
Moses & Sangplung, Cogent Engineering (2017), 4: 1341289
https://doi.org/10.1080/23311916.2017.1341289

PRODUCTION & MANUFACTURING | RESEARCH ARTICLE

Resource planning for just-in-time make-to-order
environments: A scalable methodology using tabu
search
Scott A. Moses1* and Wassama Sangplung2

Abstract: This paper develops a two-phase tabu search-based methodology for
detailed resource planning in make-to-order production systems with multiple
resources, unique routings, and varying job due dates. In the first phase rather than
attempting to construct a good feasible plan from scratch, we define a novel ap-
proach to resource planning that computes an infeasible but optimal plan, uses it as
the initial resource plan, and then makes the necessary modifications to the times
of individual tasks to create a feasible finite-capacity plan. In the second phase we
search for alternate finite-capacity plans that have decreased earliness, tardiness
and lead time. To reduce earliness as well as tardiness, just-in-time philosophical
elements are weaved into the construction of the initial solution, the neighborhood
structure and the selection criteria. Computational experiments reveal that the tabu
search-based methodology is more effective and reliable for resource planning than
an exact approach using binary integer linear programming, which struggles to find
a good solution in a reasonable amount of time even for trivially small instances. It
also outperforms heuristic methods commonly used in practice for resource plan-
ning that sort jobs according to priority and load them onto resources one at a time.

*Corresponding author: Scott A.
Moses, School of Industrial & Systems
Engineering, The University of
Oklahoma, Norman, OK 73019, USA
E-mail: moses@ou.edu

Reviewing editor:
Wenjun Xu, Wuhan University of
Technology, China

Additional information is available at
the end of the article

ABOUT THE AUTHORS
Scott A. Moses is an Associate Professor in the
School of Industrial & Systems Engineering at
the University of Oklahoma. His research activity
focuses on scalable algorithms for real-time
order promising and for high-speed tactical-level
planning of production tasks and material flow
in large discrete systems. Emphasis in research
is given to computationally oriented approaches
that have the flexibility and scalability needed
to yield solutions meaningful to industry. His
teaching interests also include factory physics
and engineering economics. He received his PhD
degree in industrial engineering from Purdue
University and holds an MS degree in industrial
engineering and a BS degree in mechanical
engineering, both from Oklahoma State University.

Wassama Sangplung is a Lecturer at King
Mongkut’s University of Technology Thonburi
in Bangkok. She received her PhD in industrial
engineering from the University of Oklahoma.
Her interests are in supply chain management,
production planning and business process
management.

PUBLIC INTEREST STATEMENT
In make-to-order manufacturing environments
where demand is highly variable a resource
planning algorithm is used to adjust the time that
individual tasks are performed on resources so that
capacity constraints are respected, due dates are
met, and lead times are minimized. We develop
a two-phase tabu search-based methodology for
resource planning. Tabu search and other meta-
heuristics are used to find solutions for complex,
large-scale problems where exact optimal
solutions cannot be computed. Our approach that
is grounded in the concept that a better initial
solution improves algorithm performance. The
first phase of the algorithm begins with an ideal
but infeasible solution and makes the minimum
changes necessary to obtain a feasible solution.
The second phase seeks to improve that solution
by making incremental changes. To reduce both
job earliness as well as tardiness, just-in-time
philosophical elements are incorporated into the
algorithms.

Received: 10 March 2017
Accepted: 30 May 2017
First Published: 14 June 2017

© 2017 The Author(s). This open access article is distributed under a Creative Commons
Attribution (CC-BY) 4.0 license.

Page 1 of 19

Scott A. Moses

http://crossmark.crossref.org/dialog/?doi=10.1080/23311916.2017.1341289&domain=pdf&date_stamp=2017-06-14
mailto:moses@ou.edu
http://creativecommons.org/licenses/by/4.0/

Page 2 of 19

Moses & Sangplung, Cogent Engineering (2017), 4: 1341289
https://doi.org/10.1080/23311916.2017.1341289

Subjects: Simulation & Modeling; Operations Research; Production Systems; Operations
Management; Lean Manufacturing; Production Systems & Automation

Keywords: resource planning; make-to-order; MRP; JIT; tabu search

1. Introduction
Many manufacturers have shifted in recent years from a make-to-stock to a make-to-order produc-
tion mode to better accommodate highly variable customer requirements, but this shift has made
operational efficiency more challenging since the unique routings and variable due date tightnesses
of jobs in a make-to-order system results in uneven resource loading. Detailed planning algorithms
are needed in these environments to balance the load on individual resources over an intermediate
horizon (e.g. 2–12 months) using a discrete-time representation of resource availability before
scheduling is attempted over a shorter time horizon (e.g. 1–14 days) using a continuous-time repre-
sentation of resource availability.

Unfortunately, despite their name, traditional techniques such as Material Requirements Planning
and/or Capacity Requirements Planning do not actually perform planning, but only calculate require-
ments and furthermore do so with a fixed lead-time model. If the calculated requirements are infea-
sible, they do not create a feasible plan by making adjustments to the quantity being produced or
the timing of production tasks. However, using a detailed model of the production system, a true
resource planning algorithm can be created which first predicts when resources will be overloaded.
Second, the algorithm can then seek to eliminate overloads by adjusting the time that tasks are
performed on individual resources while respecting task precedence constraints and also attempt-
ing to meet individual job due dates and reduce job lead times and work in process (WIP). In this
paper we develop such a methodology for resource planning.

In prior years many manufacturers have embraced the JIT philosophy, particularly at the opera-
tional level. According to JIT, a job should be processed and finished as close as possible to its due
date, neither tardy nor early. In this paper we therefore define the ideal plan for a job to be that plan
where each task is backward planned from the due date without allowances for queueing. This plan
has zero earliness, zero tardiness, and minimal lead time and actually is very easy to compute.
Unfortunately, multiple jobs cannot simultaneously follow their ideal plans due to resource capacity
constraints. However, by superimposing all of the ideal plans for individual jobs a time-phased load
profile for each resource can be constructed and overloads can be identified. Consequently, in this
research rather than attempting to construct a good feasible plan from scratch, we compute what
is an infeasible but optimal initial resource plan via superimposition of the various ideal plans and
then make the minimal necessary modifications to the times of individual tasks in order to make the
plan feasible.

To determine which tasks are pulled to earlier times or pushed to later times, we develop a two-
phase tabu search-based methodology that weaves JIT philosophical elements into construction of
the initial solution, the neighborhood structure and the selection criteria. Tabu search, an improve-
ment-type heuristic algorithm, is often applied to solve complicated problems such as those faced
by production systems since a good, if not optimal, solution often can be obtained within a reason-
able time (Glover, 1986). When considering what moves to make (i.e. which tasks to push or pull and
where to place them) the algorithm considers the deviation of the current plan from the ideal plan
for each task on each job. Thus, the ideal plan for a job is not only used to construct the initial plan,
but it also serves as a beacon to guide the tabu search algorithm when modifying the times of indi-
vidual tasks.

The remainder of this paper is organized as follows. Section 2 reviews the related literature on
resource planning, heuristic methods for job shop scheduling, and specific areas such as the earli-
ness-tardiness problem. Section 3 defines a binary integer linear programming model for resource
planning that can be used to obtain exact solutions for small instances. Section 4 describes our tabu

Page 3 of 19

Moses & Sangplung, Cogent Engineering (2017), 4: 1341289
https://doi.org/10.1080/23311916.2017.1341289

search-based methodology for resource planning that can obtain solutions to realistically sized in-
stances. Section 5 presents the results the computational evaluation, and Section 6 provides final
conclusions.

2. Background and context
A large body of work exists on optimization approaches for aggregate planning. Aggregate planning
uses a discrete representation of time and consolidates data on individual products and resources
to reduce the size of the problem. An enormous body of literature also has been developed over the
past century on optimization approaches for scheduling and sequencing, which use a continuous
representation of time. Detailed resource planning falls in between aggregate planning and schedul-
ing/sequencing. Such planning is concerned with balancing the load on individual resources over an
intermediate horizon before scheduling is attempted. It is not so concerned with the exact sequence
of tasks performed on a resource as it is with creating a feasible time-phased resource loading,
which may require adding overtime capacity in some periods or completing some orders late, and
predicting release dates that will balance resource capacity and job due date considerations.
Obviously, scheduling will be more successful if the total workload being scheduled is feasible.

Very little literature exists on detailed resource planning (Chen, Moses, & Pulat, 2007; Hans, 2001;
Tardif & Spearman, 1997; Wullink, Gademann, Hans, & van Harten, 2004; Wullink, Hans, & Harten,
2004). However, a variety of approaches have been studied to improve the performance of job shop
scheduling, and these provide insights and techniques that can be adapted for use on planning
problems. Since the job shop scheduling problem is NP-hard (Gary & Johnson, 1979; Logendran &
Sonthinen, 1997), the computational effort grows exponentially as the problem size increases
(Lawler, Lenstra, Rinnooy Kan, & Shmoys, 1989). Thus, exact solutions normally can be computed
only for very tiny instances, and to obtain solutions for realistically sized instances heuristic algo-
rithms are needed. Relevant heuristic methods for scheduling include priority rules, the shifting bot-
tleneck method, and algorithms using local search techniques such as simulated annealing, genetic
algorithms, ant colony optimization, particle swarm optimization, and tabu search.

Tabu search (Glover, 1989, 1990) has been successfully applied to many combinatorial optimiza-
tion problems including job shop scheduling. Taillard (1989) first used tabu search to solve a job shop
scheduling problem. Since then, numerous algorithms have been proposed and developed (Akhoondi
& Lotfi, 2016; Armentano & Scrich, 2000; Barnes & Chambers, 1995; Dell’Amico & Trubian, 1993;
Edwards, Sørensen, Bochtis, & Munkholm, 2015; Nowicki & Smutnicki, 1996; Zhang, Li, Guan, & Rao,
2007). Tabu search is an improvement algorithm that begins with an initial solution and generates a
neighborhood of similar solutions. Each neighboring solution is evaluated, and the best of these is
selected to begin the next iteration. This process is repeated until a stopping condition is met. To
avoid stagnation at a local minimum, the algorithm stores recent solutions or solution attributes in
a short-term memory list called the tabu list. These solutions or attributes are forbidden from selec-
tion from the neighborhood. Tabu status is removed after a certain number of iterations. Aspiration
criteria allow the algorithm to override tabu status in an iteration. Most often, aspiration criteria
simply allow the acceptance of a solution that is better than any previous solution.

Research on job shop scheduling most often uses an asymmetric penalty function for job lateness
that considers job tardiness but not job earliness. The earliness-tardiness (ET) problem has been
studied broadly in single machine environments (Baker & Scudder, 1990; Bauman & Józefowska,
2006; Lee & Kim, 1998; M’Hallah, 2007), and a few researchers have worked on problems with mul-
tiple resources. Project scheduling applications often consider both earliness and tardiness (Ballestín
& Trautmann, 2008). Imanipour and Zegordi (2006) proposed tabu search to find the best routing of
each job in the Flexible Job Shop problem, where tasks may be completed by more than one re-
source. Their searching scheme focused on assigning an alternative resource to each task and using
a backward procedure to generate task schedules that minimize earliness and tardiness. Finke,
Medeiros, and Traband (2007) used tabu search combined with the earliest due date dispatching
rule to solve the ET scheduling problem with unequal due dates in a flow shop environment. Zhu, Ng,

Page 4 of 19

Moses & Sangplung, Cogent Engineering (2017), 4: 1341289
https://doi.org/10.1080/23311916.2017.1341289

and Ong (2010) proposed a modified tabu search algorithm in a job shop problem with a JIT environ-
ment. They used forward and backward movement to generate a new schedule that minimized
three costs: WIP holding cost, inventory holding cost and backorder cost.

Thus, although some research has considered both earliness and tardiness, relatively little re-
search has focused on these metrics in complex job shop settings with multiple resources, variable
routings, and varying job due dates. Our research explores whether incorporating the JIT philosophy
into the main elements of a tabu search algorithm for resource planning can reduce both earliness
and tardiness in realistic make-to-order production settings.

3. Mathematical programming model for resource planning
In this section we define a binary integer linear programming formulation for the job shop planning
problem. The model provides a formal definition of the resource planning problem and can be used
to obtain optimal solutions for small instances that can be compared to solutions obtained with the
much more scalable tabu search-based methodology for resource planning that is described in
Section 4.

A set of I jobs needs to be planned on a set of H resources in order to minimize a weighted cost
function with costs for the earliness, tardiness, and lead time of each job. A variable number of tasks
for each job is allowed, and each job follows a different routing. Since we are performing planning
and not scheduling, a discrete-time model of capacity is used: on each resource the planning horizon
is uniformly divided into intervals (time buckets), whose capacity can vary if desired. Each task is
performed in a single bucket. To ensure that precedence constraints are respected, we do not allow
consecutive tasks for a job to be processed in the same bucket.

Notation:
Xij� 		 Bucket when task j of job i is planned

Lij� 		 Latest desired start time of task j of job i

Pij� 		 Processing time of task j of job i

Rij� 		 Routing: index of resource that performs task j of job i

Ji� 		 Number of tasks of job i

Si� 		 Earliest feasible release time of job i

Di� 		 Due date of job i

Fi� 		 Finish time of job i (note that job i is tardy if Fi ≥ Di)

Bhk� 		 Capacity of bucket k for resource h

Pei � 		 Earliness penalty for job i

Pti � 		 Tardiness penalty for job i

Pli� 		 Lead time penalty for job i

Cei � 		 Earliness cost of job i

Cti � 		 Tardiness cost of job i

Cli� 		 Lead time cost of job i

i� 		 Index for set of jobs; i = 1 … I

j� 		 Index for set of tasks required by a job; j = 1 … Ji

h� 		 Index for set of resources; h = 1 … H

k� 		 Index for set of buckets on each resource; k = 1 … K

Decision variable:
xijk� 		 1 if task j of job i is planned in bucket k, 0 otherwise

Page 5 of 19

Moses & Sangplung, Cogent Engineering (2017), 4: 1341289
https://doi.org/10.1080/23311916.2017.1341289

Model:

subject to

where

Constraint (2) ensures that jobs are not planned on resources before they are available. Constraint
(3) enforces task precedence constraints. Constraints (4) and (6) ensure each task is planned in only
one bucket. Constraint (5) enforces resource capacity constraints. Equation (7) defines the planned
time of each task of a job (note that Xi1 provides the planned release time of the job). Equation (8)
defines the finish time of a job, which is used to calculate the various costs for each job. Equation (9)
defines the earliness cost for a job, equation (10) defines the tardiness cost for a job, and Equation
(11) defines the lead time cost for a job. By including lead time in the objective function (1), we are
correspondingly reducing WIP (Little, 1961), which is an important objective of JIT systems.

4. Tabu search-based methodology for resource planning
This section defines our two-phase tabu search-based methodology for resource planning. Figure 1
provides an overview. The algorithm design is grounded in the concept that a better initial solution
leads to better performance (Danna, Rothberg, & Le, 2004). Thus, rather than using a random initial

(1)Minimize

I
∑

i=1

(Cei + C
t
i + C

l
i)

(2)
K
∑

k=1

kxilk ≥ Si i = 1… I

(3)
K
∑

k=1

kxijk <

K
∑

k=1

kxi(j+1)k i = 1… I, J = 1… Ji − 1

(4)
K
∑

k=1

xijk ≤ 1 i = 1… I, J = 1… Ji

(5)
l

∑

i=1

ji
∑

j=1

xijkPij ≤ Bhk whereRij = h, h = 1…H, k = 1…K

(6)xijk ∈ {0, 1}

(7)Xij =

K
∑

k=1

kxijk

(8)Fi = XiJi

(9)Cei =
((Di − 1) − Fi)(P

e
i) if Fi < (Di − 1)

0 otherwise

(10)Cti =
(Fi − (Di − 1))(P

t
i) if Fi < (Di − 1)

0 otherwise

(11)Cli = (Fi − Xi1 + 1)(P
l
i)

Page 6 of 19

Moses & Sangplung, Cogent Engineering (2017), 4: 1341289
https://doi.org/10.1080/23311916.2017.1341289

plan our algorithm begins with an initial plan created by superimposing the ideal plan for all jobs,
which is easily computed by performing infinite backward planning for each job (12).

The initial plan is optimal in the sense that it has zero earliness, zero tardiness, and minimal lead
time, but it is not feasible due to violation of resource capacity constraints. Phase 1, the overload
resolution algorithm (ORA), makes the minimal necessary adjustments to create a feasible finite-
capacity plan. Phase 2, the Plan Improvement Algorithm (PIA), searches for alternate finite-capacity
plans that have decreased earliness, tardiness and lead time.

Both phases of the methodology are guided by the following tabu search algorithm in which the
initialization procedure, neighborhood structure and selection criteria incorporate JIT concepts to
accelerate the search for a good solution.

(12)Xij = Di − (Ji − j + 1) i = 1… I, j = 1… Ji

Figure 1. Methodology for
resource planning.

Page 7 of 19

Moses & Sangplung, Cogent Engineering (2017), 4: 1341289
https://doi.org/10.1080/23311916.2017.1341289

4.1. Overload resolution algorithm
In the initial plan, some resources will be overloaded in certain time buckets (otherwise, the initial
plan is both optimal and feasible and the algorithm can terminate). The ORA eliminates these over-
loads and creates a feasible resource plan by moving tasks from overloaded buckets to buckets that
have sufficient available capacity. To do so, it first identifies the time bucket that has the maximum
overload for any resource. For each task planned in that bucket a neighboring solution is then cre-
ated by either pulling the task to an earlier bucket with sufficient available capacity or else by push-
ing the task to a later bucket (He, Yang, & Deal, 1993). Thus, the size of the neighborhood equals the
number of tasks in the bucket.

4.1.1. Computing the neighboring solutions
In the initial plan, each task of a job was planned at the latest possible time given its due date. Thus,
pulling a task earlier is preferable to pushing it later, since pushing will introduce tardiness. When a
task is pulled (pushed), precedence constraints are checked for its predecessors (successors), and if
necessary those tasks also are pulled (pushed). Consequently, although a neighboring solution is
identified by the decision to pull or push a particular task in an overloaded bucket, other tasks
planned on other resources may also have been pulled or pushed to complete the entire solution. To
be able to pull a particular task capacity must be available in an earlier period not only for the task
being pulled but also for its predecessor tasks.

Figure 2(a) provides a simple example to illustrate the procedure for computing a neighboring
solution by pulling a task. Load graphs for three resources are shown where the dotted line repre-
sents the capacity of each resource and boxes indicate tasks planned on each resource. To eliminate

Page 8 of 19

Moses & Sangplung, Cogent Engineering (2017), 4: 1341289
https://doi.org/10.1080/23311916.2017.1341289

the overload on resource M2, task 2 of the shaded job will be pulled from k = 4 to the next earlier
bucket with availability, which is k = 3. This creates a precedence constraint violation so task 1 of the
shaded job also is pulled to the next earlier bucket with availability. Figure 2(c) shows the result.

Figure 2(b) illustrates the procedure for computing a neighboring solution by pushing a task. Task
2 of the shaded job cannot be pulled earlier since that would require performing task 1 before the
start of the planning horizon, and therefore task 2 is pushed to the next later bucket with availability.
This creates a precedence constraint violation so task 3 of the shaded job also is pushed to the next
later bucket with availability. Figure 2(c) shows the result.

4.1.2. Search strategy
Solution fitness is evaluated with a three-tiered hierarchy: maximum overload in a single bucket,
total tardiness, and total lead time.

ORA selection criteria:

(1) � If (O′ < O*)

(2) � Else if (O′==O*) and (T′ < T*)

(3) � Else if (O′==O*) and (T′==T*) and (L′ < L*)

where O′, O* = maximum overload in the neighboring solution and best solution; T′, T* = total
tardiness of the neighboring solution and best solution; L′, L* = total lead time of the neighboring
solution and best solution.

Figure 2. Pulling a task earlier
and pushing a task later to
create a feasible plan: (a)
before pull, (b) before push and
(c) after either pull or push.

Page 9 of 19

Moses & Sangplung, Cogent Engineering (2017), 4: 1341289
https://doi.org/10.1080/23311916.2017.1341289

After the best neighboring solution is found, the next step is to decide whether to accept it as the
current best solution to the problem. Often, some attributes of the best neighboring solution will
have been labeled tabu in a previous iteration. In that case aspiration criterion will accept the new
solution if it is better than the best solution found so far.

The job and task from the best neighboring solution are stored in the tabu list to prevent revisiting
the same solution. Iterations continue until one of three stopping conditions is met: no overloaded
buckets remain in the solution, a preset number of stagnant iterations is reached, or a preset total
number of iterations is reached. If the first stopping condition is satisfied, the PIA phase will begin.
Otherwise, the resource planning procedure will terminate.

4.2. Plan improvement algorithm
The PIA phase begins with a feasible resource plan from the ORA, which potentially already is quite
good but presumably contains both early and tardy jobs. ORA can be viewed as an algorithm whose
purpose is to construct a good initial solution for PIA. Using the ideal plan as a beacon, the PIA
pushes early jobs later and pulls tardy jobs earlier via task swapping and insertion methods so that
job tardiness, earliness, and lead time are reduced while respecting capacity and precedence
constraints.

We define the target job τ as the job that has maximum absolute lateness. The target task τj rep-
resents task j of job τ and is where we begin the search. A good neighborhood structure is important
to efficiently explore new solutions, and several schemes have been proposed to generate neighbor-
hoods (Dell’Amico & Trubian, 1993; James, 1997; Tsubakitani & Evans, 1992). Three main schemes
are insert, swap, and a combination of insert and swap. James (1997) reviewed these three schemes
in the context of a single machine early/tardy scheduling problem and concluded that the best
scheme is the hybrid of insert and swap since it provides a variety of new solutions. Therefore, in the
PIA both insert and swap methods are utilized to generate neighboring solutions. In the insert meth-
od τj is moved to a bucket with enough availability to accommodate the task, while in the swap
method τj replaces another task, which must then be moved to a different bucket.

The search differs depending on whether the target job is tardy or early. If the target job is tardy
(early) then the search will begin with the last (first) task on the routing and traverse backwards
(forwards). To further focus the search, two parameters are calculated for each task: earliest allowed
start time Eij and latest desired start time Lij. The Eij is the earliest time that each task of a job can be
processed irrespective of resource availability (13). The Lij is the very latest time that each task of a
job can be processed if it is to finish on time (14).

The search space constitutes the possible times at which τj can be planned and that potentially can
improve the tardiness (earliness) of the target job τ:

Tardy τ: Between k = EiJi and k = XiJi – 1

Early τ: Between k = Xi1 + 1 and k = Li1

We define a neighborhood point {ωyz, k} to be a donor task ωyz planned within bucket k on the same
resource used by τj and thus that potentially can be swapped with τj. If τ is tardy (early), we consider
each task where Lyz ≥ Lij (Lyz ≤ Lij) as a potential neighborhood point. We also consider every bucket
that has sufficient available capacity to accommodate τj as a neighborhood point and in this case ωyz
is null. The neighborhood consists of solutions obtained from inserting or swapping τj with each of

(13)Eij = Si + j − 1

(14)Lij = (Di − 1) − (Ji − j)

Page 10 of 19

Moses & Sangplung, Cogent Engineering (2017), 4: 1341289
https://doi.org/10.1080/23311916.2017.1341289

the neighborhood points. As was the case with the ORA, other tasks on the target job and the donor
job may also need to be replanned to compute the entire solution.

The procedure to compute a solution for a single neighborhood point {ωyz, k} is as follows:

Step 1: Replan the target task τj either by insertion or by swapping with ωyz.

   (1) If τ was tardy: XiJi = Xyz

   (2) If τ was early: Xi1 = Xyz

Step 2: Replan tasks on the donor job ωy

   (1) If τ was tardy, find Xyz for task z to task Jy using finite forward planning.

   (2) �If τ was early, find Xyz for task z to task 1 using finite backward planning or if that fails (due
to insufficient capacity being available in some k ≥ Eyz for any z) then use finite forward
planning.

Step 3: Replan other tasks τm on the target job τ

   (1) �Traverse the routing backwards for a tardy job (m = Ji -1,…, 1) and forwards for an early job
(m = 2,…, Ji).

   (2) �Find Xim by using the insert method or else the swap method. For a task τm, the search space
is defined as follows:

   Tardy τ: Between k = Eim and k = Xij – (Ji – m)

   Early τ: Between k = Xij + (m − 1) and k = Lim

     (i) �Insert method: If the search space contains a bucket k with sufficient available capacity,
set Xim = k. Go to task 4 of Step 3.

     (ii) �Swap method: Swap with a donor task ρwx planned on the same resource as τm. Set
Xim = Xwx.

     Tardy job: Select earliest ρwx in search space with Lwx ≥ Lim

     Early job: Select latest ρwx in search space with Lwx ≤ Lim

     (iii) �If a feasible solution cannot be found, then {ωyz, k} will no longer be considered as a
neighborhood point.

   (3) Replan the donor job ρw using the procedure in Step 2.

   (4) �Go to Step 4 if all tasks on the target job have been replanned. Otherwise, replan the next
task on the target job.

Step 4: Evaluate the quality of the new solution.

The above procedure is repeated for all neighborhood points. To evaluate the fitness of neighbor-
ing solutions, a three-tiered hierarchy is used: total tardiness, total earliness, and total lead time.
After selecting the best solution, the tabu list will be updated to include τ and ωy.

Page 11 of 19

Moses & Sangplung, Cogent Engineering (2017), 4: 1341289
https://doi.org/10.1080/23311916.2017.1341289

PIA selection criteria:

(1) � If (T′ < T*)

(2) � Else if (T′==T*=) and (E′ < E*)

(3) � Else if (T′==T*) and (E′==E*) and (L′ < L*)

where E′, E* = total earliness of the neighboring solution and best solution.

To terminate the PIA, one of three stopping conditions must be met: a predefined number of se-
quential iterations without improvement of the objective value, a predefined computational time, or
a predefined total number of iterations.

To illustrate the PIA, a simple example will be presented. The routings of four jobs are [M1, M2, M3],
[M3, M2, M1], [M3, M1, M2], and [M1, M2, M3]. Each job has an earliest start date of 1 and a due date
of 5. During the ORA phase an initial solution is generated by superimposing the ideal plans for each
job. The load graphs for this initial solution are presented in Figure 3(a) in which the dotted line rep-
resents resource capacity and the digits in each box represent a job number followed by a task
number. For simplicity only one task is performed in each time bucket in this example. From Figure
3(a) it can be seen that resource capacity is inadequate in k = 2 for M1 and M3, k = 3 for M2, and k = 4
for M3. The ORA pulls and pushes tasks to eliminate overloads. Figure 3(b) shows the output of the
ORA.

The PIA begins by computing the absolute lateness of each job and selecting the target job. From
Figure 3(b), we select job 4 as the target job τ since it is tardy with absolute lateness = 2. To deter-
mine the neighborhood points we begin with the resource used on the last task of τ, which is M3. The
search space is k = E43 = 3 to the bucket preceding that of τ3, which is k = 5. We determine neighbor-
hood points in this search space for which Lyz ≥ (L43 = 4). These are {ф, 3}, {ω13, 4} and {ф, 5}. Figure 4
presents the solution for each neighborhood point. Below we illustrate how the solution is calculated
for the neighborhood point {ω13, 4}.

Step 1: Swap the target task τ3 with the donor task ω13. Thus, X43 = 4.

Step 2: �Replan affected tasks on ω1, which in this case means to find X13 using finite forward plan-
ning. We find X13 = 5 and therefore the plan for ω1 is {2, 3, 5}.

Step 3: Replan other tasks on the target job τ, which are τ2 and τ1.

  For task τ2:

   (2) �The search space is from k = 2 to k = 3. Consider the earliest task ρ22 with X22 = 2. Since
L22 ≥ L42, the swap method is used to exchange τ2 with ρ22. Thus, X42 = 2.

   (3) �Replan ρ22 and successor tasks using the procedure in Step 2. Thus, X22 = 5 and X23 = 6 and
the plan for ρ2 is {1, 5, 6}.

  For task τ1:

   (2) �The search space is from k = 1 to k = 1. Since X41 = 1, we do not need to search for a new
time. The new plan for τ is {1, 2, 4}

Step 4: For this neighborhood solution, T′ = 1 + 2 + 0 + 0 = 3, E′ = 0 + 0 + 0 + 0 = 0, and
L′ = 4 + 6 + 3 + 4 = 17.

Page 12 of 19

Moses & Sangplung, Cogent Engineering (2017), 4: 1341289
https://doi.org/10.1080/23311916.2017.1341289

We repeat this procedure for the other neighborhood points. After evaluation we see that the first
solution, {ф, 3}, is the best neighboring solution with T′ = 2, E′ = 1, and L′ = 15. It is not, however, bet-
ter than the overall best solution, which is the initial solution, obtained from the ORA (T′ = 2, E′ = 0,
and L′ = 16). The PIA will continue attempting to find a better solution until it meets one of the stop-
ping criteria.

5. Computational evaluation
To evaluate the performance of the tabu search-based methodology for resource planning we con-
duct two sets of experiments. The first set compares the performance of ORA + PIA to that of an
exact algorithm. Exact results provide an absolute benchmark for solution quality but only are

Figure 4. Illustration of the PIA
for neighborhood point: (a) {ф,
3}, (b) {(1, 3), 4}, and (c) {ф, 5}.

Figure 3. Illustration of the
ORA: (a) Initial solution using
ideal plan, and (b) Feasible
solution.

Page 13 of 19

Moses & Sangplung, Cogent Engineering (2017), 4: 1341289
https://doi.org/10.1080/23311916.2017.1341289

obtainable for trivially small problem instances. The second set evaluates the efficacy of the meth-
odology for larger problem instances that cannot be solved exactly.

Implementation of the algorithms is much more complex than it might appear from the descrip-
tion in Section 4. For example, the simple action of replanning a task requires a substantial amount
of code that must be thoughtfully written in order to be fast and scalable (Moses, Gruenwald, &
Dadachanji, 2008). The ORA and PIA are implemented in the Java language and experiments are run
on a personal computer with a modest 1.73 GHz processor.

5.1. Generation of problem instances
Problem instances are generated by varying three parameters whose values are shown in Table 1:
number of tasks on the routing, due date tightness, and bottleneck utilization. Each job follows a
unique routing whose length varies according to uniform distribution, and processing times are vari-
able. Four levels of due date tightness, which is the time allowance for processing a job, are consid-
ered for each routing length. Bottleneck utilization determines the amount of congestion in the
system. Seven levels of loading per individual bucket on the bottleneck resource are evaluated. An
important aspect of our approach to instance generation is that we vary the utilization of individual
buckets on a resource. Doing so creates situations with uneven resource loading, which are realistic
and are where resource planning algorithms are most beneficial. Solution quality is evaluated using
a cost function where the costs of earliness, tardiness and lead time are 30 units/bucket, 50 units/
bucket, and 20 units/bucket, respectively.

5.2. Comparison with exact method for small problem instances
Table 2 compares the quality of solutions obtained from ORA + PIA to those obtained from the bi-
nary integer linear programming (BILP) optimization capabilities of IBM ILOG CPLEX 12. The maxi-
mum allowable computational time for both approaches is set to 1,800 s. It should be noted that the
maximum computational time does not significantly constrain the BILP optimization procedure. If
the optimal solution will be found, then it almost always is found within this time period. The opti-
mality gap for the BILP method was set at 2%. Thus, ORA + PIA slightly outperformed BILP in three
instances where utilization is U[25, 95%] because BILP terminated early before finding the exact
optimum, but this is not significant.

Table 1. Experimental parameters
Number of tasks (uniform distribution) Due date tightness

3 3, [3, 6], [3, 9], [3, 12]

[3, 5] 5, [5, 10], [5, 15], [5, 20]

[3, 10] 10, [10, 15], [10, 20], [10, 25]

[3, 15] 15, [15, 20], [15, 25], [15, 30]

Utilization of single bucket on bottleneck (uniform distribution) Overall bottleneck utilization

[25, 95%] 60%

[45, 95%] 70%

[65, 95%] 80%

[75, 95%] 85%

[85, 95%] 90%

[75, 110%] 92.50%

[55, 140%] 97.50%

Page 14 of 19

Moses & Sangplung, Cogent Engineering (2017), 4: 1341289
https://doi.org/10.1080/23311916.2017.1341289

For routings with three tasks, the two approaches are comparable in quality, with BILP tending to
outperform for extremely tight due dates and ORA + PIA outperforming for looser due dates where
the number of feasible solutions is larger. For routings with five tasks, the lack of scalability of BILP
becomes evident. In most instances both ORA + PIA and BILP run until the computational time limit
is reached, and ORA + PIA have found a solution of either similar or much higher quality than BILP in
the same amount of time, particularly as utilization approaches normal levels.

Figure 5 shows the optimality gap of the solutions obtained from ORA + PIA and BILP. As the rout-
ing length increases, as utilization approaches realistic levels, and as the due date tightness of jobs
becomes more variable, the tabu search algorithms in ORA + PIA become a more effective and reli-
able methodology for resource planning. Even for what in practice are trivially small instances, BILP
struggles to find a good solution in a reasonable amount of time. The problem is Strongly NP-Hard
and thus the number of possible solutions grows exponentially with instance size. For example, in

Table 2. Solution quality for ORA + PIA and BILP methods

*Total weighted cost of ORA + PIA solution is lower.

Bottleneck
utilization

Routing length: 3 tasks Routing length: 5 tasks
Due date
tightness

Total weighted cost Due date
tightness

Total weighted cost
ORA + PIA BILP ORA + PIA BILP

[25, 95%] [3] 15,560* 15,600 [5] 25,300* 25,660

[45, 95%] 20,250 20,150 33,750 33,510

[65, 95%] 23,120 22,980 48,850* 18,280,200

[75, 95%] 28,070 25,539 45,700* 1,363,030

[85, 95%] 37,210 29,660 63,790* 3,080,300

[75, 110%] 52,270 35,280 69,260* 26,748,100

[55, 140%] 64,710 51,910 86,190* 44,502,000

[25, 95%] [3, 6] 14,900* 15,050 [5, 10] 26,850 26,810

[45, 95%] 20,390 19,810 30,930 30,650

[65, 95%] 25,260 23,740 37,680 37,420

[75, 95%] 25,320 25,240 48,110 44,200

[85, 95%] 35,370 33,643 59,060* 585,390

[75, 110%] 42,110 35,800 55,460* 37,779,200

[55, 140%] 68,650 57,090 53,350* 558,410

[25, 95%] [3, 9] 15,400 15,210 [5, 15] 36,660 34,690

[45, 95%] 18,870 18,410 36,470 35,720

[65, 95%] 26,430 25,220 50,130* 68,220

[75, 95%] 31,600* 33,600 58,500* 82,390

[85, 95%] 35,750* 46,990 62,420* 86,070

[75, 110%] 40,950* 43,390 70,920* 71,186,300

[55, 140%] 37,500* 43,200 101,100* 2,962,360

[25, 95%] [3, 12] 16,880 16,440 [5, 20]

45,100* 75,240

[45, 95%] 22,120 20,630 40,400* 40,560

[65, 95%] 34,700* 41,230 56,840* 88,250

[75, 95%] 35,320* 37,129 63,350* 1,199,810

[85, 95%] 41,430* 47,540 74,410* 96,409,500

[75, 110%] 43,960* 514,940 83,050* 112,144,600

[55, 140%] 65,740* 90,760 82,260* 110,819,200

Page 15 of 19

Moses & Sangplung, Cogent Engineering (2017), 4: 1341289
https://doi.org/10.1080/23311916.2017.1341289

the case of routings with five tasks, ORA + PIA find higher quality solutions than BILP within the al-
lowed computational time of 1,800 s for every instance when utilization is U[75, 95%] or above.

5.3. Extended results for larger problem instances
The second set of experiments evaluates the efficacy of ORA + PIA for larger problem instances that
cannot be solved in a reasonable time with an exact method.

5.3.1. Performance of ORA + PIA on large problem instances
The computational time required by the ORA to solve instances with up to 15 tasks on the routing for
each job are shown in Table 3. As the routing length increases replanning a single task impacts a
larger number of other tasks due to precedence constraints, and computational times increase.
Bottleneck utilization also has a large effect on solution time, since higher congestion in the system
requires the algorithm to replan more tasks to compute a feasible solution.

Figure 5. Optimality gap of
ORA + PIA and BILP for routing
length: (a) 3 and (b) 5.

0%

20%

40%

60%

80%

100%

[3
],

[2
5%

, 9
5%

]
[3

, 6
],

[2
5%

, 9
5%

]
[3

, 9
],

[2
5%

, 9
5%

]
[3

, 1
2]

,[
25

%
, 9

5%
]

[3
],

[4
5%

, 9
5%

]
[3

, 6
],

[4
5%

, 9
5%

]
[3

, 9
],

[4
5%

, 9
5%

]
[3

, 1
2]

,[
45

%
, 9

5%
]

[3
],

[6
5%

, 9
5%

]
[3

, 6
],

[6
5%

, 9
5%

]
[3

, 9
],

[6
5%

, 9
5%

]
[3

, 1
2]

,[
65

%
, 9

5%
]

[3
],

[7
5%

, 9
5%

]
[3

, 6
],

[7
5%

, 9
5%

]
[3

, 9
],

[7
5%

, 9
5%

]
[3

, 1
2]

,[
75

%
, 9

5%
]

[3
],

[8
5%

, 9
5%

]
[3

, 6
],

[8
5%

, 9
5%

]
[3

, 9
],

[8
5%

, 9
5%

]
[3

, 1
2]

,[
85

%
, 9

5%
]

[3
],

[7
5%

, 1
10

%
]

[3
, 6

],
[7

5%
, 1

10
%

]
[3

, 9
],

[7
5%

, 1
10

%
]

[3
, 1

2]
,[

75
%

, 1
10

%
]

[3
],

[5
5%

, 1
40

%
]

[3
, 6

],
[5

5%
, 1

40
%

]
[3

, 9
],

[5
5%

, 1
40

%
]

[3
, 1

2]
,[

55
%

, 1
40

%
]

O
pt

im
al

ity
 g

ap

Due date tightness, Bottleneck utilization

ORA+PIA BILP

0%

20%

40%

60%

80%

100%

[5
],

[2
5%

, 9
5%

]
[5

, 1
0]

,[
25

%
, 9

5%
]

[5
, 1

5]
,[

25
%

, 9
5%

]
[5

, 2
0]

,[
25

%
, 9

5%
]

[5
],

[4
5%

, 9
5%

]
[5

, 1
0]

,[
45

%
, 9

5%
]

[5
, 1

5]
,[

45
%

, 9
5%

]
[5

, 2
0]

,[
45

%
, 9

5%
]

[5
],

[6
5%

, 9
5%

]
[5

, 1
0]

,[
65

%
, 9

5%
]

[5
, 1

5]
,[

65
%

, 9
5%

]
[5

, 2
0]

,[
65

%
, 9

5%
]

[5
],

[7
5%

, 9
5%

]
[5

, 1
0]

,[
75

%
, 9

5%
]

[5
, 1

5]
,[

75
%

, 9
5%

]
[5

, 2
0]

,[
75

%
, 9

5%
]

[5
],

[8
5%

, 9
5%

]
[5

, 1
0]

,[
85

%
, 9

5%
]

[5
, 1

5]
,[

85
%

, 9
5%

]
[5

, 2
0]

,[
85

%
, 9

5%
]

[5
],

[7
5%

, 1
10

%
]

[5
, 1

0]
,[

75
%

, 1
10

%
]

[5
, 1

5]
,[

75
%

, 1
10

%
]

[5
, 2

0]
,[

75
%

, 1
10

%
]

[5
],

[5
5%

, 1
40

%
]

[5
, 1

0]
,[

55
%

, 1
40

%
]

[5
, 1

5]
,[

55
%

, 1
40

%
]

[5
, 2

0]
,[

55
%

, 1
40

%
]

O
pt

im
al

ity
 g

ap

Due date tightness, Bottleneck utilization

ORA+PIA BILP

(a)

(b)

Page 16 of 19

Moses & Sangplung, Cogent Engineering (2017), 4: 1341289
https://doi.org/10.1080/23311916.2017.1341289

Figure 6 shows the percent that tardiness is reduced by the PIA after receiving a solution from the
ORA for different levels of congestion and routing lengths. The PIA performs well at low utilizations.
At higher utilization levels the opportunities to complete orders before their due dates are more
limited and therefore improvement percentages are lower.

5.3.2. Performance of ORA + PIA versus other heuristic methods
One family of methods for resource planning sorts jobs according to priority and loads them onto
resources one at a time. We compare our approach to methods of this type because they are com-
monly used in practice and do not have overly burdensome implementation requirements. We com-
pare ORA + PIA to two implementations of this method: finite forward loading (FFL) and finite
backward loading (FBL). With FFL, jobs are sorted by arrival time and then loaded onto resources
using a finite forward planning method. With FBL, jobs are sorted by earliest due date and then
loaded onto resources using a finite backward planning method. Figure 7 shows the total weighted
cost of each method for different levels of congestion and routing lengths. ORA + PIA outperforms
the FFL and FBL methods in all instances and has an average of 49% lower expected total weighted
cost than FFL and 59% lower than the FBL.

Table 3. ORA computational time (seconds)
Number
of tasks

Due date
tightness

Bottleneck utilization
[25,

95%]
[45,

95%]
[65,

95%]
[75,

95%]
[85,

95%]
[75,

110%]
[55,

140%]
[3, 5] [5] 8 11 76 141 128 131 181

[5, 10] 16 84 84 138 231 249 275

[5, 15] 12 131 124 234 231 288 330

[5, 20] 59 182 277 298 314 373 568

[3, 10] [10] 101 123 437 750 788 1,228 984

[10, 15] 124 286 530 898 1,008 1,279 1,427

[10, 20] 134 733 1,191 1,369 1,567 1,917 2,630

[10, 15] 371 817 1,255 1,477 1,932 1,934 2,955

[3, 15] [15] 485 825 2,861 3,904 6,358 5,713 6,590

[15, 20] 885 1,019 2,934 3,543 5,537 5,529 8,539

[15, 25] 715 1,863 5,168 6,697 7,691 6,947 10,232

[15, 30] 767 3,081 5,525 6,677 9,702 9,873 11,263

Figure 6. Effect of bottleneck
utilization and routing length
on the PIA performance.

0%

20%

40%

60%

80%

100%

120%

[25%,
95%]

[45%,
95%]

[65%,
95%]

[75%,
95%]

[85%,
95%]

[75%,
110%]

[55%,
140%]

Pe
rc

en
t o

f
ta

rd
in

es
s

im
pr

ov
em

en
t

Bottleneck utilization

[3, 5] [3, 10] [3, 15]

Page 17 of 19

Moses & Sangplung, Cogent Engineering (2017), 4: 1341289
https://doi.org/10.1080/23311916.2017.1341289

6. Conclusion
In make-to-order environments where demand is highly variable a resource planning algorithm is
used to adjust the time that individual tasks are performed on resources so that capacity constraints
are respected, due dates are met, and lead times are minimized. This research develops a two-phase
tabu search-based methodology for resource planning. Phase 1, the ORA, makes the minimal neces-
sary adjustments to the initial plan to create a feasible finite-capacity plan. One of the key features
of OIA is how it is initialized. Rather than using a random feasible plan as the initial solution, we
define an ideal solution that would be optimal if capacity constraints did not exist and use it as the
initial solution. OIA then modifies the solution to be capacity-feasible. Phase 2, the PIA, begins with
the good, feasible solution obtained by ORA and searches for alternate finite-capacity plans with

Figure 7. Solution quality of
ORA + PIA, FFL and FBL for
routing length: (a) [3, 5], (b) [3,
10] and (c) [3, 15].

0

100000

200000

300000

400000

500000

[25%,
95%]

[45%,
95%]

[65%,
95%]

[75%,
95%]

[85%,
95%]

[75%,
110%]

[55%,
140%]

To
ta

l w
ei

gh
te

d
co

st

Bottleneck utilization

ORA+PIA FFL FBL

0

100000

200000

300000

400000

500000

[25%,
95%]

[45%,
95%]

[65%,
95%]

[75%,
95%]

[85%,
95%]

[75%,
110%]

[55%,
140%]

To
ta

l w
ei

gh
te

d
co

st

Bottleneck utilization

ORA+PIA FFL FBL

(a)

(b)

(c)

0

100000

200000

300000

400000

500000

[25%,
95%]

[45%,
95%]

[65%,
95%]

[75%,
95%]

[85%,
95%]

[75%,
110%]

[55%,
140%]

To
ta

l w
ei

gh
te

d
co

st

Bottleneck utilization

ORA+PIA FFL FBL

Page 18 of 19

Moses & Sangplung, Cogent Engineering (2017), 4: 1341289
https://doi.org/10.1080/23311916.2017.1341289

better performance. To guide the search by PIA a neighborhood structure is defined based on the JIT
philosophy in which jobs are attempted to be processed and finished as close as possible to their due
dates (neither tardy nor early). An appealing characteristic of our methodology is that it automati-
cally identifies capacity constraints. It does not require assumptions about the number or location
of bottlenecks and it accommodates dynamic bottlenecks, which are a natural occurrence make-to-
order systems.

We take unusual care to create realistic instances for empirical evaluation. For instance, we vary
the utilization of individual buckets on a resource so that the resource loading is uneven, as it would
be in practice. Computational results show that as the routing length increases, as utilization ap-
proaches realistic levels, and as the due date tightness of jobs becomes more variable, the tabu
search algorithms in ORA + PIA become a more effective and reliable methodology for resource
planning than an exact method (binary integer linear programming), which struggles to find a good
solution in a reasonable amount of time even for trivially small instances. ORA + PIA also outperform
heuristic methods commonly used in practice for resource planning that sort jobs according to prior-
ity and load them onto resources one at a time.

Implementation of the algorithms requires many thousands of lines of code that must be thought-
fully written in order to be fast and scalable. Each neighboring solution must be identified and con-
structed efficiently, using data such as resource capacity, resource loading, job routings, task times,
and task precedence relationships. Substantial calculations are required to compute each neighbor-
ing solution, especially since changing the time a task is performed on the resource being replanned
not only affects tasks on that resource but also affects the timing of related tasks on other resourc-
es. To improve scalability and performance, further research could be performed to develop data
structures and procedural primitives that are customized for resource planning problems.

Funding
The authors received no direct funding for this research.

Author details
Scott A. Moses1

E-mail: moses@ou.edu
Wassama Sangplung2

E-mail: wassama@gmail.com
1 �School of Industrial & Systems Engineering, The University of

Oklahoma, Norman, OK 73019, USA.
2 �Graduate School of Management and Innovation, King

Mongkut’s University of Technology Thonburi, Bangkok
10140, Thailand.

Citation information
Cite this article as: Resource planning for just-in-time
make-to-order environments: A scalable methodology
using tabu search, Scott A. Moses & Wassama Sangplung,
Cogent Engineering (2017), 4: 1341289.

References
Akhoondi, F., & Lotfi, M. M. (2016). A heuristic algorithm for

master production scheduling problem with controllable
processing times and scenario-based demands.
International Journal of Production Research, 54, 3659–
3676. https://doi.org/10.1080/00207543.2015.1125032

Armentano, V. A., & Scrich, C. R. (2000). Tabu search for
minimizing total tardiness in a job shop. International
Journal of Production Economics, 63, 131–140.
https://doi.org/10.1016/S0925-5273(99)00014-6

Baker, K. R., & Scudder, G. D. (1990). Sequencing with earliness
and tardiness penalties: A review. Operations Research,
38, 22–36. https://doi.org/10.1287/opre.38.1.22

Ballestín, F., & Trautmann, N. (2008). An iterated-local-search
heuristic for the resource-constrained weighted earliness-
tardiness project scheduling problem. International

Journal of Production Research, 46, 6231–6249.
https://doi.org/10.1080/00207540701420560

Barnes, J. W., & Chambers, J. B. (1995). Solving the job shop
scheduling problem with tabu search. IIE Transactions, 27,
257–263. https://doi.org/10.1080/07408179508936739

Bauman, J., & Józefowska, J. (2006). Minimizing the earliness–
tardiness costs on a single machine. Computers and
Operations Research, 33, 3219–3230.
https://doi.org/10.1016/j.cor.2005.02.037

Chen, K., Moses, S., & Pulat, S. (2007). Scalable material
assignment methods for build-to-order environments. .
European Journal of Industrial Engineering, 1, 74–92.
https://doi.org/10.1504/EJIE.2007.012655

Danna, E., Rothberg, E., & Le, Pape C. (2004). Exploring
relaxation induced neighborhoods to improve MIP
solutions. Mathematical Programming, 102, 71–90. doi:
https://doi.org/10.1007/s10107-004-0518-7

Dell’Amico, M., & Trubian, M. (1993). Applying tabu search to
the job shop scheduling problem. Annals of Operations
Research, 41, 231–252.
https://doi.org/10.1007/BF02023076

Edwards, G., Sørensen, C. G., Bochtis, D. D., & Munkholm, L. J.
(2015). Optimised schedules for sequential agricultural
operations using a Tabu Search method. Computers and
Electronics in Agriculture, 117, 102–113.
https://doi.org/10.1016/j.compag.2015.07.007

Finke, A. D., Medeiros, D. J., & Traband, M. T. (2007). Multiple
machine JIT scheduling: A tabu search approach.
International Journal of Production Research, 45, 4899–
4915. https://doi.org/10.1080/00207540600871228

Gary, M. R., & Johnson, D. S. (1979). Computers and
intractability: A guide to the theory of NP-completeness.
New York, NY: Freeman.

Glover, F. (1986). Future paths for integer programming and
links to artificial intelligence. Computers and Operations
Research, 13, 533–549.
https://doi.org/10.1016/0305-0548(86)90048-1

mailto:moses@ou.edu
mailto:wassama@gmail.com
https://doi.org/10.1080/00207543.2015.1125032
https://doi.org/10.1016/S0925-5273(99)00014-6
https://doi.org/10.1016/S0925-5273(99)00014-6
https://doi.org/10.1287/opre.38.1.22
https://doi.org/10.1080/00207540701420560
https://doi.org/10.1080/00207540701420560
https://doi.org/10.1080/07408179508936739
https://doi.org/10.1016/j.cor.2005.02.037
https://doi.org/10.1016/j.cor.2005.02.037
https://doi.org/10.1504/EJIE.2007.012655
https://doi.org/10.1504/EJIE.2007.012655
https://doi.org/10.1007/s10107-004-0518-7
https://doi.org/10.1007/s10107-004-0518-7
https://doi.org/10.1007/BF02023076
https://doi.org/10.1007/BF02023076
https://doi.org/10.1016/j.compag.2015.07.007
https://doi.org/10.1016/j.compag.2015.07.007
https://doi.org/10.1080/00207540600871228
https://doi.org/10.1016/0305-0548(86)90048-1
https://doi.org/10.1016/0305-0548(86)90048-1

Page 19 of 19

Moses & Sangplung, Cogent Engineering (2017), 4: 1341289
https://doi.org/10.1080/23311916.2017.1341289

© 2017 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions
You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Cogent Engineering (ISSN: 2331-1916) is published by Cogent OA, part of Taylor & Francis Group.
Publishing with Cogent OA ensures:
• Immediate, universal access to your article on publication
• High visibility and discoverability via the Cogent OA website as well as Taylor & Francis Online
• Download and citation statistics for your article
• Rapid online publication
• Input from, and dialog with, expert editors and editorial boards
• Retention of full copyright of your article
• Guaranteed legacy preservation of your article
• Discounts and waivers for authors in developing regions
Submit your manuscript to a Cogent OA journal at www.CogentOA.com

Glover, F. (1989). Tabu search—Part I. ORSA Journal on
Computing, 1, 190–206. https://doi.org/10.1287/ijoc.1.3.190

Glover, F. (1990). Tabu search—Part II. ORSA Journal on
Computing, 2, 4–32. https://doi.org/10.1287/ijoc.2.1.4

Hans, E. W. (2001). Resource loading by branch-and-price
techniques (PhD thesis). University of Twente, The
Netherlands.

He, Z., Yang, T., & Deal, D. E. (1993). A multiple-pass heuristic
rule for job shop scheduling with due dates. International
Journal of Production Research, 31, 2677–2692.
https://doi.org/10.1080/00207549308956890

Imanipour, N., & Zegordi, S. H. (2006). A heuristic approach
based on tabu search for early/tardy flexible job shop
problems. Scientia Iranica, 13(1), 1–13.

James, R. J. W. (1997). Using tabu search to solve the common
due date early/tardy machine scheduling problem.
Computers and Operations Research, 24, 199–208.
https://doi.org/10.1016/S0305-0548(96)00052-4

Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., & Shmoys, D.
B. (1989). Sequencing and scheduling: Algorithm and
complexity (Report BS-R89xx). Amsterdam: Centrum voor
Wiskunde en Informatica.

Lee, D. H., & Kim, Y. D. (1998). A multi-period order selection
problem in flexible manufacturing systems. Journal of the
Operational Research Society, 49, 278–286.
https://doi.org/10.1057/palgrave.jors.2600525

Little, J. D. C. (1961). A proof for the queuing formula: L = λW.
Operations Research, 9, 383–387.
https://doi.org/10.1287/opre.9.3.383

Logendran, R., & Sonthinen, A. (1997). A Tabu search-based
approach for scheduling job-shop type flexible
manufacturing systems. Journal of the Operational
Research Society, 48, 264–277.
https://doi.org/10.1057/palgrave.jors.2600373

M’Hallah, R. (2007). Minimizing total earliness and tardiness on
a single machine using a hybrid heuristic. Computers and
Operations Research, 34, 3126–3142.
https://doi.org/10.1016/j.cor.2005.11.021

Moses, S., Gruenwald, L., & Dadachanji, K. (2008). A scalable
data structure for real-time estimation of resource
availability in build-to-order environments. Journal of
Intelligent Manufacturing, 19, 611–622.
https://doi.org/10.1007/s10845-008-0130-4

Nowicki, E., & Smutnicki, C. (1996). A fast taboo search
algorithm for the job shop problem. Management Science,
42, 797–813. https://doi.org/10.1287/mnsc.42.6.797

Taillard, E. (1989). Parallel Taboo Search Technique for the
Jobshop Scheduling Problem (Working Paper ORWP).
Lausanne: Departement de Mathematiques, Ecole
Polytechnique Federale De Lausanne.

Tardif, V., & Spearman, M. L. (1997). Diagnostic scheduling in
finite-capacity production environments. Computers &
Industrial Engineering, 32, 867–878.
https://doi.org/10.1016/S0360-8352(97)00017-X

Tsubakitani, S., & Evans, J. R. (1992). Applying tabu search to
the mean tardiness sequencing problem (Working Paper).
Cincinnati, OH: University of Cincinnati.

Wullink, G., Hans, E. W., & Harten, A. V. (2004). Robust resource
loading for engineer-to-order manufacturing. Beta
Research School for Operations, Management and
Logistics. Netherlands: University of Twente.

Wullink, G., Gademann, A. J. R. M., Hans, E. W., & van Harten, A.
V. (2004). Scenario-based approach for flexible resource
loading under uncertainty. International Journal of
Production Research, 42, 5079–5098.
https://doi.org/10.1080/002075410001733887

Zhang, C. Y., Li, P., Guan, Z., & Rao, Y. (2007). A tabu search
algorithm with a new neighborhood structure for the job
shop scheduling problem. Computers and Operations
Research, 34, 3229–3242.
https://doi.org/10.1016/j.cor.2005.12.002

Zhu, Z. C., Ng, K. M., & Ong, H. L. (2010). A modified tabu search
algorithm for cost-based job shop problem. Journal of the
Operational Research Society, 61, 611–619.
https://doi.org/10.1057/jors.2009.9

https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.1287/ijoc.2.1.4
https://doi.org/10.1080/00207549308956890
https://doi.org/10.1080/00207549308956890
https://doi.org/10.1016/S0305-0548(96)00052-4
https://doi.org/10.1016/S0305-0548(96)00052-4
https://doi.org/10.1057/palgrave.jors.2600525
https://doi.org/10.1057/palgrave.jors.2600525
https://doi.org/10.1287/opre.9.3.383
https://doi.org/10.1287/opre.9.3.383
https://doi.org/10.1057/palgrave.jors.2600373
https://doi.org/10.1057/palgrave.jors.2600373
https://doi.org/10.1016/j.cor.2005.11.021
https://doi.org/10.1016/j.cor.2005.11.021
https://doi.org/10.1007/s10845-008-0130-4
https://doi.org/10.1007/s10845-008-0130-4
https://doi.org/10.1287/mnsc.42.6.797
https://doi.org/10.1016/S0360-8352(97)00017-X
https://doi.org/10.1016/S0360-8352(97)00017-X
https://doi.org/10.1080/002075410001733887
https://doi.org/10.1080/002075410001733887
https://doi.org/10.1016/j.cor.2005.12.002
https://doi.org/10.1016/j.cor.2005.12.002
https://doi.org/10.1057/jors.2009.9
https://doi.org/10.1057/jors.2009.9

	Abstract:
	1. Introduction
	2. Background and context
	3. Mathematical programming model for resource planning
	Model:

	4. Tabu search-based methodology for resource planning
	4.1. Overload resolution algorithm
	4.1.1. Computing the neighboring solutions
	4.1.2. Search strategy

	4.2. Plan improvement algorithm

	5. Computational evaluation
	5.1. Generation of problem instances
	5.2. Comparison with exact method for small problem instances
	5.3. Extended results for larger problem instances
	5.3.1. Performance of ORA + PIA on large problem instances
	5.3.2. Performance of ORA + PIA versus other heuristic methods

	6. Conclusion
	References

