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CHAPTER I 
 

 

INTRODUCTION 

 

A graph G = (V, E) is defined by a set of vertices (V), and a set of edges (E) between pairs 

of vertices. Graphs provide a convenient and simple way to represent massive data sets arising 

from complex and large-scale real world systems by allowing association of attributes with its 

vertices and edges. Properties of graphs provide useful information about the internal structure of 

the system by identifying meaningful patterns in the dataset. It also facilitates these complex and 

large scale problems to be solved using combinatorial optimization approaches. Some examples 

of networks are as follows, electrical and power networks, wireless networks, logistical networks, 

transportation networks, rail and airline service networks, telecommunication networks, computer 

networks, biological networks and many more. 

A sociogram (visualization of a social network by using a graph) was first presented by 

Moreno in [1] to analyze structural properties and patterns of group interactions within the 

network. The term social network was first coined by Barnes in [2]. “A social network is usually 

represented by a graph, in which the set of vertices corresponds to the “actors” in a social network 

and the edges correspond to the “ties” between them” [3]. Actors can be people or groups of 

people, organizations and examples of tie between people or groups of people can be a 

relationship and between organizations can be various transactions between them. 
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Social Network Analysis (SNA) is a tool in modern sociology and studies social behavior 

of the actors in the social network. Thus, social networks can be easily and conveniently modeled 

as a graph to study and analyze the behavior of social systems. Social network analysis aims at 

understanding relationships within groups and analyzes useful patterns in the social network by 

visualization and modeling. For example, insurance companies are interested to find group of 

people who are most likely to buy their insurance policy by customizing their products on basis of 

individual attributes such as age, occupation, gender etc. Social network analysis basically relies 

on identifying cohesive subgroups in a social network depending upon the problem definition. 

Notion of cohesive subgroups is important in SNA from sociological and data mining perspective 

due to their desirable properties as follows (i) familiarity in subgroup members (few strangers) 

(ii) reachability in subgroup members (quick communication) and (iii) robustness in subgroup 

(not easily destroyed by removing members). We can model these properties using graph 

theoretic concepts of vertex degrees, pair-wise distances/diameters and vertex connectivity, 

respectively. Figure 1 generated using the “social graph” application of Facebook, illustrates the 

notion of cohesive subgroups. In Figure 1, each node represents a friend of mine and there exists 

an edge between the nodes if they know each other. It is straightforward to identify three cohesive 

subgroups in Figure 1. The largest cohesive subgroup represents my group of friends at 

Oklahoma State University. The middle and bottom subgroups represent my group of friends 

from my hometown and bachelors college respectively. 

Let us consider the network-based model of stock market [4, 5], which was built from 

pair-wise correlations between all stocks traded in U.S. stock market over a specified period of 

time. The main aim behind the analysis of the market graph is to find diversified portfolios that 

consistently outperform the market trends. The stocks in the U.S. stock market are represented by 

vertices in the market graph and an edge between two vertices indicates that the two stocks are 

correlated above a user-defined correlation threshold value  , -1      1. It is shown that edge 
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density in a constructed market graph is inversely proportional to  , i.e., edges in the graph 

decreases as   increases in [6]. 

 

Figure 1. Illustration of cohesive subgroups 

Let N be the total number of stocks in consideration and the correlation threshold Cij (-1 

  Cij   1) is calculated using following formula [6, 7]: 
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Where, 

 i = 1,…, N, j = 1,..., N 

 Pi(t) is the price of the stock i on day t 
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defines mean of Ri(t) over T period of time 

 

Different correlation threshold values are used to construct different instances of the 

stock market graphs depending on the degree of diversification (minimize potential risk measured 

as correlation associated in the portfolio) needed by user. This example is a graph-based data 

mining application in stock market. More information about construction of the market graph can 

be found in [4-6, 8]. Many network models that can be used to solve this diversified portfolio 

selection problem in stock market were studied and analyzed in literature. 

An independent set is a set of pair-wise non-adjacent vertices in the graph. A clique is a 

complete subgraph with every vertex is adjacent to every other vertex in a graph. Independent set 

and clique are equivalent under graph complementation. Clique was the earliest graph model for 

representing cohesive subgroups (“strongly connected” subgroups in social network) [3, 9]. 

Cliques have highest possible degree, fastest reachability and strongest connectivity among 

members. Although, cliques were thought to be perfect to characterize cohesive subgroups, 

cliques were found to be too idealized and restrictive in practice. In the aforementioned data 

mining application in stock market, independent sets are used to find a “perfectly diversified” 

portfolio where market graph is generated with a negative correlation threshold  . Moreover, 

cliques are used to find group of stocks in pair-wise correlation with each other, i.e., stocks 
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exhibit similar price fluctuations. For example, correlation between Toyota and Ford stocks is 

higher than correlation between Toyota and IBM. It is because Toyota and Ford belong to the 

same family of the companies, i.e., both belong to the automobile industry. Intuitively, cliques 

tend to identify entities similar in nature. An independent set represents a portfolio in the market 

graph where all stocks in the independent set are negatively correlated. However, choosing such a 

“perfectly diversified” portfolio with a large group of negatively correlated stocks is a difficult 

task [6]. This idea motivates the relaxation of the independent set by allowing user controlled 

interdependency in the subgroup where degree of the nodes are bounded from above. 

We are motivated by this application and identified relaxations of such models. This 

relaxation allows finding larger portfolios without losing diversity of the portfolios. Structural 

relaxations for cliques and independent sets were introduced to explore and analyze more areas 

within the graph. The clique relaxations such as k-clique (pair-wise distance bounded network) 

[10-12], k-club (diameter bounded network) [10, 11] and k-plex (degree bounded network) [13] 

and independent set relaxations such as co-k-plexes [9, 14] were introduced due to practical needs 

in most of the data mining applications. 

This thesis deals with such a graph theoretic independent set relaxation model introduced 

by Balasundaram in [14] called a co-k-plex. The motivation behind this model is that the 

independent set has no edge between any two vertices in a set whereas a co-k-plex allows a 

limited number incident at each node. This parameterized model represents an independent set 

when parameter k = 1 and provides an independent set relaxation for k > 1. As increasing the 

value of k corresponds to a gradual relaxation of independence. 

This thesis addresses the optimization problem to find a largest co-k-plex in a graph and 

develops a metaheuristic approach to solve this problem. We focus only on co-k-plex models for 

parameter k = 1, 2, 3 and the related optimization problems. However, the approach is applicable 

to any positive integer k. 
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The organization of this thesis in subsequent chapters is as follows: Chapter II presents 

required notations and definitions from graph theory; and a review of literature on cliques and 

clique relaxation models, independent sets and the associated optimization problems. Further, we 

describe the independent set relaxation model and the associated research problems. Chapter III 

describes the need for modern metaheuristic algorithms for solving combinatorial optimization 

problems. One such heuristic algorithm to solve this research problem is then studied in 

subsequent sections of Chapter III. Numerical results from computational experimentations on a 

large test-bed of benchmark instances are presented in Chapter IV. Chapter V concludes with 

important findings and provides quick insight of research work. 
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CHAPTER II 

 

 

THE MAXIMUM CO-K-PLEX PROBLEM 

 

2.1 DEFINITIONS, NOTATIONS AND BACKGROUND 

Consider a simple, finite and undirected graph   = (V, E), where V is the set of vertices, 

and E is the set of edges between the vertices; E ⊆ {{u, v} | u, v ∈ V}. Let degG( ) = |{u : (u,  ) ∈ 

E}| denote the degree of   in  ; dG(u,  ) denotes the length of a shortest path in terms of number 

of edges between vertices u and   in  , and diam( ) = max {dG(u,  ):   (u,  ) ∈ E} is the 

diameter of graph  .  [S] = (S, E   (S   S)), denotes the subgraph induced by S ⊆ V. N( ) 

denotes the set of vertices which are adjacent to   in graph  , i.e. the number of edges incident at 

 . A complement graph  ̅ = (V,  ̅) of the graph   is a graph with the same vertices as   and with 

the property that two vertices in  ̅ are adjacent if and only if they are not adjacent in  , i.e. e ∈  ̅ 

if and only if e   E. A graph   is complete graph if its vertices are pair-wise adjacent, i.e.   i, j ∈ 

V, {i, j} ∈ E. A subset of vertices S of graph   is a clique if, there is an edge between each pair of 

vertices, i.e., a clique induces a complete subgraph. A clique is called a maximal clique if it is not 

contained in a larger clique. A maximum clique in a graph   is a clique of maximum cardinality 

in   and the clique number for   denotes by ω( ) is the cardinality of a maximum clique. The 

maximum clique problem (MCP) is to find a largest clique in the given graph   and it is known to 

be NP-hard [15]. The maximum weighted clique problem (MWCP) (each vertex is associated 
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with positive weight in  ) is to find a clique of maximum weight in  . The maximum clique 

problem is the special case in which all weights are unity.  

An independent set is a subset of pair-wise non adjacent vertices in  . S ⊆ V is an 

independent set in   if and only if it forms a clique in  ̅. An independent set is said to be maximal 

if it is not contained in a larger independent set. The maximum independent set problem (MISP) is 

to find an independent set of maximum cardinality and the independence number; α( ), is the 

cardinality of a maximum independent set in  . MISP is known to be NP-hard [15]. The 

maximum weighted independent set problem (MWISP) is to find an independent set of maximum 

weight in  . Finding a maximum independent set in   is equivalent to finding a maximum clique 

in  ̅. The maximum independent set and maximum clique problems are closely related, we deal 

with both the problems while describing the properties and algorithms for the maximum 

independent set problem. In this case, it is clear that a result holding for the maximum clique 

problem in   will also be true for the maximum independent set problem in  ̅. Thus, researchers 

may not differentiate these problems, as solving one problem is equivalent to solving the other 

problem on general graphs. The first algorithm for finding large cliques in a graph was published 

by Harary and Ross in [16]. Since, many algorithms have been developed to find maximal cliques 

in the graph [17]. Many exact algorithms based on branch and bound method for maximum clique 

problem and independent set problem are available in literature. One of the important algorithms 

is a recursive algorithm for maximum independent set problem proposed by Tarjan and 

Trojanowski in [18] with complexity of O(    ) which is then modified to complexity of 

O(       ) by Robson in [19]. Readers are referred to the text in [6, 17] for details regarding of 

algorithms to find maximal or maximum cliques and related problems in  . Also, many heuristics 

are available to solve maximum clique and independent set problems in the literature [6]. Chapter 

III will discuss in detail some greedy heuristics for these problems. The maximum independent 

set/clique problem has applications in numerous fields, including information retrieval, signal 
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transmission analysis, classification theory, economics, scheduling, and biomedical engineering, 

experimental design and computer vision and pattern recognition, map labeling and market graph 

(portfolio optimization) etc. [17]. 

A subset of vertices S of a graph   is a k-plex if, degG[S]( ) = | N(    S |   |S| - k;    ∈ 

S. In other words, a subset of vertices of a   is said to be k-plex if the degree of every vertex in 

the induced subgraph  [S] is at least |S| - k. A k-plex is maximal, if it is not contained in a larger 

k-plex. Not that a 1-plex is a clique. A maximum k-plex is a k-plex of maximum cardinality in   

and the k-plex number for   is denoted as ωk( ). The maximum k-plex problem is to find a largest 

k-plex for the given graph and it is known to be NP-hard [9]. The maximum weighted k-plex 

problem is to find a k-plex of maximum weight in  . 

A subset of vertices S of a graph G = (V, E) a co-k-plex if, degG[S] ( ) = | N( )   S |   k-1 

    Є S. A co-k-plex induces a subgraph in which degree of a vertex   Є S in  [S] is at the most 

k-1, i.e.  [S] has maximum degree of k-1 or less. Figure 2 illustrates co-k-plexes for integer k =1, 

2 and 3. A co-1-plex set in a graph is simply collection of nonadjacent vertices, i.e., an 

independent set. Furthermore, a co-2-plex set is a set of independent vertices and matched pairs. 

A co-3-plex set is a set of independent vertices, paths and cycles. Thus, co-k-plexes provide 

systematic step-by-step relaxations of independent sets for each positive integer k. A co-k-plex is 

maximal, if it is not contained in a larger co-k-plex. The maximum co-k-plex problem (MCPP-k) 

is to find a maximum cardinality co-k-plex in   and the co-k-plex number, αk( ) is the cardinality 

of a maximum co-k-plex in  . The maximum co-k-plex problem is also known to be NP-hard [9, 

20, 21]. The maximum weight co-k-plex problem (MWCPP-k) is to find a co-k-plex of maximum 

weight in  . Seidman and Foster introduced the k-plex model to find degree bounded cohesive 

subgraphs in [13]. The k-plexes are cohesive subgraphs which were introduced to relax the 

structure of cliques. The co-k-plex and k-plex are equivalent under graph complementation, i.e. 
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the set S is a co-k-plex in   if and only if S is a k-plex in  ̅. Consequently, the maximum co-k-

plex problem and maximum k-plex problem are closely related and equivalent under graph comp- 

 

(a)                                                                          (b) 

            

(c)                                                                          (d) 

Figure 2. Illustration of co-k-plexes for positive integer k=1, 2, and 3 

(a) Original Graph, (b) co-1-plex (subgraph contains independent vertices, i.e., an independent 

set), (c) co-2-plex (subgraph contains independent vertices and matched pairs), (d) co-3-plex 

(subgraph contains independent vertices, paths and cycles) 
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lementation. This is analogous to the relationship between stable sets in   and cliques in  ̅. 

Several exact algorithms for these problems are studied in [9, 14, 22, 23]. No metaheuristic 

algorithm is available to solve this problem presently. 

Diversified portfolio solution problem discussed in Chapter I is further studied in 

perspective of finding diversified portfolios that have superior profitability in [22]. The main 

drawback of the approach mentioned in Chapter I is the fact that the returns of the identified 

diversified portfolios were not explicitly taken into account. To addressed this issue of finding 

large, high-return diversified portfolios into a weighted market graph, each vertex is assigned a 

weight. The weight of each vertex represents the return of corresponding stock over specified 

period of time and it can be calculated by two equations as follows [22]: 

1) wi
1
 = 

)1(

)(
log

i

i

P

TP
, 

2) wi
2
 = 1

)1(

)(


i

i

P

TP
, 

Where, wi is the weight of the vertex i, i.e., overall return on i over T trading days. This 

problem is solved and studied by using maximum weighted clique and k-plex in [22]. It is shown 

that weighted clique relaxations offer more robustness and profitability as compare to weighted 

cliques in the context of portfolio selection. It is shown that, 2-plexes offer reasonable “tight” 

clique relaxations by providing good balance between the quality and size of the identified 

diversified portfolio. This result forms the basis for studying the maximum weighted co-k-plex 

problem in the context of identifying large, highly diversified profitable portfolios. 

 

2.2. CONTRIBUTIONS 

This thesis makes the following contributions. The metaheuristic approach known as 

Greedy Randomized Adaptive Search Procedure (GRASP) has been thoroughly studied and a 
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GRASP algorithm has been developed for solving the maximum co-k-plex problem and the 

maximum weighted co-k-plex problem. A suitable neighborhood definition is designed to 

enhance local search effectiveness, ultimately improving GRASP performance. GRASP 

algorithms for both problems have been implemented using the C++ programming language. 

Efficient data structures and implementation techniques are used to reduce GRASP total running 

time. Benchmark clique instances from the Second DIMACS challenge [9, 14, 24, 25] are 

complemented to form independent set instances. Computational experiments are conducted on 

these instances to analyze the effectiveness of GRASP by comparing numerical results of GRASP 

with results obtained by an exact branch-and-cut algorithm from literature. 
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CHAPTER III 
 

 

GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE (GRASP) 

 

3.1 INTRODUCTION TO METAHEURISTICS 

Optimization problems of both practical and theoretical importance are divided into two 

categories: those with continuous variables and those with discrete variables. Combinatorial 

Optimization (CO) problems fall into a category of problems with discrete values for feasible 

solutions. In this class of problems, we are looking for an object from a finite (or possibly 

countably infinite) set of objects that corresponds to the maximum or minimum objective value. 

Some well-known examples of CO problems are the Traveling Salesman Problem (TSP), the 

Quadratic Assignment Problem (QAP), and the maximum clique/independent set problems. 

A combinatorial optimization (CO) problem is described by a pair (S, ) where  is an 

objective function to be minimized or maximized as per problem definition and S is a feasible 

search space; each element of S can be a candidate solution. To solve a combinatorial 

optimization problem, we need to find a solution s* ∈ S with minimum or maximum objective 

function value. i.e.  (s*)   (s) for a minimization problem and  (s*)   (s) for a maximization 

problem   s ∈ S. Such a solution s* is a global optimal solution of the CO problem. To solve 

such problems, exact and heuristic algorithms have been developed and studied. Exact algorithms 

are guaranteed to provide an optimal solution in finite steps for every finite size instance of a CO 

problem. 
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Most of the CO problems are categorized as NP-hard (no polynomial time exists to solve 

them, unless     ). Therefore, exact algorithms might need exponential time in the worst-

case. Heuristic algorithms try to find a good quality solution instead of finding an optimal 

solution in significantly reduced amount of time. Basic heuristic algorithms are distinguished as 

constructive and local search methods. Constructive algorithms generate a feasible solution 

starting from an empty solution. Local search algorithms iteratively find a better quality solution 

to replace the current solution through intensive exploration of search space based upon 

appropriately defined neighborhood structures. 

A neighborhood structure is a mapping  : S 2
S 

that assigns to every s ∈ S set of 

neighbors  (s) ⊆ S.  (s) is called the neighborhood of s. A locally minimal solution with 

respect to a neighborhood structure   is a solution  ̂ such that   s ∈    ̂ ,  ( ̂)   (s). We call  ̂ 

a strict locally minimal solution if  ( ̂)   (s)    s ∈    ̂ , s   ̂  

Metaheuristics are widely used to solve combinatorial optimization problems because of 

their simplicity and robustness. Metaheuristics are designed to produce good quality solutions in 

reduced amount of time for complex combinatorial problems. Metaheuristics are not problem 

specific and provide a framework for finding good quality solutions by efficiently exploring 

neighborhood in short amount of computational time. Simulated Annealing (SA) [26], Tabu 

Search (TS) [27-29], Greedy Randomized Adaptive Search Procedure (GRASP) [30, 31], Genetic 

Algorithms (GA) [32, 33] and Variable Neighborhood Search (VNS) [34] are some of the well-

known metaheuristics used to solve large CO problems. Performance of metaheuristic algorithms 

depends on the efficiency of algorithms to explore and exploit the search space. Therefore every 

metaheuristic algorithm should be carefully designed with such aim.  

Intensification and Diversification (I&D) are the most powerful and effective factors 

driving metaheuristics performance to high levels. Glover and Laguna provide high level 

descriptions of intensification and diversification in [27]. During intensification, algorithm 

explores search space for high quality solutions in the neighborhood and during diversification, 
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moves to unexplored search space are made to find better solutions than found during 

intensification. The moves in the search space greatly depend on the search philosophy of a 

metaheuristic itself and the neighborhood structures defined for the problem. Therefore, one has 

to ensure right balance between intensification and diversification to obtain an effective 

metaheuristic. 

 

3.2 GRASP METAHEURISTIC 

GRASP is a multistart metaheuristic used to solve combinatorial optimization problems 

[30, 31, 35, 36]. An iteration of the GRASP consists of two phases: a greedy randomized 

construction phase and a local search phase. During the construction phase, an initial feasible 

solution is built and in the local search phase a local optimum is found by investigating the 

neighborhood of the current feasible solution based on neighborhood definition. The best solution 

encountered during different iterations is returned by GRASP as final solution. GRASP is the first 

metaheuristic that was built to construct initial solution by balancing greedy and randomized 

approaches to enhance the performance of the local search. Hence, GRASP solutions are 

generally significantly better than the single solution obtained from a random starting point. 

GRASP has been successfully applied to a wide range of  combinatorial optimization problems, 

such as drawing and turbine balancing, scheduling, routing , problems in logic, including SAT, 

MAX-SAT, and logical clause inference, partitioning problems, location and layout problems, 

Graph theoretic applications, assignment problems, transportation problems etc. An annotated 

bibliography of the GRASP literature from 1989 to 2008 is available in [37, 38]. 

The maximum co-k-plex problem is a NP-hard problem as discussed in Chapter II. 

Therefore, metaheuristic algorithms can provide a good approach to solve the maximum co-k-

plex problem in relatively small amount of time to produce good quality solutions where exact 

algorithms might take high computational time in the worst-case. The overall goal of this thesis is 
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to develop GRASP algorithm to solve MCPP-k and MWCPP-k on large graphs. This is the first 

metaheuristic approach developed for this problem. The next section describes a generic GRASP 

metaheuristic framework in the context of finding maximum independent sets in a given graph 

developed by Resende et al. in [39]. Subsequently, we describe the GRASP metaheuristic 

algorithm for the maximum co-k-plex and the maximum weighted co-k-plex problems developed 

as part of this thesis research. 

 

3.2.1 GRASP FOR THE MAXIMUM INDEPENDENT SET PROBLEM 

Figure 3 and 4 present the pseudo-codes of a generic GRASP and the GRASP 

construction procedure for the maximum independent set problem, respectively [39]. The 

parameters Max_Iterations and Seed are the maximum number of iterations for GRASP 

termination and the initial seed for the pseudorandom number generator, respectively. 

Construction phase starts with an empty solution and the ordered candidate list (contains elements 

that can be added one at a time to the current solution without violating feasibility) which 

contains all the vertices. The list of the best candidates, called a Restricted Candidate List (RCL) 

is constructed choosing best candidates from the candidate list by a greedy-randomized function 

which depends on a parameter   (0     1). 

 

 

 

 

 

 

 

Figure 3. Pseudo-code of generic GRASP for the maximum independent set problem 

 GRASP(Max_Iterations,Seed) 

 Read_Input (V, E); 

 Initialize Best Solution I* to an empty set; 

 for i = 1, …, Max_Iterations do 

  Generate   ∈ [0, 1] randomly; 

   = GreedyRandomizedConstruction(α); 

I = LocalSearch(  ); 

if |I| > |I*| do 

 I* = I; 

end if 

 end for 

 return I*; 

 end GRASP 
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The value of parameter   decides the degree of “greediness” and “randomness” in the algorithm. 

  = 1 provides pure randomness and   = 0 provides pure greediness. An initial feasible solution 

is built iteratively by randomly selecting element from RCL and adding to the current solution 

one at a time. The technique of choosing elements randomly may generate different solutions at 

each GRASP iteration and the value of   is also chosen at random (but fixed for each major 

GRASP iteration). At each construction iteration the candidate list is updated and then ordered by 

using the greedy rule. The construction phase terminates when the candidate list is empty, i.e. no 

candidate is available to improve current solution. Let us consider the graph   = (V, E) as shown 

in Figure 2 (a) to solve the MISP. 

Let us consider α is generated equal to 0.5 in an iteration of the GRASP. The construction 

phase starts with an empty solution (I = {}) and builds an independent set by adding vertices one 

by one from RCL. C initially consists all the vertices, i.e. C = V and all the elements are ranked in 

descending order based on degrees of the elements in  [C]. (RCL) is constructed by adding 

vertices which have a lesser or equal degree than threshold (Threshold Value = dmin + α (dmax– 

dmin)) in  [C]. An element is chosen randomly from RCL, suppose we have chosen vertex 3 (I = 

{3}).  

 

 

 

 

 

 

 

 

 

Figure 4. Pseudo-code of the GRASP construction procedure for the MISP 

GreedyRandomizedConstruction (α) 

Initial Independent set,    =  ; 

Candidate list, C = V; 

while|C| > 0 do 

Let G[C] be the subgraph induced by the vertices in C; 

Let degG(C)(u) be the degree of u ∈ C with respect to  [C]; 

dmin= min{degG(C)(u) | u ∈ C}; 

dmax= max{degG(C)(u) | u ∈ C}; 

RCL = {u ∈ C | degG(C)(u)   dmin + α (dmax − dmin)}; 

Select u at random from the RCL; 

   =      {u}; 

C = C \ (N(u)   {u}); 

end while; 

return   ; 

end GreedyRandomizedConstruction; 
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Thus, GRASP uses vertex degrees as the greedy function for constructing an independent 

set. After adding a randomly selected vertex, C is updated such that if elements in C can be added 

to current independent set one at a time without violating feasibility, i.e. selecting elements from 

vertex list that are nonadjacent to every element in I. Thus, vertices 2, 4, 5, 7, 8, 9, 10 and 11 

forms updated candidate list. The steps discussed so far are repeated until the termination 

condition (the candidate list is not empty) of construction phase is satisfied.  

C dmin dmax Threshold RCL Solution  

{1,2,3,4,5,6,7,8,9,10,11,12} 1 6 3.5 {3,5,7,8,9,10,11,12} {3} 

{2,4,5,7,8,9,10,11} 0 3 1.5 {8,9} {3,8} 

{2,4,5,7,9,10,11} 0 3 1.5 {9} {3,8,9} 

{2,4,5,7,10,11} 2 3 2.5 {4,5,10,11} {3,4,8,9} 

{5,10,11} 0 1 0.5 {5} {3,4,5,8,9} 

{10,11} 1 1 1 {10} {3,4,5,8,9,10} 

 

Table 1. Iterative greedy randomized construction phase for the MISP 

Table 1 presents the steps carried out in the greedy randomized construction phase to 

construct an initial feasible solution. The greedy randomized construction phase for the MISP 

returns an initial feasible solution, i.e. Solution set I = {3, 4, 5, 8, 9, 10} as shown in Figure 2 (b). 

Figure 5 shows the pseudo-code of the local search phase for the maximum independent 

set problem. Applying local search to improve each constructed solution is beneficial because of 

the fact that constructed solutions are not guaranteed to be globally optimal especially for NP-

hard CO problems. The GRASP local search iteratively replaces the current solution by a better 

solution from the neighborhood and terminates when no better solution is found in the 

neighborhood. Thus, the performance of the local search algorithm depends on three factors: the 

choice of neighborhood structure, efficient neighborhood search techniques and initial feasible 

solution constructed in the construction phase. One possible neighborhood structure for local 

search can be implemented by (2, 1) swap or exchange. This approach adds two new elements to 

current solution after removing one element. The local search terminates when no such triplet can 
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be found and returns the current solution as the local optimum. Given a (maximal) independent 

set ( ), the (2,1)-exchange local search neighborhood is given by  2( ) = { J ⊆ V : J is an 

independent set, |  \ J| = 1 and |J \  | = 2}. Local search starts with initial feasible solution,   . 

Suppose, initial feasible solution constructed during greedy randomized construction phase is    

= {5, 6, 10, 12}. Note that    is a maximal independent set. Local search tries to find a triplet in 

the neighborhood of current solution. Table 2 presents solutions found during an iterative local 

search phase, I = {3, 4, 5, 8, 9, 10} as shown in Figure 2 (b). 

 

 

 

 

 

 

 

Figure 5. Pseudo-code of (2, 1)-exchange local search procedure for the MISP 

H(I) Solution  

{8,9,6} {5,8,9,10,12} 

{3,4,12} {3,4,5,8,9,10} 

 

Table 2. Local search phase for the MISP 

The local search algorithm terminates when H(I) is empty, i.e. current solution cannot be 

further improved. Thus, current independent set solution is said to be locally optimal and it is 

returned to the GRASP where it is compared to the best independent set solution found so far. If 

the locally optimal solution has higher cardinality than the best solution, then it is replaced by the 

current locally optimal solution. In the next section, we will design GRASP in the context of co-

k-plexes for the maximum co-k-plex problem in  . 

LocalSearch( ) 
H(I) = {(v, u, w) | v, u ∈V \ I, (v, u)   E, w ∈  , and  

v and u are nonadjacent to all vertices of I except w}; 

while |H(I)| > 0 do 

Select (u, v, w) ∈ H(I); 

I = I  {u, v} \ {w};  

H(I) = {(v, u, w) | v, u ∈ V \ I, (v, u)   E, w ∈ I, and  

v and u are nonadjacent to all vertices of I except w}; 

end while 

return I; 

end LocalSearch 
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3.2.2 GRASP FOR THE MAXIMUM CO-K-PLEX PROBLEM 

 The pseudo-code of the generic GRASP and the greedy randomized construction phase 

for the maximum co-k-plex problem are similar to that of for the maximum independent set 

problem. After each GRASP iteration, locally maximum co-k-plex ( ) solution is compared with 

best co-k-plex ( *) solution found so far. The best co-k-plex solution is replaced by the current 

locally maximum co-k-plex solution if it is larger (| | > | *|). Finally, the best co-k-plex solution 

encountered during different iterations is returned by GRASP. 

 

 

 

 

 

 

 

 

 

 

Figure 6. Pseudo-code of greedy randomized construction for the MCPP-k 

During the greedy randomized construction phase for the MCPP-k, candidate list C is 

updated such that C = {u ∈ C : |N(u)    |   k-1 and N(u)   S =  } where, S = {u ∈   : | N(u)     

| = k-1}, i.e., u can be added in C if it has no more than k-1 neighbors in the current co-k-plex and 

no saturated node in S (node at degree k-1 in the current co-k-plex) is adjacent to u. Let us 

consider the graph   = (V, E) shown in Figure 2 (a) to solve the maximum co-k-plex problem for 

k = 2 (co-2-plex). Suppose parameter   is 0.5 in the following numerical example. Table 3 

presents the steps carried out in the greedy randomized construction phase for the MCPP-2 to 

GreedyRandomizedConstruction (α) 

Initial co-k-plex,  0 =  ; 

Candidate list, C = V; 

while |C| > 0 do 

Let G[C] be the subgraph induced by the vertices in C; 

Let degG(C)(u) be the degree of u ∈ C with respect to  [C]; 

dmin= min{degG(C)(u) | u ∈ C}; 

dmax = max{degG(C)(u) | u ∈ C}; 

RCL = {u ∈ C | degG(C)(u)   dmin + α (dmax − dmin)}; 

Select u at random from the RCL; 

 0  =  0   {u}; 

C = {u ∈ C : |N(u)    0 |   k-1 and N(u)   S =  }, 

        where, S = {u ∈  0 : | N(u)    0 | = k-1}; 

end while; 

return  0 ; 

end GreedyRandomizedConstruction; 
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construct an initial feasible solution. The greedy randomized construction phase for the MCPP-2 

returns an initial feasible solution, i.e. Solution set   = {3, 4, 5, 8, 9, 10, 11, 12} as shown in 

Figure 2 (c). 

C dmin dmax Threshold RCL Co-2-plex 

{1,2,3,4,5,6,7,8,9,10,11,12} 1 6 3.5 {3,5,7,8,9,10,11,12} {3} 

{1,2,4,5,6,7,8,9,10,11,12} 0 5 2.5 {5,8,9,10,11,12} {3,8} 

{2,4,5,7,9,10,11,12} 0 3 1.5 {9} {3,8,9} 

{2,4,5,7,10,11,12} 0 3 1.5 {12} {3,8,9,12} 

{2,4,5,7,10,11} 2 3 2.5 {7,11} {3,8,9,11,12} 

{2,4,5,7,10} 1 3 2 {4,5,7,10} {3,8,9,10,11,12} 

{4,5} 0 0 0 {4,5} {3,4,8,9,10,11,12} 

{5} 0 0 0 {5} {3,4,5,8,9,10,11,12} 

 

Table 3. Iterative greedy randomized construction phase for the MCPP-2 

The main difference between local search for MCPP-k and MISP is in the neighborhood 

definition. The local search neighborhood for MCPP-k is defined as, for a given (maximal) co-k-

plex ( ),  q( ) = { J ⊆ V : J is a co-k-plex and |   \ J | = 1 and | J \   | = q}, i.e. (q, 1) exchange 

neighborhood for q = 2, 3, 4…. The neighborhood search can be implemented by using either  a 

best-improving or first improving move strategy. In best–improving strategy, all neighbors of the 

current solution are investigated and evaluated for best improving neighbor. But first improving 

strategy uses the first improving neighbor encountered. We use the first improving strategy to 

reduce the running time of algorithm.  

H( ) Co-2-plex  

{8,12,3} {6,7,8,11,12} 

{4,5,10,7} {4,5,6,8,10,11,12} 

{3,9,6} {3,4,5,8,9,10,11,12} 

 

Table 4. Local search phase for the MCPP-2 

Local search starts with the initial feasible solution constructed during the greedy 

randomized construction phase. Suppose, the initial feasible solution constructed during greedy 
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randomized construction phase is  0 = {3, 6, 7, 11}. Table 2 presents local search moves during 

an iterative local search phase resulting in the local optimum   = {3, 4, 5, 8, 9, 10, 11, 12} as 

shown in Figure 2 (c). 

 

 

 

 

 

 

Figure 7. Pseudo-code of local search for the MCPP-k 

 

3.2.3 GRASP FOR THE MAXIMUM WEIGHTED CO-K-PLEX PROBLEM 

The pseudo-code of the GRASP for the maximum weighted co-k-plex problem is similar 

to that of the maximum independent set problem. After each GRASP iteration, locally maximum 

weighted co-k-plex ( w) solution is compared with best weighted co-k-plex ( w*) solution found 

so far. The best weighted co-k-plex solution is replaced by the current locally maximum weighted 

co-k-plex solution if it has larger weight (   w) >    w*)). Finally, the best weighted co-k-plex 

solution encountered during different iterations is returned by GRASP. During the greedy 

randomized construction phase for the MWCPP-k, RCL is constructed by selecting candidates in 

C such that RCL = {u ∈ C | W(u)   Wmin + α (Wmax − Wmin)}. 

Let us consider the graph   = (V, E) shown in Figure 2 (a) to solve the maximum 

weighted co-k-plex problem for k = 2 (co-2-plex). Suppose parameter   is 0.5. Table 5 presents 

weights associated with each vertex in the graph  . Table 6 presents the steps carried out in the 

greedy randomized construction phase for the MWCPP-2 to construct initial feasible solution. 

LocalSearch( ) 

H(   = {(ui,…, uq, w) | ui ∈ V \  , w ∈     i = 1, ..., q, and 

         |   =   \ {w}  {ui, ..., uq} is a co-k-plex} 

while |H(  | > 0 do 

Select (ui,…, uq, w) ∈ H(  ; 
 =   { ui,…, uq}\w; 

H(   = {(ui,…, uq, w) | ui ∈ V \  , w ∈     i = 1, ..., q, and 

                      |   =   \ {w}  {ui, ...,  uq} is a co-k-plex} 

end while 

return  ; 

end LocalSearch 
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The greedy randomized construction phase for the MWCPP-2 returns an initial feasible solution, 

i.e. Solution set  w
0 = {1, 4, 5, 9, 10, 11, 12} with maximum weight, W  w

0 ) = 460 units. 

 

 

 

 

 

 

 

 

 

 

Figure 8. Pseudo-code of greedy randomized construction for the MWCPP-k 

u 1 2 3 4 5 6 7 8 9 10 11 12 

W(u) 120 50 20 100 30 25 15 35 105 45 55 5 

 

Table 5. Vertex weights in   

C Wmin Wmax Threshold RCL Co-2-plex 

{1,2,3,4,5,6,7,8,9,10,11,12} 5 120 62.5 {1,4,9} {4} 

{1,2,3,5,6,7,8,9,10,11,12} 5 120 62.5 {1,9} {1,4} 

{5,9,10,11,12} 5 105 55 {9,11} {1,4,9} 

{5,10,11,12} 5 55 30 {5,10,11} {1,4,9,11} 

{5,10,12} 5 45 25 {5,10} {1,4,9,10,11} 

{5,12} 5 30 17.5 {5} {1,4,5,9,10,11} 

{12} 5 5 5 {12} {1,4,5,9,10,11,12} 

 

Table 6. Iterative greedy randomized construction phase for the MWCPP-2 

Local search starts with an initial feasible solution constructed during the greedy 

randomized construction phase. Suppose, initial feasible solution constructed during the greedy 

GreedyRandomizedConstruction (α) 

Initial weighted co-k-plex,  w
0 =  ; 

Candidate list, C = V; 

while |C| > 0 do 

Let G[C] be the subgraph induced by the vertices in C; 

Let W(u) be the weight of u ∈ C; 

Wmin = min{W(u) | u ∈ C}; 

Wmax = max{W(u) | u ∈ C}; 

RCL = {u ∈ C | W(u)   Wmin + α (Wmax − Wmin)}; 

Select u at random from the RCL; 

 w
0 =  w

0   {u}; 

C = {u ∈ C : |N(u)    w
0 |   k-1 and N(u)   S =  }, 

        where, S = {u ∈  w
0 : | N(u)    w

0 | = k-1}; 

end while; 

return  0 ; 

end GreedyRandomizedConstruction; 
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randomized construction phase is  w
0 = {3, 6, 7, 11} with weight, W( w

0 ) = 115. Table 7 

presents local search moves during an iterative local search phase resulting in the local optimum 

 w = {3, 4, 5, 8, 9, 10, 11, 12} with weight W( w) = 395 units as shown in Figure 2 (c). 

 

 

 

 

 

 

 

Figure 9. Pseudo-code of local search for the MWCPP-k 

H( w) Co-2-plex Weight 

{2,8,9,12,6} {2,3,7,8,9,11,12} 285 

{4,7} {2,3,4,8,9,11,12} 370 

{5,10,2} {3,4,5,8,9,10,11,12} 395 

 

Table 7. Local search phase for the MWCPP-2 

In Chapter IV, extensive computational experiments are conducted to test the 

effectiveness of both versions of GRASP for the MCPP-k and the MWCPP-k proposed in this 

chapter. 

 

LocalSearch( w) 

H( w  = {(ui,…, uq, w) | ui ∈ V \  w, w ∈  w   i = 1, ..., q, and 

           |  w =  w \ {w}  {ui, ..., uq} is a co-k-plex and 

           | )( iuW   W(w)} 

while | H( w  | > 0 do 

Select (ui,…, uq, w) ∈ H( w ; 
 w=  w  { ui,…, uq}\ {w}; 

H( w  = {(ui,…, uq, w) | ui ∈ V \  w, w ∈  w   i = 1, ..., q, and 

           |  w =  w \ {w}  {ui, ..., uq} is a co-k-plex and 

           | )( iuW   W(w)} 

end while 

return  w; 

end LocalSearch 
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CHAPTER IV 
 

 

COMPUTATIONAL EXPERIMENTS 

 

This chapter presents our computational experiments conducted on both versions of 

GRASP algorithm developed in Chapter III. Extensive investigation of GRASP algorithms 

proposed for the maximum co-k-plex and weighted co-k-plex problems are performed on a large 

test-bed of benchmark instances. In Section 4.1, we describe all the relevant GRASP algorithm 

implementation details and in Section 4.2 we describe the instances used in testing. Our results on 

both versions of GRASP algorithm are presented in Section 4.3. 

 

4.1 GENERAL IMPLEMENTATION DETAILS 

This section describes implementation details that are common to all our experiments. All 

numerical experiments were conducted on Dell Precision T3500 with system configuration as 

follows: Intel®Xeon®W3550 3.07 GHz processor, 3GB RAM and Microsoft Windows XP 

Professional Version 2002 Service Pack 3 operating system. Two versions of the GRASP 

algorithm for solving MCPP-k and MWCPP-k are implemented using the C++ programming 

language. We use an adjacency list to represent graphs. An adjacency list contains lists of all 

vertices that are adjacent to each vertex in the graph. Table 8 illustrates the adjacency list for the 

graph in Figure 2 (a). 
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Vertex Adjacent vertices 

1 3 4 6 8 

  2 4 5 6 10 

  3 1 6 12 
 

  4 1 2 6 7 

  5 2 7 
  

  6 1 2 3 4 8 9 

7 4 5 7 

   8 1 6 

    9 6 

     10 2 11 

    11 7 10 

    12 3           

 

Table 8. Illustration of representation of vertex adjacency list 

While updating candidate list and determining degree of vertex in subgraph induced by 

elements of candidate list during construction phase of GRASP, we recognized that these steps 

take considerable amount of time. It is also observed that during local search, enumerating 

neighboring solutions needs considerable amount of time. Thus, we used two vectors to keep 

track of vertex degree in subgraph induced by elements of candidate list (C) and vertex degree in 

subgraph induced by elements in current co-k-plex (solution) respectively as follows: 

vector<int> DegreeCand; //keeps track of degree of the node in a subgraph induced 

by elements of candidate list 
 

vector<int> AddCandidate; //keeps track of the degree of each node in current co-k-

plex (solution), i.e. degG( )(u), u ∈V 

Initially, each element in vector “DegreeCand”  represents degree of each vertex in 

original graph. Degree of each vertex adjacent to u ∈ C is reduced by one when u is selected 

radomly from RCL to add in the current co-k-plex ( ). This facilitates step of updating C by 

keeping track of degree of v, v ∈ C & v   , i.e.degree of vertex in  [C]. This also helps to 

determine maximum and minimum degree in  [C] easily. The vector “AddCandidate” keeps 
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track of degree of each vertex in   (number of vertex adjacent to u in  ) by increasing degree of 

each vertex adjacent to u ∈ V when u is added to current  . This helps to determine degree of v ∈ 

V in  [ ] and facilitates the step of finding improving neighbors quickly. Table 9 illustrates 

improvement in GRASP runtime. The naive version explicitly checks neighboring solutions while 

the improved version uses the above mentioned data structures. 

Graph |V| |E| 
Naive GRASP Time 

(secs) 

Improved GRASP Time 

(secs) 

c-fat500-2.clq 500 9139 42.81 0.031 

c-fat500-10.clq 500 46627 274.86 0.328 

hamming10-2.clq 1024 518656 1504.40 6.937 

 

Table 9. Illustration of improvement in the GRASP running time (Max_Iterations = 10) 

 

4.2 DESCRIPTION OF THE TEST-BED 

In our Experiments, we used benchmark clique instances from Second DIMACS 

challenge [9, 14, 24, 25]. These instances have been used in the literature while studying 

algorithms for the maximum k-plex problem [9]. Table 10 presents information regarding the 32 

DIMACS benchmark instances used in this thesis for experimental purpose [24, 25]. Description 

of DIMACS instances from Table 10 can be found in [9, 14, 40, 41]. For solving the maximum 

weighted co-k-plex problem, weights are generated randomly between range 1 to 10n unit (n = 

vertex set size) for the DIMACS instances. 

 

4.3 NUMERICAL RESULTS: MCPP-k AND MWCPP-k 

GRASP algorithms for MCPP-k and MWCPP-k were implemented and studied on instances in 

Table 10 for k= 1, 2, 3. GRASP results are compared with the results obtained by Branch-and-Cut 

exact algorithm in [9]. All numerical results in [9] on benchmark clique instances were obtained 

by conducting experiments on Dell Precision PWS690® computers with 2.66GHz Xeon® 
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processor, 3GB RAM and 120GB HDD. Branch-and-Cut (BC) algorithm was implemented using 

ILOG CPLEX 10.0® for solving the maximum k-plex and maximum weighted k-plex problems 

for k =1, 2, 3 in [9]. Description of the BC algorithm and CPLEX® parameters can be found in 

[9, 14]. 

Graphs |V| |E| 
edge 

density 

brock200_1.clq 200 14834 0.745 

brock200_2.clq 200 9876 0.496 

brock200_4.clq 200 13089 0.658 

brock400_2.clq 400 59786 0.749 

brock400_4.clq 400 59765 0.749 

brock800_2.clq 800 208166 0.651 

brock800_4.clq 800 207643 0.65 

c-fat200-1.clq 200 1534 0.077 

c-fat200-2.clq 200 3235 0.163 

c-fat200-5.clq 200 8473 0.426 

c-fat500-1.clq 500 4459 0.036 

c-fat500-2.clq 500 9139 0.073 

c-fat500-5.clq 500 23191 0.186 

c-fat500-10.clq 500 46627 0.374 

hamming6-2.clq 64 1824 0.905 

hamming6-4.clq 64 704 0.349 

hamming8-2.clq 256 31616 0.969 

hamming8-4.clq 256 20864 0.639 

hamming10-2.clq 1024 518656 990 

hamming10-4.clq 1024 434176 0.829 

johnson8-2-4.clq 28 210 0.556 

johnson8-4-4.clq 70 1855 0.768 

MANN_a9.clq 45 918 0.927 

MANN_a27.clq 378 70551 0.99 

MANN_a45.clq 1035 533115 0.996 

keller4.clq 171 9435 0.649 

p_hat300-1.clq 300 10933 0.244 

p_hat300-2.clq 300 21928 0.489 

p_hat300-3.clq 300 33390 0.744 

p_hat700-1.clq 700 60999 0.249 

p_hat700-2.clq 700 121728 0.498 

p_hat700-3.clq 700 183010 0.748 

 

Table 10. DIMACS benchmarks 
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GRASP parameter “Max_Iterations” (termination criterion for GRASP algorithms) is set 

to be 10 (Max_Iterations = 10). It is determined based on preliminary experiments on the GRASP 

algorithm. Note that increasing GRASP iterations increases the probability of GRASP finding 

better quality solutions, but it also increases computational time (Appendix A, Table 11). It was 

found in preliminary experiments that 10 GRASP iterations provide good balance between 

quality of solutions and amount of computational time required for this test bed of instances. Data 

collected after termination of GRASP algorithm are as follows: 

 Ak(G) = Cardinality of best co-k-plex found by GRASP 

  k(G) = Cardinality of best weighted co-k-plex found by GRASP 

 )(GW
k  = Best weight of the co-k-plex found by GRASP 

 CTime = Construction phase total running time in secs 

 LSTime = Local search phase total running time in secs 

 GRASPTime   CTime+ LSTime = GRASP total running time in secs 

 LSHitRate = Number of times local search improved constructed initial feasible solution 

 LSAvgPerInc = Average percentage improvement (size or weight) over initial 

constructed solution by local search 

Appendix A, Table 12 illustrates GRASP performance over BC exact algorithm. BC 

algorithm is used to find the maximum cardinality k-plex in   where GRASP is used to find 

maximum cardinality co-k-plex in  ̅ both problems are equivalent under graph complementation. 

BC algorithm was run on DIMACS instances by setting a time limit of 10800 secs in [9]. BC 

algorithm terminates when it hits this time limit and provides a lower and upper bound on the 

optimum. The lower bound is more appropriate to compare with GRASP solutions. It is clear 

from the results that GRASP is able to find good quality solutions very quickly. 
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Appendix A, Table 13 and Table 14 illustrate GRASP performance for solving the 

maximum weighted co-k-plex problem in  ̅ over BC algorithm used to solve the maximum 

weighted k-plex problem in  . BC algorithm was run on DIMACS instances by setting a 

time limit of 3600 secs. As before GRASP is producing good quality solutions in very little 

time. Overall GRASP results for the maximum co-k-plex and weighted co-k-plex problems can 

be found in Appendix B. 
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CHAPTER V 
 

 

CONCLUSION AND FUTURE WORK 

 

This thesis presents the first metaheuristic approach to solve the maximum co-k-plex 

problem. In literature, GRASP has been successfully implemented to solve many hard 

combinatorial optimization problems such as the maximum clique and independent set problems 

[6, 39, 42]. The main contribution of this thesis is the development of GRASP metaheuristic to 

solve the maximum co-k-plex and weighted co-k-plex problems. The algorithmic development of 

construction and local search phases for solving the maximum co-k-plex and weighted co-k-plex 

problems were found to be the major challenges. Particularly, updating the candidate list in the 

construction phase was found to be time consuming. An appropriate data structure and an 

efficient procedure are designed to effectively update the candidate list that considerably reduced 

the computational time of the construction phase. 

The local search phase is enhanced by designing a suitable neighborhood definition that 

ultimately improved the performance of GRASP. Further, GRASP developed to solve the 

maximum weighted co-k-plex problem can be used to find large profitable portfolios of stocks 

with high diversity. The maximum k-plex problem in   is computationally equivalent to the 

maximum co-k-plex problem in  ̅ as discussed in Chapter II. Benchmark clique instances from 

second DIMACS challenge [9, 14, 24, 25] are used to test the algorithms developed.
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Effectiveness of the developed GRASP algorithms is confirmed by conducting extensive 

computational experiments on these instances. Also, we have compared solutions provided by 

both GRASP algorithms with results obtained by exact branch-and-cut algorithm from literature 

[9]. 

Future Directions for Research. The maximum co-k-plex and weighted co-k-plex 

problems can be used to find large profitable portfolios. A detailed computational study on very 

large-scale stock market data can be done for testing effectiveness of the GRASP proposed in this 

thesis. 

In the recent past, hybridization of metaheuristics has emerged as an effective approach 

to enhance metaheuristics performance. Hybridization of a GRASP with other metaheuristics was 

successfully done in the literature to create new and effective metaheuristics. Some of the ways to 

hybridize the GRASP can be found in [43]. For instance, one can try to extend a GRASP 

algorithm proposed in this thesis to include path-relinking and the local search to include variable 

neighborhood structure as used in the VNS heuristic. 
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APPPENDIX A 
 

 

 

RESULTS OF  

GRASP  

V/S 

BC EXACT ALGORITHM 

FOR THE MAXIMUM CO-K-PLEX AND WEIGHTED CO-K-PLEX PROBLEMS 

 

 Appendix A presents comparison between GRASP and BC algorithms for MCPP-k and 

MWCPP-k. Table 11 shows performance of the GRASP algorithm for 10, 100 and 1000 

iterations. Table 12, 13 and 14 show effectiveness of GRASP algorithm by comparing with 

results obtained by BC algorithm. 
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Graph\No. of Iterations 
co-1-plex size (A(G))  Time (secs) 

10 100 1000 10 100 1000 

brock200_1.clq 20 20 21   0.001 0.047 0.468 

brock200_2.clq 10 10 12   0.001 0.047 0.312 

brock200_4.clq 15 16 16   0.001 0.047 0.359 

brock400_2.clq 24 24 24 0.016 0.125 1.187 

brock400_4.clq 25 25 25 0.031 0.125 1.187 

brock800_2.clq 19 19 20 0.031 0.328 3.219 

brock800_4.clq 20 20 20 0.047 0.343 3.14 

c-fat200-1.clq 12 12 12   0.001 0.063 0.406 

c-fat200-2.clq 24 24 24   0.001 0.078 0.688 

c-fat200-5.clq 58 58 58 0.031 0.359 3.359 

c-fat500-1.clq 14 14 14 0.015 0.218 2.047 

c-fat500-2.clq 26 26 26 0.031 0.265 2.531 

c-fat500-5.clq 64 64 64 0.078 0.719 7.016 

c-fat500-10.clq 126 126 126 0.328 3.188 31.141 

hamming6-2.clq 32 32 32   0.001 0.062 0.344 

hamming6-4.clq 4 4 4   0.001 0.032 0.047 

hamming8-2.clq 128 128 128 0.14 1.422 13.876 

hamming8-4.clq 16 16 16   0.001 0.047 0.438 

hamming10-2.clq 512 512 512 6.938 72.233 716.739 

hamming10-4.clq 40 40 40 0.078 0.625 6.187 

 

Table 11. GRASP results for 10, 100, and 1000 iterations for the MCPP-1 
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Graph\No. of Iterations 
co-1-plex size (A(G)) Time (secs) 

10 100 1000 10 100 1000 

johnson8-2-4.clq 4 4 4   0.001 0.015 0.016 

johnson8-4-4.clq 14 14 14   0.001 0.032 0.109 

keller4.clq 11 11 11   0.001 0.031 0.234 

keller5.clq 25 27 27 0.031 0.313 3.031 

MANN_a9.clq 16 16 16   0.001 0.015 0.109 

MANN_a27.clq 126 126 126 0.235 2.171 21.172 

MANN_a45.clq 343 343 343 4.25 40.687 401.737 

p_hat300-1.clq 8 8 8 0.015 0.078 0.719 

p_hat300-2.clq 25 25 25 0.015 0.125 1.093 

p_hat300-3.clq 35 36 36 0.031 0.156 1.484 

p_hat700-1.clq 10 10 11 0.047 0.36 3.562 

p_hat700-2.clq 44 44 44 0.078 0.61 5.938 

p_hat700-3.clq 62 62 62 0.11 0.875 8.657 

 

Table 11. GRASP results for 10, 100, and 1000 iterations for MCPP-1 (continued) 
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Graphs 
BC 

  
GRASP 

α(G)  α2(G)  α3(G)  Time (secs) A(G)  A2(G)  A3(G)  Time (secs) 

brock200_1.clq [20,31] [25, 53] [29, 70]   10800   10800   10800 20 25 28   0.001   0.001 0.015 

brock200_2.clq 12 [13, 24] [15, 37] 152.5   10800   10800 10 13 14   0.001 0.016   0.001 

brock200_4.clq 17 [19, 41] [22, 58] 6617.5   10800   10800 15 19 21   0.001 0.016 0.015 

brock400_2.clq [24, 68] [27, 133] [32, 151]   10800   10800   10800 24 28 32 0.016 0.015 0.031 

brock400_4.clq [23, 69] [27, 133] [32, 151]   10800   10800   10800 25 27 31 0.031 0.015 0.031 

brock800_2.clq [19, 116] [23, 253] [26, 305]   10800   10800   10800 19 22 25 0.031 0.047 0.047 

brock800_4.clq [19, 108] [23, 252] [26, 304]   10800   10800   10800 20 22 25 0.047 0.046 0.063 

c-fat200-1.clq 12 12 12 17.1 148.9 6 12 12 10   0.001   0.001   0.001 

c-fat200-2.clq 24 24 24 10.4 19.1 2.828 24 24 16   0.001   0.001   0.001 

c-fat200-5.clq 58 58 58 2.1 2.1 1.125 58 58 33 0.031 0.031 0.015 

c-fat500-1.clq 14 14 14 1334.4 1356.1 39.734 14 14 11 0.015 0.015 0.015 

c-fat500-2.clq 26 26 26 535.7 605.3 33.437 26 26 17 0.031 0.015 0.016 

c-fat500-5.clq 64 64 64 141.6 141.5 45.86 64 64 36 0.078 0.062 0.031 

c-fat500-10.clq 126 126 126 39.3 76.5 13.547 126 126 67 0.328 0.172 0.063 

hamming6-2.clq 32 32 32   0.001   0.001 96.094 32 32 32   0.001   0.001   0.001 

hamming6-4.clq 4 6 8 0.2 0.3 0.407 4 6 8   0.001   0.001   0.001 

hamming8-2.clq 128 128 [128, 143]   0.001 189.5   10800 128 128 128 0.14 0.156 0.203 

hamming8-4.clq 16 16 [20, 32] 52.2 8115.2   10800 16 16 20   0.001   0.001 0.015 

hamming10-2.clq 512 [512, 530] [512, 566] 0.8   10800   10800 512 512 512 6.938 8.844 15.656 

hamming10-4.clq [36, 234] [41, 153] [51, 286]   10800   10800   10800 40 44 53 0.078 0.109 0.172 

 

Table 12. Comparison of running time and solution quality between GRASP and Balasundaram’s BC algorithm for the MCPP-k, k =1, 2, 3 
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Graphs 
BC 

  
GRASP 

α(G)  α2(G)  α3(G)  Time (secs) A(G)  A2(G)  A3(G)  Time (secs) 

johnson8-2-4.clq 4 5 8   0.001   0.001 0.047 4 5 8   0.001   0.001   0.001 

johnson8-4-4.clq 14 14 18 0.1 4.4 28.75 14 14 18   0.001   0.001   0.001 

keller4.clq 11 15 21 129.8 365.4 737.781 11 15 21   0.001   0.001   0.001 

keller5.clq [26, 50] [31, 83] [40, 167]   10800   10800   10800 25 31 39 0.031 0.046 0.094 

MANN_a9.clq 16 26 36   0.001   0.001 0.015 16 26 36   0.001   0.001   0.001 

MANN_a27.clq 126 236 351 430.3 79.8 0.031 126 236 351 0.235 0.828 1.5 

MANN_a45.clq [344, 347] [662, 668] 990   10800   10800 0.141 343 662 990 4.25 16.343 33.718 

p_hat300-1.clq 8 [9, 66] [12, 29] 127   10800   10800 8 10 12 0.015 0.015 0.016 

p_hat300-2.clq [25, 51] [28, 85] [36, 78]   10800   10800   10800 25 30 36 0.015 0.047 0.031 

p_hat300-3.clq [35, 71] [43, 108] [50, 112]   10800   10800   10800 35 43 51 0.031 0.031 0.046 

p_hat700-1.clq [11, 40] [10, 291] [13, 296]   10800   10800   10800 10 11 13 0.047 0.046 0.046 

p_hat700-2.clq [44, 208] [50, 298] [58, 298]   10800   10800   10800 44 52 60 0.078 0.125 0.141 

p_hat700-3.clq [62, 201] [73, 311] [83, 293]   10800   10800   10800 62 75 87 0.11 0.187 0.282 

 

Table 12. Comparison of running time and solution quality between GRASP and Balasundaram’s BC algorithm for the MCPP-k, k =1, 2, 3 

(continued) 
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Graph 
BC GRASP 

)(1 GW  )(2 GW  )(3 GW  )(1 GW  )(2 GW  )(3 GW  

brock200_1.clq 28455 [34503, 62211] [39440, 69381] 28455 28455 37683 

brock200_2.clq 14556 17536 [20564, 20566] 14556 17334 19887 

brock200_4.clq 21324 25889 [31326, 55398] 21324 21324 28717 

brock400_2.clq [67233, 225025] [75217, 272498] [93337, 307543] 63392 75411 88076 

brock400_4.clq [67102, 210135] [79529, 272183] [95056, 337542] 67102 76421 88096 

brock800_2.clq [111150, 916516] [127835, 1376970] [143897, 1375300] 109374 128849 141235 

brock800_4.clq [109273, 918006] [140704, 1381870] [163373, 1365850] 110473 132771 151756 

c-fat200-1.clq 15420 15420 15882 15420 15420 15013 

c-fat200-2.clq 27112 27112 27112 27112 27112 21301 

c-fat200-5.clq 65414 65414 65414 65414 65414 65414 

c-fat500-1.clq 45187 45187 45187 45187 45187 32716 

c-fat500-2.clq 76178 76178 76178 76178 76178 55507 

c-fat500-5.clq 179508 179508 179508 179508 179508 148842 

c-fat500-10.clq 338046 338046 338046 338046 338046 338046 

hamming6-2.clq 11635 11635 12100 11635 11635 12100 

hamming6-4.clq 2021 2896 3808 2021 2894 3547 

hamming8-2.clq 169034 175098 [187101, 196159] 169034 169034 188359 

hamming8-4.clq 28799 [32619, 124196] [40595, 93721] 28799 28799 37518 

hamming10-2.clq [2618690, 2618780] [2650000, 2790000] [2684660, 3067230] 2618690 2665520 2475380 

hamming10-4.clq 2618690 [353752, 2433450] [451272, 2429940] 277650 277650 417314 

 

Table 13. Comparison of solution quality between GRASP and Balasundaram’s BC algorithm for the MWCPP-k, k =1, 2, 3 
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Graph 
BC GRASP 

)(1 GW  )(2 GW  )(3 GW  )(1 GW  )(2 GW  )(3 GW  

johnson8-2-4.clq 925 1216 1731 925 1216 1731 

johnson8-4-4.clq 7508 7685 9824 7508 7672 9824 

keller4.clq 14140 20058 [24411, 24413] 13352 20058 24015 

keller5.clq [140699, 506572] [187274, 1254230] [241092, 1274340] 128431 170354 206480 

MANN_a9.clq 5596 7362 9111 5596 7362 9111 

MANN_a27.clq [299319, 405511] 577927 700216 343159 343159 700216 

MANN_a45.clq [2573130, 2573150] 4301300 5203950 2571200 4301300 5203950 

p_hat300-1.clq 16303 20455 24899 16303 16303 22727 

p_hat300-2.clq [40355, 40359] [50890, 101732] [59927, 130841] 40355 50028 58458 

p_hat300-3.clq [65947, 162690] [78285, 161837] [93069, 178645] 65023 77059 87147 

p_hat700-1.clq [50462, 648095] [54871, 951804] [67901, 1110503] 47037 47037 70408 

p_hat700-2.clq [173232, 683481] [215491, 1045690] [252983, 1081170] 174048 212077 244995 

p_hat700-3.clq [254492, 721752] [295874, 1075250] [349467, 1085640] 251397 294538 334295 

 

Table 13. Comparison of solution quality between GRASP and Balasundaram’s BC algorithm for the MWCPP-k, k =1, 2, 3 (continued) 
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Graph 

BC GRASP 

Time (secs) 

k=1 k=2 k=3 k=1 k=2 k=3 

brock200_1.clq 33.813   3600   3600 0.016 0.016 0.016 

brock200_2.clq 8.141 328.296 1175.45   0.001 0.016   0.001 

brock200_4.clq 37.781 2985.45   3600   0.001   0.001 0.016 

brock400_2.clq   3600   3600   3600 0.015 0.031 0.031 

brock400_4.clq   3600   3600   3600 0.016 0.031 0.031 

brock800_2.clq   3600   3600   3600 0.032 0.031 0.047 

brock800_4.clq   3600   3600   3600 0.031 0.031 0.047 

c-fat200-1.clq 4.672 8.078 6.328   0.001   0.001 0.015 

c-fat200-2.clq 5.157 12.235 17.25   0.001 0.015 0.016 

c-fat200-5.clq 2.515 5.687 6.968 0.031 0.016 0.031 

c-fat500-1.clq 271.89 153.031 2091.22   0.001   0.001 0.015 

c-fat500-2.clq 288.109 275.453 405.047 0.015 0.015 0.016 

c-fat500-5.clq 271.938 247.765 288 0.046 0.046 0.031 

c-fat500-10.clq 112.235 129.422 190.39 0.234 0.234 0.078 

hamming6-2.clq 0.109 0.078 0.563   0.001   0.001 0.015 

hamming6-4.clq 0.25 1.031 0.625   0.001   0.001   0.001 

hamming8-2.clq 0.204 8.625   3600 0.141 0.141 0.641 

hamming8-4.clq 2.985   3600   3600   0.001   0.001 0.015 

hamming10-2.clq 3.984   3600   3600 9.203 39.703 57.265 

hamming10-4.clq 3.984   3600   3600 0.078 0.078 0.282 

 

Table 14. Comparison of running time between GRASP and Balasundaram’s BC algorithm for the MWCPP-k, k =1, 2, 3 

 



 
 

44 
 

Graph 

BC GRASP 

Time (secs) 

k=1 K =2 k=3 k=1 k=2 k=3 

johnson8-2-4.clq 0.171 0.188 0.125   0.001   0.001   0.001 

johnson8-4-4.clq 0.14 4.797 8.266   0.001   0.001 0.016 

keller4.clq 1.266 503 750.266 0.015   0.001 0.016 

keller5.clq   3600   3600 ≥ 3600 0.031 0.062 0.11 

MANN_a9.clq 0.094 0.062 0.078   0.001   0.001   0.001 

MANN_a27.clq   3600 0.156 0.125 0.421 0.421 0.922 

MANN_a45.clq 0.344 0.328 0.203 10.437 36.625 23.109 

p_hat300-1.clq 28.204 417.921 1043.4   0.001   0.001 0.015 

p_hat300-2.clq 112.547   3600   3600   0.001 0.032 0.031 

p_hat300-3.clq 755.641   3600   3600 0.031 0.047 0.078 

p_hat700-1.clq   3600   3600   3600 0.015 0.015 0.016 

p_hat700-2.clq   3600   3600   3600 0.063 0.141 0.203 

p_hat700-3.clq   3600   3600   3600 0.141 0.297 0.516 

 

Table 14. Comparison of running time between GRASP and Balasundaram’s BC algorithm for the MWCPP-k, k =1, 2, 3 (continued) 
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APPPENDIX B 
 

 

 

RESULTS OF  

GRASP ALGORITHM FOR MCPP-k AND MWCPP-k 

 

Appendix B presents overall GRASP results on both combinatorial optimization 

problems, MCPP-k and MWCPP-k. Tables 15, 16, and 17 present the statistics collected on 

GRASP algorithm for the maximum co-k-plex problem. Also, Tables 18, 19 and 20 present the 

statistics collected on GRASP algorithm for the maximum weighted co-k-plex problem. 
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Graph A(G)  CTime (secs) LSTime (secs) GRASPTime (secs) LSHitRate LSAvgPerInc 

brock200_1.clq 20   0.001   0.001   0.001 0.7 0.116 

brock200_2.clq 10   0.001   0.001   0.001 0.2 0.292 

brock200_4.clq 15   0.001   0.001   0.001 0.2 0.084 

brock400_2.clq 24   0.001   0.001 0.016 0.5 0.126 

brock400_4.clq 25 0.016   0.001 0.031 0.6 0.130 

brock800_2.clq 19 0.031   0.001 0.031 0.4 0.116 

brock800_4.clq 20 0.031 0.016 0.047 0.5 0.141 

c-fat200-1.clq 12   0.001   0.001   0.001 0 0 

c-fat200-2.clq 24   0.001   0.001   0.001 0 0 

c-fat200-5.clq 58 0.016 0.015 0.031 0 0 

c-fat500-1.clq 14 0.015   0.001 0.015 0 0 

c-fat500-2.clq 26   0.001 0.031 0.031 0 0 

c-fat500-5.clq 64 0.078   0.001 0.078 0 0 

c-fat500-10.clq 126 0.281 0.016 0.328 0 0 

hamming6-2.clq 32   0.001   0.001   0.001 0 0 

hamming6-4.clq 4   0.001   0.001   0.001 0 0 

hamming8-2.clq 128 0.11 0.015 0.14 0 0 

hamming8-4.clq 16   0.001   0.001   0.001 0.4 0.260 

hamming10-2.clq 512 6.594 0.281 6.938 0 0.000 

hamming10-4.clq 40 0.047 0.015 0.078 0.9 0.201 

 

Table 15. Results of GRASP for the maximum co-1-plex problem on DIMACS instances 
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Graph A(G)  CTime (secs) LSTime (secs) GRASPTime (secs) LSHitRate LSAvgPerInc 

johnson8-2-4.clq 4   0.001   0.001   0.001 0 0 

johnson8-4-4.clq 14   0.001   0.001   0.001 0.3 0.409 

keller4.clq 11   0.001   0.001   0.001 0.6 0.151 

keller5.clq 25 0.031   0.001 0.031 0.8 0.157 

MANN_a9.clq 16   0.001   0.001   0.001 0.1 0.067 

MANN_a27.clq 126 0.203 0.016 0.235 0.3 0.008 

MANN_a45.clq 343 3.984 0.219 4.25 0 0 

p_hat300-1.clq 8   0.001   0.001 0.015 0.2 0.155 

p_hat300-2.clq 25   0.001 0.015 0.015 0.7 0.229 

p_hat300-3.clq 35   0.001 0.015 0.031 0.9 0.091 

p_hat700-1.clq 10 0.031 0.016 0.047 0.4 0.234 

p_hat700-2.clq 44 0.015 0.047 0.078 0.9 0.428 

p_hat700-3.clq 62 0.047 0.047 0.11 0.8 0.231 

 

Table 15. Results of GRASP for the maximum co-1-plex problem on DIMACS instances (continued) 
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Graph A2(G)  CTime (secs) LSTime (secs) GRASPTime (secs) LSHitRate LSAvgPerInc 

brock200_1.clq 25   0.001   0.001   0.001 0.6 0.127 

brock200_2.clq 13 0.016   0.001 0.016 0.3 0.279 

brock200_4.clq 19   0.001   0.001 0.016 0.4 0.259 

brock400_2.clq 28 0.015   0.001 0.015 0.7 0.101 

brock400_4.clq 27 0.015   0.001 0.015 0.8 0.128 

brock800_2.clq 22 0.032   0.001 0.047 0.8 0.155 

brock800_4.clq 22 0.015 0.031 0.046 0.8 0.085 

c-fat200-1.clq 12   0.001   0.001   0.001 0.7 3.000 

c-fat200-2.clq 24   0.001   0.001   0.001 0.7 3.582 

c-fat200-5.clq 58 0.016   0.001 0.031 0.8 11.044 

c-fat500-1.clq 14 0.015   0.001 0.015 0.2 6.000 

c-fat500-2.clq 26 0.015   0.001 0.015 0.3 8.244 

c-fat500-5.clq 64 0.047 0.015 0.062 1 12.832 

c-fat500-10.clq 126 0.047 0.109 0.172 1 25.313 

hamming6-2.clq 32   0.001   0.001   0.001 0.1 0.333 

hamming6-4.clq 6   0.001   0.001   0.001 0.4 0.500 

hamming8-2.clq 128 0.109 0.032 0.156 0.1 0.096 

hamming8-4.clq 16   0.001   0.001   0.001 0.8 0.367 

hamming10-2.clq 512 7.314 1.467 8.844 0.1 0.183 

hamming10-4.clq 44 0.015 0.079 0.109 1 0.350 

 

Table 16. Results of GRASP for the maximum co-2-plex problem on DIMACS instances 
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Graph A2(G)  CTime (secs) LSTime (secs) GRASPTime (secs) LSHitRate LSAvgPerInc 

johnson8-2-4.clq 5   0.001   0.001   0.001 0 0 

johnson8-4-4.clq 14   0.001   0.001   0.001 0.2 0.220 

keller4.clq 15   0.001   0.001   0.001 0.6 0.091 

keller5.clq 31 0.031 0.015 0.046 0.7 0.176 

MANN_a9.clq 26   0.001   0.001   0.001 0.4 0.053 

MANN_a27.clq 236 0.733 0.079 0.828 0.1 0.009 

MANN_a45.clq 662 15.749 0.485 16.343 0 0 

p_hat300-1.clq 10 0.015   0.001 0.015 0.4 0.280 

p_hat300-2.clq 30 0.016   0.001 0.047 0.9 0.313 

p_hat300-3.clq 43 0.031   0.001 0.031 0.8 0.117 

p_hat700-1.clq 11 0.031   0.001 0.046 0.7 0.197 

p_hat700-2.clq 52 0.062 0.048 0.125 0.9 0.374 

p_hat700-3.clq 75 0.094 0.078 0.187 1 0.342 

 

Table 16. Results of GRASP for the maximum co-2-plex problem on DIMACS instances (continued) 
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Graph A3(G)  CTime (secs) LSTime (secs) GRASPTime (secs) LSHitRate LSAvgPerInc 

brock200_1.clq 28   0.001   0.001 0.015 0.8 0.196 

brock200_2.clq 14   0.001   0.001   0.001 0.7 0.238 

brock200_4.clq 21   0.001   0.001 0.015 0.7 0.235 

brock400_2.clq 32 0.015 0.016 0.031 0.9 0.111 

brock400_4.clq 31 0.015   0.001 0.031 0.8 0.148 

brock800_2.clq 25 0.047   0.001 0.047 1 0.127 

brock800_4.clq 25 0.032 0.015 0.063 1 0.136 

c-fat200-1.clq 10   0.001   0.001   0.001 0.3 0.333 

c-fat200-2.clq 16   0.001   0.001   0.001 0.3 0.333 

c-fat200-5.clq 33   0.001 0.015 0.015 0.5 8.350 

c-fat500-1.clq 11 0.015   0.001 0.015 0.2 0.333 

c-fat500-2.clq 17 0.016   0.001 0.016 0.3 1.306 

c-fat500-5.clq 36 0.031   0.001 0.031 0.2 4.167 

c-fat500-10.clq 67 0.016 0.031 0.063 0.3 10.611 

hamming6-2.clq 32   0.001   0.001   0.001 0.6 0.173 

hamming6-4.clq 8   0.001   0.001   0.001 0.3 0.422 

hamming8-2.clq 128 0.109 0.078 0.203 0.6 0.090 

hamming8-4.clq 20   0.001   0.001 0.015 0.9 0.284 

hamming10-2.clq 512 7.017 8.592 15.656 0.6 0.080 

hamming10-4.clq 53 0.093 0.063 0.172 1 0.246 

 

Table 17. Results of GRASP for the maximum co-3-plex problem on DIMACS instances 
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Graph A3(G)  CTime (secs) LSTime (secs) GRASPTime (secs) LSHitRate LSAvgPerInc 

johnson8-2-4.clq 8   0.001   0.001   0.001 1 0.276 

johnson8-4-4.clq 18   0.001   0.001   0.001 0.9 0.212 

keller4.clq 21   0.001   0.001   0.001 1 0.159 

keller5.clq 39 0.016 0.062 0.094 0.9 0.132 

MANN_a9.clq 36   0.001   0.001   0.001 0.4 0.160 

MANN_a27.clq 351 1.375 0.094 1.5 0.4 0.137 

MANN_a45.clq 990 33.049 0.576 33.718 0.1 0.092 

p_hat300-1.clq 12   0.001   0.001 0.016 0.7 0.304 

p_hat300-2.clq 36 0.015   0.001 0.031 0.6 0.272 

p_hat300-3.clq 51   0.001 0.046 0.046 0.9 0.317 

p_hat700-1.clq 13 0.046   0.001 0.046 0.9 0.292 

p_hat700-2.clq 60 0.047 0.078 0.141 0.9 0.504 

p_hat700-3.clq 56 0.062 0.063 0.141 1 0.345 

 

Table 17. Results of GRASP for the maximum co-3-plex problem on DIMACS instances (continued) 
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Graph I(G)  

 

)(1 GW  CTime (secs) LSTime (secs) GRASPTime (secs) LSHitRate LSAvgPerInc 

brock200_1.clq 18 28455   0.001   0.001 0.016 0.9 0.253 

brock200_2.clq 9 14556   0.001   0.001   0.001 1 0.307 

brock200_4.clq 13 21324   0.001   0.001   0.001 0.9 0.268 

brock400_2.clq 21 63392   0.001 0.015 0.015 1 0.174 

brock400_4.clq 21 67102   0.001   0.001 0.016 0.8 0.192 

brock800_2.clq 18 109374   0.001 0.016 0.032 0.9 0.262 

brock800_4.clq 17 110473 0.015   0.001 0.031 0.9 0.280 

c-fat200-1.clq 12 15420   0.001   0.001   0.001 0 0 

c-fat200-2.clq 22 27112   0.001   0.001   0.001 0 0 

c-fat200-5.clq 58 65414   0.001 0.015 0.031 0 0 

c-fat500-1.clq 12 45187   0.001   0.001   0.001 0 0 

c-fat500-2.clq 26 76178   0.001   0.001 0.015 0 0 

c-fat500-5.clq 64 179508 0.046   0.001 0.046 0 0 

c-fat500-10.clq 125 338046 0.202 0.016 0.234 0 0 

hamming6-2.clq 32 11635   0.001   0.001   0.001 0.8 0.373 

hamming6-4.clq 4 2021   0.001   0.001   0.001 0.2 0.129 

hamming8-2.clq 128 169034 0.032 0.093 0.141 1 0.374 

hamming8-4.clq 16 28799   0.001   0.001   0.001 0.9 0.449 

hamming10-2.clq 512 2618690 1.328 7.812 9.203 1 0.507 

hamming10-4.clq 34 277650 0.031 0.031 0.078 1 0.372 

  

Table 18. Results of GRASP for the maximum weighted co-1-plex problem on DIMACS instances 
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Graph I(G)  )(1 GW  CTime (secs) LSTime (secs) GRASPTime (secs) LSHitRate LSAvgPerInc 

johnson8-2-4.clq 4 925   0.001   0.001   0.001 0 0 

johnson8-4-4.clq 14 7508   0.001   0.001   0.001 0.9 0.257 

keller4.clq 11 13352   0.001   0.001 0.015 0.7 0.214 

keller5.clq 20 128431   0.001 0.016 0.031 1 0.255 

MANN_a9.clq 16 5596   0.001   0.001   0.001 0.8 0.154 

MANN_a27.clq 119 343159 0.155 0.251 0.421 0.9 0.072 

MANN_a45.clq 331 2571200 3.657 6.733 10.437 1 0.079 

p_hat300-1.clq 7 16303   0.001   0.001   0.001 0.6 0.312 

p_hat300-2.clq 23 40355   0.001   0.001   0.001 1 0.471 

p_hat300-3.clq 32 65023   0.001 0.016 0.031 1 0.250 

p_hat700-1.clq 9 47037   0.001   0.001 0.015 0.9 0.403 

p_hat700-2.clq 40 174048   0.001 0.047 0.063 1 0.545 

p_hat700-3.clq 59 251397 0.015 0.11 0.141 1 0.668 

 

Table 18. Results of GRASP for the maximum weighted co-1-plex problem on DIMACS instances (continued) 
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Graph  2(G)  )(2 GW  CTime (secs) LSTime (secs) GRASPTime (secs) LSHitRate LSAvgPerInc 

brock200_1.clq 22 34503   0.001 0.015 0.031 1 0.159 

brock200_2.clq 11 17334   0.001   0.001 0.016 0.8 0.181 

brock200_4.clq 16 24239   0.001   0.001 0.016 0.8 0.202 

brock400_2.clq 25 75411   0.001 0.015 0.031 1 0.119 

brock400_4.clq 25 76421   0.001 0.015 0.031 0.9 0.313 

brock800_2.clq 21 128849   0.001 0.016 0.031 1 0.223 

brock800_4.clq 21 132771   0.001 0.015 0.031 0.8 0.411 

c-fat200-1.clq 12 15420   0.001   0.001   0.001 0.5 3.860 

c-fat200-2.clq 22 27112   0.001   0.001 0.015 0.7 5.492 

c-fat200-5.clq 58 65414   0.001 0.016 0.016 1 8.747 

c-fat500-1.clq 12 45187   0.001   0.001   0.001 0.6 5.179 

c-fat500-2.clq 26 76178   0.001   0.001   0.001 0.5 3.444 

c-fat500-5.clq 64 179508   0.001 0.015 0.015 0.7 18.799 

c-fat500-10.clq 125 338046 0.032 0.077 0.125 0.9 23.407 

hamming6-2.clq 32 11635   0.001   0.001   0.001 1 0.191 

hamming6-4.clq 6 2894   0.001   0.001   0.001 0.1 0.318 

hamming8-2.clq 128 175098 0.047 0.25 0.328 1 0.177 

hamming8-4.clq 16 31099   0.001 0.016 0.016 0.9 0.411 

hamming10-2.clq 512 2665520 2.155 37.485 39.703 1 0.270 

hamming10-4.clq 43 338057 0.032 0.14 0.187 1 0.672 

 

Table 19. Results of GRASP for the maximum weighted co-2-plex problem on DIMACS instances 
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Graph  2(G)  )(2 GW  CTime (secs) LSTime (secs) GRASPTime (secs) LSHitRate LSAvgPerInc 

johnson8-2-4.clq 5 1216   0.001   0.001   0.001 0.6 0.181 

johnson8-4-4.clq 14 7672   0.001   0.001   0.001 0.9 0.246 

keller4.clq 14 20058   0.001   0.001   0.001 0.8 0.273 

keller5.clq 27 170354 0.03 0.016 0.062 1 0.337 

MANN_a9.clq 25 7362   0.001   0.001   0.001 1 0.129 

MANN_a27.clq 234 577927 0.72 1.061 1.813 1 0.079 

MANN_a45.clq 660 4301300 15.688 20.859 36.625 1 0.045 

p_hat300-1.clq 9 20455   0.001   0.001   0.001 0.9 0.411 

p_hat300-2.clq 28 50028 0.016   0.001 0.032 1 0.709 

p_hat300-3.clq 41 77059   0.001 0.032 0.047 1 0.431 

p_hat700-1.clq 11 61555   0.001 0.015 0.015 0.6 0.657 

p_hat700-2.clq 47 212077 0.031 0.094 0.141 1 1.329 

p_hat700-3.clq 67 294538 0.031 0.25 0.297 1 0.818 

 

Table 19. Results of GRASP for the maximum weighted co-2-plex problem on DIMACS instances (continued) 
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Graph  3(G)  )(3 GW  CTime(secs) LSTime(secs) GRASPTime(secs) LSHitRate LSAvgPerInc 

brock200_1.clq 25 37683 0.016   0.001 0.016 0.9 0.115 

brock200_2.clq 13 19887   0.001   0.001   0.001 0.7 0.475 

brock200_4.clq 19 28717 0.016   0.001 0.016 0.8 0.340 

brock400_2.clq 28 88076   0.001 0.016 0.031 1 0.257 

brock400_4.clq 30 88096   0.001 0.015 0.031 1 0.309 

brock800_2.clq 23 141235 0.016 0.015 0.047 1 0.323 

brock800_4.clq 22 151756 0.015 0.016 0.047 1 0.205 

c-fat200-1.clq 10 15013   0.001   0.001 0.015 0.7 1.299 

c-fat200-2.clq 22 21301   0.001   0.001 0.016 0.3 1.117 

c-fat200-5.clq 58 65414   0.001 0.015 0.031 0.6 2.994 

c-fat500-1.clq 10 32716   0.001   0.001 0.015 0.8 0.407 

c-fat500-2.clq 17 55507   0.001   0.001 0.016 0.6 1.211 

c-fat500-5.clq 62 148842   0.001 0.016 0.031 0.6 1.060 

c-fat500-10.clq 125 338046 0.047 0.016 0.078 0.3 0.069 

hamming6-2.clq 28 12100   0.001   0.001 0.015 0.8 0.083 

hamming6-4.clq 8 3547   0.001   0.001   0.001 0.7 0.532 

hamming8-2.clq 128 188359 0.142 0.483 0.641 1 0.216 

hamming8-4.clq 18 37518 0.015   0.001 0.015 1 0.600 

hamming10-2.clq 366 2475380 3.628 53.59 57.265 1 0.154 

hamming10-4.clq 51 417314 0.061 0.205 0.282 1 0.389 

 

Table 20. Results of GRASP for the maximum weighted co-3-plex problem on DIMACS instances 
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Graph  3(G)  )(3 GW  CTime(secs) LSTime(secs) GRASPTime(secs) LSHitRate LSAvgPerInc 

johnson8-2-4.clq 8 1731   0.001   0.001   0.001 0.3 0.050 

johnson8-4-4.clq 18 9824   0.001   0.001 0.016 0.9 0.223 

keller4.clq 18 24015   0.001   0.001 0.016 1 0.430 

keller5.clq 38 206480   0.001 0.094 0.11 1 0.524 

MANN_a9.clq 29 9111   0.001   0.001   0.001 0.6 0.101 

MANN_a27.clq 351 700216 0.828 0.063 0.922 1 0.234 

MANN_a45.clq 990 5203950 22.437 0.578 23.109 1 0.165 

p_hat300-1.clq 10 22727   0.001   0.001 0.015 0.9 0.378 

p_hat300-2.clq 31 58458 0.016 0.015 0.031 1 0.603 

p_hat300-3.clq 42 87147   0.001 0.078 0.078 1 0.454 

p_hat700-1.clq 13 70408   0.001   0.001 0.016 0.9 0.442 

p_hat700-2.clq 57 244995   0.001 0.203 0.203 1 1.108 

p_hat700-3.clq 82 334295 0.015 0.469 0.516 1 0.714 

 

Table 20. Results of GRASP for the maximum weighted co-3-plex problem on DIMACS instances (continued) 
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The focus of this thesis is a degree based relaxation of independent sets in graphs 
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solving the maximum co-k-plex problem which is known to be NP-hard. The approach is 

further extended for finding a maximum weighted co-k-plex in   where vertices of   are 

associated with specific weights. As the maximum co-k-plex problem in   is equivalent 

to the maximum k-plex problem in  ̅, many applications of this problem can be found in 

clustering and data mining social networks, biological networks, internet graphs and 

stock market graphs among others. 

In this thesis, a Greedy Randomized Adaptive Search Procedure (GRASP) is 

developed to solve the maximum co-k-plex and maximum weighted co-k-plex problems. 

Computational experiments are performed to study the effectiveness of the proposed 

metaheuristic on benchmark instances. Finally, the performance of the developed GRASP 

algorithms for both versions was confirmed by comparing the running time and solution 

quality with results obtained by an exact algorithm. 


