
A GENETIC ALGORITHM APPLIED TO THE

OPTIMIZATION OF AIRFOIL DESIGN

By

PETER JAHNS

Bachelor of Science
United States Air Force Academy

Colorado Springs, Colorado
1985

Master ofEducation
Northwestern Oklahoma State University

Alva, Oklahoma
1993

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

December, 1995

OKLAHOMA STATE UNlVERSYrY

A GENETIC ALGORITHM APPLIED TO THE

OPTIMIZATION OF AIRFOIL DESIGN

Thesis Approved:

Dean of the Graduate College

11


~~~------~ACKNOWLEDGl\fENTS

I wish to express my sincere appreciation to my major advisor, Dr. Andrew S.

Arena, for his supervision, guidance, and inspiration. His support was invaluable not only

with regard to the completion of this research, but throughout my graduate studies as

well. Many thanks to the other members of my committee, Dr. R. D. Delahoussaye and

Dr. D. G. Lilley, whose assistance was important to this project.

I am deeply grateful to my parents, Dr. Hans. O. Jahns and Mrs. Suse Jahns, for

their ongoing support and encouragement.

I would especially like to thank my wife, Rhonda, for her understanding in times of

difficulty, her optimism in the face of frustration, and her endless patience and love. I will

e eternally grateful.

111



Section

lABLE OF CONTENTS

Page

1. INTRODUCTION 1

1.1. Research Objective 1
1.2. Literature Review 2

1.2.1. Direct Airfoil Design 2
1.2.2. Inverse Airfoil Design 3
1.2.3. Shape Perturbation Method 4
1.2.4. Simulated Annealing 5
1.2.5. Genetic Algorithm Background 6
1.2.6. Previous Genetic Algorithm Applications 8
1.2.7. General Considerations 10

1.2.7.1. Solution Landscape 12
1.2.7.2. Design Constraints 13
1.2.7.3. Selection Criteria 14
1.2.7.4. Mutation and Crossover 15
1.2.7.5. Maximum Allowable Mutation Size 16
1.2.7.6. Population Size 17

1.2.8. Comparison Between the Genetic Algorithm and Simulated Annealing 17

2. ALGORITHM DEVELOPMENT AND VALIDATION 19

2.1. Definition of Parameters 20
2.2. Implementation 20
2.3. Results 26
2.4. Conclusions 41

3. AERODYNAMIC FITNESS SOLVER 42

3. 1. Inviscid Solution 43
3.2. Viscous Effects 46

3.2.1. LaminarRegion 47
3.2.2. Transition to Turbulence 47
3.2.3. Turbulent Region 49

3.3. Corrected Solution 51

IV



Section Page

3.4. Panel Number Sensitivity Analysis 52
3.5. Summary 53

4. RESULTS 54

4.1. Collocation Points as Genes 54
4.2. Superposition ofBasis Functions 57

4.2.1. Selection of Basis Airfoils 58
4.2.2. Mathematical Representation ofBasis Functions 61
4.2.3. Validation of Aerodynamic Fitness Solver 62
4.2.4. Genetic Algorithm Implementation 66
4.2.5. Constraints 69

4.2.5.1. Angle of Attack 69
4.2.5.2. Thickness 70
4.2.5.3. Leading Edge Pressure Spikes 71
4.2.5.4. Pitching Moment Coefficient 72

4.2.6. Seed Population 74
4.2.7. Airfoil Evolution 75
4.2.8. Optimal Airfoil Performance 82
4.2.9. Limitations 85

5. CONCLUSIONS AND RECOl\1MENDATIONS 86

5. 1. Conclusions 86
5.2. Recommendations 89

BIBLIOGRAPHY 91

APPENDICES 94

APPENDIX A: GA.CON CONTROL FILE 95

APPENDIX B: GA.F COMPUTER PROGRAM 97

APPENDIX C: AEROSOLV SUBROUTINE 107

v



Table Page

2.1. Rank-Space Selection Method 22

2.2. Genetic Algorithm Control Parameter Values 24

2.3. Effect of Control Parameters on GA Convergence
(* indicates least computational effort required) 27

2.4. Comparison Between Genetic Algorithm and Random Search Methods
(Simple Solution Landscape) 30

2.5. Comparison Between Genetic Algorithm and Random Search Methods
(Complex Solution Landscape) 38

4.1. Comparison Between Basis Airfoils and GA Optimal Airfoil
(a. = 10°, Re = 250,000) 82



Figure

LIST OF FIGURES

Page

2.1. Simple Solution Landscape 19

2.2. Genetic Algorithm Flow Chart 25

2.3. Maximum and Average Population Fitness (Simple Solution Landscape) 31

2.4. Evolution of Genetic Algorithm Solutions (Simple Solution Landscape) 34

2.5. Evolution ofRandom Search Solutions (Simple Solution Landscape) 35

2.6. Complex Solution Landscape 37

2.7. Maximum and Average Population Fitness (Complex Solution Landscape) 38

2.8. Evolution of Genetic Algorithm Solutions (Complex Solution Landscape) 39

2.9. Evolution of Random Search Solutions (Complex Solution Landscape) 40

3.1. Airfoil Discretization Method 44

3.2. Leading Edge Pressure Spike (NACA 4412 Airfoil, ex = 10°) 49

3.3. Panel Number Sensitivity for Liebeck LA 2566 Airfoil
(ex = 10°, Re = 250,000) 52

4.1. 'Collocation Points as Genes' Sample Airfoil. 56

4.2. cp Distribution ofBasis Airfoils
(ex = 4°, Re = 250,000) 60

4.3. Cl, Cm Curves for Selig S1223 Airfoil
(Re = 200,000) 63

4.4. Cl, Cm Curves for Wortmann FX63-137 Airfoil
(Re = 200,000) 63

vii



Figure Page

4.5. Cl, Cm Curves for Liebeck LA2566 Airfoil
(Re = 250,000) 64

4.6. Cl, Cm Curves for NACA 4412 Airfoil
(Re = 3,000,000) 64

4.7. Maximum and Average Airfoil Population Fitness 76

4.8. Evolution of Airfoils (Starting Airfoil: NACA 4412) 79

4.9. Evolution of Airfoils (Starting Airfoil: Selig S1223) 80

4.10. Evolution of Airfoils (Starting with Randomly Populated Seed Domain) 81

4.11. Airfoil Geometry and Pressure Distributions for Basis Airfoils and
GA Optimal Airfoil (a = 10°, Re = 250,000) 83

4.12 Cl, Cm Curves for GA Optimal Airfoil (Re = 250,000) 84

VI11



NO:MENCLATURE

c airfoil chord

Cf local skin friction coefficient

Cl sectional lift coefficient (corrected for separation)

Cl,u sectional lift coefficient (uncorrected for separation)

Cm coefficient ofpitching moment about the quarter-chord

cp coefficient of pressure

H shape factor

Rtf shape factor at the start of the transition region

MAXMUT maximum allowable mutation per gene

nind number of individuals per generation

l1surv total number of survivors per generation

nbest number of primary survivors (based on fitness alone)

nniche number of additional niche survivors (based on fitness and diversity)

nmut number ofmutated offspring per survivor

ncross number of cross-breedings between survivors

P probability factor

Re Reynolds number*

ssep separation point (measured from trailing edge)*

Vi local freestream velocity

IX



Vmax maximum velocity along airfoil

V oo global (far-field) freestream velocity

x chordwise location*

xcp center of pressure*

Xsep separation point*

Xtr transition point*

z height, normal to chord*

a

8*

<1>*

y

111

11t

11c

A

8

angle of attack

boundary layer thickness

displacement thickness

velocity potential of individual singularities

velocity potential of global freestream

total velocity potential

circulation

upper airfoil surface

lower airfoil surface

thickness distribution

camber distribution

Thwaites' dimensionless pressure gradient parameter

momentum thickness

NOTE: * indicates that the parameter has been nondimensionalized by chord (c)

x



CHAPTER 1

INTRODUCTION

1.1. Research Objective

Optimization of airfoil design is a field whose roots extend back virtually to the

dawn of aviation. Even marginal improvements in airfoil design may translate into tre­

mendous gains in terms of aircraft speed, payload, loiter time, fuel costs, etc. Although

optimization methods have changed enormously in the past century, the quest for im­

proved performance continues unabated.

In the early days of aviation, airfoil optimization consisted largely of trial and error.

Aerodynamic theory was in its infancy and designers had very little corporate knowledge

to rely upon. Validation of aircraft performance consisted of human pilots flying new and

often unproven designs, a rather imprecise and risky affair. With the advent of the wind

tunnel, accurate data could be obtained under controlled conditions wherein failure was far

less costly. Computer technology further revolutionized the airfoil design industry, as de­

signs could quickly and accurately be evaluated before construction of any actual hard­

ware. In recent years, computational fluid dynamics (CFD), with its ability to provide

insight into complex flow phenomena, has become an indispensable tool in aircraft design.

1



Regardless of the methodology employed, it is possible that the performance of

many airfoils could be improved through the implementation of an optimization scheme.

The purpose of the current research effort was to determine the feasibility of using a ge­

netic algorithm as an optimization tool for aerodynamic design. Specifically, a genetic al­

gorithm was used to design a high lift airfoil, subject to constraints in angle of attack,

thickness, and pitching moment coefficient. The effectiveness of the algorithm was

evaluated and its range of applicability explored. Finally, some of the limitations of the

technique, as well as its potential for further research, were revealed.

1.2. Literature Review

1.2.1. Direct Airfoil Design

In the direct approach to airfoil design, the geometry of the airfoil is specified first;

thereafter, the resulting flowfield is evaluated. Flowfield parameters (velocity, pressure,

temperature, density, Mach number, etc.) are used to calculate airfoil performance, from

which a determination is made as to how well the design meets the desired criteria. Based

upon the results, the airfoil geometry is altered and again evaluated. The direct method

involves some subjectivity since the designer often relies upon his intuition and past expe­

rience to some degree. Due to the lack of any generally accepted airfoil theory, most air­

foils designed before the 1930's were developed using the direct approach, including the

common NACA 4- and 5-digit series airfoils which are still in use today [Abbott & Von

2



DoenhotI: 1959]. While this trial and error approach of repetitive analysis and intuition is

not wholly without merit, the fact remains that it is quite inefficient.

1.2.2. Inverse Airfoil Design

The inverse approach, logically enough, works in reverse order. The desired fea­

tures of the flowfield are specified first; an airfoil is then designed which will generate

those flowfield parameters. Advances in boundary layer theory have made the inverse ap­

proach more tenable in recent years since aerodynamicists have a better understanding of

the interaction between flowfield features, airfoil performance, and airfoil shape. For ex­

ample, it is possible to calculate a freestream pressure distribution which maximizes the

length of the laminar boundary layer along an airfoil. Once the requisite pressure distribu­

tion has been calculated, the airfoil which produces that distribution can be designed. In­

verse design methods have been used extensively in the development of high lift airfoils

[Liebeck, 1978, Eppler, 1990, and Selig & Guglielmo, 1994], transonic airfoils [Lee &

Eyi, 1992], and a variety offluid flow problems [Dulikravich, 1992].

However, the quality of the optimized shape still depends upon the ability of the

designer to establish a desired optimum. Relying on experience and intuition, the de­

signer may well specify flow parameters which do not correspond to a truly optimal con­

dition. The resulting airfoil may meet the design specifications, but there is no assurance

that it represents the best possible design.

3



1.2.3. Shape Perturbation Method

In contrast to the direct and inverse design methods described in the preceding

sections, shape perturbation involves true mathematical optimization. This method con­

sists of coupling an analysis code with a numerical optimizer to optimize an objective

function. The analysis code can take the form of any suitable flowfield solver (Navier­

Stokes, Euler, panel method, etc.). Cheung, Aaronson, & Edwards [1995] used a parabo­

lized Navier-Stokes solver in conjunction with a nonlinear constrained optimizer to mini­

mize pressure drag of a theoretical minimum-drag body at supersonic speeds.

The method has also been utilized to develop high lift, low drag transonic airfoils

[Vanderplaats, 1984]. He represented a generic airfoil as a linear superposition of basis

shapes, each one ofwhich represented an existing airfoil. Mathematically:

Y = alY1 + a2Y2+ ... + anYn

where Y 1 through Yn are vectors containing the surface coordinates of the basis shapes,

and ai are the design variables or weighting factors.

He selected four existing good airfoil designs as basis shapes, thereby reducing the

number of design variables and improving the numerical conditioning of the optimization

problem. Design variable gradients were computed from finite difference approximations

and an inviscid flow solver was used to evaluate the resulting aerodynamic performance.

4



His findings indicated that the shape perturbation method provided a significant improve­

ment in transonic performance with relatively modest computational effort.

However, depending upon the nature of the function, shape perturbation may be

rather intensive computationally because of the gradient evaluations involved; it may fail

altogether for highly complex, non-linear functions.

1.2.4. Simulated Annealing

Simulated annealing is a combinatorial optimization technique based upon anneal­

ing of solids. In physics, annealing denotes a process in which a solid is heated to a liquid

phase and then slowly cooled, such that the energy state of the substance decreases very

gradually. Provided that the cooling is carried sufficiently slowly, the material particles

arrange themselves in the lowest possible energy state at the completion of the process

[Ohm, 1994]. If cooling takes place too rapidly, particles can become 'frozen' prema­

turely, resulting in crystal lattice defects and a final state which does not correspond to the

lowest possible energy level.

In a simulated annealing process, the energy state is modeled by an objective cost

function while temperature is a control parameter in the same units as the cost function

[Kirkpatrick, Gelatt, & Vecchi, 1983]. The cooling schedule is simulated by decrementing

the control parameter for each iteration by a small factor, u, slightly less than unity

(typically between 0.80 and 0.99) i.e.:

5



For example, given a function /(x, y, z) to be minimized and an initial solution (xo,

Yo, zo), one or more of the variables are perturbed by a small amount. The function is re­

evaluated at the new point (Xl, Yl, Zl) and a comparison is made between the two function

evaluations. Ifji is less than/o, the new point is 'accepted'; if it is greater than/o, it is ac­

cepted with probability exp(-AjlT), the so-called Metropolis Monte Carlo function [Wang,

1991]. As the iterations progress, T decreases and uphill moves are accepted less and less

frequently until, at zero 'pseudo-temperature', no more moves are possible.

This willingness to accept uphill moves, especially in the initial phases of the proc­

ess, make simulated annealing much less susceptible to local minima than other gradient­

type methods. However, if the solution domain is highly multi-modal and/or the minima

are very deep, this technique may still become trapped in a local minimum. This shortcom­

ing can be circumvented by carrying out the process several times, starting from a different

random point for each test, and retaining the best results.

1.2.5. Genetic Algorithm Background

The mere fact that human beings exist on Earth is testimony to another optimiza­

tion scheme which began four billion years ago. Starting with little more than basic ele­

ments and simple chemical compounds, the process of evolution has produced the

6



incredible diversity of life forms existing on Earth today. This sublime process serves as

the inspiration for an optimization technique known as a genetic algorithm.

Plants and animals reproduce by transmitting chromosomes to their offspring. The

chromosomes are comprised of a large number of genes, each of which determines a par­

ticular trait. During reproduction, the genetic information of two parents is combined to

produce offspring with slightly different characteristics. Additionally, random mutations in

one or more of the genes occur from time to time. While these mutations normally have a

limited impact on the survivability of the offspring, they occasionally affect a crucial gene,

and the mutated individual is markedly different from either of its parents. In the vast

majority of cases, these mutations are detrimental and the affected individual, being less

suited to its environment, dies. But once in a great while, the combination of cross­

breeding and mutation produces an offspring that is better adapted to its environment, and

the mutant reproduces and flourishes. Over time, only the most fit species survive, either

by replacing similar species or by evolving to fill different ecological niches.

In the late 1950's, John Holland began experimenting with artificial life and ma­

chine learning. He was heavily influenced by The Genetical Theory ofNatural Selection,

written by the esteemed evolutionary biologist R. A. Fisher, which described the mecha­

nism of evolution in mathematical terms. Holland realized that evolution, like learning,

was a tool for adapting to an ever-changing environment. On the time scale of thousands

of generations, evolution could be considered a form of optimization. He concluded that,

if the salient features of evolution could be translated into the realm of mathematics, logic,

and probability, then evolution itself could be modeled. Thus was born the genetic algo­

rithm (GA), a design process that espoused design 'from the bottom up' [Levy, 1992].

7



A genetic algorithm begins with a population of potential solutions to a problem.

Each solution is assigned a fitness value, reflecting the degree to which it satisfies the de­

sired design criteria, and those solutions with the highest fitness values are selected for

survival and reproduction. Genetic material (encoded representation of the solutions) is

manipulated through cross-over and mutation. Aspects of the more promising solutions

are retained, recombined, and mutated, while inferior solutions are discarded. Eventually,

better solutions to the problem emerge.

To use a GA, the designer only defines what is to be maximized, imposes certain

constraints, and lets the algorithm find solutions which best satisfy the design require­

ments. Human-imposed prejudices, while not entirely eliminated, are certainly reduced

significantly. The genetic algorithm does not know or care what its human counterpart

might find appealing or consider to be a 'good' design. Quite possibly, completely differ­

ent and potentially superior solutions can emerge, unencumbered by the limitations of the

designer's experience, intuition, or bias towards a particular type of design.

1.2.6. Previous Genetic Algorithm Applications

A particularly appealing aspect of genetic algorithms is their almost universal ap­

plicability. Provided that suitable representations for genes, individuals, mutations, and so

on can be formulated, the algorithm can be applied to optimize virtually any design. The

algorithm can efficiently search complex, multi-dimensional solution landscapes and the

precision of the solutions is limited only by the accuracy of the fitness function. In con-

8



trast to calculus-based optimization schemes, the existence or continuity of derivatives is

irrelevant, and the algorithm requires little or no mathematical manipulation beyond rudi­

mentary sorting and selecting.

Genetic algorithms have been applied to a wide variety of optimization problems.

Holland applied a GA to optimize strategies in a simplified version of chess, and one of his

graduate students at MIT used an algorithm to simulate the functions of single-celled or­

ganisms [Levy, 1992] . Genetic algorithms have been utilized to minimize the weight of

bridge truss structures, reduce the pressure loss in natural gas pipelines, and enhance the

quality of X-ray photographs [Goldberg, 1989]. Charles Karr used a GA to obtain a

better model for predicting the performance of a hydrocyclone, a device used to separate

particles in the mineral processing industry [1995]. Other applications include the design

of gas turbines and fiber-optic networks [Dumitrache, 1995].

Genetic algorithms have also been used in several inverse airfoil design methods.

Obayashi & Takanashi implemented a GA to design an optimal pressure distribution which

minimized transonic drag [1995]. Once the target distribution had been obtained, an in­

verse design code was used in conjunction with a Navier-Stokes solver to compute the

corresponding airfoil geometry. Yamamoto & Inoue applied similar methodology in a

LID maximization problem [1995].

A particularly relevant application of the genetic algorithm was the development of

a transonic airfoil by Quagliarella and Della Cioppa [1994], using the direct design ap­

proach. They modified the shape of a basis function (airfoil) by superimposing linear

combinations of various modification functions. Each of the modification functions was

9



continuous and derivable, ensuring that any linear combination would also be continuous

and derivable. All possible shapes were then given by:

n

Y == Yb + Lwkfk
k=l

where Yb represents the basis function,

fk are the modification functions,

and Wk represent the related weighting factors (genes)

The genetic algorithm was implemented to minimize the wave drag of an airfoil,

subject to constraints on Cl, Mach number, and airfoil thickness, by finding the optimum

combination of weighting factors, Wk. Using a symmetric airfoil as the basis shape, the

algorithm was able to reduce the wave drag by 30% in 354 generations. When the ex-

periment was conducted with a 'pre-optimized' basis shape (cambered airfoil) a similar

reduction in wave drag was achieved after only 68 generations. By selecting an initial

shape which was already higher up the evolutionary chain, computer run time was reduced

by 80%, indicating the effect of initial design selection on algorithm efficiency.

1.2.7. General Considerations

While the genetic algorithm concept may be rather intuitive, the implementation of

a GA requires careful consideration. The success of the algorithm depends upon a number

10



of factors such as the nature of the solution landscape (including the number and type of

design variables), design constraints, selection criteria, implementation of mutation and/or

crossover, maximum allowable mutation size, and population size. Moreover, the specifi­

cation of these parameters may have a significant impact on the final 'optimal' solution

and can be quite problem-dependent. Research by Srinivas and Patnaik [1994] indicates

that "... the choice of the control parameters itself can be a complex nonlinear optimi­

zation problem. Further, it is becoming evident that the optimal control parameters criti­

cally depend on the nature of the objective function."

Due to the high degree of randomness inherent in genetic algorithms, they do not

lend themselves to rigorous mathematical proof. Mutation, mate selection, and survival

selection are all accomplished in a random or pseudo-random fashion; this 'directed ran­

domness' is the very heart of genetic algorithms. However, it should be emphasized that

randomness is only one component of a genetic algorithm; Section 2.3 will illustrate some

of the key distinctions between a GA and a purely random search. Because of the inher­

ently random element, it is impossible to verify whether or not a particular design truly

represents an optimum solution; the viability of individual designs can only be verified by

comparing them to existing, known solutions.

These limitations notwithstanding, several observations can be made regarding the

behavior of genetic algorithms in genera1.

11



1.2.7.1. Solution Landscape

If the nature of the solution landscape is well known in advance, a genetic algo­

rithm may not be the most effective optimization technique in the first place. For func­

tions which are simple and continuous, calculus-based techniques such as those of Newton

and Fibonacci can be just as effective and far simpler to implement than a GA. Although

purely random searches or enumerative techniques (which conduct a point-by-point

search) are not especially elegant, they may be preferable to more sophisticated methods if

the domain space is small and low-dimensional [Filho, Treleaven, & Alippi, 1994].

For more complex optimization problems in which the application of a GA is indi­

cated, it is usually desirable to minimize the number of genes so as to reduce the epistatic­

ity of the system. Highly epistatic relationships, in which the genes interact in a complex,

extremely non-linear fashion, are not well suited to optimization by genetic algorithms

since so many favorable mutations must occur simultaneously to produce any improve­

ment to the proposed solution [Srinivas & Patnaik, 1994]. Furthermore, algorithm per­

formance is enhanced if all of the design variables are of the same type, although this

requirement is relaxed somewhat if the total number of genes is small. When optimizing a

bridge truss structure, for example, the algorithm would be more effective if all of the

genes represented individual beam sizes (with number of beams, truss geometry, and con­

struction materials all being constant) than would be the case if all of these parameters

were allowed to vary simultaneously.

12



1.2.7.2. Design Constraints

Like most other optimization methods, genetic algorithms usually operate in a

constrained solution space. For some problems, the constraints may be as straightforward

as placing upper and lower bounds on the range of allowable values of each gene. Even

with such restrictions in place, however, certain combinations of genes may result in de­

signs which are infeasible from a practical standpoint. A sound understanding of the engi­

neering principles involved in a particular application is therefore required if the results are

to be physically meaningful.

The function of a genetic algorithm is merely to propose alternate solutions to a

particular problem; it does not, by itself: determine the quality of those solutions. In order

to calculate the fitness of a given solution, a 'fitness solver', which is normally called as a

subroutine in a GA computer code, is required. In other words, the GA plays by the rules

specified by the fitness solver, whether or not those rules are physically realistic. Further­

more, the fitness solver may be more accurate in some regimes than in others and the al­

gorithm can cleverly exploit these limitations by populating regions in the solution domain

where the fitness solver overestimates design performance. Consequently, it may be nec­

essary to constrain the search space in order to circumvent the limitations of the fitness

solver itself

13



1.2.7.3. Selection Criteria

The simplest selection criterion is the standard selection method; the most fit indi­

viduals of each generation are designated the parents of the subsequent generation. How­

ever, this approach invariably leads to population uniformity and premature convergence

to local optima [Winston, 1992].

An alternate method, the rank method, involves rank-ordering the individuals from

the most to the least fit. Survivors are selected according to the following probabilistic

method. The highest-ranking candidate is selected with probability P (generally in the

range of 0.5 to 0.9). If the top-ranked candidate is not selected, the one ranked number

two is picked, again with probability P. This selection process continues until either an

individual is selected or only one individual (the lowest-ranking one) remains, in which

case the lowest-ranking candidate is selected. While this method does reduce overcrowd­

ing somewhat, the population still tends to coalesce about a single 'niche' [Winston,

1992].

The efficiency of the algorithm can be improved markedly by using the rank-space

method, which incorporates diversity in the selection process. In other words, the prob­

ability of an individual's survival is determined not only by its fitness, but also its diversity

from the other candidates. By incorporating diversity, the algorithm simulates the selec­

tion process evident in the biological realm, wherein diverse organisms can utilize re­

sources for which the competition is less fierce than in more crowded niches. In his book

Artificial Intelligence, Patrick Winston demonstrated the importance of diversity in a two­

dimensional non-linear optimization problem. With diversity incorporated in the selection

14



process, the algorithm required only one fifth as many generations to find the global

maximum as when fitness alone was used to select survivors [1992].

1.2.7.4. Mutation and Crossover

The two primary operators which drive any genetic algorithm are mutation and

crossover. A mutation is a small random variation in one or more of the genes, accom­

plished through the use of a computer-generated random number, while crossover consists

of combining genes from two previously selected survivors. The relative importance of

the two operators is determined to some degree by the solution landscape itself.

In the case of smooth, well-behaved functions, mutations alone can successfully

'hill-climb' local peaks, but are often unable to traverse local minima (moats). Any indi­

viduals which mutate away from the local maximum receive a lower fitness ranking and

are unlikely to survive to the next generation. Without crossover, the only wayan indi­

vidual can cross a moat is if extremely large mutations are allowed. Excessive mutation

size, however, results in a more random search in which one generation bears little resem­

blance to the previous one. Moreover, one would have to know in advance the size of

mutations required to traverse the local minima, which in turn requires that the extent of

the minima themselves be known. If one had such detailed information about the solution

landscape, there would be no reason to resort to the genetic algorithm in the first place.

Conceivably, there might be conditions under which mutations alone could be ade­

quate. If a designer wished to fine-tune a particular design, he might be uninterested in

15



finding solutions corresponding to other local maxima. For this type of optimization, mu­

tations alone may produce satisfactory results.

In contrast, crossover enables the algorithm to search multi-modal landscapes

much more efficiently by 'skipping over' local minima. In a simple two-dimensional

problem, for example, a good 'x' gene of one survivor could combine with a favorable 'y'

gene of another to produce a child whose genes placed him on the other side of the moat

in a single generation. Without crossover, however, the algorithm may well become

trapped in a local peak and never seek out other, potentially superior solutions. There­

fore, unless one is quite certain of the objective nature of the problem to be optimized

and/or is willing to consider only local optima, crossover should always be selected - it

may be essential to the success of the algorithm.

1.2.7.5. Maximum Allowable Mutation Size

Most of the early work with genetic algorithms focused on strings of binary digits.

When operating on these strings, mutations merely involved toggling a bit from 0 to 1 or

vice versa [Levy, 1992]. In the case of real-values genes, however, maximum mutation

size (MAXMUT) must be restricted to some reasonable value if the algorithm is to func­

tion properly. IfMAXMUT is too large, the GA degenerates into a random search; if it is

too small the algorithm cannot effectively explore the solution space. Maximum allowable

mutation size must therefore be tailored to suit the needs of the particular optimization

problem under scrutiny.

16



1.2.7.6. Population Size

The number of individuals per generation, or population size, can also influence the

efficiency of the GA. Increasing the population size increases the diversity of the gene

pool and reduces the possibility that the GA will prematurely converge to a local maxi­

mum. On the other hand, larger populations increase the computer time required for the

population to converge to the optimal regions in the search space [Srinivas & Patnaik,

1994].

1.2.8. Comparison Between the Genetic Algorithm and Simulated Annealing

Of all the design methods described in this chapter, simulated annealing bears the

most resemblance to the genetic algorithm. Both techniques are effective combinatorial

optimization schemes characterized, in part, by an inherently random component. Fur­

thermore, each method has a mechanism to avoid getting trapped in local optima; GAs

incorporate diversity in the selection process while simulated annealing relies upon the

cooling schedule. The crucial difference between the two methods is the presence or ab­

sence of a crossover mechanism. With crossover, genetic algorithms can recombine fa­

vorable aspects of previously discovered solutions, thereby constantly introducing new

and potentially beneficial genetic material into the population, a capability which is absent

17



from the simulated annealing process. Very broadly speaking, one could liken simulated

annealing to a GA without crossover, whose maximum allowable mutation size decreases

with every generation.

The observations in the preceding sections are generally applicable to most genetic

algorithm applications. Before applying a GA to an airfoil optimization problem, how­

ever, a more detailed quantitative understanding of the GA control parameters was neces­

sary. The development and validation of the genetic algorithm code used in this study will

be discussed in Chapter 2.

18



CHAPTER 2

ALGORITHM DEVELOPMENT AND VALIDATION

In order to illustrate the operation of the genetic algorithm, an algorithm was de­

veloped to optimize two-dimensional mathematical functions. This phase of the design

process represented an attempt to optimize the optimizer under conditions where the so­

lution to the problem was known in advance. The well-known 'sombrero' function

shown below (z = siner) / r) represented an ideal test case; it has one global maximum 10-

cated at the origin and an infinite number of local maxima separated by an infinite num­

ber of local minima, yet is relatively well-behaved and simple to visualize.

0.8

0.6

0.4

0.2

o
-0.2

-0.4

Figure 2.1. Simple Solution Landscape

19



2.1. Definition of Parameters

In order to apply the genetic algorithm to the aforementioned function, the follow-

ing parameters were modeled in the computer-simulated environment:

1. Gene: an x or y value, each constrained to a min/max value of±10.

2. Chromosome (Individual): an (x,y) pair.

3. Mutation: a random variation in a gene, supplied by a computer-generated

random number.

4. Crossover: a process in which the x gene of one survivor is combined with the

y gene of another.

5. Environment (Solution Domain): two-dimensional Cartesian space, centered

on the origin, and extending ±10 in each dimension.

sin(r) I
6. Fitness: --, where r = \/X2+ y2

r

7. Constraints: the boundaries of the solution domain, i.e. (-10 ~ x ~ 10) and

(-10 ~ Y ~10).

2.2. Implementation

Once the parameters had been quantified, the genetic algorithm was executed in

the following sequence:

20



1. Given a population of (x,y) chromosomes, the fitness value was determined for

each one in a FITNESS SOLVER subroutine; subsequently, they were rank-ordered from

the most to the least fit. The most fit individual was automatically selected for survival

and was designated as the primary survivor.

2. The remaining individuals were rank-ordered by diversity according to the fol-

lowing relation:

where subscripts i and ps refer to the particular individual and the primary survivor, re-

spectively. The combined rank was determined by ranking each individual according to

the sum of its fitness rank and diversity rank, with one of the two rankings designated as

the tiebreaker. Additional survivors were selected based upon their combined rank, ac-

cording to the probabilistic method outlined in Chapter 1. The probability factor, P, con-

trolled the amount of bias towards the selection of the most fit/diverse individuals. An

example of the rank-space method, with diversity designated as TIEBREAK, is tabulated

below:

21



(x,y) Fitness Fitness Diversity Diversity Rank Combined Probability of
Rank Rank Sum Rank Selection

(P = 0.7)
(0, -8) 0.1237 1 * * * * *
(5,5) 0.1002 3 .0052 1 4 1 0.700

(-7,0) 0.0934 4 .0088 2 6 2 0.210

(1,8) 0.1214 2 1.0 4 6 3 0.063

(0, -4) -0.1892 5 .0625 3 8 4 0.027

Table 2.1. Rank-Space Selection Method

Probabilistic selection was accomplished by assigning each candidate (excluding

the primary survivor) a segment of the interval [0.0, 1.0]; the size of each candidate's

segment determined its probability of selection. In the example above, the first candidate

was assigned the interval [0.0, 0.7], the second one, (0.7, 0.91], and so on. A random

number in the interval [0.0, 1.0] was generated, and its value determined which individual

was chosen to accompany the primary survivor into the next generation. The individual

thus selected was labeled the 'first niche survivor'.

Subsequently, remaining candidates were rank-ordered according to their diversity

from both the primary survivor and the first niche survivor, i.e., DIV = L(I/di
2
). This par-

ticular specification ensured that DIV reflected a candidate's diversity from all previously

selected survivors. The rank-space method was again utilized to select the second niche

survivor, and so on, until a full complement of 1+nniche survivors had been selected. These

survivors became the parents of the next generation.

22



3. After the selection process was completed, a new population was created by

mutating and/or breeding the parents. Mutated offspring were created by applying small

random alterations to the genes of each survivor; the maximum allowable mutation per

gene was restricted by the user-defined variable MAXl\1UT. In addition, each parent was

paired with another (randomly selected) parent and their genes were crossed, producing

two more 'children'. The complete population of any generation, therefore, consisted of:

a. IlsUlV unmated parents (survivors from the previous generation)

b. IlsUlV mutated offspring

c. 2 x IlsUlV cross-bred offspring

In order to allow greater flexibility to the scheme outlined above, several modifi­

cations were incorporated. The user could specify the number of primary survivors (nbest)

as well as the number of additional niches (nniche) to be filled. A high value of nbest would

presumably lead to a more uniform, relatively fit population in which the individuals coa­

lesced about a few local maxima and ignored other potential solutions. In contrast, higher

values of nniche would explore the solution space more efficiently, albeit at the cost of

greater computational effort per generation.

Two other variables, nmut and llcross, were introduced to determine the effects of

mutation and crossover individually. After these modifications were incorporated, the to­

tal number of individuals per generation, nind, was given by:

nind = (nbest + nniche) x (1 + nmut + 2(ncross))

23



An initial 'seed' population was generated by randomly populating a portion of the

solution domain. The size of the initially populated region was varied to determine the

effect of seed population diversity. The seed domain was a square region of varying size

located at the lower left corner of the solution domain (-10,-10), placing it as far as possi-

ble from the global maximum at the origin. Therefore, a lxl seed domain covered only

0.25% of the total solution domain, while a 20x20 region effectively covered the domain

in its entirety. This seed domain was used only to generate the initial population; subse-

quent generations were free to explore the entire 20x20 region.

The algorithm was executed hundreds of times using different combinations of

control parameters. The effect of individual parameters was isolated by varying a single

parameter while holding all others constant. Table 2.2 lists the control variables, the stan-

dard values about which variations were applied, and the range of values considered.

Parameter Standard Value Range ofValues

nbest 1 1 - 10

nniche 3 1 - 10

nmut 1 1 - 10

ncross 1 0-5

TIEBREAK Diversity Rank DiversitylFitness Rank

MAXMUT 1.0 0.1 - 10.0

Seed Domain Size 10xl0 (lxl) - (20x20)

P 0.7 0.5 - 1.0

Table 2.2. Genetic Algorithm Control Parameter Values

Figure 2.2 depicts a flowchart which summarizes the solution methodology of the

genetic algorithm computer code used in this study.

24



Read Input Values (From User Input File) I
+

Create Seed Population

+
r-----------1~·'Evaluate Fitness orEach Individual I

•Determine Fitness Rankings and
Designate Primary Survivor

Calculate Diversity of
Remaining Candidates

...... Select Additional Survivor Using
-------..

...... Rank-Space Method

No Check Number of Survivors:
Have (1 +nniche) Been Selected?

+Yes
Create New Population Through
Mutation and/or Crossover

No Check for Termination Criteria:
1. Has Convergence to User-Defined Maximum Been Met, OR
2. Have the Specified Number of Generation Elapsed?

Print Specified Output

+
IEnd Program I

Figure 2.2. Genetic Algorithm Flow Chart

25



With any given set of parameters, the algorithm was allowed to run for 1000 gen­

erations or until the global maximum was located. If the algorithm converged to a solu­

tion with fitness z ~ 0.999 (99.9% of the mathematical optimum), the test was considered

a success and the number of generations recorded. In the event that the global maximum

was not found in 1000 generations, the test was considered unsuccessful, although, for

averaging purposes, 1000 generations was recorded. For a given set of parameters, the

experiment was conducted ten times and the average number of generations required for

convergence was calculated. Thereafter, one of the control parameters was altered, and

the algorithm was again applied for ten test runs.

2.3. Results

The results revealed that some of the control parameters were vital to the success

of the algorithm while others were relatively unimportant. Two factors were considered

when evaluating the efficiency of the algorithm: average number of generations and total

computational effort required for convergence. In some cases, the algorithm converged in

fewer generations, yet required significantly more computational effort due to a larger

population size. The results are tabulated below:

26



Parameter Value nind Success Avg. # of Computational
(out of 10) Generations (ngen) Effort (nind x ngen)

1* 16 10 87.3 1396.8
nbest 3 24 10 87.6 2102.4

5 32 10 75.5 2416.0
10 52 10 80.0 4160.0
1 8 2 900.7 7205.6

nniche 3 16 10 87.3 1396.8
5* 24 10 56.6 1358.4
10 44 10 39.8 1751.2
1* 16 10 87.3 1396.8

nmut 3 24 10 79.3 1903.2
5 32 10 73.4 2348.8
10 52 10 72.1 3749.2
0 8 1 925.8 7406.4

ncross 1* 16 10 87.3 1396.8
3 32 10 74.1 2371.2
5 48 10 57.9 2779.2

TIEBREAK Diversity* 16 10 87.3 1396.8
Fitness 16 10 103.7 1659.2

0.1 16 8 431.6 6905.6
MAXMUT 1.0* 16 10 87.3 1396.8

10.0 16 9 178.2 2851.2

lxl 16 9 319.1 5105.6
Seed Domain 5x5 16 10 163.3 2612.8

Size 10xIO 16 10 87.3 1396.8
20x20* 16 10 65.9 1054.4

0.5 16 10 141.0 2256.0
P 0.7* 16 10 87.3 1396.8

0.9 16 10 96.6 1545.6
1.0 16 10 95.0 1520.0

Table 2.3. Effect of Control Parameters on GA Convergence
(* indicates least computational effort required)

The data gathered here is, by definition, empirical in nature; it does not prove that

a particular set of control parameters truly represents an optimal combination. The selec-

27



tion of parameters, as well as the actual values of those parameters, involved a good deal

of subjectivity. The control parameters may interact in a complex, non-linear fashion;

quite possibly, the effects of individual parameters can not be determined by varying pa­

rameters independently. Unexplored combinations might have yielded faster convergence

and the intrinsic randomness of the algorithm introduced an additional element of uncer­

tainty. Finally, this experimentation was conducted for only one particular optimization

problem; as mentioned before, the optimal combination of parameters is highly problem­

dependent.

These limitations notwithstanding, several conclusions were drawn from the re­

sults. An increase in nbest or nmut yielded only a marginal improvement in algorithm per­

formance, yet required considerably more computational effort. The principal effect of

these parameters was to overpopulate the primary niche; they contributed very little to the

richness of the gene pool. Since their contribution to evolution was negligible, nbest and

nmut were retained at their minimum value so as to reduce the total number of calculations

required.

On the other hand, convergence to the global optimum was substantially enhanced

as seed domain size, nniche, or ncross increased. These parameters significantly augmented

the diversity of the genetic material available for recombination. A large initial domain

populated the solution landscape relatively evenly and enhanced the efficacy of the algo­

rithm, especially during the early stage of evolution. In contrast, smaller starting regions

translated into a comparatively homogeneous original gene pool from which the GA re­

quired numerous generations to really become effective.

28



Without crossover, the power of recombination was lost, and better chromosomes

were only achievable through mutations. Table 2.3 shows that the algorithm was success­

ful only one of ten times when ncross = 0, as compared to a 10 of 10 success rate when

crossover was selected. As mentioned before, mutations alone are rather ineffective in

traversing local minima and this effect was clearly demonstrated here.

Similarly, when only one additional niche was specified (two survivors total), the

algorithm converged only twice. Even with crossover selected, the limited amount of ge­

netic material available for recombination seriously hampered algorithm effectiveness.

Although an increase in either operator did require more computer time, the increase was

less marked for nniche than for ncross, while the marginal improvement was more significant.

Therefore, it was decided that increasing the number of niches was warranted, but an in­

crease in crossover frequency was not.

The algorithm seemed to be relatively unaffected by the specification of the tie­

breaker, although favoring diversity yielded somewhat faster convergence. Similarly, the

results were quite insensitive to changes in the probability factor at or above 0.7. Pre­

sumably, with a P value of 0.5, selection of survivors was insufficiently biased towards the

most fit/diverse individuals, and resulted in a more random search. Finally, it was ob­

served that a MAXMUT value of 1.0 accelerated convergence; a smaller value hampered

efficient exploration of the domain, while a larger one resulted in a more random search.

Based upon these results, the only changes made to the standard parameter set

were to populate the entire solution domain with the initial population (seed domain =

20x20) and to increase the number of niches from 3 to 5. Using this new optimal parame­

ter set, which had 6 survivors and 24 individuals per generation, the average number of

29



generations required to locate the global maximum was 35. 1 at a total computational ef-

fort of 842.4, a 40% improvement over any previously obtained results.

For the sake of comparison, a purely random search of the solution domain was

conducted, using 24 random points at a time. In this random search, no information was

transmitted from one set of points to the next, so the concept of a generation was mean-

ingless; each set of 24 points was considered a 'generation' only for comparison's sake. A

comparison between the two methods is tabulated below:

Search Method nind Success Avg. # of Computational
(out of 10) Generations (ngen) Effort (nind x ngen)

GA(Optimal 24 10 35.1 842.4
Parameter Set)

Random 24 7 622.5 14,940.0

Table 2.4. Comparison Between Genetic Algorithm and Random Search Methods
(Simple Solution Landscape)

Table 2.4 reveals that the genetic algorithm was much more efficient in that, on

average, it sampled only 5% as many points as the random search method before converg-

ing to the global maximum. The maximum and average population fitness using each

search method is depicted in Figure 2.3.

30



(a) GA Optimal Control Parameter Set

1.2...,------------------------,

0.8

0.6 ---+- Maximum
Fitness

0.4 ---e- Average

0.2

0

-0.2
1 6 11 16 21 26 31

Generation

(b) Random Search

1.2

0.8
-+- Maximum

0.6
Fitness ---e- Average

0.4
Cumulative

0.2 Maximum

0

-0.2
1 6 11 16 21 26 31

Generation

Figure 2.3. Maximum and Average Population Fitness
(Simple Solution Landscape)

Interestingly, this figure simultaneously illustrates the major similarity as well as

the crucial difference between the two search schemes. In Figure 2.3(a), the step-wise

improvement in maximum fitness is due to the discovery of a particularly fortunate combi-

nation of genes, revealing the random aspect of the GA. If one considers the cumulative

maximum of the random technique, one could point out that it also increases in irregular,

31



discrete increments. In fact, the random search located a fitness value near the global

maximum (0.963) in generation 15, although it never found the global peak in this test run.

The key distinction between the two methods is revealed by a comparison of the average

fitness graphs. The random search produces an average fitness value which is relatively

constant over time. However, in the GA application, each jump in maximum fitness is

followed by a very definite, although more gradual, increase in the fitness of the popula­

tion as a whole. This retention of knowledge and the subsequent dissemination of genetic

information into the population at large is what distinguishes the genetic algorithm from

the purely random search.

The qualitative nature of the fitness curves in Figure 2.3(a) is very characteristic of

genetic algorithms. Biologists have noted the same trend in natural evolution: sudden

spurts of change followed by long periods of relative quiescence. Although the gene pool

is still seething with activity during the dormant phases, the jumps in maximum fitness oc­

cur only when an especially advantageous gene combination is found, corresponding to

the discovery of a new evolutionary niche. The resulting super-organism then spreads its

genes into the population, and average fitness level of the entire population is enhanced

correspondingly.

The cause of this stairstep evolution is revealed in Figure 2.4. In each diagram, the

survivors of that particular generation are denoted by 'x' symbols. The survivors of the

seed population (Figure 2.4(a)) tended to lie near the ring-like niche at r ~ 7.5, where fit­

ness was roughly 0.125. After 11 generations, a chromosome with fitness 0.57 had

emerged in the central niche, although average population fitness remained relatively un­

changed. However, within the ensuing several generations, both maximum and average

32



population fitness improved dramatically as superior genetic information diffused into the

population. By generation 16, the average fitness level was nearly as high as the maxi­

mum fitness present only five generations previously. In the final few generations, the fit­

ness levels had stabilized near 1.0, indicating another period of evolutionary dormancy.

In contrast, the evolutionary pattern evident in Figure 2.4 is completely absent

from the purely random search, as indicated in Figure 2.5.

33



10

8

6

4

2

o
-2

-4

-6

-8

-10
-10 -8 -6 -4 -2 0 2 4 6 8 10

(a) Generation 1

10

8
6

4
2

o
-2

-4

-6
-8

-10

-10 -8 -6 -4 -2 0 2 4 6 8 10

(c) Generation 16

NOTE: 'x' indicates survivor

10

8
6

4

2

o
-2
-4

-6

-8

-10

-10 -8 -6 -4 -2 0 2 4 6 8 10

(b) Generation 11

10

8

6

4
2

o
-2
-4

-6

-8

-10

-10 -8 -6 -4 -2 0 2 4 6 8 10

(d) Generation 31

(Global Maximum Found)

Figure 2.4. Evolution of Genetic Algorithm Solutions
(Simple Solution Landscape)

34



10

8

6

4

2

o
-2

-4

-6

-8
-10

-10 -8 -6 -4 -2 0 2 4 6 8 10

(a) Generation 1

10

8
6
4
2

o
-2

-4

-6

-8
-10

-10 -8 -6 -4 -2 0 2 4 6 8 10

(c) Generation 16

NOTE: 'x' indicates survivor

10

8

6

4

2

o
-2

-4

-6

-8

-10

-10 -8 -6 -4 -2 0 2 4 6 8 10

(b) Generation 11

10
8

6

4

2
o

-2

-4
-6

-8

-10
-10 -8 -6 -4 -2 0 2 4 6 8 10

(d) Generation 3 1

Figure 2.5. Evolution of Random Search Solutions
(Simple Solution Landscape)

35



As mentioned previously, the global maximum of this sample fitness function was

defined as z ~ 0.999, corresponding to 99.9% of the true mathematical maximum. In most

engineering applications, however, mathematical optima are rarely attainable due to

modeling inaccuracies and physical limitations. Considering that a simple, intuitive ran-

dom search identified a solution which was 96.3% as fit as the theoretical optimum after

evaluating only 360 points, one might well ask if the marginally better fitness of the GA

solutions was worth the effort. As indicated in Section 1.2.7.1, a random search or a

brute force enumerative (point by point) technique may be preferable to the genetic algo-

rithm in cases where the domain space is small and low-dimensional, as was certainly the

case for this application. Moreover, since the solution landscape had a broad, flat region

of highly fit solutions near the global peak, it was easy to find a solution that was almost

as good as the true optimum.

The true potential of a genetic algorithm is not realized until the solution domain

becomes larger and/or more complex, domains for which random or enumerative searches

become prohibitively inefficient. This characteristic was demonstrated by considering a

more complex two-dimensional solution landscape, namely, the graph of the function:

2

Z=

36



4.5
4
3.5
3
2.5
2
1.5
1
0.5
o

Figure 2.6. Complex Solution Landscape

This function has two local maxima of z ~ 2.0 and a global maximum of z ~ 4.0.

Using the same methodology as before, a comparison was made between the effective-

ness of the two optimization schemes when applied to this more difficult problem, using

the same procedures and parameters as in the simpler test case. For the purpose of com-

paring convergence rates, either method was considered successful if a solution with fit-

ness 3.8 (95% of the mathematical optimum) was identified. Table 2.5 indicates that the

GA required far less computational time to locate the maximum than the random search;

indeed, the latter method failed 8 of 10 times in this experiment. Furthermore, Figure 2.7

indicates that, in the number of generations required for the GA to converge to the peak,

the random search had located a solution that was only about 50% as fit. Finally, Figures

2.8 and 2.9 illustrate evolution of solutions for each search method. Once again, the

evolutionary nature of the genetic algorithm, which is completely absent from the random

search, is revealed.

37



Search Method nind Success Avg. # of Computational
(out of 10) Generations (ngen) Effort (nind x ngen)

GA(Optimal 24 10 24.3 583.2
Parameter Set)

Random 24 2 918.9 22,053.0

Table 2.5. Comparison Between Genetic Algorithm and Random Search Methods
(Complex Solution Landscape)

4

3.5

3

2.5

2 -+- Maximum
Fitness .....-1.5 Average

0.5

0

-0.5

1 3 7 9 11 13 15

Generation

(b) Random Search
4

3.5

3

2.5 --+- Maximum
2

Fitness --- Average
1.5

Cumulative
Maximum

0.5

0

-0.5
1 3 7 9 11 13 15

Generation

Figure 2.7. Maximum and Average Population Fitness
(Complex Solution Landscape)

38



20

15

10

5

o
-5

-10

-15

-20

-20 -15 -10 -5 0 5 10 15 20

(a) Generation 1

20

15

10

5

o
-5

-10

-15

-20
-20 -15 -10 -5 0 5 10 15 20

(c) Generation 10

NOTE: 'x' indicates survivor

20

15

10

5

o
-5

-10

-15

-20

-20 -15 -10 -5 0 5 10 15 20

(b) Generation 5

20

15

10

5

o
-5

-10

-15

-20
-20 -15 -10 -5 0 5 10 15 20

(d) Generation 16

(Global Maximum

Figure 2.8. Evolution of Genetic Algorithm Solutions
(Complex Solution Landscape)

39



20

15

10

5

o
-5

-10

-15

-20
-20 -15 -10 -5 0 5 10 15 20

(a) Generation 1

20

15

10

5

o
-5

-10

-15

-20
-20 -15 -10 -5 0 5 10 15 20

(c) Generation 10

NOTE: 'x' indicates survivor

20

15

10

5

o
-5

-10

-15

-20
-20 -15 -10 -5 0 5 10 15 20

(b) Generation 5

20

15

10

5

o
-5

-10

-15

-20
-20 -15 -10 -5 0 5 10 15 20

(d) Generation 16

Figure 2.9. Evolution of Random Search Solutions
(Complex Solution Landscape)

40



2.4. Conclusions

The data gathered in this phase of research demonstrated that the genetic algo­

rithm was highly effective in searching two-dimensional solution landscapes. The results

indicated that two factors were crucial to the efficiency of the algorithm: a highly diverse

gene pool and the recombination of genetic material through crossover. Population size

alone was less critical, except insofar as larger populations directly contributed to diver­

sity. In other words, a relatively small, highly diverse population yielded more promising

results than a larger, homogeneous one. Finally, the genetic algorithm performed better

than a purely random search, especially in the case of the more complex solution land­

scape.

All of the variables discussed in this section were supplied in an input file, so the

user could tailor the algorithm to meet his/her particular needs. Furthermore, since fitness

was evaluated in a subroutine within the main program, the GA computer code was highly

modular. Mathematical and/or physical constraints could be incorporated within the fit­

ness subroutine so as to restrict the solution domain appropriately. Therefore, the algo­

rithm developed in this section could be applied to a wide variety of optimization problems

simply by substituting a suitable fitness solver.

41



CHAPTER 3

AERODYNAMIC FITNESS SOLVER

The very nature of a genetic algorithm requires that fitness be evaluated thousands

of times, so computational speed of the fitness solver was a major consideration. In the

case of airfoils, numerous methods exist for evaluating the flowfield about an airfoil. Na­

vier-Stokes solvers, which account for the effects of viscosity and compressibility, are the

most accurate but require the most computational effort. For inviscid, compressible fluids,

Euler solvers offer an improvement in speed, but are still rather computer-intensive. In the

case of inviscid, incompressible flow (potential flow), much faster panel methods are

available, although their range of applicability is more limited than the more sophisticated

techniques.

In most aerodynamic applications, the effects of viscosity are confined to a very

thin boundary layer, beyond which the flow may be assumed to be inviscid. Provided that

compressibility is not an issue (Mach number less than 0.3 or so), the outer region can be

analyzed with a potential flow solver like a panel method. Subsequently, viscous effects

are analyzed with boundary layer equations; the superposition of the two regions yields the

overall solution. Although two regions must be solved separately in this approach, the

computational effort required is far less than in either of the other two methods.

42



For this research effort, airfoil performance prediction was accomplished through a

combination of a panel method potential flow solver and an integral method for the pre­

diction of boundary layer performance. Specifically, the Smith-Hess panel method, a

simple, fast, yet relatively accurate potential flow solver, was implemented to calculate the

velocity and pressure distribution about an airfoil. Subsequently, the laminar and turbulent

regions of the boundary layer were evaluated using Thwaites' and Head's methods, re­

spectively. This particular solution methodology, henceforth referred to as the AERO­

SOLVER, was incorporated as a subroutine within the main GA computer program.

3. 1. Inviscid Solution

The Smith-Hess panel method models the airfoil as a number of singularities

(constant-strength sources and vortices) distributed on straight-line panels. Panel end­

points are distributed using cosine spacing so as to ensure more dense paneling near the

leading and trailing edges. Each panel has an outward unit normal and a collocation point

(panel midpoint), as indicated in Figure 3. 1.

43



0.7.....------------------.

0.6

0.5

0.4

0.3

zJc 0.2

0.1

o

-0.1

-0.2

• Panel Endpoints

• Collocation Points

_0.3---t-T-l~....,..,.._r.,...,..,...,...,...,...1"""'r""'!~....,..,.._r..,..,...,.."r""'I"""''l''"l'"'''T-1''''''I'''''''....,..,.._r.,...,..,...,..,...,..'f'''''''f'''''

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
xlc

Figure 3. 1. Airfoil Discretization Method

The velocity potential of each singularity element, <l>i, is combined with the

freestream potential, <1>00, to yield the total velocity potential, <1>*. In algebraic terms:

The continuity equation for this incompressible, irrotational flow, in the airfoil's frame of

reference, is given by Laplace's equation:

44



The solution, however, is not unique without the imposition of boundary conditions.

Physical constraints require that two conditions be satisfied. First, flow tangency at all

collocation points must be enforced to prevent flow through solid boundaries. Second,

the total amount of circulation introduced into the field must be sufficient to produce a

stagnation point at the trailing edge. These two conditions are satisfied, respectively, by

the following Neumann boundary conditions:

(V<I>*) • Di = 0

where Di represents the outward unit normal of each panel, and

YT.E. = 0

The continuity equation, subject to the boundary conditions, can then be solved to obtain a

unique solution for <1>*. The x and y velocities at each collocation point are determined by

taking the gradient of the potential, i. e. :

45



Once the velocities are known, the pressure coefficients are obtained from:

where Vi = ~v~ + v~

and V00 = freestream velocity

Finally, the pressure coefficients are numerically integrated over the length of the

chord to obtain the lift and moment of the airfoil. As mentioned previously, the inviscid

solution obtained in this manner is surprisingly accurate for thin bodies at Iowa. How-

ever, as thickness and/or a increases, the accuracy of the inviscid solution begins to dete-

riorate. In these more general cases, the effects of viscosity must be considered to obtain

physically meaningful results.

3.2. Viscous effects

The inviscid solution method described in the previous section is predicated on one

crucial assumption; namely, that viscous effects are confined to a very thin boundary layer

adjacent to the solid surface. However, in the case of non-streamlined bodies where

boundary layer separation is likely to occur, this assumption breaks down since the bound-

ary layer is no longer vanishingly small compared to the characteristic length of the flow

(usually taken to be the airfoil chord length, c). Viscous effects begin to exert an influence

46



not only on drag, but on lift and moment as well, and the potential solution becomes to­

tally inadequate. In order to account for the effects of viscosity, the boundary layer was

divided into three regions of interest: the laminar region, transition, and the fully turbulent

regIon.

3.2.1. Laminar Region

Thwaites' method was used to calculate the growth of the boundary layer from the

stagnation point to the point of transition. This method, which relies on Von Karman's

momentum integral equation, makes no specific assumption on the form of the velocity

profile and was therefore admirably suited to evaluation of the boundary layer on various

airfoil shapes. Starting from the stagnation point, 8, A, H, and Cf were calculated up to the

point of transition. A detailed explanation of Thwaites' method may be found in Moran

[1984] or White [1991].

3.2.2. Transition to Turbulence

Boundary layer transition is a complex phenomenon which is not yet completely

understood. Transition is strongly affected by numerous parameters including freestream

pressure gradient, compressibility, temperature, surface roughness, etc. [Kuethe & Chow,

1976]. Studies by Schlichting, Michel, Granville, Jaffee et al., and Wazzan et al. all sought

47



to predict the effect of pressure gradient on transition [White, 1991]. Generally speaking,

these methods involve curve-fitting formulas to experimental data obtained from smooth

shapes, and yield satisfactory results in the regimes for which they were developed. How­

ever, they are quite susceptible to relatively minor scattering in the data, and the actual

position of transition may vary considerably from case to case [Bradshaw, Cebeci, &

Whitelaw, 1981, and Moran, 1984]. Moreover, these methods were applied to experimen­

tal data, not to data obtained from an inviscid flow solver. Even minor inaccuracies in the

potential flow solution could therefore lead to significant errors in calculated transition

point. Finally, these studies considered only the effect of pressure gradient; other factors

such as temperature and surface roughness were not included.

In addition, it is imprecise to speak of a transition 'point'. Transition is a phe­

nomenon which occurs over a region, the length of which may exceed the total length of

the laminar boundary layer [Cebeci & Smith, 1974]. Unfortunately, there is no compre­

hensive theory for calculating performance in the transition region.

Considering all of the aforementioned difficulties in accurately determining the

transition point, it was decided to fix transition at the point of maximum velocity. This

assumption certainly seemed reasonable considering the fact that the adverse pressure

gradient aft ofVmax substantially decreases the stability of the laminar boundary layer. The

literature supports the validity of this approach [Schlichting, 1968, Hughes, 1979, and

Moran, 1984], and in many cases this judiciously imposed transition point works at least

as well as more complex prediction methods with virtually no computational effort [Kai,

1995].

48



This approach contained one potentially fatal flaw: it assumed that transition to

turbulent flow would always occur at the Vmax point and made no allowance for possible

laminar separation bubbles. This shortcoming was circumvented by restricting analysis to

Reynolds numbers greater than 200,000 and realizing that turbulators could be employed

to ensure transition in wind tunnel or flight tests.

3.2.3. Turbulent Region

Integral techniques are superior to single parameter differential methods (such as

Stratford's method) when separation prediction is based upon an inviscid solution as op-

posed to experimental data. Inviscid solutions characteristically exhibit an unrealistically

sharp leading-edge pressure spike, the chordwise extent ofwhich is normally confined to a

very small region on the order ofa few percent of the chord, as illustrated in Figure 3.2.

-6-,.--------------------.

1.1

-- Airfoil
.---------. Cp

0.5 0.7 0.9

x/c

0.3

I
~

1\
~ """"k:"" ~
; ~.-.

\ .'...-----------------------_.__ ...::;
1-+-~~...,..._~r____1r____T____r____r"____r___r_~

-0.1 0.1

o

-1

-4

-5

-3

Cp
-2

Figure 3.2. Leading Edge Pressure Spike
(NACA 4412 Airfoil, a = 10°)

49



While this spike has a limited effect upon the overall (integrated) pressure distribu­

tion, it is characterized by a very high pressure gradient. Integral methods are largely

unaffected by the spike since they tend to wash out its effects, but single parameter differ­

ential methods are rendered ineffective by the large gradients. Since all of the data used in

this analysis was obtained from a potential flow solver, an integral method was deemed the

more appropriate of the two.

Starting at the Vmax transition point, Head's integral method was employed to

evaluate the turbulent boundary layer. This method includes two first-order ordinary dif­

ferential equations, so two initial conditions were required. Although Thwaites' method

gave values for 8, H, and Cf up to the start of transition, only the initial turbulent value of 8

could be taken from the laminar calculations since Hand Cf change so radically during

transition [Moran, 1984].

However, for many applications a judiciously chosen value of Htr can yield fairly

reliable results. Kai's research, which examined the correlation between shape factor and

separation point, indicates that a starting guess of 1.5 yields results which agree quite well

with experimental data for a variety of airfoils and over a broad range of Reynolds num­

bers [1995]. Therefore, Htr was set at 1.5 for the purposes of the current study. This ap­

proach is more reasonable than it may seem at first glance, since the shape factor is

relatively constant during the initial portions of the turbulent boundary layer, yet increases

very rapidly near the separation point. Provided that a reasonable value for Htr is selected,

the downstream calculations soon forget about the initial guess. Therefore, an error in the

assumed value ofHtr leads to only minor deviations in the predicted separation point.

50



3.3. Corrected Solution

The purpose of the boundary layer analysis performed in the preceding section

was, in short, to estimate the effects of viscosity on lift and moment. Drag was not a con­

sideration. Once the separation point had been determined, the potential flow solution

was adjusted using two rather simple relations [Eppler, 1990]. Specifically, Cl was cor­

rected by:

Au = -ssep(Bus + uc)

where ssep = arc length along the airfoil surface from the separation point to the trailing

edge

Bus = slope of the upper airfoil surface near the trailing edge

U c = angle of attack relative to the mean chord line

The moment coefficient about the quarter chord, cm, was adjusted accordingly:

Using these adjustments, which were derived from Helmholtz theory, the potential

flow solution agrees quite well with experimental data [Kai, 1995].

51



3.4. Panel Number Sensitivity Analysis

Obviously, the accuracy of the panel method is dependent upon the number of

panels (N) used to discretize the airfoil. Since panels endpoints were connected by

straight-line segments, the true airfoil shape was more closely approximated as N in-

creased. Furthermore, boundary layer parameters were numerically evaluated only at dis-

crete intervals (collocation points); the accuracy of these evaluations would certainly be

enhanced by more refined panel spacing. On the other hand, computational effort was

proportional to N2
, so a compromise between accuracy and speed was necessary.

Figure 3.3 indicates that CI and Cm were relatively constant as long as 150 or more

panels were used. Although slight variations in both parameters were noted for higher N,

the marginal improvement in accuracy was deemed insufficient to warrant the greater

computational effort required. Therefore, 150 panels were used for the remainder of this

study.

1.2 0.1

• • • • • .-• • f-0.08I- ••
f-0.06

0.8-

• CI
-0.04

CI 0.6- • em Crn
-0.02

0.4- •• -0

0.2- • • --0.02

• • • • • 0
0 I I I I I I I I I -0.04

0 20 40 60 80 100 120 140 160 180 200

Number ofPanels (N)

Figure 3.3. Panel Number Sensitivity for Liebeck LA2566 Airfoil
(a = 10°, Re = 250,000)

52



3.5. Summary

The sole function of the aerodynamic fitness solver described in this chapter was to

estimate the lift and moment coefficients of a given airfoil. It was implemented as a sub­

routine within the main computer program and evaluated a single airfoil at a time. All

other GA tasks (mutation, crossover, survivor selection, etc.) were accomplished in the

main program, which required encoded representations of the airfoil population to carry

out said tasks. Chapter 4 will discuss how the transformation between airfoil shape and

genetic material was accomplished, and the means by which the genetic algorithm was

implemented in the airfoil optimization problem.

53



CHAPTER 4

RESULTS

In order to test the genetic algorithm in an airfoil application, the GA was tasked

with maximizing the lift coefficient (fitness) of an airfoil, subject to certain constraints

which will be addressed in Section 4.2.5. Before incorporating the AEROSOLVER into

an optimization scheme, however, a proper representation of airfoil shape was required.

Two different approaches were considered. In the first, each collocation point of the air­

foil was cast as a design variable. Section 4.1. will present some of the difficulties encoun­

tered in this approach. Much better results were obtained in the second formulation,

discussed in Section 4.2, in which airfoils were represented using linear combinations of

thickness and camber distributions.

4.1. Collocation Points as Genes

Initially, the genetic algorithm was incorporated by defining the genes as the indi­

vidual collocation points of the airfoil. From one generation to the next, each point was

free to mutate up or down independently of its neighbors. Crossover was accomplished

54



by combining the top surface of one surviving airfoil with the bottom surface of another.

This method represented the most general approach since the airfoil could, theoretically,

evolve into any arbitrary shape and was not restricted to a particular family of airfoils.

However, several factors hampered the efficacy of this approach. First, since each

point could mutate independently of its neighbors, the algorithm produced airfoils with

jagged, irregular surfaces. The AEROSOLVER was ill-suited for predicting separation

along these uneven surfaces. As discussed in Section 3.2, most boundary layer methods

were developed by curve-fitting formulas to experimental data obtained from airfoils with

smooth, continuous surfaces and are not universally applicable to arbitrary shapes. Fur­

thermore, integral methods such as Head's tend to integrate through the pressure curve

discontinuities, further limiting accuracy of the results. For instance, in the case of the ir­

regular shape depicted in Figure 4.1, the boundary layer would almost certainly separate

upon encountering one of the surface discontinuities, yet the AEROSOLVER predicted

separation at O.92c. Furthermore, even if such a design did produce exceptionally high

lift, it would be wholly impractical from the standpoint of drag and structural difficulties.

55



u=4°
Xsep = .92e
el = 0.48

0.3 z/e

0.2

0.1

o
-0.1

-- Airfoil
_._._._._... Cp

-2-----------------.--0.8

0.7

0.6

0.5

0.4

1.5

-1.5

Cp 0

2 -0.2
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/e

Figure 4.1. 'Collocation Points as Genes' Sample Airfoil

Another limitation of this approach arose from the GA itself By defining 150 de-

sign variables (collocation points) the system was extremely epistatic and ill-suited to op-

timization by GA, as discussed in Section 1.2.7.1. The interaction between genes was so

complex that it would be impossible to isolate, even qualitatively, the effect of any individ-

ual gene. In order to produce a viable airfoil shape, most or all of the genes had to simul-

taneously mutate in a specific fashion; even one or two unfavorable mutations could

destroy an otherwise excellent design. In theory, provided that a more accurate AERO-

SOLVER was available, the algorithm should work even in this inefficient approach, but

the computational time required would be prohibitive. In order to circumvent these limi-

tations, an alternate formulation of the design variables was required.

56



4.2. Superposition of Basis Shapes

A much more successful approach was inspired by a synthesis of optimization

schemes utilized by Vanderplaats [1984] and later by Quaglirella & Della Cioppa [1994],

as discussed in Sections 1.2.3 and 1.2.6, respectively. In this approach, various airfoils

were created through linear superposition of basis functions, thereby ensuring smooth,

continuous shapes for which the AEROSOLVER was much more accurate. Moreover,

the number of design variables was easily controlled by limiting the number of basis shapes

considered.

For the purposes of this study, the basis shapes consisted of thickness and camber

distributions. For small perturbations, the effects of thickness and camber are somewhat

independent; therefore, a qualitative relationship between fitness and the individual genes

could be established and the epistaticity of the design problem was reduced significantly.

Any airfoil can be uniquely represented by a combination of thickness and camber

functions. In the present application, thickness, llt, was defined as the distance between

the upper and lower surfaces, while the camber function, llc, was a mathematical represen-

tation of the locus of points halfway between the two airfoil surfaces. Given an analytical

or numerical formulation of the upper and lower airfoil surfaces (l1u and 111, respectively),

thickness and camber are given by:

llt =11u -111

11c =±(11u + 111 )

57



Given n basis airfoils, different shapes were obtained through linear superposition

of 2n basis shapes (n thickness functions and n camber functions), i.e.:

llt GA = allltl + a2llt2 + + anlltn

lle GA = b i llel + b2lle2 + + bnllen

where ai and bi represented the genes of the genetic algorithm.

Once the ai and bi values were specified, the resulting combination of lltGA and lleGA

was sufficient to uniquely define the GA airfoil.

4.2.1. Selection ofBasis Airfoils

The four basis airfoils selected for this research were the Selig S1223, Wortmann

FX63-137, Liebeck LA2566, and NACA 4412. The first two airfoils were specifically

developed for high lift at low Reynolds numbers while the Liebeck LA2566 was designed

to provide maximum lift in unseparated flow. Although not particularly a high-lift airfoil,

the NACA was added in the interest of diversification since it has thickness and camber

distributions which are noticeably different from those of the others.

In addition, two qualitatively different design philosophies were manifested in the

four basis shapes. The first two airfoils have impressive CI,max values of 2.18 and 1.60, re­

spectively, but their aft loading results in undesirably large nose-down pitching moments.

58



(All Cm values presented in this report refer to moments about the airfoil quarter chord,

O.25c). In order to counteract the large airfoil moment, any conventionally configured

aircraft using the Wortmann or Selig wing would require a significant downward force on

the horizontal stabilizer, reducing the total effective lift considerably [Nelson, 1989]. In

contrast, the Liebeck and NACA airfoils generate most of their lift over the leading half of

the chord and produce much lower pitching moments. While their CI,max values are some­

what lower (1.5) than their high lift counterparts, the reduced pitching moments are bene­

ficial when considering overall aircraft performance. Figure 4.2 depicts the cp curves for

the four basis airfoils, illustrating the different qualitative nature of their pressure distribu­

tions.

59



Selig S1223 Wortmann FX63-137

-1.5

o

-2.5 ---------------,

-2

-1.5

-1

Cp -0.5

o r------

".....-..,
-2 /' "".. CI= 1.80

: "".! \", Cm= -.29. \.
I ....

: "..
t ....

~....
..... _----- .......

\ ..

-2.5 ---------------,

-1

Cp -0.5

0.5 :'......_-.---------------------- ...-.---...
,

.,......-.-_.----.-..-.--.----...-. -.--_.--
0.5 /

;
l---¥--........-.........-~..........,........,-.....,.............-~

0.0 0.2 0.4 0.6 0.8 1.0

X/C

1=-

1 ---t'--~..,._,........,.--,.................,.........,....-...,.........j

0.0 0.2 0.4 0.6 0.8 1.0

X/C

Airfoil

Cp

Liebeck LA2566 NACA4412

CI = 0.94

Cm = -.097
;, ,

~ .....

[' .~.~.~.~.~ .•.-.---.

-2.5-----------,

-2

-1.5

-1

Cp -0.5

o.~ "j...(~~~---=---.--.-••------ .-.-----...._------_....110o;_:::-1.\

1 --+--~..,.-,........,...........,.................,........,.........,.........-I

0.0 0.2 0.4 0.6 0.8 1.0

X/C

CI = 0.67
,' ,.. Cm = -.035
, ,
f \'..
! \..
f ..! ~""

o (_. ....._.._.'_... ...'-:.-:::::_:
0.5

1 -+--........-.........-~--,................................~

0.0 0.2 0.4 0.6 0.8 1.0

X/C

-2.5 -------------,

-2

-1.5

-1

Cp -0.5

Figure 4.2. Cp Distributions ofBasis Airfoils
(a = 4°, Re = 250,000)

60



4.2.2. Mathematical Representations of Basis Functions

The thickness and camber functions for the Selig, Wortmann, and Liebeck airfoils

were obtained by curve-fitting formulas to airfoil data. Curve-fitting was not required for

the NACA 4412, since, like all NACA 4-digit series airfoils, it was defined by mathemati­

cal thickness and camber distributions. Unfortunately, the other three did not lend them­

selves particularly well to curve fits; although correlation coefficients of 0.996 or higher

were noted, an exact fit was simply not possible. While the use of additional terms in the

curve fit formula did yield higher correlation coefficients, a point of diminishing returns

was soon reached since the higher order curves had a greater number of inflection points.

In other words, a higher order curve fit correlated better mathematically, but physically it

didn't reflect the true shape of the airfoil, and the accuracy of the predicted performance

solution deteriorated correspondingly.

This limitation was most critical near the leading and trailing edges. Minor

changes in geometry near the edges had a much greater effect on overall pressure distri­

bution than similar changes in the mid-chord region. Furthermore, in order to ensure a

closed body, the leading and trailing edges had to have zero thickness. At all other points,

positive thickness was required not only physically, but mathematically as well. In the ex­

treme case of zero thickness, the superposition of the top and bottom singularities resulted

in infinite velocities. Near the leading and trailing edges, even minor inaccuracies in the

curve fit, while seemingly insignificant in an absolute sense, often translated into large

relative errors. Therefore, minor modifications in 11t and 11c were made in order to im-

61



prove the fit near the edges, even though the accuracy of the fit was degraded somewhat

in the mid-chord region.

4.2.3. Validation of Aerodynamic Fitness Solver

In order to evaluate the accuracy of the curve-fit approach in conjunction with the

AEROSOLVER, Cl and Cm calculations were conducted for each basis airfoil through a

range of u. As indicated in Figures 4.3 through 4.6, lift and moment predictions agreed

quite well with existing data for low angles of attack. At higher u, the predicted perform­

ance of the Wortmann, Selig, and NACA airfoils was qualitatively valid, although some

error was noted. Considering the fact that elements such as surface roughness, freestream

turbulence, and the like were not taken into consideration, the algorithm was considered

to be sufficiently accurate for these three airfoils.

However, the algorithm failed to predict stall for the Liebeck airfoil until very high

angles of attack (32°, not shown in figure), indicating a more severe limitation in the accu­

racy of the curve fit, the flow solver, or a combination of the two. Liebeck airfoils were

designed to produce a Stratford type pressure recovery aft of the Vmax point. Such a re­

covery is characterized by a flow in which the boundary layer remains attached along the

entire upper surface while avoiding separation by a constant specified margin; conse­

quently, it is very susceptible to minor deviations in the shape of the cp curve [Liebeck,

1978].

62



2 4 6 8 10 12 14

Alpha (degrees)

2.5

2

1.5

Cl
1

0.5

o
o 2 4 6 8 10 12 14

Alpha (degrees)

o---r-------------,

-0.05

-0.1

-0.15

Cm -0.2

-0.25

-0.3

-0.35
_0.4~T"""""""t'"'"""T""""'~......,........-r-~~"'T"--r----l

o

....- AEROSOLVER
_____ Selig & Guglielmo, 1994

Figure 4.3. Cl, Cm Curves for Selig S1223 Airfoil
(Re = 200,000)

2
1.8
1.6
1.4
1.2

Cl 1
0.8
0.6
0.4
0.2

o-;--"--r--T"""""T""'"'""f"~T""'"'"T"""'---r--r--r--T"""'T"""T"'"~r--I

o 2 4 6 8 10 12 14 16 18 20

Alpha (degrees)

o---r-------------,

-0.05

-0.1

Cm
-0.15

-0.25 -;--,.--r--T'""""T""'"""T"""~r--r--t___r__r"""'T""""/''''T''''''T'''"~r--I

o 2 4 6 8 10 12 14 16 18 20

Alpha (degrees)

-k--- AEROSOLVER

~ Selig & Guglielmo, 1994
(em data not avaliable)

Figure 4.4. Cl, Cm Curves for Wortmann FX63-137 Airfoil
(Re = 200,000)

63



1.6 0

1.4 -0.01
1.2

-0.02
1

-0.03
ClO.8 Cm

0.6
-0.04

0.4 -0.05

0.2 -0.06

0 -0.07
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

Alpha (degrees) Alpha (degrees)

----.- AEROSOLVER

--e- Liebeck, 1978

Figure 4.6. Cl, Cm Curves for Liebeck LA2566 Airfoil
(Re = 250,000)

2
1.8
1.6
1.4
1.2

Cl 1
0.8
0.6
0.4
0.2

o~--r-T'""""T"""-r-~T""'"'T""""""1I'""'"'"T'"'"'"--r-r-...,......-r-~r-I

o 2 4 6 8 10 12 14 16 18 20

Alpha (degrees)

-0.01
-0.02
-0.03
-0.04

Cm -0.05
-0.06
-0.07
-0.08
-0.09

-0.1

o 2 4 6 8 10 12 14 16 18 20

Alpha (degrees)

----.- AEROSOLVER

____ Abbott & Von Doenhoff, 1959

Figure 4.5. Cl, Cm Curves for NACA 4412 Airfoil
(Re = 3,000,000)

64



Additionally, the cp curve of the Liebeck has a comparatively long, flat section in

the vicinity of the maximum velocity point. This region is characterized by very small ve­

locity gradients, av/Ox, so a minor error in the inviscid velocity distribution could lead to

appreciable variations in the calculated Vmax point. Consequently, boundary layer transi­

tion, which was assumed to occur at Vmax, could have been significantly in error as well,

thereby impacting the entire boundary layer analysis and performance prediction of the

airfoil.

In contrast, the maximum velocity point for the other three airfoils occurs in a re­

gion of relatively high velocity gradients. Therefore, an inaccuracy in velocity distribution

for these airfoils would yield a smaller error in Vmax point prediction, and have less impact

on Cl estimation.

Kai [1995] examined the precision of various separation prediction methods when

applied to both experimental data and potential flow solutions. Using identical methodol­

ogy as in this study, the AEROSOLVER was extremely accurate in predicting separation

based upon experimental data, yet was significantly degraded when applied to potential

flow data. Furthermore, he didn't employ any curve-fitting approximations whatsoever;

he used arrays of collocation points directly to define various airfoil shapes. Based upon

these results, it was concluded that the primary limitation of the AEROSOLVER arose not

from curve-fit inaccuracies, but from the difficulties involved with predicting transition

based upon potential flow data. This limitation in the flow solver was partially circum­

vented by restricting the solution domain to a space in which the AEROSOLVER was

more accurate. The specific constraints incorporated will be presented in Section 4.2.5.

65



4.2.4. Genetic Algorithm Implementation

With four basis airfoils selected, the algorithm had eight basis functions with which

to create new airfoil shapes. The weighting coefficients, ai and bi, represented the eight

genes of the algorithm. At this point, however, the entire analysis would have been re­

stricted to one particular angle of attack. While the results might have been interesting,

the goal of high lift airfoils is to maximize Cl,max, not to maximize Cl at any specific angle of

attack. Therefore, a ninth gene, representing a, was incorporated. On the other hand, if

design at a particular a was desired, the user could tailor the input file accordingly simply

by specifying a and setting its maximum mutation size to zero.

The chromosome of each airfoil was defined as a nine-element string of genes, i.e.,

[al a2 a3 a4 bl b2 b3 b4 a]. Given a population of chromosomes, each one was converted

into a thickness distribution, a camber function, and an angle of attack. Thereafter, fitness

was evaluated and survivors selected in accordance with the rank-space method discussed

in Chapter 2. A new population was created, as before, through a combination of muta­

tion and crossover, with one variation. In the two-gene case, the chromosome was split in

the middle during crossover, while in the nine-gene case, the crossover point was selected

at random. By allowing a random crossover point (rather than a fixed, central one), the

algorithm was able to recombine genetic material more freely, possibly resulting in gene

combinations which would have been more difficult to locate otherwise. The chromosome

66



of the ith survivor was cut at the crossover point and reattached to the chromosome of the

ith survivor's mate, as indicated below ('I' indicates the crossover point):

ith survivor's chromosome: [al a2 a3 a4 b I b 2 b 3 b 4 Ul]
ith's mate's chromosome: [AI A2 A3 A4 B1 B2 B3 B4 U2]

! !
offspring #1: [al a2 a3 A4 B1 B2 B3 B4 U2]
offspring #2: [AI A2 A3 a4 b 1 b 2 b 3 b 4 Ul]

Initially, the optimal control parameter set of Section 2.3 was adopted for the air-

foil application. Preliminary results indicated, however, that several modifications were

required for this more complex, nine-dimensional solution domain:

1. MAXMUT: In the two-dimensional case, maximum mutation size was set at 1.0,

representing 5% of the total allowable range of values for each gene (± 10). Dur-

ing initial tests in the airfoil application, ai and bi values fell into the nominal range

of -0.5 to +1.5, so MAXMUT was reduced to O. 1, similarly restricting the maxi-

mum mutation per gene to 5% of the 'range' of values allowed. The genes were

not restricted per se; the nominal range was only utilized to determine an appro-

priate value for MAXMUT.

2. nniche: When only six total niches were used, as in the two-dimensional case, the

survivors appeared to inadequately populate the solution domain and seemed sus-

67



ceptible to local maxima. Unfortunately, the nine-dimensional solution domain

was impossible to visualize, so this characteristic could not be determined directly.

Instead, this conclusion was reached by observing the 'final' survivors at the end of

different evolutionary test runs, where each test run consisted of several hundred

generations. The final survivors of one test run often represented only one or two

qualitatively different designs, corresponding to one or two different evolutionary

niches. A subsequent test run, however, might produce designs which were very

similar to each other, but markedly different from the final survivors of the first

test run. In essence, it was deduced that various niches were widely separated, in a

chromosomal sense, and the population was insufficiently diverse to locate and

exploit these distant niches. In order to overcome this shortcoming, nniche was in­

creased to 49, which, in addition to the primary survivor, gave a total of 50 survi­

vors per generation and a population size of 200 individuals.

Other than these modifications, all of the control parameters discussed in Chapter

2 were implemented in the same way as for the two-dimensional case. While the algo­

rithm itself appeared to perform effectively, it became apparent that several physical con­

straints were necessary to ensure meaningful results.

68



4.2.5. Constraints

4.2.5.1. Angle of Attack

Ideally, no restrictions on angle of attack would have been required. If the

AEROSOLVER had been more accurate in predicting stall, especially for the Liebeck

airfoil, excessive u values would have been penalized by a lower fitness value. More so­

phisticated flow solvers would have been more accurate at high u, but would have re­

quired prohibitively long computational times. For example, the AEROSOLVER used in

this study required about one minute to evaluate a complete generation of 200 airfoils.

Conservatively estimating that a Navier-Stokes' solver could evaluate a single airfoil per

hour, it would take over a week to complete the calculations for a single generation.

Since evolutionary test runs often consisted of hundreds or thousands of generations,

computer time for a Navier-Stokes' solver would have been measured in months or years.

Therefore, a potential flow solver was deemed the only practical solution method in spite

of its limitations at high u. In order to compensate for this deficiency, u was limited to a

maximum of 10°, thereby restricting the solution domain to a regime in which the flow

solver was comparatively accurate.

69



4.2.5.2. Thickness

Drag and weight of the airfoil were not specifically addressed in the problem for­

mulation. Interestingly, the algorithm managed to exploit this limitation by producing ex­

tremely thick airfoils, up to maximum thickness values of 50% or more. It is true that

enormously thick airfoils can produce impressive lift coefficients, but the associated drag

and weight render them utterly impractical for aerodynamic applications. Consequently,

future airfoils were limited to a maximum thickness no greater than 20% of the chord.

On the other extreme, the evolution towards unrealistically thin airfoils revealed a

limitation of the panel method itself. Since the thickness weighting coefficients, ai, were

not restricted in any way, the superposition of thickness functions could easily produce a

(theoretical) airfoil with zero or negligible thickness. When this occurred, the near super­

position of top and bottom collocation points produced erroneously high velocities which

had a major effect upon lift and moment predictions. Similarly, inverted or 'negative

thickness' airfoils, which resulted when Lai < 0, were wholly unrealistic from a practical

standpoint. Obviously, a constraint on minimum thickness was required to weed out

mathematically superb designs which were physically unattainable.

At the point of maximum thickness, airfoil thickness must be at least 5% (0.05c) to

ensure adequate structural strength. Near the trailing edge, however, where nominal

thickness values on the order of 0.0001 were common, the 'thinness' restriction had to be

significantly relaxed to allow the airfoil to taper off to the trailing edge point. It was

therefore impossible to enforce a single fixed minimum thickness value along the entire

70



chord length. Instead, a variable restriction, based upon the thickness distribution of the

Selig airfoil, was implemented.

Past experience has indicated that the trailing edge of a 12" Selig is so thin as to

pose manufacturing difficulties [Arena, 1995]. This problem could be partially overcome

by using a larger scale, but eventually a point would be reached where the trailing edge

would become structurally unsound. However, detailed structural analysis was deemed

beyond the scope of the current study, especially since this entire project was performed

using non-dimensional airfoils. Therefore, it seemed reasonable to limit the minimum

thickness at any collocation point to one-half the thickness of the Selig airfoil at the corre­

sponding point.

4.2.5.3. Leading Edge Pressure Spikes

The leading edge pressure spike had an impact upon the inviscid solution (prior to

the incorporation of viscous effects) which was not immediately apparent. Since the in­

viscid lift coefficient was determined by integrating the cp curve, the large pressure spike

actually increased the calculated CI,u value slightly. For each of the basis airfoils, the

magnitude of these cp values was no greater than 5.0, and since the spike extended only a

very short chordwise distance, its effect upon overall lift was negligible. The GA, how­

ever, often produced airfoils with a much sharper leading edge, and these airfoils had ut­

terly unrealistic Cp values of -100 or more. Although these cp values were only present at

one or two collocation points, the magnitude of these spikes was such that the overall lift

71



coefficient was substantially affected. Research by Valarezo and Chin indicates that, for

low RelMach number combinations, the absolute limit on cp is in the range of -5.0 to -7.0

[1994]. This physical limitation arises from the fact that local pressure can never be less

than zero, regardless of the theoretical velocity distribution. Consequently, any airfoil

shapes which produced pressure coefficients less than -6.0 at any collocation point were

discarded from further consideration.

4.2.5.4. Pitching Moment Coefficient

The flow solver also demonstrated limited ability to predict the performance of

extremely cambered airfoils since boundary layer calculations were conducted only for the

upper surface. For common airfoil shapes at positive (1, separation is normally associated

with the top surface where the boundary layer must overcome adverse pressure gradients.

On the other hand, the lower surface flow is almost always characterized by a favorable

pressure gradient and is unlikely to separate. Consequently, most separation prediction

methods deal primarily with the upper surface boundary layer, even though highly cam­

bered airfoils may encounter separation along the lower surface as well.

In general, camber not only contributes to lift, but also has an adverse effect on

pitching moment, as evidenced by the performance of the Wortmann and Selig airfoils.

Considering the correlation between camber and pitching moment, it seemed reasonable to

restrict Cm rather than camber directly. Constraining the pitching moment not only cir­

cumvented this limitation of the flow solver, but also encouraged evolution towards a re-

72



gime which was advantageous from a practical standpoint, as discussed in Section 4.2.1.

Therefore, Cm was restricted to -0.1; airfoils whose nose-down pitching moments exceeded

this limit were given a zero fitness value, effectively removing them from further consid­

eration.

It should be emphasized that some subjectivity was involved in the selection of

constraints, which is true for any constrained optimization problem. A different set of re­

strictions would certainly have led to the evolution of different airfoils. Nonetheless, the

goal of this project was to demonstrate the GA technique itself: not necessarily to design

an airfoil for a particular flight regime. In summary, the task of the genetic algorithm was

to:

Maximize:

Subject to:

CI (fitness)

1. Angle of attack :::; 10°

2. Maximum airfoil thickness:::; 20% of chord

3. Minimum airfoil thickness ~ 50% as thick as the Selig at corresponding

collocation points

4. Cp,min ~ -6.0

5. Cm ~ -0.1

73



4.2.6. Seed Population

In the two-dimensional optimization problems of Chapter 2, the dimensions of the

solution domain were known, i.e., each gene was constrained to a range of allowable val­

ues between fixed upper and lower boundaries. For example, in the simple solution land­

scape, the genes of each chromosome in the seed population were determined by randomly

selecting values in the interval between ±1O. With these mathematical constraints, it was

simple to create a seed population which effectively covered the entire solution space.

In this airfoil application, however, the constraints were physical rather than

mathematical in nature. In other words, the weighting factors of the basis shapes were not

restricted directly; rather, the resulting airfoil was constrained by limitations in thickness,

cm, etc., which were applicable only to airfoils resulting from combinations of genes. It

was impossible to determine realistic upper and lower bounds on the individual genes in

advance, so there was no range from which to randomly select values for the seed popula­

tion.

In many engineering applications, the designer begins with an existing design as a

starting point. In order to evaluate GA sensitivity to variations in starting design, three

different seed populations were considered. The use of different starting points also pro­

vided an opportunity to evaluate whether or not the search converged to a global maxi­

mum. A globally optimum solution (subject to the design constraints and the limitations of

the flow solver) would be indicated if the algorithm converged to the same shape regard­

less of the initial design selection. On the other hand, if different starting points yielded

74



different 'optimal' airfoils, one would be forced to the conclusion that the algorithm had

become stuck in a local maximum.

In the first test, the entire seed population consisted of mutated versions of the

NACA 4412 airfoil (in addition to the unmutated 4412 itself). Similarly, the second cycle

was initiated with the Selig airfoil as the starting point. These two airfoils were chosen

since they had very different performance characteristics: the 4412 has the lowest lift and

moment coefficients of the four basis shapes while the Selig airfoil has the highest.

Preliminary test runs indicated that all viable airfoils had genes which were nomi­

nally in the range of -0.5 to +1.5. This range was empirically established only after the

completion of several evolutionary cycles and served solely as a guideline. Therefore, the

seed population of the third test was created by randomly selecting genes for each individ­

ual within this range. Finally, for the sake of comparison, a purely random test was con­

ducted in which the genes were randomly generated, again in the range of -0.5 to 1.5, for

each generation, as described in Chapter 2.

4.2.7. Airfoil Evolution

Initial tests revealed that very little evolution occurred after 200 generations or so.

In order to be reasonably assured of convergence without excessive computational effort,

subsequent experiments were terminated after 300 generations. The results of three evo­

lutionary cycles corresponding to the three seed populations, in addition to a purely ran­

dom search, are indicated in Figure 4.7.

75



2

1

1.5

'.--.......~IIftII:~
~- --v - ~ -: .. ~ ~I :: ,Ill

r
j

I
i
I,

I
I

f

j
:
;,

(b) Starting Airfoil: Selig S1223

O~.......,...,.~I""""r""'.....,...,."""""""'....,...,...~"""""""""""'I""""~......

o 50 100 150 200 250 300

Generation

1

2

1.5

0.5

2.5 --------------.

0-.p..,.""I""""I'--........,."'"l'"""P""'~"P"""'P"".......,...,...........1""""P""'......

o 50 100 150 200 250 300

Generation

,rJ1".:r4~rn
/- .,

f,,,
I
I

/
I

!
:
i

0.5 !
t

(a) Starting Airfoil: NACA 4412
2.5 ---------------.

Fitness

Maximum

Average

(c) Randomly Populated
Seed Domain

(d) Purely Random
Search

2.5 -----------.......

2

1.5

Fitness

1

0.5

0-.p..,.""I""""I'--........,."'"l'"""P""'~"P"""'P"".......,...,. ..........1""""P""'......

o 50 100 150 200 250 300

Generation

2.5 --------------.

2

1.5

1

0.5

o
o 50 100 150 200 250 300

Generation

Figure 4.7. Maximum and Average Airfoil Population Fitness

76



While the random search did identify an airfoil with a Cl,max of 1.61, the vast major­

ity of the randomly-generated airfoils violated one or more of the physical constraints and

had zero fitness. On the other hand, it was interesting to note that the fitness curves for all

three GA tests exhibited the same qualitative behavior and terminated in the same maxi­

mum fitness (approximately 2.4). These results indicate that the algorithm was quite in­

sensitive to the particular starting point selected, provided that the population was

sufficiently large and diverse.

Several trends in the fitness curves are particularly noteworthy. The rapid rise in

initial fitness levels was due, in part, to increasing angles of attack. Regardless of thick­

ness or camber distributions, virtually all airfoils exhibit a linear relation between Cl and a

at low angles of attack. During the initial phases of evolution, survivor selection was

heavily biased towards those candidates with high a, while the other genes were relatively

unimportant. This trend continued until a had stabilized near 100
, corresponding roughly

to Cl values of 1.5 to 1.6. Thereafter, angle of attack was essentially constant and subse­

quent evolution resulted from alterations in airfoil geometry.

Figure 4.7(b) indicates that the Selig airfoil required about 20 generations before

any evolution took place. This apparent anomaly arose from the constraints incorporated

in the optimization problem. As discussed previously, the aft-loaded Selig airfoil has a

large pitching moment, on the order of -0.3, and any airfoil with Cm < -0.1 was automati­

cally given a zero fitness value. Numerous generations were required to overcome this Cm

barrier; however, once an individual with a suitable Cm was identified, evolution progressed

normally.

77



Finally, each of the three GA cycles indicates a step-wise improvement in maxi­

mum and average population fitness values. The steps are smaller than in the two­

dimensional case, presumably because the larger number of genes required several simul­

taneous mutations for an 'evolutionary breakthrough' .

Figures 4.8 to 4.10 illustrate the evolutionary process; each diagram corresponds

to the primary survivor of the indicated generation. Although the airfoils in the beginning

stages of evolution are markedly different from one another, a definite trend of increasing

camber and forward loading is common to all three. Regardless of the starting point, each

cycle converged to virtually the same design, as depicted in diagram (f) of each figure.

Because of this trend, it certainly appeared that this design represented the globally opti­

mum solution to this particular optimization problem, although impossible to prove

mathematically.

78



0.4 0.6 0.8 1.0
x/c

-6 Generat!,?~. 300 Fitness = 2.39)

-5 ,/t \\
, ..

I ,, .., ..

-4'" ..." .,
I ..

I •
I \, \

:,' \\, \, ..
!

-3

Cp -2

-1

o
1~~~ ----,-----r-----r----1

0.0 0.2

-6 Generation 10 Fitness = 1.24)

-5

-4

-3
Cp -2 "~--""""'., "", ..

I ""I ....
I ".-1 / ..,

I

o
1---p-....,........,....-.,..-,.........,..........---.--.,............~

0.0 0.2 0.4 0.6 0.8 1.0
x/c

-6 Generation 30 Fitness = 1.74)

-5

-4
4lI-~"

~' '"-3 ,~ .""
/' "\

Cp -2 / ,.•.•.•....

-1

o :
i --- ..-..--------------..---- .

1 ~-,...-...,....-..,....-,...-...............----,--.,........,.......01

0.0 0.2 0.4 0.6 0.8 1.0
x/c

..-----------

,. ..., ....

:,' \", ,, .
,: \.

,I \.., .., .., \, ..
.' \

:' \., \
I ~, ",

0.0 0.2 0.4 0.6 0.8 1.0
x/c

o ~
, ---~-- -- - -_ --------_.- -

1 ~-""-"",,,,-"""'-.,..........,~----,-......,.........,...----I

0.0 0.2 0.4 0.6 0.8 1.0
x/c

-6 Generation 50 Fitness = 2.17)

Generation 1 Fitness = 0.79)-6 ----------.:""-----------,

-5

-4

-3

Cp -2
"\'.-1 ......-.._----.~----- ...

o
1 '

-6 Generation 20 Fitness = 1.45)

-5

-4

-3

Cp -2

-1

-5

-4

-3

Cp -2

-1

o
~ ....._-------------------_.......1 ----'r"--.....,....-...,.....--r--~,...........,_____r'~~___t

0.0 0.2 0.4 0.6 0.8 1.0
x/c

Figure 4.8. Evolution ofAirfoils
(Starting Airfoil: NACA 4412)

79



-.

1.0

1.0

0.4 0.6 0.8
x/c

-6 Gener~~~~n 300 Fitness = 2.39)
, ...

I \". \, ,
t ,

: \
: '.., \

; \

i \'.
i \.,
: ~i ,.

-5

-4

-3

Cp -2

-1

o
1~""""'''''''''~'''-''''''-'''''''-''''''''''''-''''''''''''

0.0 0.2

-5

-4

-3

Cp -2

-1

o
I,.····· ------ ......---~-----~-..,---- •...-..

1~....,.......,....~...-...,..-.......-.,..........-.........-4

0.0 0.2 0.4 0.6 0.8
x/c

-6 Generation 20 Fitness = 0.81)

-5

-4

-3

Cp -2
,.....-.~ .................

-1 / .....

O,;'l"'__­

1..........-...-........-.............-........."'1""---.-----'

0.0 0.2 0.4 0.6 0.8 1.0
x/c

-6 Generation 50 Fitness = 1.67)

Generation 1 Fitness = 0.0
-6.......,....-----...-.....----~

-5

-4

-3

Cp -2
", ...

1
I .......

-:' _...._...._----...::::~
o
I-t-..........-....,.......,.....~...,....-.......-.,.....-...-.........-I

0.0 0.2 0.4 0.6 0.8 1.0
x/c

Generation30 Fitness = 1.16)
-6.......,....-----~------,

-5

-4

-3
Cp -2 "".~'", ..

I ".
I ".

:. "."-
-1 :
o , _..

..... - .._--.. .----------_ .

1-"---.....................,....-........._--~

0.0 0.2 0.4 0.6 0.8 1.0
x/c

-6 Genera!i?n 100 Fitness = 2.32)
, ../ "

-5 :' \,
t ,

! "i \
-4: ", .

: "-3! \
! \,

Cp -2 ! \
I ", ..

-1

o
1~""""""'iiiioiipiiiiooi.....................,....-.......-.,.....-...-~

0.0 0.2 0.4 0.6 0.8 1.0
x/c

Figure 4.9. Evolution of Airfoils
(Starting Airfoil: Selig S1223)

80



Generation 10 Fitness =1.72)
-6---.-------~-----,

-5

-4

-3 """"......,
"" ....

Cp -2 ~"'.........
... ..........

1
~ ........

- ' .... ,

O--L.---------~

~ a •••-------------------- .

1 I •••

0.0 0.2 0.4 0.6 0.8 1.0
x/c

-6 Generation 50 Fitness = 1.95)

-5

-4 ,"..",, ~.

-3,' \., '"
C ' .~

P -2 : '~."
' ......

".
-1 ~""""""

0--. ._..------_.-._ --_ -_ ..~---_ .
1 : a·a·

1.0

Generation 1 Fitness = 1.12)

:..
..... ..~

' ...
" .......

".".
~--"-" ....-1

o 1-;-•••.-.. -.....-....-------_-__-__-_-:__:"'::":__=-=__=-:..~_.~...:.::;;...J:::J
1 ~....,..........,....-,.....................-.....-~......-....--I

0.0 0.2 0.4 0.6 0.8
x/c

-6 Generation 30 Fitness = 1.92)

-5

-4
-3 :/•....•.......

, '"

Cp -2 ' """"
....

-1 -- ......

o . ~
: • ------- a

1 : ....

-6

-5

-4

-3

Cp -2

0.0 0.2 0.4 0.6 0.8 1.0
x/c

Generation 100 Fitness = 2.17)
-6-----~----.

-5

-4

-3

Cp -2

-1

o .
~ a···· ------------------------ .....

1~......,....-.........-....,........~-r--.........-.,......-......-,.....--.I

0.0 0.2 0.4 0.6 0.8 1.0

x/c

0.0 0.2 0.4 0.6 0.8 1.0
x/c

-6 Gene:~ti~~ 300 Fitness = 2.42)

-5 ! \: \,, \

-4:' \
" ',.

-3! \,\
: ...

Cp -2 / \
I ~

!
-1

o
1~-....,....-.........-....,........~-r--.........-.,......-,.......-,..........-I

0.0 0.2 0.4 0.6 0.8 1.0
x/c

Figure 4.10. Evolution of Airfoils
(Starting With Randomly Populated Seed Domain)

81



4.2.8. Optimal Airfoil Performance

The GA optimal airfoil was a highly cambered design with a forward-loaded pres-

sure distribution and an estimated boundary layer separation point located at 0.64c. Fig-

ure 4. 11 shows the geometry and pressure distribution of the GA optimal airfoil along

with the four basis airfoils for the sake of comparison. The figure illustrates that the opti-

mal pressure distribution is one in which the Vmax point is shifted aft significantly, delaying

boundary layer transition and separation.

The performance of the five airfoils is summarized in Table 4.1. These results in-

dicate that the genetic algorithm successfully identified a design with significantly higher

fitness than any of the basis airfoils. Essentially, the GA optimal design combined the fa-

vorable characteristics of each of the basis airfoils: the high Cl of the Selig and Wortmann

airfoils with the low Cm of the Liebeck and NACA.

Airfoil Cl Cm Fitness

Selig S1223 2.33 -0.28 0.0
(cm constraint violated)

Wortmann FX63-137 1.67 -0.26 0.0
(cm constraint violated)

Liebeck LA2566 1.08 -0.08 1.08

NACA4412 1.63 -0.09 1.63

GA Optimal 2.42 -0.09 2.42

Table 4.1. Comparison Between Basis Airfoils and GA Optimal Airfoil
(a = 10°, Re = 250,000)

82



0.2 0.4 0.6 0.8 1.0

.. ~..-----------------------_... ~..
...

\,
",
"""".........

" ......
...... ....... ...... ......------ ....... .... _--- ..

Wortmann FX63-137-6 -r-------:....~~=~.=...;;;....;;;~~_..,

-5

-4

-3

Cp -2

-1

o
1

0.0

Seli S1223
-6----~~;""";",,,.==...;;.....----..

-5

-4

-3

Cp -2

-1

o I

....-.- _-_ .-_--_ .._-------_ -

1.........................~.........-~poo--r----,. ......,...--I

0.0 0.2 0.4 0.6 0.8 1.0

GA 0 timal Aitfoil-6 ----....,------'---------,

-5 ;1 '\\.
,! \,

-4 :,i \
-3 i \ ....

Cp -2 ! \
i \,
!

-1

o
1 ~~...,...._..,....__,........,__r"____,........,.........,...-4

0.0 0.2 0.4 0.6 0.8 1.0

Liebeck LA2566-6------------.

-5

-4
I'.

-3 : \,
Cp -2 I •••••,~

''''-...
' ..

' ....,
-1 .'....,

o
1~__~.........-~I"""-"""'____P"........ .....f

0.0 0.2 0.4 0.6 0.8 1.0

NACA4412
-6--~....:..=.....=...=..;:;....;:::::........:.-~---..,

-5

-4

-3

Cp -2

-1

o ~I---------~, .......1 ~~...,...._.............,.........~____P" .................,.........j

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.11. Airfoil Geometry and Pressure Distributions for
Basis Airfoils and GA Optimal Airfoil

(u = 10°, Re = 250,000)

83



The lift and moment performance of the GA design was evaluated at angles of at-

tack from 0° to 16°. The CIa curve in Figure 4. 12 illustrates a linear relation between CI and

a up to the stall angle of attack (approximately 12°). As a increases beyond stall, CI drops

off precipitously, corresponding to a sudden forward jump in the boundary layer separa-

tion point.

2.5

2

1.5

Cl
1

0.5

O---t--~"""""""----~-r--"P"----r---r-.........-T"~

o 2 4 6 8 10 12 14 16

Alpha (degrees)

o

-0.05

-0.1

Cm -0.15

-0.2

-0.25

o 2 4 6 8 10 12 14 16

Alpha (degrees)

Figure 4.12. CI, Cm Curves for GA Optimal Airfoil
(Re = 250,000)

The Cma curve also depicts a linear relation between Cm and a below stall angle of

attack. Interestingly, the GA design has a zero fitness value for any a outside the narrow

range of 9.8° to 10°. Below 9.8°, the Cm restriction is violated, while above 10° the angle

of attack limit is exceeded. Of course, this does not indicate that the physical perform-

ance of the GA airfoil would undergo a drastic change as a passed through 9.8° or 10°;

the sharp discontinuity in fitness is purely a result of the way the mathematical constraints

were incorporated.

84



At low angles of attack, the Cm curve indicates that the GA airfoil has a rather large

pitching moment (-0.275 @ 0°). While undesirable, this Cm is no greater than that of the

Selig airfoil throughout its angle of attack range below stall u. At 10° u, the GA airfoil

has slightly higher lift than the Selig, but with a substantially lower pitching moment.

Since drag estimation was not conducted in this study, the drag characteristics of the GA

optimal airfoil were not considered.

4.2.9. Limitations

The selection of basis airfoils, control parameter values, and, particularly, the de­

sign constraints, all had an impact on the genetic algorithm's performance. Moreover,

there is no guarantee that this GA optimal design truly corresponds to the global maxi­

mum. As discussed in Section 1.2.7, one cannot prove that any GA-based design repre­

sents the mathematically optimum solution. However, considering the fact that the

solution converged to the same design regardless of the starting point, one could reasona­

bly infer that the final GA airfoil does, in fact, represent the best possible design subject to

the particular constraints incorporated and the limitations of the AEROSOLVER.

The performance of the GA airfoil was not independently validated. Unques­

tionably, the inaccuracies of the AEROSOLVER affected the outcome of the genetic al­

gorithm search. In the author's opinion, this was the most significant limitation of this

project. It would have been highly desirable to evaluate the performance of the GA airfoil,

either with a Navier-Stokes flow solver, or, ideally, through wind tunnel experiments.

85



CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5. 1. Conclusions

The primary objective of this research project was to examine the viability of a ge­

netic algorithm as a mechanism for optimizing airfoil design. Numerous practical consid­

erations and potential pitfalls were identified. Specifically, an algorithm was developed to

be used in conjunction with existing aerodynamic performance prediction methods. This

project demonstrated that genetic algorithms are potentially useful tools in the airfoil de­

sign optimization process. The following conclusions were reached during this investiga­

tion.

1. Genetic algorithms are robust schemes for optimizing complex, multi-dimensional

systems. The concept is rather intuitive and requires little mathematical analysis

beyond the evaluation of the objective function which is to be maximized. How­

ever, extremely epistatic relations are ill-suited to optimization with this technique,

as revealed by the 'collocation points as genes' approach. Better results are ob-

86



tained if the problem is reformulated to reduce the number of design variables

and/or the complexity of interactions between them.

2. The optimal combination of control parameters can be quite problem-dependent.

Mutations on the order of 5% to 10% of the range of allowable gene values seem

to provide a satisfactory search; smaller mutations can be used to fine-tune a par­

ticular design while larger ones yield a more random search of the entire solution

domain. Simple, smooth functions can be optimized using smaller populations and

relatively fe~ survivors, and the algorithm can easily 'hill-climb' local maxima

through mutations alone. More complex functions may require larger populations,

additional 'niche' survivors, and the presence of crossover. In general, algorithm

performance is enhanced by a higWy diverse gene pool and the recombination of

genetic material through crossover.

3. It was proven that the algorithm was highly effective in locating global maxima of

two-dimensional functions. Although impossible to prove mathematically, the

technique seemed to find the global maximum in the airfoil application as well, as

evidenced by the fact that the algorithm repeatedly converged to the same design

regardless of the starting point used. It significantly outperformed a purely ran­

dom search, especially for larger and/or more complex solution domains.

4. The GA code developed in this study was highly modular. By incorporating a suit­

able fitness solver subroutine and imposing appropriate mathematical or physical

87



constraints, the algorithm could be used to optimize a wide variety of design

problems.

5. The genetic algorithm is strictly a search technique. It abides by the rules, so to

speak, which are dictated by the fitness solver. Any results obtained from this

technique are valid to the degree that the fitness solver models the physical system

it represents. Since the very nature of the GA requires that fitness be evaluated re­

peatedly, the accuracy of the fitness solver must be weighed against computational

time requirements.

6. As with most optimization schemes, a sound understanding of the engineering

principles involved is essential if the results are to be physically realistic. Further­

more, the algorithm can cleverly exploit limitations of the fitness solver, as dem­

onstrated in this study by the evolution towards unrealistically thin airfoils.

Appropriate constraints may be required to ensure physically meaningful results

and to restrict the search to the portion of the solution space in which the fitness

solver is sufficiently accurate.

7. The major shortcoming of this study was the limited accuracy of the aerodynamic

flow solver. Although the AEROSOLVER was qualitatively valid, as evidenced

by the Cl and Cm curves of the basis airfoils, it was simply inadequate from a quanti­

tative viewpoint. This limitation was most severe at higher angles of attack, unfor­

tunately corresponding to the regime in which maximum lift occurs.

88



8. Regardless of the limitations of the flow solver, the genetic algorithm successfully

identified an airfoil with significantly better performance than any of the basis air­

foils. Its robustness was demonstrated by the fact that it converged to virtually the

same solution regardless of the initial design. Any errors in estimated performance

resulted from the AEROSOLVER, not the algorithm itself.

5.2. Recommendations

Ideally, a more accurate flow solver would have been used in this study, although

full Navier-Stokes solvers are too computationally intensive to be feasible with current

computer capabilities. Alternatively, greater precision might have been possible with a

more accurate potential flow solver, especially if boundary layer analysis were conducted

using a method specifically developed for use with an inviscid flow distribution.

Another possibility would have been to use the AEROSOLVER iteratively. The

boundary layer displacement thickness could have been added to the airfoil contour, and a

modified velocity distribution calculated by enforcing flow tangency at the edge of the

boundary layer rather than at the airfoil surface. This methodology would require twice as

much computational effort, yet still be enormously faster than a Navier-Stokes or Euler

solver.

The use of additional constraints might have circumvented some of the difficulties

encountered in this investigation. Specifically, the design problem could have included a

89



penalty for drag, or have been reformulated to maximize LID ratio, thereby encouraging

the evolution of more streamlined shapes for which the potential flow solution was more

accurate.

Finally, experimental validation of the results would have been very beneficial.

Any future research should include full CFD evaluation or wind tunnel data of the final

design in order to validate the results obtained in the study.

90



BlliLIOGRAPHY

Abbott, I. M., & Von DoenhofJ: A. E. (1959). Theory of Wing Sections. New York:
Dover Publications, Inc.

Arena, A. S. (1995). Personal Communications.

Beale, E. M. L. (1988). Introduction to Optimization. New York: John Wiley & Sons,
Ltd.

Bradshaw, P., Cebeci, T., & Whitelaw, J. H. (1981). Engineering Calculation Methods
for Turbulent Flow. New York: Academic Press, Inc.

Cebeci, T., & Smith, A. M. O. (1974). Analysis of Turbulent Boundary Layers. New
York: Academic Press, Inc.

Cheung, M. (1993). A Survey and Comparison of Conjugate Gradient Methods for Op­
timization. M. S. Thesis. Oklahoma State University.

Cheung, S., Aaronson, P., & Edwards, T. (1995). CFD Optimization of a Theoretical
Minimum-Drag Body. Journal ofAircraft, 32(1), 193-198.

Dulikravich, G. (1992). Aerodynamic Shape Design and Optimization. Journal of Air­
craft, 29(6), 1020-1026.

Dumitrache, I. (1995). Special Control Seminar Series on Intelligent Control. Oklahoma
State University, 25 July 1995.

Ellis, T. M. R. (1982). A Structured Approach to Fortran 77 :et-ogramming. London:
Addison-Wesley.

Eppler, R. (1990). Airfoil Design and Data. Berlin: Springer-Verlag.

Eppler, R., & Somers, D. M. (1980). A Computer Program for the Design and Analysis
of Low-Speed Airfoils. Hampton, VA: National Aeronautics and Space Admini­
stration.

Filho, J. L. R., Treleaven, P. C., & Alippi, C. (1994). Genetic Algorithm Programming
Environments. Computer, 27(6), 28-43.

91



Fisher, P. A. (1930). The Genetical Theory of Natural Selection. Oxford: Oxford Uni­
versity Press.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine
Learning. New York: Addison-Wesley.

Hughes, W. F. (1979). An Introduction to Viscous Flow. New York: McGraw-Hill, Inc.

Kai, T. (1995). A Survey of Separation Prediction MethodsApplied to Potential Flow
Solutions for an Airfoil. M. S. Thesis. Oklahoma State University.

Karr, C. L. (1995). Improved Computer Modeling of Separation Equipment Using Least
Median Squares Curve Fitting and Genetic Algorithms. Advances in Filtration and
Separation Technology, 2, 385-389.

Katz, J., & Plotkin, A. (1991). Low Speed Aerodynamics: From Wing Theory to Panel
Methods. New York: McGraw-Hill, Inc.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated An­
nealing. Science, 220(4598), 671-680.

Kuethe, A. M., & Chow, C. (1976). Foundations of Aerodynamics: Bases of Aerody­
namic Design (3rd ed.). New York: John Wiley & Sons.

Lee, K. D., & Eyi, S. (1992). Aerodynamic Design via Optimization. Journal of Aircraft,
11(1), 1012-1019.

Levy, S. (1992). Artificial Life. New York: Pantheon Books.

Liebeck, R. H. (1970). Optimization of Airfoils for Maximum Lift. Journal of Aircraft,
1(5),409-415.

Liebeck, R. H. (1973). A Class of Airfoils Designed for High Lift in Incompressible Flow.
Journal of Aircraft, 10(10),610-617.

Liebeck, R. H. (1978). Design of Subsonic Airfoils for High Lift. Journal of Aircraft,
12(9),547-561.

Moran, J. (1984). An Introduction to Theoretical and Computational Aerodynamics.
New York: John Wiley & Sons, Inc.

Nelson, R. C. (1989). Flight Stability and Automatic Control. New York: McGraw-Hill,
Inc.

92



Obayashi, S. & Takanashi, S. (1995). Genetic Optimization of Target Pressure Distribu­
tions for Inverse Design Methods. AIAA Paper 95-1649, American Institute of
Aeronautics and Astronautics.

Ohm, D. (1994). Generalized Simulated Annealing for Function Optimization Over Con­
tinuous Variables. M. S. Thesis. Oklahoma State University.

Quagliarella, D., & Della Cioppa, A. (1994). Genetic Algorithms Applied to the Aerody­
namic Design of Transonic Airfoils. AIAAPaper 94-1896, Colorado Springs, CO:
American Institute of Aeronautics and Astronautics.

Rice, M. S. (1971). Handbook of Airfoil Sections for Light Aircraft. Appleton, WI:
Aviation Publications.

Schlichting, H. (1987). Boundary Layer Theory. New York: McGraw-Hill, Inc.

Selig, M. S., & Guglielmo, J. J. (1994). High-Lift Low Reynolds Number Airfoil Design.
12th AIAA Applied Aerodynamics Conference, Colorado Springs, CO.

Srinivas, M., & Patnaik, L. M. (1994). Genetic Algorithms: A Survey. Computer, 27(6),
17-26.

Valarezo, W.O., & Chin, V. D. (1994). Method for the Prediction of Wing Maximum
Lift. Journal of Aircraft, 11(1), 103-109.

Vanderplaats, G. N. (1984). Numerical Optimization Techniques for Engineering Design:
With Applications. New York: McGraw-Hill, Inc.

Wang, F. (1991). Computer Aided Optimal Design of Duct Systems. M. S. Thesis. Okla­
homa State University.

White, F. M. (1991). Viscous Fluid Flow (2nd ed.). New York: McGraw-Hill, Inc.

Winston, P. H. (1992). Artificial Intelligence (3rd ed.). Reading, MA: Addison-Wesley.

Yamamoto, K. & Inoue, O. (1995). Applications of Genetic Algorithm to Aerodynamic
Shape Optimization. AIAA Paper 95-1650, American Institute of Aeronautics and
Astronautics.

93



APPENDICES

94



APPENDIX A: GA.CON CONTROL FILE

Reynolds number:
250000
Number of panels (m):
150
Number of genes (NGENE = 2 x #airfoils + 1):
9
Thickness weightings of component airfoils (Liebeck, Wortmann, Selig, NACA, in order):
O. O. 0.1.
Camber weightings of component airfoils (Liebeck, Wortmann, Selig, NACA, in order):
O. O. 0.1.
Alpha (degrees):
o
Max mutations of thickness weightings (separated by spaces):
.1 .1 .1 .1
Max mutations of camber weightings (separated by spaces):
.1 .1 .1 .1
Max mutation of alpha (degrees):
1.
Number of test runs (NTESTMAX):
1
Number of generations per test run (NGENMAX):
300
Number offittest (w/o diversity) to be selected (NBEST):
1
Number of additional niches (NNICHE):
49
D IVWEIGHT (1.01: diversity is tiebreaker, 0.99: fitness is tiebreaker):
1.01
Number of mutated offspring per survivor (NMUT):
1
Number of cross-breedings (NCROSS); each crossbreeding yields two offspring:
1
HALT after each generation to view output (yin)?:
N
Termination fitness (TERMFIT); program stops if this value is reached:

95



3.0
Probability of selection (P: 0.0 - 1.0):
0.7
Number ofgenerations between printing (NPRINT):
10
Randomly generated seed initial population? (IRANINIT: 1=yes, O=no)
o
Purely random search? (IRAND: 1=yes, O=no):
o

96



APPENDIX B: GA.F COMPUTER PROGRAM

input variables include:

this program, ga.f, optimizes an airfoil by a genetic algorithm.

the program can be adapted to optimize any objective function
simply by replacing the aerosolver subroutine with a different
fitness function (including constraints)

reynolds number
number of panels
number of genes (2 x #airfoils + 1)
'ngene' elements; containing thickness and camber

weightings of basis airfoils, plus alpha
'ngene' elements; contains maximum allowable mutation

size for each gene
number of test runs
number of generations per test run
number of primary survivors to be selected
number of 'niche' survivors to be selected
determines the tiebreaker in rank-space selection.

(either diversity rank (1.01) or fitness rank (0.99))
number of mutated offspring per survivor
number of cross-breedings per generation. each cross­

breeding produces two offspring
determines whether chromosomes, mutations, fitness,

etc. are displayed for each generation (y/n)
termination fitness. program stops if this value is

reached
probability factor, normally between 0.5 and 1.0.

controls amount of bias toward selection of most
fit/diverse indiv.

number of generation between printouts of primary
survivor information

determines if seed population is to be randomly
generated within domain space (l=yes, O=no)

allows purely random search, if desired (l=yes, O=no)irand:

iraninit:

nprint:

halt:

termfit:

p:

nmut:
ncross:

maxmut:

ntestmax:
ngenmax:
nbest:
nniche:
divweight:

re:
m:
ngene:
chromo:

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c======================================================================

c======================================================================
c
c
c
c
c
c
c
c
c
c
c
c
c
c

integer
+
real

+
+

fitrank(200) ,divrank(200,200) ,combrank(200,200),
temprank(200), surv(200), nptr(200), survctr, generat
chromo(200,200), fitness(200), div(200,200), temp(200),
maxmut(10), adam(200), maxfit(1000), avgfit(1000),
initmut(10)

character halt
common /rey/ re

97



character (len = 10) date, time, zone
integer date_time (8)

pi = 4. * atan(l.)

open (unit
open (unit
open (unit

I, file
2, file
8, file

'ga.con', status = 'old')
'ga.out', status = 'unknown')
'cps.dat', status = 'unknown')

11

write(*,11) 'generation',
write(2,ll) 'generation',
format (a16, a10, a10)

'maxfit' ,
'maxfit' ,

'avgfit'
'avgfit'

c------------------
c get user input and initialize variables
c------------------

call user input(m, ntestmax, ngenerat, ngene, nbest, nniche,
+ divweight, nmut, maxmut, ncross, adam, halt, termfit, p, nprint,
+ iraninit, irand)
close(unit = 1)

do 3000 ntest l,ntestmax

nind = (nbest + nniche) * (1 + nmut + 2 * ncross)
survctr = nbest + nniche

c------------------
c initialize the random number generator for each generation
c------------------

do 1000 generat = 1, ngenerat

call date and time(date, time, zone, date_time)
ranval = real(date time(8))
call srand(ranval)
ranval = rand()

c------------------
c create the seed population, using a large initial mutation
c (if desired) from a desired starting design, or by randomly
c selecting genes within the solution space
c------------------

if (generat .eq. 1) then
surv(l) = 1
do 10 j = I, ngene

chromo(l,j) = adam(j)
10 initmut(j) = 1. * maxmut(j)

call mutate (chromo,surv, l,nind-1,ngene, initmut, O,nind,halt)
if (iraninit .eq. 1) then

do 20 i = 1, nind
do 20 j = I, ngene

ranval = rand()
chromo(i,j) = 2.5 * (ranval - 0.2)

20 continue
end if

else
call mutate (chromo, surv, survctr, nmut, ngene, maxmut,

+ ncross, nind, halt)
end if

if (irand .eq. 1) then
do 30 i = 1, nind

98



do 30 j = 1, ngene
ranval = rand()
chromo(i,j) = 2.5 * (ranval - 0.2)

30 continue
end if

c------------------
c calculate fitness and fitness rank for each individual
c------------------

do 40 i = 1, nind
nshow = 0
do 50 j = 1, ngene

50 temp(j) = chromo(i,j)
call aerosolv(m, temp, nshow, fitlm, ngene)
fitness(i) = fitlm

40 continue

call rankem(fitness, fitrank, nptr, nind)
do 60 i = 1, nbest

60 surv(i) = nptr(i)
survctr = nbest

c------------------
c determine the diversity rank for each individual
c------------------

do 70 niche = 1, nniche
call diversity (chromo, surv, survctr, div, nind, niche, ngene)

do 80 i = 1, nind
80 temp(i) = -1. * div(niche,i)

call rankem (temp, temprank, nptr, nind)
do 90 i = 1, nind

90 divrank(niche, i) temprank(i)

c------------------
c use fitness and diversity to select survivors (rank-space method)
c------------------

call rspace (fitrank, divrank, combrank, nptr, nind, surv,
+ niche, survctr, divweight, p, nbest, ctr)

70 continue

c------------------
c output results
c------------------

totfit = o.
do 100 i = 1,survctr

100 totfit = totfit + fitness(surv(i))
avgfit(generat) = totfit / survctr
maxfit(generat) = fitness(surv(l))
write(2,101) generat , maxfit(generat), avgfit(generat)
write(*,101) generat, maxfit(generat), avgfit(generat)

101 format (i16, f10.4, f10.4)

if((generat.eq.1) .or. (generat/nprint*nprint.eq.generat)) then
do 110 j = 1, ngene

110 temp(j) = chromo (surv(l) ,j)

write(*,111)generat, (temp(j), j = 1, ngene-1), 10.*temp(ngene)
write(8,111)generat, (temp(j), j = 1, ngene-l), 10.*temp(ngene)

111 format (//' generation:' ,i6/,' thickness weightings:' ,4f7.4/,

99



+ camber weightings:' ,4f7.4/,5x,' alpha (degrees):' ,f7.4)

nshow = 1
call aerosolv(m, temp, nshow, fitlm, ngene)
fitness(i) = fitlm

end if

if ((halt .eq. 'y') .or. (halt .eq. 'Y')) then
pause
write(*,121) 'i', 'thickness weightings ','camber weightings

+ 'alpha/10', 'fitness', 'fitrnk', 'div', 'divrnk', 'combrnk'
121 format (a3, a24, 4x, a24, 4x, a8, 2x, 5a10)

do i = 1, nind
write(*, 131) i, (chromo(i,j) ,j=l,ngene), fitness(i) ,

+ fitrank(i) , div(l,i), divrank(l,i) , combrank(l,i)
131 format (i3, 4f6.3,4x,4f6.3,4x,f6.3,4x,f10.3,i10,f10.3,2i10

end do

write(*,*) 'primary survivor(s):
do i = 1, nbest

write(*,*) surv(i)
end do

do niche = 1, nniche
write(*,141) 'survivor, niche' ,niche,': ',surv(niche+nbest)

141 format(a20,i3,a3,i3)
end do

end if

c-----------------
c continue for prescribed number of generations or until termination
c fitness has been reached. print airfoil genes and performance
c characteristics of all final survivors.
c-----------------

if (fitness(surv(l)) .gt. termfit) go to 2000

1000 continue

2000 write(*,2001) generat
write(8,2001) generat

2001 format (//, ' program terminated after', i6, ' generations')

do i = 1, survctr

do 120 j = I, ngene
120 temp(j) = chromo (surv(i) ,j)

write(*,151)generat,i, (temp(j), j = 1, ngene-1), 10.*temp(ngene)
write(8,151)generat,i, (temp(j), j = 1, ngene-1), 10.*temp(ngene)

151 format (//' gen:' ,i5,' surv #:' ,i3/,' thickness weightings:',
+ 4f7.4/,' camber weightings:' ,4f7.4/,15x,' alpha:' ,f7.4)

nshow = 1
call aerosolv(m, temp, nshow, fitlm, ngene)
fitness(i) = fitlm

end do

3000 continue

end

100



c======================================================================
c
c subroutine get_input: read genetic algorithm parameters
c
c======================================================================

subroutine user input(m, ntestmax, ngenerat, ngene, nbest, nniche,
+ divweight, nmut, maxmut, ncross, adam, halt, termfit, p, nprint,
+ iraninit, irand)

real maxmut(10), adam(200)
character halt, comment
common frey / re

read(l,' (a) ') comment
read(l,*) re

read(l,' (a) ') comment
read(l,*) m

read(l,' (a) ') comment
read(l,*) ngene

read(l,' (a) ') comment
read(l,*) (adam(i), i = 1, ngene/2)

read(l,' (a) ') comment
read(l,*) (adam(i), i = ngene/2+1, ngene-1)

read(l,' (a) ') comment
read(l,*) alphd

read(l,' (a) ') comment
read(l,*) (maxmut(i), i 1, ngene/2)

read(l,' (a) ') comment
read(l,*) (maxmut(i), i ngene/2+1, ngene-l)

read(l,' (a) ') comment
read(l,*) alphmut

read(l,' (a) ') comment
read(l,*) ntestmax

read(l,' (a) ') comment
read(l,*) ngenerat

read(l,' (a) ') comment
read(l,*) nbest

read(l,' (a) ') comment
read(l,*) nniche

read(l,' (a) ') comment
read(l,*) divweight

read(l,' (a) ') comment
read(l,*) nmut

read(l,' (a) ') comment
read(l,*) ncross

read(l,' (a) ') comment
read(l,' (a) ') halt

read(l,' (a) ') comment
read(l,*) termfit

read(l,' (a) ') comment
read(l,*) p

read(l,' (a) ') comment
read(l,*) nprint

read(l,' (a) ') comment
read(l,*) iraninit

read(l,' (a) ') comment
read(l,*) irand

c------------------
c make alpha and alphmut the same magnitude as the other genes
c------------------

adam (ngene) = alphd * .1
maxmut(ngene) = alphmut * .1
end

101



rank orders the elements of an array (highestsubroutine rankem:
to lowest) .

c======================================================================
c
c
c
c
c======================================================================

subroutine rankem(qual, qualrank, n, nind)

integer
real

qualrank(200) , n(200), best
qual(200) , qualbest

do i
n(i)
end do

1, nind
i

c------------------
c sort pointer array in order of qual values
c------------------

do 20 i = 1, nind-l
best = i
qualbest = qual(n(i))
do 30 j = i+l, nind

if (qual(n(j)) .gt. qualbest) then
best = j
qualbest = qual(n(j))

end if
30 continue

c------------------
c exchange pointers if necessary
c------------------

if (best .ne. i) then
ntemp = n(i)
n(i) = n(best)
n(best) = ntemp

end if
20 continue

do i = 1, nind
qualrank(n(i)) i

end do

end

102



subroutine diversity: calculates the diversity factor for each
individual, based upon its diversity from all previously selected
survivors.

c======================================================================
c
c
c
c
c
c======================================================================

subroutine diversity (chromo,surv,survctr,div,nind,niche,ngene)

integer
real

surv(200), nind, survctr, niche, ngene
chromo(200,200), div(200,200), suppdiv

if (niche .eq. 1) then
do 210 i = 1, nind

div(l,i) = o.
do 210 j = 1, survctr

dsqd = 0.0001
do 211 k = 1, ngene

211 dsqd = dsqd + (chromo(i,k) - chromo(surv(j) ,k))**2.
210 div(l,i) = div(l,i) + 1./dsqd

else
do 220 i = 1, nind

dsqd 0.0001
do 221 k = 1, ngene

221 dsqd = dsqd + (chromo(i,k) - chromo (surv(survctr) ,k))**2.
220 div(niche,i) = div(niche-1,i) + 1./dsqd

end if

c------------------
c set diversity of previously selected survivors to 0.0
c------------------

do i = 1, survctr
div(niche,surv(i))

end do

end

10000.0

103



subroutine rspace: uses a rank-space method to calculate combined
rank for each individual, incorporating a user-supplied weighting
factor (divweight) and probabilistic selection.

c======================================================================
c
c
c
c
c
c======================================================================

subroutine rspace (fitrank, divrank, combrank, nptr, nind, surv,
+ niche, survctr, divweight, p, nbest, ctr)

integer
+
real

fitrank(200) , divrank(200,200) , combrank(200,200),
totrank(200) ,surv(200) ,survctr, nptr(200), ctr(200)
tot(200), prob(200) , selectpt(200)

do i
tot (i)
end do

1, nind
= -1. * (fitrank(i) + divweight * divrank(niche,i))

c------------------
c remove previously selected individuals from consideration (hence,
c the factor of 10.* nind) and rank the remaining individuals. then
c use probabilistic selection to determine additional survivors
c------------------

do i = 1, survctr
tot(surv(i)) = 10. * nind * tot(surv(i))

end do

call rankem (tot, totrank, nptr, nind)

do i = 1, nind
combrank(niche, i)

end do
totrank(i)

ncand = nind - survctr
ncm1 = ncand - 1

prob(nptr(l)) = p
selectpt(nptr(l)) p
do i = 2, ncm1

prob(nptr(i)) = p *
selectpt(nptr(i))

end do
selectpt(nptr(ncand))

ranval = rand ( )

((l-p) ** (i-1))
selectpt(nptr(i-1)) + prob(nptr(i))

= 1.

do i = 1, ncand
if(ranval .It. selectpt(nptr(i))) then

surv(nbest + niche) = nptr(i)
goto 410

end if
end do

410 do i = 1, survctr
divrank (niche,surv(i))
combrank(niche,surv(i))

end do

o
o

survctr

end

survctr + 1

104



subroutine mutate: mutates and/or breeds the survivors.
maximum mutation size (maxmut) and number of mutated offspring
(nmut) is supplied by the user. mates are selected at random and
each union produces two additional (unmutated) offspring.

c======================================================================
c
c
c
c
c
c
c======================================================================

subroutine mutate (chromo, surv, survctr, nmut, ngene, maxmut,
+ ncross, nind, halt)

integer
real
character

surv(200), survctr, nmut, ngene, cutpoint, mate(200)
chromo(200,200) , chrnext(200,200) , mut, maxmut(10)
halt

do 305 i = 1, survctr
do 305 j = 1, ngene

305 chrnext(i,j) = chromo (surv(i) ,j)

c------------------
c get random number and apply mutations
c------------------

next = survctr + 1

do 310 i
do 310 j

1, survctr
1, nmut

do k 1, ngene
ranval = rand()
mut = (ranval - 0.5) * 2. * maxmut(k)
chrnext(next,k) = chromo (surv(i) ,k) + mut

end do

next = next + 1

310 continue

c------------------
c mate each survivor with one of the other randomly selected
c survivors by swapping the genes before/after the cutpoint
c------------------

next = survctr * (1 + nmut) + 1

do 350 i=l, ncross

331

if ((halt .eq. 'y') .or. (halt .eq. 'Y')) then
write(*,331) 'survivor', 'mate', 'cutpoint', 'offspring'
format(/,3al0, a30)

end if

do 350 j = 1, survctr
ranval = rand()
mate(surv(j)) = surv(int(l + (ranval * survctr)))
ranval = rand()
cutpoint = int(l. + ngene * ranval)
do k = 1, cutpoint

chrnext(next,k) = chromo (surv(j) ,k)
chrnext(next+l,k) = chromo(mate(surv(j)) ,k)

end do
do k = cutpoint+l, ngene

105



341

+
+

chrnext(next,k) = chromo(mate(surv(j)) ,k)
chrnext(next+1,k) chromo (surv(j) ,k)

end do

if ((halt .eq. 'y') .or. (halt .eq. 'Y')) then
write(*,341) surv(j), mate(surv(j)), cutpoint,

(chrnext(next,k) ,k=l,ngene), (chrnext(next+1,k),
k=l,ngene)

format (3il0, 9f7.3, 1,30x, 9f7.3,/)
end if

next = next + 2
350 continue

do 370 i = I, nind
do 370 j = I, ngene

370 chromo(i,j) = chrnext(i,j)

end

106



written by dr. a arena 10 november, 1993
modified by peter jahns 19 april, 1995

subroutine aerosolv: evaluates the fitness of each airfoil.
this subroutine uses the smith-hess panel method to calculate
the flowfield about an arbitrary 2d body in an ideal flow.

APPENDIXC: AEROSOLVESUBROUTfNE

c======================================================================
c
c
c
c
c
c
c
c
c======================================================================

subroutine aerosolv(m, temp, nshow, fitlm, ngene)

real ep(200,2), ept(200,2), pt1(200,2), pt2(200,2)
real co(200,2), a(200,200), b(200,200), g(200)
real th(200), dl(200), cp(200), locvel(200), temp(200)
common /rey/ re

pi=4.*atan(1.)
n = m + 2
alpha = 10. * pi * temp (ngene) / 180.

c read in the panel endpoints using subroutine body

call body(m, ept, temp, ngene, thickmax,ithflag)

c convert panelling to clockwise

do i = 1, m+1
ep(i,l) ept(m+1-i+1,l)
ep(i,2) = ept(m+1-i+1,2)

end do

c establish coordinates of panel end points

do i=l,m
ptl(i,l)=ep(i,l)
pt2(i,l)=ep(i+1,l)
pt1(i,2)=ep(i,2)
pt2(i,2)=ep(i+1,2)

end do

c find panel angles th(j)

do i=l,m
dz=pt2(i,2)-pt1(i,2)
dx=pt2(i,l)-pt1(i,l)
th(i) atan2(dz,dx)
dl(i) = sqrt(dz*dz + dx*dx)

end do

107



c establish collocation points

do i=l,m
co(i,l)=(pt2(i,l)-ptl(i,l))/2+ptl(i,l)
co(i,2)=(pt2(i,2)-ptl(i,2))/2+ptl(i,2)

end do

c calculate trailing edge angle to determine cl and cm corrections

zte = ep(9*m/10,2) - ep(m+l,2)
ste = 1. - ep(9*m/10,l)

thte = atan2(zte,ste)

c establish influence coefficients and convert collocation points
c to local panel coordinates

do i=l,m
uv=O.
wv=O.

do j=l,m
xt=co(i,l)-ptl(j,l)
zt=co(i,2)-pt1(j,2)
x2t=pt2(j,l)-pt1(j,l)
z2t=pt2(j,2)-pt1(j,2)

x=xt*cos(th(j))+zt*sin(th(j))
z=-xt*sin(th(j))+zt*cos(th(j))
x2=x2t*cos(th(j))+z2t*sin(th(j))
z2=0.

c find rl, r2, th1, th2

rl=sqrt(x*x+z*z)
r2=sqrt((x-x2)*(x-x2) + z*z)

th1=atan2(z,x)
th2=atan2(z,x-x2)

c compute velocity in local panel reference frame

if(i.eq.j) then
ul=O.
wl=0.5
ulv= 0.5
wlv= O.

else
ul=1./(2.*pi)*log(rl/r2)
wl=1./(2.*pi)*(th2-th1)
ulv = 1./(2.*pi)*(th2-th1)
wlv = 1./(2.*pi)*log(r2/r1)

end if

c return velocity to global reference frame
u=ul*cos(-th(j))+wl*sin(-th(j))
w=-ul*sin(-th(j))+wl*cos(-th(j))
uv uv + ulv*cos(-th(j)) + wlv*sin(-th(j))
wv = wv - ulv*sin(-th(j)) + wlv*cos(-th(j))

108



c a(i,j) is the influence coefficient defined by the
c tangency condition. b(i,j) is the induced local
c tangential velocity to be used in cp calculation

a(i,j)=-u*sin(th(i))+w*cos(th(i))
b(i,j)=u*cos(th(i))+w*sin(th(i))

end do

a(i,m+1)
b(i,m+1)

c rhs

-uv*sin(th(i)) + wv*cos(th(i))
uv*cos(th(i)) + wv*sin(th(i))

a(i,n)=cos(alpha)*sin(th(i))-sin(alpha)*cos(th(i))

end do

c kutta condition

do j=1,m+1
a(m+1,j) b(l,j) + b(m,j)
a(m+1,m+2) = - ( cos(alpha-th(l)) + cos(alpha-th(m)) )

end do

c solve for solution vector

call matrx(a,n,g)

c convert source strengths into tangential velocities
c along the airfoil surface and cp's on each panel

cl = o.
cf = o.
cmO = o.
cpmin = o.

do i=l,m
vel=O.
do j=1,m+1

vel=vel+b(i,j)*g(j)
end do
cp(i)=1.-(vel+cos(alpha-th(i)))**2
cpmin = min(cpmin, cp(i))
locvel(i) = vel + cos(alpha-th(i))
cf= cf-cp(i)*dl(i)*( cos(th(i)) )
cl = cl - cp(i) * dl(i) * cos(th(i) - alpha)
cmO = cmO-cp(i)*dl(i)*(-co(i,1)*cos(th(i))+co(i,2)*sin(th(i)))

if (nshow .eq. 1) then
write(8,116)co(i,1) ,co(i,2) ,cp(i) ,locvel(i)
write(*,116)co(i,1) ,co(i,2) ,cp(i) ,locvel(i)

116 format(4f16.4)
end if

end do

call sep_pred(co, cp, locvel, m, xsep)

xcp = -cmO/cf
cmc4 -(xcp-O.25)*cf

ssep = (1. - xsep) / cos (thte)
delcl -1. * pi * ssep * (thte + alpha)
delcm = -0.25 * delcl * (xsep**1.5)

109



clcorr
cmcorr

cl + delcl
cmc4 + delcm

subroutine matrx is a matrix reducer of the gaussian type
a(i,j) is the matrix, g(i) is the solution vector

c---------------------------
c set constraints on alpha, cm, thickness, and cp 'spikes'
c---------------------------

fitlm = clcorr
if (temp (ngene) .gt. 1.0) fitlm = o.
if (cmcorr .It. -0.1) fitlm = o.
if (thickmax .gt .. 1) fitlm = o.
if (ithflag .eq. 1) fitlm o.
if (cpmin .It. -6.) fitlm = O.

if (nshow .eq. 1) then
write(*,117)cl, xcp, cmc4, xsep, clcorr, fitlm, cmcorr
write(8,117)cl, xcp, cmc4, xsep, clcorr, fitlm, cmcorr

117 format(/,' cl:' ,f6.4,' cp:' ,f6.4,' cm:' ,f6.4,
+ ' xsep:' ,f6.4,' clc:' ,f6.4,' fit:' ,f6.4,' cmc:' ,f6.4)

end if

end

c======================================================================
c
c
c
c
c======================================================================

subroutine matrx(a,n,g)

real a(200,200), g(200)

c

c
c

initialize the 9 vector to all zeros

do i=1,n-1
g(i)=O.

end do

convert coefficient matrix
to upper triangular form

do i=1,n-1
if(abs(a(i,i)) .It.0.0000001)write(*,*) 'zero diag. error'

p=a(i,i)
do j=i,n

a(i,j)=a(i,j)/p
end do

do k=i+1,n-1
p2=a(k,i)
do l=i,n

a(k,1)=a(k,1)-p2*a(i,1)
end do

end do
end do

110



c
c

back substitute triangularized matrix to get
values of solution vector

do i=n-l/l/-l
g(i)=a(i/n)
do j=l/n-l

a(i/i)=O.
g (i) =g (i) - a (i / j ) *g (j )

end do
end do

return

subroutine body: calculates the nodal coordinates of the body
surface panels for an airfoil. data is nondimensionalized by chord
note: panel 1 @ tee top sfc., numbering scheme counterclockwise

c stop
end

c======================================================================
c
c
c
c
c
c======================================================================

subroutine body(m, ept, temp, ngene, thickmax, ithflag)

integer cutpoint
real ept(200,2), temp(200) / tbar(10), ybar(10) / a(10) / b(10)

pi=4.*atan(1.)
cutpoint = ngene / 2
ithflag = 0
thickmax = O.

do i = 1/ cutpoint
a (i) temp (i)
b(i) = temp (cutpoint+i)

end do

do i=l,l+m
theta=2.*pi*float(i-l)/float(m)
xc = (1. + cos (theta) ) * 0.5

c tbar(i) represents the thickness function of each basis airfoil
c a(i) represents the weighting factors (genes)

c
c
c
c

tbar (1)
tbar(2)
tbar(3)
tbar(4)

liebeck la 2566
wortman fx 63-137
selig s1223
naca4412

tbar(l) = .2908*sqrt(xc) - .4943*xc + 1.5941*xc**2 - 5.0118*
+ xc**3 + 7.2482*xc**4 - 4.9212*xc**5 + 1.294*xc**6 + .0002
tbar(2) .1900*sqrt(xc) -.0809*xc - .1527*xc**2 -

+ .0723*xc**3 + .1154*xc**4 + 0.0005
tbar(3) .2352*sqrt(xc) - .2079*xc + .0976*xc**2 -

+ 1.4713*xc**3 + 3.3114*xc**4 - 2.8047*xc**5 + .8397*xc**6
tbar(4) = 0.6*(.2969*sqrt(xc) - .126*xc - .3537*xc**2

+ + .2843*xc**3 - .1015*xc**4)

thick a(1)*tbar(1)+a(2)*tbar(2)+a(3)*tbar(3)+a(4)*tbar(4)

111



subroutine sep_pred

integral method for calculation of boundary layer
growth on an airfoil, starting at a stagnation point

thwaites's method used for laminar-layer flow
michel's method used to fix transition
head's method used for turbulent-flow region

if ((xc .It. 0.0001) .or. (xc .gt. 0.9999)) then
ithick = o.

else if (thick .It .. 5*tbar(3)) then
ithflag = 1

end if
thickmax = max (thickmax, thick)

z = thick*sign(I.,sin(theta))

c ybar(i) represents the camber function of each basis airfoil
c b(i) represents the weighting factors (genes)

ybar(l) = .017*sqrt(xc) + .311*xc - .762*xc**2 + .5865*xc**3
+ - .4073*xc**4 + .4907*xc**5 - .2363*xc**6 + .0004
ybar(2) .0017 + .3958*xc - 1.826*xc**2 + 5.5337*xc**3 -

+ 9.268*xc**4 + 7.6531*xc**5 - 2.4893*xc**6
ybar(3) .0265*sqrt(xc) + .476*xc - 1.6674*xc**2 +

+ 4.4108*xc**3 - 7.7664*xc**4 + 7.0934*xc**5 - 2.5729*xc**6
if (xc .le. 0.4) then

ybar(4) 0.25*(.8*xc - xc**2)
else

ybar(4) 1./9. * (.2 + .8*xc - xc**2)
end if

y b(I)*ybar(l) + b(2)*ybar(2) + b(3)*ybar(3) + b(4)*ybar(4)

z y + Z

ept(i,l)=xc
ept(i,2)=z

end do

return
end

c======================================================================
c
c
c
c
c
c
c
c
c
c
c======================================================================

subroutine sep_pred(co, copres, locvel, datanumber, xsep)

common /num/ pi,nx
dimension yy(200)
common xx(200) ,vgrad(200) ,theta(200)
common /inpl/ psx(200) ,psy(200) ,pcp(200) ,pve(200)
common /inp2/ x(200) ,y(200) ,cp(200) ,ve(200)
common /rey/ re
common /bod/ tau
real lambda, 1, co(200,2), copres(200), locvel(200)
integer datanumber, velmax

pi = 4.*atan(1.)

112



stagpoint = 1
k = a

do 8 i=l,datanumber
psx (i) co ( i , 1)
psy(i) = co(i,2)
pcp(i) = copres(i)
pve(i) = locvel(i)
if((pve(i) .ge. 0.0) .and. (k .eq. 0)) then

stagpoint = i
k = 1

endif
8 continue

c
c re-order data starting at stagnation point
c

nx = datanumber - stagpoint +1

do 12 i=l,nx
x(i) = psx(stagpoint - 1 + i)
y(i) = psy(stagpoint - 1 + i)
cp(i) = pcp(stagpoint - 1 + i)
ve(i) = pve(stagpoint - 1 + i)

12 continue

c
c find the point where ve is maximum
c

cpm = 1
velmax = 1
do 10 i=l,nx

if(cp(i) .It. cpm) then
cpm = cp (i)
velmax = i

endif
10 continue

c
c find distances between nodes along surface
c

xx(l) = 0.0
do 100 i=2,nx

dx = x(i) - x(i-l)
dy = y(i) - y(i-l)

100 xx(i) = xx(i-l) + sqrt(dx * dx + dy * dy)

c
c find velocity gradient at nodes
c

v1 ve(3)
xl xx (3)
v2 ve (1)
x2 xx (1)
xx(nx+l) = xx(nx-2)
do 110 i=l,nx

v3 v1
x3 xl
v1 v2

113



xl = x2
v2 = ve(nx-2)
if(i .It. nx) v2 = ve(i+1)

x2 = xx (i+1)
fact = (x3-x1)/(x2-x1)
vgrad(i) = ((v2 - v1)*fact - (v3 - v1)/fact)/(x3 - x2)

110 continue

xtrans = x (velmax)

c
c laminar-flow region
c

if (vgrad(l) .le. 0.0) then
xsep = o.
go to 1040

end if

theta(l) = sqrt(.075/re/vgrad(1))
i = 1

200 lambda = theta(i)*theta(i) * vgrad(i)*re
if(lambda .It. -.0842) goto 400
call thwats(lambda,h,l)
cf = 2. * l/re/theta(i)
if(i .gt. 1) cf = cf/ve(i)
i = i + 1
dth2ve6 = .225 * (ve(i)**5 + ve(i-1)**5) * (xx(i) - xx(i-1))/re
theta(i) = sqrt(((theta(i-1)**2) * (ve(i-1)**6) + dth2ve6)

+ /(ve(i)**6))
if(i .eq. 2) theta(2) = theta(l)

c
c test for transition
c

if( (x(i) .gt. xtrans) .and. (y(i) .gt. 0.0)) goto 300
goto 200

210 rex = re * xx(i) * ve(i)
ret = re * theta(i) * ve(i)
retmax 1.174 * (1. + 22400./rex) * rex**.46
if(ret .It. retmax) goto 200

c
c turbulent-flow region
c

300 itrans = i

310 h = 1.5
i = itrans
yy(2) = h10fh(h)
yy(l) = theta(i-1)

320 dx = xx(i)-xx(i-1)
call runge2(i-1,i,dx,yy,2)
theta(i) = yy(l)
h = hofh1 (yy(2))
rtheta = re * ve(i) * theta(i)
cf = cfturb(rtheta,h)
if(h .gt. 2.4) goto 410
i = i + 1
if(i .le. nx) goto 320

xsep = x(nx)

114



xl = x2
v2 = ve(nx-2)
if(i .It. nx) v2 = ve(i+1)

x2 = xx (i+1)
fact = (x3-x1)/(x2-x1)
vgrad(i) = ((v2 - v1)*fact - (v3 - v1)/fact)/(x3 - x2)

110 continue

xtrans = x (velmax)

c
c laminar-flow region
c

if (vgrad(l) .le. 0.0) then
xsep = o.
go to 1040

end if

theta(l) = sqrt(.075/re/vgrad(1))
i = 1

200 lambda = theta(i)*theta(i) * vgrad(i)*re
if(lambda .It. -.0842) goto 400
call thwats(lambda,h,l)
cf = 2. * l/re/theta(i)
if(i .gt. 1) cf = cf/ve(i)
i = i + 1
dth2ve6 = .225 * (ve(i)**5 + ve(i-1)**5) * (xx(i) - xx(i-1))/re
theta(i) = sqrt(((theta(i-1)**2) * (ve(i-1)**6) + dth2ve6)

+ /(ve(i)**6))
if(i .eq. 2) theta(2) = theta(l)

c
c test for transition
c

if( (x(i) .gt. xtrans) .and. (y(i) .gt. 0.0)) goto 300
goto 200

210 rex = re * xx(i) * ve(i)
ret = re * theta(i) * ve(i)
retmax 1.174 * (1. + 22400./rex) * rex**.46
if(ret .It. retmax) goto 200

c
c turbulent-flow region
c

300 itrans = i

310 h = 1.5
i = itrans
yy(2) = h10fh(h)
yy(l) = theta(i-1)

320 dx = xx(i)-xx(i-1)
call runge2(i-1,i,dx,yy,2)
theta(i) = yy(l)
h = hofh1(yy(2))
rtheta = re * ve(i) * theta(i)
cf = cfturb(rtheta,h)
if(h .gt. 2.4) goto 410
i = i + 1
if(i .le. nx) goto 320

xsep = x(nx)

114



goto 1040

400 xsep = x(i)
goto 1040

410 xsep = x(i)

1040 end

c=======================================================================

subroutine thwats(lambda,h,l)
c
c thwaites's correlation formulas
c

real l,lambda

if(lambda .It. 0.0) goto 100
1 = .22 + lambda * (1.57 - 1.8 * lambda)
h = 2.61 - lambda * (3.75 - 5.24 * lambda)
goto 200

100 1 = .22 + 1.402 * lambda + .018 * lambda/(.107 + lambda)
h = 2.088 + .0731 /(.14 + lambda)

200 return
end

c=======================================================================

function h1ofh(h)
c
c head's correlation formula for h1(h)
c

if(h .gt. 1.6) goto 100
h10fh = 3.3 + .8234 * (h - 1.1)**(-1.287)
return

100 h10fh = 3.3 + 1.5501 * (h - .6778)**(-3.064)
return
end

c=======================================================================

function hofh1(h1)
c
c inverse of h1(h)
c

if(h1 .It. 3.3) goto 110
if(h1 .It. 5.3) goto 100
hofh1 1.1 + .86 * (h1 - 3.3)**(-.777)
return

100 hofh1 .6778 + 1.1536 * (h1 - 3.3)**(-.326)
return

110 hofh1 3.0
return
end

115



c=======================================================================

function cfturb(rtheta,h)
c
c ludwieg-tillman skin friction formula
c

cfturb
return
end

.246 * (10. **(-.678 * h)) * (abs(rtheta))**(-.268)

c=======================================================================

subroutine derivs(i)
c
c set derivatives oy vector y
c

common /rnk/ yt(200) ,yp(200)
common xx(200) ,vgrad(200) ,theta(200)
common /inp2/ x(200) ,y(200) ,cp(200) ,ve(200)
common /rey/ re

h1 = yt(2)
if(h1 .le. 3.) return
h = hofh1(h1)
rtheta = re * ve(i) * yt(l)
yp(l) = -(h + 2.) * yt(l) *vgrad(i)/ve(i) + .5 * cfturb(rtheta,h)
yp(2) = -h1 * (vgrad(i)/ve(i) + yp(l)/yt(l))

+ + .0306 * (h1 - 3.)**(-.6169)/yt(1)
return
end

c=======================================================================

subroutine runge2(iO,i1,dx,yy,n)
c
c 2nd-orderrunge-kutta method for system of n first
c order equations
c

dimension ys(200) ,yy(200)
common /rnk/ yt(200) ,yp(200)

intvls = i1-iO
if (intvls .It. 1) goto 200
do 130 i=l,intvls
do 100 j=l,n

100 yt(j) = yy(j)
call derivs(iO + i-I)

do 110 j=l,n
yt(j) = yy(j) + dx * yp(j)

110 ys(j) = yy(j) + .5 * dx * yp(j)
call derivs(iO + 1)

do 120 j=l,n
120 yy(j) = ys(j) + .5 * dx * yp(j)
130 continue
200 return

end

116



VITA

Peter Jahns

Candidate for the Degree of

Master of Science

Thesis: A GENETIC ALGORITHM APPLIED TO THE OPTIMIZATION OF
AIRFOIL DESIGN

Major Field: Mechanical Engineering

Biographical:

Personal Data: Born in Tulsa, Oklahoma, on September 8, 1963, the son of Hans
O. and Suse Jahns. Married Rhonda K. Gibson on May 20, 1995.

Education: Graduated from Memorial Senior High School, Houston, Texas, in
May 1981; received Bachelor of Science degree in Aeronautical Engineer­
ing from United States Air Force Academy, Colorado Springs, Colorado,
in May 1985; received Master of Education degree in International Rela­
tions from Northwestern Oklahoma State University, Alva, Oklahoma, in
July 1993; completed requirements for the Master of Science degree with a
major in Mechanical Engineering at Oklahoma State University in Decem­
ber 1995.

Experience: F-15 Instructor Pilot, United States Air Force, 1986-1990; T-37 In­
structor Pilot, United States Air Force, 1990-1993.


