate 

which regime(s) is (are) most likely on a given day. Toward this end, the strength 

of such relationships is clarified further by applying discriminant analysis to these 

variables.

4.2.3 Discriminant Analysis

The goal of discriminant analysis is to classify a new event correctly based 

on its observed characteristics (Wilks 1995, 408). Herein, the discriminant analy­

sis technique is described briefly, with the complete methodology demonstrated in 

Appendix B, based on Wilks (1995,408-415). In this study, discrimination among 

events arises from a "training sample" that is used to build a linear relationship 

between two regimes (Wilks 1995, 409-415). This training sample consists of pre­

cipitable water and surface-6-km shear values from 12 UTC Phoenix soundings 

associated with each regime. These data are denoted by Oy x /O and n^x K-

dimensional vectors jc. and , respectively, where and denote the number
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of soundings in each regime (89 in total), and /C=2. These vectors are used to find 

the discriminant vector, , defined as "... a direction... in the K-dimensional

space of the data, such that the distance between the two mean vectors (mean 

vectors are defined in Appendix B) is maximized when the data are projected onto

" (Wilks 1995, 410). The discriminant vector is given by 

where

(^1 — + (»2 "

+ /%2-2)

is a pooled estimate of the dispersion of the data around their means, [S , ] and

[5 2̂ ] are sample covariance matrices computed from /(-dimensional vectors

a:, and %2 , and the overbar represents the mean. Once the discriminant vector is 

obtained, the midpoint is calculated between the means of the two groups,

= 4  rz;

where superscript T denotes the transpose of . Since this midpoint lies on ^ ,

a line emanating from this point and drawn perpendicular to this vector divides the 

samples into two groups. If Xy and Xglie on opposite sides of this line, they are

discriminated perfectly. In the future, and 5^ may be used to classify a future
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observation, y, as belonging to either group one or group two, following the rule 

base given in Wilks (1995,410):

r
Assign y to group one if ^ > 0

or

T  —
Assign y to group two if -  8^ < 0.

Thus, good discrimination affords a forecast tool which can help forecast­

ers distinguish anticipated outcomes. Also, assuming the two most distinguishing 

variables are used, the "goodness" of the discrimination is a measure of forecast 

difficulty. A 2x2 contingency table is used to quantify the accuracy and skill of 

these simple forecast models (Table 2). Within the contingency table, a is a "hit", 

b is  a "false alarm", cis a "miss", and dis a "correct null" (Table 2). For each pair 

of regimes, two forecast situations may be investigated (e.g., DR vs. EMR and 

EMR vs. DR), resulting in two sets of scores. This complexity is avoided by com­

puting scores independent of the forecast situation only, including the hit rate,

77 = ^ ^  ^ , miss rate, M  = ^ ^  ^ , and Heidke skill score,
» »

775̂ 5̂  =  -——  r : , where n is the total number of fore-
(a 4- c)(c + d) 4- (a -k b)(b + d)

casts or observations (Wilks 1995, 238-244). The hit rate and miss rate are given 

as percentages to reveal the probability of a correct or incorrect forecast. The 

HSS measures the skill of the model relative to a random forecast, such that a 

value of 0 indicates no skill compared to a random forecast, and a value of 1 indi­
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cates the best skill compared to a random forecast. With these measures in mind, 

results of the discriminant analysis are discussed next.

Table 2: Example of a 2x2 contingency table, where a is a hit, b is a false 
alarm, c is  a miss, and dis a correct null.

Regime Observed Regime Not Observed

Regime Forecast a b

Regime not Forecast c d

The ability of precipitable water to distinguish between various regimes is 

demonstrated best by a discriminant analysis of DR vs. wet 

(EMR+CEMR+CEMSR+NDR) regimes (Fig. 22). Within these groups, the 

assumption that variance is the same is violated, but not at a degree that depri- 

cates results significantly. Thus, discriminant analysis shows that precipitable 

water distinguishes DR from wet regimes quite well—only 3 of the wet regimes 

are classified incorrectly as dry days (Fig. 22). Accordingly, this simple forecast 

model has a hit rate, miss rate, and Heidke skill score (HSS) of 93%, 7%, and 

0.87, respectively. However, as storm coverage increases (e.g., CEMR, CEMSR, 

NDR), the 0-6 km shear discriminates regime type better than precipitable water, 

resulting in a dividing line that is more horizontally oriented (Fig. 23). This shift in 

discrimination from precipitable water to 0-6 km shear, as storm coverage 

increases, corresponds well with box-and-whisker plots presented in Section 

4.2.2. The 0-6 km shear distinguishes best between CEMSR and NDR (Fig. 23), 

producing a hit rate, miss rate, and HSS of 69%, 31%, and 0.39, respectively.
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The lower value of NDR vs. CEMSR accuracy scores compared to dry vs. wet 

regimes, represents the greater difficulty in forecasting regime type during wetter 

periods of the NAM.

A more complete forecast model is constructed by combining the results of 

each discriminant analysis. Toward this end, the dividing lines resulting from dis­

criminant analyses between: the DR and wet regimes, EMR and CEMR, CEMR 

and CEMSR, CEMSR and NDR, and CEMR vs. NDR, are drawn within the 2-D 

space (Fig. 24). Then, color-coded arrows are drawn to define regions within the 

2-D space defining each regime (Fig. 24). The ensueing forecast model shows 

that precipitable water discriminates well between the break regimes (DR and 

EMR) and burst regimes (CEMR, CEMSR, and NDR; Fig. 24). On the other hand, 

the surface-6-km shear discriminates best between CEMR and NDR, and 

CEMSR and NDR (Fig. 23). Both precipitable water and surface-G-km shear help 

discriminate between CEMR and CEMSR (Fig. 24). Thus, discrimination among 

regimes generally declines with increasing storm coverage. This decline in dis­

crimination affects overall forecast accuracy, such that regimes are identified cor­

rectly 55% of the time. This 55% forecast accuracy is a promising result, because 

the discriminant analysis model outperforms forecasts based on persistence or a 

simple one in five guess.

Since the forecast model contains a hierarchy of forecast accuracies, this 

statistic conceals the higher forecast accuracy attainable from some forecast situ-
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ations. However, the model illustrates well the relative difficulty of various forecast 

situations, where discerning: 1) DR or EMR is an easy forecast, 2) NDR vs. 

CEMR or CEMSR is a more difficult forecast, and 3) CEMR vs. CEMSR is the 

most difficult forecast (Fig. 24). The relative lack of discrimination between CEMR 

and CEMSR highlights the difficulty forecasters face as they decide whether storm 

development will remain over elevated terrain or move into the Sonoran Desert 

during the evening.

In summary, intraseasonal variability during the 1997 and 1999 NAM sea­

sons is described by five regimes. The occurrence of these regimes is related to 

the location and evolution of the North Pacific trough, subtropical high, and merid­

ional moist axis, which, in turn, determine the magnitude of precipitable water and 

surface-6-km shear at Phoenix. Although these results provide forecasters with 

tools to help forecast each regime, this basic forecast model may be improved by 

investigating how storm development, synoptic-scale flow, and Phoenix sound­

ings evolve on a daily basis. The next section addresses these topics by examin­

ing the persistence of regimes and situations that produce significant changes in 

regime type.
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Chapter 5. Evolution of Regimes

Differences in the diurnal evolution of the five regimes (Chapter 3) and 

related analyses of 12 UTC synoptic-scale patterns and sounding characteristics 

(Chapter 4) illustrate spatial aspects of intraseasonal variability in the NAM over 

Arizona. Chapter 5 investigates temporal aspects of intraseasonal variability by 

examining the daily evolution of regimes and precipitable water. The strong rela­

tion between precipitable water and regime type make this variable an ideal 

choice for this investigation.

5. f 77me senes of reg/mes

Intraseasonal variability is characterized by periods of relatively large and 

small areal storm coverage, similar to bursts and breaks (Fig. 25). During bursts, 

three regimes occur, including CEMR, CEMSR, and NDR (upward-pointing lines 

in Fig. 25). In contrast, only two regimes occur during breaks, including EMR and 

DR (downward-pointing lines in Fig. 25). A comparison of regime evolution during 

bursts and breaks reveals more intraseasonal variability during wet periods than 

dry periods (Fig. 25). Although this result may be biased by the small number of 

dry periods in 1997 and 1999, some regimes are clearly more persistent than oth­

ers.

Differences between the evolution of regimes in 1997 and 1999 suggest 

something about interseasonal variability, of which a complete analysis is beyond
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the scope of this thesis. Therefore, such differences are described briefly. For 

example, the onset of the NAM begins almost two weeks later in 1997 than 1999 

(cf. Figs. 25a, b). Following the onset of the NAM, breaks interupt bursts more 

frequently in July 1997 than July 1999, but less frequently in August 1997 than 

August 1999 (cf. Figs. 25a, b). In addition, during August 1999, breaks are drier 

and longer-lived compared to 1997 (cf. Figs. 25a, b). These contrasts in the evo­

lution of bursts and breaks exemplify aspects of interseasonal variability between 

NAM seasons.

Intraseasonal variability is investigated by examining the persistence or 

predictability of regime evolution during the NAM. The persistence of regimes is 

determined by calculating relative frequencies of regime occurrence one day prior 

to, and one day following, each regime. This investigation reveals that DR is the 

most persistent, recurring 82% of the time during July and August 1997 and 1999 

(cf. Figs. 25a and 25b). Since half of DR days occur prior to monsoon onset (Fig. 

25), the persistence of this regime is calculated also before and after monsoon 

onset. Before monsoon onset, DR persists 83% of the time (5 of 6 events), 

whereas after monsoon onset, DR persists 66% of the time (4 of 6 events). Thus, 

even after monsoon onset, DR remains the most persistent regime. Transitions 

toward DR result in either persistent or dramatically reduced storm coverage, 

whereas transitions from DR result in either persistent or dramatically increased 

storm coverage (Fig. 26). Given the extreme persistence of DR, such dramatic 

changes in storm coverage have the potential to startle forecasters and populace.

8 4



Regime
monsoon

onset

CEMSm-

CEMR

EMM -

1 — I— — I— I— I— I— I— I— I" '1 1— r— I— I— I— I— I— I— I— I— I— I— I— I— r

2 4 6 8 101214 161820222426 28303234 3638 4042 4446 4850 525456586062
July and August 1997

Figure 25a. Time series of regimes during Juiy and August 1997, where DR is the dry regime, 
EMR is the eastern mountain regime, UNO is unclassified (denoted by a dot), CEMR is the cen- 
tral-eastem mountain regime, CEMSR is the central-eastem mountain and Sonoran regime, 
and NDR is the nondiunrai regime. Missing dates are biank.



I
§
OII
c

NDR

CEMSR

CEMR

UNO

EMR

monsoon
onset

d r  f-'n— I— i— I— I  1 1— I— I— I— I— I— 1— I— I— I— I— I— I— I— — — I— I— T— I— I I I I r
0 2 4 6 8 10 1214 16182022 2426 2830 3234 3638 4042 4446 4850 5254 565860 62

July and August 1999

Figure 25b. Same as In Fig. 25a, only for July and August 1999.



Decreased storm 
coverage

Day - 1

DR 82
EMR 9

NDR 9

EMR 37.5 
CEMR2S

NDR 37.5

Day

DR
N = 13

ElVIR
N = 11

Day +1

D R a z i

NDR 18

Increased Storm 
coverage

DR 10

EMR 33 
CEMR 90 
CEMSR33
NDR 10

EMR6

CEMR 43 
CEMSR 93 

NDR 93

C E ^/IR
N = 39

EMR6

CEMR 42 
CEMSR 39
NDR 13

EMR 13.3
CEIVIR 53.3 

CEMSR 33.4 CEMSR
N = 17

CEIVIR 47
CEMSR 21 
NDR 32

DR 6 
EMR 4

CEIVIR 29 
CEMSR 13 

NDR 45 NDR
N = 27

DR 5 
EMR 19
CEMR 33

NDR 43

Figure 26. The relative frequency of regimes preceding and following DR, EMR, CEMR, CEMSR, 
and NDR.

8 7



Thus, an improved understanding of atmospheric processes leading to such 

abrupt transitions in weather is pursued further in section 5.2.

Transitions toward EMR produce either persistent or reduced storm cover­

age (Fig. 26). Based on results from Chapter 3, this reduction in storm coverage 

is likely tied to an eastward shift in the North Pacific trough, subtropical high, and- 

meridional moist axis (e.g., cf. Figs. 15 and 12). On the other hand, transitions 

from EMR produce either persistent or increased storm coverage (Fig. 26), and 

are likely tied to a westward shift in the same features (e.g., cf. Figs. 12 and 14).

Similar to EMR, transitions to CEMR usually result in mostly persistent or 

reduced storm coverage, and shifts from CEMR result in mostly persistent or 

increased storm coverage (Fig. 26). The higher persistence of CEMR, compared 

to EMR, indicates the more transient nature of EMR and its associated synoptic- 

scale environment. Since CEMR occurs most often, the synoptic-scale pattern 

favored during the NAM is probably similar to that shown in Fig. 13, where the 

North Pacific trough is located off-shore, the meridional moist axis is centered 

over the Arizona-New Mexico border, and the flow is modulated by the location of 

the subtropical high. Deviations from this pattern result in subtle environmental 

differences (cf. Figs. 13 and 14), which sometimes favor CEMSR rather than 

CEMR (Fig. 26). This similarity in synoptic-scale environment, combined with the 

nearly equal chance of CEMR and CEMSR following CEMR, make discerning the 

potential for either regime challenging.
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Transitions toward CEMSR produce either persistent or increased storm 

coverage, whereas transitions from CEMSR produce either reduced or increased 

storm coverage (Fig. 26). Given the similarity in moisture and instability found 

prior to CEMSR and CEMR (Chapter 4), it follows that the nonpersistence of 

CEMSR is likely due to the lack of persistent lifting mechanisms over lower eleva­

tions. Nonetheless, since CEMR follows CEMSR about half of the time, forecast 

statistics may be improved by predicting CEMR, rather than CEMSR or NDR, 

when shortwave troughs (Chapter 4) are absent from the 500-mb flow.

Similar to CEMSR, shifts toward NDR result in either persistent or 

increased storm coverage (Fig. 26). Unlike CEMSR, shifts from NDR result in 

either very persistent or significantly reduced storm coverage (note the absence 

of CEMSR in Fig. 26). The persistent nature of NDR likely reflects the time scale 

of synoptic-scale forcing often present during this regime (Chapter 4). On the 

other hand, the next-day occurrence of CEMR, EMR, or DR probably reflects an 

eastward shift in the location of the subtropical high and meridional moist axis 

(e.g., cf. Figs. 15a and 12), following the passage of a shortwave trough in the 

westerlies.

Although this investigation of intraseasonal variability shows that day-to- 

day transitions in regime can often result in little or no change in storm coverage, 

occasionally changes in regime produce significant changes in storm coverage.
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The relatively rare occurrence of significant changes in storm coverage make an 

awareness and understanding of synoptic-scale processes responsible for such 

changes important to forecasters. Since Chapter 4 shows that precipitable water 

discriminates between regimes having vastly different storm development pat­

terns, significant changes in regime are likely tied to changes in precipitable water. 

This association is examined further below, followed by an investigation of synop­

tic-scale processes responsible for these abrupt changes in environment.

5.2 Ae/af/on between changes /n reg/me and prec^/fab/e wafer

The relationship between changes in regime and precipitable water is 

investigated by comparing daily changes in regime to 24-h differences in precipi­

table water (surface-400 mb). These differences are computed using consecu­

tive 12 UTC soundings at Phoenix during the 1999 NAM season. This analysis 

focuses on the 1999 NAM owing to the relatively large number of consecutive 

days missing radar data, and hence regime types, in 1997. Significant changes in 

precipitable water are defined as those differences either higher than the 80th per­

centile (6.1 mm) or lower than the 20th percentile (-5.3 mm; Fig. 27). Based on 

these criteria, 11 days are characterized by a significant increase in precipitable 

water, whereas 10 days are characterized by a significant decrease in precipitable 

water (Fig. 27). But, how often do these significant changes in tropospheric mois­

ture relate to changes in regime (i.e., storm coverage)?
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A comparison of changes in precipitable water and regime (Fig. 27) reveals 

that the eleven substantial increases in precipitable water are associated with 

either regimes having larger areal storm coverage (6 events or 54%) or no change 

in regime (5 events or 46%). Further analysis of these time series shows that 4 of 

5 regimes (80%) that pers/sf following /ncreases in tropospheric moisture occur 

during bursts. Since most of these persistent events produce precipitation in the 

Sonoran Desert, observed increases in precipitable water likely result from this 

rainfall. Thus, significant increases in moisture preceded by dry condition across 

the Sonoran Desert indicate a strong potential for increased storm coverage. On 

the other hand, the ten substantial decreases in precipitable water (Fig. 27) are 

associated with smaller areal storm coverage (50%), no change in regime (40%), 

or larger areal storm coverage (10%; Fig. 27). Further analysis shows that 3 of 4 

regimes (75%) that pers/sf following decreases in tropospheric moisture occur 

during breaks. This result reflects the persistent nature of DR.

Therefore, changes in precipitable water of greatest interest to forecasters 

are those which produce an environment hostile to the sustenance of the previous 

day's regime. To help forecasters recognize these situations better, the next suty 

section investigates synoptic-scale processes contributing to such significant 

changes in environment.

5.3 D/apnos/s of changes /n prec^Aab/e wafer
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The role of synoptic-scale processes in significant changes in precipitable 

water (upper and lower 20th percentile) is investigated using two complementary 

analyses. First, a simplified moisture time tendency is computed using 6-h Rapid 

Update Cycle-2 (RUC-2; Benjamin et al. 1998) analyses of geopotential height 

and mixing ratio. Second, 6-h RUC-2 analyses are analyzed to find changes in 

synoptic-scale pattern related to significant increases and decreases in tropo­

spheric moisture. Prior to computation of the moisture budget, 12 UTC Phoenix 

soundings and 6-h RUC analyses are used to find the level and 12-h period of 

maximum moistening or drying, respectively. At the middle of each 12-h period, 

terms in the mixing ratio tendency equation are calculated within a 100-mb layer, 

centered at the level of maximum change in mixing ratio, and then multiplied by

9r=12 h to explicitly show the advective processes responsible for local changes 

in moisture:

5 q =  (8)

where ^ is mixing ratio, represents the horizontal wind, O) is vertical motion in

pressure coordinates, and p  is pressure. This moisture tendency equation cannot 

address source and sink terms (Evaporation-Precipitation), turbulent mixing, or 

effects of parameterized convection. Thus, local changes in mixing ratio in this 

study result from the horizontal and vertical advection of moisture only.
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To compare computed values of local mixing ratio tendency to actual 

changes, I compute the 12-h difference: 8^ = - Similar values are not

expected because computations of quasihorizontal and vertical advection assume 

that quasihorizontal and vertical advection persist over 12 h, when, in reality, they 

may occur over a shorter period.

Computations from (8) reveal that changes in moisture arise mostly from 

the horizontal advection of air from different source regions rather than from the 

vertical movement of moisture within the column (not shown). An exception is 

17-18 July 1999, where local increases in moisture are enhanced by lift from a 

shortwave trough. Complementary analyses of synoptic-scale evolution show 

that, in general, increases in precipitable water of 6.1 mm or higher arises from 

the westward- (50%) or northward- (50%) development of the subtropical high, 

whereas decreases in precipitable water of -5.3 or more arises from the passage 

of a shortwave trough (90%) or evolving anticyclonic flow (10%). The magnitude 

of these changes in moisture (5-6 mm) correspond well with perturbations in pre­

cipitable water associated with the monsoon boundary (~ 6 mm; Adang and Gall).

Three representative cases are used to illustrate the importance of horizon­

tal and verticial advection during periods of tropospheric drying and moistening for 

the synoptic-scale evolutions most prevalent during the NAM: 1) westward devel­

opment of the subtropical high, 2) northward development of the subtropical high, 

and 3) passage of a shortwave trough in the westerlies.
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5.3.1 Westward development of the subtropical high

During 4 -^ July 1999, significant 24-h moistening in the 12 UTC sounding 

at Phoenix and a shift in midlevel winds from westerly to easterly (Fig. 28) accom­

pany a transition in regime from EMR to CEMSR (Fig. 25a). Although mixing ratio 

increases throughout most of the column, the maximum increase in moisture 

occurs near 500 mb (Fig. 28). This increase in midlevel moisture is illustrated by

water vapor imagery (Fig. 28) taken by the 6 . 7 | L i m  channel of the Geostationary 

Operational Environmental Satellite-10 (GOES-10).

Maximum change in 500-mb mixing ratio occurs between 00 UTC and 12 

UTC 5 July 1999. At 00 UTC 5 July 1999, Fig. 29a shows a light westerly wind 

over north-central Arizona, which increases in intensity northward owing to a rela­

tively strong pressure gradient over the western United States. Light easterlies 

compose the flow south of central Arizona (Fig. 29a), with the subtropical anticy­

clone centered east of Texas (not shown). High mixing ratio values are located 

east of Arizona, with highest values over western New Mexico (Fig. 29a).During 

the next 12-h, high mixing ratio values are advected westward by easterly flow 

that evolves owing to the development of anticyclonic flow over the Four Comers 

(Figs. 29b,c).
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The relative importance of horizontal and vertical advection at 500 mb is 

demonstrated by examining terms comprising (8). In Fig. 30a, quasihorizontal 

advection of moisture between 00 and 12 UTC 5 July 1999 increases mixing ratio

values by 1-4 g kg"̂  within a northeasterly oriented swath extending from the 

northern Gulf of California to northeastern Arizona. During the same period, sub­

sidence causes the vertical advection of moisture term to decrease mixing ratio

values by g kg'̂  over northeastern Arizona (Fig. 30b). Together, these terms 

result in net moistening (up to 3 g kg'^) over southwestern Arizona, and net drying 

(up to 3 g kg"^) over northeastern Arizona (Fig. 30c). In Fig. 30d, local changes in 

mixing ratio show a pattern quite different from Fig. 30c, where mixing ratio values 

increase across the entire domain, rather than over over southwestern Arizona 

only. Since local changes in mixing ratio (Fig. 30d) correspond well with the 

quasihorizontal moisture advection term (Fig. 30a), the vertical advection term 

(Fig. 30b) is clearly to high. Thus, in this case, the RUC-2 model is apparently 

overestimating vertical motion values. Nonetheless, at Phoenix the similarity in 

the spatial pattern of local changes in mixing ratio and horizontal advection of mix­

ing ratio (cf. Figs. 30a and 30d) demonstrates the importance of quasihorizontal 

advection to significant increases in moisture on 4-5 July 1999.

5.3.2 Northward development of the subtropical high

During 13-14 August 1999, significant 24-h moistening in the 12 UTC 

sounding at Phoenix and a northward developing subtropical high (Figs. 31 and
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32) accompany a transition in regime from DR to NDR (Fig. 25b). Although mix­

ing ratio increases throughout most of the column, the maximum increase in mois­

ture occurs near 600 mb (Fig. 31). This increase in midlevel moisture is illustrated 

by GOES-fO water vapor imagery (Fig. 31).

The maximum change in 600-mb mixing ratio occurs between 18 UTC 13 

August and 06 UTC 14 July 1999. Although a light southwesterly wind occurs 

over central Arizona, light southerlies occur south of central Arizona in response 

to the subtropical anticyclone centered over the southern Arizona-New Mexico 

border (Fig. 32a). High mixing ratio values are located south of Arizona, with 

highest values over west-central Mexico and the Gulf of California (Fig. 32a). 

During the next 12 h, high mixing ratios are advected northward by southerly flow 

in response to the northward development the subtropical high (Figs. 32b,c).

The relative importance of horizontal and vertical advection is demon­

strated by examining terms comprising (8). In Fig. 33a, quasihorizontal advection 

of moisture between 18 UTC 13 August and 06 UTC 14 August 1999 increases

mixing ratio values by 1-6 g kg"̂  over southwestern Arizona and northwestern 

Mexico. During the same period, upward vertical motion causes the verticalad-

vection of moisture term to increase mixing ratio values another 1-10 g kg"̂  from 

central to eastern Arizona (Fig. 33b). Together, these terms result in net moisten­

ing (up to 10 g kg"^) over southwestern and eastern Arizona (Fig. 33c). In Fig. 

33c, a net moistening of approximately 2.5 g kg"̂  at Phoenix results fromboth
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Figure 32. Same as in Fig. 29, only for a) 18 UTC 13 August 1999, b) 00 UTC 14 August 1999, 
and c) 06 UTC 14 August 1999.
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Figure 33. Same as Fig. 30, but for the period spanning from 18 UTC 13 August through 06 UTC 
14 August 1999 at 600 mb, including a) quasihorizontal moisture advection, b) vertical moisture 
advection, c) calculated local mixing ratio tendency, and d) observed local mixing ratio tendency, 
expressed in (g kg' )̂ 12 h '\
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horizontal (1.5 g kg'̂ ) and vertical (1.0 g kg"^) advection of moisture. Local 

changes in mixing ratio (Fig. 3ed) show a spatial pattern of mixing ratio tendencies 

similar to Fig. 33c, although values are lower, especially over parts of eastern Ari­

zona and northwest Mexico.

5.3.3 Passage of shortwave trough In the westerlies

During 16-17 July 1999, significant 24-h drying in the 12 UTC sounding at 

Phoenix and a consistent westerly tropospheric wind (Fig. 34) accompany a tran­

sition in regime from NDR to DR (Figs. 25a,b). Although mixing ratio decreases 

throughout most of the column, the maximum decrease in moisture occurs near 

500 mb (Fig. 34). Since the decrease in moisture occurs at 500 mb and below, 

this change in midlevel moisture is not apparent from GOES -10 water vapor 

imagery (Fig. 34).

The maximum change in 500-mb mixing ratio occurs between 12 UTC 16 

July and 00 UTC 17 July 1999. At 12 UTC 16 July, a shortwave trough in the 

westerlies is approaching Arizona (Fig. 35a). A mixing ratio gradient lies over Ari­

zona, with the highest mixing ratio values located east of Arizona (Fig. 35a). Dur­

ing the next 12 h, high mixing ratios are advected eastward by westerly flow as 

the shortwave trough in the westerlies moves over Arizona (Figs. 35b, c).

The relative importance of horizontal and vertical advection is demon­

strated by examining terms comprising (8). In Fig. 36a, quasihorizontal advection
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of moisture between 12 UTC 16 August and 00 UTC 17 July 1999 decreases mix­

ing ratio values by 1-4 g kg'̂  over central Arizona, and 1-8 g kg'̂  over north-cen­

tral Arizona. During the same period, ascent ahead of the shortwave trough in the

westerlies causes upward transport of moisture of 1-3 g kg'̂  over central and 

east-central Arizona (Fig. 36b). However, subsiding air to the south acts to 

decrease moisture by similar amounts (Fig. 36b). Thus, together these terms

result in net drying (up to 9 g kg"^) over most of Arizona, including Phoenix (Fig. 

36c).

Local changes in mixing ratio (Fig. 36d) show a pattern similar to Fig. 36c, 

although mixing ratio tendencies are lower over much of the domain. An excep­

tion is within the vicinity of Phoenix, where local changes in mixing ratio (Fig. 36d) 

are actually higher than the net change (Fig. 36c). In this region, the net change 

in mixing ratio (Fig. 36c) likely underestimates the actual local change in mixing 

ratio (Fig. 36d) because vertical advection is probably occurring over a period 

shorter than the 12-h used in this computation. Nonetheless, the similarity in the 

pattern of mixing ratio tendencies (cf. Figs. 36c and 36d) demonstrates the 

greater importance of quasihorizontal advection, compared to vertical advection, 

to the significant decreases in moisture on 16-17 July 1999.

In summary, about 50% of significant changes in precipitable water (upper 

and lower 20th percentile) are associated with abrupt changes in regime that 

result in either increased or decreased storm coverage. Results show that such
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Figure 36. Same as Fig. 30, but for the period spanning from 12 UTC 16 July through 00 UTC 17 
July 1999 at 600 mb, including a) quasihorizontal moisture advection, b) vertical moisture advec­
tion, c) calculated local mixing ratio tendency, and d) observed local mixing ratio tendency, 
expressed in (g kg' )̂ 12 h '\
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increases in moisture are caused primarily by quasihorizontal advection, which is 

associated with the shift in the location of the monsoon boundary. When large- 

scale lift is present over Arizona, increases in moisture are enhanced by vertical 

advection of moisture. On the other hand, decreases in moisture are associated 

with the passage of shortwave troughs in the westerlies. Therefore, the regional 

distribution of moisture between 700-400 mb depends heavily on the evolution of 

the large-scale flow.

Thus far, this discussion focuses on processes responsible for changes in 

moisture at 700 mb and higher, and neglects those below this level. The review of 

previous literature in Chapter 2 indicates that low-level moisture in Arizona origi­

nates from the Gulf of California, owing to the diurnal LLJ and occasional surges. 

Adams and Comrie (1997) point out that, although several papers imply a relation­

ship between surges from the Gulf of California and changes in storm coverage 

over Arizona, such a connection remains unexplored at seasonal or longer time 

scales in the published literature. Since the current study seeks to improve under­

standing of intraseasonal variability, the relation of surges to significant changes in 

low-level moisture at Phoenix and storm coverage is investigated for the 1997 and 

1999 NAMs.

5.4 Re/af/on between su/pes and /ntraseasona/ vanab/7/ty

The relation of surges to intraseasonal changes in moisture is addressed 

by examining the temporal relationship between the onset of surges at Yuma, Ari-
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zona, and significant increases in low-level moisture at Phoenix. Following the 

criteria of Fuller and Stensrud (2000), surges from the Gulf of California are identi­

fied using time series of dewpoint temperature, wind direction, and wind speed 

from the surface station at Yuma, Arizona. Yuma is chosen because it is best 

available site for observing surges, located about 100 km north of the Gulf of Cali­

fornia (Fuller and Stensrud 2000). The onset of a surge at Yuma is defined by an 

abrupt increase in dewpoint temperature to 60°F (15.6°C) or higher, and at least 

one observation of southerly near-surface winds and wind speed exceeding 4 m

s"̂  (Fuller and Stensrud 2000). The dewpoint temperature threshold is set at 60°F 

to represent the air temperature over the Gulf of California during the NAM (Sten­

srud et al. 1995). After the onset of a surge, the daily maximum dewpoint temper­

ature must exceed this threshold during several consecutive days (Fuller and 

Stensrud 2000). The application of these criteria reveals that 18 surges occur in 

this study: ten in 1997 and eight in 1999.

A surge is considered a contributing factor to increases in low-level mois­

ture at Phoenix if, within 24-h of surge onset, the observed 850-700-mb mixing 

ratio in the 12 UTC Phoenix sounding increases and wind direction over the Sono­

ran Desert is southerly to southwesterly within this same layer. Wind direction 

within the 850-700-mb layer above the Sonoran Desert is determined by combin­

ing 12 UTC Phoenix sounding data and 00 and 12 UTC National Center for Envi­

ronmental Prediction (NCEP) upper-air charts. Both data sets are available for 14 

of the 18 surges (Table 3).
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The application of the above criteria reveals that 50% of surges contribute 

toward increases in low-level moisture at Phoenix (Table 3). This result comple­

ments Stensrud et al.'s (1997) numerical modeling study of surges, where strong 

gulf surges, or those that affect Arizona, tend to occur a few days following the 

passage of a midlatitude trough over the western United States. Based on results 

from section 5.3 and 5.4, the applicability of Stensrud et. al.'s (1997) finding likely 

depends on how the subtropical high evolves after a trough moves over Arizona: 

either creating a shift from westerly to 1) southwesterly or southerly flow, which is 

favorable to surges, or 2) southeasterly to easterly flow, which is unfavorable to 

surges. Given this result, a question of interest is whether increases in areal 

storm coverage are favored by surges that are more closely related to increases 

in low-level moisture at Phoenix .

A surge is considered a contributing factor to changes in regime if, within 

48-h of surge onset, regime type transitions to a pattern with more areal storm 

coverage (e.g., DR to NDR; EMR to CEMSR). The application of these criteria 

reveal that 8 of the 14 surges (57%) at Yuma are associated with increases in 

areal storm coverage over the domain (Table 3). Of these eight surges, only two 

are not related to increases in low-level moisture at Phoenix. This finding implies 

that surges unaccompanied by increases in low-level moisture at Phoenix (5 of 7 

or -71%) result only occasionally in increased storm coverage over the domain. 

Therefore, when a forecaster observes a surge at Yuma, consideration
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TM)le 3: Relation of surges to same or next day precipitable water 
(PWTR) at Phoenix and storm coverage within domain, where an X' 
indicates a positive association.

Surge Date / Time

Associated with 
significant 

change in PWTR 
at Phoenix

Associated with 
significant 

change in storm 
coverage

4 July 1997/2 UTC X

11 July 1997/10 UTC

21 July 1997 / 00 UTC X X

27 July 1997/12 UTC X X

12 August 1997/12 UTC X X

26 August 1997 / 21 UTC

6 July 1999/9 UTC

17 July 1999 / 00 UTC X

22 July 1999/4 UTC X X

27 July 1999 / 22 UTC X

2 August 1999 / 20 UTC

5 August 1999/4 UTC X X

14 August 1999/6 UTC X X

19 August 1999/9 UTC
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of the background low-level flow is strongly recommended to help assess the 

potential influence of the surge on storm development in Arizona.

In summary, time series of regimes and precipitable water values at 

Phoenix illustrate some temporal aspects of intraseasonal variability in the NAM 

over Arizona. For one, intraseasonal variability of precipitation during the 1997 

and 1999 NAMs is characterized by fairly persistent regimes and occasional 

sharp changes in regime type, and, therefore, storm coverage. These sharp 

changes in storm coverage are associated with significant changes in precipitable 

water in 12 UTC soundings at Phoenix. In turn, associated changes in mixing 

ratio are tied to the evolution of the North Pacific trough, subtropical high, and 

surges from the Gulf of California.

The above results, combined with those in Chapters 3 and 4, present the 

opportunity to produce a summary (Chapter 6) that highlights conclusions con­

cerning the intraseasonal variability in radar reflectivity patterns and the environ­

ment during the 1997 and 1999 NAM. Chapter 6 discusses also forecast 

implications arising from these results.
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Chapter 6. Summary and Forecast Implications

Intraseasonal variability during the 1997 and 1999 NAMs consists primarily 

of five radar reflectivity regimes: DR, EMR, CEMR, CEMSR, and NDR, listed in 

the order of increasing areal storm coverage across the domain. Owing to the 

strong diurnal heating cycle, terrain forcing and high boundary layer lapse rates 

provide ample lift and instability for deep moist convection over Arizona's moun­

tains almost daily. Therefore, the spatial distribution of tropospheric moisture con­

trols the areal extent of storm development over elevated terrain. Indeed, 12 UTC 

composite 500-mb maps and Phoenix soundings of DR, EMR, and CEMR reveal 

three different synoptic-scale situations:

1. During DR, the subtropical high's horizontal ridge axis and the meridional moist 

axis are located south of Arizona, resulting in westerly wind and dry tropospheric 

conditions.

2. During EMR, the center of the subtropical high is located far eastward of Ari­

zona and the North Pacific trough is located westward of Arizona, resulting in con­

fluent flow and a moisture gradient over Arizona. In this case, the meridional 

moist axis is centered over western New Mexico.

3. During CEMR, EMR's synoptic-scale pattern is shifted westward, resulting in 

more moist conditions over most of Arizona.

These differences in flow occur through most of the troposphere, producing dis­

tinct differences in tropospheric moisture, and making precipitable water an excel­

lent variable for discriminating among DR, EMR, and CEMR.
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Although tropospheric moisture also controls storm development over 

lower elevations (e.g., CEMSR and NDR), high values of tropospheric moisture 

associated with such regimes help discriminate CEMSR and NDR from DR and 

EMR only. The lack of discrimination among CEMR, CEMSR, and NDR by pre­

cipitable water reflects the similarity in the location of the meridional moist axis, 

and hence the composite synoptic-scale flow. Regardless of these similarities, 

NDR is distinguished from CEMR and CEMSR by relatively high surface-6-km 

shear, owing to shortwave troughs embedded in westerly, southerly, or easterly 

flow. An acute awareness of mobile shortwave troughs in the flow is particularly 

important for predicting NDR because these systems sometimes contribute to 

heavy rainfall and flash flooding (e.g., 14 July 1999, Sforni Data 1999).

In summary, the discriminant analysis of 12-UTC precipitable water and 

surface-6-km shear at Phoenix indicates that this model of intraseasonal variabil­

ity performs best (e.g., has highest Heidke Skill Score) when a forecaster is con­

sidering the potential for DR, EMR, or a wet regime (CEMR, CEMSR, or NDR) 

within the next 24-h. Even though the discriminant analysis becomes less skillful 

when considering the potential for one or more of the wet regimes (e.g., especially 

CEMR vs. CEMSR), as a whole, the combined discriminant analysis (Fig. 23) has 

more skill than a random forecast (HSS=0.43), and is more accurate than persis­

tence or a one in five guess. Thus, this model is a promising model for 12-h fore­

casts of areas where precipitation is most likely.
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Another aspect of intraseasonal variability is the daily persistence of 

regimes. DR is the most persistent regime, followed by CEMR, NDR, EMR, and 

CEMSR. The extreme persistence of DR (82% before and after), combined with 

its distinctive environmental characteristics, makes DR the easiest regime to fore­

cast—especially prior to monsoon onset. In contrast, even though CEh/IR is one 

of the more persistent (48% before and 42% after) regimes, it is quite difficult to 

forecast. This forecast difficulty arises from the approximately equal chance of 

CEMR being followed by either itself or CEMSR, and, the similarity in these 

regimes' environmental conditions. Although CEMSR is less persistent (33.4% 

before and 21 % after) than CEMR, the relatively high next-day occurrence (47%) 

of CEMR provides an additional piece of climatological information which may 

improve a forecaster's confidence while disceming the potential for these regimes 

within the next 12-h.

Occasionally, sharp changes in storm coverage precede or follow a given 

regime. Such sharp changes are most likely prior to or following EMR or NDR. 

Since such sharp changes in regime type are closely tied to significant changes in 

precipitable water at Phoenix, tracking the temporal and spatial evolution of tropo­

spheric moisture is important. At mid-upper-levels significant local changes in 

moisture arise mostly from quasi-horizontal advection, in response to changes in 

the synoptic-scale flow. In most cases, moistening corresponds with the west­

ward or northward expansion of the subtropical high, whereas drying corresponds
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with the passage of a shortwave trough. Occasionally, mid-upper-level moisten­

ing is enhanced by the vertical advection of moisture ahead of shortwave troughs.

At low-levels in Phoenix, significant changes in moisture at 12 UTC are 

associated with three situations: precipitation in the vicinity of Phoenix the previ­

ous night (30%), surges from the Gulf of California (35%), and moisture advection 

east or southeast of Phoenix (35%). Interestingly, surges appear more important 

to the return of low-levei moisture at Phoenix in 1997 than 1999, where 44% and 

27%, respectively, of significant increases in precipitable water are associated 

with surges. Since 2.5 times as much precipitation fell at Phoenix during 1999 

NAM than 1997 NAM (3.88" vs. 1.56", 1.79" is 30-y average), more active mon­

soons may depend less strongly on surges for low-level moisture. Nonetheless, 

since gulf surges can contribute strongly to the return of low-level moisture at 

Phoenix, when a forecaster observes a surge at Yuma, consideration of the speed 

and direction of the low-midlevel background flow is recommended to help 

assess its potential influence on changes in moisture and storm coverage (i.e., 

northward progress of the surge).

When the current study began (1999), operational models were unable to 

forecast precipitation patterns similar to those observed (Dunn and Horel 1994a). 

Although Stensrud et al. (1995) had shown success in simulating prominent mean 

features of the NAM with the nonoperational PSU/NCAR mesoscale model, MM5 

(Grell et al. 1994), special observations from SWAMP were required to attain
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these results. Thus, accurate regional forecasts of storm development depended 

heavily on nonoperational datasets. Even if models performed relatively well in 

this region, operational datasets are essential to the forecast process. For one, 

they provide the ground truth necessary for real-time verification of model perfor­

mance. In addition, these datasets allow forecasters to monitor hazardous 

weather and the diurnal evolution of the environment. Under these circum­

stances, it was important to investigate and establish a physically consistent way 

to handle forecasts of storm coverage using operational datasets.

A primary concem of this study was to help forecaster discem better those 

days where storms move off the mountains and into Phoenix-Mesa from those 

where storms develop over the mountains only (CEMSR vs. CEMR). Since the 

resulting discriminant analysis model (Fig. 23) has forecast skill over a random 

forecast, this model is a step forward in providing forecasters with a tool to help 

discem between these regimes, using the 12 UTC Phoenix sounding. From a 

nowcast perspective, the more distinct band of higher late afternoon relative fre­

quencies of reflectivity over the Mogollon Rim during CEMSR, compared to 

CEMR, suggests that contiguous storm development over these mountains is a 

promising indicator of CEMSR. Nonetheless, an unanswered question concerns 

the mechanisms responsible for the difference in storm evolution between these 

regimes. The similarity in their measurable 12 UTC environmental characteristics 

suggest that the development of CEMSR vs. CEMR may be tied to the diumal 

evolution of synoptic-scale flow, terrain-driven circulations, and/or internal storm
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dynamics. Detailed study of these mechanisms by idealized mesoscale model 

simulations or higher-resolution datasets may, in turn, provide even better scientif­

ically-based tools for disceming these regimes.
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Appendix A: Adaptive Barnes Interpolation

This research implements an adaptive Barnes interpolation scheme (Askel- 

son 2000; Trapp and Doswell 2000; Zhang 2000) that filters radial radar reflectiv­

ity data in radial, azimuthal and vertical directions. Accordingly, the raw reflectivity

factor, ^ is interpolated from polar coordinates, / \( r ,  6, (])), to Cartesian coordi­

nates, f  (%, y, z) (e.g., Trapp and Doswell):

N

8, 4»)

y, z) = - — ----------, (AI)

/ = 1

where the weighting factor w- is defined as:

j r . - r f  (6, -8 ,) '
W: = exp

where r, 8, (|) represent polar coordinates of distance, azimuth, and elevation, x, 

y, z represent Cartesian coordinates of horizontal distance and height, the sub­

script / represents a bin of raw reflectivity data in polar coordinates, the subscript p 

represents the grid point at which the analysis is produced, N is the number of 

radar bins influencing the interpolated grid value, and x = x(r, 8 ,4») are dimen­

sional filtering parameters. These filtering parameters are defined as (e.g., Trapp 

and Doswell 2000):
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= K * Z , ^  , ( A 2 )

K Q (r) =  K * I ,Q ( r ) , and ( A 3 )

=  K * l ^ ( r ) ,  ( A 4 )

where K* denotes the non dimensional filtering parameter,

—2K*=-log(0.65)j[ = 0.0189, chosen to retain the highest possible resolution

of the raw data within the analysis (Zhang, personal communication), and

Z ,g (r), and Z ,^(r) denote radial (2 km), azimuthal (2°), and elevation (°, var­

ies with height and volume coverage pattern (VCP)) length scales, respectively 

(personal communication, Zhang). Range-dependent filtering results because 

azimuthal- and elevation-length scales increase with increasing range (Fig. A1). 

As shown below, application of these adaptive length scales results in azimuthal 

and vertical response functions whose magnitude diminishes with increasing 

range.

The three-dimensional response function determines how much a given wave­

length, X (r, 8, (()), is filtered within a given volume, at a given range. This

response function is given by (e.g., Trapp and Doswell 2000):

D ( À  )  =  g  , ( A 5 )

*

where X is a non dimensional wavelength in each direction:
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*
, ( A 6 )

* ^ e (r)

and

=  ^ -

In A6-A8, X (r, 8, (|)) is a fixed length scale in each dimension.

*
To illustrate the impact of D (X  ) in each dimension, I examine the response 

function for five different wavelengths, including 2 km, 4 km, 6 km, 8 km, and 10 

km, at six ranges (50-300-km range, in 50 km increments) from a WSR-88D run­

ning in VCP 11 (14 elevation slices from 0.5° to 19.5°). In the radial direction (Fig. 

A2), the response function is constant with increasing range, resolving wave­

lengths associated with thunderstorms and larger-scale phenomena best. For the 

azimuthal direction (Fig. A3), the response function diminishes most sharply with 

increasing range at 2-km wavelengths, with a value near zero beyond 250 km in 

range. In contrast, the response function diminishes least at 10-km wavelengths, 

with values ranging from 0.99 to 0.8 between 1 km and 300 km, respectively (Fig. 

A3). Thus, as range increases, each wavelength is filtered more strongly (Fig. 

A3).
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In the vertical direction, response functions are computed at 0.5°, 7.5°, 12°, 

and 16.7° elevation angles to show the filtering of various wavelengths (2-km, 4- 

km, 6-km, 8-km, and 10-km) within VCP 11, with respect to range (Fig. A4). 

Indeed, comparison of Figs. A4a-A4d shows that the response function (filtering) 

decreases (increases) with increasing range from the radar, at all elevations and 

wavelengths. At all wavelengths, the response function at the 0.5° (16.7°) eleva­

tion drops off the least (most) with increasing range from the radar. This exercise 

shows that wavelengths associated with thunderstorms and larger-scale phenom­

ena are resolved best near the radar, as a function of range, in all three dimen­

sions.
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Appendix B: Linear Discriminant Analysis

The goal of discriminant analysis is to classify a new event correctly based on its 

observed characteristics (Wilks 1995,408). Following Wilks (1995,409-415), discrimination 

among events arises from a "training sample" that is used to build a linear relationship between

two groups. These groups are denoted by two data matrices, , dimensioned (»y x A!), and

[%2 ] , dimensioned ( /1 2  x A!), where is the number of observations in group one, » 2  is the num­

ber of observations in group two, and Â  is the vector dimension (in this study, A = 2).

First, find A-dimensional mean vectors:

&  =
A

I =  1 = 1,2, (B l)

f =  1

where 1 is a (n x 1) vector containing only Ts. See Fig. B l for an example of mean vec­

tors from this study. Second, find a direction, in the A-dimensional space of the data such that

the distance between and is maximized when the data are projected onto The discrim­

inant vector is given by:

^1 -  (^1 ^ 2 ) ' (B2)
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where,

(n , — + (» 2 "

= ---------- i n , . n , - 2 ) -------"

is a pooled estimate of the dispersion of the data around their means, and [ 5 ,  ] and [^ 2 ] 

are sample covariance matrices:

g

and

[ X ]  =  [ X J - M l ] [ X J .  (B5)6 M 6
g

According to Wilks (1995,409), the computation of assumes that ''the population 

underlying each of the groups has the same covariance matrix." See Fig. B2 for an example of 

projected onto two sample groups.

r  x ^ + X j
Third, find Fisher's linear discriminant function,  ̂ — - —  , which is

the midpoint between the means of x^and X2 - In turn, this value, 0^ , "defines the dividing line

between values of the discriminant function fora future observation y that would result in its 

being assigned to either group one or group two" (an example is shown in Fig. B3).
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