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CHAPTER 1

INTRODUCTION

The hash table is a kind of data structure that has been developed and applied in
data processing since the beginning of the 1950s [7]. Because hash tables take a great
deal of main memory, their applications largely got under way in the 1970’s [7]. With
advances in computer hardware, hash tables are becoming more and more popular.

Search techniques for data scattered on two or more dimensional storage,
sometimes referred to as hash techniques, have been developed to provide a means
whereby external labels, or keys, may be mapped to unique or nearly unique internal
numbers [7]. Extendible hashing has been widely applied for this kind of data retrieval
[17]. However, in cases where data patterns are near random, multi-dimensional hash

tables would be more efficient for search and other data processing.

1.1 Background and Motivation

This study of two-dimensional hash tables is directed toward a geographic
contouring map system that is widely used in geology, agriculture, environmental studies,
and other similar applications [10] [18]. Gridding is a set of methods that evaluate the
value of regular grids from irregular known control points in space [10]. Gridding forms
a major part of the Contouring Map System (CMS); the other major component is
visualization. Gridding requires enormous search effort. Thus, it requires a highly
efficient data structure for search. Hashing is one of the most efficient and simple search

methods, especially for irregular, near random data. This thesis proposes a new data




structure, the M-D hash table, to form the basis of search and retrieval of data from multi-

dimensional spaces.

1.2 Objectives

The research reported here has three objectives:

o to analyze, develop, and implement 2-D hash tables, including hash table
creation, hash function derivation, and clustering management;

o to improve performance of hash table operations, where sufficient memory is
available, by reducing the number of probes required either to find a record
or to determine that it is absent; and

e to apply M-D hash tables in the context of CMS to improve gridding

performance.

1.3 Organization

The rest of this thesis is as follows. Chapter II reviews related work in existing
literature. Chapter III introduces 2-D hash table features and implementation. Chapter IV
summarizes the performance of two-D hash tables. Chapter V describes applications of

M-D hash tables. Finally, Chapter VI presents conclusions.
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CHAPTER 1

LITERATURE REVIEW

Data structures for main memory fall into three categories [7]: linearly or
sequentially accessible data structures (time complexity O(n)), tree-based structures

(O(log(n)) ), and the most efficient class, hash tables (O(1) ) [2].

2.1 The History of Hashing

The basic concepts behind hashing originated in the early 1950s [7], with chaining
widely applied to resolve conflicts; this constituted one of the first applications of linear
linked lists, used to represent buckets that contain more than one element for external
searching [7]. At about the same time the idea of hashing occurred independently to a
group of researchers at IBM, who originated the idea of open addressing with linear
probing for conflict resolution [7]. Developing hash functions by dividing by a prime
number and using the remainder as the hash address emerged in 1956, as did a second
open addressing strategy, that of random probing by independent hash functions [7].

By the late 1970s, most of the important currently recognized hash methods had
been introduced, including extendable hashing, and techniques that permit hash tables to

cxpand and shrink dynamically [14].

2.2 Hash Table

Hash tables can be viewed as a generalization of the simpler notion of ordinary

arrays. Hashing provides an extremely effective and practical technique for implementing
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basic dictionary operations (search, insertion, and deletion) with an average time
complexity of O(1) [2].

A hash table T is an array of size m in which, ideally, each element k is stored at
T[h(k)], where h is the hash function. This scheme permits constant time operations
under two assumptions [2]: (1) computing £ is itself a low complexity operation; and (2)
no two keys hash to the same address, that is, (k) = h(k*) if and only if k = k*. The first
assumption is usually unproblematic. The second, however, is not. When h(k) = h(k’) for
two distinct keys k and &°, and when both keys occur in the data, the result is called a
collision [2]. Several effective techniques to resolve collision have been developed.
Hence hashing scheme designers focus on two issues [7]: computationally simple hash

functions that reduce collisions; and collision resolution techniques.

2.2.1 Hash Function

There are three common schemes for creating hash functions: hashing by division,
hashing by multiplication, and universal hashing [2].

e  The division method:
The hash function is (k) = k mod m , which puts a key k into one of m slots
[2]. Good values for m are primes. If m is an even number, A(k) will be even
when k is even and odd when & is odd. In addition, using a prime number for
m can easily avoid incomplete search (some buckets of a hash table cannot be
probed if m is divisible by offset) for collision resolution with open addressing
methods. Since this method requires only a division operation, hashing by this

method is quite fast.




e  The multiplication method:
The hash function is h(k) = /m(kA mod 1)/, where A is a constant in the range
0 to 1 [2]. An advantage of this method is that the value of m is not critical
[2]. However, since this method requires two multiplication operations and
one division operation, it is slower than the division method.

e  Universal hashing:
The main idea is to choose the hash function randomly in a way that is
independent of the keys that are stored and to select the hash function at
random at run time from a designed class of functions [2]. The advantage of
this method is that any fixed hash function results in an average time
complexity of ©(n). However, it can be difficult to design an ideal class of

functions [2].

2.2.2 Collision Resolution Techniques

e Resolution by Chaining
This technique places all the elements that are hashed into the same slot in a
linked list [2]. In a hash table in which collisions are resolved by this scheme,
an unsuccessful search takes time ©(1 + o) and a successful search takes time
O(1 + a/2) [2], where a is the hash table load factor. Using this method, the
table size is not critical, and it usually has a good performance [2]. But it takes
more memory than open addressing methods do [7].

e  Resolution by Open Addressing




With open addressing, slots are probed until an empty one is found. The

following three methods are often used:

e Linear probing: h(k, i) = (h k) +ci) mod m, where h (k) is the hash value
of initial probe; c is the offset for each probe; and i is between 0 and m-1
[2]. This method is easy to implement, but it suffers from a problem,
primary clustering (two keys have the same probe position, then their
probe sequence are the same [2]).

e Quadratic Probing: k (k,i) = (h{k) + c i+ c>i°) mod m, where h{k) is the
initial probe value; ¢; and c; #0 are auxiliary constants [2]. It eliminates
primary clustering, but this method leads to secondary clustering (if two
keys have the same initial probe position, then their probe sequences are
the same [2]).

e Double hashing: h(k, i} = (h;(k) + ih2(k)) mod m, where h,;(k) is the initial
hash value; h(k) is a computed offset of k. This method can eliminates

both primary clustering and secondary clustering [2].

2.3 Major Hashing Schemes

2.3.1 Linear Hashing

Linear hashing (not to be confused with linear probing), proposed by Litwin [8],
permits a hash table to expand and shrink dynamically without requiring an index. It is
mainly used in file structures to handle growth and shrinking of files [4]. Files grow in

two ways: overflow growth and regular growth. Regular growth under linear hashing




with two partial expansions (LH2P) has two forms [8]: partial expansions and full
expansions. Each full expansion doubles the number of regular buckets in the file, and
consists of two partial expansions. The first partial expansion increases the number of
regular buckets by 50%, and the second increases the number by the same amount. Thus,
after the first partial expansion, nb = 3*(m div 2); after the first full expansion, nb = 2*m;
and after the second full expansion, nb = 4*m; where m is the number of buckets for the

initial file or data, and nb is the number of buckets [8].

2.3.2 Extendible Hashing

Extendible hash tables are a dynamic data structure used most often as an
alternative indexing strategy to B-trees [4] [12], for example in databases. In extendible
hashing, locating a key and its associated information never involves more than two
faults (one fault is one probe that did not find target position) [14], even for very large
data sets. In extendible hashing, each bucket records the number of bits of the hash
address that determine which keys are in that bucket. This number is called the bucket
depth. Initially, the number is the number of bits used by the root (thus, the initial number

of buckets = 2 ) for all entries; it is increased by one each time a bucket splits [14].

2.4 M-D Space Data Access Methods

Data records in M-D Space Data (MDSD) contain more than one attribute. MDSD
can be accessed either by a single key, most often one on which all other attributes rely,

or by several keys, all used together. Single-key access is much easier than multi-key




access [11]. The design of balanced data structures must be more difficult for MDSD
(each record is identified by several attributes) than for one-dimensional data, since most
balanced structures for single-key data rely on a total ordering of the set of key values,
and natural total orders of muitidimensional data do not exist. This section reviews
several multi-key data access methods.

Data and file structures can be divided into two broad categories: those based on
the specific set of data to be stored, and those based on the embedding space from which
the data set is drawn [11] [6]. Comparative search techniques such as binary search trees
fall into the first category: search directly focuses on the value to be stored. Address
computation techniques such as hash tables belong to the second class: the locations at
which records with a given key may be stored are fixed regardless of the values or

contents of the rest of the data set [11].

2.4.1 Grid File: Multi-Key File Structure

Traditional file structures, such as inverted files, are extensions of file structures
originally designed for single-key access [11]. Grid file structures are designed to address
dynamic aspects of structures that treat all keys symmetrically, that is, data sets that avoid
the distinction between primary and secondary keys [11]. Focus on multiple symmetric
keys leads to the notion of a grid partition of the search space and to that of a grid

directory. These two concepts are the keys to a dynamic file structure [7] [L1].

Grid Partitions of the Search Space

Each scarch technique partitions the search space into subspaces, down to the level



of resolution of the implementation, typically determined by bucket capacity [6]. To
retrieve a data record, correlated attributes that are functionally dependent on each other
are more efficient than independent attributes [11]. Assuming independent attributes,
such as spatial dimensions in a geometric database system, grid partition of the search
space is obviously suited for range and partially specified queries.

We use the following terminology and notation for the three-dimensional case [11]:
on arecord space § = X * ¥ * Z, we impose a grid partition P = U * V * W by imposing
intervals U = (U, Uy, ..., Uj), V= (Vy, Vy, ..., V), and W = (Wy, Wy, ..., W,) on each axis
and then dividing the record space into blocks called grid blocks [11]. The grid partition
P =U *V * Wis modified only by altering one of its components at a time. A one-
dimensional partition is modified either by splitting one of its intervals into two, or by

merging two adjacent intervals into one [11].

The Grid Directory
The design of a bucket management system involves three parts [11]:
l. defining a class of assignments of grid blocks to buckets;
2. choosing a data structure for a directory that represents the current assignment;
3. finding efficient algorithms to update the directory when the assignment
changes.
The two-disk-access principle implies that all the records in one grid block must be stored
in the same bucket, although several grid blocks may share one bucket, so long as the
union of these grid blocks forms a rectangular box in the space of records [11]. The

feature of bucket regions obviously affects the speed of range queries, and of update to a




modification of the grid partition [6] [11].

The grid directory represents and maintains the dynamic correspondence between

grid blocks in the record space and data buckets. It is a data structure that supports the

operations needed to update the convex assignments (grid blocks to buckets) when a

bucket overflows or underflows [6]. A grid directory consists of two parts: first, a

dynamic k-dimensional array called the grid array, the elements (pointers to data) of

which are in one-to-one correspondence with the grid blocks of the partition; and second,

k one-dimensional arrays called linear scales that define a partition of a domain S [11].

For notational simplicity, let k = 2, with record space S = X * Y. As described in [6]

and [11], A grid directory G for a 2-D space is characterized by

2

3.

4

Integers n. and n, (extent of directory) for n, > 0 and n, > 0,

Integers ¢, and ¢y (current element of the directory and current grid block) for
O<c,<n, 0<c<ny;

Grid array: G(0 ... ny, 0 ... ny);

Linear scales: X(0..., ny), Y(0 ..., ny);

Operations defined on the grid directory consist of

1.

2.

3.

Direct access: G(cy, ¢y)

Next in each direction
Nextxabove(cy,) = (cx + 1) mod n,
Nextxbelow(cy) = (¢x - 1) mod n,
Nextyabove(c,) = (¢, + 1) mod ny
Nextybelow(cy) = (cy - 1) mod n,

Merge



mergex:  given px, I £ p, < n,, merge p, with nextxbelow; rename all
elements above p, and adjust X-scale.

mergey:  similar to mergex for any py, I < p, <n,.

4. Split
splitx: given py, 0< p,< n,, create new element p, + / and rename all
cells above p,:
splity: similar to splitx for any py, 0 < p, < n,.
Record Access

The array G is usually large, and so stored on disk (secondary storage); X and Y of
the linear scales are small, and kept in main memory. To access a record with two
independent attributes, a 2-key access scheme is used. The attribute values are converted
into interval indexes through a search (in main memory) of scales X and Y [11] [6]. The
interval indexes provide direct access to the correct element of the grid directory, where
the bucket address is located. For example, consider a record space with attributes “date”
(with domain “Monday ... Sunday”) and “time” (with domain “Ipm ... 5pm”). The grid
partition in the record space is:

X = (Mon, Tues, Wed, Thurs, Fri, Sat, Sun);

Y = (1pm, 2pm, 3pm, 4pm, 5pm).
In a search for a fully specified query (rl, r2, ..., ), such as finding a record [Wed,
2:30pm], the attributes of record [Wed, 2:30pm] are converted into interval index 3 in
scale X, and 2 in scale Y. Grid files also handle range queries efficiently, including the

special case of partially specified queries [11].

11



CHAPTER I

M-D HASHING TABLES

Traditional hash tables based on one-dimensional arrays can only hold records
accessed by a single primary key. In fact, database systems frequently rely on compound
data types, such as class, record, and so on, with more than one primary key. For
processing some compound data with multiple primary keys, and in particular for multi-
dimensional space data (MDSD), the current research proposes M-D hash tables
(MDHTs). This chapter presents hash table features and collision resolution strategies for

MDHTs.

3.1 2-D Hash Table Features

The studies reported here focus on 2-dimensional hash tables (2DHTs) T[m, n]
(Fig. 3-1); MDHTSs of higher dimensionality are a straightforward generalization of the
two-dimensional case. In 2DHTs, key values with compound data types are hashed to

slots.

0,00 | O, - (0,m)
(1,00 |[(L,1)
(n0) | (I,n) (m,n)

Figure 3-1 2-D Hash Table T[m,n]
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2DHTs have the following characteristics:

1. Key K is a scattered point (k, ky), where x and y are coordinates.

2. Hash value h(K) is between (0, 0) and (m-1, n-1).

3. Hash function h consists of hy and hy, where hy is a hash function for key ki, hy is
a hash function for key ky, and 0 < hy(kx) <m and 0 < hy(k,) <n.

4. Each hash table has a load factor, o, that is the ratio of the number of elements in
the hash table to the table size.

5. Hashing functions:
General hash function for 2DHT is h(K) = (hx(ky), hy(ky))
Division Method: h(K) = h(ky, ky) = (hx(kx), hy(ky)) = ((ky mod m), (ky mod n))
Multiplication Method: h(K) = h(ky, ky) = (hx(kx), hy(ky))

= (Lmy(k« Axmod 1), Lmy(ky Aymod 1)J)

3.2 Collision Resolution

3.2.1 By Chaining

Each element T[i, j] of a 2DHT is a pointer pointing to the head of a linked list,
each node of which contains a key K = [k, ky] and a pointer the next node. Depending on
the application, nodes may also have additional fields for associated data. For our
purposes, we represent nodes as Node{K, P} where K has kx and ky, and P is the pointer.

We examine the following candidate algorithms.

13



Algorithm C, (Chained hash table insertion)
Chained-Insert (T, K)

L. i=h(ky), j = h(k,) /1 hashing

2. IF T[4, j] is NULL THEN // insert

3. T[4, j] = &Node(K, P}, and T[i, j]->P := NULL

4. ELSE Node{K, P}.P :=T[I, j], and T[i, j] := &Node{K,P}

Algorithm C2 (Chained hash table search)
Chained-Search(T, K)

L. i:=h(ky), j :=h(ky)

2. IFTIi, j] is NULL THEN

3. unsuccessful search

4. ELSE searching in the linked list T[i, j]

Algorithm C3 (Chained hash table delete)
Chained-Delete(T, K)
1. i:=h(ks),]j:=hky)

2. delete the Node containing the K from the linked list TTi, j]

All of the above algorithms have theoretical time complexities of O(1) for
insertion, O(1+1/o) for successful search or deletion, and O(1+c) for unsuccessful

search.

14



3.2.2 Open Addressing
Linear Probing

Linear probing fixes an increment ¢, where c is a small integer, and m is not
divisible by c, and searches at locations separated by c through the hash table beginning
at the position where the collision occurred and continuing until an empty position is
found or the entire table has been searched. That is, given key K and hash table T[m, n],
the first probing position is T[h,(ky), hy(ky)]. Thereafter, if location T(i, j) is probed and
full, the next location examined is T[(i + ¢c) mod m, (j + ¢) mod n]. The values of m and n
must be not divisible by c, so that the table can be searched completely if necessary.

We can also probe row-by-row, which proceeds as follows. Let i be the number of
probes so far (where i = O represents the initial hash), let x; be the column of the i probe,
and let y; be the row of the i probe. Then xo = hy(k,) and yo = hy(k,). While i £ m, T[X;;,
Yi+1] = T[(x;+c) mod m, y;]. Each time i becomes a multiple of m, the current row has
been exhausted. At that point, T[Xi.1, yi+1] = T[(xi+c) mod m, (y;+1) mod n], moving

search to the next row. If i reaches m*n, the entire table has been searched.

Algorithm L; (Linear probing insertion)
Linear-Probe-Insert(T, K)
1. i=hy(ks),j=hyky)

2. DO LOOP: WHILE T[], j] is not empty OR count < mn -1

W

Ifi>mTHENi:=i-m, j++

4, ELSEi:=1+c Im%c#0

15




5. count ++
6. END LOOP
7. IF TIi, j] is empty THEN insert K into T[i, j]

8. ELSE is overflow

Algorithm L; (Linear probing search)

Linear-Probe-Search(T, K)

1. 1=hy(ky), j = hy(ky)

2. DO LOOP: WHILE T[i, j] is not empty AND count < mn — 1

3.  IF keyli, j] = K THEN found = true, BREAK // initial found = false

4. ELSEIFi>m-1THENi:=i-m,j:=j+1

5. ELSEi:=i+c¢ // c 1s offset
6. count := count + 1 /linitial count =0
7. END LOOP

8. IF found = true THEN successful search K is in TJ[i, j}

9. ELSE unsuccessful search

Algorithm L3 (Deletion from tables built by linear probing)

After an element is deleted from the hash table at T[m, n}, a gap (an empty bucket
where the key has been deleted) appears in the hash table T[m, n}. Since search normally
halts if the position where gap appears is probed, the result of this search will be incorrect
if the key is in table past the gap. To avoid the gap appearing and maintain the properties

of hash tables with linear probing, the hash table must be searched after deletion for keys

16



that would have been inserted at that location had the deleted element not been there. The
last such element will be moved up to this position to eliminate the gap.
Linear-hash-delete(T, K)

1. Kis found at TTi, j]

~

delete K from Ti, j] // gap occurs

w

. B =1,8=] // for memorizing the gap position
4, LOOP1: WHILE TIi, j] is not empty AND count !=mn - 1
5. i=i+c

6. IFi>mTHENi=i-m,j:=j+1 /I for next row
7. ENDIF

8. =i ti=] // temporary position

9. LOOP2: WHILE i != hy(key[ty, ty].ky) or j != hy(key[ty, ty].ky) // no first hashed in

10. i:=i-¢

11. IFi<OTHENi:=m+i,j:=j—1 //back one row

12. END IF

13. IFi=g,and j=g, THEN BREAK // for inserting to gap

14. END LOOP2

15. IFi=gxandj=g, THEN

16. Tlgx, gyl := Tltx, ty] // move position to gap position
17. delete T[ty, ty]

18. gxi=1:=1k, gy i=i:=ty /I new gap

19. ENDIF

20. count :=count + 1 // count is the number of searches
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21. END LOOP!

There are two problems underlying the linear probe method [7]. The first, primary
clustering, occurs because any key hashed to position h follows the same hashing pattern
as all other keys hashed to h. Secondary clustering occurs because two keys that have the
same initial probing position also have the same probing sequences. To avoid primary
and secondary clustering, we examine next a method that does solve the problem, double

hashing.

Double hashing

Double hashing is an attempt to approximate an ideal strategy that responds to
collisions by jumping randomly to a new table position. This strategy is called random
hashing (2] [7]. The primary problem with random hashing is reproducing the probe
intervals in the subsequent search. To do this, we apply a second hash function to the
original key, using that for an increment. This approximates random hashing, and it
eliminates primary clustering because two distinct keys that are initially hashed to the
same position almost always use different increments derived from the second function.
The values produced by h2 (step size of next hash) must be relatively prime to column
size m of the hash-table to insure that every position of the table is eventually probed.
The process of the probe is repeated until the target key or an empty position is found or

until the table is identified to be full and not to have the target key.
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Algorithm D, (Insertion with double hashing)
Double-Hash-Insert(T, K)

1. i=hyl(ky), j = hy(ky), and ¢ = h,2(ky) // T[i, j] is current probe, c is the step size
/1 for next probe

2. LOOP: WHILE T[j, j] is not empty AND count < mn-1 // count is number of probes

ot

IF the (count mod m)=m THEN j :=j + 1
4. ELSEi=i+c

5.  count :=count + 1

6. ENDLOOP //

7. IFT[i,j] is empty THEN Insert K into TTi, j]

8. ELSE the table is overflow

Algorithm D2 (Search with double hashing)
Double-Hash-Search(T, K)
1. i =hsl(ky), ] = hy(ky), and ¢ = h,2(ky) /I 'T[i, j] is current probe, c is the step size

2. LOOP: WHILE TTi, j] is not empty AND count < mn-1 // count is the number of
/l probes

3. IFTI[j, j].key is equal to K THEN found is true, BREAK

4.  ELSEIF the (count mod m)=m THEN j :=j + 1 // to search next line
5. ELSEi=i+c

6  count:=count + 1

7. END LOOP

8. IF found is true THEN search is successful

9. ELSE search is unsuccessful
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3.3 Improving on Open Addressing Methods

To improve performance of open addressing methods, especially for unsuccessful
searches, two models are introduced in this paper. Each model uses two flags in each
bucket of the hash table to record hashing states (Figure 3-2). Flags of different models

record different hashing information.

0,0 0, 1 e 0, m Record

1,0 I,1 I,m o flags | key value

N,0 N, 1 n, m

Figure 3-2 2DHT T[n,m] with Extra Memory flags

3.3.1 Model I: Nc | Np | key value

First, we introduce the concept priority hashing, in which any record that initially
hashes to a bucket has priority to take the bucket over any record that must probe at least
once after initial hash to reach it, even if such a record already inhabits the bucket. The
displaced record probes forward to find a new location. If more than one record initially
hashes to the same bucket, priority is assigned on the basis of the sequence in which the
records appeared.
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In Model 1, two flags N. and N in each bucket are initialized to 0. N, represents
the clustering factor (the number of Ks which initial by hashed to the same bucket); N,
represents the number of probes of the record or key in the current bucket. Each bucket
contains the following fields: N¢, Np, key (ky, ky) for 2DHT, and other attributes. In
addition, Model 1 requires priority hashing.

In searching for a record with key K, we compute the position T[i, j] to which K is
first hashed. If T[i, j].Nc is zero, no record has been first hashed to this position TT[i, j],
and the search is unsuccessful. If T[i, j].N. is 1, the search is successful if and only if T[i,
jl.key = K. Moreover, if T[i, j].N. is more than one for a table with linear probing, we can
often identify successful or unsuccessful searches based on the values of N, and N,
before an empty bucket occurs or the whole table has been probed. Suppose P is the
number of probes for the search key K. When P is one (for the first probe), search is
successful just in case T[i;, j].key = K. When P is two (for the second probe), if P is equal
to T[iz, j2].Np, we compare K with T[iz, jo].key; search is successful in the case that K
and TTiz, j2].key are equal; and so on up to the number of comparisons when K and T[ip,
jpl-key equals to T[i, j].N;, where TT[ip, jp] is the position where the record is probed P
times. In this case, T[i, j].N. is the number of comparisons between K and T, j,].key;

the search is successful when K = T[ij, jp].key, or unsuccessful if K does not equal to

T(ip, jp)-key.

Modification of Linear Probing with Model 1

Algorithm L4 (Insertion of linear probing with Model 1)
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Insertion with Model 1 requires priority hashing. In addition, N, (the number of
keys that hashed to this bucket initially) increases by 1 after initial hash. Finally, when

the target bucket is found, the number of probes is assigned to N,

Linear-Insert-Model1(T, K)
L. i=he(ky), ] = hy(ky)

2. count:=1 //to record the probed number

W

IF T[i, j].Np is zero THEN //fempty position
4.  insert K into T[i, j], and set Tfi, j].Nc := 1, T[i, jJ.Np =1
5. ELSE

6. IF T[i, j].Np is greater THAN 1 then  //without priority record

7. temp = TIi, j]

8. insert K into T3, j], T, j].Nc := 1, T[1, j].Np := |
9. count := temp.Np

10. K :=temp.key

11. ELSE

12. count := 1

13. T[i, j1.Nc :=T[i, j].Nc + 1

14. LOOP: WHILE TIi, j].Np is not zero AND count < mn —|.

15. count := count + 1

16. i=i+c

17 [Fi>m-1THENi:=i-m,j:=]+1
18. END IF
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19.

20.

21.

22;

23.

END LOOP

IF TTi, j].Np is zero THEN
insert K into TTi, j]
T[i, j].Np := count

ELSE T[n, m] is overflow

Algorithm L5 (Search of linear probing with Model 1)

Linear-Search-Model1(T, K)

1

N

10.

11.

12.

13.

14.

15.

i := hx(kx), j :=hy(ky)

IF TTi, j].Nc is 0 THEN search is unsuccessful

ELSE
flag :=T[i, j].Nc
LOOP: WHILE flag is greater then 0
IF count equal to T[i, jJ.Np THEN /T[i, j]. key and K are primary
IF T[i, j].Key equal to K THEN // clustering or same value
search is successful
break
ELSE flage :=flag — 1
ELSE
=i+,
IFi>m-1THENi:=i-m,j:=j+ 1END IF
count := count + | // count initial 1
END LOOP
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16. IF flag is greater 0 THEN search is successful

17:

ELSE search is unsuccessful

Algorithm L6 (Deletion of linear probing with Model 1)

This is similar to Algorithm L3, except that Nc and Np in each position that

undergoes deletion should be updated. In a hash table with open addressing, obviously,

after deleting some keys, search results may not be accurate because of gaps. Without

using extra memory to track the probing state of each record, updating the hash table after

deletion is inefficient. However, with a little additional memory, the problems resulting

from deletion can be resolved efficiently by updating the hash table.

Linear-Delete-Model1(T, K)

1.

2;

8.

9,

K is found at T[i, j]

delete K from TTi, j] /I gap occurs
gx=1,8y=] /l for memorizing the gap position
i:=1+c¢C /I ¢ is step size

IFi>m—-1THENi=1-m,]:=)+

END IF

IF T[g., gy].Nc > 1 THEN // first probe
T(gx, gy]-Nc := T[gx, gy].Nc -1

count :=2

10. LOOP: WHILE count !=T[i, j].Np //to find the primary clustering with K

i) 13

12.

count = count + 1

i=i+cC /lc is step size




13

14.

15.

16.

17.

18

22

23.

24.

25.

26.

27,

28.

30.

3L.

32.

33,

34.

35.

36.

3.

38.

IFi>m-1THENi:=i-m,j:=j+1
END IF
END LOOP
insert T(i, j].key into T[g,, g,], T[gx, g,).Np =1
g =1, 8y =]
. END IF
. LOOP1: WHILE T[j, j] is not empty AND count !=mn - |
1:=1i+cC
[Fi>mTHENi=i-m,j:=j+ 1// for next row
END IF
=i, ty =] // temporary position
count2 :=0

1:=1—cC

IFi<OTHENi:=m+i,j:=j—1 //back one row

END IF

count2 : = count2 + 1

IFi=g,and =g, THEN break // for inserting to gap
END LOOP2

[Fi=g,andj=g, THEN

T[gx, gy].Np := T[ty, t,].Np — count2

delete TT[ty, ty]

LOOP2: WHILE i = hy(key[ty, t,].ky) or j !=hy(key[ts, t,1.k,) // no first hashed in

Tlgx, gyl :=Tlty, ty] // move position to gap position




39. gxi=ii=ty, gy i=ji=ty /l new gap
40. ELSEi:=t, j:=t,
41. countl :=countl + 1 /I count is the number of searching

42. END LOOP1

Modification of double hashing with Model 1

The modifications of Model 1 for double hashing are very similar to those for
linear probing. Both methods (double hashing and linear probing) let N. and N, of Model
1 record the clustering factor for each bucket and the number of probes for each key,
respectively. Since the offset of probing for double hashing varies with k, to guarantee m
is not divisible by the offset, row-by-row probing is used in double hashing. In row-by-
row probing, the next row is probed only after all positions of the current row have been

probed, continuing until the whole table has been probed.

Algorithm D3 (Insertion of double hashing with Model 1).

Double-Insert-Model1(T, K)

1. i:=hy(ke), j = hy(ky)

2. IFT[i, j].N, is Zero THEN
3. temp.N;.:=1

4. temp.N, =1

5. ELSE

6. IFTIi,jl.Nyis | THEN

1. temp.Np := 1
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8. T[i, j]).Ne := T, j].Ne + 1

9. ELSE

10. temp := T[i, j]

11, Tli, j].Key =K //insert the key into the position
12. T[i, j1.Ne == L. T[i, j].Np := 1 //set flags

13. END IF

14. LOOP: WHILE TTi, j].N, is not zero AND count is less than nm-1
15. i:=(i+h (k")) mod m

16. j:=j+count/m

17.  count :=count + 1

18. END LOOP

19. IF TTi, j].N, is zero THEN

20. T, jlKey:=K

21. T, j].Ne :=temp.N,

22. T, jI.Np :=temp.N; + count

23. ELSE the table overflow

Algorithm D4 (Search of Double Hashing with Model 1)
Double-Search-Model1(T, K)

1. i:=hy'(ky), j :=hy(ky)

2 IF T[i, j].Nc is 0 THEN search is unsuccessful ~ // no clustering
2. ELSE

3. flag:=T[, j]l.Nc

27




LOOP: WHILE flag is greater then 0

5 IF count equal to T[i, j1.Np THEN //T[i, j].key and K are primary
6. IF T[i, j].Key equal to K THEN // clustering or same value
7 search is successful

8. BREAK

9. ELSE flage :=flag— 1

10. ELSE

11.. 1 =0+ hxz(kx)) mod m /l keep probe in same row

12. J:=])+count/m

13. count := count + 1 // count initial 1

14. END LOOP

15. IF flag is greater 0 THEN search is successful

16. ELSE search is unsuccessful

3.3.2 Model 2: Pmin | Pmax | key value

This model uses two integer fields Pmin and Py in each bucket Ppip 1s the

minimum number of probes and Pp,y is the maximum number of probes among the keys

that initially hashed to this position. So the number of probes for any key with initial

probing position T[i, j] is between T[i, j].Pmin and T[i, j].Pmax. Initially, all Ppn and P

fields are zero. Thereafter the values of Ppin and P in any position are updated when

keys hash initially to that position are inserted or deleted. Under linear probing, to search
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for k row-by-row, the first probe position is T[(i + Pmin*c) mod m, j], where c is an offset

that is a constant for the linear probe or a variable with key for double hashing. For any

key, the maximum number of probes past T[i, j] is Pmax - Pmin Whether the search is

successful or unsuccessful.

Algorithm L7 (Insertion of Linear Probing with Model 2)

Linear-Insert-Model2(T, K)

L.

2.

10.

1

12

13.

14.

15.

16.

i := hy(ky), j = hy(ky)
temp_x :=i;temp_y =]
count := I;
IF T[i,j].key is NULL THEN
insert K into T[j, i].p_min := 1, T[j, i].p_max =1
ELSE
LOOP: WHILE T[j, i].key is not NULL and count <= mn
i=i+cC
IF i is greater than OR equal to m THEN
i:=1—-m
j:=(+1)modn
count := count + 1
END LOOP
IF T[j, i].key is NULL THEN
insert K into TT[j, 1]

IF count is less than T[temp_x, temp_y].p_min THEN
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15 T[temp_x, temp_y].p_min := count

18. IF count is greater than T[temp_x, temp_y].p_max THEN
19. T[temp_x, temp_y].p_max := count

20. ELSE: overflow

Algorithm L8 (Search of Linear Probing with Model 2 )
Linear-Search-Model2(T, K)

1. i:=hy(ko, j = hyky)

N

min :=T[j, i].p_min

bt

times := T[j, i].p_max — T[j, i].p_min

4. LOOPI: FOR index 1 TO min - |

5. i=i+c

6. IFiis equal to or greater than m THEN
7. 1:=i—-m

8. j:=(+1)modn

9. END LOOPI

10. LOOP 2: FOR index 1 TO times + |

1. IFTj,i).key is K THEN

12. found := |
13. BREAK
14. i:=1+¢C

15. IFiis equal to or greater than m THEN
16. i:=i-m

17; j:=(j+1)MODn
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18. count:=count+ 1
19. END LOOP2
20. IF found THEN successful search

21. ELSE unsuccessful search

The procedures of Model 2 for double hashing are similar to those of linear probing.
The difference is that the offset for linear probing is the same constant for all keys,
whereas for double hashing it is the value of the second hash function for the key in
question. In double hashing, most keys with the same primary hash values, have different
second hashing values. Thus, double hashing can avoid both primary and secondary

clustering.
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CHAPTER IV

HASHING PERFORMANCE

4.1 Expected Performance

4.1.1 Average Performances of Various Hashing Methods

The performance of hashing depends on the hashing function that distributes the
set of keys into the hash table if the load factor o is fixed. In the worst case, the hash
function hashes all n keys to the same slot, and performance is ©(n). If the hash function
initially distributes each of n keys into a unique fixed position in the hash table with m
slots (n < m), however, the performance of an insertion or a search will be exact byl. In
fact, average performance is much better than the worst case, but a little worse than the
best case. Table 4-1 lists the average theoretical performance of successful and

Table 4-1 Expression of probes expected for successful and unsuccessful

search, as well unsuccessful search with improved Open Addressing in a hash
table ([2] [7] [14]).

Methods Unsuccessful Successful Improved
Li b 1 i 1 1 1+ 1 !
inear probe | —fl+———- = T
4 2l ea)? 2 a-a I-a
Double l 1,1 2,1
hashing -« o 1-«a a l-«a
. 1
Chaining l+a I+Ea‘
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Unsuccessful searches and the performance of unsuccessful searches improved for open
addressing. These expected performance values assume uniform hashing [2], i.e., that any
key is equally likely to hash to any slot in the hash table. From the expressions, it is easy
to see that the performance of the various hash methods depend only on load factor o, not
on table size. By providing reasonable values of o, we can calculate precise performance
measures for the various methods. The results in Table 4-2 show various performance
characteristics of different hashing methods.

Table 4-2 The number of probes expected for successful, unsuccessful, and

improved searches in a hash table (C: Chaining, L: Linear Probe, D: Double Probe,
S: Successful Search, US: Unsuccessful Search, P: Improved Unsuccessful search).

el cCuUs ¢S LUS LS LP DUS DS DP
0.20 1.20 1.10 1.28 1:13 1.25 1.25 1.12 1.23
0.30 1.30 1156 1.52 1.21 1.43 1.43 1.19 1.38
0.40 1.40 1.20 1.89 1.33 1.67 1.67 1.28 1.55
0.50 150 125 250 150 200 200 139  1.77
0.60 160 130 363 175 250 250 153 205
0.70 1.70 1.35 6.06 217 3.33 3.33 1.72 2.44
0.80 1.80 1.40 13.00 3.00 5.00 5.00 2.01 3.02
0.90 1.90 1.45 50.50 5.50 10.00 10.00 2.56 412

4.1.2 Required Memory

One of the most important criteria for the performance of a data structure, memory
requirements, differs for the two collision resolution techniques (chaining and open
addressing). For open addressing, the required memory is constant: the table size
multiplied by the memory occupied by one element. However, for external chaining, the

required memory is a linear function of the load factor.

33




Assuming that the table size is T and that each element takes i words of memory,

the memory required by the different hashing methods is shown in Table 4-3.

Table 4-3 The Memory Requirements for Different Methods (T: Table size, i: memory
occupied by one element, n: number of records).

Methods Memory requirements
Open addressing T*1

Improved Open addressing T*(1+1)

Chaining THnii+])

4.2 Testing for Various Hashing Methods

This section presents testing results concerning actual performance of the search
algorithms discussed in chapter 3. All of the algorithms tested were programmed by the
author in standard ANSI C and tested on the Microsoft Visual C++ 6.0 compiler under
Windows NT and the standard C++ compiler under SunOS 5.7. Performance of various
methods based on two-dimensional hash tables was tested. Performance for higher

dimensional hash tables can be inferred from that of 2DHTs.

4.2.1 Testing Procedures

Three things were considered while testing the various algorithms: load factor,
table size, and test data (keys). In order to make comparisons, the same data were

collected for testing various different methods with various table sizes and load factors.
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Each method was tested with twelve of table sizes (8X4, 8X8, 16X8, 16X16, 32X 16,
32X32, 64X32, 64X64, 128X64, 128X 128, 256X 128, and 256X256), ten load factors
(from 10% to 100% by 10% increments), and with four sets of test data (keys). The four
test data sets were produced by a random number generator to avoid duplicated keys.
Each test data set was generated with a different seed. Within each set of test keys, each
test key must be different from all others. Tests of successful and unsuccessful searches
used test data in different amounts and of different values.

To test performance of successful search for each method, the amount and the
values of test data (keys) should be the same as those that have been inserted in the table.
The number of keys tested is the product of load factor and table size. However, to test
performance of unsuccessful search for each method, all the keys tested are different
from any data inserted into the table. The number of keys of each set depends on the table
size. A set of fifty keys was used the 8X4 table, one hundred keys for 8X8, two hundred
for 16 X8 and 16X 16, four hundred for 32X 16, and five hundred for tables at 32X32 and

over.

4.2.2 Test Results

To facilitate analysis and comparison of performance both within and across
algorithms, all test results are listed in the tables in Appendix A. In Tables A-1 to A-14,
each number represents an average successful or unsuccessful search time per key for a
specified algorithm, hash table size, and load factor. In Tables A-15 and A-16, each
number is an average number of search probes for a single key for one algorithm and one

kind of hash table size when load factor is less than or equal to 90%, and total average
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performance in searching a single key for all the methods with various hash table sizes.
These tables show that actual search performance, like theoretical performance, does not
depend on hash table size, especially for the chaining method. But with open addressing
hashing, when the table size is less than 32X32, search probes increase with table size,
whereas table size no longer affects performance for 32X32 or larger tables. Figure 4-1
and Figure 4-2 show the relationship between average search time and table size. Since
performance is not stable with small hash tables, to increasing accuracy, all data used for
analysis in this research are obtained from testing with hash tables whose size is greater

than 32X32.

4.2.2.1 Chaining Hashing

2.50

2.00 4

1.50 14—

104 — T e ——

Search Times

—o— Successful

0.50 4
—3— Unsuccessful

0.00 T T T T T
0.00 0.20 0.40 0.60 0.80 1.00 1.20

Load Faactor

Figure 4-3 Scarch in Chaining Hash Table
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The test results (Table A-1 and Table A-2 in Appendix A) of Algorithm C,
(Chaining hash table insertion) and Algorithm C; (Chaining hash table search) indicate
the following performance characteristics. The average search times of each key does not
vary with table size. However, search times increased with load factor. For successful
searches, average search times are from 1.0444 to 1.4906 corresponding to load factors
from 10% to 100%, respectively. For unsuccessful searches, the range of average search
times is from 1.1014 to 2.0004. Figure 4-3 shows that search times for chaining hash are

a linear function of load factor.

4.2.2.2 Linear Probing

Tables A-3 and A-4 in Appendix A list successful and unsuccessful search
performance of Algorithm L2 (Linear Probing Search). Successful and unsuccessful
search performance improved by Model 1 is listed in Table A-5 and Table A-6. Improved
performance by Model 2 can be found in Table A-7 and Table A-8.

Without improvement, successful and unsuccessful search performance of
Algorithm L, (Linear Probing Insertion) and Algorithm L, (Linear Probing Search) is
listed in Table A-3 and Table A-4 of Appendix A. When the hash table is not full (load
factor under 90%), search performance, whether successful or unsuccessful, is not
affected by table size, but increases load factor as shown on Figure 4-4. However, when
the hash table is full (load factor is 1), the performance of search, especially for

unsuccessful searches, changes with table size.
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Figure 4-4 Search in Linear Probing Hash Table

Table A-5 and Table A-6 in Appendix A list the results of successful and
unsuccessful searches with linear probing improved by Model |; Table A-7 and Table A-
8 are the results of performance of linear probing improved by Model 2. Model | does
not improve successful search at all, whereas Model 2 shows some improvement for
linear probing (Figure 4-5). Figure 4-6 shows the improvement by Model 1 and Model 2
for unsuccessful search by linear probing. Both Model 1 and Model 2 give excellent
improvement for unsuccessful search, especially when the hash table is full. Average
unsuccessful search times for linear probing without improvement is18578.2 (in Table A-
4), 59.38 with Model 1 improvement (shown in Table A-6), and 33.05 with Model 2

improvement (Table A-8).
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Figure 4-6 Unsuccessful Search with Linear Probing

40




4.2.2.3 Double Hashing

Table A-9 and Table A-10 in Appendix A show the results of successful and
unsuccessful search performance for double hashing; Table A-11 and Table A-12 list the
results of improved double hashing with Model 1, and Table A-13 and Table A-14 show
the results of improved double hashing with Model 2. Performance of double hashing is
not affected by table size when the table size is at least 32X32, but is affected load factor.

Figure 4-7 shows that the average number of searches with double hashing

increases nonlinearly with load factor, especially for unsuccessful search.
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Figure 4-7 Search in Double Hash Table
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Performance of double hashing improved by Model 1 and Model 2 is shown in
Figure 4-8 for successful search and Figure 4-9 for unsuccessful search. As with linear
probing, Model 1 does not improve the performance for successful search by double
hashing and degrades the performance for successful search when load factor is greater
than 0.6. Model 2 can improve the performance for successful search by double hashing,
and the rate by which performance improves increases with load factor. When load factor
1s 0.9, performance is improved by 18%. However, both Model 1 and Model 2 improve
performance of unsuccessful search, and improvement increases nonlinearly with load
factor. When load factor is 0.9, search times improve by 78 percent of over performance
of unsuccessful searches by unimproved double hashing. When load factor is less than

0.9, Model 1 is a little better than Model 2 for an unsuccessful search by double hashing.

4.3 Analysis and Comparison

Table 4-4 and Table 4-5 summarize the various hash methods’ performance on
successful and unsuccessful searches. The results of testing show that chaining performs
best among the various hashing methods; in addition, separated chaining does not require
contiguous memory for chains. However, chaining needs more memory than open
addressing; in addition, chaining must use pointers to complete various operations.

Among open addressing hash methods, double hashing proves for better than
linear probing in terms of search performance, because double hashing eliminates both
primary and secondary clustering. In linear hashing, it is easy to set up an offset that is

relatively prime with table size of one row for 2DHT. Unlike linear probing, in double
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Table 4-4 Average Number of Successful Search from Testing

% Ch L D L-M1 D-M1 L-M2 D-M2
0.10 1.0444 1.0519 1.0511 1.0519 1.0509 1.0499 1.0492
0.20 1.0904  1.1222 11143 11222 1.1135 1.1137 1.1057
0.30 1.1416 1.2111 1.1858 1.2111 1.1858 1.1903 1.1680
0.40 1.1874 1.3336 1.2730 1.3336 1.2733 1.2913 1.2370
0.50 1.2393 1.4974 1.3801 1.4972 1.3798 1.4121 1.3163
0.60 1.2896 1.7438 1.5198 1.7428 1.5205 1.5893 1.4170
0.70 1.3367  2.1853 1.7242  2.1809 1.7296 1.8947 1.5617
0.80 1.3906 3.0072 2.0229 2.9986  2.0332 2.4498 1.7596
0.0 1.4337 53654 2589 53357  2.6059 3.9970 2.1170
1.00 1.4906 69.9121 8.8522 68.5022 8.9408 444590 6.0920

Table 4-5 Average Number of Unsuccessful Search from Testing

% Ch L D L-M1 D-M1 L-M2 D-M2
0.10 1.1014 1.1191 1.1153 1.1033 1.0988 1.1029 1.1034
0.20 1.2001 1.2781 1.2526 1.2051 1.1859 1.2032 1.2014
0.30 1.2994 1.5217 1.4384 1.3213 1.2723 1.3152 1.3071
0.40 1.4030 1.9030 1.6791 1.4587 1.3637 1.4433 1.4186
0.50 1.5059  2.4932 2.0157 1.6165 1.4606 1.5752 1.5331
0.60 1.6040  3.6271 2.5137 1.8158 1.5728 1.7427 1.6711
0.70 1.7029 6.1520 3.3789 2.1826 1.7221 2.0366 1.8369
0.80 1.8022 12.7370 5.1298 2.8720 1.9348 2.5229 2.0551
0.90 1.8972 44.0295 10.5758 4.7336  2.3584 3.7540 2.4180
1.00 2.0004 18578.3 18578.3 59.3806 8.3818 33.0554 4.8982

hashing, the value of h2(K) for every key must be set to be a prime compare table and
row size with increment size. This is important because if the table or row size m and
offset h2(K) for double hashing (or ¢ for linear probing) have a common divisor d > 1 for

some key K, then a search for key K would search only 1/d of the hash table. The




convenient way to resolve this problem is to let m be a power of 2, and to design h2 so
that h2(K) is always odd.

To improve performance for open addressing hash methods, this research
proposes Model 1 and Model 2. Comparing the Models, Model 2 proves highly effective
for linear probing and double hashing, because it can improve performance not only for
unsuccessful search, as model 1 does, but also improve for successful search. Although
Model 1 cannot improve performance for successful search, it may be very useful for
special applications. Because Model 1 has a flag N, recording the number of keys that are
initially hashed to that bucket, and uses priority hashing (the key with initial probe will
take over the bucket occupied by a key with more than one probe), it can retrieve a record
by a known index if the record with the initial probe has particular significance.
Moreover, Model 1 is better than Model 2 for unsuccessful search with double hashing.

Comparing Table 4-2, containing expected performance results, and Table 4-4
and Table 4-5, containing the results of practical performance for all the hashing
methods, we see that theoretical and actual performances are very similar. Thus, the

practical test supports the algorithms discussed in chapter 3.
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CHAPTER V
APPLICATION IN GRIDDING
5.1 Contour Map System

Contour Map System (CMS) involves three basic operations: Hashing, Gridding, and
Visualizing (Figure 5-1). The visualization module reads in regular matrices and uses
them to produce contour maps; but most data collections are not uniform. Especially in

the natural sciences, observations are usually scattered irregularly across the map area.

Contour Map System

I Source Data |

Visualizing

Target Results

Figure 5-1 Contour Map System
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In the CMS visualization module, as in most other contouring programs, graphic displays
can be made only on regular points in every matrix grid. Therefore, in CMS, the second
module, the gridding module, creates such numerical matrices from irregularly
distributed data. In fact, the module that generates a regular grid matrix from scattered
data points is the most important procedure in the graphics package. The first module
contains a set of algorithms for loading the sample data into a data structure that lets
gridding find efficiently. Since this work concentrates on multi-dimensional hash tables,
we refer to the first module as Hashing. The performance of the first module directly

affects the efficiency of the second.

5.2 Gridding in Contour Map System

Gridding, the second module in CMS, is the estimation of values of the surface at
a set of locations arranged in a regular pattern that covers the mapped area. In general, the
values at regular grid points of the surface are not known, and must be estimated from
irregularly located control points where the values of the surface are known. Known
spatial data from various surveys, especially in GIS, consists of randomly located X-Y-Z
values with fixed ranges (as in Figure 5-2 a). While X and Y are often geographic
coordinates, they might also be parameters such as temperature or pressure for other
kinds of maps. Z is a value such as elevation, thickness of stone, depth of ocean, saltiness
of water, and so on. Each spatial data point is expressed by (x, y, z); it is also called a
control point or sample data point (shown in Fig 5-2 a).

The grid points (or nodes) are usually arranged in a square pattern (shown in

Figure 5-2 b). The spacing is under user control, and is one of many parameters that must
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be chosen before gridding. The area enclosed by four grid nodes is called a grid cell. If a

large size is chosen for the grid cell, the resulting map will have low resolution, but can

be computed quickly. Conversely, if the grid cells are small, the contour map will have

high resolution, but will take more running time and will be expensive to produce.
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Figure 5-2 Procedure of Gridding

(d)

Gridding in CMS generates a grid matrix of estimated Z values for regularly

spaced X and Y values from irregularly spaced X, Y, and Z sample data points in three

essential steps [10]. The first step is determining the matrix size and grid cell size. The
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grid matrix size (number of grid nodes) depends on the number of control data points.
Second, the user must choose the mathematical function to use in estimating grid values
[18]. In the third step, users choose search algorithms. Both the search procedure and the
mathematical function have significant effects on the performance of CMS; search
methods are especially important. What kind of search method is efficient depends on the
data structure used to hold control points, which is produced by the first module.

The estimation process estimates the values for every grid node in the mapped
area. Each node is estimated from a collection of nearby control points (shown in Figure
5-2 ¢). The procedure is repeatedly applied across the map area until the whole map area

1s represented by regular grids (Figure 5-2 d).

5.3 Hashing in Contour Map System

In order to improve the performance of gridding in CMS for control data points that
are scattered in a near random fashion, we propose two-dimensional hashing as the data
processing method in the first module. The near random nature of the data, given a
reasonable hash function, produces nearly uniform hashing. Hence the first module
produces a 2DHT holding all the control data for the gridding module. The hashing
module proceeds in two major steps. The first defines hash table size; the second selects a
hashing method. The hash table size depends on the number of control points in the map
area, the grid matrix size, and the maximum effective distance (radius) from the grid of
its control points. Since the load factor is always fixed and is usually between 0.5 and 0.8,
hash table size is K/at, where K is the number of control points and « is the load factor.

Therefore, hash table size ranges between K/0.5 and K/0.8, and improved double hashing

49



is recommended both for loading data into the hash table and for searching in the

gridding module.

5.3.1 Hashing Function

Since search focuses on control data at an exact location on map area, (as opposed
to range searches, for instance), the hashing function chosen must hash control points for
the same grid cell into the same bucket in the hash table as shown in Figure 5-3. For
example, data located in the (20 ... 40, 10 ... 40) field should be in [0, 0] in hash table,
data in the (40 ... 60, 40 ... 70) field will be in [1, 1], and so on. This produces a result
similar to a grid directory (reviewed in chapter 2). But the methods handle data clustering
in different ways. To resolve the clustering problems, the grid file method split the cell;

however, the hashing method probes the key repeatedly until an empty bucket appears.
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Figure 5-3 Hashing Sample Data Point to Hash Table: a. map area (X: 20 ... 100,
Y: 10 ... 120), b. two dimensional hash table
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Division Method:

h(K) = h(kx, ky) = ((hx(kx), hy(ky)) (5.1)

ha(kx ) = L LK.x =1/ [ Xmax = Xmin] * mJmod m

hy(ky) = LK.y — Yminl/ LY max — Yomin) * nJ mod n

K.x is the X coordinate value and K.y is the Y coordinate value of the control data
K. Xmin and Xpax are the minimum and maximum X coordinate values in the map area;
Y min and Y max are minimum and maximum Y coordinate values. Thus the map area is

(Xmin ... Xmax, YMIN ... Ymay)-

5.3.2 Collision Solutions

To avoid primary and the secondary clustering, we choose double hashing to
resolve collisions in CMS. Double hashing uses a general hashing function of the
following form [2]:

h(K, 1) = (h{(K) + ih2(K)) mod m (5.2)
where h; and h; are auxiliary hashing functions. T[h;(K)] is the initial hash position;
h2(K) is the offset for successive probing from the previous position; and m is the hash
table size.

CMS uses collision solution strategies and clustering control for two-dimensional
hash tables based on double hashing theories. However, to reduce the calculation times of
division or multiplication, which are disadvantages in the hashing method, after first
probing with X and Y values, only the X value of each key will be calculated by the

double hashing method, as in Algorithm D1 in chapter 3. Therefore, hashing sequences
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probe row by row. The specific hashing functions for two-dimensional hash tables
referred to in functions (5.1) and (5.2), thus, are as followings:

h(K, 1) = (hy(K.x, 1), hy(K.y, 1))

hx(K.x, 1) = (hxL(K.x) + 1 hy2(K.x)) mod m

hol (K.x) = [ LK.x ~Xmin]/ [ Xmax — Xmin] * mJmod m

h2(K.x) = [ K.x ] mod m’

hy(K.y, i) = (hy1(K.y) + Z hy2(K.y, 1)) mod n

hyl(K.y) =L LK.y — Ymin /| Ymax — Ymin * nJmod n

h2(K.y,i)=1 // (if hl(K.x ) +1ih2(K.x) >= m)

=0 //(fhd(Kx) +ih2(K.x)<m)

This hashing method uses double hashing only for X value of each key. After the
Y value is hashed initially with (hy1(K.y), hy2(K.y), Y only increases by 1 or O depending
on how many times the key is probed. In addition, there are two kinds of probing
sequences in 2DHT: one, after all buckets of the current row are completely probed, goes
to the next row by assigning 1 to hy2(K.y, i); the other goes to the next row when hy(K.x,

i-1) + h,2(K.x) is greater than or equal to m.

5.4 Analysis and Comparisons

A huge amount of search takes place during gridding. Each grid point usually
needs to search for at least four control points. To find control points for a grid point, the
X and Y values of the grid point should be converted into interval indexes that determine
which bucket in the hash table contains the target control points. The second step checks
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whether the record in that target bucket initially hashed to that bucket by using the
hashing functions to test the two attributes X and Y in the target bucket. There are three
logical possibilities. If the bucket is empty, search has failed. If the record in the bucket
initially hashed to that position, search has succeeded. However, if it did not, we do not
yet know whether any sample data is located at the area corresponding that bucket. This
logical possibility would pose a problem for gridding. Fortunately, in chaining hash
tables, that problem can not occur. For open addressing hash methods, whether by linear
probe or double hashing, adopting the Model 1 improvement strategy also eliminates that
problem. Model 1 uses priority hashing (any record with initial hash to a bucket will
replace any record that had to probe to reach it), and a flag (N.) records the number of
records having initial hash at this bucket. When a target bucket is determined, we can
learn whether search is successful by simply checking the value of the flag N in the
target bucket. If N is 0, the search is fails; otherwise, it succeeds. In addition, the value

tells directly how many control points are in the target bucket’s region.
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CHAPTER VI

SUMMARY AND CONCLUSION

MDHTs strongly resemble one-dimensional hash tables in terms of hashing
operations. Two-dimensional hash tables implement the Insert and Search operations in
constant average time. When using hashing tables, it is important to pay attention to
choose an appropriate load factor and to choose a hash function that produces nearly
uniform hashing.

Although chaining hashing requires more memory than open addressing methods, it
has excellent performance. Its load factor can be large enough to provide some space
efficiency, and it can use fragmentary memory, unlike open addressing, which requires a
single contiguous block.

In open addressing hashing methods, the load factor should not be greater than 80%.
The performance of double hashing is much better than linear probing. Two models
presented in chapter 3 can improve time performance significantly at some cost in space
for unsuccessful search. Model 2 can also improve performance of successful search for
open addressing.

A two-dimensional hash table can be used to implement insert and search operations
for spatial data with two keys, X and Y, recording the information. Using 2DHTs, it is
possible to organize the spatial data in a way that facilitates other types of processing,
such as sequential processing.

In this research, an application model the Contour Map System (CMS), employs a

2DHT for data processing, and with Model 2, it can improve performance over O(ng) for
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traditional sequential processing to O(g) of 2DHT, where n is the number of spatial data

points and g is the number of grid nodes in the grid matrix required by CMS.

55



(1]

(2]

(3]

[4]

(3]

(6]

(7]

(9]

[10]

REFERENCES

Breu, H., Gill, J., Kirkaptrick, D., and Werman, M., “Linear time Euclidean

distance transform algorithms”, IEEE Trans. Pattern Analysis and Machine
Intelligence, Vol. 17, No. 5, 1995.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L., Introduction To Algorithms,

Cambridge, MA: MIT Press, 1990.

Foley, J. D., Dam, A. V., Feiner, S. K., Hughes, J. F., Computer Graphics

Principles and Practice (2" ed.), Reading, MA: Addison-Wesley, 1990.

Folk, M. J. and Zoellick, B., File Structures (2" ed.), Reading, MA: Addison-
Wesley, 1992.

Hutflesz, A., Six, H. W., Widmayer, P., “Twin Grid Files: Space Optimaizing
Access Schemes”, ACM, Vol. 6, pp.183-190, 1988.

Kashyap, R. L., Subas, S. K. C., and Yao, S. B., “Analysis of the multi-attribute

tree database organization”, IEEE Trans. Software Engineering, Vol. 2, No. 6, Nov.

1977.

Knuth, D. E., The Art of Computer Programming (2™ ed.), Vol. 3, Sorting and
Searching Edition, Reading, MA: Addison Wesley, 1997.

Litwin, W., “Linear Hashing: A New Tool for File and Table Addressing”, Proc. 6"

International Conference on Very Large Data Bases, pp. 212-223, 1980.

Lomet, D. B., Salzberg, B., “A Robust Multi-Attribute Search Structure”, IEEE, pp.
296-304, 1989.

Maltman, A., Geological Maps: An Introduction (2" ed.), New York: John Wiley &

Sons, 1998.

56




{11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

Nievergelt, J., Hinterberger, H., Sevcik, K. C., “The Grid File: An adaptalbe,

Symmetric Multikey File Structure”, ACM Transactions on Database System, Vol.

9, No.1, pp. 38-71, 1984.

Patel, H. D., Analysis and Comparison of Extendible hashing and B* Trees Access

Methods, M. Sc. Thesis, Oklahoma State University, Stillwater, OK, 1987.
Ramakrishna, M. V., “Hashing in Practice, Analysis of Hashing and Universal
Hashin”, ACM, Vol. 6, pp.191-199, 1988.

Tenenbaum, A. M., Augenstein, M. J., Data Structures Using Pascal, New Jersey:

Prentice-Hall, 1995.

Thompson, J. F., Soni, B. K., and Weatherill, N. P., Handbook of Grid Generation,

New York: CRC Press, 1999,
Troof, H., Herzog, H., “Multidimensional Range Search in Dynamically Balanced
Trees”, Angewandte Informatik, Vol. 2, pp. 71-77, 1981.

Weiss, M. A., Data Structures and Algorithm Analysis in C (2" ed.), Menlo Park,

CA: Addison-Wesley, 1997
Zoraster, S., “Imposing Geologic Interpretations on Computer-Generated Contours
Using Distance Transformations”, Mathematical Geology, Vol. 28, No. 8, pp. 969-

985, 1996.

57




8s

APPENDIX A

TABLES OF TESTING RESULTS
Table A-1 Successful Search with Chaining Hashing
% 8X4 8X8 16X8 16X16 32X16 32X32 64X32 64X64 128X64 128X128 256X128 256X256 Avg
0.10 1.0833 1.0417 1.0417 1.0300 1.0147 1.0294 1.0453 1.0501 1.0485 1.0508 1.0476 1.0493 1.0444
0.20 1.1667 1.0417 1.05600 1.0735 1.0686 1.0858 1.0960 1.1050 1.0971 1.1001 1.1005 1.0995 1.0904
0.30 1.1667 1.1053 1.1382 11217 11275 1.1523 1.1421 1.1486 1.1499 1.1474 1.1495 1.1499 1.1416
0.40 1.1667 1.1300 1.1912 1.1838 1.1801 1.1993 1.2045 1.1954 1.1999 1.2001 1.1987 1.1993 1.1874
0.50 1.1875 1.2344 1.2227 12500 1.2461 1.2417 1.2493 12472 1.2456 1.2485 1.2474 1.2507 1.2393
0.60 1.2368 1.2895 1.2697 1.2843 13192 1.2936 1.2911 1.3011 1.2940 1.2978 1.2989 1.2994 1.2896
0.70 1.2500 1.3239 1.3202 1.3408 1.3596 1.3614 1.3414 13514 13472 1.3471 1.3482 1.3493 1.3367
0.80 1.2800 1.4412 13799 13836 1.4022 14145 1.3933 1.4017 1.3961 1.3972 1.3977 13992 1.3906
0.90 1.37560 1.3947 1.4239 1.4152 1.4560 1.4598 14445 1.4450 1.4470 1.4450 1.4490 1.4496 1.4337
1.00 1.4688 1.4609 1.4883 14873 1.4956 15056 1.4966 1.4950 1.4968 1.4930 1.4986 1.5005 1.4906
Table A-2 Unsuccessful Search with Chaining Hashing
% 8X4 8X8 16X8 16X16 32x16 32X32 64X32 64X64 128X64 128X128 256X128 256X256 Avg
0.10 1.1450 1.1150 10625 1.0900 1.0850 1.0950 1.1095 1.1038 1.1038 1.0970 1.1035 1.1069 1.1014
0.20 1.2400 1.2275 1.1638 1.1825 1.1856 1.1965 1.2075 1.1988 1.1944 1.1965 1.2080 1.2006 1.2001
0.30 1.3100 1.3425 1.2650 1.2638 1.2963 1.3065 1.2995 1.2969 1.2988 1.2940 1.3085 1.3106 1.2994
0.40 14300 14450 13738 1.3563 1.4075 1.4040 1.4035 1.4188 1.3856 1.4025 1.4065 1.4031 1.4030
0.50 1.5750 1.5400 1.4900 1.4500 1.5219 14965 1.5060 1.5231 1.4781 1.4985 1.4995 1.4919 1.5059
0.60 1.6650 1.6225 15775 1.5588 16288 1.5865 1.6080 1.6244 1.5906 1.6035 15990 1.5831 1.6040
0.70 17450 17025 1.6888 1.6600 1.7419 16835 1.7065 17138 1.6988 17140 17120 1.6688 1.7029
0.80 1.8700 1.7950 1.7725 1.7638 1.8469 1.7770 1.8000 1.8144 17975 1.8095 1.8100 1.7694 1.8022
0.90 1.9300 19025 1.8763 1.8450 19581 1.8820 1.8945 19131 18931 1.8980 1.8070 1.8669 1.8972
1.00 20650 2.0150 1.9938 1.9513 2.0669 1.9835 1.9965 2.0075 1.9913 1.9945 20175 1.9225 2.0004
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Table A-3 Successful Search with Linear Probing

% 8X4 8xa 16X8 16X16 32X16 32X32 64X32 64X64 128X64 128X128 256X128 256X256 Avg *
0.10 1.0833 1.0417 1.0417 1.0300 1.0147 1.0343 1.0515 1.0568 1.0540 1.0568 1.0541 1.0557 1.0519
0.20 1.2083 1.0625 1.0500 1.0882 1.0956 1.1054 1.1210 1.1319 1.1184 1.1268 1.1280 1.1242 1.1222
0.30 1.1944 11579 1.1645 1.18089 1.1814 1.2036 1.2044 1.2134 12144 12128 1.2138 1.2156 1.2111
0.40 1.2083 1.1800 1.2451 1.3137 1.2904 1.3209 1.3492 13243 1.3413 1.3356 1.3332 1.3307 1.3336
0.50 1.2656 1.4063 1.3594 1.4824 1.4551 14692 15176 15022 1.4926 1.5016 1.4980 1.5007 1.4974
0.60 15263 1.5724 15526 1.6503 1.6653 1.6877 1.7614 1.7876 1.7200 1.7606 1.7466 1.7425 1.7438
0.70 1.6818 1.8807 1.7612 2.0084 2.0335 22357 22027 22272 21324 21741 21673 2.1577 2.1853
0.80 21900 2.5098 2.3407 2.6544 25886 29737 3.0968 3.1190 2.9503 29873 29530 2.9701 3.0072
0.90 29196 2.7675 3.4761 4.0033 3.8000 5.0451 56084 5.5502 5.3947 5.3494 52408 5.3695 5.3654
1.00 41250 45195 6.9531 9.6934 12.6348 20.4734 31.2942 36.5738 55.1476 81.6992 114.5396 149.6571 69.9121
Table A-4 Unsuccessful Search with Linear Probing

% 8X4 8x8 16X8 16X16 32X16 32X32 64X32 64X64 128X64 128X128 256X128 256X256 Avg *
0.10 11750 1.1350 1.0738 1.0988 1.0963 1.1070 1.1355 1.1175 1.1219 11115 11170 1.1231 1.1191
0.20 1.3300 1.2875 1.2113 12375 1.2494 1.2640 1.3050 1.2706 1.2588 1.2785 1.2925 1.2775 1.2781
0.30 1.4750 1.5250 1.4588 1.4025 1.4931 15105 1.5420 1.5231 15138 1.5090 15315 1.5219 1.5217
0.40 1.7700 1.7575 17500 1.6675 19175 18715 19425 19194 1.8844 1.9100 1.8900 1.9031 1.9030
0.50 23300 22775 2.1838 22513 24831 24565 25495 26156 2.4188 25110 24760 24250 2.4932
0.60 3.0450 3.5100 2.8725 3.2250 3.4238 3.3895 3.7130 4.0094 3.5569 3.7095 3.6060 3.4056 3.6271
0.70 42400 44550 37750 5.1188 52638 6.3420 6.7350 6.4519 58550 6.2560 5.9395 5.4844 6.1520
0.80 58100 7.4625 8.1613 9.2088 8.8744 12.0380 13.2525 13.5038 13.2050 13.0525 12.5905 11.5169 12.7370
0.90 9.2850 14.2825 15.2588 23.6863 25.7488 37.7470 42.3725 47.3750 44.6131 46.2005 43.6205 46.2781 44.0295
1.00 32.0000 64.0000 128.00 256.00 512.00 1024.00 2048.00 4096.00 8192.00 16384.0 32768.0 65536.0 18578.2




Table A-5 Successful Search with Linear Probing improved by Model 1

% 8X4 8X8 16X8 16X16 32X16 32X32 64X32 64X64 128X64 128X128 256X128 256X256 Avg *
0.10 1.0833 1.0417 1.0417 1.0300 1.0147 1.0343 1.0515 1.0568 1.0540 1.0568 1.0541 1.0557 1.0519
0.20 1.2083 1.0625 1.0500 1.0882 1.0956 1.1054 1.1210 1.1319 1.1184 1.1268 1.1280 1.1242 1.1222
0.30 1.1667 1.1579 1.1645 1.1809 1.1814 12036 1.2044 1.2134 12144 12128 1.2138 1.2156 1.2111
0.40 1.2083 1.1800 1.2451 1.3137 1.2904 1.3209 1.3492 1.3243 1.3413 1.3356 1.3330 1.3306 1.3336
0.50 1.2656 1.4063 1.3594 1.4824 1.4551 14692 15176 15022 1.4926 1.5010 1.4977 1.5002 1.4972
0.60 156263 1.5724 1.5526 1.6503 1.6596 1.6877 1.7596 1.7876 1.7195 1.75683 1.7455 1.7415 1.7428
0.70 1.6818 1.8807 1.7612 2.0084 2.0286 2.2207 2.1999 22265 2.1303 2.1709 2.1640 2.1543 2.1809
0.80 21900 2.5098 2.3407 2.6544 25862 29554 3.0951 3.1124 29463 29747 29449 29615 2.9986
0.90 29196 2.7675 3.4652 39989 3.7538 5.0353 5.5807 5.5244 53537 53135 52104 53317 5.3357
1.00 41250 4.5195 6.9434 9.6758 12,5527 20.3574 30.9094 35.8571 54.2146 80.0414 112,353 145.7826 68.5022
Table A-6 Unsuccessful Search with Linear Probing improved by Model 1

% 8X4 8x8 16X8 16X16 32X16 32X32 64X32 64X64 128X64 128X128 256X128 256X256  Avg *
0.10 1.1450 1.1225 1.0625 1.0900 1.0850 1.0955 1.1105 1.1038 1.1038 1.0970 1.1035 1.1094 1.1033
0.20 1.2550 1.2350 1.1638 1.1838 1.1913 1.1995 1.2125 1.2031 1.1969 1.1995 1.2160 1.2081 1.2051
0.30 1.3250 1.3625 1.2688 1.2763 1.3150 1.3260 1.3210 1.3169 1.3175 1.3065 1.3330 1.3281 1.3213
0.40 14650 1.4650 1.3875 1.3900 1.4538 1.4585 1.4725 1.4838 1.4388 1.4640 1.4455 1.4481 1.4587
0.50 1.6400 16175 15450 1.5150 1.6250 1.6040 1.6450 1.6663 1.5719 16315 16065 159068 1.6165
0.60 1.82560 1.7550 1.6950 1.6713 1.8156 1.7835 1.8500 1.9019 1.7513 1.8235 1.7876 1.8131 1.8158
0.70 2.0500 2.0575 1.9413 1.9613 2.1725 22130 22470 21906 2.1838 2.1845 21070 2.1525 2.1826
0.80 27200 22925 22850 23863 26731 28030 29345 3.0494 27406 3.0325 28840 26600 2.8720
0.90 3.1650 2.9925 3.1288 3.4075 4.0038 4.6560 5.1530 4.9844 4.7069 4.9635 4.4095 4.2619 4.7336
1.00 4.8850 4.6050 6.6413 7.5938 13.0744 19.5690 28.9310 37.8025 68.9169 98.591 111.286 50.5675 59.3806




19

Table A-7 Successful Search with Linear Probing improved by Model 2

% 8X4 8X8 16X8 16X16 32X16 32X32 64X32 64X64 128X64 128X128 256X128 256X256 Avg *
0.10 1.0833 1.0417 1.0417 1.0300 1.0147 1.0319 1.0478 1.0556 1.0525 1.0554 1.0526 1.0534 1.0499
0.20 1.2083 1.0625 1.0500 1.0882 1.0907 1.0919 1.1161 1.1233 1.1117 11174 1.1191 1.1163 1.1137
0.30 1.1389 1.1447 1.1513 1.1612 1.1667 1.1857 1.1836 1.1938 1.1926 1.1903 1.1930 1.1933 1.1903
0.40 1.1875 1.1700 1.2353 1.2696 1.2537 1.2873 1.3114 1.2805 1.2937 1.2923 1.2884 1.2857 1.2913
0.50 1.2188 1.3984 1.3242 1.4102 1.3896 1.3838 1.4321 1.4128 1.4080 1.4203 1.4123 1.4154 14121
0.60 1.3947 15592 1.4671 1.4967 15432 15533 1.5882 1.6160 1.5684 1.6156 1.5953 1.5881 1.5893
0.70 1.4773 1.8239 16376 1.7291 1.7744 19581 1.8856 1.9203 1.8566 1.8861 1.8839 1.8726 1.8947
0.80 1.7000 2.2010 2.0196 2.0662 2.1210 2.4936 2.4988 2.4878 2.4044 24353 24137 24151 2.4498
0.90 2.1696 23509 2.6565 2.7283 2.8185 3.9254 4.1617 4.0471 4.0711 3.9045 3.9026 3.9665 3.9970
1.00 3.2969 3.5859 52578 6.7695 7.9141 13.6423 21.1898 22.8519 35.6000 52.1089 72.1613 93.6590 44.4590
Table A-8 Unsuccessful Search with Linear Probing improve by Model 2

% 8X4 8X8 16X8 16X16 32X16 32X32 64X32 64X64 128X64 128X128 256X128 256X256 Avg *
0.10 11450 1.1225 1.0625 1.0900 1.0850 1.0950 1.1095 1.1038 1.1038 1.0970 1.1035 1.1081 1.1029
0.20 12550 1.2350 1.1638 1.1838 1.1894 1.1970 1.2125 1.2019 1.1963 1.1885 1.2110 1.2050 1.2032
0.30 1.3250 1.3550 1.2675 1.2688 1.3106 1.3230 1.3160 1.3125 1.3144 13000 1.3185 1.3219 1.3152
0.40 1.4450 14575 1.3863 1.3775 1.4406 1.4480 1.4625 14688 1.4275 1.4415 14255 1.4294 1.4433
0.50 16000 1.6100 1.5263 1.4850 15969 1.5685 1.6060 1.6175 15431 15770 15585 15556 1.5752
0.60 1.7050 1.7425 1.6625 1.6175 1.7763 1.7145 1.7775 1.8081 1.7081 1.7435 1.7130 1.7344 1.7427
0.70 1.8650 2.0100 1.8700 1.8338 2.0569 2.0350 2.1050 2.0406 2.0519 20135 1.9985 20119 2.0366
0.80 22250 21925 12,1363 2.1088 24106 25305 2.6015 26188 24738 25890 24745 23725 25229
0.90 24050 26625 2.6988 2.7375 3.1388 3.9065 3.9585 3.6788 3.6831 3.8335 3.5200 3.6975 3.7540
1.00 3.8450 3.7450 5.6063 5.1825 9.4144 15.0155 20.2630 20.3106 44.0050 54.6325 53.6920 23.4694 33.0554
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Table A-9 Successful Search with Double Hashing

% 8X4 8X8 16X8 16X16 32X16 32X32 64X32 64X64 128X64 128X128 256X128 256X256 Avg *
0.10 1.0833 1.0417 1.0417 1.0300 1.0147 1.0441 1.0502 1.0526 1.0516 1.0551 1.0514 1.0525 1.0511
0.20 1.2500 1.0625 1.0500 1.0833 1.1029 1.1140 1.1064 1.1175 1.1145 '1.1177 1.1150 1.1153 1.1143
0.30 1.2500 1.1316 1.1711 1.1645 1.1765 1.1930 1.1702 1.1832 1.1886 1.1864 1.1897 1.1898 1.1858
0.40 12292 1.1900 1.2647 1.2328 1.2782 1.2781 1.2637 1.2654 12756 1.2755 12750 1.2778 1.2730
0.50 1.2969 1.3516 1.3633 1.3633 1.3838 1.3730 1.3677 1.3740 1.3830 1.3900 1.3847 1.3884 1.3801
0.60 1.4605 1.5395 1.4704 14592 15269 1.4951 15100 1.5255 1.5162 15329 1.5316 15275 1.5198
0.70 16455 1.7102 1.6124 16620 1.7228 1.7629 1.6989 1.7240 17131 17206 1.7286 1.7216 1.7242
0.80 1.7100 22157 1.8971 2.0392 1.9994 2.0678 2.0023 2.0206 20152 2.0198 2.0226 2.0117 2.0229
0.90 21429 24737 24326 2.6054 26255 25874 26009 25929 26079 25882 25854 25643 2.5896
1.00 3.3125 4.0742 3.7656 5.2188 57705 6.8367 7.4849 7.7368 8.8311 9.6736 10.1471 11.2550 8.8522
Table A-10 Unsuccessful Search with Double Hashing

% 8X4 8X8 16X8 16X16 32X16 32X32 64X32 64X64 128X64 128X128 256X128 256X256 Avg *
0.10 1.1500 1.1275 1.0700 1.0975 1.0931 1.1085 1.1215 1.1188 1.1150 1.1120 1.1120 1.1194 1.1153
0.20 1.3100 1.2675 1.1950 1.2200 1.2308 1.2445 1.2735 1.2531 1.2500 1.2420 1.2580 1.2469 1.2526
0.30 1.4550 1.4350 1.3975 1.3800 1.4031 1.4470 1.4585 1.4563 1.4213 1.4240 1.4340 1.4281 1.4384
0.40 1.7050 1.6500 1.6488 1.5700 1.6763 1.6845 1.6945 1.7031 1.6500 1.6775 1.7030 1.6413 1.6791
0.50 21200 2.0025 20338 1.8825 2.0281 2.0055 20315 20294 19850 20425 20295 1.9863 2.0157
0.60 25000 25875 24325 24613 25138 25345 25190 25250 24900 25130 25310 24831 25137
0.70 29100 3.4350 3.3038 3.3100 3.3938 3.4985 3.3825 34306 3.3188 3.3145 3.3565 3.3506 3.3789
0.80 43200 5.7100 4.8725 52375 5.0706 5.3820 5.1230 52550 5.1156 5.0125 4.9400 5.0806 5.1298
0.90 7.3050 9.7000 10.0688 10.9350 10.5219 11.2235 10.6385 11.2725 10.1600 10.5200 9.8590 10.3569 10.5758
1.00 32.0000 64.0000 128.00 256.00 512.00 1024.00 2048.00 4096.00 8192.00 16384.0 32768.0 65536.0 18578.2
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Table A-11 Successful Search with Double Hashing improved by Model 1

% 8x4 8X8 16X8 16X16 32X16 32X32 64X32 64X64 128X64 128X128 256X128 256X256  Avg *
0.10 1.0833 1.0417 1.0417 1.0300 1.0147 1.0417 1.0502 1.0526 1.0519 1.0554 1.0517 1.0526 1.0509
0.20 12500 1.0625 1.0500 1.0833 1.1103 1.1091 1.1057 1.1175 1.1136 1.1176 1.1152 1.1156 1.1135
0.30 1.1944 11316 11711 11645 1.1797 1.1954 1.1686 1.1816 1.1881 1.1879 1.1890 1.1900 1.1858
0.40 1.2083 1.1900 1.2647 1.2353 1.2733 1.2842 1.2601 1.2663 1.2746 1.2764 1.2737 1.2776 1.2733
0.50 1.3438 13438 1.3750 1.3711 1.3818 13770 1.3604 1.3800 1.3801 1.3915 1.3825 1.3869 1.3798
0.60 1.5000 1.5329 1.4803 1.4608 15391 1.4898 15210 15311 15170 1.5322 15258 1.5269 1.5205
0.70 1655668 17216 1.6461 1.6858 1.7605 1.7916 1.7142 17200 1.7118 1.7254 1.7225 1.7219 1.7296
0.80 1.7500 2.1961 1.9632 2.0331 20733 2.1459 2.0079 2.0076 2.0150 20243 20164 20150 2.0332
0.90 21429 27412 24870 26283 26880 27315 25686 25937 26015 25951 258589 25651 2.6059
1.00 3.1406 3.9648 4.4922 56289 53799 6.7683 7.5759 8.7968 8.5650 9.7266 10.2444 10.9084 8.9408
Table A-12 Unsuccessful Search with Double Hashing Improve by Model 1

% 8X4 8x8 16X8 16X16 32X16 32X32 64X32 64X64 128X64 128X128 256X128 256X256 Avg *
0.10 11350 1.10756 1.0613 1.0875 1.0844 1.0935 1.1040 1.0994 1.1006 1.0930 1.0975 1.1038 1.0988
0.20 12150 12150 1.1588 1.1725 1.1744 1.1865 1.1970 1.1813 1.1831 1.1810 1.1855 1.1869 1.1859
0.30 12850 1.3200 1.2450 1.2463 1.2681 12780 12775 1.2694 1.2663 1.2690 1.2690 1.2769 1.2723
0.40 1.4050 1.4125 13263 1.3250 1.3713 1.3650 1.3715 1.3738 1.3469 1.3655 1.3595 1.3638 1.3637
0.50 1.5600 1.5125 1.4638 1.4213 1.4831 14610 1.4730 1.4788 1.4406 14675 1.4530 1.4500 1.4606
0.60 1.7050 1.6400 1.5575 1.5350 15869 1.5675 1.5935 1.5900 1.5625 1.5840 1.5655 1.5469 1.5728
0.70 1.8350 1.7675 1.7138 1.6800 1.7550 1.7135 1.7645 1.7425 1.7069 1.7465 1.7185 1.6625 1.7221
0.80 21000 2.0725 1.9538 1.9100 19894 19470 1.9580 1.9513 19156 19635 1.9195 1.8888 1.9348
0.90 23000 2.8075 2.4613 23225 25131 23970 24275 23544 23294 23830 23740 22438 2.3584
1.00 42150 4.3350 5.1838 4.7963 5.9500 6.0870 8.6835 8.0163 8.1563 10.7505 8.5455 8.4338 8.3818




Table A-13 Successful Search with Double Hashing improved by Model 2

% 8X4 8x8 16X8 16X16 32X16 32X32 64X32 64X64 128X64 128X128 256X128 256X256 Avg *
0.10 1.0833 1.0417 1.0417 1.0300 1.0147 1.0368 1.0502 1.0520 1.0507 1.0531 1.0503 1.0511 1.0492
0.20 1.2083 1.0625 1.0500 1.0735 1.0882 1.0968 1.1002 1.1111 1.1061 1.1094 1.1083 1.1081  1.1057
0.30 1.1389 1.1184 1.1711 11480 1.1520 1.1718 1.1559 1.1661 1.1708 1.1685 1.1704 1.1724  1.1680
0.40 1.1875 1.1500 1.2500 1.2157 1.2316 1.2384 12274 1.2357 12377 12411 12374 1.2410 1.2370
0.50 1.2188 1.2969 1.3320 1.3164 1.3242 1.3086 1.2986 1.3201 1.3171 1.3256 1.3202 1.3242 1.3163
0.60 1.3421 1.4934 1.4309 1.3971 1.4479 1.3958 1.4041 14278 1.4122 1.4304 1.4263 1.4222 1.4170
0.70 1.3750 1.6193 15478 1.5349 1.5691 1.5988 1.5464 1.5649 1.5482 1.5605 1.5582 1.5550 1.5617
0.80 1.4700 1.8725 17132 1.7586 1.7225 1.8159 1.7442 1.7592 1.7457 1.7558 1.7495 1.7466 1.7596
0.90 1.8304 2.1491 21130 2.0783 2.1011 21401 2.1145 21245 21246 21119 21090 2.0945 2.1170
1.00 26563 2.8945 3.1230 4.0557 3.6973 4.8811 5.3027 4.9329 6.3806 6.4426 6.8548 7.8496 6.0920
Table A-14 Unsuccessful Search with Double Hashing improved by Model 2
% 84 8’8 168 16"16 32'16 32'32 64'32 6464 128764 1287128 256"128 256°256 Avg *
0.10 1.1450 1.1225 1.0625 1.0900 1.0850 1.0965 1.1100 1.1038 1.1044 1.0975 1.1040 1.1075 1.1034
0.20 1.2550 1.2350 1.1638 1.1800 1.1894 1.1980 1.2075 1.2000 1.1963 1.1985 1.2085 1.2013 1.2014
0.30 1.3250 1.3500 1.2688 1.2650 1.3069 1.3125 1.3020 1.3038 1.3006 1.2995 1.3150 1.3163  1.3071
0.40 14450 1.4525 1.3875 1.3538 1.4344 1.4195 1.4120 1.4413 1.3994 14155 1.4210 1.4219 1.4186
0.50 1.6000 1.5800 1.5350 1.4638 1.5575 15230 1.5305 1.5750 1.5069 1.5420 1.5310 1.5231. 1.5331
0.60 1.7450 17475 1.6600 1.5900 1.6988 1.6525 16765 17213 1.6644 16885 1.6580 1.6363 1.6711
0.70 1.8650 1.8850 1.8388 17463 1.8963 1.8020 1.8435 1.8588 1.8431 1.8830 1.8445 1.7838 1.8369
0.80 2.0750 2.1500 2.0063 2.0063 2.0994 2.0170 2.0490 2.0713 2.0475 2.1220 2.0780 2.0013 2.0551
0.90 2.2550 26925 24775 24988 25131 23760 24505 24125 23881 24495 24810 2.3681 2.4180
1.00 35200 3.5700 3.9425 3.4988 48656 4.2140 54525 45119 52631 4.4505 5.1930 5.2025 4.8982
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Table A-15 Total average successful search times of onc key with load factor under 0.9

Methods 8X4 8X8 16X8 16X16 32X16 32X32 64X32 64X64 128X64 128X128 256X128 256X256 Avg
Ch 12382 1.2463 1.2526 1.2570 1.2670 1.2743 1.2704 1.2741 12722 12727 12736 1.2747 1.2644
L 1.6864 1.6199 1.6657 1.8235 1.7916 2.0084 2.1014 21014 2.0465 2.0561 2.0372 2.0519 1.9075
D 1.4409 1.5241 1.4781 1.5155 1.5367 1.5462 1.5300 1.5395 1.5406 1.5429 1.5427 1.5388 1.5230
L-M1 1.5833 1.6199 1.6645 1.8230 1.7850 2.0036 2.0977 2.0977 2.0412 2.0500 2.0324 2.0461 1.9037
D-M1 1.4477 15513 1.4977 15214 15579 15740 15285 15389 1.5393 1.5451 15403 15391 1.5318
L-M2 1.3976 1.5280 1.5093 1.5533 1.5747 1.7679 1.8028 1.7930 1.7732 1.7686 1.7623 1.7674 1.6665
D-M2 1.3171 1.4226 1.4055 1.3947 1.4057 1.4226 1.4046 14179 1.4126 1.4174 1.4144 1.4128 1.4040
Total Avg| 1.4302 1.5017 1.4962 1.5555 1.5598 1.6567 1.6765 1.6804 1.6608 1.6647 1.6576 1.6615 1.6001
Table A-16 Total Average unsuccessful search times of one key with load factor under 0.9
Methods 8X4 8x8 16X8 16X16 32X16 32X32 64X32 64X64 128X64 128X128 256X128 256X256 Avg
Ch 1.5456 1.5214 1.4744 1.4633 15191 1.4919 15039 1.5119 1.4934 1.5015 1.5060 1.4890 1.5018
L 3.3844 4.1881 4.1939 54329 57278 7.5251 8.2831 8.8651 8.3808 8.6154 82293 8.3262 6.7627
D 27528 3.2128 3.1136 3.2326 3.2146 3.3476 3.2492 3.3382 3.1673 3.2064 3.1359 3.1881 3.1799
L-M1 18433 1.7667 1.7197 1.7646 1.9261 2.0154 2.1051 2.1000 2.0013 2.0781 1.9881 1.9524 1.9384
D-M1 1.6156 1.6506 1.5490 1.5222 15806 1.5566 1.5741 15601 15391 1.5614 15491 1.5248 1.5653
L-m2 16633 1.7097 1.6415 16336 1.7783 1.8687 1.9054 1.8723 1.8335 1.8659 1.8137 1.8263 1.7844
D-M2 1.6344 16906 1.6000 1.5771 1.6423 1.5997 1.6202 1.6319 1.6056 1.6329 1.6268 1.5955 1.6214
Total Avg | 2.0628 2.2485 2.1846 2.3752 24841 27721 2.8916 29828 2.8601 29231 2.8355 2.8432 2.6220
Note:

* The average value is just from the tables with size at least 32X32
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