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Abstract

One platform commonly used in modern control systems research is the quad-

copter unmanned aerial vehicle (UAV). This platform finds many uses in both civil-

ian and military aviation, such as aerial surveillance and imaging, search and rescue

operations, and remote sensing. To perform these tasks, it is increasingly common

to rely on autonomous UAVs to allow the vehicle to perform desired tasks without

an operator. One weakness of the quadcopter UAV is its underactuation, since this

vehicle has six degrees of freedom and only four control inputs. To overcome this

complexity, it is proposed to actuate the vehicle propellers, creating a tiltrotor vehi-

cle, in this thesis of the H-configuration. To this end, the equations of motion of the

vehicle will be established, and an original robust model reference adaptive control

law will be formulated to control the vehicle in the presence of disturbances.

Another current goal in UAV research is in providing a method for the vehi-

cle to manipulate its environment. In this thesis, a two-link robotic manipulator

mounted on a cylindrical hinge will be used. This manipulator will have its own

trajectory generation and control formulation for its end-effector, after which it will

be mounted to the H-configuration tiltrotor. This combined aerial manipulator will

be numerically simulated with the manipulator and tiltrotor control laws running

simultaneously, demonstrating the feasibility of the combined system.

Keywords: Aerial manipulation, tiltrotor, model reference adaptive control, robust

control
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1. Introduction

In the study of control systems, one platform that has come into high demand in

the past two decades is the quadcopter Unmanned Aerial Vehicle (UAV), due to the

platform’s high maneuverability, capability to hover, and ability to vertically take off

and land. Additionally, the wide range of potential flight profiles allows quadcopters

to be used for many purposes, such as aerial surveillance in both military and civilian

applications, package delivery, infrastructure inspection, and remote operation and

manipulation. One of the benefits of the quadcopter is that the kinematics and

dynamics of the platform are well established in the literature [1–3]. However,

one difficulty of the classical quadcopter is that it is only actuated in four of the

six degrees of freedom, meaning that the vehicle cannot exert thrust forces in the

horizontal plane.

This limitation of being unable to exert thrust in the horizontal plane means

that quadcopters must pitch or roll to provide lateral thrust, causing a change in

attitude of the vehicle, which can be undesirable for the tasks the vehicle is expected

to perform. One situation, of particular relevance to the research to be presented, is

in the case of a robotic manipulator attached to the quadcopter, because any change

in vehicle attitude requires compensation in the manipulator in order to achieve a

desired configuration or end-effector position. To solve this problem, the use of a

tiltrotor quadcopter, allowing for the ability to exert force in the horizontal plane, is

proposed as a solution. In order to create a control algorithm for the tilt-rotor, the
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kinematic and dynamic equations of motion must be deduced. Similar to a standard

quadcopter, the control algorithm for the tilt-rotor will consider the thrust forces

and moment of thrust forces as the control inputs. However, to take advantage of

the ability to tilt propellers, a new control input, the horizontal component of the

thrust force, will be considered as well.

The tiltrotor quadcopter considered in this thesis will be equipped with a robotic

manipulator to enable payload manipulation. In this thesis, the robotic arm will

not be considered as integrated with the aerial platform. Instead, the robotic ma-

nipulator will be considered as a disturbance, whose dynamics are partly known.

The original robust adaptive control laws presented in this thesis will guarantee

satisfactory flight performance despite the robotic manipulator’s dynamics.

This thesis is structured as follows. In Chapter 2, the literature on standard and

tiltrotor UAV’s, robotic manipulators, and aerial manipulation system will be ex-

amined. Furthermore, the lack of literature on the use of Model Reference Adaptive

Control (MRAC) control of tiltrotors and the use of tiltrotors in aerial manipulation

will be highlighted as a motivation for this thesis.

In Chapter 3, a MRAC algorithm will be created in order to provide reference

trajectory tracking within some user-defined constraints on the trajectory tracking

error. Once applied to the tiltrotor quadcopter, this control law allows the vehicle to

operate despite unknown inertial properties of both the vehicle and payload, as well

as other disturbances, such as wind effects and sensor failure. Initially, the payload

modelled will be an inverted double pendulum, with the control algorithm knowing

neither the oscillation frequency nor the mass and inertial properties. Numerical

2



simulation involving original virtual reality models of the tiltrotor quadcopter will

demonstrate the robustness of the control algorithm.

In Chapter 4, the manipulator used on the aerial manipulator will be modelled,

and the trajectory of the end-effector and control law will be formulated. The kine-

matics of the manipulator will first be derived, and then an algorithm to generate the

end-effector reference trajectory is presented. A Proportional-Integral-Derivative

(PID) algorithm to control each of the joint servos will then be formulated. Finally,

the manipulator, trajectory generation, and control algorithm will be simulated in

the Matlab Simulink environment to demonstrate the efficacy of the chosen control.

In Chapter 5, the manipulator is combined with the aerial platform, creating

an aerial manipulator system. The performance of the proposed robust MRAC

algorithm will be tested in an original Simulink simulation. A detailed walkthrough

on the implementation and use of this simulation will be provided, in order to allows

future users to operate the simulation. In the Appendix, the method of moving a

Computer Aided Design (CAD) model into the Simulink environment used in this

thesis will be presented. This simulator will be made publicly available on the

Mathworks website.

3



2. Literature Review

2.1. Introduction

This thesis is aimed to analyze the dynamics of aerial manipulators and design

robust control laws for the vehicles. The aerial manipulators considered in this work

comprise of a tilt-rotor quadcopter and a two-link robotic arm. In this chapter, some

major highlights on the state of the art on quadcopter unmanned aerial vehicles,

tiltrotors, two-link lightweight robotic arms, and aerial manipulators.

2.2. Literature Review on Quadcopters

In current control systems research, one commonly used platform is the quad-

copter UAV due to its relatively low operational cost and numerous challenges de-

riving from the fact that these vehicles are underactuated and unable to transport

powerful processing units to execute complex control algorithms. These vehicles are

usually employed in activities such as infrastructure inspection, aerial surveillance,

and remote sensing. Future applications involving the use of quadcopters include

transporting payloads and providing a platform for aerial manipulation.

The simplest way to model the quadcopter is as a rigid body without considering

the vehicle aerodynamics [4]. However, this model is inadequate because it fails

to compensate for the coupled body and motor dynamics of the quadcopter, and

ignores the effects of the rotors themselves [4]. A more complex approach, where

the coupled dynamics are considered, is outlined in [2], wherein the quadcopter

4



model is approximated from the Newton-Euler method. Similarly, the second order

motor dynamics are linearized about an operating point, and then combined with

the quadcopter modelling [2]. Another approach for the creation of the dynamic

model is the Euler-Lagrange Method, demonstrated by [5]. The final dynamics are

modelled as the summation of the inertial, Coriolis, centrifugal, and gravitational

torques acting upon the quadcopter [5]. The drawback of the above methods is their

failure to compensate for any uncertainties of the system in the dynamical model.

While these methods work for the case of a simple quadcopter, they fail to

account for cases where the center of mass, payload, and inertial properties are

unknown. This proves particularly limiting for quadcopters that must interact with

their environment, since the equations of motion of the control algorithm fail to

react to system changes [1]. By using a Newton-Euler approach, the equations of

motion that express the translational and rotational dynamics and kinematics of the

UAV, while capturing the uncertainties of the center of mass and inertia matrix with

respect to some reference point can be developed [1]. According to L’Afflitto, this

is more suitable to design complex control algorithms able to guarantee satisfactory

results in cases where the payload is non-rigidly attached or the vehicle’s mass

changes over time [1].

Quadcopters are characterized by six degrees of freedom and four control inputs;

where the degrees of freedom are the position of the center of mass and the Euler

angles identifying its actuation, and the control inputs are the total thrust force and

the torques exerted by each propeller. Therefore, quadcopters are underactuated.

To overcome this complexity, one solution is to actuate the vehicle’s rotors, obtaining

5



so-called tiltrotors. The alternative is to design autopilots comprised of an outer

loop and an inner loop. The outer loop determines the pitch and roll angles needed

to rotate the vehicle and use the horizontal output of the thrust force to reach some

desired position in the horizontal plane. The inner loop determines the total thrust

force and the torque needed to track the reference pitch and roll angles outlined by

the outer loop and the reference altitude and yaw angle chosen by the user. The

outer loop and the inner loop are therefore cascaded control systems, which can be

designed using, for example: PID, backstepping, sliding mode, and adaptive control

laws.

One of the simplest control methods is the PID algorithm, as used by [6–10].

To this goal, the equations of motion of the quadcopter are linearized, and a PID

control law is used in the outer loop to generate the reference roll and pitch angles.

Similarly, in the inner loop, a PID control law is used to track the reference Euler

angles and the desired altitude.

PID control laws rely on linearized models of the quadcopter dynamics and

hence, are effective in arbitrarily small neighborhoods of the equilibrium condition.

However, since the domain of attraction is unknown, the effective range of PID

controllers must be estimated in a conservative manner. To overcome this difficulty

and allow maneuvers in the presence of substantial uncertainties, nonlinear control

techniques should be employed. However, tuning the linear controllers is a signifi-

cantly faster process due to the availability of heuristic tuning methods such as the

Zeigler-Nichols technique or the Tyreus & Luyblen method [11]. Tuning the control

parameters in nonlinear algorithms, such as backstepping, sliding mode, and adap-

6



tive control is a considerably more difficult task for which there is no systematic

approach.

The first of these nonlinear control methodologies to examine is backstepping. To

create this controller, the dynamical model is rewritten into one that separates the

linear translations and the angular rotations [12], [13]. It can be observed that the

rotational dynamics of a quadcopter are independent of the translational dynamics,

but the translational dynamics depend on the rotational dynamics. This leads to a

similar inner loop outer loop structure as described previously, where the outer loop

controls translation and the inner loop controls rotation. To control the vehicle,

virtual inputs are created, and used to find the thrust force along the z-axis. Once

this step is complete, the virtual inputs found are passed along to extract the other

three control inputs for the rotation. While the backstepping controller does offer a

systematic and continuous way to construct the control inputs, it is not robust to

uncertainties, an issue corrected by other control techniques.

One method that accounts for the uncertainties in the system is sliding mode

control (SMC). The dynamics of the system are taken and transformed into a pair of

differential equations with a virtual input and uncertainties added [14], [15, Ch. 14].

These uncertainties are considered to have an upper bound that can be determined

empirically by knowledge of the quadcopter and the potential flight conditions [14].

A sliding surface is created using the trajectory tracking error of the system, and

along with the virtual control are used in the Lyapunov equation to find the control

input that ensures system stability. From the virtual control, the thrust force control

is found in the outer loop translation controller, and the three angular control forces

7



are found in the rotational controller. The issue with this control methodology is

its discontinuity, due to its use of the signum function in the formulation of the

virtual control, resulting in chattering because of the finite sampling rate [15, Ch.

14]. A solution to this issue is the use of higher order sliding mode control [16] or

adaptive control algorithms, such as adaptive sliding mode control (ASMC) [17–19].

The benefit of the ASMC approach is that the control gains are adaptive, reducing

the oscillations resulting from the sliding mode controller’s chattering behavior.

Another adaptive algorithm for quadcopter control is the model reference adap-

tive control (MRAC). In order to implement MRAC into the control systems design,

one methodology is to use feedback linearization on the inner loop dynamics [18].

Nonlinearities and uncertainties are captured by means of a regressor vector. This

control method is faster to implement than ASMC and provides smoother control in-

put that SMC [18]. For these reasons, MRAC was selected to design the quadcopter

autopilot in this thesis, and will be examined in great detail in a later chapter.

2.3. Literature Review on Tiltrotors

While the previously examined literature dealt with control strategies for stan-

dard quadcopters, a tiltrotor variation of the quadcopter has come into research focus

in recent years. Tiltrotors increase the number of available control inputs, and in

some configurations are fully actuated [20]. This is achieved through the actuation

of the motors and propellers, allowing them to rotate about an axis and change the

direction of the thrust generated. There are three main types of quadcopter tiltro-

tor configurations: the H-configuration demonstrated by [21], the X-configuration
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Figure 2.1: Types of Tiltrotor Configuration

demonstrated by [20], and the +-configuration demonstrated by [22]. These con-

figurations can all be seen in Figure 2.1. Since the dynamics of these vehicles are

substantially different from one another, autopilots for tiltrotors strongly depend

on the configuration case. The +-configuration is fully actuated, that is, charac-

terized by as many degrees of freedom as control inputs. Indeed, it is possible to

tilt each propeller and regulate their angular rotation to produce forces along and

torques around each of the vehicle’s axes. The X and H-configurations are instead

under-actuated, having six degrees of freedom and five control inputs. These new

control inputs and increased actuation over standard quadcopter systems result in

new potential uses for quadcopter systems [23].

2.4. Equations of Motion of a Tiltrotor Quadcopter

Most of the same control strategies applied to standard quadcopters are also ap-

plied to tiltrotors, with one notable exception. PID control is not used for the entire

vehicle, but rather to control the propellers’ tilt angles in [20],[24]. Sliding mode

control algorithms for tiltrotors are demonstrated by [20],[25]. For ASMC, successful

implementation was achieved by [23],[24]. MRAC control applied to tiltrotor vehi-
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cles is presented in [26],[27], and is the basis upon which this thesis is constructed.

2.5. Literature Review on Lightweight Two-Link Robotic Manipulators

Another research area of increasing popularity over the last few decades is mobile

robotic manipulation. While robotic manipulation itself dates back to the 1950’s,

it has recently seen a resurgence thanks to its ability to be integrated into other

platforms to increase their potential uses [28, Ch. 1]. In this section, lightweight

two-link manipulators and their control will be examined, due to their suitability

for aerial manipulation. Two-link manipulators have a wide range of uses due to

their low power consumption, light weight, and large range of motion [29]. These

advantages pair well with different vehicles, giving the manipulator a platform to

increase its range of effect while providing the vehicle with a way to interact with

its surroundings [30]. Lightweight manipulators are especially important for aerial

manipulation, due to the thrust constraints on the vehicle, so minimizing the manip-

ulator weight increases the flight time and movement capabilities of the quadcopter.

One final point about two-link manipulators is that their dynamics and control

formulation dates are well-assessed, with most of the current research taking the

form of neural network control and pairing the manipulator with computer vision

applications. These topics, however, are outside the scope of this thesis.

Control of a robotic manipulator can be broken into three parts: dynamic model

formulation, trajectory generation, and control algorithm formulation. In general,

the robotic manipulator is modelled as a system of rigid bodies represented as a

combination of joints and links [31]. Links are the rigid body lengths between the
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joints, and joints are the connection between two links, and are most commonly

revolute joints, rotating about one axis [31]. This representation of the manipulator

system is ubiquitous in the literature, however, variations still exist in the way it is

implemented. One representation is using the Euler-Lagrange method, represent-

ing the entire system as generalized motor torques for each joint, with the links

themselves modelled as Euler-Bernoulli beams [32–34]. This representation of the

dynamical model is very useful for torque control of the manipulator. Alternatively,

Newton-Euler method can be applied to finding the dynamics, which is useful for

direction joint angle control of the manipulator, demonstrated in [35–37].

Once the dynamic model is established, the range of possible configurations for

the arm is known. This is where trajectory generation is beneficial, to allow the

manipulator to move end-effector positions in an optimal path while avoiding ob-

stacles and singular configurations [38]. For lightweight two-link manipulators, the

most common trajectory generation methodologies are waypoint planning and poly-

nomial planning, where the planning defines the position, velocity, and acceleration

of each joint. For waypoint planning, a series of points for the end-effector to pass

through are generated, then the desired joint angles solved through the manipulator

kinematics. This method also can solve for the joint velocities at all time, but not

the acceleration, which can only be set as an end goal. Once the joint positions

at the waypoints are found, some optimal trajectory can be found, whether it be

minimum time or minimum cost, where minimum cost usually refers to minimizing

the control input on the manipulator [38]. Various methods of computing the op-

timal trajectory are present in the literature, such as dynamic programming [38],

11



geometric programming [39], or genetic algorithms [40].

For polynomial trajectory generation, the most common polynomial used is a

quintic polynomial , due to its ability to create a system of equations for all states of a

joint simultaneously [41]. This method offers the advantage of not only generating a

smooth position path, but velocity and acceleration as well. This smooth trajectory

minimizes the jerk in the system, which in turn proves to track faster and more

accurately than non-smooth trajectories [42]. Polynomial trajectory generation only

requires the starting state and desired final end state be known, then the coefficients

of the quintic polynomial found by solving the system of 6 equations generated [28,

Chap. 8], [43]. There are multiple potential poses resulting from the given end-

effector positions, something which the user needs some methodology to determine

which is more desirable. Once this criteria is determined, it allows all states to be

known for all time during the trajectory motion. Furthermore, constraints can be

added to any state, ensuring that the trajectory follows some desired behavior for

the system.

After defining the desired trajectory of the manipulator, control algorithms can

be applied to minimize the tracking error. Many of the control algorithms for

manipulators are the same as those used for quadcopter systems, just applied to

the robotic manipulator dynamical model instead. There is no need for an outer

loop inner loop control design, since every joint can be controlled directly. For both

position and torque control, the error is defined as the difference between the desired

and actual joint states for a given point along the trajectory [28, Ch. 14], [44], [45].

For torque control methods, a PID controller is able to prove the manipulator

12



system asymptotically stable [44], [46]. This is done through applying the control

to the torque input of the system to account for the error. However, in the case

of an unknown mass being picked up by the system, the constraint on the torque

bounds cannot be assumed to be met, requiring other control techniques. A similar

constraint exists on PID algorithms for position control. If the payload’s mass is

unknown, it cannot be guaranteed that the system will be stable in all configurations,

requiring more robust techniques in order to verify stability [47].

The presence of unknown mass and inertia uncertainties in robotic manipulators

requires the use of robust techniques in the formulation of control algorithms. Com-

monly used in the literature are SMC, ASMC, and MRAC methods. Backstepping

control is generally not used for robotic manipulators due to failing to compensate

for the unmatched uncertainties [47]. Similarly, feedback linearization is rarely used

due to the need to calculate the entire dynamical model in real time, while depend-

ing on system parameters which are sensitive to uncertainties [48]. Sliding mode

control is used to guarantee system asymptotic stability as long as the desired tra-

jectory is bounded, a condition that can be guaranteed through careful trajectory

generation and constraint formulation [48], [49]. It has the benefit of being insensi-

tive to uncertainties in the system model, provided the sliding manifold is designed

in such a way as to compensate for the unknown part of the system dynamics [49].

The issue with using SMC for torque control units is that the chattering in the sys-

tem is magnified by the use of Pulse-Width Modulation (PWM) inputs, resulting in

systems that heavily oscillate about the goal point. While less extreme on position

control systems, the strain placed on the actuators by the chattering effect promotes
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the implementation of adaptive control methods [48].

One final control method to discuss for lightweight manipulators is MRAC con-

trol. MRAC control is fairly straightforward to implement in two-link manipulators

due to the ideal system dynamics at a set trajectory point being relatively easy

to find [33]. This provides a relatively simple calculation, unlike the high compu-

tational load required to calculate the actual system dynamics in real time [33].

However, many modelling assumptions must be made, such as known payload mass

and perfect joint structure, resulting in a large error between the actual and ideal

system responses that must be corrected by the MRAC algorithm. Furthermore, the

linearization of the ideal system may not be valid for all manipulator configurations,

due to straying too far from the operating point [50]. This in turn limits the valid

operating range of the manipulator, reducing its efficacy in the tasks asked of it.

Hence, ASMC is the much more popular control algorithm for robotic manipulation

[50].

ASMC provides the chattering reduction that MRAC does while also provid-

ing a wider stability region. For this reason, they are much more common in the

literature. One method to achieve fast convergence without chattering is to set

the control gains to be proportional to the sliding variables while at some distance

away from the manifold, whereas in the neighborhood of the sliding manifold the

control gains are set to be inversely proportional to the sliding variables [45]. This

greatly reduces chattering, at the cost of some of the tracking speed, which is why

the addition of a pole placement controller in addition to the ASMC algorithm is

recommended [45]. Alternatively, the adaptive gains can be calculated outside the
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sliding mode algorithm, increasing the implementation cost of the algorithm, but

providing faster convergence and more robust performance [51]. ASMC algorithms

have been successfully implemented into many lightweight two-link manipulators,

as evidenced by [45],[51–53].

Finally, there are other control methods that have become increasingly popular in

robotic manipulation in recent years. These methods include neural networks [54],

[55], fuzzy-logic controllers [56], [57], and machine learning algorithms [58], [59].

While results from these control methods are promising, they are highly specialized

topics requiring in-depth study to successfully implement, and as such are outside

the scope of this thesis.

2.6. Literature Review of Aerial Manipulation

Combining the two topics previously examined creates a new area of study, aerial

manipulation. While the use of UAVs as aerial platforms for carrying systems such

as cameras, sensors, and payloads is not new, the use of quadcopters as carriers for

robotic manipulators has only taken off in the last decade. Currently, there are two

main categories of aerial manipulation. First, the use of one degree of freedom grip-

pers used to transport objects [60]. In this system, the gripper is rigidly attached

to the vehicle, and requires the vehicle to be in a specific position to grasp an ob-

ject, due to the fixed configuration of the gripper. The second method is the use

of a robotic manipulator, such as the two-link manipulators previously discussed,

attached to a quadcopter allowing the vehicle to interact with the environment, due

to the manipulator being actuated and able to move independently of the vehicle
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[60]. It is this application of aerial manipulation that we are interested in, due to

the variety of tasks that can be performed, thanks to the wider range of system

configurations granted by the robotic manipulator. These tasks include object ma-

nipulation, tool operation, and environment interaction. As with quadcopters and

manipulators, the dynamic model of the aerial manipulator system must be found

before control synthesis can occur.

The first method of creating the equations of motion for the system is to model

the quadcopter as previously demonstrated, and treat the manipulator as a distur-

bance [61]. The first step of this process is to find the equations of motion of the

manipulator, which is well-defined for two-link lightweight manipulators as previ-

ously demonstrated. Following from this derivation, the manipulator mass, moments

of inertia, and movement states are all added as a disturbance to the quadcopter

model [61]. The disturbance due to the motion of the manipulator is modelled as

a non-rigidly attached payload disturbance, due to the changing of the inertia and

center of mass of the combined system due to its movements. This, in turn, allows

payloads carried by the manipulator to simply be folded into this disturbance with-

out requiring exact knowledge of the payloads mass properties [61]. This method is

extremely limiting for the increased levels of robustness required of the quadcopter

control algorithm, and proves to highly impede the movement and manipulation

capabilities of the aerial manipulator

The second method for formulation of the equations of motion is to treat the

arm and quadcopter as one system, demonstrated by [62], [63]. Here, the dynamic

model of the entire system is found by combining the dynamic model of the robotic
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manipulator with the dynamic model of the quadcopter. This method allows for bet-

ter control of the aerial manipulator, due to the coupling between the two systems’

dynamics being accounted for in this model.

This coupling between the quadcopter’s and manipulator’s dynamical models

mean’s that the vehicle’s stability depends on the manipulator configuration [64].

To account for the coupled dynamics, the entire system is considered when con-

structing the quadcopter control laws in [63],[64]. However, this approach is compu-

tationally expensive and complex, so an alternative approach controlling the system

is provided in [30],[65]. In this method, the computation of the dynamics of the

quadcopter and manipulator are performed separately, but with consideration for

the other system. This requires that each system has knowledge of the others’ posi-

tion, velocity, and acceleration within some bounded uncertainty, and is the method

that will be employed in this thesis. This assumption is easier to make with the

introduction of the tiltrotor platform to the system, due to the increase in possible

flight configurations to counteract the position of the manipulator.

When controlling an aerial manipulator system, examples in the literature exist

for using ASMC [65], [66], MRAC [61], and inverse dynamic techniques [63], [67] to

control the vehicle, while PID and SMC techniques are used to control the manipula-

tor. These systems all demonstrate simple trajectory tracking like circle tracking and

hovering while performing manipulation. However, none of these methods account

for the interaction of the manipulator with the environment. Instead, the reaction

forces of the environment on the manipulator are assumed negligible. Impedance

control offers a way to account for the reaction forces due to its active elasticity,
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which in turns provides a method to reduce interaction force on the vehicle frame

during manipulator contact with the environment [68]. The control method works

to actively minimize the reaction force through minimization of the force output

of the manipulator. However, this methodology requires the assumption that the

quadcopter is at or near a hovering flight configuration during manipulator motion,

in turn allowing the simplifying assumption that aerodynamic forces are not acting

on the manipulator during its actuation [68]. The handicap of this method is its

assumption that the manipulator mass is negligible compared to the vehicle mass,

an assumption not made by any of the previously examined literature.

To attempt to overcome the small manipulator handicap for impedance control,

Cartesian Impedance Control (CIC) can applied to the aerial manipulation system

[62]. The uniqueness of this method is its independence from external force mea-

surements usually required in impedance control, meaning that disturbances on the

system such as unknown mass of the payload can be accounted for in the control

algorithm [62]. This provides a minimization of reaction forces on the aerial manip-

ulator during interaction with the environment, but does not allow the system to

fly at a states that are not near hover.

Finally, it was attempted to find literature sources for the implementation of

robotic manipulators on tiltrotor UAVs, however, there currently is no literature

on these sort of applications. While tools have been rigidly attached to tiltrotors,

as demonstrated by [69], [70], no system more complex than a 1 degree of freedom

gripper can be found. While many authors point out that the increased control

and range of motion provided by tiltrotors would be a benefit in manipulating the
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environment, none go so far as to implement such a system. In fact, all the aerial

manipulation examples above rely on the vehicle being at or near a hovering state

to actuate the manipulator, due to the vehicle not being able to account for the

manipulator motion in its own control. This is a weakness that this thesis hopes to

overcome with its use of a tiltrotor system. Due to the lack of literature on tiltrotor

aerial manipulators, this thesis hopes to provide a starting point for future writings

on this subject.
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3. Control of a Tiltrotor Quadcopter

3.1. Introduction

In this chapter we derive the equations of motion for a H-configuration tiltrotor

quadcopter. Following this, a robust MRAC control law is presented for the con-

trol of the vehicle. Finally, a numerical example illustrates the theoretical results

discussed. The contents of this chapter are primarily based on [26], [27], and all

theoretical results are from the above sources, unless otherwise cited.

3.2. Equations of Motion of a Tiltrotor Quadcopter

Figure 3.1: Representation of the Tiltrotor System
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First, the H-configuration tiltrotor is considered to be comprised of a frame, four

propellers, and a payload. The frame itself is considered as a rigid body, and the

four propellers are considered to be independent from one another, that is, each can

be tilted without consideration to another.

Finally, the payload is considered to be non-rigidly attached to the tiltrotor

frame, resulting in an unknown position of the center of mass and an unknown

inertia matrix, both of which vary in time. Furthermore, the mass of the payload

is considered to be significant with respect to the mass of the body, meaning the

variations in the center of mass and inertia matrix are not negligible.

The position of the tiltrotor’s frame can be defined through the creation of

an inertial orthonormal reference frame I = {O;X, Y, Z}, where O ∈ R3 is the

origin and X, Y, Z ∈ R3 are the axes; along with a body reference frame J(·) =

{A(·);x(·), y(·), z(·)} originating at some chosen reference point on the quadcopter

frame A : [t0,∞)→ R3, with axes x, y, z : [t0,∞)→ R3 [71, pg. 11].

The inertial reference frame I will be oriented such that the force due to gravity

is defined as F I
g = −mgZ, where m denotes the mass of the vehicle and g denotes

the acceleration due to gravity. The mass m and gravitational acceleration g are

both assumed to be greater than zero and constant. The body frame is oriented

such that the y(·) is parallel to the axis about which the propellers rotate, and x(·)

and z(·) are oriented so if x(t) = X and y(t) = Y , t ≥ t0 then z(t) = Z.

Next, let us define the translation and orientation between the body and inertial

reference frame. The position between the inertial frame origin O and body reference

point A(·) is defined by the vector rIA : [t0,∞)→ R3, where the superscript I denotes
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that this vector is expressed in the inertial frame. Similarly, the velocity of A(·) with

respect to the inertial reference frame is given by vIA : [t0,∞)→ R3. The orientation

of the body frame with respect to the inertial frame can be captured by a 3-2-1

rotation sequence. The angles of rotation are the roll angle φ : [t0,∞) → [0, 2π),

pitch angle θ : [t0,∞) → (−π
2
, π

2
), and yaw angle ψ : [t0,∞) → [0, 2π) [71, pg. 11].

Finally, let Ωi : [t0,∞) → R define the angular position of the ith propeller about

its spin axis, where i = 1, . . . , 4, due to the number of propellers. Furthermore, a

new term is added to the equations of motion, the propeller tilt angle, represented

by αi(·), i = 1, . . . , 4. From the above, all the terms needed to capture the equations

of motion for an H-configuration tiltrotor are defined.

3.2.1. Kinematic Equations of a Tiltrotor Quadcopter

First, let the position and orientation of the tiltrotor be defined by the vector of

independent generalized coordinates

q(t) ,

[
(rIA(t))T, φ(t), θ(t), ψ(t)

]T

, t ≥ t0, (3.1)

In turn, let the angular velocity of the body reference frame with respect to the

inertial frame be captured by ω : D × R6 → R3. Let D be defined as follows

D , R3 × [0, 2π)×
(
−π

2
,
π

2

)
× [0, 2π), (3.2)
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therefore, from [71, Th. 1.7], the final angular velocity of J with respect to I can be

captured as

ω(q(t), q̇(t)) =


1 sinφ(t) tan θ(t) cosφ(t) tan θ(t)

0 cosφ(t) − sinφ(t)

0 sinφ(t) sec θ(t) cosφ(t) sec θ(t)



−1 
φ̇(t)

θ̇(t)

ψ̇(t)

 t ≥ t0. (3.3)

The matrix in Equation (3.3) is invertible, due to θ ∈ (−π
2
, π

2
), and henceforth let it

be known as Γ(q(t)). From the above equation the kinematic equations of motion

can be built as in [71, pg. 18-19]

q̇(t) =



vIA(t)

φ̇(t)

θ̇(t)

ψ̇(t)


, q(t0) =



rIA,0

φ0

θ0

ψ0


, t ≥ t0. (3.4)

3.2.2. Dynamic Equations of a Tiltrotor Quadcopter

First, the translational dynamic equation will be defined, starting with the 3-2-1

rotation sequence from the inertial frame to the body frame [1]

R(q) ,


cosψ − sinψ 0

sinψ cosψ 0

0 0 1




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ




1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 , q ∈ D.

(3.5)
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From here, the standard translational dynamic equations as illustrated in [1] is

created

mv̇IA(t) +mR(q(t))r×C (t)ω̇(q(t), q̇(t))

= R(q(t))


u5(t)

0

u1(t)

+


0

0

−mg

−mR(q(t))
[
r̈C(t) + 2ω×(q(t), q̇(t))ṙC(t)

+ω×(q(t), q̇(t))ω×(q(t), q̇(t))rC(t)
]
, vIA(t0) = vIA,0, t ≥ t0,

(3.6)

where u5 : [t0,∞) → R denotes the force component along the x(·) axis and is a

new term introduced for the H-configuration tiltrotor. The force component along

the z(·) axis is denotes as u1 : [t0,∞) → R, gravitational acceleration denoted by

g > 0, and vehicle center of mass with respect to the reference point denoted by A(·),

rC(·) : [t0,∞) → R3, are all standard terms in the translational dynamic equation

[1]. To model the rotational dynamic equation, the standard equation set forth in
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[1] is used,

I(t)ω̇(q(t), q̇(t)) +mr×C (t)RT(q(t))v̇IA(t)

=


u2(t)

u3(t)

u4(t)

− ω
×(q(t), q̇(t))I(t)ω(q(t), q̇(t))− İ(t)ω(q(t), q̇(t))

− ω×(q(t), q̇(t))
4∑
i=1

IPi
(t)ωPi

(t)−
4∑
i=1

[
IPi

(t)ω̇Pi
(t) + ω×Pi

(t)IPi
(t)ωPi

(t)
]

+ r×C (t)Fg(q(t)), ω(t0) = ω0, t ≥ t0.

(3.7)

In the previous equation the vehicles weight due to gravity is denoted by [71, p. 26]

Fg(q) = RT(q)


0

0

−mg

 , q ∈ D, (3.8)

the moments of force applied to the propellers denoted by [u2, u3, u4]T : [t0,∞) →

R3, and the inertia matrix with respect to the reference point A(·) of the vehicle

given by

I(t) , −
∫
V
r×mA(t)r×mA(t)δm, t ≥ t0, (3.9)

where V ⊂ R3 is a volume containing the vehicle and rmA : [t0,∞) → V is the

position of an infinitesimal mass δm with respect to the A(·). Furthermore, the
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inertia matrix of the ith propeller is given by

IPi
(t) , −

∫
Pi

r×mA(t)r×mA(t)δm, (3.10)

where Pi ⊂ R3 denotes a volume containing exclusively the propeller, and i =

1, . . . , 4 denotes the propeller number.

From (3.6) and (3.7), the final equations of motion are formulated as follows

M(t, q(t))

 v̇IA(t)

ω̇(q(t), q̇(t))

 =

ftran(t, q(t), q̇(t))

frot(t, q(t), q̇(t))

+ Ĝ(q(t))u(t),

vIA(t0)

ω(t0)

 =

vIA,0
ω0

 , t ≥ t0. (3.11)

In the above equation, M(t, q) is the generalized mass matrix and given by

M(t, q) ,

 m13 −mR(q)r×C (t)

mr×C (t)RT(q) I(t)

 , (t, q) ∈ [t0,∞)×D, (3.12)

where 1n denotes the identity matrix of size Rn×n, ftran(t, q, q̇) is the translational

dynamic equation given by

ftran(t, q, q̇) , [0, 0,−mg]T −mR(q)[r̈C(t) + 2ω×(q, q̇)ṙC(t) + ω×(q, q̇)ω×(q, q̇)rT
c ],

(3.13)
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the rotational dynamic equation frot(t, q, q̇) given by

frot(t, q, q̇) ,− ω×(q, q̇)I(t)ω(q, q̇)− İ(t)ω(q, q̇)

−
4∑
i=1

[IPi
(t)ω̇Pi

(t) + ω×Pi
(t)IPi

(t)ωPi
(t)]− ω×(q, q̇)

4∑
i=1

IPi
(t)ωPi

(t)

+mr×C (t)ω×(q, q̇)vA(t) + r×C (t)Fg(q),

(3.14)

Ĝ(q) is given by

Ĝ(q) =


R(q)


1 0

0 0

0 1

 03×3

03×2 13


, (3.15)

and finally, the control input u(t) is given by

u = [u5, u1, u2, u3, u4]T. (3.16)

Of note in the above equations is that the propeller inertia matrix IPi
is modelled

as a thin disk, resulting in the following

Idisk = mprop

ρ2
prop

4


1 0 0

0 1 0

0 0 2

 , (3.17)

where ρprop is the radius of the propeller and mprop is the mass of the propeller. This
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in turn leads us to the final equation for the propeller inertia matrix,

IPi
(t) = R2(αi(t))IdiskR

T
2 (αi(t)) +mpropr

T
prop,irprop,i13 −mproprprop,ir

T
prop,i,

t ≥ t0. (3.18)

where the R2(·) term is given by

R2(αi(t)) =


cos(αi(t)) 0 − sin(αi(t))

0 1 0

sin(αi(t)) 0 cos(αi(t))

 , t ≥ t0, (3.19)

and rprop,i is the distance from the center of the ith propeller to the reference point

A(·).

3.2.3. Tiltrotor Gyroscopic effect

In standard quadcopter dynamics, the term
∑4

i=1 IPi
(t)ω̇Pi

(t), t ≥ t0 is known

as the inertial counter-torque, and ω×(t)
∑4

i=1 IPi
(t)ωPi

(t), t ≥ t0 is the gyroscopic

effect. Both of these terms can be seen in Equation (3.14). However, in standard

quadcopter dynamics, the term
∑4

i=1 ω
×(t)IPi

(t)ωPi
(t) is ignored, due to αi(t) ≡ 0

for non-tilting propellers, resulting in
∑4

i=1 ω
×(t)IPi

(t)ωPi
(t) ≡ 0. For the tiltrotor,

due to αi(t) not being identically equal to 0 by assumption, this term cannot be

ignored, resulting in the naming of a new term, the tiltrotor gyroscopic effect [26].

This term, while neglected in conventional quadcopter dynamics, cannot be for

tiltrotor vehicles, due to the addition of propeller rotation.
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3.3. Robust Control Formulation for a Tiltrotor

The goal of the robust control algorithm is to allow the vehicle to track some

reference trajectory of the unknown dynamical system while maintaining to some

user defined tracking error and control input constraints.

3.3.1. Modeling the Dynamical System

First thing in the formulation of the control algorithm is the creation of the

unknown dynamical system,

ẋ(t) = Ax(t) +B[u(t) + ΘTΦ(x(t))] + ξ(t), x(t0) = x0, t ≥ t0. (3.20)

In the above equation the known parameters are the system trajectory, control

input, and regressor vector, represented by x(t) ∈ D ⊆ Rn, t ≥ t0, u(t) ∈ U ⊆ Rm,

t ≥ t0, and Φ : D → RN , respectively, as well as B ∈ Rn×m. The unknowns are A,

Θ, and ξ(t), where A ∈ Rn×n and Θ ∈ RN×m capture the parametric and matched

uncertainties, respectively, and ξ(t) : [t0,∞) → Rn is continuous and captures the

unmatched uncertainties where the upper bound ||ξ(t)|| ≤ ξmax, t ≥ t0 is known.

Furthermore, the reference dynamical model is represented by

ẋref = Arefxref(t) +Brefr(t), xref = xref,0, t ≥ t0, (3.21)

where xref(t) ∈ Rn, Aref ∈ Rn×n is Hurwitz, Bref ∈ Rn×m, and (Aref, Bref) control-

lable. Additionally, the command input r(t) ∈ Rm is bounded, and t ≥ t0. Next,
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matching conditions are created as follows

Aref = A+BKT
x , (3.22)

Bref = BKT
r , (3.23)

where (Kx, Kr) ∈ Rn×m × Rm×m are assumed to exist, as is common in the liter-

ature [18],[26]. Equation (3.22) and Equation (3.23) imply that in the absence of

uncertainties, then the actual system trajectory would converge to the ideal system

trajectory with zero error, where the error is defined as

e(t) , x(t)− xref(t), t ≥ t0. (3.24)

However, since A and Θ are unknown, then it follows that K , [KT
x , K

T
r ,−ΘT],∈

Rm×(n+m+N) is similarly unknown. Instead, let an estimate of K be defined, Ke ∈

Rm×(n+m+N) such that the Frobenius norm, denoted by || · ||F, of their difference fits

within some bound ε ≥ 0, as shown

||Ke −K||F ≤ ε. (3.25)

To demonstrate, consider that there is a feedback control law

φ(π, K̂) = K̂π, (π, K̂) ∈ Rn+m+N × Rm×(n+m+N), (3.26)

where π(t) , [xT(t), rT(t),ΦT(x(t))], and the adaptive gain matrix is given by K̂(t) :
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[t0,∞)→ Rm×(n+m+N). This allows the creation of the estimated and actual adap-

tive gain error, defined as ∆K , K̂(t)−Ke, t ≥ t0 and ∆̃K(t) , K̂(t)−K, t ≥ t0,

respectively. Recall Equation (3.25), and applying the same methodology, note that

||∆̃K(t)−∆K||F ≤ ε, t ≥ t0. (3.27)

3.3.2. Constraint Formulation and Properties

Now, a compact, connected constraint set is created

C , {(e,∆K) ∈ Rn × Rm×(n+m+N) : h(eTMe,∆KΓ−1∆KT ≥ 0)}. (3.28)

In the above equation, e(t) is the trajectory tracking error x(t) − xref(t), t ≥ 0,

and M ∈ Rn×n is user defined to weight the constraints on e where M = MT > 0.

Similarly, Γ ∈ R(n+m+N)×(n+m+N) is the user defined constraints on ∆K, where

Γ = ΓT > 0. Finally, h : R × Rm×m → R is both continuously differentiable and

such that h(0, 0) > 0. The reason C is given as both compact and connected is

so that it is both able to capture bounded constraint sets, and that there always

is a subset of the interior C̊ that simultaneously contains both (e(t0),∆K(t0)) and

(0n, 0m×(n+m+N)) that exists without the ability to be expressed as two disjoint

non-empty sets.
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Next,

he(e
TMe,∆KΓ−1∆KT) ,

∂h(β,X)

∂β

∣∣∣∣
β=eTMe,

X=∆KΓ−1∆KT

, (3.29)

hX(eTMe,∆KΓ−1∆KT) ,
∂h(β,X)

∂β

∣∣∣∣
β=eTMe,

X=∆KΓ−1∆KT

(3.30)

where he : R × Rm×m → R and hX : R × Rm×m → Rm×m for all (e,∆K) ∈ C̊.

Furthermore, it is assumed that

he(e
TMe,∆KΓ−1∆KT) ≤ 0, (3.31)

hX(eTMe,∆KΓ−1∆KT) ≤ 0, (3.32)

where (e,∆K) ∈ C̊. It follows then that

(0n, 0m×(n+m+N)) = arg max
(e,∆K)∈Rn×Rm×(n+m+N)

h(eTMe,∆KΓ−1∆KT), (3.33)

and that hX(·, ·) = hT
X(·, ·) ≤ 0.

The next property of C to note is that the interior

C̊ = {(e,∆K) ∈ Rn,Rm×(n+m+N) : h(eTMe,∆KΓ−1∆KT) > 0} (3.34)

is not empty, due to the previously defined properties of h(0, 0) > 0 and h(·, ·) is con-

tinuous. From the above equations, it is seen that h(eTMe, ·) must be a strictly non-

increasing function where eTMe = ||M 1
2 e||2 and (e,∆K) ∈ C̊ and h(·,∆KΓ−1∆KT)
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is chosen such that when ∆K = 0, the maximum of h(·,∆KΓ−1∆KT) is achieved.

For example, in [26],

h(eTMe,∆KΓ−1∆KT) = hmax − ||M
1
2 e||2 − ||∆K||2F,Γ−1 ,

(e,∆K) ∈ Rm × Rm×(n+m+N), (3.35)

where hmax > 0 is chosen that verifies Equations (3.31)-(3.33). This is achieved

through the fact that h(0, 0) = hmax > 0, he(e
TMe,∆KΓ−1∆K) = −1, and

hX(eT(t)Me,∆KΓ−1∆KT) = −1m.

3.3.3. Adaptive Law Formulation

The goal of formulating the adaptive law K̂(·) is to ensure that all sources of error

maintain boundedness inside the user-defined constraints, despite the presence of

uncertainties. The input to do so will be in the form u(t) = φ(π(t), K̂(t)), t ≥ t0. By

combining the actual and ideal dynamical systems along with the feedback control

law, the following differential equation is found

ė(t) = Arefe(t) +B∆̃K(t)π(t) + ξ(t), e(t0) = x0 − xref,0, t ≥ t0, (3.36)

as well as the function

V (e,∆K) ,
eTPe+ tr(∆KΓ−1∆KT)

h(eT(t)Me,∆KΓ−1∆KT)
, (e,∆K) ∈ C̊, (3.37)
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where V (·, ·) is positive definite, and P ∈ Rn×n is such that P = PT > 0 and is a

solution of the algebraic Lyapunov equation. This equation is given as

0 = AT
refP + PAref +Q1, (3.38)

where Q1 ∈ Rn×n has the properties Q1 = QT
1 > 0. Next, taking

Sπ , {(e,∆K) ∈ Rn × R(n+m+N) : Sπ(e,∆K) > 0}, (3.39)

and by creating some α > 0, σ > 0, p ∈ R,, and π ∈ Rn+m+N , the result is

Sπ(e,∆K) , −α||e||2−σ||eTPN ||p||∆K||2F +2(ε||π||+ξmax)||R(e,∆K)||F, (3.40)

where

R(e,∆K) , eT[P − V (e,∆K)he(e
T(t)Me,∆KΓ−1∆KT)M ]B. (3.41)

It also can be noted that xref(t), t ≥ t0 is bounded, due to the fact that Aref is Hur-

witz and r(t) is bounded. Additionally, if the error e(·) is bounded, then π(·) exists

in some such compact set Π ⊂ Rn+m+N where π(t) = [xT(t), rT(t),−ΦT(x(t))]T ∈ Π,

t ≥ t0. Now, due to the fact that Sπ(·, ·) is continuous and e, ∆K are both bounded,

Weierstrass theorem [72, Th. 2.13] can be used, meaning that some such

π∗ , arg max
π∈Π

Sπ(e,∆K), (e,∆K) ∈ Rn × Rm×(n+m+N), (3.42)
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both exists and is finite. Henceforth, for simplicity of notation, let Sπ∗(e,∆K) be

represented by Sπ∗ .

Finally, the adaptive law can be synthesized as follows

˙̂
KT(t) =− Γ[π(t)eT(t)(P − V (e(t),∆K(t)))

· he(eT(t)Me(t),∆K(t)Γ−1∆KT(t))M)B

+ σ||eT(t)PB||p∆KT(t)][1m − V (e(t),∆K)

· hX(eT(t)Me(t),∆K(t)Γ−1∆KT(t))]−1, K̂(t0) = K̂0, t ≥ t0,

(3.43)

where if Sπ∗ ⊂ C̊ with π∗ as defined previously, then the developed adaptive law is

such that (e,∆K) ∈ C̊, t ≥ t0. This control law is able to drive the trajectory of the

dynamical system to the desired trajectory within some user-defined constraints, as

is proved in [73].

3.4. Application of the MRAC Algorithm to the Tiltrotor

Now, using the previously developed equations of motion and MRAC control

algorithm, a control strategy will be applied to the tiltrotor vehicle. Starting with

the user-defined continuously differentiable reference trajectory, pitch angle, and roll

angle, given by rIref : [t0,∞) → R3, θref : [t0,∞) → (−π
2
, π

2
), and ψref : [t0,∞) →

[0, 2π), the virtual translational control input vtran(t) : [t0,∞) → R3 and reference
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roll angle φref : [t0,∞)→ [0, 2π) can be defined as

vtran(t) , R(qref)[u5(t), 0, u1(t)]T, (3.44)

φref , − tan−1 ṽtran,2(t)

ṽtran,(t)
, t ≥ t0. (3.45)

In the above equation, R(·) is as previously defined in formulating the tiltrotor

dyanmics, qref(·) is the vector of generalized reference coordinates, and tan−1 is the

signed inverse tangent function. Furthermore,


ṽtran,1(t)

ṽtran,2(t)

ṽtran,3(t)

 =


cos θref 0 − sin θref

0 1 0

sin θref 0 cos θref




cosψref sinψref 0

− sinψref cosψref 0

0 0 1

 vtran(t), t ≥ t0,

(3.46)

completing Equations (3.44) and (3.45), where, using Equations (3.44) and (3.11),

the equations of motion can be rewritten as

M(t, q(t))

13 0

0 Γ−1(q(t))

 q̈(t) =

ftran(t, q(t), q̇(t))

frot(t, q(t), q̇(t))

+ [Ĝ(q(t))− Ĝ(qref(t))]u(t)

+M(t, q(t))

 03×1

Γ−1(q(t))Γ̇(q(t))ω(q(t), q̇(t))

+ v(t),

qT(t0)

q̇T(t0)

 =

qT
0

q̇T
0

 , t ≥ t0,

(3.47)
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where the unmatched disturbance is given by [Ĝ(q(t))−Ĝ(qref(t))]u(t) and the equiv-

alent control input given by v(t) = [vT
tran(t), u2(t), u3(t), u4(t)]T. The equivalent con-

trol input is formulated in such a way that q(t) tracks qtran(t) within the previously

discussed user defined bounds. Finally, u(t) is found using the reference control

input and Equations (3.44), qref(t) is found from the ideal model, φref(t) provides

the thrust required to achieve the goal state along the y(·) axis, and the reference

control input computed in order to allow q(t) to track qref(t).

One of the reasons for the use of an adaptive control algorithm is the assumption

that the center of mass and inertia matrix of the tiltrotor vehicle is unknown, so

to estimate them, two twice continuously differentiable functions are defined. First,

rC : [t0,∞) → R3, an estimate of the center of mass, in this case provided by the

Computer Aided Design (CAD) model used in the development of the numerical

simulation. Secondly, ∆rC : [t0,∞) → R3, representing the unknown part of the

center of mass. This yields the final result

rC(t) = rC(t) + ∆rC(t), t ≥ t0. (3.48)

Likewise, an estimate is developed for the inertia matrix, from the symmetric

and continuously differentiable functions Iquad : [t0,∞) → R3×3, which is assumed

to be known and found from the CAD model of the tiltrotor, IPi
: [t0,∞) → R3×3,

the inertia matrix of the ith propeller, also considered known due to the propeller’s

mass being known, and ∆I : [t0,∞)→ R3×3, capturing the unknown portion of the
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inertia matrix. This results in

I(t) = Iquad(t) +
4∑
i=1

IPi
(t) + ∆I(t), t ≥ t0. (3.49)

the total estimate of the inertia matrix.

Next, the new equations of motion developed in (3.11) are feedback linearized,

starting from

e(t) =

q(t)− qref(t)

q̇(t)− q̇ref(t)

 , t ≥ t0, (3.50)

where qref(t) denotes the vector of generalized reference coordinates, and q(t) is the

vector of independent generalized coordinates, defined in the section on the equations

of motion. Now, the new feedback linearized equations of motion are broken up into

the known and unknown components, with the known dynamics given by

M(t, q) ,

 m13 −mR(q)r×C(t)

mr×C(t)RT(q) I(t)

 , (t, q) ∈ [t0,∞) × D, (3.51)

and the unknown dynamics by

∆M(t, q) ,

 03 −mR(q))∆r×C (t)

m∆r×C (t)RT(q) ∆I(t)

 , (t, q) ∈ [t0,∞)×D, (3.52)

resulting in

M(t, q) =M(t, q) + ∆M(t, q), (t, q) ∈ [t0,∞)×D, (3.53)
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where M(t, q) is invertible. Likewise, we define

f tran(t, q, q̇) , −mR(q)[r̈ + 2ω×(q, q̇)ṙC(t)

+ ω×(q, q̇)ω×(q, q̇)rC(t)] + [0, 0,−mg]T, t ≥ t0, (3.54)

∆ftran(t, q, q̇) , −mR(q)[∆̈r + 2ω×(q, q̇)∆̇rC(t)

+ ω×(q, q̇)ω×(q, q̇)∆rC(t)] + [0, 0,−mg]T, t ≥ t0, (3.55)

such that

ftran(t, q, q̇) = f tran(t, q, q̇) + ∆ftran(t, q, q̇), (3.56)

as well as

f rot(t, q, q̇) ,− ω(q, q̇)I(t)ω(q(t), q̇)− İ(t)ω(q(t), q̇)

− ω×(q, q̇)
4∑
i=1

IPi
ωPi

(t) + r×C(t)Fg(q)

−
4∑
i=1

[IPi
ω̇Pi

(t) + ω×Pi
(t)IPi

(t)ωPi
(t)], t ≥ t0

(3.57)

∆frot(t, q, q̇) , ω×(q, q̇)∆I(t)ω(q, q̇)−∆İ(t)ω(q(t), q̇)

+ ∆r×C (t)Fg(q), t ≥ t0, (3.58)
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such that

frot(t, q, q̇) = f rot(t, q, q̇) + ∆frot(t, q, q̇). (3.59)

Finally, we define our feedback term as

α(t, q, qref, v2) = M(t, q)

 13 03×3

03×3 Γ−1(q)


q̈ref −

 03×1

Γ̇(q)ω(q, q̇)



−KP (q − qref)−KD(q̇ − q̇ref) + v2

−
f

T

tran(t, q, q̇)

f
T

rot(t, q, q̇)

 , t ≥ t0, (3.60)

where the gain matrices (KP , KD) ∈ R6×6 have the properties KP = KT
P > 0 and

KD = KT
D > 0, and the virtual control input v2 ∈ R6.

Next, the error dynamics are found, where if v(t) = α(t, q(t), qref(t), v2) then the

dynamics are given by

ė(t) =

 06×6 16

−KP −KD

 e(t) +

06×6

16

 v2(t) + ξ̂(t),

e(t0) =

qT(t0)

q̇T(t0)

−
qT

ref(t0)

q̇T
ref(t0)

 , t ≥ t0, (3.61)
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with the unmatched uncertainties given by ξ̂(t) = [01×6, ξ̂
T
dyn(t)] ∈ R12 where

ξ̂T
dyn(t) =

 13 03×3

03×3 Γ(q(t))

M−1
(t, q)


∆ftran(t, q, q̇)

∆frot(t, q, q̇)



+ [Ĝ(q(t))− Ĝ(qref(t))]u(t)−∆M(t, q)

 13 03×3

03×3 Γ−1(q(t))

 q̈(t)
 , t ≥ t0.

(3.62)

However, due to the coupling between the translation and rotational dynamics

due to the fact rC(t) 6≡ 0, t ≥ t0 and the uncertainties in the center of mass

and inertia matrix, a regressor vector ΘTΦ(q(t), q̇(t)) is introduced, making the

trajectory tracking error dynamics as follows

ė(t) =

 06×6 16

−KP −Kd

 e(t) +

06×6

16

 [v2(t) + ΘTΦ(q(t), q̇(t))] + ξ̂(t),

e(t0) =

qT(t0)

q̇T(t0)

−
qT

ref(t0),

q̇T
ref(t0)

 , t ≥ t0. (3.63)

In the above, we create Θ and Φ such that

ΘT =

Θtran 03×30

03×9 Θrot

 , (3.64)

Φ(q, q̇) =

ΦT
tran(q, q̇)

Φrot(q, q̇)

 , (q, q̇) ∈ D × R6, (3.65)

41



where, to define Θtran, Θrot, Φtran, Φrot, two new functions must be defined. First,

given an A ∈ Rn×m, b ∈ Rm, and n ∈ N, a function MW (b, n) exists such that

MW (b, n) , (bT ⊗ 1n) ∈ Rn×nm (3.66)

and a function WM(A) exists such that

WM(A) ,
n∑
i=1

[ei,m ⊗ (Aei,m)] ∈ Rnm (3.67)

where ei,m represents the ith vector of the standard basis in Rm, and ⊗ denotes the

Kronecker product [74, Def. 7.1.2]. Now that these two functions are defined, the

following are created,

Θtran = MW (rC , 3), (3.68)

Θrot = [MW (WM(I), 3), r
×
C ], (3.69)

Φtran(q, q̇) = WM

(
R(q)ω×(q, q̇)ω×(q, q̇)

)
, (3.70)

Φrot(q, q̇) =

−WT
M (ω×(q, q̇)MW (ω(q, q̇)))

FT
g (q)

 , t ≥ t0 (3.71)

where rC ∈ R3 and IC ∈ R3×3 are unknown. The result of the above identities is
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that

ΘtranΦtran(q, q̇) = −mR(q)ω×(q, q̇)ω×(q, q̇)rC , (3.72)

ΘrotΦrot(q, q̇) = −ω×(q, q̇)Iω(q, q̇) + r
×
CF

T
g (q). (3.73)

Now that the adaptive law can be applied to the tiltrotor’s equations of motion in

order to regulate the trajectory tracking error, the goal is to have both the trajectory

tracking and adaptive gain error fit inside some user-defined constraints. To do so,

set π(t) = [qT(t), q̇T(t), 01×6,Φ
T(q(t), q̇(t))]T, as well as ∆K = K̂(t) − Ke, t ≥ t0,

where K̂ : [t0,∞)→ R6×57, and Ke = −[KP , KD, 06×6,Θ
T
e ], where Θe is an estimate

of Θ within some arbitrarily small tolerance ε ≥ 0 such that ||Θe − Θ|| ≤ ε and

Θe ∈ R39×6. Also let

v2(t) = ∆K(t)π(t), t ≥ t0, (3.74)

then we can see that our trajectory tracking error dynamics from Equation (3.63)

follows the same form as our reference error dynamics from Equation (3.36) where

Aref =

 06×6 16

−KP −KD

 , B =

06×6

16

 , x0 =

qT
0

q̇T
0

 , (3.75)

and n = 12, m = 6, N = 39, K = −[KP , KD, 06×6,Θ
T], and ∆̃K(t) = ∆K+Ke−K,

t ≥ 0. This also means that the matching conditions we discussed previously are
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proven with

A =

06×6 16

06×6 06×6

 , B =

06×6

16

 , (3.76)

as well as Kr = 06×6 and KT
x = −[KP , KD].

From the computation of the virtual control input and actual control input, the

propeller thrust and drag forces are computed with the following

Ti(t) = kT Ω̇2
i (t), i = 1, . . . , 4, t ≥ t0, (3.77)

Di(t) = kDΩ̇2
i (t), (3.78)

Where Ti(t) is the thrust force of the ith propeller, Di(t) is the drag force on the

ith propeller, kT > 0 is the propeller thrust coefficient, kD > 0 is the propeller drag

coefficient, and Ω̇2
i (t) is the angular velocity of the ith propeller [75]. Also, adjacent

propellers spin in opposite directions, a common configuration for quadcopters, and

are assumed to be equidistant from the reference point A(·), such that

rprop,1 =


Lx

Ly

Lz

 , rprop,2 =


−Lx

Ly

Lz

 , rprop,3 =


−Lx

−Ly

Lz

 , rprop,4 =


Lx

−Ly

Lz

 ,
(3.79)

Where L(·) > 0. Due to the tilting of the propellers about the vehicle y-axis, the

thrust components are broken up into Ti,x , Ti(t) sinαi(t) and Ti,z , Ti(t) cosαi(t)

components, where they represent the thrust force component of the ith propeller

along the body frame x and z axis, respectively. This gives us the vector of thrust
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forces T , [T1,z, T1,x, T2,z, T2,x, T3,z, T3,x, T4,z, T4,x, ]
T in the form u(t) = MT (t), t ≥ t0

such that



u5(t)

u1(t)

u2(t)

u3(t)

u4(t)


=



0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

Ly kD Ly −kD −Ly kD −Ly −kD

−Lx Lz Lx Lz Lx Lz −Lx Lz

kD −Ly −kD −Ly kD Ly −kD Ly


T (t), t ≥ t0,

(3.80)

where, due to Lx, Ly, and kD all being positive values, the matrix M is full rank

and as such is Moore-Penrose invertible. This means that the Moore-Penrose inverse

M+ is defined as in [74, Pro. 6.1.5]

M+ , [MTM ]−1MT (3.81)

Meaning our computed vector of thrust forces T ∗(t) is calculated as

T ∗(t) = M+u(t), t ≥ t0, (3.82)

and the propeller tilt angles from

αi(t) = tan−1
T ∗i,x(t)

T ∗i,z(t)
, i = 1, . . . , 4, t ≥ t0, (3.83)

where tan−1 is the signed inverse tangent function.

45



3.5. Numerical CAD Simulation

To test the theoretical result derived above, a tiltrotor with mass and inertial

properties identical to one used in research was modeled in Solidworks CAD, as

shown in Figure 3.2.

Figure 3.2: CAD model for an H-configuration tiltrotor quadctoper.

From this step, the CAD model shown in Figure 3.2 was then imported into

a Matlab Simulink environment, where the tiltrotor is made up of a frame, four

actuated rotating arms attached to the motors, four rotating propellers, and an

actuated inverted pendulum. The inverted double pendulum was considered as a

payload disturbance, where the first pendulum link attached to the tiltrotor frame

oscillates at 0.5 Hz with an amplitude of 10 degrees and the second pendulum link

oscillates at 1.5 Hz with an amplitude of 20 degrees. The payload’s mass is 0.1 kg,

and each pendulum section has a length of 0.154 m. Furthermore, the mass of the
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tiltrotor frame and propellers is 1.667 kg. Finally, the tiltrotor principle moments

of inertia are 0.0317, 0.0643, and 0.0319 kg(·)m2 along the x(·), y(·), and z(·) axes,

respectively.

For the simulated trajectory, the reference pitch and yaw angles were set to

θref(t) = ψref(t) = 0, t ≥ t0, and the reference position given by rIref(t) = [2 cos(0.35(t−

10)), 2 sin(0.35(t−10)), 2+(t−4)/30]T. In addition, the frequency and amplitude of

oscillation of the payload was considered as unknown to the controller. Additional

disturbances were added in the form of a wind effect of 10 m/s along the X axis of

the inertial frame from time t ≥ 10, and a simulated failure of the inertial measure-

ment system during t ∈ [15, 20] where the measured roll, pitch, and yaw angles were

all set to zero. One final disturbance was an underestimation of the vehicle mass

and inertia properties by 10%. The purpose of these disturbances were to show the

robustness of the proposed MRAC control law. As can be seen in Figure 3.2, the

tiltrotor closely tracks the reference trajectory throughout the entire flight period,

despite the introduction of disturbances to the flight model. The root mean square

of the trajectory following error is 18·10−3 m.

Of note in the control inputs illustrated in Figure 3.3, the effect of the double

pendulum perturbation on the pitching moment u3(·) can be followed as the control

input shows similar profile to the position of the payload on the double pendulum

throughout the flight time. Furthermore, the horizontal force u5(·) and the pitching

moment u3(·) show an increase due to the presence of aerodynamic drag. One

final note is that there is as rapid fluctuation in control inputs right after t = 20

as the controller compensates for the error induced by the failure of the inertial
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Figure 3.3: Trajectory of a tiltrotor following an ascending spiral reference trajec-
tory.

measurement unit.

Finally, showing that the trajectory tracking and adaptive gain errors meets

the user-defined constraints is shown in Figure 3.4. As can be seen, h(·, ·) meets

the user-defined constraints on the trajectory tracking and adaptive gain error, as

defined in Equation (3.35)
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Figure 3.4: Control inputs

Figure 3.5: Constraints
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4. Control of a Two-Link Robotic Manipulator on a

Cylindrical Hinge

4.1. Introduction

The goal of this chapter is to outline trajectory generation and control algorithms

for a two-link robotic arm, such as the AX-12A Smart Robotic Arm, that will be

installed on the tiltrotor quadcopter presented in Chapter 3. First, the techniques

used to define the trajectory of the robotic arm end-effector will be discussed suc-

cinctly, and a PID control tehnique will be illustrated. Finally, the effectiveness of

these guidance and control techniques wil be demonstrated by means of a numerical

simulation.

4.2. Properties of the Robotic Manipulator

In this thesis, we consider the robotic manipulator similar to the AX-12A Smart

Robotic Arm by CrustCrawler Robotics, whose Solidworks model is shown in

Figure 4.1. This robotic arm is modelled as a two-link robotic arm mounted on a

cylindrical hinge. Specifically, let 1 denote the rotating base, 2 denote the first

joint and servo, 3 denote the second joint and servo, and 4 denote the end-effector.

The first arm link joins 2 and 3 , the second arm link joins 3 and 4 , and the

segment joining 1 and 2 forms a cylindrical hinge. In the following, we will refer

to this modelling choice as a two-link robotic manipulator on a cylindrical joint.
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Figure 4.1: CAD model of the AX-12A Smart Robotic Arm

4.3. Inverse Kinematics of a Two-Link Robotic Manipulator on a Cylin-

drical Joint

In order to control a robotic manipulator, two classes of control techniques are

generally used. Specifically, position control techniques deduce a path for the robotic

manipulator to reach the desired position and the resulting control inputs are com-

puted by exploiting the inverse-kinematics [28], [76]. These techniques are usually

effective whenever the manipulator’s inertial properties, kinematics, and dynamics

are well known. Alternatively, torque control techniques deduce the required control

inputs as functions of the trajectory tracking error [44], [46]. These techniques are

usually preferred whenever the manipulator’s models are affected by uncertainties

or external disturbances may occur. In general, the computational cost of torque-

control techniques is higher.
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Figure 4.2: Schematic representatino of a two-Link manipulator on a cylindrical

joint

In this work, we exploit a position control technique. To this goal, let the desired

position of the end-effector be given by [x(t), y(t), z(t)]T, t ≥ t0. Moreoever, let θ3(t),

t ≥ t0 denote the angular position of the cylindrical hinge, θ1(t), the angular position

of the first arm link measured about the axis orthogonal to the cylindrical joint, and

θ2(t) the angular position of the second arm link. In this case, the position of the

end-effector in the plane rotating with the cylindrical joint is given by [77]

r(t)
z(t)

 =

l1 cos θ1(t) + l2 cos(θ1(t) + θ2(t))

l1 sin θ1(t) + l2 sin(θ1(t) + θ2(t))

 , t ≥ t0, (4.1)

where l1 > 0 denotes the length of the first arm link, l2 > 0 denotes the length of

the second arm link, and l1 6= l2. Therefore, the position of the end-effector is given
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by 
x(t)

y(t)

z(t)

 =


r(t) cos θ3(t)

r(t) sin θ3(t)

tan−1
(
x(t)
y(t)

)

 , t ≥ t0. (4.2)

Given [x(t), y(t), z(t)]T, t ≥ t0, it holds that

θ1(t) = tan−1

(
z(t)

r(t)

)
− tan−1

(
l1 sin θ2(t)

l1 + l2 sin θ2(t)

)
, (4.3)

θ2(t) =
±
√

1−D(t)2

D(t)
, (4.4)

θ3(t) = tan−1

(
y(t)

x(t)

)
, (4.5)

where,

D(t) =
r2(t) + z2(t)− (l21 + l22)

2l1l2
, (4.6)

and tan−1 denotes the signed inverse tangent function [28, Ch. 4]. Equations (4.3)

and (4.4) show that there exist two pairs (θ1(·), θ2(·)) that allow the end-effector to

reach the same position. Furthermore, note that (4.3) is well-defined since r(t) > 0,

t ≥ t0, and l1 6= l2.

4.4. Trajectory Generation for a Two-Link Robotic Manipulator

Once a relation between end-effector position and configuration angles has been

established, the next step is to generate continuously differentiable trajectories for

each manipulator joint to move the end-effector from some known initial position

to some desired end position. Specifically, assume that θi,0 and θi,f are known.

The trajectory generation problem is that of finding θi,ref(t), t ∈ [t0, tf ] so that
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θi,ref(t0) = θi,0, θi,ref(tf ) = θi,f , and additional constraints are satisfied. Examples

of constraints to verify are the joint’s maximum angular velocity or acceleration.

In this thesis, we use a quintic polynomial trajectory planning technique, which is

common in the robotic manipulator literature [28], [41–43]. For this method, it is

assumed that

θi,ref(t0) = θi,0, i = 1, 2, 3, (4.7)

θ̇i,ref(t0) = vi,0, (4.8)

θ̈i,ref(t0) = αi,0, (4.9)

θi,ref(tf ) = θi,f , (4.10)

θ̇i,ref (tf ) = vi,f , (4.11)

θ̈i,ref(tf ) = αi,f , (4.12)

are known, and [28]

θi,ref(t) = ai,0 + ai,1t+ ai,2t
2 + ai,3t

3 + ai,4t
4 + ai,5t

5, t ∈ [t0, tf ], i = 1, 2, 3,

(4.13)
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where ai,j ∈ R, i = 1, 2, 3, j = 1, . . . , 6. The polynomial coefficients ai,j, i = 1, 2, 3,

j = 1, . . . , 6, are computed as follows. First, it follows from Equation (4.12) that

θ̇i,ref(t) = 0 + ai,1 + 2ai,2t+ 3ai,3t
2 + 4ai,4t

3 + 5ai,5t
4, t ∈ [t0, tf ], i = 1, 2, 3,

(4.14)

θ̈i,ref(t) = 0 + 0 + 2ai,2 + 6ai,3t+ 12ai,4t
2 + 20ai,5t

3, (4.15)

and it follows from Equations (4.7) - (4.12) that



θi,0

vi,0

αi,0

θi,f

vi,f

αi,f



=



1 t0 t20 t30 t40 t50

0 1 2t0 3t20 4t30 5t40

0 0 2 6t0 12t20 20t30

1 tf t2f t3f t4f t5f

0 1 2tf 3t2f 4t3f 5t4f

0 0 2 6tf 12t2f 20t3f





ai,0

ai,1

ai,2

ai,3

ai,4

ai,5



. (4.16)

The determinant of the matrix in Equation (4.15) is equal to −4(t0 − tf )9, which is

non-zero whenever t0 6= tf . Thus, the matrix in (4.16) is invertible whenever t0 6= tf .
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Therefore, ai, i = 1, . . . , 6, can be captured as



ai,0

ai,1

ai,2

ai,3

ai,4

ai,5



=



1 t0 t20 t30 t40 t50

0 1 2t0 3t20 4t30 5t40

0 0 2 6t0 12t20 20t30

1 tf t2f t3f t4f t5f

0 1 2tf 3t2f 4t3f 5t4f

0 0 2 6tf 12t2f 20t3f



−1 

θi,0

vi,0

αi,0

θi,f

vi,f

αi,f



. (4.17)

4.5. Control of a Two-Link Robotic Manipulator on a Cylindrical Joint

In this section, the formulation of the control structure for one joint servo will be

discussed. The same process can be applied to all joint servos. First, the inductance

and resistance of the servo are used to develop the electrical plant transfer function

[28, Ch. 10]

T1,i(s1) =
1

Lis1 +Ri

, s1 ∈ C, i = 1, 2, 3, (4.18)

where Li > 0 denotes the inductance and Ri > 0 denotes the resistance of the servo.

Second, the mechanical transfer function of the servo is found as [28, Ch. 10]

T2,i(s2) =
1

Jis2 +Bi

, s2 ∈ C, i = 1, 2, 3, (4.19)

where Ji > 0 denotes the servo inertia and Bi > 0 denotes the servo damping.

Finally, the torque constantKt,i > 0, i = 1, 2, 3, and back electro-magnetic frequency
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Figure 4.3: Block diagram of a joint servo system

Kemf,i > 0 are found, and it follows from (4.18) and (4.19) that the full servo model

is given by [28, Ch.10, Eqn 10.13]

Θi(s)

Ui(s)
=

Kemf,i

[(Jis+Bi)(Lis+R) +Kt,iKemf,i]
, s ∈ C, i = 1, 2, 3, (4.20)

here U(·) denotes the Laplace transform of the control input and the Θi(·) the

Laplace transform of θi(·). This transfer function is shown in Figure 4.3.

Now, let Θi,ref(·) denote the Laplace transform of θi,ref(·). To control the servo,

a PID compensator is introduced, yielding the final servo block diagram shown in

Figure 4.4. This process is then repeated for every servo joint in the manipulator

system.

Figure 4.4: Block diagram of servo with PID controller
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4.6. Results

The robotic manipulator shown in Figure 4.1 was first modelled in Solidworks,

then the CAD model imported into the Simulink Environment in Matlab. Next, the

inverse kinematics equations, trajectory generation, and PID controller described

previously are implemented in the Simulink environment to ensure the efficacy of

the trajectory generation and control law. Additionally, an independent Gaussian

white noise feedback disturbance was added to each of the joint servos to simulate

electrical disturbances. To test the model, a trajectory involving first a rotation,

then a motion in the 2D-plane, then a combined motion was used to demonstrate the

manipulator’s range. The results for each manipulator joint are shown in Figures

4.5 – 4.7

Figure 4.5: Closed-loop trajectory of the first joint
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Figure 4.6: Closed-loop trajectory of the second joint

As can be seen, the actual trajectory closely follows the desired trajectory, where

the root mean square of the end-effector trajectory following error is 13 · 10−3 m.

Future work direction consists of using robust adaptive control laws to control the

robotic arm.

Figure 4.7: Closed-loop trajectory of the third joint
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5. Control of an Aerial Manipulator

5.1. Introduction

In this chapter, the numerical results obtained by integrating a tiltrotor quad-

copter and a two-link robotic manipulator are presented. These results have been

achieved employing an original Simulink simulator, whose features are presented in

detail.

5.2. Modelling the Aerial Manipulator

The first step in the creation of a virtual reality simulator to test the ability of the

robust MRAC law presented in Chapter 3 was to create the combined CAD model

of the aerial manipulator system. While both the tiltrotor and manipulator had

been separately modelled, they needed to be combined into a single CAD model

to be imported into Simulink. As previously discussed the tiltrotor model was

formulated based on the actual measured dimensions of a tiltrotor vehicle used for

flight experiments, and the manipulator CAD model based on the AX-12A Smart

Robotic Arm used in robot vision and control experiments.
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Figure 5.1: CAD model of the aerial manipulator system

This resulted in the CAD model illustrated in Figure 5.1. This CAD model was

then imported into the Simulink environment (see Appendix A). In this model,

the robotic manipulator is considered by the quadcopter’s control law as a payload

disturbance of unknown mass, position, and inertial properties. Additionally, a 10

m/s wind disturbance is introduced, in order to further demonstrate the robustness

of the MRAC control law. The results of this simulation will be presented after a

detailed description of the simulator.

5.3. Setup and Initialization
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Figure 5.2: Necessary files for simulation

The first thing to do to operate the simulator is to ensure that all the necessary

files are in place. In the main Matlab screen, the file list on the left side should

look as in Figure 5.2, where Tiltrotor Dat File.m contains the necessary mass,

position, and inertial properties for the aerial manipulator based on the Solidworks

model,

Tiltrotor.slx is the simulation itself, Initialize Variables.m provides the Mat-

lab script to implement the user defined tuning parameters into the model, the

scripts to produce the plots resulting from the simulation are stored in the folder

Plotting Functions, the image functions used in the simulation masks stored in

the Equations folder, and the CAD files responsible for providing visuals for the

simulation stored in the CAD Files folder. Once these files and folders are verified

to be in place, the Tiltrotor.slx file can be opened to start interacting with the

simulator. Upon opening the simulation, the user will see the interface shown in

Figure 5.3.
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Figure 5.3: Simulator Graphical User Interface (GUI)

This is the top level of the aerial manipulator simulation, providing its general

structure. First, by selecting from the menu on top of the Simulink workspace

View > Model Explorer > Model Workspace, where the user can verify that the

physical properties of the aerial manipulator are properly implemented; see Figure

5.4.

Figure 5.4: Opening the model workspace

63



Figure 5.5: Model workspace

The Model Workspace window should look as in Figure 5.5. If it does not match the

figure, or a “Model Workspace not found” error displays when the simulation is run,

then the user should reinitialize the model workspace as follows. First, navigate back

to the Model Workspace window, select the Data Source option on the upper right

side of the display, select Matlab File from the drop down menu, then navigate

through the file list and select Tiltrotor Dat File.m.

Successively, select Reinitialize from Source, then close the window. This

will ensure the import of the CAD model properties into the simulink environment.

At the top left of the simulation, as seen in Figure 5.3, are a group of eight blocks

in two columns, three on the left and five on the right; double-clicking any of these

64



Figure 5.6: Model workspace reinitialization

blocks activates a pop-up menu with sliders to tune the selected parameters. The

three blocks in the left column each tune a particular manipulator joint servo. In

order from top to bottom, they tune the first arm joint servo, the second arm joint

servo, and base turntable servo. Double-clicking on any of these results in the pop-

up shown in Figure 5.7,where the sliders tune the KP , KI , and KD gains for the

controller of the servo selected.
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Figure 5.7: Tuning the manipulator servos PID gains

Moving on to the right column, double-clicking the top block Tune H max and

sigma generates the interface shown in Figure 5.8, where hmax and σ are presented

in (3.35) and (3.43), respectively.

Figure 5.8: Tuning hmax and σ
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Figure 5.9: Tuning gains KP and KD

Next, by double-clicking either Tune K P or Tune K D the interface shon in Figure

5.9 appear. In this interface, the user inputs the diagonal terms of the gain matrices

KP and KD for the MRAC control law, in order to tune the system. Each gain

is labelled with the parameter it effects. Finally, by double-clicking Run Set Up

Script, the user-selected tuning parameters in Tune K P and Tune K D are used to

generate the Aref matrix, which is used in turn to solve the Lyapunov equation fo

the matrix P , which will be used later in the simulation.
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Figure 5.10: Selecting an adaptive law

Finally, by double-clicking the Select an Adaptive Law button, the prompt in

Figure 5.10 appears, where the user can either select the MRAC control law pre-

sented in Chapter 3 and in [26], [27], or the e-modification MRAC control algorithm

presented in [78].

5.4. Trajectory Formulation

Following the initialization and tuning of the simulation, the next step is to

define the trajectories of both the tiltrotor and the manipulator end-effector. First,

the method for generating the tiltrotor trajectory will be discussed, followed by the

manipulator trajectory formulation.

5.4.1. Tiltrotor Trajectory Generation

To setup the tiltrotor trajectory, double-click the trajectory generation box from

the main simulator screen, which should result in figure 5.11, which takes the

time input and passes it into the user defined trajectory functions, and outputs

xref(·), yref(·), zref(·), θref(·), and ψref(·). Double-clicking the blue box results in Fig-

ure 5.12, where the user defines the time dependent functions for zref, xref, yref, θref,

and ψref, in order from top to bottom. In this example, the θref(t) = 0, t ≥ t0
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Figure 5.11: Vehicle trajectory generation

and ψref(t) = 0, hence their assignment as a constant here, however, to define a

time dependent trajectory function, double-click one of the Matlab function blocks

pictured in Figure 5.12 to see the function shown in Figure 5.13, where the desired

trajectory for each time interval is defined.

Figure 5.12: User defined trajectory functions
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Figure 5.13: Inside the user defined trajectory functions

These trajectory functions take the current simulation time, input it into the ap-

propriate trajectory segment, and then pass into the simulation the desired position

for that time. These functions can be edited by the user to have the tiltrotor track

any chosen trajectory.

5.4.2. Manipulator Trajectory Generation

Similar to the tiltrotor trajectory creation, by navigating to the Arm Trajectory

Generation block from the top level view, the arm trajectory can also be edited.

Once the screen pictured in Figure 5.14 is visible, by double-clicking the Matlab

function under Input Desired end-effector Position to setup up the desired

positions, the function shown in Figure 5.15 will be displayed, where the initial

conditions and the desired start and end points for the manipulator can be input

for each time interval.
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Figure 5.14: Manipulator trajectory generation

Figure 5.15: User defined manipulator trajectory
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In each segment, update r old, z old, and theta old with the final end-effector

position from the previous time segment, set t 0 to be the starting time of the

current segment, t f to be the ending time of the current segment, and rf, zf,

and thetaf to be the desired final end-effector position for this time segment in

cylindrical coordinates. These coordinates are considered to have their origin at the

center of the first manipulator joint. Following the coordinate inputs, the function

outputs the variables for the correct time step, which are then passed to the Matlab

functions under Find q 0 and q f, where the required joint angles will be found

for the desired end-effector positions. Due to most end-effector positions having

two possible configurations, this Matlab function is designed to choose the one that

maximizes the manipulator distance from the body.

The Confirm Feasible Configuration function verifies that the desired end-

effector position is within the feasible configuration space for the manipulator. Fi-

nally, the three functions under Generate Joint Trajectories apply the quintic

polynomial trajectory generation method previously discussed in order to find the

desired position of the manipulator joints for all time. In this section, the only

two pieces that should require user modification are the Arm Lengths constants, if

a new manipulator is installed in the simulator, and the Desired end-effector

Position function, in order to generate a different manipulator trajectory.

5.5. Control of the Aerial Manipulator

Moving to the right of the two trajectory generation blocks in the top level view

of the simulation, there are two blocks titled Controller and Manipulator Servo
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Figure 5.16: Tiltrotor MRAC control law

Controller. These blocks are the control laws for the tiltrotor and manipulator are

implemented in the simulation.

5.5.1. Control of the Tiltrotor

To control the tiltrotor vehicle, double-click on the Controller block from the

main simulation screen, which results in the interface shown in Figure 5.16. This

block takes the state data found either through initialization or the last iteration

of the simulation as well as the ideal trajectory of the system, and passes it first

through the control law and then finds the φref(·) necessary to allow the vehicle to

meet its trajectory goals. This results in the necessary control inputs in order to find

the required motor thrust and tilt angles, calculated in the vehicle block. First, by

double-clicking in the Constrained block, the user sees all the inputs being passed

into the control law captured in Figure 5.17,
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Figure 5.17: Inputs from simulator to the control law
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Figure 5.18: Derivation and stacking of the reference values

followed by the derivatives of the reference signal being taken and then stacked with

the reference signal values (see Figure 5.18), and finally, the calculation of the error

between the reference and actual values (see Figure 5.19).

Figure 5.19: Calculation of trajectory tracking error
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Figure 5.20: Introduction of Lyaponuv equation solution

From here, the solution of the Lyapunov equation from (3.70) is introduced (see

Figure 5.20), leading to the calculation of our h(·, ·) value from Equation (3.35),

shown in Figure 5.21.

Figure 5.21: Calculation of h(·, ·)
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Figure 5.22: Calculation of V (·, ·)

Next, V (·, ·) is computed from (3.37), shown in Figure 5.22, and used to calculate

the adaptive gain K̂(·) as in (3.43), shown in Figure 5.23. Of note is that the Gamma x

function, circled in Figure 5.23, can be edited by the user in order to change the

Figure 5.23: Computation of the adaptive gain K̂(·)
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Figure 5.24: Function to allow user to tune the weighting matrix Γx

weighting of specific states in the adaptive law. The specific state each parameter

effects is commented into the function, illustrated in Figure 5.24. Continuing from

here, ∆K(·) is then calculated in the block shown in Figure 5.25.

Figure 5.25: Computation of ∆K(·)
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Figure 5.26: Computation of v2(·)

Finally, v2(·) is captured using Equation (3.74) as shown in Figure 5.26 and then

passed to Finding Phi ref. Going back out into the Controller Subsystem and

then double-clicking on the Finding Phi ref block, the value of v2(·), the actual

state values, reference state values, center of mass, and inertia properties are im-

ported, as shown in Figure 5.27.

Figure 5.27: Inputting parameters to find φref
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Figure 5.28: Computation of ftran(·, ·, ·)

Next, ftran(·, ·, ·) and frot(·, ·, ·) are calculated in (3.54)-(3.56) and (3.57)-(3.59), re-

spectively, and captured as shown in Figures 5.28 and 5.29.
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Figure 5.29: Computation of frot(·, ·, ·)

The feedback term is then found using Equation (3.60) as shown in Figure 5.30.
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Figure 5.30: Computation of α(·)

Finally, φref(·) is found as captured in Figure 5.31, and passed back to the Constrained

block as well as to the Vehicle block
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Figure 5.31: Extraction of φref

5.5.2. Control of the Robotic Manipulator

From the top level view, by double-clicking the Manipulator Servo Controller

block, the screen shown in Figure 5.32 should appear. This interface shows the

control blocks for each of the manipulator servos. Due to each joint using Dynamixel

A18 servos, all the servo subsystems have the same properties. Double-clicking in

any of the servo subsystem blocks, the content of Figure 5.33 is shown. Proceeding

from the left, this subsystem takes the quintic polynomial coefficients calculated

in the trajectory generation subsystem, and the current time, and outputs to the
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Figure 5.32: Manipulator servo controller

system the current desired joint angle from the q computation function. This

desired position then gets passed through the PID controller and the mechanical and

electrical transfer functions of the servo. The first transfer function from the left is

the electrical transfer function given by (4.17) and the rightmost transfer function

Figure 5.33: Servo model and PID controller
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captures (4.18). Finally, the feedback gain in the model is the back-electromagnetic

frequency of the servo. The actual joint angle position of the servo is then passed out

of the subsystem, in addition to the reference position given by the q computation

function. This process is performed for all three of the servo subsystems, resulting

in the actual and reference servo positions being passed to the manipulator model.

5.6. Aerial Manipulator Force and Moment Calculations

Following the control formulation, the forces and moments acting on the aerial

manipulator system are calculated by the simulation. By double-clicking on the

Vehicle block, the user should see the interface in Figure 5.34. Starting with

the Main Vehicle subsystem, by double-clicking on the block, the main vehicle

Simmechanics blocks will be displayed as in Figure 5.35.

Figure 5.34: Vehicle Subsystem simulation block
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At the far left, the world reference frame, simulation parameters, and simulation

solver blocks are stacked vertically. These all will be generated automatically by

Simulink upon the importing of the CAD model into the Simulink environment,

and so will not need to be touched by the user. The Environement subsystem

contains the building and ground visuals for the simulation, and the large 6-dof

block is where all the forces and moments on the aerial manipulator are calculated

by the system, where they are then passed to the state vector for use elsewhere.

Finally, the transform blocks throughout this model are what define the position of

each vehicle part with respect to the previous part, and are all defined through the

model workspace previously discussed. Once again, this is something that is done

during the first time the model is imported in Simulink and will not need to be

changed by the user. Similarly, back in the Vehicle subsystem, clicking on the Arm

Subsystem displays all the arm Simulink blocks, where, from left to right, the turn

table and first link blocks are shown in Figure 5.36, followed by the first arm joint

and second arm joints and their attached links in Figures 5.37 and 5.38. The blocks

Figure 5.36: Turntable and first arm link
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Figure 5.37: First arm joint and second arm link

that capture the wrist joint and gripper claws are shown in Figures 5.39 and 5.40.

Figure 5.38: Second arm joint and third arm link
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Figure 5.39: Wrist joint and palm

These blocks establish the position of each part in the CAD model in relation to

the others, as well as the angles of each of the revolute joints in the manipulator

system. One final consideration is that each block is named after its respective CAD

file, so any errors in the system visualization can be easily found to correct in the

Figure 5.40: Gripper claws and actuator
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Figure 5.41: Motor thrust and tilt angle calculation

Solidworks model.

Next, going back to the Vehicle block, double-clicking on Motor Mixing sub-

system displays the group shown in Figure 5.41, where the control inputs from

the vehicle controller are converted into the necessary motor thrusts and propeller

tilt angles, using Equations (3.80)-(3.83). These are then passed back out into

the Vehicle where they undergo a rotational offset to correspond with the vehicle

reference frame, then the tilt angles fed into the Simulink model while the motor

thrusts go into the Propeller Actuation system shown in Figure 5.42, where the

thrust and drag force of each propeller is calculated and the results passed to the

Simulink model. Finally, the mass and inertia properties, angular velocities, and re-

gressor vector are calculated in the Calculate Rc, I, Wp, Wpi dot block, shown

in Figure 5.43
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The first subsystem of note in Figure 5.43 is the Calculate Rc and I block. In

this block, the mass, inertial, and dimensional properties of the components of the

aerial manipulator are explicitly defined, and will require updating if the vehicle or

manipulator in the simulation change.

Following this, the center of mass is calculated using equation (2.30) of [79],

see Figure 5.44. Next, the rotation matrices for each propeller and link of the

manipulator are defined, as in Chapter 2 of [71], see 5.45.

Figure 5.44: Calculation of the system center of mass
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Figure 5.45: Formulation of the rotation matrices

Then, the center of mass properties and rotation matrices are used to find the total

inertia for the payload and the overall system, using the same methodology as in

[80, p. 167], see Figure 5.46.
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Figure 5.46: Calculation of the body and manipulator inertia

Following from this, the individual propeller inertias are calculated as in [80, p. 167],

see Figure 5.47.
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Figure 5.47: Calculation of propeller inertia

Finally, the overall inertia matrix is calculated using the block shown in Figure 5.48

Figure 5.48: Calculation of the total system inertia
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Figure 5.49: Calculation of Θ

and passed to the Regressor Vector subsystem. This subsystem takes as inputs

the rC , I, and current state values from the simulator, and uses them to calculate

Θ according to (3.68)-(3.69) and Φ according to (3.70)-(3.71). Note that Θ is not

used explicitly, but is needed to perform the simulation. These values are all output

back into the Calculate Rc, I, Wp, Wpi dot block, where Calculate I dot uses

the Simulink derivative function to take the derivative of the calculated I values,

Calculate Wpi uses the tilt angle and angular velocity of each propeller to calculate

Figure 5.50: Calculation of Φ
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ωPi
, and Calculate Wpi dot takes the derivative of ωPi

. This is then combined into

the new state vector and sent back through the simulation to calculate the next

timestep.

5.7. Results

While the simulation is running, all state data captured is passed into the Log

Data subsystem, where it is stored in the Matlab workspace as well as output to

several scopes so that the data results can be tracked in real time. At the top of

the main simulator screen, there are eleven black function blocks arranged in three

columns. double-clicking any of these blocks will output the associated plot with

its label, allowing the user to examine the results of the simulation. For the aerial

manipulation system presented in this thesis, the desired trajectory was one full

circle with a radius of 2 m, a hovering state during the manipulator motion, and

another full circle with the manipulator in its new position. The reference trajectory

and the UAV’s actual trajectory are shown in Figure 5.51.
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Figure 5.51: 3D Plot of aerial manipulator trajectory

It is apparent that the actual trajectory clearly follows the reference trajectory

despite the poorly modeled rotation of the robotic manipulator. The effect of the

manipulator as a disturbance can be seen during takeoff, where the adaptive control

law is still attempting to account for the arm’s presence.

The normalized control inputs are shown in Figure 5.32, where it can be seen

how the pitch control input was especially active to compensate for the position of

the arm as it was moving, and that the yaw control input had to compensate for

the aerodynamic forces. Finally, it can be seen that the error function h(·, ·) stayed

within the user-defined range, as shown in Figure 5.53.
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Figure 5.52: Normalized vehicle control inputs

Figure 5.53: Constriant Plot
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6. Conclusion

This thesis provided a literature review on the state of aerial manipulation, a new

robust MRAC algorithm which has been applied to control a tiltrotor quadcopter

equipped with a robotic manipulator, a brief discussion on the two-link manipulator

used, and a walkthrough of the numerical simulator used to validate the theoretical

results. To enhance the robustness of the MRAC law, the tiltrotor’s equations of

motion were derived and analyzed. The key result of the new MRAC algorithm was

that the control law keeps the trajectory tracking and adaptive gain errors within

some user-defined constraint. This result was demonstrated through a numerical

simulation with several added disturbances to highlight the efficacy of the proposed

robust MRAC law.

In this thesis, the robotic manipulator installed on the tiltrotor was considered as

a poorly modeled disturbance. In order to deduce the effect of the robotic manipula-

tor on the aerial platform, the manipulator’s inverse kinematics were derived. Next,

the manipulator’s trajectory as outlined by using quintic polynomials. Finally, a

PID control law was implemented to actuate the robotic manipulator.

The last result of this thesis was the combination of the tiltrotor and robotic

manipulator into one aerial manipulation system. The combined CAD model was

constructed, then imported into the Simulink environment. The MRAC control

algorithm previously developed was implemented to control the tiltrotor, and the

PID control used to control the manipulator. Then, a step by step walkthrough
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of the simulation was presented, highlighting the implementation of the previously

developed MRAC algorithm, and providing a user manual for future work on the

simulation. Finally, the results of the simulation are presented, to demonstrate how

the control algorithm responds to the greater disturbance of the manipulator.

It is this simulation that offers the best potential for future research. The steps

to modify and run this simulation are all present in this thesis, allowing for future

users to implement new manipulators, trajectories, mission tasks, and so on. This

thesis highlights a general case of use for this simulation, but its real potential lies

in providing an flight test platform for aerial manipulators, allowing for quickly

repeatable flights with simple to change tuning parameters, with the additional

benefit of crashing the vehicle in the simulation does not damage the vehicle or

manipulator. This allows for wide variety of experimentation within the simulation,

in order to gain valuable knowledge about a system’s performance before performing

physical flight tests. As for future work, the implementation of the control algorithm

on a tiltrotor carrying a robotic manipulator would be the next logical step in

continuing the results presented here.

102



A. Appendix 1

This write-up serves as an introductory guide into the importing of a Solidworks

model into Simulink, as well as an explanation of how to manipulate the model once

it is in Simulink. The methods discussed are valid with Solidworks 16-17, 17-18, and

18-19, as well as all Matlab versions from Matlab 2016a-2018a. This write up serves

as a general guide which will work for all software versions listed. It is assumed that

the user has Simulink, Simmechanics, added to their Matlab License.

Once the user has verified the prerequisite software is in place, one more program

will need to be downloaded. This tool is the Simscape Multibody Link, for which

can be downloaded from https://www.mathworks.com/products/simmechanics/

download_smlink.html, and for which the user will need to select the correct pack-

age for their Solidworks version. Once the provided zip folder and install addon.m

are downloaded from the website, they need to be placed in the currently active Mat-

lab folder or added to the current Matlab path, then from the Matlab command line,

run the command install addon(‘zip file name.zip’). If this process shows the

user an error, ensure that the downloaded files are on the Matlab path by navigating

to the folder they are placed in on the left side of the Matlab screen, right clicking

Figure A.1: Installing the Simmechanics Link from the Command Line
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Figure A.2: Adding a Folder to the Current Matlab Path

on the folder, and selecting Add to Path > Selected Folders and Sub-folders

as in Figure A.2, and re-attempt to install the .zip file.

Once this process is completed, restart Matlab in administrator mode, and run

the command regmatlabserver from the command line, as shown in Figure A.3.,

which will set up a registered Matlab server on the user’s computer in order to

communicate between Solidworks and Matlab.

The last set-up step to be done performed in Matlab is to link Solidworks and

Simulink, done by executing the command smlink linksw from the Matlab com-

mand line, as in Figure A.4. Once this process is complete, the user should close

Figure A.3: Registering the Matlab Server from the Command Line
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Figure A.4: Linking Solidworks and Simulink from the Matlab Command Line

Matlab and proceed to open up their Solidworks installation.

In Solidworks, open the CAD assembly to export, then navigate to Tools >

Add-ins in the top menu, as demonstrated in Figure A.5, and once this is selected,

a new window should pop up with the list of user add-ins to Solidworks, as shown

in Figure A.6.

Figure A.5: Finding the Add-ins Menu in Solidworks
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Figure A.6: Enabling Simscape Multibody Link in Solidworks

The user should ensure that the box to the left of Simscape Multibody Link is

checked, as in Figure A.6. This enables the Simscape Multibody Link, and once

this is complete, navigate once again to the toolbar, select Tools > Simscape

Multibody Link > Export > Simscape Multibody, as illustrated in Figure A.7.

Once this is complete, the model should export to an .xml file, and the individual

Solidworks part files (.sldprt) should be copied as individual .STEP files. Make sure

that all of these .Step files are kept in the same folder as the .xml file, in order to

Figure A.7: Linking Solidworks and Simulink from the Command Line
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Figure A.8: Importing the .xml file to Simulink

allow the model visuals to render in Simulink. After this process is complete, close

down Solidworks, and re-open Matlab.

Once Matlab is open, ensure all the .xml and .step files are added to the Mat-

lab path, then run smimport(’your file name.xml’) from the command line,

as demonstrated in Figure A.8, which should automatically create a .mdl or .slx

Simulink model of the assembly, as well as a .m data file containing all of the phys-

ical properties of each part of the system. Look over the newly created Simulink

model to ensure all blocks have at least one connection, and that there are no un-

nconnected lines in the model. Then, run the model, and once it compiles a visual

should be created in the main Matlab window, as in Figure A.9. From this screen,

visually inspect that all parts appear to be present in the model. If there is a missing

Figure A.9: Observing the Simulink Model
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visual, ensure that the corresponding .step file is contained in the simulation folder.

If the visual is still not present, the best course of action is to repeat the entire

export from Solidworks and import to Simulink steps.

Finally, a couple of notes on how to modify parameters or values, especially

useful when combining separately imported assemblies. First, each Simulink model

can only reference one .m data files, so the user will need to combine data files

if combining Simulink models. However, care should be taken to ensure that the

reference numbers to all the parts in one of the .m files is changed, to avoid repeat

parts. To find the reference number, navigate to the .m data file on the left side

Figure A.10: Opening the Simulation Data File
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Figure A.11: Simulink Compoment Block

of the main Matlab view, then double-click on the appropriate data file where the

user can then navigate the list of parts, with the reference number being displayed

as smiData.Solid(n) with n being the part reference number. To find a specific

part’s reference number, open the Simulink model from the sidebar, circled in Figure

A.10, then double-click on the desired component block within the model, shown

in Figure A.11, and once inside select the solid block from the system, circled in

Figure A.12, which results in the display where the user can find the corresponding

part reference number, shown in Figure A.13.

Figure A.12: Selecting the Simulink Solid Block
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Figure A.13: Simulink Solid Mass, Inertia, and Visual Properties

Next, going back to the data file in Matlab, the user can scroll down to the

desired part, where the properties will be displayed as in Figure A.14.

If any of the mass or inertia properties need to be changed, this can be done by

editing the corresponding values and re-initializing the model workspace. To reini-

tialize the model workspace, go into the Simulink model, then select View > Model

Explorer > Model Workspace as shown in Figure A.15. then select the Browse

option on the right side of the screen then from the file list that pops up, select the

Matlab file containing the model data. Once this is selected, select Reinitialize

from Source and then close the Model Explorer window. These steps are illus-

Figure A.14: Solid Block Properties Menu
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Figure A.15: Opening the Model Workspace

trated in Figures A.15-A.17. Running the simulation will apply the user’s changes.

In addition, re-initializing the model workspace will fix any ”Model Workspace not

Found” errors that might arise.

Figure A.16: Finding the Correct Data File for the Model Workspace

Figure A.17: Re-initializing the Model Workspace
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Figure A.18: Selecting the Transform Block

Figure A.19: Finding the Transform Reference Number
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Another potential error when combining models is misaligned parts. To fix

this, go to the transform block in Simulink immediately preceding the misaligned

part, circled in Figure A.18, where the transform reference number can be found by

double-clicking it to open the pop-up shown in figure A.19. To find the properties

of this transformation from the data file, scroll down to its listing in the file and

edit the parameters to their desired value, where the properties are shown in Figure

A.20. The editable properties of the transformation block are the Rigid Transform

translation, which designates the offset of the current part’s reference frame from

the previous part’s reference frame through a translation, the Rigid Transform

angle, which defines the rotation of the reference frames, and the Rigid Transform

axis defines the axes around which the rotation occurs. If a part is misaligned, these

values can be adjusted to fix the misalignment, however, it is recommended that

the user save a copy of the data file before undertaking the task. Furthermore, this

process can be fairly complex, and for large discrepancies between the actual model

state and the desired model state, it will be much faster for the user to modify the

Solidworks CAD file to reflect the desired changes, then repeat the steps above to

import it into Simulink. By running the simulation and then selecting the desired

transformation from the parts list on the left of the screen, the user can see the

effect of the transformation on the reference frames, circled in Figure A.21.

Figure A.20: Transform Properties in Data File
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Figure A.21: Visualization of the Transformation Operation

This should cover all the basic steps required to create and adjust new and

existing Simulink visual models. These techniques will cover almost all situations

that arise during the import of CAD models to Simulink Models, and any future

user who finds new issues is encouraged to document the problem and solution to

pass along to future users.
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