
A NEW PROTOCOL FOR MULTIDATABASE

CONCURRENCY CONTROL

By

YONGHO AN

Bachelor of Science

The Ohio State University

Columbus, Ohio

1994

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements f o r
the Degree of

MASTER OF SCIENCE
July 1997

OKLAHOMA STATE UNIVERSITY

A NEW PROTOCOL FOR MOLTIDATABASE

CONCURRENCY CONTROL
.,

Thesis Approved:

/? C
C.

Thesis Advisor

Dean of the Graduate College

ii

ACKNOWLEDGEMENTS

I would like to express special appreciation to my

advisor Dr. Huizhu Lu. She provided essential guidance,

inspiration, and supervision through my thesis work. Dr. J

Huizhu Lu continued to spend endless hours reviewing my

work and offerting suggestions for furthur r .efinement.

I would like to thank my other committee members, Dr.

G. E. Hedrick and Dr. J. P. Chandler. Their time and

effort are greatly appreciated.

Finally, I would like to give my sincere thanks to my

family, my parent, and the second aunt's family for

their continued support, and for encouragement at times

of difficulty. I could not have done without continued

love and support.

ill

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

A Taxonomy of Distributed Database Systems 2
Mul tidatabase System .. 9
Objective ... 11

II. LITERATURE REVIEW .. 12

Approaches of Past Work -. ... 12
Mul tidatabase System Architecture ... 19
Transactions on Multidatabase 'System _ 22
Mul tidatabase Scheduler ... 25
Mul tidatabase Serializability _ 27

III. A NEW PROTOCOL FOR MULTIDATABASE CONCURRENCY CONTROL
.. 31

Implementation Detail and Environment 31
An Algori thIn of the New Protocol .. 32
Deadlock- free ... 36
Outline of Transaction Processing ... 40

Pseudocode for the GTM ... 41
Pseudocode for the LTM ... 43

Comparison of Maj or Approaches in MOBS 49

IV. Summary and Fu t ure Work .. 50

Sununary ... 5 0
Future Work ... 51

REFERENCES ... 52

APPENDIX A: Definitions of Major Terminologies 57

APPENDIX B: Abbreviations and Acronyms ... 61

iv

LIST OF FIGURES

Figure Page

1. DBMS Implementation Al ternati ves "" "" 3

2. !>IDES Architecture .. 21

3. Multidatabase model : ... 23

4. Local Wait-for Graph _ .. 38

5. Global Wai t- for Graph .. 39

6. Global Transaction Diagram by the New Protocol 47

v

CHAPTER I

INTRODUCTION

Since information has expanded so rapidly, it has

come to have unlimited power in all fields such as the stock

market, industries, and the Internet. However, it has been

difficult for individuals to locate and to access data

within different sites of their own systems. The necessity

to access information across several databases,

geographically separated but containing homogeneous data,

led to the concept of Distributed Database Systems (DDBS). A

DDBS is a collection of sites connected by a network. A user

of any site can access any data as though the data were

stored at the user's own site. Two commonly cited advantages

of distributed database systems are sharabi'lity of data and

resources and local autonomy. One way to realize these

advantages is to build distributed systems in a bottom-up

fashion, by putting together existing centralized database

managers. This construction gives rise to a multidatabase

system (MDBS).

Multidatabase systems (also referred to as federated

databases or heterogeneous distributed databases) provide a

uniform interface for accessing distributed information

sources. They allow users to retrieve the correct data from

mUltiple heterogeneous databases transparently. MDBs were

inspired by the proliferation of networks and databases and

by the need to protect investment in existing systems. MDBSs

allow integrated access to heterogeneous, pre-existing

databases (referred to as local databases) in a distributed

system. Each participating node retains local control of

resources and processing. This is called local autonomy.

Global control and structure are derived from local consent

and collaboration.

A Taxonomy of Distributed Database Systems

It uses a classification (Figure 1) [Ozsu and

Valduriez 91] (Baker 90] which characterizes the system with

respect to (1) the autonomy of local systems, (2) their

distribution, and (3) their heterogeneity.

Autonomy refers to the distributed of control and

indicates the degree to which individual DBMSs can operate

independently. Autonomy is a function of a number of factors

such as whether the component systems exchange information,

whether they can independently execute transactions, and

2

Locally
integrated and
homogeneous
multiple DBMSs

~
Distributed,
heterogeneous
DBMS

Heterogeneous

Heterogeneous
integrated
DBMS

Distribution

Distributed
homogeneous
DBMS

Single
heterogeneous
federated DBMS

Distributed
.bomogeneous
federated DBMS

j

Distributed,
heterogeneous
federaLed DBMS Single site

heterogeneous
federated DBMS system

Distributed,
heterogeneous
multidatabase
system

Distributed
.homogeneous
multi database

system

Multidatabase
system

Figure 1. DBMS Implementation Alternatives.

3

\

whether they are modifiable. Requirements foX' an autonomous

system have been specified in a variety of ways . For

example, the following requirements are listed in Giligor

and Popescu-Zeletin [Giligor and Popescu-Zeletin 86].

1. The local operations of the individual DBMSs are not

affected by their participation in the multidatabase system.

2. The manner in which the individual DBMSs process queries

and optimize them should not be affected by the execution

of global queries that access multiple databases.

3. System consistency or operation should not be compromised

when individual DBMSs join or leave the multidatabase

confederation.

On the other hand, Du and Elmagarmid [Du and

Elmagarmid 89] specify the dimensions of autonomy as:

1. Design autonomy: Individual DBMSs can use the data models

and transaction management techniques that they prefer.

2. Communication autonomy: Each of the individual DBMSs can

make its own decision regarding the type of information it

wants to provide to other DBMSs or to the software that

controls its global execution.

3. Execution autonomy: Each DBMS can execute the

transactions that are submitted to it in itsown way.

A number of alternatives are suggested below. One

alternative considered is tight integration, where a single-

4

image of the entire database is available to any user who

wants to share the information that may' reside- in mUltiple

databases. From the user's perspective, the data are

logically centralized on a database. In tightly integrated

systems, the data managers are implemented such that one of

them is in control of the DBMS processing of each user

request, even when a request is serviced by more than one

data manager. The data managers typically do not operate as

independent DBMSs, although they usually have the required

functionality.

The second alternative is semiautonomous systems,

which insist on DBMSs that can (and usually do) operate

independently, but have decided to participate in a

federation to make their local data sharable. Each of these

DBMSs determine what parts of their own databases they will

make accessible to users of other DBMSs. They are not fully

autonomous systems because they must be modified to permit

information exchange.

The final alternative considered is total isolation,

where the individual systems are stand-alone DBMSs that do

not know of the existence of other DBMSs. In such systems,

the processing of user transactions that access multiple

databases is especially difficult since there is no global

control over the execution of individual DBMSs.

5

It is important that the thr'ee alternatives

considered for autonomous systems are not the only

possibilities. They are the three most popular alternatives.

The distribution dimension of the taxonomy deals

with data. It is considered in two cases: either the data

physically is distributed over multiple sites that

communicate with one site over a communication medium, or it

is stored at only one site.

Heterogeneity may occur in various forms in

distributed systems, ranging from hardware heterogeneity and

differences in networking protocols, to variations in data

managers. The important differences considered in this

thesis relate to transaction management protocols.

The architectural alternatives are considered in

turn. Starting at the origin in Figure 1 and moving along

the autonomy dimension, the first class of systems consists

of those which are logically integrated. Such systems can be

given the generic name composite systems [Heimbigner and

McLeod 85]. If there is no distribution or heterogeneity,

then the system is a set of multiple DBMSs which are

logically integrated. Shared-everything multiprocessor

environments are an example of such systems. If

heterogeneity is introduced, then one has multiple data

managers which are heterogeneous but provide an integrate

view to the user. In the past, some work was done in this

6

class where systems were designed to provide integrated

access to network, hierarchical, and relational databases

residing on a single machine. The more interesting case is

where the database is distributed physically even though a

logically integrated view of the data is provide to users.

This is what is known as a distributed DBMS [Ozsu and

Valduriez 91]. A distributed DBMS can be homogeneous or

heterogeneous.

Next along the autonomy dimension are semiautonomous

systems which are commonly called federated DBMSs

[Heimbigner and McLeod 85]. The component systems in a

federated environment have significant autonomy in their

execution, but their participation in a federation indicate

that they are willing to cooperate with others in executing

user requests that access multiple databases. Similar to

logically integrated systems, federated systems can be

distributed or single-site, homogeneous or heterogeneous.

If one moves to full autonomy, then we get

multidatabase system architectures. Without heterogeneity or

distribution, an MDBS is an interconnected collection of

autonomous databases. A multidatabase management system

(MDBMS) is the software that manages a collection of

autonomous databases and provides transparent access to it.

If the individual databases that make up the MDBS are

distributed over a number of sites, we have a distributed

7

MDBS. The organization and management of a distributed MDBS

are quite different from those of a distributed DBMS.

The fundamental point of the foregoing discussion is

that the distribution of databases, their possible

heterogeneity, and their autonomy are different issues. It

follows that the issues related to multidatabase systems can

be investigated without reference to their distribution or

heterogeneity. The additional considerations that

distribution brings are no different than those of logically

integrated distributed database systems for which solutions

have been developed [Ozsu and Valduriez 91]. Furthermore, if

the issues related to the design of a distributed

multidatabase are resolved, introducing heterogeneity may

not involve significant additional difficulty. This is true

only from the perspective of database management: there may

still be significant heterogeneity problems from the

perspective of the operating system and the underlying

hardware. Therefore, the more important issue is the

autonomy of the databases, not their heterogeneity.

The environment considered in this thesis is a

multidatabase system, especially transaction management

protocols. We assume the optimistic case of fully autonomous

DBMSs.

8

Multidatabase System

A multidatabase system (MOBS) consists of two or

more databases, possibly distributed, which are controlled

by one or more DBMSs [Brietbart and Silberschatz 87, 88]. A

MOBS allows users to manipulate data contained in the

databases without modifying current database applications

and without migrating the data to a new database. A MOBS

also creates the illusion of logical database integration

without requiring physical integration of the databases. For

simplicity, the intricacies of the DBMSs and data access

methods are transparent to the user.

To provide a facility that is acceptable to the end

users, as well as the application programmers, an MDBS

should adhere to the following principles [Brietbart et al.

90] [Brietbart and Silberschatz 88].

1. No modifications to the local DBMS software to accommo­

date the MDBS are permitted.

2. The autonomy of the local databases are maintained.

3. The MDBS guarantees serializable global transaction

execution.

4. The local DBMSs guarantee serializable local transaction

execution.

5. No communication exists among the local DBMSs.

9

Preventing changes to the DBMS software .is an

important issue. Modifying the DBMSs to interact. with the

MDBS puts a heavy burden on the. MDBS developers when support

for a new DBMS is added. These changes may also create

difficult problems, both in maintaining current applications

and in maintaining the DBMS software.

The concept of local autonomy, a key characteristic

of MDB, requires that ' existing local transactions be allowed

to execute as if the MDBS were not present. Local autonomy

also requires that DBMS maintenance and performance tuning

be allowed to continue as usual. That is, local DBMSs retain

fully control over local data and processing. Each local

DBMS participates in the multidatabase by sharing some or

all of its data. The data to be shared with the global

system are defined in a view presented to the local DBMS

user interface. To the local DBMS, the MDB appears like any

other user because the global system does not dictate local

design. So, when the local DBMS gets a request, called a

global subtransaction, from a global DBMS for data, the

local DBMS can accept (commit) or reject (abort) it.

In MDBS, local and global concurrency control must

be addressed separately because of local autonomies. Local

concurrency controllers guarantee the correctness, using

serializability, of the executions of local transaction and

global subtransactions at each local site. On the other

10

hand, the global concurrency controller is responsible for

retaining the consistency of the global database.

Although each individual transaction is correct,

data consistency can be destroyed during transaction in

concurrency control [Ozsu and Valduriez 91]. So, in order to

ensure data consistency, the concept of serializability is

needed. Each transaction should transfer the system from one

consistent state into a new consistent state without any

violation. In addition, temporary inconsistency can occur

during the execution of a transaction, but the final state

should be always consistent.

Objective

The object of this thesis is to propose a new

protocol for multidatabase concurrency control to avoid

deadlock and to retain serializabi1ity by combining

advantages of pessimistic and optimistic approaches.

This new protocol is implemented on a sequential

machine. The final result should be faster and have higher

degree of concurrency in comparison with Thomas' Write Rule.

11

CHAPTER 2

LITERATURE REVIEW

Most concurrent control approaches have relied on

locking of data objects in a "pessimistic" sense that

assume that the conflicts between transactions are quite

frequent. More recently, the methods are used in an

"optimistic" sensei they rely mainly on transaction back-up

as a control mechanism while "hoping" that conflicts between

transactions will not occur.

Approaches of Past Work

1. Disadvantages of the locking approach (pessimistic)

1) Lock maintenance represents an overhead that is not

present in the sequential case. Even read-only transactions

that do not affect the integrity of the data should use

locking in order to guarantee that the data being read are

not modified by other transactions at the same time.

2) Since the locking approach is not deadlock free, deadlock

detection must be considered to be part of locking

12

maintenance overhead. That is, there is no general~purpose

deadlock-free locking protocol for databases that always

provide high concurrency.

3) To allow a transaction to abort itself when a mistake

occurs, locks cannot be released until the end of the

transaction. This may lower concurrency significantly.

4) Locking may be necessary only in the worst case in

'optimistic' sense.

Research directed at finding deadlock-free locking

protocols may be seen as an attempt to lower the expense of

concurrency control by eliminating transaction backup as a

control mechanism. But, if we consider it in the optimistic

sense that relies for efficiency on the hope that conflicts

between transactions will not occur or will be rare. This is

called the "optimistic approach" [Bernstein and Goodman 81]

[Darcy and Boston 83] [Eliezer et al. 91] [Kung 81]. Since

locks are not used, it is completely deadlock-free and

allows a high level of concurrency [Bernstein and Goodman

81] so that when transaction conflicts are very rare.

2. The idea of the Optimistic Approach

1) Since reading a value never can cause a loss of

integrity, reads are completely unrestricted.

2) Writes are severely restricted. Any transaction must

consist of three phases: a read phase, a validation phase,

l3

and write pbase [Barghouti et al.e1] [Bernstein and Goodman

81] [Ozsu and Va1duriez 91]. During the read phase, all

writes take place on local copies. Then, if it can be

established during the validation phase that the changes the

transaction made will not cause a loss of integrity, the

local copies are made global in the write phase. The step ~n

which it is determined that the transaction will not cause a

loss of integrity is called validation.

If validation fails, then the transaction will be

blocked-out and restarted as a new transaction. Thus a

transaction will have a write phase only if the preceding

validation succeeds. On the other hand, optimistic

algorithms [Ozsu and Va1duriez 91] delay the validation

phase until just before the write phase. Thus, an operation

submitted to an optimistic scheduler is never delayed

comparing with the locking scheduler. The read and write

operations of each transaction are processed freely without

updating the actual database. Each transaction initially

makes its updates on local copies of data. The validation

phase consists of checking whether updates on local copies

would maintain the consistency of the database. If the

answer is affirmative, the changes are made globally.

Otherwise, the transaction is aborted and has to restart and

that cause starvation. Of course, permitting the transaction

exclusive access to the database after a specified number of

14

trials had been tried for many years, but this try reduced

the level of concurrency, the biggest advantage of the

optimistic approach. Therefore, the solution of the

starvation problem has been one of the most important areas

of database in recent years.

An Optimistic Commit Protocol for Distributed Transaction

Management [Eliezer et ale 91]

A major disadvantage of the two-phase commit (2 PC)

protocol is the potential unbounded delay when a certain

transaction failure occurs. By using compensating

transactions, [Eliezer et ale 91] is obtained by using

revised 2 PC protocol that overcomes theses difficulties. In

the revised protocol, locks are released as soon as a site

votes to commit a transaction, thereby solving the

indefinite blocking problem of 2 PC. If the transaction is

to be aborted, then its effects are undone semantically

using a compensating transaction. Therefore, semantic,

rather than standard, atomicity is guaranteed. But this

protocol reduces to a serial protocol when no global

transactions are aborted, and excludes unacceptable

executions when global transactions fail.

15

A Time-based Distributed Optimistic Recovery and Concurrency

Control Mechanism [Gafni and BapaRao 92]

Optimistic methods of concurrency control can

achieve high throughput but impose a space overhead. [Gafni

and BapaRao 92] describes a time-based approach to

distributed concurrency control and recovery that alleviates

the high cost of optimistic methods by combining the

solutions to concurrency control, recovery management and

localized control into a single flexible yet powerful and

efficient mechanism. This approach adapts the object­

oriented Timewarp mechanism - it was designed for networks

of cooperative processes where all processes belong to one

application and accomplish a common task., For this type of

application to be correct, all messages have to be processed

in strictly increasing order - to handle competing processes

rather than the co-operating processes for which it was

originally intended. This method assumes that no event

synchronization is necessary to allow the transaction steps

to proceed; when that assumption fails, a rollback mechanism

restores the system to a consistent state. The result is a

completely decentralized, nonlocking concurrency and

recovery protocol that supports more general features in

16

corporating desirable features of other distributed

applications, such as the use of versioning and active

objects. But this method imposes a heavy space overhead, and

a high transaction failure rate.

Apologizing Versus Asking Permission: Optimistic Concurrency

Control for Abstract Data Types [Herlihy 90]

An optimistic concurrency control technique is one

that allows transactions to execute without synchronization,

relying on commit-time validation to ensure serializability.

More recently, several new optimistic techniques are proved.

But these methods have classified operations only as read or

write. [Herlihy 90] systematically exploits type-specific

properties of objects to validate additional interleaving.

Necessary and sufficient validation conditions can be

derived directly from an object's data type specification.

Herlihy's method is also modular. That is, it can be applied

selectively on a per-object basis in conjunction with

standard pessimistic techniques such as two-phase locking,

permitting optimistic methods to be introduced exactly where

they will be most effective[Herlihy 90]. This method

enhances the availability of replicated data, circumventing

17

certain tradeoffs between concurrency and availability

imposed by comparable pessimistic teclmiques.

Prepare and Commit Certification for Decentralized

Transaction Management in Rigorous Heterogeneous

Multidatabases [Veijalainen and Wolski 92]

[Veijalainen and Wolski 92] shows the algorithms to

prepare for certification and to commit certification to

protect against serialization errors called global view

distortions and local view distortions. View serializable

overall histories are guaranteed in the presence of most

typical failures. The assumptions are that the participating

database systems produce rigorous histories; e.g., by using

the strict two-phase locking, and that no local transaction

may update the data accessed by a global transaction that is

in the prepared state.

Thomas' Write Rule (TWR)

If we suppose a timestamp ordering (TO) scheduler

receives write transaction, wi [xl, after it has already

sent wj [x] to the DM when ts(Ti) < ts(Tj), TO rule

rejects wi [x]. But, this rejection is unnecessary if the

18

scheduler only is concerned with write-write synchronization

(ww synchronization). That is, processing a sequence of

write transactions in TO produces the same result as

processing the single write transaction with maximum

timestamp. Late operations can be ignored. This is called

Thomas' Write Rule (TWR)[Bernstein 87]. It never delays or

rejects any operation. When a TWR ww synchronizer receives a

write transaction that has arrived too late insofar as the

TO rule is concerned, it simply ignores the write

transaction but reports its successful completion to the TM.

S = Ai

A2

A simple example is the following:

R (x) W(x) i

W (x) i

Using TWR, write step of Ai is simply ignored.

Multidatabase System Architecture

The component-based architectural model of a

multidatabase management system (MDBMS) features full­

fledged DBMSs, each of which manage a different DBMS. The

MDBMS provides a layer of software that runs on top of these

individual DBMSs and allows users to access various

databases. Each DBMS has its own transaction processing

components. The components are a transaction manager ,

called Local Transaction Manager (LTM) , a Local Scheduler

19

(LS), and a Local Data Manager (LDM). The function of LTM is

to interact with the user and coordinate the atomic

execution of the transaction. The LS is responsible for

ensuring the correct execution and interleaving of all

transactions presented to the LTM. The local recovery

manager ensures that the Local Database (LDB) contains all

of the effects of committed transactions and none of the

effects of uncommitted ones.

We assume each autonomous DBMS to be a single

database, and the MDBMS layer is simply another nuser" . The

scheduling of transactions which require mUltiple DBMSs is

done by the MDBMS layer. The transaction manager of the

MDBMS layer is called the Global Transaction Manager (GTM)

since it manages the execution of global transaction (Figure

2) •

In multidatabase Concurrency Control, correcting

conflicting serializability at two levels which are local

and global transactions, has been the most difficult

problem. Each local scheduler cannot ensure the consistency

of global transactions. Even though event controlled by the

local scheduler are serializable, their global execution

order may be not serializable causing indirect conflicts.

20

DBMS)

Local
Transaction
Manager

Local
Scheduler

Local
Data
Manager

Local
Database

USER

MDMSLayer

Global
Transaction
Manager

Global
Scbeduler

Global
Recovery
Manager

DBMSk

Local
Transaction
Manager

Local
Scheduler

Local
Data
Manager

Figure2. MDBS Architecture.

21

Transactions on Multidatabase System

A transaction Ti is a partial order with ordering

relation <i where [Bernstein 87]

1. Ti {ri[x], wi[x] I x is a data item} u {ai, ci}

2. ai E Ti I iff ci e Ti

3. if t is ci or ai (whichever ~s in Ti), for any other

operation p E Ti, P <i t and

4. if ri[x], wi[x] E Ti, then either ri[x] <i wi[x] or

wi [x] <i ri [x] .

MOBS transactions have two type transactions which

are the local and global transactions. The execution of

global transaction is co-ordinates by the global transaction

manager (GTM) that is a software package built on top of the

existing DBMSs whose function is to ensure that the

concurrent execution of local and global transactions is

serializable. Ensuring global serializability in an MDBS is

complicated by the fact that each of the participating local

DBMSs is a pre-existing database system whose software

cannot be modified. As a result (the characteristics of GTM)

(Figure 3)

I} The function of GTM has duties for concurrency control

(or scheduling) to guarantee serialized execution of

transactions by controlling the execution of

22

Global Transactions (GT)

------------------ --------------------

MDBS

Local
Transaction
Manager (LTM)

Local
Transaction

Local
Database
System

Local Databasel

Global
Transaction
Manager
(GTM)

Local
Transaction
Manager (L TM)

Local
Transaction

Local
Database
System

Local Databasen

Figure 3. Multidatabase Model

subtransactions, commitment and recovery to achieve

atomicity and durability of global transactions in the

presence of failures. It allocates one LTM for each of the

sites referenced by the global transaction.

23

2) The LTM is the remote component of the MDBMS that runs

directly on top of each LDBS. It receives oper.ations of

subtransactions from the GTM, submits them to the LDBMS, and

sends the results to the GTM. Once an LTM is allocated, it

is not de-allocated until the transaction commits or aborts.

On the other words, the GTM is centrally located and

controls the execution of global transactions. It

communicates with the'various local DBMSs by means of LTM

per site that execute at each site on top of the local

DBMSs, which do acknowledge the completion of operations to

be submitted by the LTMs. An LTM has several

responsibilities with respect to the execution of a global

subtransaction.

2.1) Each local DBMS may follow a different concurrency

control protocol.

2.2) Local DBMSs may not communicate any information (e.g.,

conflict graph) relating to concurrency control to the GTM.

They are not aware of each other. On the other words if a

local transaction is submitted to a local DBMS, then no

other local site is aware of that transaction. Local DBMSs

behave as if MOBS does not exist according to the concept of

local autonomy.

3) The GTM is unaware of indirect conflicts between global

transactions due to local transactions at the local DBMSs.

24 J

-

This is due to the fact that the local pre-existing

applications make calls to the local D.BMS interfaces, and

thus the GTM, which is built on top of the local DBMSs, is

not involved in the execution of the local transactions. So

in order to ensure the correct behavior of the system, the

MDBS must be able to synchronize the execution of global

transactions with local ones. This is generally not possible

to achieve if arbitrary local transactions can be submitted

at local sites, since a local transaction may change a value

of a replicated data item. To guard against such behavior

the MDBS must provide a concurrency control scheme and

formulate restrictions on the type of local transactions

that can be tolerated by the MDBS concurrency control

mechanism

Multidatabase Scheduler

MDBS Serializability is the combination of two

types: each local database scheduler (LS) produces a

serializable execution ordering and the set of committed

global transactions are globally serializable; that is LS

and global scheduler (GS) together create an acyclic graph

ordering of the executions. In other words, a global

serialization graph [Bernstein 87] for a global schedule S

25

-

~s a directed graph whose nodes represent global

transactions and whose arcs are defined by Thompson [87] as

follows.

{Ti -> Tj I there exists operation oi in transaction Ti and

operation OJ in transaction Tj, such that Oi conflicts with

OJ and Oi occurs before OJ in a global schedule S}.

A global schedule S is the set of all operations

belonging to local and global transactions with a partial

order <s on them. The local schedule at a site k, denoted

by Sk, ~s the set of all operations (belonging to local and

global transactions) that execute at k with a total order <k

on them. The schedule Sk is a restriction [Mehrotra et al.

92] of the global schedule S.

Scheduling of transactions in a MOBS must be

accomplished at the global and local levels. Since we assume

that each DBMS can generate local execution ordering

serializablly, the only requirement of the MDBMS is to

submit global subtransactions to each DBMS. In global

scheduler, following things become apparent:

1) all operations in global subtransactions must be assumed

to conflict if they are submitted to the same DBMS at the

same time.

2) Since each subtransaction is dependent upon the ordering

of other related subtransactions, global transactions which

26

J

access mutually disjoint sets can conflict due to local

transactions. It is called indirect conflict.

Multidatabase Serializability

Multidatabase serializability is the combination of

two types of serializable histories in a multidatabase

history. When each local database scheduler produces a

serializable history and the set of committed global

transactions are globally serializable, the MDBMS is said to

have produced an MDB-serializable schedule. This is the same

as ensuring that the MDB history is A-acyclic or that for

each local history it is equivalent to some serial schedule,

and that the MDB schedule is ~acyclic or the global history

is equivalent to some serial ordering. Therefore, the proof

process is simplified because each type of transaction can

be considered separately [Baker 90].

Theorem 1. (MDB Serializability Theorem) [Baker 90] A

mu1tidatabase history (MH) is MDB-seria1izab1e if and only

if MSG(MH) is both ~acyclic and A-acyclic. If given a ~

acyclic and A-acyclic MSG for a rnu1tidatabase history MH, MH

is MDB seria1izable.

27

-

Since each DBMS produces only serializable

schedules, A-cycles at a specific DBMS are not possible.

Further, the data is not replicated, so A-arcs are not

formed between transactions at different DBMSs. Therefore,

A-cycles are not possible, and the proof is accomplished in

y-acyclic as described below.

y-acyclic: Without loss of generality, assume that

MH =< LH, GH > refers to the committed projection of a

multidatabase history. Consider the global history GH

defined over the set of transactions GT = {GTl • I

GTn}. Without loss of generality, assume that the committed

history (C(GH» is {GT 1 , GTm}. The i-vertices of

MSG(MH) ({GT1, GT2 , ,GTn}) are y -acyclic so they can

be topologically sorted with respect to y-arcs. Let the

permutation il, i2, . .. , 1n in be a permutation of 1 2

(... , n such that GTil(GTi2(, GTin in a topological

sort of the i-vertices of MSG(MH). Let GHs be the serial

history of GTil(GTi2, ... , GTin. We will prove that: GH

GHs. Let p E GTi and q E GTj and p and q conflict such

that p <GH q. This means that there is a y-arc GTi ->

GTj in MSG(MH). Therefore, in any topological sort of GH,

GTi precedes GTj. Thus, all operations of GTi precede all

28

operations of GTj in any topological sort. Thus GH - GHs.

Since GHs is MDB-Serial, GH is MDB-Serializable.

Also, given that the history is MDB-serializable, we

will show that the MSG produced must be both y-acyclic and

A-acyclic.

First note that the set of A-arcs is subdivided

into a number of disjoint subsets, each for one LH. Assume

that a cycle exists in one of the subsets of A-arcs as

follows: Ti -> ... -> Tn -> ... -> Ti. This implies that an

operation of Ti precedes and conflicts with an operation of

Tn and that an operation of Tn precedes and conflicts with

an operation of Ti. This means that the DBMS which has

generated the particular local history has incorrectly

scheduled its transaction, which contradicts the assumption

that all local schedulers function correctly. Thus, A­

cyclicity cannot occur in a MDB-serializable history.

Suppose MH is serializable. Let MHs be a serial

history equivalent to the MDB-serializable history MH.

Consider a y-arc (GTi -> GTj) E MSG(MH). This means that

there exist two conflicting operations p E GTi and q E

GTj such that p < q in some local history. This is true

since both of these operations execute on the same database.

Since MHs is equivalent to MH and there is an arc from GTi

29

-

-> GTj, all operations of GSTi at site k occur before those

of GSTj at site k. Suppose there is a J-Cycle in MSG(MH) .

This implies that there exists a DBMS at site m which

scheduled an operation r e GTj before an operation s e GTi.

Since this implies that GTj <GH GTi in MHs, an operation

of GTj precedes any of GTi's. But, an operation of GTi is

known to precede an operation of GTj at DBMS at site k,

which is contradictory.

30

,

-

Chapter III

A NEW PROTOCOL FOR
MULTIDATABASE CONCURRENCY CONTROL

Implementation Details

Implementation Detail

The primary objective of this thesis is to show that

the new protocol has better serializability than other

protocols and is deadlock-free. This new protocol is a

protocol that is made by combining the advantages of both

pessimistic protocols, especially the two phase lock, and

optimistic protocols. The first step is to know the

advantages of each approach. Then, we can design this new

protocol that participates in the multidatabase system. The

simulated environment will consist of two separated local

database systems each having its own transaction processing

system for distributed global control of multidatabase

system. Each transaction will be checked on the checking

board that shows the transaction order and shows which

conunand has reservation or lock. It also runs on each local

database in order to test serializability and freedom from

deadlock.

31

,

I I

Environment of the Implementation

Platform : Sequent

Language: C

Special command used: Fork

An Algorithm of the New Protocol in MOBS

A new protocol has one reservation before read

corrunands and one lock before write commands. A reservation

is not a lock. It is like checking-point or half-lock.

In order to prove the new protocol is

serializable, it should prove to be free from conflict.

Conflict between transactions may be read-write, write-read,

or write-write. For a pair of conflicting operations, the

relative order of execution is important [Mahesh 90]. If the

order is the same for each pair of conflicting operations

from the two transactions, the transactions can be regarded

as have been executed in the serial order.

1) read - read: before a read command, mark a reservation on

the data that does not affect any other read command. This

reservation mark will affect an anticipated write command.

That is, if a read - write is formed, then the read command

will be delayed.

32

,

2) write - read: before locking for a write command, the

algorithm checks if there is another write- lock. If there

is, then another write-lock will form a write - write.

Otherwise, put the lock and then process. The next read

command will see the write-lock, mark a reservation for the

next process, then wait until getting unlock signal.

3) read - write: before a read command, reserve and then

process read command. The next write command, it will be

processed without any regard for read commands. After

reading, it compares that read n write = 0. If it is not

equal, then the read command will be delayed until the

write command has been processed. Then, the read command

will do its process again until read n write = 0.

4) write - write: The first write command locks its data and

its process. The second write command waits until the first

write command has been processed. Then,

process making all processes serial.

it will do its

Example l} Assume that a rnultidatabase system is composed ·of

two local databases whose contents are: LDBl = {d, e, f, g}

and LDB2 = {s, t, u, v}. Two global transactions are posed

to the

GTl read (d); read (e)i write (s); write (d);

GT2 read (d)i read (u); write (s); write (d);

These generate the following global subtransactions:

33

,

-

GSTll

GST12

GST21

GST22

read (dli read (eli write (d)i

write (s);

read (d); write (d);

read (ul; write (s);

Further, we introduce local transactions into each DBMS as

follows:

LT1 read (el; write (e)i write (dl;

LT2 : read (u); write (ul;

with the new protocol, we can assume the following local and

global histories:

LHl read11 (d); read11 (e); write11 (d); readLl (e);

read2l (d); writeLl (e); writeLl (d);

LH2 : read22 (u); write22 (s); write12 (s); readL2 (ul;

writeL2 (U}i

The following global subtransaction histories can be derived

from these local histories:

GSH1 : read1l (d); read11 (e); writel1 (dli read2l (d)i

write21 (d);

GSH2 : read22 (S)i write22 (s); write12(s);

Finally, the global history is the partial order which

combines GSHl and GSH2 as GH = { GSH1 v GSH2 }. The

multidatabase history is the tuple MH = < { LHl, LH2}, GH >.

Example 2) Comparing the new protocol with Thomas' Wite

Rule (TWRl in ww synchronization, it appears there is no

difference. But, if they are compared in rw synchronization,

34

,

not only ww synchronization, the new protocol is more secure

in serialization than TWR. As a example, assume TWR combines

a two phase locking (2 PL) rw synchronizer, and T = { to,

tIl t2, t3 }, where to = wO(x), wO(z), wO(y);

tl = rl(x), rI(z), wl(x);

t2 = r2 (x), w2 (y) ;

t3 = r3(z), w3(z), w3(y);

and I ts(tl) < ts(tO) < ts(t2) < ts(t3).

Scheduler I S = wO(x), rl(x), WO(Z)I rI(z), r2(x), wO(y),

r3{z), w3(z), w2(y}, wl(x}, w3(y);

Both two phase locking (2 PL) and the new protocol

are serial, but the new protocol is faster. That is, when

read-lock in 2 PL is on a data, other read or write commands

cannot be applied on that data. But l any command in the new

protocol can be processed without any violation. Since the

reservation on the data is not a lock. This is similar to a

check-point that shows the data has been read l so the next

command does not need to wait. If a read command is next

command I then unless there is a lock on the data, it is

processed simultaneously with earlier commands. If a write

command is next I then it processes the data and makes a

read-write form. Also l a read command of TWR with 2 PL needs

three steps; read-lock, read, unlock. However, the new

protocol requires only two steps: reservation, read. Thus,

the new protocol is faster than TWR with 2 PL.

35

,

By using a pessimistic approach without starvation

such as a two phase commit (2 PC), the degree of concurrency

is reduced by using a read-lock that is not necessary,

causing the deadlock. Also, by using only an optimistic

approach, starvation can occur. Consequently, the new

protocol is realized using on optimistic approach but using

reservation on data. The reservation has the role of

protection from starvation and reduction of the degree of

concurrency, the biggest advantages of an optimistic

approach.

Deadlock-Free

Deadlock is a situation in which each transaction ~n

a set of transactions is blocked waiting for another

transaction in the set, and therefore none will become

unblocked unless there is external intervention [Bernstein

87] .

A useful tool in analyzing deadlocks is a wait-for

graph (WFG). A WFG is a directed graph that represents the

wait -for relationship among transactions. The nodes of this

graph represent the concurrent transactions in the system

[Ozsu and Valduriez 91]. An arc Ti -> Tj exists in the WFG

if transaction Ti is waiting for Tj to release a lock on

some entity. It is easier to indicate the condition for the

36

,

occurrence of a deadlock. A deadlock occurs when the WFG

contains a cycle.

The formation of the WFG is more complicated in

multidatabase system., since more than two transactions that

participate in a deadlock contain may be running at

different sites. It is called a global deadlock. In

multidatabase system, it is necessary to form a local wait­

for graph (LWFG) and a global wait-for graph (GWFG) which is

the union of all the LWFGs.

A LWG consists of only local transactions and global

subtransactions at a single site [Ceri and Pelagati 84].

The graphs (Figure 4) at each site on example 2 are

maintained by local DBMSs and are unavailable to the MDBS.

Example 3)

Site 1: GT1: read(x); write(y);

LT1: read(x)i write(w)i

Site 2: GT2: read(y)i write(z);

LT2: write(z);

Site 3: GT3: read(z); write(x);

LT3: read(z}i

Suppose all global transactions executes concurrently, with

each global transaction issuing its 'read' before any

transaction issues its end.

At this point GT1 has read-lock on x

37

GT2 has read-lock on y

GT3 has read-lock on z.

After processing GT1, GT2, and GT3, local transactions have

read-lock on x and write-lock on z and on v. In Figure 4, it

shows the allocation of the local transactions and global

subtransactions has no problem.

GTI GT2 GT3

j j j
LTI LT2 LT3

Figure 4. Local wait-for graph.

But, if we construct a GWF by merging the LWGs, it shows the

following cycle in general algorithms on Figure 5,

especially in pessimistic algorithms.

That is, all global transactions must obtain

write-locks:

GTI requires write-lock on y

GT2 requires write-lock on z

GT3 requires write-lock on x

But,

GTl cannot get write-lock on y until GT2 releases read-lock

38

GT2 cannot get write-lock on z until GT3 releases read-lock

GT3 cannot get write-lock on x until GTl releases read-lock.

Thus, this is deadlock.

GTl must wait for GT2 to
releases read-lock on y

GTI -----------+. GT2

GTI must wait for GTl
to releases read-lock on x

GT3

GT2 must wait for GTI to
releases read-Jock on z

Figure 5. Global wait-for graph.

As it is mentioned above, since the new protocol is

a locking system in optimistic approach, it is deadlock-

free compared to other locking systems. Since this new

protocol has a reservation before read, not a read-lock,

next write does not need to be wait for releasing the read-

lock of the manner of two phase-commit. Therefore, it is

definitely deadlock free.

39

· s

Outline of Transaction Processing

1. The GTM decomposes every global transaction submitted

into as many global subtransactions as the number of sites

in which the transaction has to be executed, each of which

accesses only one LDB. The GTM maintains a waiting queue to

record information about the global subtransactions, and

maintains state queue to record state of global

subtransactions on each LDBS.

2. The GTM determines an order among the global transactions

so that their serialization orders are compatible in all

local sites they are executed, and allocates LTM to each

subtransction in that order.

3. A global subtransaction executed at the local site is

allowed to enter into the waiting queue after receiving

READY instruction from the GTM which acts as the coordinator

and remains in this state till the coordinator issues

COMPLETED or NO COMPLETED instruction for global commit or

abort.

4. If one of the global subtransactions fails, the ABORT

state is recorded into the state queue, and send the

message, ABORT, back to the all LTMs allocated.

5.Communication between the coordinator and local sites is

accomplished through the LTMs.

40

6. The LTM converts the global read/writes to the language

understandable by the local DBMS at that site. Also, the LTM

keeps recording information about each subtransaction

submitted, along with the result of subtransaction execution

which is passed on to the GTM.

7. The LTM at each local DBMS ensures local serializability.

8.If there is no local transaction, the global

subtransaction does not need to be scheduled with any local

transaction.

9. The LTM passes a message from the scheduler to the GTM

which results of the transaction commit or abort.

Pseudocode for the GTM

DO forever

BEGIN

initialize the waiting queue, state queue, and all other

variable;

On receiving a global transaction DO .

BEGIN

WHILE

decompose into subtransaction;

allocate LTMs for each subtransaction;

record the global subtransactions and information

about them into the each LDB storage

41

END WHILE

END

On receiving a message from one or more LTMs allocated to

a transaction DO

BEGIN

IF message ~s NO from at least one LTM allocated THEN

BEGIN

record the message into the state queue;

send the message 'ABORT' to all LTMs allocated;

go to WAIT;

END

IF message is YES from all LTM allocated THEN

BEGIN

record the message into the state queue;

send the message 'READY' to all LTMs allocated;

go to WAIT;

END

END

WAIT: wait the message for the complete schedule from LTMs

IF message is COMPLETED from all LTMs THEN

BEGIN

record the message into the state queue;

make the effects of transaction execution in the

global database;

42

L

deallocate all LTMs allocated to the transaction;

END

IF message is NO COMPLETED from at least one LTM THEN

BEGIN

END

record the message into the state queue;

deallocate all LTMs allocated to the transaction;

restart the transaction;

END

Pseudocode for the LTM

DO forever

BEGIN

initialize a local data structures;

get a local transaction;

On receiving a global subtransaaction DO

BEGIN

decompose the global subtransaction into atomic

operations;

set and enqueue the operations;

IF there is no local operation THEN

BEGIN

do not need to be scheduled;

break the loop;

43

END

ELSE

BEGIN

call scheduler;

END

END

get a message from the scheduler;

IF message ~s NO THEN

BEGIN

record the message into the state queuei

send the message 'NO' back to the GTMi

END

ELSE IF message is 'YES' THEN

BEGIN

record the message into the state queue;

send the message 'YES' back to the GTM;

END

get a message from the GTM

IF message is ABORT THEN

BEGIN

record the message into the state queue;

send the message 'NO COMPLETED' back to the GTM;

END

ELSE IF message is READY THEN

44

END

BEGIN

record the message into the state queue;

send the message 'COMPLETED' back to the GTM;

END

The GTM allocates one server (LTM) to a global

transaction for each of the sites referenced by the

transaction. A server allocated to a transaction is not

released until the transaction has completed execution at

each site and the results of the transaction have been

committed or aborted by the MOBS.

The global transaction diagram by the proposed new

protocol is shown in Figure 6. The GTM sends the global

subtransactions to the appropriate servers. If a server is

not allocated to a global transaction for a particular site,

the GTM allocates a server to the transaction and passes the

global subtransactions to the appropriate servers for

execution.

When a global transaction completes execution, the GTM

instructs the servers allocated to the transaction, to

commit the update to the local databases. The MDBS uses the

proposed new protocol in communication between the GTM and

the LTMs to commit the results of a global transaction. For

45

example, consider GT has data item x, y, and LT has a data

item x.

GT : r (x), w (x), w (y) ;

LT : r (x) w (x) ;

GT has a reservation on x and reads x. Then, it puts a

write-lock on x during LT reads x. The scheduler calls rw

synchronization in this case, so w{x} on GT is blocked until

it finished its processing, then r(x) on LT is processed. If

we look at the other example such as GT: r(x), r(y)i LT:

r {y} i Since GT and LT put reservations on data x and y,

not locks, there is no conflict, and this new protocol shows

more improved degree of concurrency control than Thomas'

Write Rule with 2PL because Thomas' Write Rule with 2PL

needs read-locks on data x and y, which the proposed

protocol does not need.

The proposed new protocol ensures MDBS- serializability

and autonomy of component LDBSs. Let x e gtl and y e gtj and

x and y conflicts such that x <GH y where GH is global

database history. This means that there is a y-a.rc gti ->

gtj in MSG(MH} in page 28. Therefore, by the proposed new

protocol, gti precedes gtj in any topological sort of GH.

So, all operations of gtl precede all operations of gtj.

Thus, serializability is ensured.

46

Also r the LDBSs are not required to inform the global

concurrency controller about the local transactions executed

at the local sites. MDBSs transactions are scheduled by

global transaction (GT)

global subtransaction (GST)

Figure 6. Global Transaction Diagram by the New Protocol.

47

getting information about which sites contain the data items

to be accessed by the global transactions, and unaware of

the local transactions, so no modification in the existing

LDBMS is demanded by MDBS transactions, and the MDBS does

not require any specific commit protocol to be supported by

the local DBMSs and assumes that any local DBMS is capable

of properly committing the results of local transactions.

After the servers complete commit processing with the

local DBMSs, the servers are deallocated from the global

transaction and are returned to the pool of available

servers. The local scheduler concurrently executes all the

transactions submitted to it. All the data items needed for

operation of a transaction is checked for availability. If

available, the transaction puts appropriate lock

(reservation) one the data and accesses it. Theses

locks (reservations} are released only after the completion

of the transaction.

48

Compa.rison of Major Approaches ~n MDBS

Algorithm Global
Execution Correctness

Quasi­
serializability

Distributed
cycle detection
algorithm

GCC algorithm used
ln super databases

Optimistic
algorithm

Altruistic locking
algorithm

Proposed method

Guaranteed

Guaranteed

Guaranteed

Guaranteed

Guaranteed

Guaranteed

4l)

Local
Autonomy

Degree of
Concurrency

Preserved Low

Not preserved High

Not preserved High

Preserved Low

Preserved Low

Preserved High

CHAPTER IV

SUMMARY AND FUTURE WORK

Summary

Advanced databases are widely used nowadays. The

particular advanced database, which is multidatabase,

without any compromise to its local autonomy, will increase

the usability of the heterogeneous distributed database

system. Multidatabase is one of the very active database

research areas. The problem of managing heterogeneous

distributed databases is becoming an increasingly difficult

problem due to an ever increasing number of different DBMSs

utilized in many corporations. Many retrieve-only MDBSs have

been developed that attempt to provide a tool for managing

heterogeneous distributed data sources.

In the lierature review chapter we saw several models

for distributed control of heterogeneous distributed

database system. A multidatabase concurrency control

mechanism based on the new protocol concurrency control

mechanism was proposed as a solution for the problem of

indirect orders between global transactions due to local

50

•

transactions, still preserving local autonomy and ensuring

global serializability. The degree of concurrency is

improved and it ensures serializability by maintaining the

new protocol at all sites.

Future Work

Since the data becomes larger such as image data, the

object-oriented method has become more important in order to

realize the large data through the network system.

The Object-oriented multidatabase is the new area which is

considering large data as a object or just thing, and

realizes inheritance. Object-oriented transactions are

defined as open nested transactions. They can be realized ~n

multi-layer transaction systems for open nested

transactions. Thus, future investigation is needed in this

area.

51

L

REFERENCES

[Alonso at al. 87] R. H. Alonso, Gracia-Molina, and, K.

Salem, "Concurrency Control and Recovery for Global

Procedures in Fed~rated Database System", Data

Engineering Bulletin, Vol. 10, No.3, pp. 5-11, 1987.

[Baker 90] K. Baker, "Transaction Management on

Multidatabase Systems", Ph.D. Dissertation and Technical

Report, Department of Computer Science, University of

Alberta, Alberta, CA 1990.

[Barghouti et al. 91] N. S. Barghouti, S. Aser, and G. E.

Kaiser, "Concurrency control in Advanced Database

Applications", ACM Computing Surveys, Vol. 23, No.3,

pp. 269-317, September 1991.

[Bernstein 87] P. A. Bernstein, Concurrency Control and

Recove~ in Database Systems, Addison-Wesley Publishing

Co., Reading, MA, 1987.

[Bernstein and Goodman 81] P. A. Bernstein and N. Goodman,

"Concurrency Control in Distributed Database Systems",

ACM Computing Surveys, Vol. 13, No.2, pp. 185-221, June

1981.

52

eft h

[Booth 81] G. M. Booth, The Distributed System Environrne.nt,

New York: McGraw-Hill, Inc., 1981.

{Brietbart and Silberschatz 87] Y. Brietbart and A.

Silberschatz, "An Update Mechanism for Multidatabase

Systems", Data Engineering, Vol. 10, No.3, pp. 12-18,

September 1987.

[Brietbart and Silberschatz 88] Y. Brietbart and A.

Silberschatz, "Multidatabase Update Issues", Proceedings

of ACM SIGMOD International Conference on Management of

Data, Vol. 17, No.3, pp. 135-142, September 1988.

[Brietbart et al. 90] Y. Brietbart, A. Silberschatz, and G.

R. Thompson, "Reliable Transaction Management in a

Multidatabase System", Proceedings of ACM SIGMOD

International Conference on Management of Data, Vol. 5,

No.8, pp. 215-224, September 1990.

[Bukhres and Elmagarmid 95] o. A. Bukhres and A. K.

Elmagarmid, Object-Oriented Multidatabase Systems: A

Solution for Advanced Applications, Prentice-Hall,. Inc.

Englewood Cliffs, NJ, 1996.

[Ceri and Pelagati 84] S. Ceri and G. Pelagati, Distributed

Database Principles and Systems, McGraw-Hill, Inc.,

1984.

[Chikkanna 94] K. H. Chikkanna, "Concurrency Control in

Multidatabases", M. S. Thesis, Department of Computer

53

e I~

Science, Oklahoma State University, 1994.

[Darcy and Boston 83] L. Darcy and L. Boston, Webster's New

World Dictionary of Computer Terms, New York: Simon and

Schuster, Inc., 1983.

[Du and Elmagarmid 89] W. Du and A. K. Elmagarmid, "Quasi

serializability: a correctness criterion for global

concurrency control in InterBase", Proceedings of 13th

International Conference on Very Large Database, pp.

347-355, August 1989.

[Eliezer et al. 91] L.Eliezer, Henry F. Korth, and A.

Silberschatz, "An Optimistic Commit Protocol for

Distributed Transaction Management", ACM Transaction on

Database Systems, Vol. 12, No.4, pp. 88-97, 1991.

[Elmagarmid and Du 96] A. K. Elmagarmid and W. Du, "A

Paradigm for Concurrency Control in Heterogeneous

Distributed Database Systems", Sixth International

Conference on Data Engineering, IEEE Computer Society,

February 5-9, 1996.

[Gafni and BapaRao 92] A. Gafni and K. V. BapaRao, "A Tirne­

based Distributed Optimistic Recovery and Concurrency

Control Mechanism", IEEE Computer Society, Vol. 6, No.

3, pp. 498-505, 1992.

[Giligor and Popescu-Zeletin 86] V. Giligor and R. Popescu­

Zeletin, "Transaction Management in Distributed

54

se

Heterogeneous Database Management Systems*, Information

Systems, Vol. 11, No.4, pp. 287-297, 1986.

[Heimbigner and McLeod 85] D. Heimbigner and D. McLeod, "A

Federated Architecture for Information Management·, ACM

Transactions on Office Information Systems, Vol. 2, No,

8, pp. 253-278, July 1985.

[Herlihy 90] M. Herlihy, "Apologizing Versus Asking

Permission: Optimistic Concurrency Control for Abstract

Data Types", ACM Transactions on Database Systems, Vol.

15, No. I, pp. 96-124, March 1990.

[Kung and Robinson 81] H. T. Kung and Jone T. Robinson, "On

Optimistic Methods for Concurrency Control", ACM

Transaction on Database Systems. Vol. 6, No.2, pp. 213-

226, June, 1981.

[Leu and Elmagarmid 90] Y. Leu and A. K. Elmagarmid, "A

Hierarchical Approach to Concurrency Control in

Multidatabases", IEEE Transactions on Database Systems,

Vol. 5, No.4, pp. 202-210, 1990 .

[Mahesh 90] M. J. Ram Mahesh, "Supporting Altruistic

Protocol in Multidatabase System", M. S. Thesis,

Department of Computer Science, Oklahoma State

University, 1990.

[Mehrotra et al. 92] S. Mehrotra, R. Rastogi, Y. Breitbart,

H. F. Korth, and A. Silberschatz, "The Concurrency

55

r

Control Problem in Multidatabases: Characteristic and

Solutions", Proceeding of ACM SIGMOD International

Conference on Management of Data, pp. 288-297, 1992.

[Muth et al. 92] Peter Muth, Wolfgang, and E. J. Neuhold,

"How to Handle Global Transactions in Heterogeneous

Database Systems", Second International Workshop on

Research Issues on Data Engineering: Transaction and

Query Processing, IEEE Computer Society Technical

Committee on Data Engineering. February 2-3, 1992.

[Ozsu and Valduriez 91] M.T. Ozsu and P. Valduriez,

Principles of Distributed Database Systems, Prentice­

Hall, Inc., Englewood Cliffs, NJ, 1991.

[Soparkar et al. 91] N. Soparkar, H. F. Korth, and, A.

Silberschatz, "Failure Resilient Transaction Management

in Multidatabases" , IEEE Computer, Vol. 9, No. 12, pp.

28-36, December 1991.

[Thompson 87] G. R. Thompson, "Multidatabase Concurrency

Control" Ph.D Dissertation, Department of Computer

Science, Oklahoma State University, 1987.

[Veijalainen and Wolski 92] J. Veijalainen and A. Wolski,

"Prepare and Commit Certification for Decentralized

Transaction Management in Rigorous Heterogeneous

Multidatabases", IEEE Computer Society, Vol. 11, No.2.

pp. 470-479, 1992.

56

,.

APPENDIX A:

Glossary

Conflict : Two operations conflict if their order of

execution affects either the state of the database or the

value that one of them returns. In the Read-Write model, two

operations conflict if they operate on the same data item

and at least one of them is a Write [Bernstein 87].

Consistent state : A state of the dr.ttabase that satisfies

the database's consistency predicates. Intuitively, this

means that data item values are internally consistent with

each other [Bernstein 87].

Database System : A collection of hardware and software

modules that support database operations and transaction

operations [Bernstein 87].

Data Manager (DM) : A composite module of the database

system, consisting of a cache manager and recovery manager

[Bernstein 87] .

57

1

Distributed Database System : A collection of sites

connected by a computer network, where each site is a

centralized database system that stores a portion of the

database [Bernstein 87].

Partial order : A partial order L = (L , <) consists of a

set L called the domain of the partial order and an

irreflexive, transitive binary relation < on L [Bernstein

87] .

Prepared State: It is a state of a transaction in which the

subtransaction finishes all of its read and computation

operations and has all of its updates stored ~n a stable

storage. Such transaction is ready to commit or abort

according to a global decision [Leu and Elmagarrnid 90].

Restriction: A set PI with a partial order <pIon its

elements is a restriction of a set P2 with a partial order <

p2 on its elements if PI c P2, and for all el, e2 E PI,

el < pl e2 if and only if el <p2 e2 [Mehrotra et al. 92].

rw Synchronization : Controlling the order ~n which Reads

execute with respect to conflicting Writes [Bernstein 87].

58

Scheduler : By delaying or rejecting some of those

operations, scheduler is the database system module that

controls the relative order in which database operations and

transaction operations execute [Bernstein 87].

Serial Execution: For every pair of transactions, all of the

operations of one transaction execute before any of the

operations of the other [Bernstein 87].

Serializability: An execution is serializable if it produces

the same output and has the same effect on the database as

some serial execution of the same transactions [Bernstein

87] .

Serialization Order: Partial order of all operations in the

execution [Leu and Elmagarmid 90J .

Transaction Manager (ToM) : The database system module that

is the interface between transactions and the rest of the

database system. It receives each operation from the

transaction, performs any necessary preprocessing of the

operation, and then forwards the operation to the

appropriate database system module [Bernstein 87] .

59

Two Phase Locking : The locking protocol in which each

transaction obtains a read (or write) lock on each data item

before it reads (or write) that data item, and does not

obtain any locks after it has released some lock [Bernstein

87] .

ww Synchronization : Controlling the order in which

conflicting Writes execute [Bernstein 87].

60

2PC

2PL

DBMS

DDBMS

GH

GS

GSH

GT

GTM

GWFG

LDB

LDM

LH

LS

LTM

LWFG

MDBMS

MDBS

APPENDIX B:

Abbreviations and Acronyms

Two Phase Commi t

Two Phase Locking

Database Management System

Distributed Database System

Global Database History

Global Scheduler

Global Serializability Graph

Global Transaction

Global Transaction Manager

Global Wait-for Graph

Local Database

Local Data Manager

Local Database History

Local Scheduler

Local Transaction Manager

Local Wait-for Graph

Multidatabase Management System

Multidatabase System

61

'-

MH

MSG

rw synchronization

TO

TWR

WFG

ww synchronization

Multidatabase History

Multidatabase Serializability Graph

read-Write Synchronization

Timerstamp Ordering

Thomas' Write Rule

Wait-for Graph

Write-Write Synchronization

62

VITA

YONGHO AN

Candidate for the Degree of

Master of Science

Thesis: A NEW PROTOCOL FOR MULTIDATABASE CONCURRENCY
CONTROL

Major Field: Computer Science

Biographical:

Person Data : Born in Seoul, Korea, on March 3, 1970.

Education: Received Bachelor of Science in Computer
Science from the Ohio State University, Columbus,
Ohio, in August 1994; completed the requirement
for the Master of Science degree with a major in
Computer Science at Oklahoma State University in
May 1997.

Experience : Consultant, Department of Compute r Scie n c e,
the Ohio Sate University, January 1993 to December
1993; Teaching assistant, Department of Computer
Science, Oklahoma Sate University, August 1995 to
May 1997.

Professional Membership: Korean-American Scientists and
Engineering Association.

