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PLANE CURVES WITH SMALL LINEAR ORBITS, I

by P. ALUFFI(1) and C. FABER

0. Introduction.

In this paper we study the "linear orbits" of certain singular plane
curves. We have dealt with orbits of smooth plane curves in [AF1]; the
results in this paper are the next natural step towards a treatment of
arbitrary plane curves.

Here is the set-up. The group PGL(3) of projective transformations
of the plane P2 acts naturally on the projective space P^ parametrizing
plane curves of degree d (here N = j d(d 4- 3)). The orbit of a curve C is a
quasi-projective variety of dimension ^ 8, which we call the "linear orbit"
of C. Most curves have linear orbits of dimension 8; we say that C has
a small linear orbit if the dimension of its orbit is 7 or less. This paper
studies the enumerative geometry of most plane curves whose orbit is small.

It is natural to study the closures of these linear orbits in the projective
space P^: questions arise as to e.g. the degrees of these projective varieties
(on what features of a plane curve does the degree of its orbit closure
depend?); the decomposition of their boundaries in smaller orbits; their
singularities (which orbit closures are smooth?); and the behavior of orbit
closures in families of plane curves.

In [AF1] we answer some of these questions in the case of a smooth
plane curve. Our main tool is the construction through explicit blow-ups of
a nonsingular projective variety dominating the orbit closure. The degree
of the orbit closure can then be determined with the aid of standard
(1) Supported in part by NSF grant DMS-9500843.
Keywords ; Plane curves - Linear orbit - Projective linear group - Degree - Stabilizer -
Blow-up.
Math. classification: 14N10 - 14L30.



152 P. ALUFFI, C. FABER

intersection theory. The answer depends naturally on the degree of the
plane curve and the order of its stabilizer, but also (somewhat surprisingly)
on the types of its flexes: in fact, the structure of the blow-up sequence
depends precisely on the number and type of the flexes on the curve.

Unfortunately, this natural approach seems inadequate for most
singular curves: we do not know a sequence of blow-ups producing a
nonsingular variety dominating the orbit closure for arbitrary singularities.
In a different approach that we have developed for the study of orbit
closures, the first step is to determine which orbits appear in the boundary
of the orbit closure of a given curve; this was in essence carried out more
than 60 years ago in [Ghi]^, and will be discussed elsewhere. The second
step is to study these ^smalP orbits in detail; the present paper contains such
a study, for almost all small orbits. More precisely, we deal here with all
curves whose orbit is small and which contain some non-linear component.
Curves consisting entirely of lines require a different (and in some sense
simpler) treatment; their orbits, and the classification of small orbits, are
the subject matter of [AF4].

In §1 we describe the curves that we study in this paper, and state
the main result: the computation of the degree of the orbit closures of these
curves. These degrees (together with the related results of §4) will be the
input necessary to treat arbitrary singular curves.

For curves with small orbits, the precise knowledge of the singularities
that can arise allows us to carry through the approach used for smooth
curves. The computation is again based upon the construction (§2) of a non-
singular projective variety admitting a dominant morphism to the orbit
closure. The explicit blow-up sequence yielding this variety now mimics
the embedded resolution of the singular curve in the plane (as mentioned
above, this approach surprisingly does not seem to work for arbitrary
singular curves).

In §3 we describe the actual degree computation, which is rather
involved; the main tool is a refinement (Proposition 2.3) of a blow-up
formula from [Alu]. The final answer (Theorem 1.1) has a remarkably
simple form, considering the laborious procedure leading to it. For example,
while the blow-up sequence we use relies in an essential way on the Dynkin
diagrams of the singularities, only very coarse numerical information (such
as the degree of the components of the curve, or their multiplicity at the
singular points) enters in the formula for the degree of its orbit closure.

^ We are grateful to the referee of [API] for pointing us to Ghizzetti's work.
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In §4 we also discuss "predegree polynomials", which combine
information concerning the enumerative geometry of the curves when
certain natural constraints are introduced. Formulas for the degrees of
loci of curves with these constraints are obtained by applying a suitable
differential operator to the expression in Theorem 1.1. These results are
included both because they are natural extensions of the other results in
this paper, and because they will be ingredients in the computation of
the degree of the orbit closure of an arbitrary plane curve, which we will
describe elsewhere.

Acknowledgements. — We thank the University of Chicago, Mathe-
matisches Forschungsinstitut Oberwolfach, and the Mittag-Leffler Institut,
for hospitality and support; and W.Fulton, M. Kreck, and D. Laksov for
the invitations to visit these institutions. Our research at Oberwolfach was
supported by the R.i.P. program, generously funded by the Volkswagen-
Stiftung. Finally, we thank the referee for useful comments on an earlier
version of this paper.

1. Statement of the main result.

We work over an algebraically closed field of characteristic 0.

Let m < n be coprime integers, with m > 1. The prototype
irreducible curve we consider in this paper is the cuspidal plane curve C
"of type (m,n)", i.e., with projective equation

X71 = yrnzn~rn

for suitable coordinates ( x : y : z ) . We aim to studying the locus of all
curves of type (m, n), which form the PGL(3)-orbit of a single such curve.
In fact, we are interested in studying all curves whose PGL(3)-orbit has
dimension < 8; so we will study here the orbit of a more general (possibly
reducible) type of curve, specified below.

Note that type (m, n) and type {n — m, n) only differ by a coordinate
switch y <-^ z. The only two (possibly) singular points of C are located at
(0:0:1) and (0:1:0); we will generally call these points "cusps", although
they may in fact be nonsingular (for m = l o r m = n — 1 , respectively).
Note also that C determines a triangle, formed by the line A = {x == 0},
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154 p. ALUFFI, C. FABER

joining the two cusps, and by the tangent cones ^ = [y = 0}, /Z = {z = 0}
to (7 at the cusps:

Figure 1

More generally, fix two coprime integers n > m > 1. The curves C we
study in this paper consist of arbitrary unions of curves from the pencil

xn=ayrnzn-rn^ (a^O),

counted with arbitrary multiplicities 5,, and of the lines A, /^, JL of the basic
triangle, taken with multiplicities r, q, q respectively. We denote

S=^^Si^ m = n — m.

Now we act on the plane by the group PGL(3) of projective linear
transformations. This action induces a (right) action on the projective
space P^, N = jd(d + 3), parametrizing degree-d plane curves. A curve C
as specified above has degree d = Sn + r + q + q, and its orbit in P^ has
dimension 7 for all but very special cases (for example, if 5' = 0 then C
consists of lines from the basic triangle, and the dimension of its orbit is
necessarily < 6).

In case C contains, besides lines, at most one curve of type (m, n), the
set of all curves of the same type and with the same multiplicities 5,, r, q, q
is precisely the orbit of G; we study the closure of this orbit. If C contains
two or more curves from the pencil, then the set of all curves of the same
type and with the same multiplicities consists of infinitely many orbits. As
explained in the introduction, we study the orbits of these curves rather
than the set of all of them. We will find that the infinitely many orbits for a
given set of data have essentially the same behavior; a special choice of the
curves in the pencil may give rise to a bigger automorphism group, which
affects the degree of the orbit closure only by a multiplicative factor.

Here is the main numerical result of the paper. First, working in the
ring with

r3 = q3 = q3 = 0,

ANNALES DE L'lNSTITUT FOURIER
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expand the expression

n2m2m2((s+ r-+q-+ ^)7+2(S+ r- + -n^f^ r- + I)7
\ V n m m/ \ n m) \ n m)

+(5+n7-42(^n5(4-^l+4))
\ n/ \ n ) \m2 mm m2 ) )

obtaining a polynomial in all the variables (of degree ^ 2 in r, q, q); then,
subtract

84(5n+r+g+g) 2 ^^-252(^n+r+9+g)^5 6 +192^^.

The result is a polynomial expression Q(n, m, Si, r, g, q).

THEOREM 1.1. — If 7-dimensional, the orbit closure of a curve with
data n, m, Si, r, g, q as above has degree

-^Q(n,m,Si,r,q,q),

where A is the number of components of the PGL (3) -stabilizer of the curve.
If the orbit has dimension lower than 7, the expression evaluates to 0.

The number A accounts for special automorphisms of the curve,
due to extra symmetries in the position of the components in the pencil;
cf. Lemma 3.1. The number A equals 1 for most choices of n, m, etc.

The enumerative meaning of the formula obtained in Theorem 1.1
rests on the fact that imposing C to contain a given point is a linear
condition in P^. If all multiplicities are 0 or 1, it is easy to see that the
number computed in the theorem equals the number of curves in the orbit
which contain 7 general points.

The first of the two expressions building up to Q will be obtained by
combining a "Bezout term" with contributions arising from the "local" part
of the construction in §2, essentially aimed at resolving the singularities of
the curve. Note that it only depends on the multiplicities Sz of the cuspidal
components via their sum S. The second term will arise from the "global"
stage of the construction, taking care of the curve after singularities have
been resolved. The multiplicities enter here in a more interesting way, but
note that this term depends otherwise only on the total degree d of the
curve. We do not have conceptual explanations for these features, or for
the remarkable shape of the first expression (indeed, our construction only

TOME 50 (2000), FASCICULE 1
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yields a complicated raw expression, which we then recognize to equal the
relatively simple one given above).

To our knowledge, there is minimal overlap of the results in this
note with the existing literature in enumerative geometry. J.M. Miret and
S. Xambo have computed hundreds of characteristic numbers for cuspidal
plane cubics, in [MX]; our formulas allow us to reproduce 27 of the numbers
in their lists. In fact, a particular case of our result yields closed formulas
for these numbers for curves of arbitrary degree, in terms of the type (m, n)
of the curve (see §4.3).

Notice that the dual of a curve of type (m, n) as above is a curve of
type (m, n), hence again of type (m, n) after a coordinate switch. Therefore,
the degrees computed here also compute characteristic numbers', that is,
the number of curves of given type and tangent to 7 lines in general position
in the plane.

The identity component of the stabilizer of a curve with 7-dimensional
linear orbit is either Gm or Ga. All curves containing some non-linear
component and whose stabilizer contains Gm are of the kind considered
above (see [AF4]). The curves with 7-dimensional orbit and whose stabilizer
contains a Ga are not of this kind (one example of such curves is the union
of two smooth conies touching at exactly one point). This case is briefly
discussed in §4.1; the formula given above turns out to be correct for this
case as well, with suitable choices of the variables.

We also include here (see §4.2) a few remarks that extend the result
given above to cases in which the orbit has dimension < 7. Moreover, we
discuss the degree of subsets of the orbit closures determined by imposing
conditions on the lines of the basic triangle (see §4.3).

2. Local and global blow-ups.

Our goal in this section is the explicit construction of nonsingular
varieties dominating the closure Oc of the orbits of the curves discussed
in §1. The general approach we take is a natural extension of the one
in [AF1], and we summarize it here.

After choosing coordinates in P2, we consider the P8 of 3 x 3 matrices
as a completion of PGL(3). The action of PGL(3) on a fixed curve C
determines then a rational map

p s - . f - ^ p ^

ANNALES DE L'lNSTITUT FOURIER
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by sending a matrix (p to the curve with equation F((p(x: y : z)) = 0,
where F is an equation for C. Our aim is to resolve the indeterminacies
of this map, by a sequence of blow-ups at nonsingular centers, starting
from P8. We will then obtain a nonsingular variety V surjecting onto the
orbit closure:

V——Oc.

The challenge is to perform the resolution explicitly enough to be able to
keep track of the intersection theory and of other relevant information. If
this is accomplished, then several invariants of Oc (such as degree, Euler
characteristic, multiplicity along components of the singular locus, etc.) can
be computed in principle. This will be illustrated in §3 by the computation
of the degree of Oc, with the result stated in §1. The computation of other
invariants might be substantially more involved; for an example in which
multiplicity computations can be carried out explicitly, see [AF2]. With
this broader range of problems in mind, we insist on aiming to construct a
nonsingular V, although this forces us into a bit of extra work in this §2.

As is immediately checked, the base locus of the rational map c defined
above is supported on the set of rank-1 matrices whose image is a point
of (7, union the set of rank-2 matrices whose image is a line contained in (7.

The resolution of the indeterminacies of c will require two distinct
stages. In a first stage we will deal with the fact that the curves we consider
are singular (in general): this causes the base locus of c to be itself singular,
and we employ a sequence of blow-ups to resolve its singularity. We call these
blow-ups 'local', to remind ourselves that they deal with local features of
the curves under exam. Once the singularities of the base locus are resolved,
we need a second stage of 'global5 blow-ups to eliminate the indeterminacies
of the lifted rational map. This stage is considerably simpler, particularly
because the situation is reduced to the case of nonsingular curves, which
was examined in [API].

The details of the construction are rather technical; however, a rather
explicit description of a variety V as above is necessary in order to perform
the degree computations in §3, and would be essential to attack subtler
problems such as the study of singularities of the orbit closure. We therefore
feel that it would not be opportune to omit these details altogether. Here is
a summary of how the section is organized; the hurried reader should feel
free to skip the rest of this §2 at first reading.

• We consider a curve C = the union of finitely many curves of

TOME 50 (2000), FASCICULE 1
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type (m, n), and of lines from the basic triangle, with arbitrary multiplicities
(see §1).

• The action of PGL(3) extends to a dominant rational map from
the P8 of 3 x 3 matrices to the orbit closure of C: P8 - c- ^ Oc C P^.

• The indeterminacies of this map are removed by a sequence of
blow-ups, and more precisely:

(i) a sequence of "local" blow-ups of P8 along nonsingular centers,
corresponding to the two cusps of the components of C. These
blow-ups mirror the sequence of blow-ups yielding the embedded
resolution of C. The sequence corresponding to one cusp is described
in Proposition 2.6. This produces a variety V100;

(ii) two "global" blow-ups with nonsingular centers of dimension 3, 4,
over y10^ these are discussed in Theorem 2.4;

(iii) a blow-up along a P2 obtained as the (isomorphic) inverse image of
the set of matrices whose image is fi D /Z; and

(iv) blow-ups along three 5-dimensional nonsingular varieties. These are
the proper transforms of the set of matrices whose image is one of
the lines of the basic triangle, see the discussion in §2.3.

We denote by V the variety obtained at the end of this process. By
pasting together the pieces of our discussion, we will have:

THEOREM 2.1. — The procedure described above produces a
nonsingular variety V mapping to P8, such that c lifts to a regular map
c\V —> P^. The image of the map c is the orbit closure Oc ''

p8 - - -c- - -, QC C P^

This section is devoted to the construction of V and the proof of
Theorem 2.1.

2.1. Directed blow-ups.

As mentioned above, the local blow-ups will essentially mirror the
blow-ups needed to obtain an embedded resolution of the cuspidal curve of

ANNALES DE L'lNSTITUT FOURIER
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type (m,n) presented in §1. We start by recalling how this resolution
is accomplished, and introduce a device ("directed blow-ups") which
streamlines the construction considerably.

Consider the affine portion of a cuspidal curve C of type (m,n),
centered at one of the cusps:

xn=aym ( a^O) ,

together with the tangent cone p, to C at the cusp:

/ C

Figure 2

To get an embedded resolution of the union C U /^, start by blowing
up the plane at the cusp C H ^, then successively blow-up at the point of
intersection of the proper transform of C with the latest exceptional divisor,
until the resolution is achieved. A more refined description of this sequence
is controlled by the steps of the Euclidean algorithm for m = mi, n:

n = mi- î +m2,

TUi = 777,2^2 +m3,

me_2 = me-l£e-l + TUg,

rrie-i = me4,

with all £i, mi positive integers, m^ < m^_i, and me = 1.

The center of each of the first ^i blow-ups is the intersection of the
proper transforms of C and /^; if mi == 1, these i\ blow-ups produce the
resolution. If mi > 1, after this sequence the proper transform of C is

(i) transversal to the proper transform of /^; and

(ii) an affine cuspidal curve of type (m2,mi) (in a suitable chart of the
blow-up), with tangent cone at the cusp equal to the latest exceptional
divisor £'1.

TOME 50 (2000), FASCICULE 1
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That is, at the end of the first ^i blow-ups we are left with the same
problem with which we had started, but related to a "simpler" curve, of
type (m2,mi).

Similarly, the second line of the Euclidean algorithm corresponds to a
sequence of ̂  blow-ups, at the end of which the proper transform of C will
be a type-(m,3,7712) curve with the latest exceptional divisor, E-z, as tangent
cone (if m^ ^ 1). Proceeding in this fashion, the situation simplifies until
the last 4 blow-ups, which yield a curve "of type (0, l)"-that is, a curve
transversal to the last exceptional divisor Ee. At this point the embedded
resolution is achieved.

Note that this subdivision of the resolution process in e steps,
according to the lines of the Euclidean algorithm, is natural from the
point of view of the multiplicity of the curve at the successive centers of
blow-ups: this is mi for the ^i blow-ups corresponding to the first line,
then 7712 for the next ^2 blow-ups, etc.

In view of these considerations, and of how they will be mirrored by
the "local" blow-ups over P8, we define a notion of "directed" blow-up. Let

B CP CV

be three nonsingular varieties, with dim B < dim P < dim V, and let £ > 0.
We define a nonsingular variety V^ birational to V, and dominating the
blow-ups of V along the "j-th thickening of B in the direction of P" for
all 0 ^ j ^ £ (see the example following Lemma 2.2).

DEFINITION. — With B C P CV as above, we let V^ be the blow-
up of V along B ' , for i >_ 2, we let V^ be the blow-up of V^-1) along
the intersection of the proper transform of P with the exceptional divisor
£^-i) in y(^-1). We call V^ the 0-directed blow-up ofV along B, in the
direction of P. The exceptional divisor of the directed blow-up is the last
exceptional divisor, E^\ produced in the sequence. Also, the exceptional
divisor of the directed blow-up contains a distinguished subvariety, namely
its intersection with the proper transform of P.

With this terminology, each stage of the resolution described above
(corresponding to one line of the Euclidean algorithm) is simply one directed
blow-up at the cusp, in the direction of the tangent cone.

Directed blow-ups satisfy a few simple properties, whose proof we
leave to the reader:

ANNALES DE L'lNSTITUT FOURIER
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LEMMA 2.2.

1) For j ^ 1, the proper transform P C V^ ofP is isomorphic to the
blow-up P = B^pP of P along B. The centers of the blow-ups in V^ are
all isomorphic to the projectivization B of the normal bundle NpP of B
in P.

Let 0(—1) denote the universal line subbundle on B = P(A^aP).

2) For all j > 1, P and B C E^ are disjoint from the proper
transforms of 'previous' exceptional divisors E^\ i < j. Also,

E^ 'B=c^(o(-i))n[B].

3) For all j > 1,

c(N^V^) = c(0(-l)) • c{NpV (g) 0(-j)).

4) Let (a; i , . . . , Xn) be local parameters for V, such that P and B are
locally given respectively by the ideals (a ; i , . . . , Xp) and (a ; i , . . . , Xb) (p < b).
Then near B C V^ we may give covering charts (7p+i, . . . , Ub and local
parameters ( ^ / i , . . . , yn) on Uj so that the composition of the blow-up maps

U,-^V

is given by

{ Viyj i =!,...,?;

^ = ViVj z =j)-H,...,j,...,&;

Vi z =^% =6+l,...,n.

The ideal of E^ in this chart is (%); the ideal ofP is

(yi^'^yp)'

5) Let J C 1 be the ideal sheaves of P, B respectively. For all j > 1,
let B^ be the subscheme of V denned by the ideal (I3 + J ) . Then
B = B^\..., B^ all pull-back to Cartier divisors on V^.

Example. — To clarify the construction, let us compare the directed
blow-up corresponding to the first line of the Euclidean algorithm for the
curve ^n = y171 (with n = t^m + 7722, B = the origin, and P = the rr-axis;

TOME 50 (2000), FASCICULE 1
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so, T = ( x ^ y ) and J = (y)) with blowing-up the plane directly along the
fat point with ideal Z^1 + J = (x^.y). The ^i-directed blow-up produces
H\ exceptional divisors, and (as we observed already) the proper transform
of the curve is the curve t171 — x^2 in a suitable chart of the resulting
nonsingular surface. The blow-up along Xs'1 + J is covered by charts

fc[^M <, k[x^^]
^(^T^T spec^-^)5

so the total transform of the curve a;" = y"1 is covered by

Spec ^'^ ^ spec fcM ,
( y - tx^, a:" - y"1) (a;̂ "1^"1 - a:"^))

Spec , ^^ . - Spec /^ .
(sy - Xs1, xn - 2/?n) {sy - x^, ̂ (l - srn.z:m2))

From this we see that the proper transform of the curve sits in the
nonsingular part of the blow-up, and there it behaves just as in the
t\ -directed blow-up of the plane along the origin, in the direction of the
tangent cone.

The ^-directed blow-up of V along B in the direction of P is simply
a resolution of singularities of the blow-up along the subscheme Z^ + J '
The few extra exceptional divisors introduced in the process seem a price
worth paying for the benefit of obtaining a nonsingular variety dominating
the orbit closure.

The "local blow-ups" in the resolution of the map c introduced at
the beginning of this section will be a sequence of directed blow-ups,
also controlled by the Euclidean algorithm on m, n. The application in §3
(yielding the degree of the closure of the image of c) will rely on keeping
track of the intersection of several divisors in these blow-ups. We will
make use of the following formula, which compares the intersection number
of a collection of divisors with the intersection number of their proper
transforms after a directed blow-up.

To state this formula, we will use the notation c(<f^) for the Adams
operation on the Chern class of a bundle £:

cr{£w)=ercr{£)^ r>0.

ANNALES DE L'lNSTITUT FOURIER
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PROPOSITION 2.3. — Denote by V^ -7L-^ V the ^-directed blow-up
ofV along B in the direction of P, as above. Let Xi, i = 1,... ,j and Y^,
i == 1,. . . , k be effective divisors in V, such that

• each Xi and its proper transforms contain the centers B, B of
blow-ups with the same multiplicity m^, and

• each YI has multiplicity ri along B, and its proper transforms do
not contain the other centers B of blow-ups.

Further, assume that the number k of divisors Yi be less than the
codimension of B in P. Denote by Xi, Yi the proper transforms of the
divisors in V^. Then

]^Y,.f[Xin[V}-^(]^Yi.f[X^[VW])
1=1 1=1 Z=l 1=1

equals the push-forward from B of the term of dimension dim V — j — k in

n(^+^)n(^+^)
pdimP—dimB—k ^ z=l________z=l_________ ^ [-D|

c(N^P)c(NpV)

For £ = 1, that is for the ordinary blow-up of V along B, this says
that the intersection of the divisors changes under proper transforms by
the term of expected dimension in

mrj+Y^mi+X,)
————c(AW———— n ̂ -

This is a restatement of a particular case of Theorem II in [Am]. The
formula for directed blow-ups can be deduced from the £ = 1 case; we leave
the details to the reader.

2.2. Blow-ups for one curve.

We first consider the case of a single irreducible curve C of type (m, n),
and focus our attention on one of the cusps. So choose affine coordinates
and write the equation of C

xn =ayrn

with Q ! ^ 0 , l < m < n and (m,n) = 1. We may and will in fact assume
a = 1, by rescaling y . Note that the base locus of the corresponding rational

TOME 50 (2000), FASCICULE 1
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map P8 - ̂  p^ contains the set B ^ P2 of rank-1 matrices whose image
is the cusp of C. In fact, the base locus of c consists of an isomorphic copy
of P2 x C: the set of rank-1 matrices with arbitrary kernel, and image a
point on (7. For m > 1, this locus is singular along B.

As mentioned in the summary ^receding the statement of Theo-
rem 2.1, we construct our resolution V by a two-stage process. The first
stage consists of a sequence of directed blow-ups, mirroring the sequence
giving the resolution of the union of the curve and its tangent cone at the
cusp. More precisely, assume that the Euclidean algorithm for m, n consists
ofe lines, as in §2.1:

n = mi-^i + m2,

mi = 7712^2 +^3,

rrie-2 = me-i£e-i + rrie,

nie-i = m^e'

Also, the base locus of c is a copy of P2 x C; the cuspidal point
(0,0) of C determines a distinguished B = P2 x {(0,0)} in the base locus.
The tangent cone to C at (0,0) is the line y = 0, which determines a
distinguished P = P5 c P8, that is the set of matrices whose image is
contained in this line.

DEFINITION. — We define a variety V^ by the following sequence of
e directed blow-ups:

• first, perform the ^-directed blow-up of P8 along B in the direction
ofP; this produces a variety V^, with an exceptional divisor E1^ and a
distinguished 4-fold B^0 c E^ ;

• next, for i > 1 perform inductively the ^-directed blow-up ofV^
along B^ in the direction ofE^; this produces a variety ^loc, with an
exceptional divisor E^ and a distinguished 6-fold B^ c ̂ loc.

With these notations, we let V^ = V^.

In order to study V10^ and to describe the second stage of the process,
we introduce affine coordinates

( 1 Pi P2 \
P3 P4 P5

P6 P7 P8 )
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/I 0 0\
for P near I o o o I , that is a rank-one matrix with image the origin

(1:0:0), and remark that this choice of coordinates is irrelevant in the
sense that we can move (by multiplying on the right by a constant matrix)
any such 3 x 3 matrix to one in the chosen A8, so that we must be able to
detect in this A8 every phenomenon relevant to our computation.

The sequence of "local" directed blow-ups specified above produces a
variety V10' -^ p8; we give coordinates on a chart in V100:

/iEl ^ s,\
S3 84 55

S6 57 Ss .

(the boxed entry reminds us of the variety where the coordinates are given)
and we claim that again the choice of this particular chart will be irrelevant
for what follows. The expression of Tr100: V^ -> P8 in these coordinates
depends on the parity of the number of steps e in the Euclidean algorithm
displayed above:

• if e is odd, we will have

1 Pi P2 \ / I Si 52

P3 P4 P5 = S^S^ S^S^S^ S^S^SQ

\P6 P7 PS/ \S^ S^S^ST S ^ S ^ S s ,

with Bm - An = 1 (the actual values of A, B can be obtained in terms of
the Euclidean algorithm, but are not important here);

• if e is even, we will have

f 1 Pi P2 \ / I Si fi2

P3 P4 P5 = S^S^ 83^4 S^Ss

^6 P7 PS/ \sfsg sfs^S7 S^S^Sg^

with An — Bm = 1.

Remark. — These coordinate expressions are slightly different in the
case TO = 1, i.e., e = 1. Other details of the construction require minor
modifications in this case; we leave these to the reader.

In Proposition 2.6 we will prove that coordinates can be given on V100

so that these expressions hold. First, we claim that if we show that this
coordinate description holds (and that the choice of the chart is indeed
irrelevant), then we are essentially done:
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THEOREM 2.4. — Two blow-ups at smooth centers remove the
indeterminacies of the lifted map c100 : V100 - --> P^.

COROLLARY 2.5. — For the curve C with equation x ' " ' = az/771^"771,
a 7^ 0, the indeterminacies of the corresponding rational map c can be
removed by performing the sequence of "local" blow-ups for the two cusps,
followed by two "global" blow-ups at smooth centers.

We prove the theorem right away, and concentrate on the more
involved details of the coordinate description in Proposition 2.6. By a
"point-condition" we mean the hypersurface in P8 formed by all matrices
which send the chosen curve C (say with equation F = 0) to contain a fixed
point p. More precisely, the point-condition in P8 corresponding to p C P2

has equation (in (p € P8)

F((^(p)) = 0.

Further, we call "point-conditions" the proper transforms of point-
conditions in any variety mapping birationally to P8. The point-conditions
in P8 generate the linear system corresponding to c; hence, showing that a
lift of c to a variety V removes the indeterminacies of c amounts to showing
that the (proper transforms of the) point-conditions in V do not have a
common intersection.

Proof of Theorem 2.4. — The point-condition corresponding to
(^0^1 ,$2) m A8 C P8 has equation

(^0 +Pl^l +P26)n-mte +P7^1 +P86)m = (P3^0 +P4^1 +P56)"

(taking (1: x : y) for coordinates in P2). Pulling back through TT^ (in the
first case written above; the second case is analogous) gives

(^+5l$l+52^)n-m^o+^l+586)m^^^m = (^^i^^^r^-
Using Bm— An = 1, we see that the proper transform of this point-condition
in V^ has equation

(^o + 5i$i + ̂ r"7^ + ̂ i + SS^FSQ = ($o + s^i + 556)^
Note that 53 does not appear in this equation. Next, recall that the support
of the base locus of c in P8 is P2 x (7; as C is parametrized by (f^, t71), we
may parametrize the (affine part of the) support of the base locus by

/ I A;i A;2 '
(A;i,/c2,t)^ ^ r^i r^

\ ̂  t^i ^2 ,
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Using Bm — An = 1 again we lift this to

/IvH h k^
{h,k^,t) i—> f A;i A;2

V 1 A;i A;2.

and observe that a point of this subvariety of V100 lies above the special
point of C 4==^ t = 0 <^=> 53 = 0. Since the equations of the point-
conditions do not involve 53, their behavior over such a point is the same
as over any point with nonzero t. As no point with t 7^ 0 is a flex on (7, we
know from [AF1], Proposition 2.7, that two "global" blow-ups resolve the
indeterminacies of c at such points. D

As stated in the proof of the theorem, the two blow-ups needed to
remove the indeterminacies ofc^ are the two blow-ups, discussed in [AF1],
resolving the map over nonsingular non-flex points of C. We refer the reader
to [AF1] for a more thorough description of the centers of these blow-ups,
and freely use that information in §3. Here we will just recall that the first
"global" blow-up will have a nonsingular irreducible 3-dimensional center
(the proper transform of P2 x C in V100); after blowing up this locus, the
point-conditions meet along a 4-dimensional locus, in fact a P^bundle over
the preceding center. The point-conditions are separated from each other
by blowing up this last locus. This P1 bundle is described in the discussion
preceding Proposition 2.2 in [AF1].

Now we move to the coordinate description of V100 used above. All
the varieties we consider are obtained by a sequence of blow-ups over P8,
and inherit a right action of PGL(3) since the centers of the blow-ups are
invariant. We say that a chart in any such variety is essential if every point
of the variety can be moved to that chart by this action.

PROPOSITION 2.6. — The variety V100 admits an essential chart with
the coordinate description specified above.

Proof. — Let V^ be the ^i-directed blow-up of P8 along B in
the direction of P. In order to study this variety, we first obtain local
coordinates for the base locus of c. Writing out the matrix with kernel on
XQ + k^x-i + k ' z x ' 2 = 0 and image (1: ̂ m : ̂ n) gives a local parametrization

/ I ki k'2 ^
(A;i,A;2^)i—> t^ r^i r^

\ ̂  rA;i ^2 ,
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for P2 x C. Setting t = 0 selects the distinguished P2, locally parametrized
by

/I A;i A;2'
(A;i,A:2,0)i—> 0 0 0

\0 0 0

So B has equations

P3 = P4 = P5 = P6 = P7 = P8 = 0

in our chart. As for P, the matrices with image contained in the line y = 0
are in the form

* * *
* * *

<0 0 0 ,

so P has equations

P6 = P7 = P8 = 0.

The distinguished 4-fold in V^ is the intersection B^ of the proper
transform of P and the last exceptional divisor E^ of the sequence
producing the directed blow-up. In fact we can also consider the j -directed
blow-up for all 1 <: j < i\, and a simple inductive computation shows that
at each stage the proper transforms of the point-conditions meet along the
proper transform ofP2 x C, and along the locus Bi obtained by intersecting
the proper transform of P with the last exceptional divisor. If e > 1, the
same holds for the V^ (as we will see below), so we only need to examine
V^ near B^. Now, by part (4) of Lemma 2.2, a neighborhood of B^ is
covered by charts [/3, £/4, U^ with local parameters (91,. . . , qs) so that the
map Uj —^ P8 is given by

( qi i =j, i= 1,2;

Pi = QiQj z = 3,4, 5 but % 7^ j ;

q^ z=6,7,8.

CLAIM. — The chart U^ is essential.

That is, we claim that we can use the action of PGL(3) to move points
from the other charts to this chart. The proof of this fact is a simple but
tedious coordinate computation, which we leave to the reader.
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The consequence of the claim is that it is not restrictive to choose
local coordinates q, on V^ so that the blow-up map V^ -^ P8 is given by

' 1 Pi P2\ /V^ 91 92
P3 P4 P5 = 93 9394 9395

<P6 P? P s / \9^g6 ^97 q^qs.

The equation of the exceptional divisor E1^ is 93 = 0 in these coordinates.
The equation of the point-condition corresponding to (^o : Ci ^2) in P8 is

(^0 4-Pl^i +P26)n-m(p6^ +P76 +P86)m = (P3^0 +P4^1 +^2)",

which pulled back via the above map gives

(^0 + qi^l + g2^2)n-m(g6^0 + ̂ 1 + 98^2)m^lm = (^0 + 94^1 + 95^)^?;

clearing a common factor of 9^ (notice n - ̂ m = m^ ^ 0), we obtain
the equation of the point-condition in V^:

(^o + qi^i + q^2)n~rn(q^ + 976 + qs^ = (€o + 94^1 + q^q^2-

Ifm2 = 0, that is e = 1, then V^ = V^; setting s, = q^ A = 0, and B = 1
gives the prescribed coordinate description, and we are done in this case.

Otherwise, this shows that along E^ {i.e., setting 93 = 0) the
point-conditions meet along the locus with equations

qe = q? = qs = 0

that is, the intersection of the proper transform of P with .E .̂ This is the
distinguished 4-fold, B^.

Next, we perform the ^-directed blow-up of V^ along ^oc, in
the direction of ^oc, obtaining V^, with exceptional divisor ^oc. The
discussion is very similar to the discussion of the first step; now B^ c E^
are given by the ideals (q^q^q^q^) D (93), so by Lemma 2.2 we can
choose a chart in V^ with coordinates r,, such that the map V^ -^ V^
is given by

91 <?2\ /VF ri r2
94 % I = I r-3^2 r4 r5
97 qs/ \ r@ rgry rgrg-
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Again, the reader should have no difficulties checking that this chart is
essential.

The new exceptional divisor E^ is given by r^ = 0 in these
coordinates. Pulling back the point-conditions from V^ and clearing a
common factor of r^21712 shows that the equation of the point-condition
corresponding to (^o ̂ i ^2) m V^ is

(^o + n î + r^r-^^ + r^ + rs^rr^3 = (^ + r^ + r^W-

If 7713 = 0, that is e = 2, then V100 = V^, and we have reached the desired
coordinate expression.

Otherwise, we see that the intersection of all point-conditions
along E^ is the locus with equations

r3=r6= 0,

giving the distinguished 6-fold B^0.

Having reached this stage, the expression for the point-condition

(^o + n î + r^r-^o + r^ + rs^Fr^3 = (^ + r^, + r^r^2

is so symmetric that the remaining blow-ups can be all understood together.
Assuming that we have defined V^100, we will have

• either i odd, equation of ^loc: r^ = 0; and equation of the point-
conditions

te) + n î + r^r^^o + ̂ i + rs^Fr^ = ̂  + r^ + r^r^1^

• or i even, equation of E^'. re = 0; and equation of the point-
conditions

(^o + ri^i + r^)71-^ + T Î + rg^)7"^^1 = (^o + ̂ 4^1 + r^r^.

As long as m^+i > 0, the point-conditions meet on i^ along the
6-fold B]00 defined by 7-3 = r^ = 0 (in both cases). Applying again part 4)
of Lemma 2.2, we see that the ^+i-directed blow-up of V^ along B^
in the direction of ^loc produces a V^ with the data prescribed above;
in particular, we see that this automatically chooses the essential chart in
each successive blow-up. Notice in passing that at each stage B]00 is the
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intersection of E^ with the proper transform E^; and the two divisors
are swapped from one stage to the next. In particular, the restriction
of E^ to B^ ^ B^ equals the restriction of E^. This fact will be used
in §3.

At the e-th stage we will have mg == gcd(m, n) = 1 and m,e-\-i = 0, so
the point-conditions will have equation

(^o + r^i 4- r2^)n-m^o + r^i + T^TQ = (^o + T^I + r^T

for odd e, and

(^o + ri^i + r26)n-m($o + r^i + rg^F = (^o + r^i + ̂ 2)^3

for even e. Writing the map to P8 explicitly shows that this gives the
claimed coordinate description of V^ = V10^ as needed. D

It follows from the explicit equations obtained in this proof that the
multiplicity of the point-conditions along the various centers of blow-up also
mirrors the multiplicity of C at the centers of the blow-ups resolving it. So
this multiplicity is m\ for the i\ blow-ups giving the first directed blow-up,
777-2 for the second batch, etc. This information will be used in §3.

We will also need the multiplicities of the P^s obtained as point-
conditions for the lines of the basic triangle, so we note here that these
also mirror the corresponding multiplicities of the lines in the blow-ups
resolving the curve. Explicitly, for the blow-ups examined here

• a P7 corresponding to the line connecting the two cusps of C (A in
the notation of §1) has multiplicity 1 along the first center B of the first
directed blow-up, and multiplicity 0 at all other centers;

• a P7 corresponding to the line ^ supporting the tangent cone to C
at the cusp under consideration has multiplicity 1 along all the centers of
the blow-ups giving the first directed blow-up; multiplicity 1 along the first
center B^ of the second directed blow-up; and multiplicity 0 at all other
centers;

• a P7 corresponding to the line /Z at infinity has multiplicity 0 along
all centers.

2.3. Blow-ups for the general case.

It is now a simple matter to go from the case of one curve, treated
in §2.2, to the case of many. Again, the more general curves C we consider
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in this paper are arbitrary unions (with multiplicities) of elements of the
pencil

xn=aymzn~m (a^O)

together with multiples of the lines A, /^, JL of the basic triangle. As pointed
out in §2.2, removing the indeterminacies of the corresponding rational
map c amounts to separating the point-conditions; so we have to understand
what the point-conditions of C look like, and how they behave under the
blow-ups described in §2.2.

PROPOSITION 2.7. — For a curve C as above, the point-condition
in P8 corresponding to a point p € P2 consists of the union of the point-
conditions of each component, each appearing with multiplicity equal to
the multiplicity of the corresponding component.

This should be clear: if F = 0 is an equation for (7, then the equation
of the point-condition corresponding to p is the vanishing of

F(^p)} = 0.

This polynomial (in (p) factors according to how F factors.

The supports of the point-conditions of C are therefore unions of
point-conditions considered in §2.2 (for different a's), and of copies of the
three P^s corresponding to A, /^, JI mentioned at the end of §2.2.

Disregarding the lines of the basic triangles for a moment, note
that different irreducible curves from the same pencil as above have the
same history through this blow-up sequence. The situation in the plane
mirrors precisely the situation at the level of point-conditions: different
curves determine the same centers B, B^, and the corresponding point-
conditions have the same multiplicities along these loci. Further, the curves
are separated at the very last stage, and correspondingly the base locus of
the lifted map V100 - - -> P^ consists of the disjoint union of copies of C x P2

(where C denotes the normalization of a single curve of type (m,n)). For
each of these, Theorem 2.4 shows that two ("global") blow-ups will suffice
to remove the indeterminacies.

In other words, the same sequence of local blow-ups used for one curve
of type (m, n), followed by two global blow-ups for each component, removes
the indeterminacies for any finite union of such curves. The multiplicities
with which these appear are irrelevant to this discussion.
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To account for the lines in the basic triangle, we need to keep track of
the three pencils of hyperplanes of P8 corresponding to the points on these
three lines. The relevant data is implicit in the multiplicity statement at
the end of §2.2:

• the P^s corresponding to A are separated from the point-conditions
corresponding to curves of type (m, n) after the first blow-up of the sequence
giving the first directed blow-up;

• the P^s corresponding to p, are separated from the point-conditions
corresponding to curves of type (m, n) at the first blow-up of the sequence
giving the second directed blow-up over the cusp A H /^;

• the P^s corresponding to Jl are separated from the point-conditions
corresponding to curves of type (m, n) at the first blow-up of the sequence
giving the second directed blow-up over the cusp A H Jl.

That is, after the local blow-ups of §2.2 have been performed over
both cusps, and after the two global blow-ups of §2.2 have removed
indeterminacies arising from the type-(m,n) components of <7, we still
have three groups of hypersurfaces, corresponding to the three lines of the
triangle. Again, it is easily checked that the incidence of these groups of
hypersurfaces reflects the incidence of the corresponding proper transforms
of the lines in the plane (see Fig. 3).

Figure 3

Finally we deal with these hypersurfaces. The intersection of the
hypersurfaces in each group is a 5-dimensional variety (the proper transform
of the P5 of rank-2 matrices with image the corresponding line of the
triangle); further, the two 5-dimensional varieties corresponding to fi and Jl
still meet along a P2, corresponding to rank-1 matrices whose image is the
point of intersection ^ D Jl.

By our good luck (as the reader can see by performing the relevant
computation, using the coordinates given in §2.2), the ^obvious" strategy
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works: blowing up along the P2 corresponding to p, D /Z, and then along
the proper transforms of the three P5 described above, finally produces a
variety V satisfying the condition in the statement of Theorem 2.1.

3. Degree computations.

With the coordinate analysis of §2 behind us, we are ready to set up
the intersection theoretic part of the computation. The discussion leading
to Proposition 3.2 below reduces the computation of the degree of an orbit
closure to the computation of an intersection product of divisors on the
variety V we constructed in §2. Our main tool will then be Proposition 2.3,
by which we keep track of the intersection of divisors under directed
blow-ups.

The information needed to apply this formula consists of the
multiplicity of the divisors at the center of blow-up, together with the
Chern classes of the relevant normal bundles. The first piece of information
is listed at the end of §2.2; the second will be obtained along the way,
mostly by using part (3) of Lemma 2.2.

Here is the main reduction. We want to compute the degree of the
orbit closure Oc C P^, assuming this has dimension 7 (which is the case
for most choices of the parameters m, n, etc.). In the set-up of §2, we have
obtained a completion V of PGL(3) over which the action extends to a
regular map to P^; V was obtained by suitably blowing up P8:

PGL(3) C V

This realizes Oc as the image of V by c.

Now, seven general hyperplanes intersect Oc transversally at deg Oc
points of Oc' The inverse image of these points in PGL(3) will be degOc
translated copies of the stabilizer of C. It follows that

(*) (yhY=^gOc[z}
where h is the class of a hyperplane in P^, and Z is the cycle obtained by
closing up in V the stabilizer of C.
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By construction, the class c*h is represented by a "point-condition"
W C V; that is, by the proper transform of the hypersurface W C P8

consisting of matrices 0 mapping a fixed point p € P2 to a point of C.
Note that 7r(Z) consists of the closure in P8 of the stabilizer of C. As
mentioned after the statement of Theorem 1.1, the number of components
of the stabilizer of C depends on symmetries of the specific 6'-tuple of
points in A1 corresponding to the non-linear components of C. Explicitly,
assume that C is given by the equation

xry^z^(xn-aiyrnzrn)s^=^
i

so that it corresponds to the 5'-tuple in A^, given by the equation

[1(0-0^=0.
i

The components of the stabilizer of C depend on automorphisms A1 —> A1

fixing this 5'-tuple. The precise statement (whose proof is left to the
reader) is

LEMMA 3.1. — With notations as above, assume that the orbit of C
has dimension 7. Then if n ̂  2 or q ^ q the number A of components of
the stabilizer ofC equals the number of automorphisms A1 —> A1, a i—> ua
(with u a root of unity) preserving the S-tuple corresponding to C\ when
n == 2 and q = g, A equals twice this number.

The extra automorphisms in the latter case come from the switch
y ̂  z.

Examples.

1) C given by {x3 — yz2)^3 — 2yz2) = 0. The corresponding 6'-tuple
is given by (a — l)(a — 2) == 0, that is, by the pair of points a = 1, a = 2
in A1. The only automorphism of A1 of the kind specified in the statement
and preserving this pair of points is the identity, so A = 1 in this case (as
in most others).

2) C given by (x2 — yz){x2 -(- y z ) = 0. The corresponding <S'-tuple is
a = ±1. Two automorphisms preserve this pair: the identity and a i—>- —a.
Since n = 2 and q = q == 1, we have A = 4 in this case.

TOME 50 (2000), FASCICULE 1



176 P. ALUFFI, C. FABER

It is easily checked that each component of the closure of the stabilizer
is a copy of the curve ^n = ̂ 2^. For example, the identity component of
the stabilizer of C consists of the diagonal matrices with entries (1, ̂ m, ̂ -m);
since (m,m) = 1, its closure has equation 1 = p^p^ in the coordinates
of §2. In particular, the degree of 7r(Z) equals An.

Pushing forward (*) to P8 and intersecting by a general hyperplane H ,
we see then that

[ H•7^,(W7)=AndegOc.

Observing that the inverse image ̂ ~^H of a general hyperplane equals
its proper transform H , and applying the projection formula, we conclude:

PROPOSITION 3.2. — IfdimOc = 7, then

deg0c= —— I TT^H-W7).
An Jps

Our goal is therefore to perform the intersection product on the
right-hand-side of this formula.

The reader now sees why we stated the formula in Proposition 2.3
comparing intersection products of divisors and of their proper transforms
under directed blow-ups. The role of the different divisors considered in that
formula might not be immediately apparent, however, and the next lemma
should clarify it. We denote by H the general hyperplane in P8; by H\,
H^, HH respectively hyperplanes obtained as point-conditions relative to
the lines A, /x, Jl. Further, we denote by X a point-condition in P8 relative
to the part of C consisting of the union of type-(m, n) curves.

LEMMA 3.3. — With these notations,

__ -—. n3p- n^Ji 'r3x 1 /* _ _ _„• ~ . ~
A»deg0^7,S^^/..(^.^.^.X>.),

where the summation runs over all

0 < ̂  < 2, 0 < j j , ̂  2, 0 ̂  JA < 2, 0 < jc < 7

such that j^ + j j , + j\ + Jc = 7.

Proof. — As observed in Proposition 2.7, point-conditions of a
reducible curve split into the point-conditions of its irreducible components.
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This implies

W = qH^ 4- qHj, + rH^ + X.

The formula follows then from Proposition 3.2, once one observes that if
fi is any of A, /^ /Z, then ^f| = 0: indeed, a line does not contain three
general points, so the intersection of three point-conditions of a line must be
empty. D

By this lemma, we are reduced to computing intersection products

H - H ^ ' H ^ -H^ ' X 3 ^

for 0 < ^ < 2, 0 < jj, ^ 2, 0 < jx < 2, 0 < jc < 7 such that
J^i + jji + j\ + jc = 7. The divisors H\, H^, Hj, will play the role of
the divisors "of type Y^5 in Proposition 2.3.

3.1. Local blow-ups.

Now we move to the core of the computation. Proposition 2.3 will
be used iteratively to evaluate the intersection product listed above on
successively higher and higher level blow-ups. At each directed blow-up,
the formula evaluates a correction term measuring by how much the
intersection product changes upon taking proper transforms. The starting
point is the intersection product in P8,

H • H3^ • H^ ' H3^ • X^:

since (with the notation of §1) X has degree Sn^ this is simply

(Sn)30

by Bezout's Theorem. Summing up as in Lemma 3.3, we get:

/ Y^ q3^ q3^ r3^ (Sn)^^
' \ / ^ i l i—^ i\ t i ^ /

0^^2 ^' ^' 3X' 3C'
0<J,z<2
0<JA<2

Jc=7-J'^-J^—jA

This unpleasant expression prompts us to establish the following:

Convention. — We are going to treat the multiplicities g, g, r, S as
variables, and impose that

q3 = q3 = r3 = 0.
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This takes care automatically of the bounds for the j ' s in the
summation, so that the Bezout term simply becomes

^7(Sn+r+q+qY.

The geometric reason behind the convention is that the self-intersection of
three or more point-conditions in V corresponding to lines must vanish,
as was mentioned above. Imposing this from the start saves us some
computational time: in practice, all the terms that we discard at this
stage would be cancelled anyway along the blow-up process, so we can
ignore them. The important caveat to keep in mind is that one may not
substitute the multiplicities for their value before expanding expressions in
which they appear. All such expressions must be expanded, and the relations
q3 = q3 = r3 = 0 must be applied, before any substitution can be made.

Next, we deal with the correction term due to the e directed blow-
ups over the cusp at A H ^ (where e = number of lines in the Euclidean
algorithm for (m,n)). By symmetry, we will get a similar contribution
for the cusp A H /L In the next subsection we will evaluate analogous
contributions due to the other ("global") blow-ups.

Recall our notation: the Euclidean algorithm performed on m = m\
and n gives

n = i\m\ + m2,

mi = ̂ 2^2 + m3,

777,e-l = ̂ e^g,

with all mi, ̂  positive integers, 0 < rn^+i < m^, and mg = gcd(77i, n); we are
in fact assuming me = 1. The first blow-up from Proposition 2.6 is the ^i-
directed blow-up ofP8 along P2 in the direction ofP5, where these subspaces
are defined immediately preceding the statement of Proposition 2.6. The
multiplicities of the (proper transforms of the) divisors we need to intersect
were discussed at the end of §2.2, and are as follows:

• for the general hyperplane: 0 for all centers of the ^i blow-ups;

• for the j^, hyperplanes corresponding to the tangent cone to C at
the point: 1 for all centers;

• for the jjj, hyperplanes corresponding to the tangent cone to C at
the other point: 0 for all centers;
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• for the j\ hyperplanes corresponding to the line joining the two
distinguished points of C: 1 for the first center, 0 for the remaining H\ — 1;

• for the jc point-conditions X: Sm\ at all centers.

(indeed, each support of a component of X has multiplicity mi, and
S =the sum of the multiplicities of the components). Further, X has
degree Sn. Also observe that we have j\ < 2 < codimp2 P5 terms with
"mixed multiplicities", as is necessary in order to apply Proposition 2.3.

Finally, denoting by k the hyperplane class in P2, we have

c(ATp2P5) = (1 + fe)3, c(ATp5P8) = (1 + A;)3

and therefore

c{N^P5) == {1 + W3

and Proposition 2.3 evaluates the correction term due to the first directed
blow-up:

3_^ r k(l + k)^(l + W^^^Sm^ + Snky0

1 Jp2 (1+^iA
3.̂  r k(l + fe)^(l + W-k^(Sm, + Snky- -
1 7p2 (1+^)3(1+A;)3 " [ r J

that is, with minimal manipulations:

, 3-,. f fc^mi+nfc)^ ,
" tl j^ (l+^fc)3-^(l+fc)3-^ l j-

We will see that, remarkably, this formula contains all the information
necessary to compute the "local" contributions. However, to understand this
we have to write similar terms for the other directed blow-ups.

For the ^-directed blow-up of V^ along B^ in the direction of E^,
the formula will evaluate the term as a degree over the 4-fold B^. As B^
was obtained as the distinguished B in the ^i-directed blow-up considered
at the first stage, points (1) and (3) in Lemma 2.2 give that B^ is the
projectivization of the normal bundle of P2 in P5, and that

^N^cE^) == c(7Vp5P8 ̂  O(-^i)) = (1 + k - ̂ iei)3

where k, e\ are respectively the pull-back of k from P2 and the restriction
of the class of E^ to B^00. The description of ̂ oc as P(7Vp2?5) gives easily
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all the information needed to perform computations in the intersection ring
of B^: to evaluate explicitly the term we are going to write in a moment
we would push-forward to P2, then use

e\. [B^] —— 6k2 . [P2], e3 . [^oc] —— 3k . [P2],

e\. [B^} ̂  [P2], ei.^j^O

(this follows immediately from

|W/V_Q'p5M [7p)2-|[n7vp2F )J • - c(7Vp2p5)-1 n [P2] = [F j
( l+e i ) ^^ ) "l' J - (1+^)3

cf. [Ful]).

Next, we list here the multiplicities of the divisors and the classes of
their pull-backs to B1^:

• for the general hyperplane: multiplicity 0, class k\

• for the j\ hyperplanes corresponding to the line joining the two
distinguished points of C: 0 for all centers; class = k — e\\

• for the j^ hyperplanes corresponding to the tangent cone: 1 along
the first center, 0 along the remaining £^ — 1; class = k — t\e\\

• for the jn hyperplanes corresponding to the tangent cone to C at
the other point: 0 for all centers; class = k',

• for the jc point-conditions: Sm^ along all centers; class =
Snk — St\m\e\.

Note that this time the number of divisors with mixed multiplicity is
3p, < 2 < codim^ioc ̂ oc, as needed to apply Proposition 2.3.

Finally, from the above:

c^N^E^) = (1 + ̂ k - ̂ ei)3, c(N^V^) = (1 + ei)

and we are ready to apply Proposition 2.3, which gives

3-j^ [ k(l + ̂ k - £^e^^(k - e^^k^^Sm^ + Snk - S^m^)^
2 JB[- (l+^-^e^l+ei)

n^00]

Again, this could be somewhat simplified.
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The remaining blow-ups all have isomorphic centers, so we can
describe the corresponding terms uniformly. Recall from Proposition 2.6
that at the i-th stage (i > 2) we are performing the ^-directed blow-up
of V^°\ along B^ in the direction of E}0^ here B^ is a 6-fold, and
again we can describe it concretely by using Lemma 2.2, point I): it is
the projectivization of the normal bundle to B^ in E^. An alternative
description is as the intersection of the proper transform of E^^ with E]^^;
denoting by ej the restriction of i^00, the proper transform of -E^0.̂  will
restrict to e^-2 — ^-ie^_i, so

c(N^E]°.\) = (1 + e,-2 - ̂ -ie,-i).

Also notice that by the interchange of exceptional divisors we observed
toward the end of the proof of Proposition 2.6 we have

e, = e,_2 -^-ic^-i.

Multiplicities and class of the divisors:

• for the general hyperplane: multiplicity 0, class k\

• for the j\ hyperplanes corresponding to the line joining the two
distinguished points of C: multiplicity 0, class = k — e\;

• for the j^ hyperplanes corresponding to the tangent cone:
multiplicity 0, class = k — i\e\ — 62;

• for the jn hyperplanes corresponding to the tangent cone to C at
the other point: multiplicity 0; class = k\

• for the jc point-conditions X: Sm^ along all centers; class
= Snk — Si\m\e\ — • • • — ̂ -im^-i^-i.

From the above, the classes of the relevant bundles are

c{N^E^ = (1 + te-2 - ̂ -i^z-i), c{N^Vl°.\} = (1 + e,_i)

and Proposition 2.3 evaluates the z-th term:

r k(k - ^161 - e^{k -e^)W{S . p.c^ ^
'JB^ (l+te-2-^-i^-i)(l+e,-i) L i-^

where

p.c. = mi + nk — i\m\e\ — • • - — ^_im^-ie^-i.

TOME 50 (2000), FASCICULE 1



182 p. ALUFFI, C. FABER

Recalling that e, = €,-2 - ̂ -ie,_i, this simplifies to

SH- [ ^(fe-^ei-e2)^(A:-6i)^(p.c.)^ ^
^B^ (l+^)(l+e,-i) n[JD%-1

The total "local" contribution from the cusp An/^ is the sum of the first
two boxes listed above, plus the sum of the last box over i == 3 , . . . , e. Each
of the terms can be evaluated as a polynomial in n, the m^s, and the ^'s,
which we take as indeterminates for a moment. With this understood,
we let

Qi (n, mi, ̂ i, m2, ̂ 2 , . . • , m,, £,)

be the contribution coming from the %-th batch, and let

r

P^(n,mi,^i,m2,^2,...,m^,^) = ̂ Oz(n,mi,^i,m2,^ • • . ,m,,^).
1=1

The total local contribution from the point A H p, is then Pg, where the
Vs are replaced with their values prescribed by the (e-line) Euclidean
algorithm, that is

P^n^^^"^^,...^,"^^^^.v r^! rri2 rrie-i me >

Again, we can leave the m^s undetermined for a moment and treat this as
an expression in the variables n, m = mi, m^,..., me.

LEMMA 3.4. — As an expression in the variables n,m ==
mi ,m2, . . . ,me ,

Pe(n,^,.,^)=^3-/ ^+l;m+,y+"-3n[^l.v me I 7p2 (1+A:)3-^ L J

In particular, we are claiming that the above expression Pg(...) does
not depend on the intermediate multiplicities 7712,.... me, and in fact it is
independent on the number e of lines taken by the Euclidean algorithm on
m, n. In a sense, all the needed information is therefore contained in nuce
in the contribution from the first directed blow-up!
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Proof. — The right-hand-side is Pi(n,m,n/m), that is the first box
listed above but with ̂  = n/m. So the statement is correct for e = 1; and
the reader can check it is correct for e = 2. It can be proved for all e > 2 by
induction. For this, it suffices to show that, for e > 2, the expression

Pe^mi.^^.^me-i,^-2-^ ̂ rne,^)v m! me-i ' me )

agrees with the expression

D ( n ~ m2 fUp 9 \Pe-i (n, mi, ———^,..., me-i, —^2 \.
' "̂ 1 TUe-l /

By definition:

P (r, -m T^~m2 "^-2 - me me-i \P^n,m,,^.,...,m^,——^——,m^-^)

=P^(n,m„n-^,...,m^m^-^)
v ^l ^e-1 I

, ^ ( 777-p—i \+Ve(n,mi,...,me, ——
v ^e f

so it is enough to show that

1) Qe \n^ mi , . . . , mg, me-i/mej is a polynomial in me, and vanishes
for me = 0; and

2) Pe (n, mi,..., me, me-i/me) does not depend on me.

Indeed, by 2) we may then assume me = 0 in evaluating Pe; and by 1)
this will give

Pe-i^m,,"^.,^.,!"^0)^v mi me-i /

which is what is needed for the induction step.

Next, observe that the only summands in Pe = ^ Q, which involve

me are Qe-i and Qe; therefore in order to prove 2) it is enough to prove

2') Oe-l(n,ml,...,me-l,m^^) + Qe(n,mi, .. ,me, ̂ )
does not depend on me.

Now we are only interested in the terms in Qe-i, Qe involving me, so
we can neglect the homogeneous terms in Q, and absorb most of the rest
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into a divisor class D. Then we are left with the term of codimension jc - 2
in

^ _ (me_i+D)^ (me+D-4-im,_iee-i)^
e ' (1 + ̂ -iee-l)(l + Ce-2) e (1 + ̂ ee)(l + C^-l)

(where ^_i = me-2 - me/me-i and ^e = me-i/me). It is clear that the
second summand is a polynomial in me and vanishes for me = 0, as there
are no terms of codimension jc - 2 in this summand if me = 0. Using [AF3]
and eg = Ce-2 - ̂ e-iee-i, the reader can check that the sum equals the
term in codimension jc — 2 in

me-2me-i(l + D)30

(1 + me-lCe-2)(l + me-2ee-l) '

so indeed it does not depend on me. 0

A simple substitution now computes the contribution due to the other
cusp, A D Jl. This amounts to replacing m by n — m, and of course reversing
the roles of fi and Jl. Putting the two contributions together, combining
with the multiplicity data, and adding over j^, etc. (cf. Lemma 3.3) we
obtain the total "local" correction term:

71 \- 7^+^-4 [ ^+l(m+nfc)JC+JA~3

^^=r ^2 V (^kr-^
^+i(^ - rn + nk)3^^-3 \

+ (1 + k ) 3 - ^ )
q3^ q3ji ^x (Sn)^ , 3.

x — — — v . / 0 P2

3^ J/z! JA' Jc! L J

where we are maintaining the convention that q3 = q3 = r3 = 0.

This term can now be expanded with relative ease, yielding

n5'2(630mg2gr2-630mg92r2+630ngg2r2

+ 420 m n q2 q r S - 420 m n q q2 r S + 420 n2 q q2 r S
- 210m2 q2 r2 S + 420mng2 r2 6' + 840m2 qqr2 S

-8Wmnqqr2S+^On2qqr2S-210m2q2r2S
-^(210n2q2r2S-}-105mn2q2qS2-105mn2qq2S2

-4- 105 n3 qq2 S2 - 105m2 nq2 r S2 + 210mn2 g2 r 52
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+ 420m2 nqqrS2 - 420 mn2 qqrS2 + 210 n3 q q r S 2

- 105m2 nq2 r S2 + 105n3 q2 r S2 - 315m3 qr2 S2

^-630m2nqr2 S2 - 315mn2 qr2 S2 +105n3 qr2 S2

-^315m3qr2S2 -315m2nqr2S2+105n3qr2S2

-21m2n2q2S3-{-42mn3q2S3-}-8Am2n2qqS3

-84.mn3qqS3+4.2n4qqS3 -21m2n2q2S3

+ 21 n4 q2 S3 - 126m3 r^r S3 + 252m2 n2 gr S3

-126mn3qrS3^^2n4qrS3-}-126m3nqrS3

- 126m2 n2 qr S3 + 42n4 gr 53 - 126m4 r2 S3

-^ 252m3 nr2S3-126m2 n2r2S3-^21n4r2S3

-21m3n2qS4+^2m2n3qS4 -21mn4qS4

+7n5qS4-}-21m3n2qS4- 21 m2 n3qS4

+7n5g6 r 4-42m4nr5'4+84m3n2rS '4

- 42 m2 n3 r S4 + 7n5 r S4 - 6m4 n2 S5

+ 12m3 n3 S'5 - 6m2 n4 6'5 4- n6 S5).

This expression is much more structured than it appears at first sight.
Using our convention (q3 = q3 = r3 == 0) we can rewrite it as

(Sn+r+q+qY-n^Wffs^ r- + q- + ̂ }\2(s^ r- + q-}7

\\ n m m/ \ n m/

+2(^+ ^ + ̂ )7+ (5+ ^)7-42(5+ 71)5(4 - ̂  + 4))
\ n m/ \ n/ \ n / \ m2 m m 772" / /

(where m = n — m). Subtracting from the Bezout term given in
the beginning of this subsection, we get the first expression listed in
Theorem 1.1:

n3m2m2((s+ r-+q-+ ^7+2(S+ r- + q-}7+2(s+ r- + ̂ )7

\ \ n m m/ \ n m/ \ n m/

+(5+^7-42(5+n5(4-^+4))
\ n / \ n / \ m2 m m m2 / /

(up to the multiplicative factor l/(An), cf. Lemma 3.3).

This is the intersection product of the relevant divisors, after the
sequence of local blow-ups is completed. The correction term for the global
blow-ups is computed in the next subsection.
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3.2. Global blow-ups.

Recall from §2.2 and §2.3 that after the local stages are completed, the
base locus of the rational map c consists of several disjoint 3-dimensional
components, each isomorphic to P2 x P1, where the P^factor represents
the normalization of a curve of type (m,n), and of other 5-dimensional
components due to the lines A, JLA, /Z of the basic triangle.

We deal here with the 3-dimensional components. By Theorem 2.4,
two blow-ups will resolve the indeterminacies of c over such components; we
evaluate the relevant intersection products (as in Lemma 3.3) by subtracting
from the result of §3.1 a correction term due to these components. The
correction term will again be obtained by applying Proposition 2.3, for
which we need to compile the usual information of multiplicity and class
of normal bundles. We will see that an interesting phenomenon rules these
"global" contributions: they are independent of m.

First, we have to compute the Chern classes of the normal bundle to
each component P2 x P1; these will be

c(rp8)
c(rp2 x p1)

where P8 is the blown-up P8 at this stage, and we omit the obvious pull-back
to P2 x P1. Now let k,p denote the pull-back of the class of a line from
the P2 factor and of a point from the P1 factor; so

c(TP2 xPl)=(l+k)3(l+2p).

As for c(rP8), this can be obtained by repeated application of [Ful], §15.4:
the reader will check that, after the sequence of blow-ups over A H /^, this
pulls back to

(1 + k + npf + (1 + k + np)8

x ((mi + 7722) (k - 2)p - 3^imip - (^2 + ̂ 3 + .. .)(A; + l)p).

From the Euclidean algorithm, we see that

^2^2 +^3^3 + • • - = (mi-m3)4-(m2-m4)+'--+(me-2-me)-4-me-i

telescopes to m\ + m-2 — 1 since me = gcd(m, n) = 1; and i\m\ = n — m-2.
Hence the class simplifies to

(l+fc+n^-^l+fc+np)8

x ((mi + m'2)(k - 2)p - 3(n - m^)p - (mi + m2 - l)(k + l)p)

= c(TP8) + (1 + k + np)8 ((1 - 3n - 3m)p + kp).
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The second summand evaluates the change in the total class of the tangent
bundle due to the blow-ups over the point An / , . Simply substituting
m^n-m evaluates the change due to the other point, A H /Z:

(1 + k + np)8^! - 3n - 3(n - m))p + kp)

so that in total

c(TP8) = (1 + k + np)9 + (1 + k + np)8

x (((1 - 3n - 3m) + (1 - 3n - 3(n - m)))p + 2kp)
= (1 -h A; + np)9 + (1 + k + np)8^ - 9n)j? + 2A;p).

Expanding and applying k3 = 0, p2 = 0 (as we are pulling back to P2 x P1)
gives

c(rp8) = 1 + 9k + 2p + 36^2 + 18kp + 72k2?.

Remarkably, this expression is independent of m,n. In fact, the normal
bundle to one 3-dimensional component is computed by

c(TP8) ^ l+9A;+2p+36^+18^+72^
C(TP2 X Rl) (1+A:)3(1+2?)————————

= 1 + 6k + 15A;2 = (1 + k)6

and is therefore particularly simple. This is the key ingredient in evaluating
the correction term due to the first global blow-up.

As for the second, we use the analysis of the similar situation in [AF1]
for smooth curves: indeed, the point of the proof of Theorem 2.4 is
that after the local blow-ups and the first global blow-up, the geometry
over one of these components is entirely analogous to the geometry for
smooth curves, over non-flex points. In particular, we know that the
center of the second global blow-up is the union of a P^bundle over
each 3-dimensional component of the center of the first blow-up, with
^(^(-l)) = / restriction of the exceptional divisor, and standard
computations will show that, after push-forward to the underlying P2 x P1,

J^^O, f^-Qk\ f^-Sk, f^-1.

The normal bundle has class

(1+/)(1+A;-/)3 .
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The last ingredient necessary to perform the computation of the global
contribution is the restriction to the centers of the classes of the proper
transforms of the divisors. To find these, keep in mind that ei restricts to
rrlip', then

• the proper transform of a general hyperplane H restricts to {k + np);

• the proper transform of H\ restricts to k + np — e\ — e\ (where
ei, ei are the first exceptional divisors at A D /^, X ft /Z, resp.) This equals
k + np — mp — (n — m)p = k' ,

• the proper transform of H^ restricts to k + np - H^e\ - 63 =
k + np - (e^rn-t + 7712) = k + np - np = k', similarly, the proper transform
of Hjj, must restrict to k\

• the proper transform of X restricts to

Sn(k + np} — m\Si\e\ — m^S^e^ — • • '

after the sequence over the point A D fi, that is to

Sn(k + np) - S^mi - ̂ mj - • • ' ) p

= Sn{k + np) — S(m(n — m^) + m^(m — 7713) + • • • ) ?

= Sn(k + np) — Smnp.

The second summand is the change due to the sequence of blow-ups over
A D /^; to obtain the change due to A D /I, just substitute m \—^ n — m.

The conclusion is that the proper transform of X at the first global
blow-up restricts to

Sn(k + np) — Smnp — S(n — m)np = Snk.

Also, note that X has multiplicity s^ along the z-th component, 0 along all
others.

Note that none of the classes depend on m: as we claimed above, the
global contributions do not depend on m.

Putting the above together and using Proposition 2.3, we see that the
global contributions are obtained by evaluating

^(^
1+fc)6

^ f (k + np)k7-^ (s, + Snk)^
/ I ————————'/———TTc——————— QUO.
—^ (1+A;)6

^ f (k + np)k7~jc{si + Snk - Sjf)302^! ( i + / ) ( i + ^ - / ) 3 •
7-Jc
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Adding these two terms and inserting in Lemma 3.3 gives a relatively simple
expression:

n (M(Sn + r + q + qf ̂  s^ - 252(6n -h r + q + q) ̂  s6 + 192 ̂  5,7)

which reproduces the one given in §1, again up to the multiplicative
factor I/(An).

4. End of the computation, and variations.

The careful reader knows that we are not quite done, since after the
pair of global blow-ups we are still left with base loci corresponding to the
lines of the basic triangle (c/. §2.3).

Here we reap the benefit of having shown that we only need to
compute the relevant intersection products for j^, j'̂ ;, j\ < 2 (Lemma 3.3).
Indeed, with these constraints the corrections due to these base loci are
zero. For example, consider the correction term coming from the P2 of
matrices whose image is the point ^ D fl: denoting by k the class of a line
in P2 and applying once more the formula in Proposition 2.3, this term is
evaluated as

r k{q + qk}^ (q + qk)^ (rk}^ (Snk)^
J p 2 ( T T W 6 '

And since 1 4- jc + J x = 8 — (jp, + jji) ^ 4, this term is automatically 0.

The same discussion applies to the remaining three 5-dimensional
base loci; we leave the details to the reader. Theorem 1.1 then follows, since
this shows that the expressions obtained in §3.1 and §3.2 combine to give
the intersection product in Lemma 3.3.

4.1. Quadritangent conies.

There is (in characteristic zero) only one other class of curves C whose
components are not all lines and whose orbit is small: C consists of two or
more conies from a pencil through a conic and a double tangent line (Fig. 4);
it may also contain that tangent line. The multiplicities of components are
arbitrary. For this class of curves, the stabilizer is 1-dimensional; its identity
component is the additive group GO-
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C

Figure 4

These curves are not of the type considered in previous sections.
A variety V dominating the orbit closure of such a curve can however be
constructed by a strategy very similar to the one followed in §2: again, the
sequence of blow-ups giving an embedded resolution of the curve can be
mirrored to produce a variety V10^ from which a variety V is produced by
the technique of Theorem 2.4. Intersection-theoretic computations similar
to those in §3 allow us then to compute the degree of the orbit closure of
these curves.

It is perhaps a little surprising that the formula given in Theorem 1.1
turns out to be correct for this case as well: taking n = 2 , m = m = l ,
and q = r == 0 computes the degree of the orbit closure of a union of
quadritangent conies appearing with multiplicity Si, together with the
tangent line p, at the point of contact, taken with multiplicity q. In other
words, the polynomial Q for such a curve is the same as the polynomial for
a union of "bitangent conies". Again, A equals the number of components
of the stabilizer of (7; the analogue of Lemma 3.1 is the fact that for C
given by

yq^[(xt2+yz-^aiy2)si=^
i

the number A equals twice the maximum order of an automorphism
a i—> ua + v preserving the 5'-tuple given by ̂ [{a ~~ ̂ Y' = 0- Hence A = 2
in most cases, and it is bounded by twice the number of conies in C\ for
two conies with equal multiplicities, A = 4.

With notations as above, the polynomial Q is in this case

246'7+845f6(7+84SV -84(25 +g)2 ̂  s^ +252(25+g) ̂  s6 -192 ̂  s,7.

For example, there are 504 (= 2016/4) pairs of quadritangent conies through
seven general points.

Expressions for the degree of loci corresponding to curves with fixed
tangent line, or tangent line constrained to contain a given point, can be
obtained by differentiating this expression with respect to q (c/. §4.3).
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4.2. Predegree polynomials.

Simple adjustments in the computations described in this paper allow
us to compute the degrees of suitable subsets of the orbit closure, obtained
by imposing general linear conditions on the matrices used to act on (7. In a
sense this note deals precisely with one such computation: we computed
the degree of Oc by imposing a general linear condition on P8 (and arguing
that this would intersect the fibers over a point of Oc in An points,
c/. Proposition 3.2).

We call the predegree of Oc the product of the degree of Oc with the
degree in P8 of the closure of the stabilizer of C.

Arguing as in the discussion leading to Proposition 3.2 (and using the
same notations), we see that if Oc has dimension k then

(predegree of Oc) = I H^W8-k-fxrk

where the intersection product is taken in any variety resolving the
indeterminacies of the relevant rational map. (Note: this notion of predegree
agrees with the one used in [AF1], where k = 8.)

We find it in fact useful to introduce an adjusted predegree polynomial
defined by

V" ( f frS-j^A t3 .S( / 'H ' - 'W' )^ ,
^•^n J •) 'j^O ^

If dimOc = k^ then the coefficient of ik jk\ in the adjusted predegree
polynomial gives the predegree of Oc, while for j > k the coefficient
oit3 lj\ isO.

The introduction of denominators reflects some extra structure of
these polynomials, which we will not discuss here. As an example, note the
factorization of the polynomial for the degenerate case of a curve supported
on the basic triangle, indicated below: such factorizations would not occur
"without denominators".

Suitable variations of the computations in §3 yield the whole adjusted
predegree polynomial for the curves considered in this paper; the result is
as follows.

To obtain the polynomial for a curve with data m, n, m = n — m, 5^,
S = ̂  s^, r, g, g, as above: imposing q3 = q3 = r3 == 0 in all computations,
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truncate to t7 the expansion of e^7^7^^^, (the "Bezout" term), then
subtract a global contribution (independent of m)

12n^.
+n(^(Sn+r+q+q)^sJ-72^s6)^

+n(84.(Sn+r+q+q)2'^s5i-252(Sn+r+q+q)Y^s6+192^sJY-^

and a local contribution given in degree 6 by

n3(m3(s+r-+(i}\m3(s+r-+W-
\ \ n m/ \ n m/ / 6!

and in degree 7 by

((Sn + r + q 4- q)7

-nWrn2^ r- + q- + ̂ \\2(S^ r- + ̂ )7

\ v n m m / \ n m /

+2(s+r-+^7+(s+r-}7

\ n m/ \ n/

--(^^(^-H^)))^
The advantage of looking at the whole polynomial is that it carries

degree information for all orbits, regardless of their dimension (while
Theorem 1.1 does assume that the orbit of the curve under exam has
dimension 7). For example, setting m = 1, n = 2, 5' = s-^ = 1, and
r •==- q = q_= 0 gives a polynomial

4^2 8t3 16t4 8t5

^^^^-IT^
as the orbit closure of a conic is clearly the whole of P5, this correctly
detects that the stabilizer of a conic is a threefold of degree 8. In fact,
the second Veronese embedding of the P3 of 2 x 2 matrices in the P9 of
space quadrics projects isomorphically to this threefold in P8; with suitable
identifications, the center of the projection is the determinant quadric.

For another example, take all Si = 0: that is, consider a curve
consisting solely of lines supported on the sides /^, /Z, A of the basic triangle,
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with multiplicities g, q, r. This yields a degree-6 polynomial, which in fact
factors

/ q2t2\/ q2t2\r r2t2\(l^+V)(l^+^)(l+r^-^):

the orbit has dimension 6 and predegree 90q2q2r2^ as the reader could check
independently by observing that this orbit closure can also be realized as
the image of the evident map P2 x P2 x P2 -^ P^ (TV = |d(d + 3) for
d = q + q + r). The degree of the closure of the stabilizer depends on the
multiplicities of the lines: it is 3! if q = q = r, 2 if exactly two multiplicities
agree, and 1 if the multiplicities are distinct.

All such computations are very particular cases of the general
expression for the adjusted predegree polynomial given above. This covers
then almost all small orbits of plane curves, with few exceptions such as
curves consisting of a star of lines through a point p, union a line not
containing p. Note that these are curves "of type (1,1)" according to the
terminology used in this paper; but the blow-up construction of §2 assumes
that the only linear components of the curve are the lines of the basic
triangle, so the construction fails in this case. We will consider these curves
in [AF4].

4.3. Curves with constraints.

The polynomial given in Theorem 1.1 also contains enumerative
information on the subsets of the orbits parametrizing curves with specified
constraints on the lines of the basic triangle (such as: containing a given
point). Let Oc(j^^jjii3\) be the closure of the set of translations Co^p such
that [JL o (p contains j^ given points, Ji o (p contains jjj, given points, and A o (p
contains j\ given points (all choices of the points being general).

PROPOSITION 4.1. — Let Q(n, m, s^, r, ̂ , q)/A be the polynomial giving
the degree ofOc-i SLS in Theorem 1.1. Then the degree o f 0 c { j ^ , ^ j j i ^ j x ) is

^ - ^ - J H - J x V - 9 ^ 9^ 9^ „ .
-—————————- o— ^z-z —.-Q(n,m,Si,r,q,q).7! A 6q3^ 9q3^ or3x

Proof. — Arguing as in Proposition 3.2,

AndegOcU^JjiJx) = I H . fy(7-^-^-^) . H^ . H3^ . 5{\
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where W = qH^ + qHjj, + rH\ + X is the class of a point-condition in
a variety resolving the rational map corresponding to (7. Now a direct
computation shows that this equals

( 7 - j ^ - J n - j x V . 9^ y. 9^ r ^ __ „ „ - ,
————7\—————W^W^^ 1 {q ' q ' x ) '

which gives the statement. D

This result has a clear enumerative meaning for example when
q = q = r = 0, that is when C does not contain the lines in the triangle,
and when all Si = 1 (so that S == the number of components of (7). Then
the formula of Proposition 4.1 gives the number of PGL(3)-translations
of C which satisfy the given constraints on the lines of the basic triangle,
and contain the appropriate number (= 7 — jp, — j-p, — j\) of general points.

From the formula in Theorem 1.1 and Proposition 4.1 it is easy to
obtain closed formulas for these numbers. For example, the number of
unconstrained curves of fixed type (that is, S given distinct components
from the pencil of type (m, n)-curves) through seven points is

63 (m^m^S6 - 14n2^2 + 42n5 - 32);
^T.

for the simplest example, take n == 3, m == 2 and S = 1: there are 24
cuspidal plane cubics through seven general points. The number of curves
such that the line A contains a given point is

^(mW^^r^+G);
-A

for example, there are 36 cuspidal cubics through six general points, and
such that the line connecting the flex and the cusp contains a given point.

Analogously, the number of curves such that A contains two given
points is, according to Proposition 4.1:

2s^m2m2S4-2)^

hence, there are 20 cuspidal cubics through five points, with fixed line
through cusp and flex.

The reader who so wishes will have no difficulty deriving the other
24 closed formulas for assortments of conditions on the lines of the basic
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triangle. For cuspidal cubics, the 27 numbers so obtained reproduce results
in [MX] (where hundreds more are computed). Here they are, where the
number at the (ij,k) spot denotes the number of curves with i points
through ̂  j points through /Z, and k points through A:

.«••.«•

00 - ' '

- - - - - - - - - 1

70 ••****
....•"

6 •••""
.1

1 -A

Q

..•••"

9 - - - - - - - -

1 0-' '- - - -1 Z - - -

0

2 ..... .......

....Q9 '

.-- ' '

....••"
r'"

/>-.6-
• .-°

- '

3
1 fi•""lo ""

(\• - • - • • .9
^"

3

.̂.•*.••**-**
24<--..-.....l8--.-..............5^

Curve x3 = y2

For higher degree curves, the results are, to our knowledge, new. Here are
the numbers for the curve of (randomly chosen) type (7,4):

.16-
144'" 24-

860'' ....108-. . . .9-

112
1004-:: --.-.168 -21-

780 196- 49

39792 •
6924 -.-.-::.:............. 1172 •-'-'-'• j ----- 147"

••-••••••"- 5160 •••——-.................. 437 -•""

Curve x7 = y^
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