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Chapter 1 
 

INTRODUCTION 
 

Pattern recognition has its origins in the field of image and signal processing 

where techniques were developed to categorize samples on the basis of regularities in the 

observed data.  Personal computers now make it possible for these methods to be applied 

on a regular basis to text classification [1], oil spill identification [2], and speech 

recognition [3].  The first applications of pattern recognition to chemistry were studies 

involving low resolution mass spectrometry [4-8] which appeared in the chemical 

literature in 1969.  Since then, pattern recognition has been applied to problems involving 

Raman spectroscopy [9, 10], liquid chromatography [11, 12], and nuclear magnetic 

resonance spectroscopy [13, 14].   

Pattern recognition techniques are well suited for analyzing chemical data because 

of the characteristics of the procedures.  No exact functional form is fitted to the data; 

rather, relationships are sought which provide definitions of similarity among diverse 

groups of data.  In essence, pattern recognition techniques can be thought of as providing 

relations that uncover common properties.  Once such relationships are developed, they 

may be used to infer the properties of objects that were not part of the original data set.  

These techniques are also capable of dealing with high-dimensional data where more than 

three measurements are used to represent each object.  Furthermore, pattern recognition 

methods can handle data from multiple sources where each measurement can be the 

result of a separate independent experiment.  Finally, techniques are available for 

selecting important features from a large set of parameters.  Thus, studies can be 

performed on systems where the exact relationships are not fully understood. 
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Pattern recognition methods were originally designed to solve the class 

membership problem (e.g., differentiating between two classes, diabetes/normal).  In a 

typical pattern recognition study, objects or samples are classified according to a specific 

property using measurements that are indirectly related to that property.  An empirical 

relationship or classification rule is developed from a set of samples for which the 

property of interest and the measurements are known. The classification rule is then used 

to predict this property in samples that are not part of the original training set. The 

property in question may be the type of jet fuel responsible for an underground fuel spill, 

and the measurements are the areas of selected peaks from a gas chromatogram. The set 

of samples for which the property of interest and measurements are known is called the 

training set, whereas the set of measurements that describe each sample in the data set is 

called a pattern. The determination of the property of interest by assigning a sample to its 

respective class is called recognition, hence the term “pattern recognition.”   

In pattern recognition analysis, each object is represented as a point in a high 

dimensional space.  The number of dimensions of the space corresponds to the number of 

descriptors (measurements) that are available for each object or sample.  A basic 

assumption is that distances between pairs of points are inversely related to their degree 

of similarity.  Thus, points representing objects from one class will cluster in a limited 

region of this space distant from the points corresponding to the other class.  Pattern 

recognition is a set of methods for investigating data represented in this manner to assess 

the degree of clustering and general structure of the data. The four main subdivisions of 
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pattern recognition methodology are mapping and display, clustering, discriminant 

development, and modeling.   

The development of a genetic algorithm (GA) for pattern recognition analysis of 

infrared data is the focus of this thesis.  The pattern recognition GA selects features that 

optimize the separation of the classes in a plot of the two or three largest principal 

components of the data.  Because the largest principal components capture the bulk of the 

variance in the data, the features chosen by the GA primarily convey information about 

differences between the classes in the data set.  Hence, the principal component analysis 

routine embedded in the fitness function of the GA serves as an information filter, 

significantly reducing the size of the search space since it restricts the search to feature 

subsets whose principal component plots show clustering of the spectra on the basis of 

the class label of the samples.  In addition, the algorithm focuses on those classes and or 

samples that are difficult to classify as it trains using a form of boosting to modify the 

class and sample weights.  Boosting addresses the problem of convergence to a local 

optimum since the fitness function of the pattern recognition GA will change as the 

population evolves towards a solution.  Samples that consistently classify correctly are 

not as heavily weighted as samples that are more difficult to classify.  Over time the 

algorithm learns its optimal parameters in a manner similar to a neural network.  The 

proposed algorithm integrates aspects of artificial intelligence and evolutionary 

computations to yield a smart one-pass procedure for feature selection and pattern 

recognition.   

The efficacy, flexibility, and efficiency of the pattern recognition GA, as an 

engine for knowledge discovery, has been investigated through analysis of infrared 
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spectral library data to discover the spectral features that provide the desired 

discrimination between different functional groups and properties of materials. The 

wavelet packet transform is used to denoise and deconvolute the spectra by decomposing 

each spectrum into wavelet coefficients that represent both the high and low frequency 

components of the signal.  This decomposition process is iterated through successive 

wavelet packets until the required level of signal decomposition is achieved.  The genetic 

algorithm for pattern recognition analysis is used to identify the wavelet coefficients that 

can classify the IR spectra by the functional group of the compound. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Chapter 2 
 

Pattern Recognition 
 
 
 
 
 
 
2.1 Introduction 
 

Many relationships in multivariate chemical data cannot be expressed in 

quantitative terms.  These relationships are better expressed in terms of similarity and 

dissimilarity among diverse groups of data.  The task which confronts a scientist or 

engineer when investigating these types of relationships is twofold: (1) Can the data be 

divided into categories for the prediction of some property, and (2) Can the features that 

differentiate the categories be identified?  For the first task, a set of known samples is 

used to separate information and noise sources, with the information sources combined to 

develop a discriminant, which is used to predict the class membership of samples that are 

not part of the original training set.  The second task is called feature selection [15].  The 

development of suitable models to isolate groups or classes of data according to their 

properties is known as classification or pattern recognition [16].  The basic premise 

underlying the use of these methods is that clustering of the data into less similar 

subgroups is associated with some underlying structure or property of the data. 

In this chapter, pattern recognition methods are discussed.  (Feature selection is 

discussed in Chapter 3.)  What are the operations that must be performed in order to 

apply pattern recognition methods to chemical problems of interest?  There are several 
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texts on this subject which describe in detail the theory and application of pattern 

recognition techniques [17, 18].  A summary of the techniques used in the studies 

described in this thesis will be included in several of the following sections.  Special 

emphasis will be placed on the application of these techniques to problems in spectral 

pattern recognition. 

2.2 Data Representation 
 

The first step in any pattern recognition study is to convert the raw data into 

computer compatible form.  Normally, the computer compatible form used is a string of 

scalar measurements comprising an n-tuple called the pattern vector. 

 
 x = (x1, x2, x3, …………. xp) 

 
Each component of the pattern vector represents a physically measurable quantity.  For 

spectral data, each component of the pattern vector is the absorbance or spectral intensity 

at a specified wavelength from a baseline corrected digitized spectrum. The pattern 

vectors, in turn, constitute a data matrix.  The rows of the matrix represent observations, 

and the columns represent the values for each descriptor.   
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It is essential that descriptors encode the same information for all objects in the 

data matrix.  For example, if descriptor 2 is the absorbance at 2500nm in object 1, it must 

also be the absorbance at 2500nm in objects 2, 3, … N.  Hence, peak matching is crucial 

when spectra are translated into data vectors.  For spectral data, peak matching is not a 

problem since absorbance or spectral intensity is measured as a function of the excitation 

wavelength.  For chromatographic data, however, the problem of peak matching is often 

quite formidable [19]. 

2.3 Data Preprocessing 
 

The next step involves scaling the data.  The scaling procedure which should be 

used for a given data set will depend upon the nature of the problem.  This aspect of 

pattern recognition has not been adequately investigated for spectral data.  In the 

applications discussed herein, two techniques have been used – normalization and 

autoscaling.  Although preprocessing of the data is (strictly speaking) not part of the 

pattern recognition process, it definitely affects the results obtained and for this reason is 

discussed here.   

Normalization involves setting the sum of the squares of the components of each 

pattern vector equal to the same arbitrary constant.  For infrared and Raman data, each 

data vector is normalized to unit length. This is accomplished by dividing each data 

vector by the square root of the sum of the squares of the components composing the 

vector. Normalization will compensate for variation in the data due to differences in 

sample size or optical path length.  However, normalization can introduce dependence 

between variables which could have an effect on the results of the investigation.  One 

must take this into account when deciding whether or not to normalize the data. 
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Normalization is an effective procedure for removing variation in spectral data due to 

sample size if the noise is homoscedastic [20]. A recent paper provides a discussion about 

the effects of normalization on the classification of spectral data [21].   

Autoscaling (see Equation 2.1) involves standardizing the measurement variables 

such that each descriptor or measurement has a mean of zero and a standard deviation of 

unity, that is, 

 
 

origi

origiorigi
newi s

xx
x

,

,,
,

)( −
=       (2-1) 

 
where origix ,  is the mean and si,orig is the standard deviation of the original measurement 

variable.  Autoscaling removes any inadvertent weighing of the variables that otherwise 

would occur due to differences in magnitude among the various measurements.  Consider 

a data set where each sample is described by two variables: the concentration of Na and 

the concentration of Mg as measured by flame emission spectroscopy. The concentration 

of Na in the samples varies from 10ppm to 100ppm, whereas the concentration of Mg in 

the same samples only varies from 1ppm to 10ppm.  A 10% change in Na concentration 

will have a greater effect on the Euclidean distance than a 10% change in Mg 

concentration.  If the data are autoscaled, a 10% change in Mg concentration will have 

the same effect as a 10% change in Na concentration.  After autoscaling, all of the 

measurement variables have equal weight in the analysis. Autoscaling influences the 

spread of the data, placing the data points inside a hypercube.  However, autoscaling does 

not change the relative distribution of the data points in the high-dimensional 

measurement space. 
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2.4 Principal Component Analysis 
 

Scientists and engineers often use graphical methods to study data. If there are 

only two or three measurements per object or sample, the data can be directly displayed 

as points in a two-or three- dimensional measurement space with the coordinate axes of 

the space defined by the measurement variables.  By examining the plot, a scientist can 

search for similarities and dissimilarities among samples, find natural clusters in the data, 

and even gain information about the overall structure of the data set.  If there are p 

measurements per sample (p>3), a two- or three-dimensional representation of the 

measurement space is needed to visualize the relative position of the data points in p-

space. This representation should reflect in some manner the distribution of the data 

points in the higher-dimensional measurement space. A popular approach to this problem 

is to use a mapping and display technique called principal component analysis [22-24]. A 

detailed treatment of principal component analysis (PCA) is not provided here. However, 

those aspects of PCA related to the genetic algorithm for pattern recognition analysis and 

the studies discussed in this chapter are summarized here. 

PCA is the most widely used multivariate analysis technique in science and 

engineering.  It is a method for transforming the original measurement variables into 

new, uncorrelated variables called principal components. Each principal component is a 

linear combination of the original measurement variables. Using this procedure, a set of 

orthogonal axes that represents the direction of greatest variance in the data is found. 

(Variance is defined as the degree to which the data are spread in the p-dimensional 

measurement space.)  Typically, only two or three principal components are necessary to 

explain a significant fraction of the information (variance) present in the data. Hence, 
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PCA can be applied to multivariate data for dimensionality reduction, identification of 

outliers, display of data structure, and classification of samples. 

Dimensionality reduction is possible with PCA because of correlations that exist 

among measurement variables. Consider Figure 2.1, which shows a plot of 15 samples in 

a two-dimensional space. The coordinate axes of this pattern space are defined by the 

variables x1 and x2.  Both x1 and x2 are correlated, since fixing the value of x1 limits the 

range of values possible for x2. If x1 and x2 were uncorrelated, the enclosed rectangle 

(shown in Figure 2.1) would be completely filled by the data points. Because of the 

correlative relationship between x1 and x2, the data points occupy only a fraction of the 

pattern space.   

Information can be defined as the scatter of points in a vector space.  Correlations 

between measurement variables decrease the scatter and subsequently the information 

content of the vector space because the data points are restricted to a small region of the 

pattern space due to correlations among the measurement variables. If the measurement 

variables are highly correlated, the data points could even reside in a subspace. This is 

shown in Figure 2.2. Each row of the data matrix is a sample, and each column is a 

measurement variable. Here x3 is perfectly correlated with x1 and x2, since x3 (third 

column) equals x1 (first column) plus x2 (second column). The seven data points lie in a 

plane (or two-dimensional subspace), even though each point is characterized by three 

measurements.  Because x3 is a totally redundant, it does not contribute any additional 

information, which is why the data points lie in a plane. 
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Figure 2.1.  Fifteen samples projected onto a two-dimensional data space. Because x1 
and x2 are correlated, the data points are restricted to a small region of the 
measurement space defined by the vertices A-D of the rectangle.  (Adapted from NBS 
J. Res., 1985, 190(6), 465-476.) 
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Figure 2.2.  In the case of strongly correlated measurement variables, the data points may 
even reside in a subspace of the original measurement space. (Adapted from Multivariate 
Pattern Recognition in Chemometrics, Elsevier Science Publishers, Amsterdam, 1992.) 
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Measurement variables that have redundant information are said to be collinear. 

High collinearity between measurement variables is a strong indication that a new 

coordinate system can be found that is better at conveying the information present in the 

data than one defined by the original measurement variables. The new coordinate system 

for displaying the data is based on variance. (The scatter of the data points in the 

measurement space is a direct measure of the data’s variance.) Each principal component 

of the data defines the variance-based axes of this new coordinate system. The first 

principal component is formed by determining the direction of largest variation in the 

original measurement space of the data and modeling it with a line fitted by linear least 

squares (see Figure 2.3) that passes through the center of the data. The second largest 

principal component lies in the direction of next largest variation. It passes through the 

center of the data and is orthogonal to the first principal component. The third largest 

principal component lies in the direction of next largest variation, and it also passes 

through the center of the data.  It is orthogonal to the first and second principal 

component, and so forth.  

Each principal component describes a different source of information because 

each defines a different direction of scatter or variance in the data.  (Information can be 

defined as the scatter of points in a vector space; the scatter of the data points in the 

vector space is also a direct measure of the data’s variance; hence, variance and 

information are synonymous.) The orthogonality constraint imposed by the mathematics 

of PCA also ensures that each variance-based axis is independent. 
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Figure 2.3. Principal component axes defining a new set of basis vectors for the 
measurement space defined by the variables X, Y, and Z.  The third principal component 
describes only noise in the data.   
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A measure of the amount of information conveyed by each principal component is 

the variance of the data that it explains which can be expressed in terms of the eigenvalue 

that is associated with the principal component.  For this reason, principal components 

are arranged in order of decreasing eigenvalues.  The largest principal component, which 

is the first, is the most informative, whereas the smallest principal component, which is 

the least informative, is the last. The amount of information contained in a principal 

component relative to all of the original measurement variables, i.e., the fraction of the 

total cumulative variance explained by the principal component, is equal to the 

eigenvalue of the principal component in question divided by the sum of all the 

eigenvalues for the data. The maximum number of principal components that can be 

extracted from the data is the smaller of either the number of samples or the number of 

variables in the data set, as this number defines the largest possible number of 

independent axes in the data. 

Principal components are computed directly from the data using an algorithm 

called singular value decomposition [25]. This algorithm generates the score and loading 

matrices, and the eigenvalues of the covariance matrix of the data. The score matrix 

defines the coordinates of the data points in the principal component space, whereas the 

loading matrix defines the relationship between the original measurement variables and 

the new basis vectors describing variation. In other words, the principal components of 

the data can be reconstructed from the original measurement variables using information 

contained in the loading matrix. The eigenvalues of the covariance matrix tell how much 

variation in the data is captured by each principal component. 
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If the data are collected with due care, one would expect that only the larger 

principal components would contain information about the property of interest (i.e., the 

class membership), since most of the information in the data should be about the effect of 

interest. However, the situation is not always as straightforward as has been implied.  

Each principal component describes some amount of signal and some amount of noise 

because of accidental correlations between signal and noise. The larger principal 

components contain information primarily about signal, whereas the smaller principal 

components primarily describe noise. By discarding the smaller principal components, 

noise is discarded, but so is a small amount of signal. However, the gain in signal to noise 

that is accrued will usually more than compensate for the biased representation of the 

data that occurs when plotting only the largest principal components of the data.  

PCA takes advantage of the fact that a large amount of data generated by 

spectrochemical methods has a great deal of redundancy and therefore a great deal of 

collinearity. Because the measurement variables are correlated, 600-point spectra do not 

require 600 independent orthogonal axes to define the position of a sample point in the 

measurement space. Using principal component analysis, the original measurement 

variables that constitute a correlated-axes system can be converted into an orthogonal-

axes system, which dramatically reduces the dimensionality of the data, since only a few 

independent axes are needed to describe the data. Spectra for a set of samples often lie in 

a subspace of the original measurement space, and a plot of the two or three largest 

principal components of the data can help one to visualize the relative position of the 

spectra in this subspace.  Using PCA, the data can be plotted in a new coordinate system 

based on variance.  The origin of the new coordinate system is the center of the data, and 
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the coordinate axes of this new system are the principal components of the data.  By 

utilizing this new coordinate system, we can uncover relationships present in the data; for 

example, we can find distinct samples subgroups or classes within multivariate data.   

Clearly, there are a number of advantages in using principal components to 

describe or model chemical data, e.g. dimensionality reduction, classification, and signal 

enhancement.  However, there will be a loss of information when changing coordinate 

systems.  The loss is characterized by the sample residual, which is the distance between 

a sample and the principal components used to model the signal in the data, i.e., the 

subspace.  The projection distance is large for samples that are not well fitted by the 

principal component model. 

The approach of describing a data set in terms of important and unimportant 

variation is known as soft modeling in latent variables.  This approach to modeling is 

possible because chemical data sets often contain a large number of interrelated 

measurement variables.  All of the important variation in this data can be explained by a 

small number of surrogate variables (usually principal components) because of the 

redundancies in the data.  By examining these surrogate variables, it is possible to 

identify important relationships in the data, that is, find similarities and differences 

among the samples in a data set, since each surrogate variable captures a different source 

of information. The surrogate variables that describe important variation in the data (i.e., 

signal) can be identified and used to develop a classification model.  Surrogate variables 

that describe a property of interest are called latent variables. 

With PCA, we are able to plot the data in a new coordinate system based on 

variance.  The origin of the new coordinate system is the center of the data, and the 
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coordinate axes of the new system are the principal components of the data which 

primarily contain the signal.  This variance based coordinate system will be different for 

each data set.  With this new coordinate system, we can uncover relationships present in 

the data.  PCA is actually using the data to suggest the model, which is a new coordinate 

system for the data.  The model is local since the model center and the principal 

components will be different for each data set. The focus of PCA is signal, not noise. 

PCA based soft models are both linear and additive. 

2.5 Classification 
 

So far in this chapter, only PCA has been discussed.  The structure of the data is 

analyzed without any a priori information about samples belonging to distinct groups.  

Unsupervised pattern recognition techniques such as PCA are not always sufficient for 

developing classification rules.  However, the overall goal of a pattern recognition study 

is the development of a classification rule that can accurately predict the class 

membership of an unknown sample.  In the final section of this chapter, supervised 

methods of pattern recognition that are referred to in subsequent chapters of this thesis 

are discussed.    

This section on classification is not intended to be a comprehensive review, which 

should come as no surprise since this field is substantially too complex for such a brief 

treatment.  Indeed, one of the most complete summaries to date was written over fifteen 

years ago by McLachlan [26] and, even with his abbreviated, outline-type presentation, it 

took well over 500 pages to complete. For this reason, the material in this section is 

focused on a set of introductory topics and a logical progression that is relevant to the 

needs of a physical scientist or engineer who wants to understand something about 
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classification and who, as often as not, must analyze data that has an abundance of 

features.  The approach will be to reason from examples in an effort to bring forward 

subtle ideas.  In all cases, the goal will be to help the reader develop an intuitive feeling 

for the tools, techniques, and some of the limitations involved when using classification 

methods.   

Example 1 – Distinguishing Midges 
What can you do with more than one variable that you cannot do as well with a 

single variable?  Well, many things, but group discrimination is one.  Consider the data 

shown in Table 2.1.  These data were reported by Grogan and Wirth [27] and are the 

wing and antenna lengths of two recently discovered species of gnat-like insects known 

as a “midge”.  These two species - Amerohelea fasciata (Af) and A. pseudofasciata (Apf) 

- are difficult to distinguish without the use of an elaborate laboratory procedure.  It 

would be desirable to be able to distinguish the two by some simple procedure such as 

measuring the length of their antenna and wings.   

A two-dimensional plot of antenna length versus wing length is shown for the two 

midge species in Figure 2.4. The two species can be completely separated using these two 

measurements by drawing a straight line through this two dimensional measurement 

space (which is also known as a pattern space).   Let d(x) = w1x1 + w2x2 + w3 = 0 be the 

equation of the line (or boundary surface) separating the two species, where w1, w2, and 

w3 are the parameters (or weights of the linear combination of the measurement 

variables) and x1 and x2 are the actual values of the measurement variables (antenna and 

wing length) for each midge.  As shown in the figure, it is evident that neither antenna 

length nor wing length alone can provide such a clear separation of the data.  A linear 

combination of the original variables has served a purpose that could not be served as 
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well by any single one of the original two variables. The weights in this linear 

combination are, of course, not the same as those found in principal component analysis 

since they are chosen for purposes of discrimination and not for variance summary.  In 

the next subsection, Fisher’s original approach to classification will be discussed since 

this approach to linear discrimination is more consistent with the ideas from principal 

component analysis than are the other approaches. We will eventually see the sense in 

which this original perspective on discrimination aligns with the more popular likelihood 

(i.e., Mahalanobis distance) based approach. 

2.5.1 Canonical Discriminant Analysis 
 

 Although Sir Ronald Fisher (1890-1962) is generally referred to as the “father of 

modern inference”, his initial approach to discrimination [28] was not couched in 

probabilistic terms. To understand this “canonical” approach, it is necessary to introduce 

some matrix notation, but the intuition behind this idea can be understood with just a 

basic grasp of analysis of variance (ANOVA).  Recall, in a simple design, an ANOVA is 

concerned with the relative sizes of three basic constructs:  the total sums of squares 

(SST), the among-treatments sums of squares (SSTr), and the error sums of squares 

(SSE), typically pooled across treatment groups.  In balanced designs we rely heavily on 

the fact that SST = SSTr + SSE, and we reason with strong justification that if SSTr is 

sufficiently larger than SSE, then treatment groups are different. 

In canonical discriminant analysis (CDA), there are three completely analogous 

constructs: Total Sum of Squares (Equation 2.2), Among-groups Sums of Squares 

(Equation 2.3), and Pooled Within-Groups Sums of Squares (Equation 2.4) 
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where xij is the value of the jth descriptor for sample i, x is the mean of the jth descriptor 

for all samples in the data set.  As with ANOVA, it can be shown that . − = +(n 1) XS H E
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Figure 2.4.  Scatter plot of antenna length versus wing length for gnat like insects known 
as midges.  (x = Species A. pseudofasciata and o = Species Amerohelea fasciata.)  
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 With CDA the goal is to successively find linear combinations of the original 

measurement variables that exhibit maximum between-groups variability, relative to the 

pooled within-groups variability. These linear combinations are called “canonical 

discriminant scores” or just “scores” if the context is clear, and the weights that define 

them are found in such a way that classes are optimally separated at the score level.  This 

is similar to the reasoning used in PCA, except that a map of the data is being developed 

with the focus of the optimization on “between-groups variability” not “total variability”.    

 A comment on terminology is in order.  It is fairly common in the literature for 

CDA to be called “canonical variates analysis,” which can be confusing since canonical 

variates analysis is a generic phrase used to refer to regression, multivariate analysis of 

variance, canonical correlations analysis, and other various forms of discriminant 

analysis.  In the rest of this chapter and thesis, the phrase “canonical variates” will be 

used to explicitly refer to the scores that result from a canonical discriminant analysis. 

 The optimization problem that defines CDA, as well as the corresponding 

solution, are well-known in the literature, but will not be restated here in keeping with a 

commitment to suppress any unnecessary mathematical notation. However, the weights 

used to produce these canonical variates are contained in the eigenvectors of a matrix 

based on E and H.    

 
 
 
 
 
 

CDA Result 
Fisher’s optimal weighting scheme is provided by the entries in the normalized 
eigenvectors from the matrix E  −1H

If there are a total of N observations on each of p variables, across g groups, with 

N-g > p (in our “training set”), then the matrix E will be full rank, H will have rank g-1, 
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and, in a formal sense (“with probability one”) the matrix  will have rank g-1.  

Hence there will be g-1 nonzero eigenvalues associated with this matrix and, in turn, g-1 

non-arbitrary weighting schemes provided by the corresponding normalized eigenvectors. 

Hence, there are g-1 possible scores that can be computed using this paradigm.   

−1E H

Example 1 – Differentiating Midges (continued) 
A data set of wing and antenna lengths of two recently discovered species of gnat-

like insects known as “midges” will be analyzed by CVA. In this example there are two 

groups and two variables, so  will be (2 x 2), and have rank 1. The optimal 

weighting scheme, therefore, is contained in the normalized eigenvector corresponding to 

the lone nonzero eigenvalue of this matrix construct.  These weights or loadings are 

shown below, as are the means for each species. 

−1E H

 
 

Weights Variable 
0.8371 Antenna Length
-0.5471 Wing Length 

 
 
 

Species 
Mean Antenna 

Length 
Mean Wing 

Length 

Af 1.413333333 1.804444444 

Apf 1.226666667 1.926666667 

 
 
 
 
 
 

 

The line through the group means has a slope of -1.53 which is also the slope of 

the eigenvector:  (.8371/-0.5471) = -1.53.  Therefore it is clear that the weights on the 

original variables form a vector that is parallel to the line connecting the two group 

means.  In fact, if the original data were corrected for their (grand) mean (which is 

usually the case since the data is autoscaled), then this vector would define the line 

between the two group means.  Note, however, that this line is not the line shown in 
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Figure 2.5 for discriminating between the two species of Midges.  Rather, it is the line 

“perpendicular” (with respect to an inner product induced by the pooled covariance array) 

to the dividing boundary shown in Figure 2.5 The line with slope -1.53 (passing through 

the grand mean) is the subspace that the original data would be projected onto in order to 

produce the so-called discriminant scores. These scores are the distances between the 

projected grand mean of the raw data and the projected ordered pairs. The distinctions 

between dividing boundaries in the original measurement space and the lower-

dimensional scores will become relevant later as we work to understand the differences 

between CDA and the likelihood approach. 

There is no inherent classification rule that emerges as part of the language of 

canonical variates.  Indeed, the primary focus of canonical variates analysis is visual: take 

data in higher dimensions, compute the first two or three “canonical scores” and plot 

them where you can see them and look for separation.  The two-dimensional score plots 

are often called “territory plots” and reflect the imposition of an ad hoc classification 

rule.  The way the paradigm has developed; there is no discussion of an actual 

classification rule, only a prescription for how one can create optimally separated scores. 

For this reason, scientists and engineers have often employed the following reasoning 

when using canonical variates. 

• Start with p-dimensional data on g groups 
 
• Compute the first k (often k = 2) discriminant scores 

 
• Compute the k-dimensional mean for each of the score groups 

 
• Classify an unknown into the group that exhibits the closest group mean 

(score), where “closest” is in terms of the Euclidean distance. 
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• Evaluate the goodness of this rule by cross-validating on the original training 
set data and record the percentage of misclassifications. 

 
This is a perfectly rational way for a scientist or engineer to proceed.  However, 

there can be no immediate claim of optimality with the imposition of this ad hoc rule, 

other than the mathematical assurance that the scores originate from a process that is 

optimal in the sense of the original problem posed by Fisher, which, granted, is an 

important sense of optimality. However, this rule can also be claimed to minimize 

theoretical misclassification rates if enough scores are used, which will be explained 

below.   

Example 2: Iris Data Set 
The data consists of 50 samples from each of three species of Iris (Iris setosa, Iris 

versicolor, and Iris virginica).  Each sample is represented by four features: septal length, 

septal width, petal length, and petal width. Robert Fisher [29] developed a classification 

model to identify the species of Iris using a combination of these four features. Figure 2.5 

shows a score plot of the two canonical variates of the autoscaled Iris data, and Figure 2.6 

shows a score plot of the two largest principal components of the autoscaled Iris data.  If 

information about species lies in the directions of maximum variance, then it should not 

come as a surprise that principal components analysis and canonical variates yield similar 

scatter plots. The conclusion that one can draw from this data is that the bulk of the 

information encoded by these four features is about species.    
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Figure 2.5.  Score plot of the two largest canonical variates of the autoscaled Iris data.  (1 
= Iris setosa, 2 = Iris versicolor, and 3 = Iris virginica)   
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Figure 2.6.  Score plot of the two largest principal components of the autoscaled Iris data 
set.  (1 = Iris setosa, 2 = Iris versicolor, and 3 = Iris virginica) 
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 Although PCA is a nonsupervised pattern recognition technique, chemists often 

use it to classify data.  There are a number of advantages in using PCA to classify 

chemical data.  If the data have been collected with due care, one would expect that only 

the larger principal components would contain information about the class membership 

of the samples in the data set since most of the information in the data should be about 

the effect of interest. That is to say, the variability in the data would, ideally, be very 

small, except for that induced by class differences.  When this is the case, PCA will 

usually be all that one needs.    Further, if our problem is unstructured in the sense that no 

a priori class structure is known, then classical discriminant techniques will not apply 

and PCA may be an adequate alternative for data where the among groups variability 

dominates. 

Example 3: Ant Data Set 
This data set consists of gas chromatograms of cuticular hydrocarbon extracts 

obtained from the cuticles of 134 red fire ant samples.  Each sample contains the 

hydrocarbons extracted with hexane from the cuticles of 100 individual ants.  The 

hydrocarbon fraction analyzed by gas chromatography was isolated from the 

concentrated hexane washings by means of a silicic acid column.  Five major 

hydrocarbon peaks were identified and quantified by gas chromatography/mass 

spectrometry: heptacosane, 13-methylheptacosane, 13,15-dimethylheptacosane, 3-

methylheptacosane, and 3,9-dimethylheptacosane in order of elution from the packed 

OV-17 GC column used.  An internal standard was used for quantitation.  Each gas 

chromatogram was normalized using the weights of the collected ants.  In this study, ant 

samples were obtained from four different colonies (E, J, P, and Q).  Figure 2.7 shows a 

score plot of the first two canonical variates of the autoscaled data, and Figure 2.8 shows 
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a score plot of the two largest principal components of the autoscaled data. It is evident 

from an examination of these two score plots that information about colony is not 

oriented along the direction of maximum variance, which would suggest that most of the 

information in the five features is not about the colony of origin of the ants.   Further 

details about this data can be found elsewhere [30, 31]. 
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Figure 2.7.  Score plot of the two largest canonical variates of the autoscaled and 
normalized ant data. (1 = Colony E, 2 = Colony J, 3 = Colony P, and 4 = Colony Q) 
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Figure 2.8. Score plot of the two largest principal components of the autoscaled and 
normalized ant data.  (1 = Colony E, 2 = Colony J, 3 = Colony P, and 4 = Colony Q) 

 

Canonical discriminant analysis, in the spirit of PCA and many other exploratory 

multivariate techniques, focuses on the optimal construction of linear combinations of the 

original measurement variables. Unlike PCA, the goal of CDA is to find linear 

combinations that best separate a pre-defined group structure.  In this sense “canonical 

variates” are better suited for discrimination in structured problems than are principal 

component scores.  However, the weights (eigenvectors) that ultimately define the 

canonical scores do not partition the original measurement space into orthogonal 

subspaces (which is the case with PCA).  This means, for example, that distances 

between points in the original measurement space will not necessarily be the same as the 
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distances between their corresponding canonical scores. Furthermore, canonical variates 

cannot be extracted from data when the number of features exceeds the number of 

samples, which is a situation discussed at length in this chapter and subsequent chapters 

in this thesis.   

2.5.2 Linear Discriminant Analysis (LDA) 
 

As noted above, canonical discriminant analysis is couched in a language of 

dimension reduction, scores, and loadings, in much the same way as PCA.  However, the 

formal statistical notion of linear discrimination is not that of canonical variates, but 

rather is derived from a more formal encounter with likelihoods and, in the case of 

multivariate normal data, intimately related to the work of Mahalanobis.  On the surface, 

the goals of canonical variates and linear discriminant analysis are very different.  

Canonical variates focuses on optimal group separation with the classification rule often 

imposed in a rational, though ad hoc fashion.  The so-called “likelihood” based approach 

is focused on the derivation of an optimal classification rule at the outset of the process. 

In that sense, it is more steeped in statistical theory.  The basic set up, which is presented 

for two groups, to keep the notation simple, is as follows 

• Assume two groups: G1 and G2, governed by densities f1 and f2.    

• Have some notion of prior probability of group membership:  π1 and π2 

The rule that minimizes the probability of misclassification is given by: 
 

 Likelihood Discriminant Rule  
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In the case of (multivariate) normal densities, with group means μ1 and μ2, equal 

covariances Σ, and equal prior probabilities, this rule takes the following form: 

 

 

 
 
 
 

Normal Likelihood Discriminant Rule 
Classify an unknown x  G1 iff the   t 1 t 1

1 1 2 2( ) ( ) ( ) ( )− −− − ≤ − −x μ Σ x μ x μ Σ x μ

In practice, the population means, μi, and the theoretical covariance matrix, Σ, are 

replaced by estimates of these parameters from the data. This likelihood perspective, 

which for multivariate normal data amounts to classifying the data according to a 

minimum Mahalanobis (“standardized”) distance, will minimize the total (theoretical) 

probability of misclassification.  That is why this perspective on classification is often 

referred to interchangeably as both a “Mahalanobis distance” approach and a “likelihood” 

approach. 

Canonical variates and likelihood-based linear discriminant analysis provide the 

most elementary perspectives on linear classification of data.  However, there are some 

other issues that need to be addressed which offer unification of these two perspectives 

on classification.  An important question to ask is whether the perspective provided by 

canonical variates, with the ad hoc rule imposed at the score level is the same as that 

provided by the Mahalanobis distance approach.  Assuming g groups, if g-1 canonical 

scores are computed, and the Euclidean distance is calculated between each sample point 

in the (g-1)-dimensional score plot and each class mean and the sample is assigned to the 

class with the smallest mean Euclidean distance, then the aforementioned classification 

rule will have the same theoretical error rate as the Mahalanobis distance rule applied in 

the original p-dimensional space.   
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While this is an intriguing mathematical observation, it has profound 

ramifications.   When canonical variates are employed, typically only one or two scores 

are retained since the emphasis is on visual separation.  If a Euclidean distance nearest-

mean classification scheme is employed based on only two scores in a problem where g > 

3, then no theoretical claim to “best rule” can be given, at least not in the sense of 

minimizing misclassification rates.  This is not to say that our ad hoc rule is unreasonable 

or even significantly less than optimal in some sense; it may in fact perform quite well.   

We would only caution that language matters.  In the absence of theoretical claims one 

can always assess the practical performance of any classification rule by cross-validation 

[32] on the training set, or by how it performs on a prediction set. 

In what sense is this rule “linear”?   This approach is linear in the data x in the 

sense that an optimal discriminant is of the general (matrix) form +Ax b . Geometrically, 

this corresponds to imposing “flat” (linear) boundaries in p-dimensional space to partition 

up the pattern space into g mutually exclusive regions for classification.  Linearity occurs 

(for multivariate normal problems) because of the assumption that individual class 

covariances are the same in all classes.  If this assumption is not true, then these linear 

rules would not be optimal and a quadratic rule would be preferred.  This is discussed in 

the next section. 

Claims to optimality, while important, are theoretical.  However, it is useful to 

have theoretical ideas of how to proceed at the practical level.  For example, it would not 

be possible to understand the original purpose of “regularized” discrimination (to be 

discussed later) without understanding that practical misclassification rates do not always 

mirror theory.  It is possible for class covariance arrays to be markedly different, but for 
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linear classification rules to outperform quadratic rules in practice, when individual group 

sample sizes are very small, which gives rise to errors in estimating the class covariance 

matrix from the original data.. 

2.5.3 Quadratic Discrimination (QDA) 
 

Let us assume that it is not plausible to treat covariance matrices in each of the g 

groups as equal.  Therefore, the linear rule would no longer be optimal.  If one were to 

allow for each class covariance matrix, , to be different then the following classification 

rule would be optimal for (multivariate) normal data:  

iΣ

Quadratic Discriminant Rule (Alternate Statement) 

{ }1

j
Assign an unknown  iff  i = index for the min log ( ) ( )t

i j i i iG ⎛ ⎞ −
+⎜ ⎟

⎝ ⎠
⇒ − − x Σ x μ Σ x μ

 
There are several things worth noting about this rule: 
 
• This rule is not limited to the Mahalanobis distance computed for each class 

but is specific for each class covariance matrix. The determinant of the 
individual covariance matrix (which corresponds to the volume of space 
occupied by the sample points representing the class is also a part of the rule. 

   
• This rule is not linear. It is quadratic in the data x, by virtue of these 

Mahalanobis-like terms depending on the group. Geometrically this simply 
means that “flat” boundaries are no longer used to separate groups in the p-
dimensional space. Instead, curved (“quadratic”) boundaries are now 
employed to do the classification. 

 
• There is no analogy to canonical variates, so any discussion involving 

canonical discrimination is no longer relevant. Canonical variates analysis is a 
linear paradigm.  If the covariances are different, then the rule stated above 
will, in theory, outperform the linear rule.    

 
2.5.4 Shrinkage and Covariance Stabilization 
 
 When the number of features is large compared to the number of samples in the 

training set, a linear classification rule will outperform a quadratic rule.  There are a few 
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ways to think about this.  On the one hand, this is an issue about numerical stabilization, 

with the condition number of the (pooled) common covariance estimate used in linear 

discriminant analysis being notably better (less noisy) than that of any of the individual 

covariance matrices. From a statistical perspective one can think of this in terms of 

having fewer parameters to estimate from the available data and, therefore, the variances 

associated with those estimates will be smaller. 

In any case, the concept of “partially pooled” estimates originated out of a desire 

to have some of the benefits of increased stability of the linear approach, without being so 

restrictive as to ignore the essential difference in the covariance that may be present.  

This has led to a number of different pooling strategies, but the one that is most widely 

known was popularized by Frank and Friedman [33], who called their method 

“regularized discriminant analysis” (RDA), which is the generic name that 

chemometricians have attached to the entire collection of ideas and algorithms that focus 

on shrinkage and stabilization.  One should be cognizant of the fact that RDA is a very 

specific type of shrinkage model and uses a very specific call on how parameters in that 

model are estimated. For the sake of convenience and expedience, there will be no 

attempt to differentiate among the various shrinkage methods that have been published in 

the literature. 

To make some sense out of this, it will be necessary to introduce some notation 

that has been ignored until now.  In LDA, there is an assumption of a common covariance 

matrix for all groups.  The usual estimate of this matrix is found by pooling the individual 

estimates, in exactly the same way pooled variances are estimated in t-tests on means, 

assuming a common variance across the populations: 
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When an estimate is referred to as having been “shrunk”, what is meant is that a 

new matrix has been formed which is a convex combination of the original matrix and 

one that is more stable (i.e., lower condition number), such as  or the identity matrix.  

Sometimes the covariance matrix is shrunk towards both  and I.  In Friedman’s RDA, 

for example, each  is first shrunk toward  in a particular way, and then the resulting 

compound matrix is, in turn, shrunk towards the I matrix in another carefully prescribed 

way. The resulting estimate is a function of two “shrinkage parameters,” λ for the pooled 

covariance matrix and γ for the identity matrix. Both λ and γ will have values that vary 

between 0 and 1. If λ = 0 and γ = 0, then we have QDA, whereas if λ = 1 and γ = 0, we 

have LDA. Thus, QDA and LDA are special cases of RDA.  In RDA, the optimum value 

for λ and γ is estimated using a simple, but elegant cross-validated error rate performed 

on a unit square defined by λ and γ.  These two parameters are varied by increments of 

0.1 on the grid. In other words, a vector of misclassifications as a function of the 

shrinkage parameters, λ and γ, is generated, with the values of the evaluated parameters 

corresponding to the lowest error rate selected.   

pS

pS

iS pS

The problem of covariance stabilization in classification was first tackled by 

Svante Wold in 1976 [34]. Wold recognized the fact that QDA and LDA are guaranteed 

to produce an optimal classification surface, even though these two methods could 

seldom be applied to classification problems in chemistry because there are usually too 

few samples to reliably estimate the inverse of the covariance matrix. Wold addressed the 
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problem of covariance stabilization in discriminant analysis by developing a biased 

estimate of the covariance matrix. He called his method SIMCA [35], which is similar in 

form to QDA, where the inverse of the covariance matrix for each class in the data set is 

approximated by a principal component representation involving the so-called secondary 

eigenvectors.  In other words, the inverse of the class k covariance matrix Ck
-l can be 

represented by the spectral decomposition 
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where υjk is the jth principal component of Ck, λjk is the corresponding eigenvalue, and p 

is the number of features in the data. When reconstructing Ck
-l, it is the smaller 

eigenvalues, not the larger ones that are the most important. However, smaller 

eigenvalues are difficult to reliably estimate in small sample high dimensional settings. 

By taking the average of these smaller eigenvalues, Wold hoped to filter out the noise in 

them and hence obtain more reliable estimates of them: 
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where A is the number of principal components necessary to describe class k.  (Thus, the 

maximum likelihood estimate of the inverse of the covariance matrix, which conveys 

information about the size, shape, and orientation of the data cloud for each class, is 

being replaced by a principal components estimate.)  For problems with a low object to 

descriptor ratio, Wold has shown that his bias estimate is usually a better approximation 

of the inverse of the variance covariance matrix than maximum likelihood estimates.  
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2.5.5 Summary 
 

From the point of view of “optimality,” LDA or QDA should be used for 

classification when it can be used.   That is, with the context properly defined, there is no 

better classification paradigm from the point of view of minimizing theoretical 

misclassification probabilities than LDA or QDA, at least within the rational framework 

provided by statistical theory. We have already established the sense in which LDA and 

CDA, paired with a sensible classification rule, are equivalent, and when they are not 

equivalent.   Both are useful and rational, and they are sometimes identical.   

A fundamental problem associated with the use of LDA or QDA is the requirement 

that the associated pooled or individual within-groups covariance matrices be invertible.  

For data sets with collinear features or with significantly more features than observations, 

this may not be the case.  In these situations, a form of ridging or shrinkage can be 

employed to stabilize these matrices. Alternatively, one can use PCA to reduce the 

dimensionality of the data, and then use the scores from principal component analysis as 

descriptors for LDA or QDA.  Either paradigm will work provided that most of the 

features in the data set are not noisy. Otherwise, signal is averaged with noise over a large 

number of variables with a discernible loss in signal amplitude if the noisy features are 

not removed from the data.  In these situations, feature selection, which is the subject of 

the next chapter, must be applied to increase the signal to noise ratio of the data by 

discarding variables that are not related to the classification problem of interest. 

While it may not be a particularly startling revelation that PCA is not the best 

paradigm to use for discrimination (since it is only capable of identifying total variability 

and is not focused on distinguishing “between-groups” and “within-groups” variability), 
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principal component scores, nevertheless, are often used in classification problems, 

sometimes as an end in and of itself, and sometimes as a first step to facilitate the 

reduction in dimension. The literature persists in publishing papers wherein LDA (or 

QDA) could have been used to classify the data, since there were no apparent problems 

with dimensionality or numerical stability, but instead PCA was used.  This may be 

because the user is more familiar with PCA than LDA and QDA or because of readily 

available software for PCA.  Granted that some scientists prefer to use principal 

component analysis when it “works”, because it allows for an unstructured type of 

classification as there is no a priori inherent group structure that has to be specified, it 

does not constitute a general solution to problems in discriminant analysis involving high 

dimensional data.  If between-groups variability dominates within-groups variability, as 

is often the case in chromatographic studies, for example, principal component analysis 

score plots will show clustering on the basis of the class membership distribution of the 

samples and provide results that are comparable to LDA or QDA. [36]. 

 
 
 

 
 
 
 
 
 
 
 
 
 
      
   
   

 
 



CHAPTER 3 
 
 

GENETIC ALGORITHMS FOR FEATURE SELECTION 
AND PATTERN RECOGNITION 

 
 
 
 
 
 
 
 
3.1 INTRODUCTION 
 
 Pattern recognition or classification is one of the more common techniques used 

in chemometrics.   Pattern classification involves the assignment of unknown samples 

into distinct categories using a vector of variables that are viewed as a pattern.  Thus, 

samples are categorized using characteristic features or “patterns” that are contained in a 

data vector.  Pattern recognition got its start in chemistry when Edmund Malinowski 

began to apply principal component analysis to problems involving the modeling of 

chemical data [37].  He discovered that it was possible to elucidate the nature of the 

factors influencing the data, often the fundamental question in a chemical problem.  

Later, a few scientists began to apply these techniques to problems in analytical 

chemistry.  They recognized the fact that many problems in analytical chemistry could be 

structured in a form amendable to solution by the same techniques used in optical and 

audio recognition.  Algorithms could be trained to recognize chemical structures based on 

mass spectral or infrared absorbance data or classify samples from a set of chemical 

measurements [38, 39].  The dramatic increase in the number and sophistication of 

chemical instruments triggered interest in the development of pattern recognition 
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techniques that could extract information from the large arrays of data that were being 

routinely generated.  Much of the growth in the field of pattern recognition that has 

occurred was and continues to be driven by the press of too much data. 

Problems arise when applying pattern recognition methods to multivariate 

chemical data.  First, classification success rates often vary with the pattern recognition 

method chosen.  Second, low classification success rates for the prediction set can be 

obtained despite a linearly separable training set.  Third, discriminant development is 

difficult to automate.  Potentially, these problems can be remedied since all discriminant 

analysis techniques will perform equally well when the problem is simple.  By 

identifying the appropriate features, a “hard” problem can be reduced to a “simple” one.  

Therefore, feature selection is the crucial step in any pattern recognition study.  The 

feature selection method used should be multivariate in nature (see Figure 3.1) to ensure 

that crucial features are not discarded from the analysis.  Filters, which select variables by 

ranking them using either the Fisher ratio or the variance weight [40], are often preferred 

because of their computational and statistical scalability. However, the variables selected 

by filters are usually not optimal for a given predictor because they score features 

individually and independent of each other and as such are at a loss to determine which 

feature combinations give the best classification results. 

 Our own experience in pattern recognition is that irrelevant features often 

introduce so much noise that a good classification of the data cannot be obtained. When 

these irrelevant features are removed, a clear and well-separated class structure can be 

found.  The deletion of irrelevant variables is, therefore, a major goal of any pattern 

recognition study since noisy variables increase the chances of false classification and 
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decrease the classification success-rates obtained with new data. For averaging 

techniques such as LDA and QDA (see Chapter 2), feature selection is vital since signal 

is averaged with noise over a large number of variables with a loss of discernible signal 

amplitude when noisy features are not removed from the data. With neural networks (see 

Chapter 4), the presence of irrelevant measurement variables may cause the network to 

focus its attention on the idiosyncrasies of individual samples due to the net’s ability to 

approximate a variety of complex functions in higher dimensional space, thereby causing 

it to loose sight of the broader picture, which is essential for generalizing any relationship 

beyond the training set.  There are many other potential benefits associated with feature 

selection, for example, better data visualization and better understanding of the essential 

features that play an important role in governing the behavior of the system under 

investigation.   

 Feature selection is also necessary because of the sheer enormity of many 

classification problems, e.g., DNA array data, which consists of thousands of descriptors 

per observation but only 50 or 100 observations distributed equally between two classes.  

Feature selection can improve the reliability of a classifier because noisy variables will 

increase the chances of false classification and decrease classification success-rates 

obtained on new data. It is important to identify and delete features from the data set that 

contain information about experimental artifacts or other systematic variations in the data 

not related to legitimate chemical differences between the classes represented in the 

study.  Feature selection can reduce measurement and storage requirements for the 

classifier as well as training and utilization times.   
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Figure 3.1.  Data set consisting of two classes: ovals are acceptable and rectangles are 
unacceptable samples.  Each sample is characterized by two measurements: x1 and x2.  Univariate 
criteria for feature selection such as the Fisher ratio or the variance weights would rank x1 and x2 
as uninformative variables.   
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Figure 3.2.  A plot of the two largest principal components developed from all of the features in 
the data set does not show class separation.  When principal components are developed from the 
four features that contain information about class membership, sample clustering on the basis of 
class is evident in a principal component plot of the feature selected data. 

After Feature Selection
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The approach to feature selection described in this chapter is based on a very 

simple idea - identify a set of measurement variables that optimize the separation of the 

classes in a plot of the two or three largest principal components of the data. Because 

principal components maximize variance, the bulk of the information encoded by these 

features is about differences between classes in the data set.  This idea is demonstrated in 

Figure 3.2, which shows a plot of the two largest principal components of a data set prior 

to feature selection.  The data set consists of 30 samples distributed between 3 classes 

(good, better, and best).  Each sample is characterized by 10 measurements.  However, 

only 4 of these measurements contain information about the classification problem.  

When a principal component map of the data is developed using only these 4 

measurements, sample clustering on the basis of class is evident. 

Using this approach to feature selection, an eigenvector projection of the data is 

developed that discriminates classes in the data set by maximizing the ratio of between- 

to within-group variance (which is the same criterion that is used in CVA to develop 

projections of the data for classification).  This approach to feature selection has a 

number of advantages.  It avoids overly complicated solutions that do not perform as well 

on the prediction set because of over-fitting, which is a serious problem with most 

wrapper methods.  Although a principal component plot is not a sharp knife for 

discrimination, if we have a principal component plot that shows clustering, then our 

experience is that we will be able to predict robustly using this set of descriptors. For 

redundant features, noise reduction and better class separation can be achieved if PCA is 

used to characterize the information content of the redundant measurement variables.  
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Furthermore, a principal component plot displays variability between large numbers of 

samples and shows the major clustering trends present in the data; the user can visually 

identify the presence of confounding relationships in the data, thereby gaining insight 

into how the decision is made for a classification.    

To identify these features, it is necessary to use a genetic algorithm [41, 42], 

which employs a survival of the fittest approach. Genetic algorithms exploit knowledge 

contained in a population of solutions (i.e., feature subsets) to generate new and better 

solutions while simultaneously using random choice as a tool to guide a highly exploitive 

search of the data.  Genetic algorithms do not make any assumptions about the geometry 

of the response surface beyond the fitness of a potential solution to the optimization 

problem.  Discontinuities or singularities, which can rule out the use of some derivative 

based methods, do not pose a problem for genetic algorithms because many points in 

different regions of the search space are simultaneously investigated while searching for 

the best solution.  Therefore, results can be quite robust in terms of the starting location.  

The genetic algorithm’s search of the solution space is efficient, and the computational 

environment offered by a genetic algorithm can be readily adjusted to match a particular 

application.  Genetic algorithms are best suited to problems whose underlying 

optimization function is unknown, poorly understood, exceedingly complex, or error 

prone, or some combination thereof, which is the case with feature selection.   

3.2 Genetic Algorithms 
 

Genetic algorithms were developed by Holland [43] as part of a study on adaptive 

processes.  They are based on the principles of natural evolution and selection.  The 

procedure builds a population of binary strings, each of which represents a possible 
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solution.  Fit solutions are allowed to live and breed.  A block diagram of the genetic 

algorithm for pattern recognition analysis is shown in Figure 3.3. 

Implementation of a genetic algorithm requires a population of strings (i.e., 

candidate solutions) and heuristics to manipulate them.  The actual procedure involves 

several interrelated steps.  First, an initial population of strings is generated. Each binary 

string represents a potential solution to the problem, i.e., a unique subset of features.  (For 

our applications, the length of the chromosome is equal to the number of features in the 

data set.) For a feature to be included in the subset, it is necessary for the corresponding 

bit in the string to be set at 1.  If the bit is set to 0, the feature is not included in the 

subset.  During each generation, the strings are decoded yielding the actual parameter set, 

which is sent to the fitness function for evaluation.  Each string is assigned a value by the 

fitness function, which is a measure of the quality of the proposed feature subset for the 

classification problem.   

Reproduction is implemented using three operators: selection, recombination, and 

mutation.  In selection, the fitness is used to select strings for recombination.  Solutions 

with a high fitness have a higher probability of being selected.  These solutions then 

undergo a structured yet randomized exchange of information with the expectation that 

good solutions will generate even better ones (i.e., recombination). Usually, a crossover 

operator is employed to generate new strings or solutions (see Figure 3.4).  Additional 

randomness or variability is achieved by the mutation operator, which flips the state of 

single bits based on certain probabilities.  This allows the genetic algorithm to explore 

other regions of the solution space.  If the genetic algorithm finds a better point, the genes 

from this point can invade the population, with the optimization continuing in a new 
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direction. The boosting algorithm adjusts the genetic algorithm’s internal parameters for 

the next iteration. The aforementioned procedure (fitness evaluation, reproduction, and 

adjustment of internal parameters) is repeated until a specified number of generations 

have been executed or a feasible solution is found.   

The selection criterion used for reproduction exhibits bias for the higher-ranking 

strings.  Hence, the new population is expected to perform better on average than its 

predecessor.  However, the reproductive operators also assure a significant degree of 

diversity in the population because of crossover and mutation.  This is shown by the 

schema theorem.  A schema also referred to as a similarity template [44] represents a set 

of chromosomes.  For example, the schema {1 * * * * * * 0} will match all chromosomes 

with eight bits that start with 1 and end with 0 with either 0 or 1 in positions 2 thru 7.  

Genetic algorithms use schema implicitly.  For a genetic algorithm operating on a 

population of chromosomes of fixed length l, there are 3l unique schema or patterns.  

Each chromosome is a member of 2l of them.   For example, {0.1} is a member of the 

following schema: {01}, {*1}, {0*}, and {**}.  When the fitness function of a genetic 

algorithm is evaluating a chromosome, it is also evaluating many schemas.  In a 

population of identical chromosomes, there are 2l schema present, and in a population of 

n unique chromosomes, there can be as many as n2l schema represented. Evaluating 

different chromosomes which are members of the same schema can be thought of as 

estimating the average value of that pattern.  Even though these averages are not 

explicitly calculated, the survival of the pattern and the number of representative 

chromosomes can be expressed in terms of these averages. 
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Figure 3.3.   A block diagram of the genetic algorithm for pattern recognition analysis 
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Let S be a schema present in the population at generation g.  Its multiplicity, m(S, 

g) is defined as the number of instances of S in the population at generation g.  The 

expected number of chromosomes which represents S in the next generation is given by 

Equation 3-1 (the schema theorem): 

( ))()1()
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)(1()(),()1,( So

mc p
l
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cfgSmgSm −⎟
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where m(S, g + 1) is the expected number of chromosomes representing schema S in the 

next generation (g + 1) based on the number of chromosomes representing schema S in 

the current generation, m(S, g).  The ratio of the fitness of the chromosome representing 

schema S to the average fitness of the population is given by _

)(

f

Sf
, and collectively m(S, 

g) _

)(

f

Sf
 is the likelihood that schema S is represented in the population.  Due to 

selection pressure alone, schema will grow or decay depending on their fitness [45].  

However, chromosomes selected for reproduction will undergo crossover and mutation.  

These operators can disrupt the schema S such that S is not present in the next generation.  

The second factor in Equation 3-1, ⎟
⎠
⎞

⎜
⎝
⎛

−
⋅− )

1
)(1(

l
Sdpc , accounts for the probability that S 

survives crossover; pc is the probability that a chromosome undergoes crossover. The last 

factor in Equation 3-1, ( ))()1( So
mp− , accounts for the probability that S survives the 

mutation operator.  Here, pm is the probability that a given bit is flipped, and o(S) is the 

order of S or the number of non-* bits in S.   
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 The consequence of a genetic algorithms use of schema is an implicit parallelism 

[45].  At each evaluation, the genetic algorithm is aware of a particular point in the 

fitness landscape because of the chromosomes it is evaluating.  According to the schema 

theorem, the genetic algorithm makes observations about areas of the search space based 

on the schema, which allows the genetic algorithm to focus its attention on “hot spots” or 

areas likely to have a high fitness in the solution space similar to that of a gradient 

descent search.  (In a gradient descent search, the value at a random position is 

calculated. The points around it are also inspected to calculate the direction and 

magnitude of greatest local descent.  A new point in that direction is sampled and the 

process is repeated until the minimum is reached.)  An obvious difference between these 

two methods (genetic algorithm versus gradient descent) is the number of points sampled 

per iteration. Even when the gradient descent method is modified to sample multiple 

points per iteration, the next point or set of points is near the last in the solution space, 

whereas genetic operators such as crossover and mutation produce points which are near 

or are distant from the parents in the solution space depending on the bits that are 

exchanged or flipped in the chromosome.  Consequently, a genetic algorithm is less 

likely to get stuck in a local minimum in the solution space. 

 Genetic algorithms are probabilistic, neither random nor deterministic.  This is 

demonstrated in the selection process where a chromosome’s chances of being selected 

are weighted against its fitness.  It is preferable that offspring are not produced in the 

same way each time.  This is addressed by assigning a probability to each reproductive 

function.  When two chromosomes are selected for reproduction, a mechanism is chosen 

according to its probability (P).  The user can assign pm equal to 0.01 and pc equal to 0.5. 
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This mixing of reproductive operations preserves a certain amount of variation in the 

population. 

3.3 PCKaNN 
 

The development of a genetic algorithm (GA) for pattern recognition analysis of 

chemical data, PCKaNN, has recently been reported in the literature [46-52].  The pattern 

recognition GA selects features that optimize the separation of the classes in a plot of the 

two or three largest principal components of the data. Because principal components 

maximize variance, the bulk of the information encoded by these features is about 

differences between classes in the data set. The pattern recognition GA is able to focus on 

those classes and/or samples that are difficult to classify as it trains by adjusting the 

values of the class and sample weights. Over time, the algorithm learns its optimal 

parameters in a manner similar to a neural network. The pattern recognition GA 

integrates aspects of artificial intelligence and evolutionary computations to yield a 

"smart" one -pass procedure for feature selection and pattern classification.  The various 

components of the pattern recognition GA are described below. 

Fitness Function 
The fitness function of the pattern recognition GA scores the principal component 

plots and thereby identifies a set of features that optimize the separation of the classes in 

a plot of the two or three largest principal components of the data.  Because principal 

component analysis is used to determine the information present in a given subset of 

features, it is precisely this variation in principal components (different coordinate system 

for each feature subset) that allows for meaningful comparisons to be made between sets 

of features.  
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The principal component plot used in the fitness function of the pattern 

recognition GA acts as an information filter.  Features sets are selected based on their 

principal component plots.  A good principal component plot can only be generated by 

features that maximize between to within group differences.  Hence, principal component 

analysis limits the search to these types of feature subsets, significantly reducing the size 

of the search space and also the probability of spurious or chance classification.  (An 

exhaustive search of the feature space is plausible using a genetic algorithm equipped 

with this fitness function, which is not the case with other wrapper methods that have 

been previously reported in the literature.) Features that contain discriminatory 

information about a particular classification problem are often correlated, which is why 

feature selection methods based on principal component analysis or other variance based 

methods are preferred to display the information content of the data.   

To facilitate the tracking and scoring of the principal component plots, class and 

sample weights, which are an integral part of the fitness function, are computed (see 

equations 3-2 and 3-3) where CW(c) is the weight of class c (with c varying from 1 to the 

total number of classes in the data set).  SWc(s) is the weight of sample s in class c.  The 

class weights sum to 100, and the sample weights for the objects comprising a particular 

class sum to a value equal to the class weight of the class in question. 
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Each principal component plot generated for each feature subset after it has been 

extracted from its chromosome is scores using the K-nearest neighbor classification 

algorithm [53]. For a given data point, Euclidean distances are computed between it and 

every other point in the principal component plot.  These distances are arranged from 

smallest to largest.  A poll is taken of the point’s Kc nearest neighbors.  For the most 

rigorous classification, Kc equals the number of samples in the class to which the point 

belongs.  (Thus, Kc usually has a different value for each class.) The number of Kc 

nearest neighbors with the same class label as the sample point in question, the so-called 

sample hit count, SHC(s), is computed (0 < SHC(s) < Kc) for each sample.  It is then a 

simple matter to score a principal component plot (see Equation (3-4).  First, the 

contribution to the overall fitness by each sample in class 1 is computed, with the scores 

of the samples comprising the class summed to yield the contribution by this class to the 

overall fitness.  This same calculation is repeated for classes 2, 3, etc., with the scores 

from each class summed to yield the overall fitness, F (d).    

∑∑
∈

××=
c cs c

4)-(3       SW(s)SHC(s)
K
1)(dF

 
To understand scoring, consider a data set with two classes, which have been 

assigned equal weights.  Class 1 has ten samples, and class 2 has 20 samples.  For 

uniformly distributed sample weights, class 1 samples will have a weight of 5 and class 2 

samples will have a weight of 2.5, since each class has a weight of 50 and the sample 

weights in each class are uniformly distributed.  Suppose a sample in class 1 has, as its 

nearest neighbors, seven class 1 samples in a principal component plot developed from a 

particular feature subset.  Hence, SHC(s)/Kc = 7/10, and the contribution of the sample to 

the fitness function for the particular feature subset equals 0.7*5 or 3.5.  Multiplying 
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SHC/Kc by SW(s) for each sample and summing up the corresponding product for the 30 

samples in the data set yields the value of the fitness function for this particular feature 

subset. 

Reproduction 
Selection, crossover, and mutation operators are applied to the chromosomes. Fit 

strings are retained and selected for breeding, a process called selection, which is the first 

step toward population reorganization. The fit feature subsets are then broken-up, 

swapped, and recombined, creating new feature subsets, which are introduced into the 

population of potential solutions. This process is called crossover (see Figure 3.4). In this 

study, the selection and crossover operators are implemented by ordering the population 

of strings, i.e. potential solutions, from best to worst, while simultaneously generating a 

copy of the same population and randomizing the order of the strings in this copy with 

respect to their fitness (see Figure 3.5). A fraction of the population is then selected as per 

the selection pressure, which is set at 0.5. The top half of the ordered population is mated 

with strings from the top half of the random population, guaranteeing the best 50% are 

selected for reproduction, while every string in the randomized copy has a uniform 

chance of being selected.  This is due to the randomized selection criterion imposed on 

strings from this population. If a purely biased selection criterion were used to select 

strings, only a small region of the search space would be explored.  Within a few 

generations, the population would consist of only copies of the best strings in the initial 

population.  

For each pair of strings selected for mating, two new strings are generated using 

three-point crossover.  A mutation operator is then applied to the new strings. The 

mutation probability of the operator is usually set at 0.01, so 1% of the feature subsets are  
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Figure 3.4.  Single point crossover: alleles are swapped while simultaneously preserving their 
position.   
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Figure 3.5.  The top half of the ordered population is mated with strings from the top half of the 
random population, guaranteeing the best 50% are selected for reproduction, while every string in 
the randomized copy has an equal chance of being selected to ensure sufficient diversity in the 
population. 
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selected at random for mutation. A chromosome marked for mutation has a single 

random bit flipped, which allows the GA to explore other regions of the parameter space.  

The resulting population of strings, both the parents and children, are sorted by fitness, 

with the top φ strings retained for the next generation. Because the selection criterion 

used for reproduction exhibits bias for the higher-ranking strings, the new population is 

expected to perform better on average than its predecessor. The reproductive operators 

used, however, also assure a significant degree of diversity in the population, since the 

crossover points of each chromosome pair is selected at random.  

Adjusting Internal Parameters 
The fitness function of the GA is able to focus on those samples and classes that 

are difficult to classify by boosting their weights over successive generations.  (Boosting 

the weights is referred to as adjusting the internal parameters in the block diagram of the 

genetic algorithm shown in the previous section.)  In order to boost, it is necessary to 

compute both the sample-hit rate (SHR), which is the mean value of SHC/Kc over all 

feature subsets produced in a particular generation (see Equation 3-5), and the class-hit 

rate (CHR), which is the mean sample hit rate of all samples in a class (see Equation 3-6).  

φ in equation 3-5 is the number of chromosomes in the population, and AVG in Equation 

3-6 refers to the average or mean value. During each generation, class and sample 

weights are adjusted by a perceptron (see Equations 3-7 and 3-8) with the momentum, P, 

set by the user. (g + 1 refers to the current generation, whereas g is the previous 

generation.)  Classes with a lower class hit rate and samples with a lower sample hit rate 

are boosted more heavily than those classes or samples that score well.   
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T  the class weights is monitored throughout the run.  If the average 

ning its optimal class weights.  Once this tolerance has been reached, the class 

weights become fixed.  This initiates the second stage.  The momentum, which controls 

the rate at which the sample weights are changed, is initially assigned a value of 0.8 while 

the genetic algorithm is learning, but the momentum is, adjusted to 0.4 once the class 

weights become fixed.  These values have been chosen in part because they facilitate 

learning by the genetic algorithm but do not cause a particular sample or class to 

dominate the calculation, which would result in the other samples or classes not 

contributing to the scoring by the fitness function. 

Boosting is crucial for the successful operation of the pattern recognition GA 

because it modifies the fitness landscape by adjust

.  This helps to minimize the problem of convergence to a local optimum.  Hence, 

the fitness function of the GA changes as the population is evolving towards a solution 
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using information from the population to guide these changes.  A block diagram of the 

boosting algorithm for the pattern recognition GA is shown in Figure 3.6. 

 

 

h is used to adjust 

mple weights are updated using the class and 

sample hit-rates from the previous generation.  Evaluation, reproduction, and boosting of 

potenti

There are a number of parameters that affect the performance of the pattern 

recognition GA including the choice of crossover and mutation rate and the configuration 

of the initial population. Our experience with the pattern recognition GA has shown that 

Figure 3.6.  Block diagram of the pattern recognition GA with boosting whic
the weights of difficult classes and/or samples. 
 

End Criterion  
During each generation, class and sa

al solutions are repeated until a specified number of generations are executed or a 

feasible solution is found.   

GA Parameters 
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 crossover works.  However, the number of features in each feature subset of the 

initial population should also be treated as an important parameter.  If the feature sets are 

initially sparse, the probability of including features, which are neither good nor bad, is 

low since the principal component based fitness function does not provide additional 

points for adding them.  Conversely, the probability of removing these features from less 

sparse feature subsets is also low since there is no advantage in deleting them.  For data 

sets with a large number of good features, it is probably best not to employ sparse feature 

subsets in the initial population.  Otherwise, it may take thousands of generations to 

ensure the inclusion of all good features in the solution. 

To ensure removal of features, which are neither good nor bad, the corresponding 

loading plot that is generated with each principal component plot can be examined by the 

pattern recognition GA.   If the loadings for a particul

al components, the feature is a likely candidate for removal since its contribution 

to the principal component plot is negligible.  Culling can be implemented every 10 

generations, for example, to check for features, which are neither good nor bad.  During 

the generation when culling is implemented, crossover is not performed on the strings.   

Varying the composition of the initial population or the mutation rate can prove 

beneficial in optimizing a solution but this fact should not be viewed negatively as 

suggested by some workers since it allows the user to vary the search of the solutio

nsuring a more careful analysis of the data.  Given the small number of iterations 

required for a solution (usually less than 100), the advantages of using these two GA 

parameters as search variables outweighs any disadvantage that might be incurred due to 

increased complexity. 
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A drawback of a genetic algorithm is that one cannot control the rate of 

convergence, but convergence is not what we are seeking.  A genetic algorithm can evade 

local optima, but this does not mean that convergence necessitates an optimal solution.  

Conver

 

an be found using the Hopkins 

statistic

gence as a benchmark for the success of a GA would suggest that any genetic 

algorithm provides a deficient solution.  However, the quality of the best solution found – 

and how quickly and reproducibly it is found – is the guide being used to determine the 

success of this method.  The ease, speed, and reproducibility of our pattern recognition 

GA have been demonstrated on a variety of data sets.  We attribute the success of the 

pattern recognition GA to the large number of optimum solutions that exist in the data as 

a result of the high degree of collinearity between measurement variables in the data set.     

3.4 Incorporation of Transverse Learning in PCKaNN 

Projections of data that reveal clustering are valuable for identifying relationships 

between properties and the measurement variables for sets of observations.  Feature 

subsets that reveal interesting projections of the data c

 [54] to score the principal component plots.  The Hopkins statistic (H), which is 

a fast and simple method, does not make any assumptions about the data in order to 

assess clustering. It is defined as  
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where Uj is the distance between a randomly selected location on the PC plot and the 

data point nearest to it.  The x, y coordinates f  

ndom number generator.  Wj is the distance between a randomly selected data point 

or each location are obtained from a
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and its nearest neighbors in the same principal component plot.  The number of random 

locations and the number of data points selected will be the same and are usually set as 

10% of the number of data points in the data set.  If the data are well clustered, ΣUj will 

be significantly larger than ΣWj since most of the PC plot will be barren of points and it 

is likely that a randomly selected location would not be occupied by a data point.  If the 

data are randomly distributed in the PC plot, then one would expect that ΣUj and ΣWj 

would be similar in magnitude since the random location would either be occupied by a 

data point or a data point would be in its vicinity.  For this reason, the value of the 

Hopkins statistic varies from 0.5 (no clustering, ΣUj = ΣWj) to 1.0 (perfect clustering, 

ΣUj >> ΣWj).  Because H varies from 0.5 to 1.0, we have found that it is necessary to 

scale its values using a sigmoid transfer function.   

For underdetermined data sets (i.e., more features than objects), we recognize the 

fact that even quite well behaved multivariate normal distributions with no outliers will 

have variables that produce eigenvector projections containing points that appear as 

outliers in a principal component plot. An index such as the Hopkins statistic, which 

generates high values for such projections, will tend to be distracted from other types of 

structures. Therefore, the Hopkins statistic must be enhanced. Recently an influence 

function [55] for principal components has been developed, which can identify 

observations with high leverage (i.e., outliers) and deweight their contribution to the 

Hopkins statistic score thereby ensuring that the Hopkins statistic is a meaningful metric 

to assess clustering of the data points in a principal component plot. The robustification 

procedure used for the Hopkins statistic is defined in Equation 3-10 where 
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max(influencei) is the influence value (which is a fraction) for the data point having the 

greatest influence on the eigenvalue of the ith principle component. 
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rojection pursuit [56] or ponent analysis [57]. However, a moment-

based i

f principal component analysis for identification of features that will 

cause t
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ative to the Hopkins statistic is a mom

independent comp

ndex such as the kurtosis also achieves high values for projections that contain 

these so-called outliers. Unlike the Hopkins statistic, it is not apparent how one would go 

about robustifying a moment-based index while simultaneously preserving its 

calculability. According to Friedman [58], trimming or other methods based on projected 

rank do not work.  

Previously, projection pursuit and independent component analysis had been 

considered in lieu o

he data to cluster.  These two techniques could easily have been substituted for 

principal component analysis in the pattern recognition GA but this idea was rejected for 

several reasons.  First, the added computational burden due to substitution of projection 

pursuit or independent component analysis dramatically increased the run time.  Second, 

independent component analysis has the problem of ordering.  One does not know in 

advance which independent components would contain information about class 

membership.  Third, many of the variables in the data sets studied had small Fisher or 

variance weights even though they were found to be informative in a multivariate setting.  

In some cases, we have examined histograms of individual descriptors identified by the 

pattern recognition GA, and the histograms revealed a mound shape pattern suggesting 

that these variables are most likely Gaussian.  Therefore, principal component analysis is 
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the appropriate technique.  Fourth, we have compared the performance of projection 

pursuit and PCA using data sets and have found no significant difference between these 

methods for classifying multivariate data.  For all of these reasons, this line of 

investigation has not been pursued further although we are currently rethinking this 

issue. 

 Another advantage of the Hopkins statistic is that it can be directly coupled to 

PCKaNN, creating a fitness function that utilizes transverse learning [59].  For data sets 

with on

antages, the new fitness function does not take full advantage 

of the power that is associated with boosting.  To overcome this problem, each 

ly a small amount of labeled data and a large amount of unlabeled data (e.g., 100 

to 500 observations in a 10,000 object database), this approach is preferred since it will 

perform better than a learning model developed from a set of features whose selection is 

based solely on the dichotomization power of the features for observations with known 

responses.  Feature subsets are selected to optimize clustering using all the data points 

(see Hopkins statistic) and to create class separation using the labeled data points (see 

PCKaNN).  Employing this approach, we have been able to demonstrate marked 

improvements in our ability to predict future data [60].  The advantage of this approach 

over support vector machines [61] is that transverse learning is being used not only to 

predict future data, but also to identify truly informative features in the data set, thereby 

ensuring a better classification of the data.  As in the case of an embedded method, e.g., 

CART [62], this approach to feature selection also makes efficient use of the data since 

all of it is used in training. 

Although the Hopkins statistic when combined with PCKaNN produces a fitness 

function that has many adv
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chromosome (or feature subset) can be scored using a modified version of the Hopkins 

statistics (see Equation 3-11).  U is the number of unlabelled data points, USWj is the 

weight of the jth unlabelled data point, and dij is the distance between the unlabelled data 

point j and its nearest neighbor (labeled data point) in the PC plot. Each unlabelled data 

point is assigned an initial weight of 100/U. To boost the weight of each sample, an 

average distance vector is computed (see Equation 3-12) and the weights are boosted 

using the relationship defined in Equation 3-13. The modified Hopkins statistic focuses 

on the unlabelled data points. By coupling PCKaNN (labeled data points) with the 

modified Hopkins statistics (unlabelled data points), a second approach to transverse 

learning, which utilizes boosting, can be used to perform feature selection.    
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Successful mining of data requires the user to combine empirical data with careful 

analysis and prior knowledge and reasoning.  Supervise

approach to this problem, which can be defined as the search for significant structure in 

data.  

d learning represents a systematic 

The pattern recognition GA described in this chapter is designed to search for 

significant structure in multivariate data.  The fitness function of the pattern recognition 
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GA can be tuned, enabling it to explore the structure of a large data set and to uncover 

hidden relationships in the data, for example, the discovery of new classes by varying the 

contribution of the Hopkins statistic and PcKaNN to the fitness function used to score the 

feature subsets identified by the GA during each generation.  

3.5 Applications of the Pattern Recognition GA 

 Pattern recognition methods are usually implemented in four distinct stages: data 

preprocessing, feature selection, mapping and display, and classification.   However, the 

ification often determining further 

onal spectroscopy 

. 

In this 

process is iterative with the results of class

preprocessing steps and reanalysis of the data.  Although the procedures selected for a 

given problem are highly dependent upon the nature of the problem, it is still possible to 

develop a general set of guidelines for applying the pattern recognition GA to actual data 

sets.  In this section, a framework for solving the class membership problem rotted on 

feature selection is presented by way of two studies that have been performed as part of 

the research described in this thesis using the pattern recognition GA.   

Classification of Hardwoods, Softwoods, and Tropical Woods by Raman Spectroscopy 

Wood identification is usually accomplished by forestry experts who employ 

visual microscopy, hardness testing, and/or leaf analysis [62]. Vibrati

offers another means of elucidating the structure of wood and characterizing wood types

study, Raman spectroscopy and pattern recognition techniques have been used to 

develop a potential method to characterize wood by type.  The test data consisted of 98 

Raman spectra of temperate and tropical woods.  The temperate woods consisted of 31 

hardwoods and 28 softwoods from North America, and the tropical woods consisted of 

15 Brazilian and 24 Honduran woods.  The Raman spectra were measured on a Perkin-
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Elmer System 2000 Fourier-transform spectrometer fitted with the standard Perkin-Elmer 

Raman attachment and a modified Spectron 301 Nd3+ laser (λ = 1064 nm).  The spectra 

were measured at a resolution of 4cm-1.  Each Raman spectrum, which was an average of 

500 scans, was stored from 3600 to 250 cm-1.  Further details about the experimental 

conditions used for the measurement of the FT-Raman spectra can be found elsewhere 

[63].  

All Raman spectra were normalized to unit length to adjust for variations in the 

scattering cross-section of each sample. For pattern recognition analysis, each wood 

sample was represented by a data vector x = (x1, x2, x3…xj…x3352) where xj is the Raman 

intensit

ordinate system that is better at conveying the 

informa

the 3352-point spectra that comprise this data set.  The two largest principal components 

y of the jth point in the normalized Raman spectrum. The data were standardized 

and autoscaled so that each variable had a mean of zero and a standard deviation of unity 

within the entire set of 98 Raman spectra. 

The first step in this study was to apply PCA to the entire data set.  PCA is a 

powerful method for uncovering hidden relationships in multivariate data.  Using this 

procedure is analogous to finding a new co

tion present in the data than axes defined by the original measurement variables. 

The basis vectors of this new coordinate system are the principal components of the data.  

Each principal component is a linear combination of the original measurement variables.  

Often, only two or three principal components are necessary to explain all of the 

information present in a data set when there are a large number of interrelated 

measurement variables.   

Figure 3.7a shows a plot of the scores of the two largest principal components of 
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of the data explain 41% of the total cumulative variance.  Each spectrum is represented as 

a point in the score plot (1 = soft, 2 = hard, and 3 = tropical).  There is overlap between 

the trop

d-type.  In 

this stu

ical woods, hard woods, and soft woods in the score plot of the data.   

Feature selection was the next step, since deletion of uninformative features 

would ensure that discriminatory information about wood type would be the major source 

of variation in the data.  A genetic algorithm (PcKaNN) for pattern recognition analysis 

was used to uncover features characteristic of the Raman profile of each woo

dy, the population consisted of 5000 chromosomes, and the mutation rate was 0.2.  

Three point cross-over was used, and K for each class was set equal to the number of 

samples in the class.  The genetic algorithm identified informative features in the data by 

sampling key feature subsets, scoring their principal component plots, and tracking those 

samples or classes that were most difficult to classify.  The boosting routine used this 

information to steer the population to an optimal solution.  After 300 generations, the 

genetic algorithm identified 11 wavelengths whose principal component plot showed 

clustering of the Raman spectra according to wood type (see Figure 3.7b).  The 

hardwoods, softwoods, and tropical woods are well separated from each other in the 

score plot.  For these 11 features, between group differences are large compared to within 

group differences, which would suggest that all pattern recognition methods will work 

well with this data.  An advantage of using a score plot to display the classification 

results instead of submitting the 11 features to linear or quadratic discriminant analysis 

for development of a classifier is that it allows the user to better understand how a 

classification decision is made for a particular sample.   
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Figure 3.7. A score plot of the two largest principal components of the Raman spectra that 
comprise the wood data set.  Each spectrum is represented as a point in the score plot (1 = soft, 2 
= hard, and 3 = tropical).  a) 3352 wavelengths, and b) 11 wavelengths identified by the pattern 
recognition GA. 
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The ability of a classifier to predict the class membership of a simulated unknown 

wood sample was tested using a procedure known as segmented cross validation.  The 

data set was divided into N training set prediction set pairs. A classifier is developed for 

each training set and then tested on the corresponding prediction set.  Each sample was 

present in only one of the N prediction sets generated.   

For this study, two training set prediction set pair combinations were investigated: 

80%/20% (5 training set prediction pairs with 80% of the samples in each training set and 

the remaining 20% in each prediction set), and 20%/80% (5 training set prediction set 

pairs with 20% of the samples in each training set and the remaining 80% in each 

prediction set).  Figures 3.8 thru 3.12 summarize the results of the segmented cross 

validation for the 80%/20% case. CVA (see Chapter 2) and PCA plots of the features 

identified as informative using PCKaNN are shown for each training set.  Each object in 

the training set is represented as “1” (softwoods), “2” (hardwoods), or “3” (tropical 

woods).   The prediction set samples are represented as “S” (softwoods), “H” 

(hardwoods), and “3” (tropical woods).  From an examination of the CVA and PCA 

plots, it is evident that all prediction set samples in this validation were correctly 

classified.  Furthermore, the CVA and PCA plots are comparable.  If information about 

wood-type lies in the directions of maximum variance, then it should not come as a 

surprise that PCA and CVA yield similar scatter plots (see Iris data set on pages 25-27 of 

thesis).  The conclusion that can be drawn from this validation study is that the bulk of 

ation encoded by the feature subsets identified by the pattern recognition GA  the inform is

about wood-type.  Using the pattern recognition GA, the CVA paradigm (optimizing 

 71



betwee

rize the results for the Hopkins 

statistic

n to within group differences in the data) can be extended to include data sets that 

are underdetermined (i.e., data sets that contain more features than objects). 

 The genetic algorithm for pattern recognition analysis with transverse learning 

was also used to analyze each training set/prediction set pair in the 80%/20% segmented 

cross validation study. Figures 3.13 thru 3.17 summa

 (see pages 62-65) and for the modified Hopkins statistic (page 66).  Each object 

in the training set is represented as “1” (softwoods), “2” (hardwoods), or “3” (tropical 

woods) in these figures.   The prediction set samples are represented as “S” (softwoods), 

“H” (hardwoods), and “3” (tropical woods) in these figures. From an examination of 

these plots and the plots in Figures 3.8 thru 3.12, it is evident that all of the prediction-set 

samples in the validation sets are correctly classified and that all of the plots (principal 

components and canonical variates) are comparable.  Table 3.1 which shows the results 

of LDA, RDA, and the 1-NN for the features selected by the pattern recognition GA 

using the three fitness functions are comparable to the results obtained from the principal 

component and canonical variate analysis plots for the same data.  

 

Table 3.1 Discriminant Analysis Results for 80%/20% Cross Validation Study 
Method Average Tset % classification Average Pset % classification 

 Normal Modified Hopkins Normal Modified Hopkins 
Hopkins Hopkins 

LDA 100 100 100 98 99 100 

RDA(auto) 100 100 100 97 98 99 

1-NN 99.25 100 98.75 97 98 98 
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TP1- CVA 

   
TP1- PCKaNN 

 
Figure 3. mented cross validation results for ction set pair for 
CVA and PCA using 10 features identified by the pattern recognition GA.   “1” = softwoods, “2” 

d “3” = tropical woods for the training set samples.  “S” = softwoods, “H” = 
hardwoods, and “T” = tropical woods for the prediction set samples. 

8.  Seg the first training set predi

= hardwoods, an
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TP2-CVA 

      
TP2- PCKaNN 

 
Figure 3.9.  Segmented cross validation results for the second training set prediction set pair for 
CVA and PCA using 8 features identified by the pattern recognition GA.  “1” = softwoods, “2” = 
hardwoods, and “3” = tropical woods for the training set samples.  “S” = softwoods, “H” = 
hardwoods, and “T” = tropical woods for the prediction set samples. 
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TP3-CVA 

 
TP3- PCKaNN 

 
Figure 3.10.  Segmented cross validation results for the third training set prediction set pair for 
CVA and PCA using 18 features identified by the pattern recognition GA. “1” = softwoods, “2” = 
hardwoods, and “3” = tropical woods for the training set samples.  “S” = softwoods, “H” = 
hardwoods, and “T” = tropical woods for the prediction set samples. 
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TP4-CVA 

   
TP4- PCKaNN 

 
Figure 3.11.  Segmented cross validation results for the fourth training set prediction set pair for 
CVA and PCA using 12 features identified by the pattern recognition GA.  “1” = softwoods, “2” 
= hardwoods, and “3” = tropical woods for the training set samples.  “S” = softwoods, “H” = 
hardwoods, and “T” = tropical woods for the prediction set samples. 
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TP5-CVA 

       
TP5- PCKaNN    

     
Figure 3.12.  Segmented cross validation results for the fifth training set prediction set pair for 
CVA and PCA using 18 features identified by the pattern recognition GA.  “1” = softwoods, “2” 
= hardwoods, and “3” = tropical woods for the training set samples.  “S” = softwoods, “H” = 
hardwoods, and “T” = tropical woods for the prediction set samples. 
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ied Hopkins TP1-Modif

 
TP1- Hopkins 

 
Figure 3.13.  Segmented cross validation results for the first training set prediction set pair for 
features identified by PCKaNN with the modified Hopkins statistic as the fitness function and for 
features identified by PCKaNN with the Hopkins statistic as the fitness function.  “1” = 
softwoods, “2” = hardwoods, and “3” = tropical woods for the training set samples.  “S” = 
softwoods, “H” = hardwoods, and “T” = tropical woods for the prediction set samples. 
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TP2-Modified Hopkins 

 
TP2- HOPKINS 

    
Figure 3.14.  Segmented cross validation results for the second training set prediction set pair for 
features identified by PCKaNN with the modified Hopkins statistic as the fitness function and for 
features identified by PCKaNN with the Hopkins statistic as the fitness function.  “1” = 
softwoods, “2” = hardwoods, and “3” = tropical woods for the training set samples.  “S” = 
softwoods, “H” = hardwoods, and “T” = tropical woods for the prediction set samples. 
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TP3- Modified Hopkins 

 
TP3- HOPKINS 

 
Fig r ure 3.15.  Segmented cross validation results for the third training set prediction set pair fo
features identified by PCKaNN with the modified Hopkins statistic as the fitness function and for 
features identified by PCKaNN with the Hopkins statistic as the fitness function.  “1” = 
softwoods, “2” = hardwoods, and “3” = tropical woods for the training set samples.  “S” = 
softwoods, “H” = hardwoods, and “T” = tropical woods for the prediction set samples. 
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TP4- Modified Hopkins 

 
TP4- HOPKINS 

 
Figure 3.16.  Segmented cross validation results for the fourth training set prediction set pair for 
features identified by PCKaNN with the modified Hopkins as the fitness function and for features 
identified by PCKaNN with the Hopkins statistic as the fitness function.  “1” = softwoods, “2” = 
hardwoods, and “3” = tropical woods for the training set samples.  “S” = softwoods, “H” = 
hardwoods, and “T” = tropical woods for the prediction set samples. 
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TP5-Modified Hopkins 

 
TP5- HOPKINS 

 
Figure 3.17.  Segmented cross validation results for the fifth training set prediction set pair for 
features identified by PCKaNN with the modified Hopkins statistic as the fitness function and for 
features identified by PCKaNN with the Hopkins statistic as the fitness function  “1” = 
softwoods, “2” = hardwoods, and “3” = tropical woods for the training set samples.  “S” = 
softwoods, “H” = hardwoods, and “T” = tropical woods for the prediction set samples. 
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 Table 3.2 summarizes the results from the 20%/80% segmented cross validation 

study (5 training set prediction set pairs with 20% of the samples in each training set and 

the remaining 80% in each prediction set) using LDA, RDA, and 1-NN for the features 

selected by the pattern recognition GA with transverse learning and without transverse 

learning.  (The results from the 20%/80% validation study are not displayed using 

principal component plots because PCA does not scale up well when the number of 

prediction set samples is comparable or greater than the number of training set samples.)  

From this table, it is evident that classifiers developed from features selected by the 

pattern recognition GA using transverse learning performed better than classifiers 

developed from features selected by the pattern recognition GA using only PCKaNN.  

For training sets with small amounts of data with class labels and large amounts of 

unlabeled data, transverse learning usually performs better since information in the 

unlabeled data is used by the fitness function to guide feature selection.  Features are 

selected to optimize clustering and to maximize the distance between the different classes 

in the data set.  This will ensure that features selected by the pattern recognition GA 

using transverse learning will perform better than a learning model developed from a set 

of features whose selection is based solely on the dichotomization power of the features 

for the labeled data points.  The superior performance of classifiers developed from 

features selected by the pattern recognition GA using the modified Hopkins statistic (as 

compared to classifiers developed from features selected by the pattern recognition GA 

using PCKaNN with only the Hopkins statistic) can be attributed to the modified Hopkins 

statistic taking advantage of the power associated with boosting.  The results of these two 
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se ted cross validation studies demonstrate the efficacy and flexibility of the pattern 

recognition GA to identify linear structure in undetermined multivariate data sets. 

 

Table 3.2 Discriminant Analysis Results for 20%/80% Cross Validation Study 

gmen

Method Average Tset % classification Average Pset % classification 

 Normal Modified 
Hopkins 

Hopkins Normal Modified 
Hopkins 

Hopkins 

LDA 100 100 100 72 85.5 75 

RDA(auto) 100 100 100 68.22 79.25 70 

1-NN 100 100 98 78.5 88 85.5 

 

Treatment of Prostrate Cancer 

 Prostrate cancer is a leading cause of death in men.  Although only 1 in 10,000 

men under the age of 40 are diagnosed with prostrate cancer, the rate is 1 in 39 for ages 

40 to 59 and 1 in 14 for ages 60 to 69.  Treatment options currently available for men 

with prostrate cancer include surgery, radiation therapy, hormone therapy, and 

chemotherapy.  In this study, a potential method has been developed to determine if 

surgery is a viable treatment option for prostrate cancer patients based on pattern 

recognition analysis of DNA microarray data obtained from tumor biopsy material.  The 

tumor biopsy material was obtained from 100 patients: 49 patients who exhibited no 

reoccurrence of prostrate cancer within 60 months after surgery, and 51 patients who had 

died from cancer within a 5 year time period after surgery.  Each biopsy specimen was 

represented by 44,928 gene expressions, the concentration levels of all mRNA sequences 

in a cell or tissue at any given time.  However, the expression levels of some genes in the 

tumor biopsy material recovered from the patients used in this study were invariant.  
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After removal of these genes, the number of features per sample was reduced to 30,167.  

The gene expression data in this study was obtained from Dr. William J. Cat

 

alona’s 

search group at Washington University in St. Louis.   

 8 

shows a principal component plot developed from the 100 data set samples and 30,167 

genes.  The 1’s are no reoccurrence and the 2’

the sam  class labe evid e prin t he 

pa tion PCKaN

from a discri ing rela hip could found.  se of t rge nu f 

sent in this data, it was decided to develop a seed to facilitate the searching of 

recognition GA. (Hardware limitations on the number of 

romo

re

The first step in the study was to apply PCA to the autoscaled data.  Figure 3.1

s are reoccurrence of cancer.  Clustering of 

ples (patients) by l is not ent in th cipal component plo .  T

ttern recogni GA ( N fitness function) was used to find a set of descriptors 

 which minat tions  be Becau he la mber o

features pre

the solution space by the pattern 

ch somes that could be used to search the solution space was another reason to use a 

seed.)  The following experimental protocol was employed to develop the seed.  First, the 

initial population of chromosomes, which was randomly generated, was fixed at 5000.  

This ensured that each feature was present in at least one of the chromosomes in the 

initial population.  Next, ten runs were performed, with each run proceeding for 100 

generations.  The seed was then formed from the top 10% of the final population in each 

run which was mixed with a randomly generated population whose number of 

chromosomes was comparable to the number of chromosomes in the top 10% of the final 

population selected from each run. Figure 3.19 shows a principal component plot 

developed from 41 features identified by the pattern recognition GA using PCKaNN as 

the fitness function and the seed as the initial population for this run.  The mutation rate 
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of the GA was set at 0.3, and culling (every six generations with a threshold of 0.0875) 

was employed.      

    

Figure 3.18.  A plot of the two largest principal components developed from the 100 samples and 

 

         

30,167 features.  1 = no reoccurrence and 2 = reoccurrence.   

 

Figure 3.19.  A plot of the two largest principal components developed from the 100 samples and 
41 features identified by PCKaNN.  1 = no reoccurrence and 2 = reoccurrence.   
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The ability of a classifier to predict the class membership (reoccurrence or no 

reoccurrence of cancer after surgery) of a simulated unknown biopsy specimen was tested 

using segmented cross validation.  The data set was divided into 10 training set prediction 

set pairs. A classifier is developed for each training set and then tested on the 

corresponding prediction set.  Each sample was present in only one of the 10 prediction 

sets generated.  Figures 3.20 thru 3.34 summarize the results of the segmented cross 

validation for the pattern recognition GA using PCKaNN with transverse learning and 

without transverse learning. Each object in the training set is represented as “1” (no 

reoccurrence), and “2” (reoccurrence).   The prediction set samples are represented as 

“N” (no reoccurrence), and “R” (reoccurrence).  From an examination of the PCA plots, 

it is evident that 99 of the 100 validation set samples are correctly classified regardless of 

itness function used.  Previous work in our laboratory [60] has shown that selecting 

ductive inference (which is also 

known as transverse learning) yields smaller prediction errors then selecting features for 

classification based on inductive inference (i.e., PCKaNN) where the goal is to construct 

a good classifier, which is applied to any future data.  We attribute this discrepancy to the 

use of the seed.  Furthermore, we do not believe that our results are biased because the 

principal component plots generated for the best feature subsets identified by the pattern 

recognition GA for the runs used to produce the seed did not show separation correlated 

to the success of the treatment.   

 

 

the f

features for classification of microarray data using trans
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TP1-Normal 

 
TP1- Hopkins 

  

Figure 3.20.  A plot of the two largest principal components developed from 90 samples and 41 
features identified by the pattern recognition GA using PCKaNN as the fitness function for 
training set 1, and 90 samples and 42 features identified by the pattern recognition GA using 
PCKaN  and the Hopkins statistic as the fitness function for training set 1.   1 = no reoccurrence 
and 2 = reoccurrence (training set).  R = reoccurrence and N = no reoccurrence (validation set) 

N
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TP1- Modified Hopkins 

   
TP2-Normal 

  
 
Figure 3.21.  A plot of the two largest principal components developed from 90 samples and 41 

reoccurrence and 2 = reoccurrence (training set).  R = reoccurrence and N = no reoccurrence 
(validation set) 

features identified by the pattern recognition GA using PCKaNN with the modified Hopkins 
statistic as the fitness function for training set 1 and 90 samples and 42 features identified by the 
pattern recognition GA using PCKaNN as the fitness function for training set 2.  1 = no 
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  TP2- Hopkins 

   
 
TP2- Modified Hopkins 

   
Figure 3.22.  A plot of the two largest principal components developed from 90 samples and 40 

atures identified by the pattern recognition GA using PCKaNN with the Hopkins statistic as the fe
fitness function for training set 2 and 40 features identified by the pattern recognition GA using 
PCKaNN with the modified Hopkins statistic as the fitness function for training set 2.. 1 = no 
reoccurrence and 2 = reoccurrence (training set).  R = reoccurrence and N = no reoccurrence 
(validation set) 

 90



 
TP3- Normal 

    
TP3- Hopkins 

   
Figure 3.23.  A plot of the two largest principal components developed from 90 samples and 41 

atures identified by the pattern recognition GA using PCKaNN as the fitness function for fe
training set 3 and 90 samples and 40 features identified by the pattern recognition GA using 
PCKaNN and the Hopkins statistic for training set 3.  1 = no reoccurrence and 2 = reoccurrence 
(training set).  R = reoccurrence and N = no reoccurrence (validation set) 
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TP3- Modified Hopkins 

    
TP4- Normal 

    
Figure 3.24.  A plot of the two largest principal components developed from 90 samples and 41 

atures identified by the pattern recognition GA using PCKaNN with the modified Hopkins 

(validation set) 

fe
statistic as the fitness function for training set 3 and 90 samples and 41 features identified by the 
pattern recognition GA using PCKaNN as the fitness function for training set 4.  1 = no 
reoccurrence and 2 = reoccurrence (training set).  R = reoccurrence and N = no reoccurrence 
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TP4- Hopkins 

    
TP4- Modified Hopkins 

     
Figure 3.25.  A plot of the two largest principal components developed from 90 samples and 39 
features identified by the pattern recognition GA using PCKaNN with the Hopkins statistic as the 

ess function for training set 4, and 90 samples and 40 features identified by the pattern fitn
recognition GA using PCKaNN with the modified Hopkins statistic for training set 4.  1 = no 
reoccurrence and 2 = reoccurrence (training set).  R = reoccurrence and N = no reoccurrence 
(validation set) 
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TP5 – Normal 

     
TP5- Hopkins 

    
Figure 3.26.  A plot of the two largest principal components developed from 90 samples and 42 
features identified by the pattern recognition GA using PCKaNN as the fitness function for 
training set 5 and 90 samples and 39 features identified by the pattern recognition GA using 
PCKaNN and the Hopkins statistic as the fitness function for training set 5.  1 = no reoccurrence 
and 2 = reoccurrence (training set).  R = reoccurrence and N = no reoccurrence (validation set) 
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 TP5- Modified Hopkins 

    
TP6- Normal 

    
Figure 3.27.  A plot of the two largest principal components developed from 90 samples and 41 
features identified by the pattern recognition GA using PCKaNN with the modified Hopkins 
statistic as the fitness function for training set 5 and 90 samples and 42 features identified by the 

tern recognition GA using PCKaNN as the fitness function for training set 6.  1 = no pat
reoccurrence and 2 = reoccurrence (training set).  R = reoccurrence and N = no reoccurrence 
(validation set) 
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 TP6- Hopkins 

    
TP6- Modified Hopkins 

    
Figure 3.28.  A plot of the two largest principal components developed from 90 samples and 42 
features identified by the pattern recognition GA using PCKaNN with the Hopkins statistic as the 

ess function for training set 6, and 90 samples and 33 features identified b ttern fitn y the pa
recognition GA using PCKaNN with the modified Hopkins statistic as the fitness function for 
training set 6.  1 = no reoccurrence and 2 = reoccurrence (training set).  R = reoccurrence and N = 
no reoccurrence (validation set) 
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TP7- Normal 

    
TP7- Hopkins 

    
Figure 3.29.  A plot of the two largest principal components developed from 90 samples and 43 
features identified by the pattern recognition GA using PCKaNN as the fitness function for 

 and 90 samples and 37 features identified by the pattern recognition GA using training set 7
PCKaNN with the Hopkins statistic as the fitness function for training set 7.  1 = no reoccurrence 
and 2 = reoccurrence (training set).  R = reoccurrence and N = no reoccurrence (validation set) 
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TP7- Modified Hopkins 

      
TP8- Normal 

     
Figure 3.30.  A plot of the two largest principal components developed from 90 samples and 40 

tures identified by the pattern recognition GA using PCKaNN with the m ified Hopkins fea od
statistic as the fitness function for training set 7 and 90 samples and 40 features identified by the 
pattern recognition GA using PCKaNN as the fitness function for training set 8.  1 = no 
reoccurrence and 2 = reoccurrence (training set).  R = reoccurrence and N = no reoccurrence 
(validation set) 

 98



 
TP8- Hopkins 

      
TP8- Modified Hopkins 

      
Figure 3.31.  A plot of the two largest principal components developed from 90 samples and 42 
features identified by the pattern recognition GA using PCKaNN with the Hopkins statistic as the 

ess function for training set 8 and 90 samples and 41 features identified by the pattern fitn
recognition GA using PCKaNN with the modified Hopkins statistic as the fitness function for 
training set 8.  1 = no reoccurrence and 2 = reoccurrence (training set).  R = reoccurrence and N = 
no reoccurrence (validation set) 
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 TP9 – Normal 

 
TP9- Hopkins 

  
Figure 3.32.  A plot of the two largest principal components developed from 90 samples and 39 

res identified by the pattern recognition GA using PCKaNN as the fitness function for featu
training set 9 and 90 samples and 41 features identified by the pattern recognition GA using 
PCKaNN with the Hopkins statistic for training set 9.  1 = no reoccurrence and 2 = reoccurrence 
(training set).  R = reoccurrence and N = no reoccurrence (validation set) 
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TP9- Modified Hopkins 

 
TP10- Normal 

   
Figure 3.33.  A plot of the two largest principal components developed from 90 samples and 42 
features identified by the pattern recognition GA using PCKaNN with the modified Hopkins 
statistic as the fitness function for training set 9, and 90 samples and 41 features identified by the 

attern recognition GA using PCKaNN as the fitness function for training set 10.  1 = no p
reoccurrence and 2 = reoccurrence (training set).  R = reoccurrence and N = no reoccurrence 
(validation set) 
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TP10- Hopkins 

 
TP10- Modified Hopkins 

  
Figure 3.34.  A plot of the two largest principal components developed from 90 samples and 42 
features identified by the pattern recognition GA using PCKaNN with the Hopkins statistic as the 

ness function for training set 10 and 90 samples and 40 features identified by the pattern fit
recognition GA using PCKaNN with the modified Hopkins statistic for training set 10.  1 = no 
reoccurrence and 2 = reoccurrence (training set).  R = reoccurrence and N = no reoccurrence 
(validation set) 
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3.6  Conclusion 

The pattern recognition GA through the principal component plots that it 

generates allows any user to interpret the meaning of underlying relationships in 

multivariate data and to understand how a decision is made for a classification.  The 

approach used by the pattern recognition GA for feature selection is the same approach 

that many statisticians would like to use for solving their classification problems, which 

is identifying a set of features whose principal component plot shows clustering on the 

basis of class.  If separation by class is evident in the principal component plot, then all 

pattern recognition methods will perform well since between-group differences will be 

large compared to within group differences for this set of features. Using the pattern 

recognition GA, it is feasible to examine a large number of feature subsets, score their 

principal component plots, and thereby identify the truly informative features in a data 

pervised and unsupervised learning where the number of 

features is much greater than the number of samples, and pattern classification where 

only a few samples have class labels are examples of some of the shared challenges in 

data mining and computational biology that can be addressed using the pattern 

recognition GA.   

Another interesting feature of this methodology is that an important problem in 

multivariate data analysis, feature selection for classification, has been reformulated as an 

optimization problem.  Motivation for doing so is simple enough – the feature selection 

problem in pattern recognition is usually intractable for very large and noisy data sets, 

and clustering is often difficult to quantify. Clearly, the underlying optimization problem 

set.  Feature selection, su

is both complex and error prone, which justifies the use of a genetic algorithm.  The 
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t evident how one would formulate the feature selection problem in 

pattern class

 

 

computational environment offered by genetic algorithms is well suited for this problem, 

whereas it is no

ification using so-called traditional methods.  

 
  



 
CHAPTER 4 

 
 

Search Prefilters for Infrared Library Searching  
 
 
 
 
 
4.1 Introduction 
 
 Infrared (IR) spectroscopy is an accepted method for chemical identification.  The 

unique fingerprinting and identification ability provided by an IR spectrum results from 

the fact that peaks in the spectrum correspond to vibrational modes characteristic of the 

entire molecule (i.e., fingerprint region) or other modes directly related to the 

fundamental vibrations of specific functional groups. The combination of group 

frequencies and the fingerprint region has made the comparison of an unknown spectrum 

to a standard spectrum in a reference library a widely used method of identification. 

 Recently, there has been renewed interest in IR spectral matching because of the 

higher quality and larger amounts of IR data, improvements in computing power, and 

workers who are less well trained in the art of interpreting IR spectra.  However, a 

concern in the use of reference library spectra for identification is the degree to which a 

search possesses true interpretive ability [65].  Most comparison schemes involve some 

type of point-by-point numerical comparison between the full spectrum of an unknown 

and each member of the library [66]. These algorithms lack interpretive ability because 

they treat the spectrum as a set of points rather than as a collection of specific bands.  

Band shifting is not handled well and bands of low intensity, which may be highly 

informative, are often ignored [67].  As a result, current IR library search algorithms are 
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restricted to identity searches.  Because the number of compounds in an IR library is 

typically 20,000 whereas the total number of organic compounds in existence is several 

million, there is need for library search algorithms that can perform similarity searches. 

 Utilizing search prefilters, most of the problems encountered in IR library 

searching can be circumvented.  The idea of search prefilters is based on the fact that 

most spectral comparisons performed during a search are of little use because the spectra 

in question are very dissimilar.  A prefilter is a quick test to spot dissimilar spectra, 

thereby avoiding a complete spectral comparison. Prefilters would allow for more 

sophisticated and correspondingly for more time-consuming comparison search 

algorithms to be used for spectral matching since the size of the library can be culled 

down to allow for a specific match.  From an interpretive standpoint, the information 

contained in the search prefiliter should be rotted on chemical structure.   However, any 

substructural searching function used should have an appropriate degree of fuzziness. If 

the range of the function is too narrow, the substructure element of interest in an exotic 

environment may be missed.  On the other hand, if the range is too wide, there may be 

too many false positives. 

 Pattern recognition methods have been used to develop search prefilters with 

mixed success.  The reasons can be attributed to the nature of the modeling problem, 

which is sometimes quite complex.  Structure-spectrum relationships cannot always be 

successfully modeled using a single spectral band.  Some of the most significant 

wavelengths used to develop substructural classifiers from a spectral library often have 

no relationship with the characteristic frequencies of the functional group in question 

[68].  Closer inspection has shown that some wavelengths should be included in the 
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classifier for negative classification of potential interfering compounds rather than for an 

affirmative answer.  (In other words, the inclusion of wavelengths that would exclude 

compounds containing functional groups that could be confused with carboxylic acids.)  

Previous published studies from our laboratory have shown that the fitness function of 

the pattern recognition GA is able to identify these types of features in large data sets, 

which makes the approach to feature selection described in this thesis well suited for this 

proposed application.  

 Using PCKaNN and the Hopkins statistic as the fitness function for the pattern 

recognition GA, a search prefilter based on the response function to the simple binary 

classification problem, carboxylic acids versus other compounds including carbonyl 

containing compounds, has been developed that allows for the specific detection of 

carboxylic acids.  Carboxylic acids have highly characteristic features but there are also 

complications that confound the interpretation of their spectra.   They can exist as either a 

dimer or a monomer which will affect the intensity of their most characteristic bands.  

Experts do not agree on the exact positions of peaks in their spectra.  For example, a 

relatively broad absorption frequently occurs near 920 cm-1, due to out of plane bending 

of the dimeric OH bond.  The intensity of this peak is variable.  Some authors consider 

this peak to be strong evidence for the presence of an acid whereas others consider this 

peak to be of little diagnostic value.  There is general agreement that absorption due to 

the coupling of the OH-bending and C-O stretching around 1420 cm-1 and 1300 cm-1 

(frequently lower especially in the presence of an electronegative group) can provide 

corroborative evidence for the presence of an acid dimmer, but these peaks have little 

diagnostic value by themselves.  Because of these complications, the successful 
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development of a search prefilter to identify carboxylic acids in IR spectra has eluded 

workers. 

 In the two carboxylic acid classification studies described in this chapter, 

nonacids were selected to make the classification problem both challenging and 

informative.  The nonacids selected included esters, aldehydes, ketones, amides, and 

other carbonyl containing compounds such as hydroxyl ketones.  The wavelet packet 

transform, which was used to denoise and deconvolute IR library spectra, decomposed 

each spectrum into wavelet coefficients that represented both the high and low frequency 

components of the signal.  This decomposition process was iterated through successive 

wavelet packets until the required level of signal decomposition was achieved.  The 

pattern recognition GA was successfully used to identify wavelet coefficients 

characteristic of the carboxylic acid functional group.   

4.2 Wavelets 
 
 The successful development of a carboxylic acid search prefilter described in this 

chapter can be attributed to the preprocessing of the IR spectral data by wavelets.  The 

wavelet transform is based on small waves called wavelets.  A wavelet is a localized 

waveform of effectively limited duration that has a varying frequency and an average 

value of zero. Wavelets are mathematical functions that have the ability to decompose the 

data into a set of different frequency components called wavelet coefficient packets, 

where each frequency component can be analyzed separately with a resolution matching 

its scale [69]. Wavelets can denoise and deconvolute overlapping bands in a spectrum; 

enhancing their features. 
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 The wavelet transform is similar in some ways to the Fast Fourier Transform 

(FFT) which decomposes a signal into a combination of sine and cosine waves of 

different frequencies. However, wavelet analysis involves a non-redundant 

decomposition of the data into a set of approximation and difference functions by 

projecting the data onto shifted and dilated versions of finite-length and fast decaying 

oscillating waveform called the “mother wavelet”. The approximation function generates 

a sequence of the averages between two consecutive data in the input sequence. The 

difference function generates a sequence of the differences between two consecutive data 

in the current approximation sequence. These functions are applied recursively until the 

number of the elements in the difference sequence is equal to one [70].   

 Sine and cosine waves used in the Fourier Transform have infinite extent and can 

only extract global information from the signal. However, local features are better 

described by wavelets since they have local extent. The template of a typical wavelet 

basis function, the so-called ‘mother wavelet,’ is shown in Figure 4.1. 

 

   
 

Figure 4.1.  Template of a typical Wavelet basis function 
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 The dilating or scaling functions provide the starting point for wavelet analysis. 

Dilating the wavelet simply means stretching or compressing the wavelet basis function 

along the horizontal direction by a scaling factor, in order to fit different scales of the 

signal. The dilated versions of the wavelets basis function can then be shifted to different 

locations of the signal to extract the local information. The general shape of the wavelet, 

like that of the sine and cosine functions in the Fourier transform, is the same for all the 

sizes of the wavelets that compose the waveform.  Wavelet analysis is performed by 

dilating the wavelet basis function and shifting it to cover all parts of the signal 

(spectrum). Wavelet coefficients represent the correlation of different sections of the 

spectrum with the scaled versions of the wavelet basis function. Higher scales correspond 

to highly stretched wavelets. The more stretched the wavelet, the longer the portion is of 

the signal with which it is being compared, and the coarser will be the features being 

captured by the wavelet coefficients (see Figure 4.2). Slowly changing coarse features 

represent the low frequency components of the signal.  Similarly, lower scales (see 

Figure 4.3) correspond to compressed wavelets that measure rapidly changing details and 

give the high frequency components of the signal. 

 

 
 Figure 4.2.  High scale representation of the signal by wavelets 
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 Figure 4.3.  Low scale representation of the signal by wavelets. 

 

 The wavelet transform is implemented by passing each spectrum through two 

scaling filters: a high-pass filter and a low-pass filter (see Figure 4.4). The high-pass 

scaling filter generates the wavelet coefficients that represent the high frequency 

components of the signal, i.e. the details. The wavelet coefficients generated by the low-

pass scaling filter represent the low frequency component of the signal, i.e. the 

approximations. Thus, the signal is decomposed into a low-scale high frequency packet 

and high-scale low frequency packet [71]. This process of decomposing a spectrum into 

both low frequency and high frequency packets allows the analyst to see both the details 

and the major trends in the signal. There are several kinds of wavelet transforms: 

continuous, discrete, fast, complex transforms, and wavelet packet transforms. 

 Consider a sine wave with noise as shown in Figure 4.5, in which the first and 

second levels of filtering are shown for an input sine wave.  This decomposition process 

can be iterated using successive packets until the required level of signal decomposition 

is achieved to give what is called a wavelet packet tree (see Figure 4.6). 

 There are many different types of mother wavelets: Daubechies, symmlets, 

coiflet, Haar and biorthogonal. The Haar wavelet is the simplest wavelet. It is one period 

of a square wave. A major drawback of using the Haar wavelet is that it is not continuous 
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and therefore not differentiable. Daubechies are compactly supported orthonormal 

wavelets suitable for discrete wavelet analysis. Symmlets are nearly symmetrical 

wavelets. They are related to the Daubechies family as they share similar properties. 

Figure 4.7 shows the basic templates of the mother wavelets belonging to these families. 

      The criterion used to select the mother wavelet for the two studies discussed in this 

chapter was empirical and largely based on the ability of the wavelet to denoise and 

deconvolute the spectral data such that it could be separated into its respective classes 

using wavelet coefficients identified by the pattern recognition GA.   There were also 

empirical rules used to guide this selection process.  If the signal contained sharp peaks or 

discontinuities, Haar or other compact wavelets would be used. If the signal comprises 

broad peaks, a smoother wavelet such as Daubechies or Symmlet would be employed.  

 It is evident from these discussions that wavelets have attributes (unlike the 

Fourier transform) which makes them ideal to use for preprocessing IR spectra.  Wavelet 

basis functions are localized in space, unlike Fourier sine and cosine functions, which are 

not local and often do a poor job in approximating sharp peaks.  As the wavelets 

themselves are sharp, asymmetric and irregular and have a finite domain, they have the 

ability to represent functions that have both sharp peaks and discontinuities. Furthermore, 

the wavelet transform does not generate a single set of basis functions like the Fourier 

transform. It has an infinite set of potential basis functions that provide immediate access 

to information that is obscured by other time-frequency methods since wavelet basis 

functions can be tuned for specific applications. 

 

 112



 

 
 

   
 

Figure 4.4.  Decomposition of the spectrum using wavelet filters. 
 
 

 
 

Figure 4.5.  Second level decomposition of a sine wave using wavelet filters 
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Figure 4.6. Wavelet packet tree decomposition of a signal at different levels. 

 
 

  
Figure 4.7.  Templates of several “mother” wavelets 
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4.3 Data Collection and Preprocessing 
 

The IR spectra used in this study were obtained from Nicolet (Madison, WI) and 

Biorad (King of Prussia, PA).  Each IR spectrum, which was represented by 460 points, 

was normalized to unit length.  For pattern recognition analysis, each IR spectrum was 

initially represented as a data vector, x = (x1, x2, x3,….xj,…..x420) where xj is the infrared 

absorbance of the jth point from the normalized first spectrum. The wavelet packet tree 

using a symmlet mother wavelet was used to denoise and deconvolute each pattern 

vector.  For pattern recognition analysis, each IR spectrum was represented as a set of 

wavelet coefficients.  The coefficients were autoscaled to ensure equal weighting in the 

analysis.  Wavelet analysis was performed using the wavelet toolbox in MATLAB 

R2006a. 

4.4 Results and Discussion 
 
 Nicolet Vapor Phase Library Study: The training set used in this study consisted 

of 476 IR spectra of carboxylic acids and noncarboxylic acids (see Table 4.1).  Most of 

the spectra in the training set were acquired by Aldrich using as samples their products.  

The remaining spectra were obtained from the EPA gas phase IR collection and from the 

Bayerische Julious Maximilian Universitat Wurzburg.  Each IR spectrum was measured 

in a heated cell or light pipe connected to the outlet of a gas chromatograph.  The spectra 

were originally acquired at 0.5-2cm-1 spectral resolution.  All spectra were 

mathematically deresolved during conversion to the Omnic Library format. 

 Aldehydes, ketones, esters and amides were included in the training set to ensure 

that the classification problem (identification of carboxylic acids) was challenging. 

Figures 4.8 and 4.9 are examples of the compounds (spectra) that comprised the training 
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set.  Butyric acid has several characteristic carboxylic acid bands in its spectrum, whereas 

the spectrum of cyclopropanedicarboxylic acid more closely resembles octanoyl chloride 

or propionic anhydride. Spectra that comprise the prediction set (see Table 4.2) included 

alcohols and ketones, esters, and amides containing the OH functionality.  The total 

number of compounds in the prediction set was 95. 

Table 4.1 – Nicolet Spectra Training Set   
Functional Group No. of compounds 

Carboxylic acid (Two contain COOR) 156 

Negative class (phosphates, alkenes, alkynes, alkanes) 220 

Aldehydes 25 

Ketones 25 

Esters 25 

Amides 25 

Total Number of Compounds 476 

 

Table 4.2 – Nicolet Spectra Prediction Set 
Functional Group No. of compounds 

Carboxylic acid (Two contain COOR) 27 

Negative class (phosphates, alkenes, alkynes, alkanes) 25 

Alcohols 10 

Ketones (5 ketones contained OH) 15 

Esters (2 esters contained OH) 13 

Amides (3 amides contained OH) 15 

Total Number of Compounds 95 
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Butyric Acid 

     
 

      1, 2-Cyclopropanedicarboxylicacid, cis-, 1 

      
 

Figure 4.8.  Infrared absorbance spectra of butyric acid and cis 1, 2-cyclopropanedicarboxylic 
acid. 
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          Octanoyl Chloride 

   
 

     Propionic Anhydride 

   
Figure 4.9.  Infrared absorbance spectra of octanoyl chloride and propionic anhydride. 
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 The first step in the study was to apply PCA to the raw training set data.  The data 

were auto-scaled to ensure that each wavelength had equal weight in the analysis.  Figure 

4.10 shows a plot of the two largest principal components of the 460-point IR spectra that 

comprised the training set.  Each spectrum is represented as a point in the principal 

component plot (1 = carboxylic acid and 2 = noncarboxylic acid).  The overlap between 

the two groups (carboxylic acids and noncarboxylic acids) in the principal component 

plot is evident. 

 The pattern recognition GA (PCKaNN fitness function) was used to identify 

wavelengths characteristic of the IR absorption profile of each class. Features were 

identified by sampling key feature subsets, scoring their principal component plots, and 

tracking classes and/or samples, which were most difficult to classify.  The boosting 

routine used this information to steer the population to an optimal solution.  After 300 

generations, the pattern recognition GA identified 22 spectral features whose principal 

component plot (Figure 4.11) showed some clustering of the IR spectra on the basis of 

class. 

 The symmlet 6 wavelet at the 8th level of decomposition was applied to the IR 

spectra to deconvolve overlapping spectral bands and to denoise the data.  Figure 4.12 

shows a plot of the two largest principal components of the 476 spectra and 9200 wavelet 

coefficients used to represent each spectrum.  There is a definite improvement in the 

separation between the two groups (carboxylic acids and noncarboxylic acids) after 

wavelet analysis is applied to the IR spectra.  Figure 4.13 shows a principal component 

plot of the 41 wavelet coefficients identified by the pattern recognition GA using 

PCKaNN with the Hopkins statistic as the fitness function.  For underdetermined data 
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sets, even quite well behaved multivariate normal distributions with no outliers will have 

sets of variables that produce eigenvector projections containing points that appear as 

outliers in the principal component plot. This problem was encountered with the symmlet 

6 mother wavelet, which prevented us from performing the analysis using PCKaNN 

without the Hopkins statistic as the fitness function. 

 A prediction set of 95 compounds was used (see Table 4.2) to assess the 

predictive ability of the 41 wavelet coefficients identified by the pattern recognition GA.  

The prediction set spectra were projected onto the principal component map developed 

from the 476 spectra and 41 wavelet coefficients.  Figure 4.14 shows the projection of the 

prediction set spectra onto a principal component map defined by the 41 coefficients 

selected by the pattern recognition GA.  Each projected infrared spectrum lies in a region 

of the map occupied by spectra possessing the same class label.  Evidently, the GA can 

identify wavelet coefficients characteristic of the compounds’ functional group.  This 

suggests that wavelet analysis and the pattern recognition GA can be used to extract 

structural information from spectral data. 
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Figure 4.10.  Plot of the two largest principal components of the 460-point IR spectra that 
comprised the Nicolet training set.  Each spectrum is represented as a point in the principal 
component plot (1 = carboxylic acid and 2 = noncarboxylic acid). 
 

 
Figure 4.11. Plot of the two largest principal components of the 476 IR spectra and the 22 spectral 
features identified by the pattern recognition GA.  Each spectrum is represented as a point in the 
principal component plot (1 = carboxylic acid and 2 = noncarboxylic acid). 
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Figure 4.12. Plot of the two largest principal components of the 476 Nicolet training set spectra 
and 9200 wavelet coefficients that comprised the training set.  Each spectrum is represented as a 
point in the principal component plot (1 = carboxylic acid and 2 = noncarboxylic acid). 

    
Figure 4.13. Plot of the two largest principal components of the 476 spectra and the 41 wavelet 
coefficients identified by the pattern recognition GA.  Each spectrum is represented as a point in 
the principal component plot (1 = carboxylic acid and 2 = noncarboxylic acid). 
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Figure 4.14 Plot of the two largest principal components of the 476 spectra and the 41 wavelet 
coefficients identified by the pattern recognition GA.  Each spectrum is represented as a point in 
the principal component plot.  1 = carboxylic acid and 2 = noncarboxylic acid (training set).  C = 
carboxylic acid and N = noncarboxylic acid (validation set).   
 
 
 EPA Vapor Phase Spectral Library (Biorad): The training set consisted of 435 IR 

spectra of carboxylic acids and noncarboxylic acids (see Table 4.3).  The noncarboxylic 

acids contained aldehydes, ketones, esters and amides as well as compounds containing at 

least two of these functional groups.  The presence of these compounds in the training set 

made the classification problem (identification of carboxylic acids) more challenging. 

Figures 4.15 and 4.16 are examples of the compounds (spectra) that comprise the training 

set.  The spectrum of 2, 2-dimethylbutyric acid is representative of a carboxylic acid, 

whereas the spectrum of sarcosine, which is also a carboxylic acid, lacks several bands 

characteristic of the COOH group.  The spectrum of the diethyl ester of tartaric acid and 

the IR spectrum of 6-bromo vanillin could easily be mistaken for that of a carboxylic 
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acid. Spectra that comprised the first prediction set are shown in Table 4.4.  Spectra in the 

first prediction set included esters, ketones, amides, alcohols, and acid chlorides.  Many 

of these compounds also contain an OH moiety.  The total number of compounds in the 

first prediction set is 85. 

     Table 4.3- EPA Vapor Phase Library Spectra Training Set 
Functional Group No. of compounds 

Carboxylic acids 140 

Negative class (phosphates, alkenes, alkynes, alkanes) 202 

Aldehydes (10 aldehydes also contained Ethers, 2 contained 
Amine, 2 had Esters and 1had Amide) 

25 

Ketones (6 Ketones also contained alcohol, 2 had Amine, 1 
had Ester and 1 had Ether) 

20 

Esters (7 were also Amides, 4 had Ether, 3 had amine, 2 had 
alcohol, 2 had Aldehyde, 1 had Ketone and 1 had acid 

chloride ) 

26 

Amides ( 7-Esters, 4-Amines, 2-Alcohols, 1-aldehyde) 30 

Acid Chlorides 3 

Total Number of Compounds 435 

 
 

Table 4.4- EPA Vapor Phase Library Spectra Prediction Set I 
Functional Group No. of compounds 

Carboxylic acids 24 
Negative class (phosphates, alkenes, alkynes, alkanes) 20 
Esters (1 Ester contained OH, 3 esters contained amine 

and 2 contained amide) 
16 

Ketones (4 Ketones contained OH and 1 contained amine) 12 

Amides (1 amide contained OH and 2 contained esters) 13 
Alcohols 6 

Acid chloride 1 
Aldehyde 1 

Total Number of Compounds 85 
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Butyric acid, 2, 2- dimethyl-, 

 
 

Sarcosine, n-cis-9-octadecenoyl-, 

 
Figures 4.15 Infrared absorbance spectra of Butyric acid, 2, 2- dimethyl-, and Sarcosine, n-cis-
9-octadecenoyl-, 
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Tartaric acid, diethyl ester 

 
 

Vanillin, 6-bromo-, 

 
Figures 4.16 Infrared absorbance spectra of Tartaric acid, diethyl ester and 6-bromo vanillin 
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Figure 4.17. Plot of the two largest principal components of the 444-point IR spectra that 
comprised the training set. Each spectrum is represented as a point in the principal component 
plot. (1 = carboxylic acid and 2 = noncarboxylic acid). 
 

 
Figure 4.18.  Plot of the two largest principal components of the 435 spectra and the 8 spectral 
features identified by the pattern recognition GA.  Each spectrum is represented as a point in the 
principal component plot. (1 = carboxylic acid and 2 = noncarboxylic acid). 
 

 127



 Figure 4.17 shows a plot of the two largest principal components of the 444-point 

IR spectra that comprised the training set.  Figure 4.18 shows a plot of the 8 wavelengths 

identified by the pattern recognition GA.  Each compound in the training set is 

represented as a point in the principal component plot (1 = carboxylic acid and 2 = 

noncarboxylic acid).   The lack of clustering exhibited by the spectra in the principal 

component plot of the data on the basis of the presence or absence of the carboxylic acid 

functional group is evident. 

 The symmlet 4, symmlet 6 and symmlet 8 mother wavelets were applied to the IR 

spectral data to deconvolve overlapping spectral bands and to denoise the spectra.  

Figures 4.19 thru 4.24 show principal component plots of the 435 spectra and the wavelet 

coefficients identified by the pattern recognition GA for the different symmlet mother 

wavelets at various levels of decomposition.  From an examination of these principal 

component plots, it is evident that symmlet 6 at the 10th level decomposition gave the 

best results for the training set.  Therefore, this wavelet was used to develop a search 

prefilter to detect carboxylic acids. 

 Figure 4.25 shows the projection of the spectra from the first prediction set (Table 

4.4) onto a principal component map developed from the 435 training set spectra and the 

53 wavelet coefficients identified by the pattern recognition GA.  All of the training set 

samples were correctly classified.  Three carboxylic acids in the prediction set  did not lie 

in a region of the principal component map occupied by spectra possessing the same class 

label.   Discriminant analysis was also used to develop a classifier from the training set 

data (435 spectra; each is described by 53 wavelet coefficients).  LDA, QDA, K-NN, 

RDA, and back propagation neural networks were applied to this binary classification 
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problem.  The results are summarized in Table 4.5 for both the training set and the first 

prediction set. 

10sym4 

 
Figure 4.19.  Plot of the two largest principal components of the 435 spectra and the 30 wavelet 
coefficients (10sym4) identified by the pattern recognition GA using PCKaNN with the Hopkins 
statistic as the fitness function.  (1 = carboxylic acid and 2 = noncarboxylic acid) 
6sym6 

 
Figure 4.20.  Plot of the two largest principal components of the 435 spectra and the 42 wavelet 
coefficients (6sym6) identified by the pattern recognition GA using PCKaNN with the Hopkins 
statistic as the fitness function.  (1 = carboxylic acid and 2 = noncarboxylic acid) 
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8sym6 

 
Figure 4.21.  Plot of the two largest principal components of the 435 spectra and the 39 wavelet 
coefficients (8sym6) identified by the pattern recognition GA using PCKaNN with the Hopkins 
statistic as the fitness function. (1 = carboxylic acid and 2 = noncarboxylic acid) 
10sym6 

  
Figure 4.22.  Plot of the two largest principal components of the 435 spectra and the 53 wavelet 
coefficients (10sym6) identified by the pattern recognition GA using PCKaNN with the Hopkins 
statistic as the fitness function. (1 = carboxylic acid and 2 = noncarboxylic acid) 
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6sym8 

 
Figure 4.23.  Plot of the two largest principal components of the 435 spectra and the 43 wavelet 
coefficients (6sym8) identified by the pattern recognition GA using PCKaNN with the Hopkins 
statistic as the fitness function. (1 = carboxylic acid and 2 = noncarboxylic acid) 
 
8sym8 

 
Figure 4.24.  Plot of the two largest principal components of the 435 spectra and the 41 wavelet 
coefficients (8sym8) identified by the pattern recognition GA using PCKaNN with the Hopkins 
statistic as the fitness function. (1 = carboxylic acid and 2 = noncarboxylic acid) 
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10sym6-Tset/Pset 

 
Figure 4.25.  Plot of the two largest principal components of the 435 spectra and the 53 wavelet 
coefficients (10sym6) identified by the pattern recognition GA. 1 = carboxylic acid and 2 = 
noncarboxylic acid (training set) using PCKaNN with the Hopkins statistic as the fitness function.  
C = carboxylic acid and N = noncarboxylic acid (prediction set). 
 
 

Table 4.5.  Discriminant Analysis Results for 10symmlet 6 
 LDA QDA RDA 

(auto) 
BPN KNN1 KNN3 KNN5 KNN7 

Tset 
# wrong 

0 1 0 0 7 5 3 2 

Pset1 
# wrong 

4 5 3 3 4 4 3 3 

Pset2 
# wrong 

33 62 38 31 36 35 34 34 
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 The three prediction set samples misclassified by PCA were also the same three 

samples misclassified by LDA, QDA, RDA, back propagation neural networks, and K-

NN.  Spectra of these three misclassified compounds are shown in Figures 4.26 and 4.27.  

The spectrum of valeric acid appears to be distorted because of background correction 

problems, whereas the spectrum of o-toulic acid is of low quality because there does not 

appear to be a sufficient amount of sample used to collect the spectrum. 

Cyclopentaneacetic acid also suffers from spectral distortions due to problems associated 

with background correction. 

 To further test the predictive ability of the 53 wavelet coefficients and the 

discriminants associated with them, a second prediction set consisting of 264 carboxylic 

acids and 72 noncarboxylic acids was used to validate the proposed carboxylic acid 

search prefilter.  The noncarboxylic acids were phosphates, alkenes, alkynes, and alkanes.  

The results from PCA are not shown because PCA does not scale up well when the 

number of samples in the prediction set is comparable to the number in the training set.  

Table 4.5 summarizes the results obtained for the second prediction set using LDA, 

QDA, RDA, back propagation neural networks, and K-NN.  All of the misclassified 

spectra in the second prediction set are atypical carboxylic acids.  This is apparent when 

examining the spectra of these compounds individually.  In some cases a spectrum 

showed lots of CO2, and in other cases they looked like Raman spectra.  Many of the 

troublesome spectra are very noisy, and often the amount of sample used to generate the 

spectrum did not appear to be sufficient.  Some of the spectra are of poor quality and in 

other cases the spectra are mislabeled.  Suitable background correction is often an issue 

in these troublesome spectra as well as spectral distortions.  Examples of mislabeled or 
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low quality IR spectra that were misclassified in the second prediction set are shown in 

Figures 4.28 and 4.29.   

 From the two studies described in this chapter, one can conclude that substructure 

specific search prefilters can be developed for IR library matching using the wavelet 

packet transform.  The wavelet packet tree when combined with the genetic algorithm for 

pattern recognition analysis constitutes a general approach for analyzing and extracting 

information from spectroscopic data. 

 
 O-Toulic acid, α-carboxy-, 

           

Figure 4.26.  Low quality IR spectrum due to an insufficient amount of sample 
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Cyclopentaneacetic acid, 1-hydroxy-a-phenoxy-, 

                   
 

Valeric acid, 5-amino 

                   
 
Figure 4.27.  Spectra of both valeric acid and cyclopentaneacetic acid suffer from spectral 
distortions due to problems associated with background correction. 
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Benzoic acid, 3, 4-dihydroxy 

                 
 
 
 

Acetic acid, o-hydroxyphenyl-, 

                 
Figure 4.28.  o-hydroxyphenyl acetic acid spectrum appears to be a Raman spectrum 
whereas the spectrum of 3, 4-dihydroxy benzoic acid has lots of CO2 in it. 
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Acetic acid, dodecylthio-, 

                
 
 

Leucine, N-chloroacetyl-, L-minus-, 

                 
 
Figure 4.29.  IR spectrum of N-chloroacetyl-, L-minus Leucine is noisy and is of low quality due 
to a small amount of sample.  The dodecylthio-acetic acid spectrum is probably mislabeled. 
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4.5 Conclusions 
 
 Search prefilters can eliminate dissimilar spectra from a library search affording 

the user an opportunity to take advantage of more powerful but also more time-

consuming search algorithms.  Most infrared library search systems compare spectra by 

summing the squares of the difference between two spectra at every wave number.  This 

generally makes for a fairly reliable identity search.  If no compound that is identical to 

the unknown is present in the library, the results of the search then tend not to be useful.  

To improve the performance of a similarity search, the cross correlation function can be 

used to provide the best match between an unknown and the spectra in a hit list generated 

by a set of search prefilters.   The cross correlation function has been shown to be able to 

differentiate between similar but nonidentical spectra and to correctly identify unknown 

spectra [72].  Although the cross correlation function is not computationally and 

statistically scalable as compared to more conventional search algorithms used in IR 

searching, it is suitable as a post searching method to rank probable matches that have 

been selected by a faster algorithm (i.e., a set of search prefilters). Furthermore, 

correlation based searching appears to be very sensitive to changes in peak shape and 

relative peak position making it sensitive to structural differences. Other advantages of 

the cross correlation function include the ability to compensate for variability in signal 

amplitude associated with larger peaks, insensitivity to instrumental noise, and the ability 

to correct for wave number imprecision.  By combining search prefilters with library 

search algorithms that are more powerful but also more computationally intensive than 

the Euclidean distance, similarity searching will be feasible. 

 



 
 
 
 
 

CHAPTER 5 
 
 

Summary 
 
 
 
 In the preceding chapters, a basic methodology for analyzing complex 

multivariate data sets was described.  A spectrum was represented as a point in a high 

dimensional measurement space.  Pattern recognition methods were then used to 

investigate the properties of this vector space.  The techniques found most useful in the 

studies reported here were graphical in nature.  As such, they do not attempt to fit the 

data to a model; rather relationships are sought which provide definitions of similarity 

between diverse groups of data. 

 In a typical pattern recognition study, mapping and display methods such as PCA 

are first used to assess the structure of the data space.  These methods also provide 

information about trends present in the data.  Classification methods can then be used to 

further quantify these relationships.  Linear discriminants have been found to be 

especially well suited for analyzing spectral data.   

 The basic premise underlying the pattern recognition methodology described in 

this thesis is that all data analysis methods will work well when the problem is simple. By 

identifying the appropriate features, a “hard” problem can be reduced to a “simple” one.  

Therefore, feature selection is an important step in a pattern recognition study.  To ensure 

identification of all relevant features, it is best that a multivariate approach to feature 
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selection be employed.  This approach should take into account the existence of 

redundancies in the data. 

 Feature selection can also lead to an understanding of the essential features that 

play an important role in governing the behavior of the system that is under investigation. 

It can identify those measurements, which are informative and those measurements, 

which are not informative, or perhaps it may reveal that all the measurements are 

informative since they are all correlated with each other.  For all these reasons, it is the 

author’s view that feature selection should be the principal focus of any new research on 

methodology involving supervised learning.   

 Pattern recognition methods operate with well defined criteria and attempt to 

extract useful information from raw data.  If the limitations of these methods are not fully 

understood, the danger of misinterpretation and misuse of costly measurements are 

significant.  It is the author’s opinion that these techniques should be used to extend the 

ability of human pattern recognition.  Hence, the approach suggested here relies heavily 

on graphics for the presentation of results.  Although the computer can assimilate more 

numbers at a given time than can the scientist or engineer, it is the scientist or engineer 

who in the end must make the decisions and judgments. 
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Appendix I 
 
 

Gene Expressions Identified by the Pattern Recognition GA 
 
 
 

  
 
Frequency histogram of the best features selected by the pattern recognition GA during 
each generation from all of the runs performed in the 90%/10% validation study to 
simulate the ability of a classifier to predict the class membership (reoccurrence versus 
no reoccurrence) of an unknown biopsy sample using segmented cross validation. 
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List of the Features Most Frequently Selected by the Pattern Recognition GA 
ID Description of Genes Most Frequently Selected 

4017 Consensus includes gb:AK025007.1 /DEF=Homo sapiens cDNA: FLJ21354 
fis, clone COL02773. /FEA=mRNA /DB_XREF=gi:10437440 
/UG=Hs.283707 Homo sapiens cDNA: FLJ21354 fis, clone COL02773 

5941 gb:NM_013316.1 /DEF=Homo sapiens CCR4-NOT transcription complex, 
subunit 4 (CNOT4), mRNA.  /FEA=mRNA /GEN=CNOT4 /PROD=CCR4-
NOT transcription complex, subunit 4 /DB_XREF=gi:7019466 
/UG=Hs.20423 CCR4-NOT transcription complex, subunit 4 
/FL=gb:U71267.1 gb:NM_013316.1 

6093 Consensus includes gb:AV702789 /FEA=EST /DB_XREF=gi:10719119 
/DB_XREF=est:AV702789 /CLONE=ADBAGG04 /UG=Hs.164595 ESTs 

6189 gb:NM_013300.1 /DEF=Homo sapiens protein predicted by clone 23733 
(HSU79274), mRNA. /FEA=mRNA /GEN=HSU79274 /PROD=protein 
predicted by clone 23733 /DB_XREF=gi:9558740 /UG=Hs.150555 protein 
predicted by clone 23733 /FL=gb:U79274.1 gb:NM_013300.1 

6476 Consensus includes gb:AC004542 /DEF=Homo sapiens PAC clone RP3-
430N8 from 22q12.1-qter /FEA=CDS /DB_XREF=gi:3041846 
/UG=Hs.35276 KIAA0852 protein 

7921 Consensus includes gb:L24521.1 /DEF=Human transformation-related protein 
mRNA, 3 end. /FEA=mRNA /PROD=transformation-related protein 
/DB_XREF=gi:403459 /UG=Hs.300705 Human transformation-related 
protein mRNA, 3 end 

8184 Consensus includes gb:AA424065 /FEA=EST /DB_XREF=gi:2103026 
/DB_XREF=est:zv80e10.s1 /CLONE=IMAGE:759978 /UG=Hs.115467 ESTs 

8456 Consensus includes gb:AI809870 /FEA=EST /DB_XREF=gi:5396436 
/DB_XREF=est:wf59c03.x1 /CLONE=IMAGE:2359876 /UG=Hs.66170 
HSKM-B protein 

8640 Consensus includes gb:AK000822.1 /DEF=Homo sapiens cDNA FLJ20815 
fis, clone ADSE01038, highly similar to AJ007398 Homo sapiens mRNA for 
PBK1 protein.  /FEA=mRNA /DB_XREF=gi:7021134 /UG=Hs.85963 
DKFZP564M182 protein 

9097 Consensus includes gb:BF110363 /FEA=EST /DB_XREF=gi:10940053 
/DB_XREF=est:7n52a10.x1 /CLONE=IMAGE:3568050 /UG=Hs.80248 
RNA-binding protein gene with multiple splicing 

9126 Consensus includes gb:AW029203 /FEA=EST /DB_XREF=gi:5887959 
/DB_XREF=est:wx07c09.x1 /CLONE=IMAGE:2542960 /UG=Hs.191952 
ESTs 

9682 Consensus includes gb:AL390736 /DEF=Human DNA sequence from clone 
RP11-209J19 on chromosome 13 Contains ESTs, STSs and GSSs. Contains 
the gene for the GW112 protein with two isoforms (GW112 and KIAA4294) 
/FEA=mRNA /DB_XREF=gi:11182238 /UG=Hs.273321 differentially 
expressed in hematopoietic lineages 

9742 Consensus includes gb:AA528138 /FEA=EST /DB_XREF=gi:2270207 
/DB_XREF=est:nj15d05.s1 /CLONE=IMAGE:986409 /UG=Hs.179520 
Homo sapiens, clone MGC:10702, mRNA, complete cds 

 B



9792 Consensus includes gb:AI090487 /FEA=EST /DB_XREF=gi:3429546 
/DB_XREF=est:qa64d12.x1 /CLONE=IMAGE:1691543 /UG=Hs.168325 
ESTs, Moderately similar to ALU1_HUMAN ALU SUBFAMILY J 
SEQUENCE CONTAMINATION WARNING ENTRY H.sapiens 

9960 Consensus includes gb:BF221850 /FEA=EST /DB_XREF=gi:11129027 
/DB_XREF=est:7p37f06.x1 /CLONE=IMAGE:3648131 /UG=Hs.122365 
ESTs 

9987 gb:M65254.1 /DEF=Protein phosphatase 2A 65 kDa regulatory subunit-beta 
mRNA, complete cds.  /FEA=mRNA /GEN=SNRPEP1 /PROD=protein 
phosphatase-2A regulatory subunit-beta /DB_XREF=gi:189429 
/UG=Hs.108705 protein phosphatase 2 (formerly 2A), regulatory subunit A 
(PR 65), beta isoform /FL=gb:NM_002716.1 gb:AF163473.1 gb:M65254.1 
gb:AF087438.1 

11132 Consensus includes gb:AA908777 /FEA=EST /DB_XREF=gi:3048182 
/DB_XREF=est:ol06b06.s1 /CLONE=IMAGE:1522643 /UG=Hs.50158 ESTs 

12189 gb:NM_021977.1 /DEF=Homo sapiens solute carrier family 22 (extraneuronal 
monoamine transporter), member 3 (SLC22A3), mRNA.  /FEA=mRNA 
/GEN=SLC22A3 /PROD=solute carrier family 22 (extraneuronalmonoamine 
transporter), member 3 /DB_XREF=gi:11415037 /UG=Hs.81086 solute 
carrier family 22 (extraneuronal monoamine transporter), member 3 
/FL=gb:NM_021977.1 

12627 gb:NM_005518.1 /DEF=Homo sapiens 3-hydroxy-3-methylglutaryl-
Coenzyme A synthase 2 (mitochondrial) (HMGCS2), mRNA.  /FEA=mRNA 
/GEN=HMGCS2 /PROD=3-hydroxy-3-methylglutaryl-Coenzyme A synthase 
2(mitochondrial) /DB_XREF=gi:5031750 /UG=Hs.59889 3-hydroxy-3-
methylglutaryl-Coenzyme A synthase 2 (mitochondrial) 
/FL=gb:NM_005518.1 

12726 Consensus includes gb:AF143884.1 /DEF=Homo sapiens clone 
IMAGE:121558 mRNA sequence. /FEA=mRNA /PROD=unknown 
/DB_XREF=gi:4895028 /UG=Hs.145643 Homo sapiens clone 
IMAGE:121558 mRNA sequence 

12867 Consensus includes gb:AB033044.1 /DEF=Homo sapiens mRNA for 
KIAA1218 protein, partial cds. /FEA=mRNA /GEN=KIAA1218 
/PROD=KIAA1218 protein /DB_XREF=gi:6330582 /UG=Hs.114012 
KIAA1218 protein 

14059 gb:AF128846.1 /DEF=Homo sapiens indolethylamine N-methyltransferase 
(INMT) mRNA, INMT-1 allele, complete cds.  /FEA=mRNA /GEN=INMT 
/PROD=indolethylamine N-methyltransferase /DB_XREF=gi:6580814 
/UG=Hs.204038 indolethylamine N-methyltransferase /FL=gb:NM_006774.2 
gb:AF128846.1 gb:AF128847.1 

15130 Consensus includes gb:BE220399 /FEA=EST /DB_XREF=gi:8907717 
/DB_XREF=est:hv71g09.x1 /CLONE=IMAGE:3178912 /UG=Hs.323836 
ESTs, Weakly similar to alternatively spliced product using exon 13A 
H.sapiens 

 C



15401 gb:NM_001275.2 /DEF=Homo sapiens chromogranin A (parathyroid 
secretory protein 1) (CHGA), mRNA.  /FEA=mRNA /GEN=CHGA 
/PROD=chromogranin A /DB_XREF=gi:10800418 /UG=Hs.172216 
chromogranin A (parathyroid secretory protein 1) /FL=gb:NM_001275.2 
gb:BC001059.1 gb:J03483.1 gb:J03915.1 

16485 Consensus includes gb:AI627965 /FEA=EST /DB_XREF=gi:4664765 
/DB_XREF=est:ty83c12.x1 /CLONE=IMAGE:2285686 /UG=Hs.301732 
hypothetical protein MGC5306 

16595 Consensus includes gb:AK022874.1 /DEF=Homo sapiens cDNA FLJ12812 
fis, clone NT2RP2002498. /FEA=mRNA /DB_XREF=gi:10434520 
/UG=Hs.108779 DKFZP586E1519 protein 

17621 Consensus includes gb:N63953 /FEA=EST /DB_XREF=gi:1211782 
/DB_XREF=est:yz81b03.s1 /CLONE=IMAGE:289421 /UG=Hs.243662 ESTs 

17676 gb:NM_003272.1 /DEF=Homo sapiens transmembrane 7 superfamily member 
1 (upregulated in kidney) (TM7SF1), mRNA.  /FEA=mRNA /GEN=TM7SF1 
/PROD=transmembrane 7 superfamily member 1(upregulated in kidney) 
/DB_XREF=gi:4507544 /UG=Hs.15791 transmembrane 7 superfamily 
member 1 (upregulated in kidney) /FL=gb:AF027826.1 gb:NM_003272.1 

18409 gb:NM_003122.1 /DEF=Homo sapiens serine protease inhibitor, Kazal type 1 
(SPINK1), mRNA.  /FEA=mRNA /GEN=SPINK1 /PROD=serine protease 
inhibitor, Kazal type 1 /DB_XREF=gi:4507178 /UG=Hs.181286 serine 
protease inhibitor, Kazal type 1 /FL=gb:NM_003122.1 

18800 Consensus includes gb:AA868380 /FEA=EST /DB_XREF=gi:2963825 
/DB_XREF=est:ak41e02.s1 /CLONE=IMAGE:1408538 /UG=Hs.126914 
KIAA1430 protein 

19282 gb:AF130059.1 /DEF=Homo sapiens clone FLB5634 PRO1477 mRNA, 
complete cds. /FEA=mRNA /PROD=PRO1477 /DB_XREF=gi:11493424 
/UG=Hs.99858 ribosomal protein L7a /FL=gb:AF130059.1 

21349 Consensus includes gb:BF345728 /FEA=EST /DB_XREF=gi:11293323 
/DB_XREF=est:602019377F1 /CLONE=IMAGE:4154971 /UG=Hs.297962 
ESTs 

21351 Consensus includes gb:AW297731 /FEA=EST /DB_XREF=gi:6704367 
/DB_XREF=est:UI-H-BW0-aiy-a-04-0-UI.s1 /CLONE=IMAGE:2730894 
/UG=Hs.123310 ESTs 

22560 gb:NM_018977.1 /DEF=Homo sapiens neuroligin 3 (NLGN3), mRNA. 
/FEA=mRNA /GEN=NLGN3 /PROD=neuroligin 3 /DB_XREF=gi:9506786 
/UG=Hs.47320 neuroligin 3 /FL=gb:AF217411.1 gb:NM_018977.1 

22815 Consensus includes gb:AI671488 /FEA=EST /DB_XREF=gi:4851219 
/DB_XREF=est:wc30h04.x1 /CLONE=IMAGE:2316727 /UG=Hs.65082 
ESTs 

23490 Cluster Incl. U79256:Human clone 23719 mRNA sequence /cds=UNKNOWN 
/gb=U79256 /gi=1710209 /ug=Hs.80305 /len=1196 

23990 Consensus includes gb:AI922972 /FEA=EST /DB_XREF=gi:5659022 
/DB_XREF=est:wn66h07.x1 /CLONE=IMAGE:2450461 /UG=Hs.196073 
ESTs 

 D



25180 gb:AF098641.1 /DEF=Homo sapiens CD44 isoform RC (CD44) mRNA, 
complete cds. /FEA=mRNA /GEN=CD44 /PROD=CD44 isoform RC 
/DB_XREF=gi:3832517 /UG=Hs.306278 Homo sapiens CD44 isoform RC 
(CD44) mRNA, complete cds /FL=gb:AF098641.1 

25779 Consensus includes gb:AI025103 /FEA=EST /DB_XREF=gi:3240716 
/DB_XREF=est:ov40d05.x1 /CLONE=IMAGE:1639785 /UG=Hs.54699 
ESTs 

27616 gb:NM_003155.1 /DEF=Homo sapiens stanniocalcin 1 (STC1), mRNA. 
/FEA=mRNA /GEN=STC1 /PROD=stanniocalcin 1 /DB_XREF=gi:4507264 
/UG=Hs.25590 stanniocalcin 1 /FL=gb:U46768.1 gb:U25997.1 
gb:NM_003155.1 

27708 gb:NM_006157.1 /DEF=Homo sapiens nel (chicken)-like 1 (NELL1), mRNA. 
/FEA=mRNA /GEN=NELL1 /PROD=nel (chicken)-like 1 
/DB_XREF=gi:5453763 /UG=Hs.21602 nel (chicken)-like 1 
/FL=gb:D83017.1 gb:NM_006157.1 

29281 Consensus includes gb:AU156625 /FEA=EST /DB_XREF=gi:11018146 
/DB_XREF=est:AU156625 /CLONE=PLACE1003936 /UG=Hs.296738 
Homo sapiens cDNA FLJ13489 fis, clone PLACE1003936 
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Appendix II 
 
 
 

Results of Segmented Cross Validation for Reoccurrence of Cancer 
 
 

Segmented Cross Validation (90% Training Set/10% Validation Set) 
Classification 

method 
Average Tset % classification Average Pset % classification 

 Normal Modified 
Hopkins

Hopkins Normal Modified 
Hopkins 

Hopkins 

LDA 96 97 97 97 97 98 

QDA 95 97 96 96 97 97 

RDA(auto) 97 98 97.25 98 99 98 

1-NN 92 94 95 96 97 95 

 
 

Segmented Cross Validation (50% Training Set/50% Validation Set) 
Classification 

method 
Average Tset % classification Average Pset % classification 

 Normal Modified 
Hopkins

Hopkins Normal Modified 
Hopkins 

Hopkins 

LDA 99 99 100 40 51 43 

QDA 100 100 100 0 0 0 

RDA(auto) 100 100 98 50 51 54 

1-NN 53 58 46 59 53 61 
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Pset1-Normal 

 
 

 
 
Figure A2.1. A plot of the two largest principal components developed from the 50 
biopsy samples and 42 features identified by PCKaNN for the first training set/prediction 
set pair from the 50%/50% segmented cross validation study.  1 = no reoccurrence and 2 
= reoccurrence (training set).  R = reoccurrence and N = no reoccurrence (validation set).   
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Pset1-hopkins 

 
 

 
Figure A2.2. A plot of the two largest principal components developed from the 50 
biopsy samples and 41 features identified by PCKaNN with the Hopkins statistic for the 
first training set/prediction set pair from the 50%/50% segmented cross validation study.  
1 = no reoccurrence and 2 = reoccurrence (training set).  R = reoccurrence and N = no 
reoccurrence (validation set).   
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Pset1-Modified Hopkins 

 

 
Figure A2.3. A plot of the two largest principal components developed from the 50 
biopsy samples and 42 features identified by PCKaNN with the modified Hopkins 
statistic for the first training set/prediction set pair form the 50%/50% segmented cross 
validation study.  1 = no reoccurrence and 2 = reoccurrence (training set).  R = 
reoccurrence and N = no reoccurrence (validation set).   
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Pset2-Normal 

 
 

 
Figure A2.4. A plot of the two largest principal components developed from the 50 
biopsy samples and 36 features identified by PCKaNN for the second training 
set/prediction set pair from the 50%/50% segmented cross validation study.  1 = no 
reoccurrence and 2 = reoccurrence (training set).  R = reoccurrence and N = no 
reoccurrence (validation set).   

 J



Pset2-Hopkins 

 

 
Figure A2.5. A plot of the two largest principal components developed from the 50 
biopsy samples and 43 features identified by PCKaNN and the Hopkins statistic for the 
second training set/prediction set pair from the 50%/50% segmented cross validation 
study.  1 = no reoccurrence and 2 = reoccurrence (training set).  R = reoccurrence and N 
= no reoccurrence (validation set).   

 K



 
Pset2-Modified Hopkins 

 

 
 
Figure A2.6. A plot of the two largest principal components developed from the 50 
biopsy samples and 40 features identified by PCKaNN and the modified Hopkins statistic 
for the second training set/prediction set pair from the 50%/50% segmented cross 
validation study.  1 = no reoccurrence and 2 = reoccurrence (training set).  R = 
reoccurrence and N = no reoccurrence (validation set).   
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Appendix III 

 
 

Receiver Operator Curves for Classifiers Developed from the 53 
Coefficients of the 10symmlet6 Wavelet for the Carboxylic Acid 

Functional Group 
 

        
ROC curve (solid line) is shown for the discriminant developed by LDA with the dashed 
line indicative of the response obtained by a random classifier for this data.  ROC curves 
for QDA, RDA, and backpropagation are similar in shape and form to the one obtained 
for LDA.  
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True positive rate (TPR) where b is the number of samples from class B assigned to class 

A, and d is the number of samples from class B assigned to class B by the classifier 
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False positive error rate (FPR) where c is the number of samples from class A assigned to 

class B and a is the number of samples from class A that are assigned to class A by the 

classifier 
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Scope and Method of Study:  

 The development of a genetic algorithm (GA) for pattern recognition analysis of infrared 
spectral data is proposed. The GA selects spectral features that optimize the separation of 
the different functional groups in a plot of the two or three largest principal components 
of the data. Because the largest principal components capture the bulk of the variance in 
the data, the features chosen by the GA primarily convey information about differences 
between classes. Hence, the principal component analysis routine embedded in the fitness 
function of the GA acts as an information filter, significantly reducing the size of the 
search space, since it restricts the search to feature sets whose principal component plots 
show clustering of the spectra on the basis of chemical structure. In addition, the 
algorithm focuses on those classes and or samples that are difficult to classify as it trains 
using a form of boosting to modify class and sample weights. Samples that consistently 
classify correctly are not as heavily weighted as samples that are more difficult to 
classify. Over time, the algorithm learns its optimal parameters in a manner similar to a 
neural network. The proposed GA integrates aspects of artificial intelligence and 
evolutionary computations to yield a "smart" one -pass procedure for feature selection 
and pattern recognition. 
 
Findings and Conclusions:   
Using the pattern recognition GA to select spectral features, a search prefilter based on 
the response function to the simple binary classification problem, carboxylic acids versus 
other compounds including carbonyl compounds, has been developed that allows for the 
specific detection of carboxylic acids from IR spectra. Carboxylic acids have highly 
characteristic features but there are also complications that confound the interpretation of 
their spectra. The wavelet packet transform has been used to denoise and deconvolute the 
spectra by decomposing each spectrum into wavelet coefficients that represent both high 
and low frequency components of the signal.  This decomposition process is iterated 
through successive wavelet packets until the required level of signal decomposition is 
achieved.  Using a symmlet 6 mother wavelet at the tenth level decomposition to 
deconvolve spectral features, the genetic algorithm for pattern recognition analysis was 
able to identify wavelet coefficients characteristic of the carboxylic acid functional group.  
Classifiers developed from these wavelet coefficients have been successfully validated. 
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