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PREFACE 

one of the purposes of this research was to introduce 

several well-known text compression methods and to test them 

in order to compare their performances, not only with each 

other, but also with results from various previous researches. 

Welch's implementation of the Ziv-Lempel method was found to 

outperform any other single method introduced in this thesis, 

or any combination of methods. 

One other purpose of this research was to calculate the 

average distance from any one bit to the next synchronization 

point in static Huffman decoding, following a decoding error. 

The average distance in words decoded was predicted to be the 

average length of a codeword in bits, and tests on resynchron

ization showed that this was a good prediction. 
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CHAPTER I 

INTRODUCTION 

Two areas of computational theory that deal with repre

sentation of information are coding theory and information theory. 

Coding theory deals with reliability in transmitting 

information, and information theory deals with efficiency in 

transmitting information. 

Data compression is a topic that is involved in both areas 

and deals with both reliability and efficiency in transmitting 

information. In general, there are two categories in data 

compression, lossy data compression and lossless data compression [Storer 

1988]. In lossy data compression, the physical size of the 

data is reduced while preserving only the relevant information 

in the data. Irrelevant data such as leading blanks or 

trailing zeros in a business file are deleted. Recovering all 

of the data is not expected in lossy data compression and so 

it is also called in-eversible data compression [Lynch 1985]. Image 

compression and analog data compression are other well-known 

examples in this category. 

On the other hand, in lossless data compression, pre

serving information so as to recover the data exactly in the 

original form is as important as reducing the physical size 
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of the data. Lossless data compression is also called 

reversible data compression 1 text compression, or database compression [Rub in 

1976]. This thesis concentrates on lossless data compression, 

which will be referred to hereafter as text compression or 

simply data compression. 

Background on Coding and Data Compression 

Lossless coding occurs in many contexts. One well-known 

case is the Morse code introduced for telegraphic 

communication by Samuel F. B. Morse in 1838 [Encyclopaedia 

Britannica 1988]. Morse code is a trinary number system that 

has symbols " ·" 1 "-", and a space. The International Morse 

code [Reingold and Hansen 1983] is shown in Table 1. 

TABLE 1 

INTERNATIONAL MORSE CODE 

A N 
B 0 
c p ·- -· 
D Q - -·-
E 0 R 
F s 
G T 
H u 
I v 
J w 
K X 
L y -·--
M z - -·. 
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In the international Morse code, the higher frequency letters 

are represented by the shorter and simpler sequences of 

symbols. For example, 11 e 11 and 11 t 11 are represented by a single 

11 • 11 and a single 11- 11 , respectively. This shortens the 

transmission time. The 11- 11 is read as 11 dah 11 , and 11 ." as 

"dit". When the code is transmitted by sound signals, the 

dahs are three times the length of the dit symbols, letters 

are separated by a space that is as long as a dit, and words 

are separated by a space that is as long as a dah. 

The Hamming codes were developed by Hamming in 19 50 

(Hamming 1950) to detect and correct some level of errors. 

This is still a popular method for error detection and correc

tion today. Many codes for error detection and error correc

tion have been introduced since then (Ingels 1971]. 

Codes are also used for cryptographic purposes, where 

the object is to conceal information (Kahn 1967]. In this 

area, simple substitutions of code words for text symbols may 

be combined or permuted during the encoding, or the code 

alphabet is changed in a secret way after each symbol has been 

encoded. 

In this thesis, we are interested in lossless coding for 

the purpose of text compression. Security will not be a 

consideration, althogh a text file could be encoded crypto

graphically for security either before or after it is comp

ressed. Similarly, error detection and/or correction is not 
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addressed in this thesis, but a compressed file could be 

encoded for error detection after compression. 

Some text compression methods are more suitable for use 

on specific cases than other methods, but we will concentrate 

on text compression in general, where there is no known 

specific format in the text. 

Problem Statement 

Text compression is a process that encodes a certain 

volume of data into a smaller volume in such a way that the 

information is . preserved and can be fully recovered in 

original form by decoding [Ingels 1971]. Application of text 

compression is particularly important in a network environment 

and in any system that processes large volumes of ·data. 

Transmitting compressed data will take less time than 

transmitting uncompressed data, and compressed data take less 

space to store in a memory. In this thesis, the best method 

is usually the method that produces the shortest compressed 

file, although speed of compression is sometimes a 

consideration. 

The literature on text compression includes some very 

simple ad hoc methods. For example, a string of 37 consecu

tive blanks may be replaced by "#37", where "#" is some 

reserved or:- "illegal" symbol guaranteed not to occur in the 

_source text [Ruth and Kreutzer 1972]. This method and similar 

ones can save much space in computer source language files by 



removing leading and trailing blanks. 
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(Trailing blanks are 

not stored in most microcomputer files, but are stored, for 

example, in all FORTRAN source files in IBM mainframe 

computers.) Such methods do not fit into the modern 

literature on text compression, however, and will not be 

discussed further here, but the blank substitution method 

described above will be tested in combination with other 

methods in Chapter v. 

In this thesis, we introduce some of the more well-known 

text compression methods and compare them, and try to select 

the best method in general. Background information on text 

compression and the classification of text compression methods 

are discussed in Chapter II. Existing text compression 

methods and algorithms, their implementation, and data 

structures used are discussed in Chapter III. In Chapter IV, 

the automatic self-synchronization in static Huffman decoding 

is discussed and the average distance from one point to the 

next resynchronization point is calculated. Chapter v 

contains results from tests of algorithms discussed in Chapter 

III and of combined methods. Chapter VI summarizes all of the 

results from tests and discusses future work in the area of 

text compression. 



CHAPTER II 

AN OVERVIEW OF TEXT COMPRESSION 

Classification of Text Compression Methods 

A code is a mapping of words from the source alphabet 

into sequences of the code alphabet. The words from the 

source alphabet comprise the source messages, and the sequences 

from the code alphabet are called codewords. A source message 

is encoded if it is mapped into a codeword, and the codeword is 

decoded when it is reverse-mapped into the original source 

message to recover the information. A sequence of messages 

is called a message ensemble. This notation is used by Lelewer 

and Hirschberg [1987] and some other authors, and is a very 

general notation because a "message" may be either a symbol 

or a string. Other authors would use "symbol" in place of 

"message" and "text" or "message" in place of "message 

ensemble". We will sometimes refer to "symbols" in the case 

of methods that are not string-oriented. 

The source ensemble STRING in Example 1 below has source 

alphabet {a, b, c, d, e, f, space}. We will use binary numbers 

for encoded messages throughout the thesis; thus the code 

alphabet is {0, 1}. 

6 
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Example 1: 

STRING = "aa bbb ecce ddddd eeeeee fffffff" (1) 

STRING will be used later in this chapter to demonstrate 

different classifications. 

It is not always clear how to classify codes, but in 

general, codes can be categorized by the lengths of the source 

messages and codewords, or by the duration of the codewords 

(i.e., by whether a codeword for a message changes) [Lelewer 

and Hirschberg 1987]. The classification by the lengths of 

messages or codewords divides codings into fixed-length and 

variable-length coding, and the classification by duration of 

codewords divides codings into static and adaptive coding 

[Lelewer and Hirschberg 1987]. Since our purpose of coding 

in this thesis is to decrease the physical volume of the 

message, or to compress the message the two words codmg and 

compression (method) will be used interchangeably. 

Fixed-Length and Variable-Length Compression 

Either a source message or a codeword, or both, may be 

of fixed length. On the other hand, both a source message 

and a codeword may be of variable length. Compression methods 

can be categorized as block-block, block-variable, variable

block, or variable-variable methods [Lelewer and Hirschberg 

1987], where a block-block method is a mapping from a fixed

length message into fixed-length codewords, and a variable

block method is a mapping from a variable-length message into 
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fixed-length codewords, etc. Figure 1 is an example of block

block coding for the message ensemble STRING in (1) and Figure 

2 is an example of variable-variable coding. 

Source Message 

a 
b 
c 
d 
e 
f 

space 

Codeword 

000 
001 
010 
011 
100 
101 
110 

Figure 1. A Block-Block Code for STRING 

Source Message 

a a 
bbb 
ecce 
ddddd 
eeeeee 
fffffff 
space 

Codeword 

00 
010 
11 
100 
1010 
10111 
10110 

Figure 2. A Variable-Variable Code for STRING 

Encoding a source message of fixed length requires a 

simple parsing method, and usually one symbol is processed at 

a time. A source message of variable length requires a more 

complicated parsing method to separate messages out of the 

message ensemble. Also, decoding a codeword of fixed length 

does not require special parsing techniques, but decoding a 
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codeword of variable length usually does. For example, to 

encode a source ensemble STRING using the table in Figure 1 

as a code table, one symbol should be parsed at a time to 

produce the encoded message 

11 000,000,111,001,001,001,111,010, ••• ,101" 

{"," is not part of the message, but is used for readability.) 

Decoding the message is just as simple: Since the length of 

each codeword is 3, take 3 bits at a time and map them into 

the source alphabet. If the table in Figure 2 is to be used 

as a code table for encoding and decoding the message ensemble 

STRING in {1), the situation is very different. The encoder 

and the decoder have to "know" where each word and each 

codeword ends, respectively. 

In general, if other factors are the same, block-block 

codes are the simplest to implement and variable-variable 

codes are the most complicated to implement in terms of 

parsing, and parsing makes up a big part of encode/decode 

algorithm complexity. At the same time, the variable length 

codes generally are more efficient than fixed length codes 

[Lelewer et al. 1987]. When STRING in {1) is encoded, the 

size of the compressed message using the table in Figure 1 is 

96 {= 32 words of 3 bits each) bits, and the size when using 

the table in Figure 2 is 44 bits. If each symbol in STRING 

is 8 bits as is usually the case with EBCDIC or ASCII symbols, 

the size of STRING is 256 {32 words of 8 bits each) bits. The 

compression ratio (which will be defined precisely in Chapter 

V) achieved using the table in Figure 1 is 
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(256 - 96) I 256 X 100% = 62.5 %, 

and the compression ratio achieved using the table in Figure 

2 is 

(256 - 44) I 256 X 100% = 84.1 %. 

In general, the better compression method yields the higher 

compression ratio. 

static and Adaptive Text compression 

In order to encode a message ensemble, the encoder has 

to know the codeword into which each message is mapped. 

Codewords can be decided at once, perhaps after the whole 

message ensemble is seen at the beginning of the encoding 

stage, and remain the same through the encoding process. This 

is called a static method. Usually, static methods take two 

passes over a message ensemble; once to get the probabilities 

of the messages in order to determine a codeword for each 

message, and a second time to replace each message with the 

corresponding codeword [Huffman 1952]. (The alternative, 

which is sometimes used, is to use a fixed set of codewords 

chosen ahead of time, based on assumed frequencies of the 

messages [Witten et al. 1987].) The shorter codewords are 

assigned to the words with higher probabilities. Since the 

codeword should be known to the decoder, usually the codetable 

is sent to the decoder. Static Huffman coding is a good 

example of this method. 

In an adaptive method, only one-pass parsing is required 

in general, and codewords are "learned" while encoding 
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[Lelewer and Hirschberg 1987]. This is very useful especially 

in a network environment where the end of a message ensemble 

is not pre~ictable. A codeword for each message changes from 

one point· to another in the encoding stage. Usually an 

adaptive coding involves at least one data structure that 

changes continually to accomodate the changes in the source 

ensemble. For example, in dynamic Huffman coding [Knuth 

1985], a Huffman tree (a binary tree that is built from the 

probabilities of symbols) is updated continually, and in the 

BSTW method [Bentley et at. 1986], an auxiliary list that 

contains the words used recently, with the most recently used 

word at the front of the list, is updated continually. Since 

the codewords are changed by the source message, the codeword 

table need not be sent to the decoder. Instead, the same 

changing data structure that was constructed by the encoder 

is constructed while decoding [Bentley et al. 1986; Gallager 

1978]. 

In general, a static compression method is simpler and 

easier to implement but not as efficient. It could even be 

impractical because of the two-pass nature of the parsing. 

A dynamic compression method is more complicated to implement, 

but takes only one pass and usually is more efficient. Static 

methods pursue the best interests for the message ensemble as 

a whole, and therefore the local characteristics of the text 

are usually ignored. Adaptive compression methods respond 

naturally to local variations in the text, and as a result may 
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actually be more efficient than the corresponding static 

methods. 

Hybrid and Other Methods 

Between different methods within a classification, it 

may not always be easy to tell to which category a compression 

method belongs. For example, a compression method might block 

a message ensemble and compress each block using a static 

method. If this method constructs a new probability table for 

each block, it is an adaptive method by block, but it is also 

a static method within each block. A case like this is hard 

to categorize. Also, if after one method compresses a message 

ensemble, another method is used to compress the text further, 

this combined method is not sui table to be classified as 

belonging either to the first compression method used for 

compression or the second. Hybrid and other methods include 

cases that are hard to categ.orize as just one method [Lelewer 

and Hirschberg 1987]. 



CHAPTER III 

SELECTED TEXT COMPRESSION METHODS 

Huffman Coding 

Static Huffman Coding 

The static Huffman method [Huffman 1952] is a block-block 

method that constructs minimum redundancy codes by assigning 

shorter codewords to the more frequent symbols in the text. 

The encoding process involves two parts: building a probabili

ty table and assigning a codeword to each letter, and the 

actual encoding. 

First, the source text is scanned to get the frequencies 

of the symbols. The symbols are sorted by their probabilities 

into non-increasing order. From the sorted list, the two 

smallest probabilities are taken to build a binary tree in 

such a way that the two elements are children of a new node 

whose weight is the sum of the weights of its children. This 

new weight is inserted into the ordered 1 ist and the two 

smallest elements that have just been combined are deleted. 

This process is repeated until there is only one element left 

in the list. At that point there is one merged binary tree 

·and it contains all of the symbols at the leaf level. 

13 
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For any internal node of the completed binary tree, the 

left child is assigned a bit 'O' and the right child a bit 

'1'. A codeword for any particular symbol is a concatenation 

of code bits along the path from the root to the leaf node 

that contains the symbol [Standish 1980). 

Figures 3 and 4 show this procedure with an example. In 

Figure 1, symbols a1, a2, a3, a4 and a5 occurred 62, 52, 42, 

24 and 20 times respectively in the text. The probabilities 

0.31, 0.26, 0.21, 0.12, and 0.10 are the relative frequencies 

62/200, 52/200, 42/200, 24/200, and 20/200, respectively. The 

two smallest probabilities, 0.10 and 0.12, are combined to 

form 0.22. The probabilities 0.10 and 0.12 are deleted from 

the list while the probabilities 0.22 is added. The list of 

probabilities is maintained as an ordered list. The two 

smallest probabilities, 0.21 and 0.22 in the new list, are now 

combined. This process is continued until there is only one 

element (1.0) in the list. 

symbol 

a1 
a2 
a3 
a4 
as 

total 

sorted 
freg. 

62 
52 
42 
24 
20 

200 

prob. 

0.31 0.31:!0.43 . p0.57J---?>1.0 
0.26 0.26 0.31~ 0.43 
0.21_ r0.22 0.26 
0.12]--1 0.21 
0.10 

1. 00 

Figure 3. A Sample Frequency Table 
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Figure 4 is a Huffman tree constructed from the table in 

Figure 3. The second time the source text is scanned, each 

symbol is simply replaced by its codeword. 

1.0 

y~ 
0.43 0.57 

i'\ i \ 
0.21 0.22 0.26 0.31 

a3 Y'\ a2 a1 

0.10 0.12 
a5 a4 

codewords: a1 - 11, a2 = 10, a3 - 00, 
a4 - 011, a5 = 010 

Figure 4. Constructing Huffman Codes from 
the Table in Figure 3 

In order to decode a message, the tree is constructed 

from the probability table in exactly the same manner as the 

encoder constructed it. The table can be passed on to a 

decoder externally or with the encoded message. 

The static Huffman method guarantees to build minimum 

redundancy prefix codes [Huffman 1952; Lelewer and Hirschberg 

1987]. (When the code for one symbol cannot be a proper 

prefix of the code for another symbol, the codes are called 



prefix codes. ) 
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However, this does not guarantee that a 

Huffman code will produce an encoded message of minimum 

length. The Huffman method assumes that the probability of 

each letter is constant and independent of every other letter, 

and does not depend on the previous letter or sequence of 

letters. In English text, if a letter "q" is seen, the letter 

"u" is expected next, and after a letter "j", it is very 

unlikely that a consonant will occur. These correlations 

imply that the Huffman assumption is usually unrealistic. 

Also, the Huffman method separates the encoded bits for each 

symbol, a limitation that is overcome by the arithmetic coding 

method, 

simple 

as will be seen later. 

and easy to implement 

But the Huffman scheme is 

and it gives considerable 

compression in many cases as will be seen in our experiments 

in Chapter v. 
One other very strong argument for choosing static 

Huffman coding could be the well-known automatic resynchroniz

ation in case of error [Lelewer and Hirschberg 1987]. That 

is, if for some reason such as a noisy channel, a bit in an 

encoded message gets altered or lost and therefore the decoder 

gets out of synchronization, it usually does not take too long 

to become resynchronized. There has been some work in this 

area, mostly using deterministic analysis [Gilbert and Moore 

1959; Rudner 1971] rather than stochastic models. The average 

length from any one bit to the next resynchronization point 

is discussed later (Chapter IV), and experiments on some test 
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cases are shown in Chapter V. 

Adaptive Huffman Coding 

Static Huffman coding is very simple to implement and 

offers optimum prefix codes. However, it takes two passes to 

compress a message. In a situation such as a network environ

ment, making two passes might be impossible. Adaptive Huffman 

coding enables a user to start encoding without waiting for 

the end of the message to come in order to get the probabili

ties of the symbols. Another motivation for this method is 

when the message is known to have blocks of different charac

teristics, so that the overall probabilities are not very 

meaningful for the individual sections of the message. A 

source program with big blocks of comments is a good example 

to show this point. The overall probabilities of the source 

message will be quite different from the probabilities of the 

comment parts or the probabilities of the program parts. An 

adaptive Huffman code "learns" the changes in the probabilit

ies while encoding or decoding, and may remain nearly optimal 

for the current estimates. 

One way to accomplish some adaptivity is to break the 

source into fixed-size data blocks and apply the static 

Huffman method to each block; after blocking, the symbols are 

counted and sorted to build a Huffman tree, and the second 

time the block is scanned, symbols are encoded [Welch 1984]. 

Details such as multiple buffers to hold continuously incoming 

data have to be worked out carefully. This "batched static 
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Huffman" approach is acceptable if a high transmission rate 

is not too important and if the data blocks are very large 

relative to the size of the translation table [Welch 1984]. 

But this is not what is usually meant by an adaptive Huffman 

code. 

The basic idea in fully adaptive Huffman coding is to 

encode the k-th message using the Huffman tree constructed 

from the frequencies found in messages 1, 2, •.• , k-1. (When 

k = 1, we start from a balanced, minimum height tree.) 

Figures 5, 6 and 7 show the basic idea of constructing adap-

tive Huffman codes for a sample message ensemble "CBA", where 

alphabet is {A, B, C, D, E, F, G, H}. 

codewords 

:J 0 A 000 

0 B 001 

c 010 

D 011 

0 
E 100 

F 101 

Go G 110 

H H 111 

Figure 5. Initial empty Huffman tree 
and codewords 
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Every codeword for an 8-bit symbol set is of length a

bits in the initial empty (zero-frequency) tree in Figure 5. 

The message "C" is encoded using one of these codewords. Then 

the frequency for the message "C" becomes 1, and the Huffman 

tree becomes the tree in Figure 6. So the codeword for the 

first symbol in the message ensemble "C" becomes "0", a one-

bit codeword. As successive messages are found and encoded, 

their codewords likewise become short (and the codeword for 

"C" becomes longer!). Figure 7 shows the change in the tree 

after the second input symbol "B" is entered. 

c 0 codeword for c 0 

codewords for the rest 

A 
0 A 1000 

B 0 B 1001 

D D 1010 

E E 1011 

0 

:~ 
F 1100 

G 1101 

H l H 111 

Figure 6. Huffman Tree and Codewords After the 
first input "C" and codewords 



c 0 0 codeword for c 00 

B codeword for B 01 

codewords for the rest 

0 
A 0 A 1000 

D 0 D 1001 

0 
E E 1010 

F F 1011 

G 
0 G 110 

H H 111 

Figure 7. Huffman Tree and Codewords After the 
Second Input "B" 

20 

If this were done without modification, however, the 

method would become less and less rapid to adapt as k become 

very large, because the last 50 messages, for example, would 

be a smaller and smaller fraction of the total. Hence the 

goal is modified as follows: use the frequencies from some 

"recent" subset of messages. This could be done using a 

queue, but this would be very slow. So the adaptive al-

gorithms instead multiply each cumulative frequency by a fixed 

positive constant c, c < 1, after every N-th message [Gallager 

1978]. Except for this multiplication, a frequency is incre-

mented by 1 each time the corresponding message occurs. The 

multiplication by c causes the algorithm to "forget" ancient 
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history; it is very similar to an exponential smoothing filter 

[Brown 1963]. The value of M = N 1 (1- c) provides a measure 

of how well the system adapts to changes in the message. In 

general, as the value of M increases, the "memory" will go 

back further. If the value of M is too small, the codes will 

change too fast and the algorithm only "remembers" a very few 

recent symbols [Gallager 1978]. On the other hand, if the 

value of M is too large, the change is too slow and the system 

does not adapt to changes in the message rapidly enough. For 

easy m'\J.ltiplication in programming, c = 2-k (usually, c = 0.5) 

should be a good choice, since a simple shift operation can 

replace the multiplication. 

Just as in the static Huffman coding, it is assumed that 

the probability of each letter is independent of every other, 

and does not depend on the previous letter or sequence of 

letters. Even though there is no concern for correlations 

between symbols, this method responds to locality of the 

source message, because the codes are changing while the 

encoder or the decoder is "learning" the environment. After 

each input symbol, the cumulative frequencies up to the 

current point are used to encode or decode the next symbol 

[Gallager 1978]. 

A simple implementation of this "learning" concept can 

be effected by building a Huffman tree after each input, based 

on the cumulative frequencies up to the current point. The 

initial frequency table contains all frequencies equal to zero 
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before any symbol is entered from a message ensemble, and the 

initial Huffman tree is built based on this table. Since the 

initial table contains all zeros for frequencies, sorting is 

not necessary. Furthermore, the new position to insert the 

sum of the two smallest frequencies can be anywhere in the 

list, since the sum of the two frequencies is also zero. As 

an example consider the following message: 

"a b b b b c" (containing n copies of b) 

where a < b < c. There are n+l places where a new copy of b 

could be inserted while preserving the order. The shape of 

the initial tree depends on how the new position is deter-

. mined, and the shape affects the height of the tree. Trees 

in Figure 8 and 9 show the two different possible initial 

trees based on the same zero-frequency table for alphabet the 

{A, B, c, D} in order. Tree (a) in Figure 9 is built by 

inserting the new frequencies at the top of the (sorted) list 

as shown in table (a) in Figure 8, and tree (b) in Figure 9 

is built by inserting them at the end of the list as shown in 

table (b) in Figure 8. 

The maximum length of a codeword in tree (a) in Figure 

9 is 2, and the maximum length in tree (b) is 3 when the size 

of alphabet is 4. We can imagine what kind of difference it 

would make in constructing a Huffman tree for the ASCII symbol 

set (expressed in eight-bit bytes), where the size of the 

alphabet is 256. 



symbol 
A 
B 
c 
D 

freg. 

iJb-_j~~ 
table (a) 

freg. 

0 

symbol 
A 
B ~ ~~-~~ ~~--~> 0 

~] -~)0--' c 
D 

table (b) 

Figure 8. Constructing Different Huffman Codes 
From the Same Zero-Frequency Table 
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When the size of the alphabet is 256, a tree (a)-like 

construction will produce a perfectly balanced binary tree 

with the maximum length of a codeword equal to log2256 = 8, 

and a tree (b)- like construction will produce a maximum 

length codeword of length 256. 

One simple way of keeping the height of the tree as short 

as possible is to start with frequencies that are ones instead 

of zeros. Then the Huffman tree built from this table 

automatically will be a balanced binary tree that contains all 

of the ASCII symbols with weight 1 at the leaf level. 

After the initial tree is built in this implementation, 

the table is updated after each message, and the tree is 

rebuilt based on the current table. If one chooses to bias 
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the frequency by 1, it can be easily seen that the increment 

for the frequency corresponding to the current symbol should 

be at least as large as the size of the alphabet (256, for 

example, in an eight-bit ASCII symbol set) instead of 1, in 

order to keep the output of the algorithm the same as the 

output from the algorithm based on the true frequencies of 

the symbols. This brute force method of repeatedly rebuild-

ing the entire tree is very expensive and not very practical, 

but it leads us to the next implementation. 

/0""' /0~ 
0 0 0 0 

/\ 1\ /\ A 

0 0 0 0 0 0 
D c B A 1\ B 

0 0 
D c 

tree (a) tree (b) 

Figure 9. Initial Huffman Trees Corresponding to 
Tables in Figure 8 

A method of implementing adaptive Huffman coding effi

ciently was proposed by Faller [ 1973] and Gallager [ 1978] 

independently, and improved by Knuth [1985], and recently by 
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Vitter [1987; 1989]. The adaptive version of Huffman's 

algorithm implemented by Faller, Gallager, and Knuth is called 

the FGK algorithm for short. In the FGK algorithm, the tree 

is continually updated (not rebuilt from scratch as in the 

brute force method) using only the minimum possible number of 

pointer exchanges. Unlike the static Huffman or the batched 

static Huffman implementation, the probability table need not 

be transmitted, because the encoder and the decoder are 

synchronized every step of the way. 

The FGK algorithm involves two parts: updating the 

probability table and updating the Huffman tree. Updating 

the table is very simple. Updating a tree in the FGK al-

gorithm is simplified and improved by Vitter in Algorithm V 

[Vitter 1987], by reducing the number of pointer exchanges 

and by minimizing the height of the tree, even though the 

complexity of the algorithm is the same (the time required 

for each encoding and decoding operation on one symbol in both 

implementations is 0 (l) , where l is the current length of the 

codeword for the symbol). 

The data structure used in Algorithm v is called a flom-

ing tree, a tree whose pointers are not maintained explicitly. 

Instead of keeping an explicit tree, this algorithm uses an 

explicit numbering that corresponds to the physical storage 

locations used to keep information about the nodes, in order 

to maintain the Huffman tree without reconstructing the whole 

tree. (A similar method of storing a tree is used in the 
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well-known Heapsort algorithm [Reingold and Hansen 1983].) 

If the nodes in Figure 4 are numbered explicitly by their 

physical storage locations as Algorithm V would do, they will 

be labeled as in Figure 10. 

1.0 

/~ 
0.43 0.57 

I \3 I \6 
0.21 0.22 0.26 0.31 

a3 

I\~ a2 

a1 

0.10 0.12 
as a4 

Figure 10. Numbering a Huffman Tree 
Constructed from the 
Table in Figure 3 

Figure 11 is the updating subroutine of Algorithm V 

[ 1987] , when the (t+1) st symbol· in the message is processed. 

The full implementation is found in ·the more recent paper 

[Vitter 1989]. There is a special node called the o-node in 

this algorithm, which represents all of the symbols whose 

weight is zero, or in other words the symbols that have never 

occurred so far. Initially the tree contains only one o-node. 

The line starting with "####" is not in the simplified version 
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of Algorithm V [Vitter 1987] but needs to be added in order 

to update the weights of the nodes involved along the path. 

procedure Update; 

{The alphabet contains a(l), a(2), ... , and a(n). 
The input being encoded is a~) and it is (t+1)st a(i) 
entered so far. 
There are n-k unused symbols in the 0-node. 

} 

begin 
q : = leaf node corresponding to a(i)t+t; 
if (q is the 0-node) and (k < n - 1) then 

begin 
Replace q by a parent 0-node with two leaf 0-

node children, numbered in the order left 
child, right child, parent; 

q := right child just created; 
end; 

if q is the sibling of a o-node then 
begin 

Interchange q with the highest numbered leaf of 
the same weight; 

Increment q's weight by 1; 
q := parent of q; 

end; · 

while q is not the root of the Huffman tree do 
begin {main loop} 

Interchange q with the highest numbered node 
of the same weight; 

{q is now the heighest numbered node of the same 
weight} 

Increment q's weight by 1; 
q := parent of q; 

end; 

#### Increment q's weight by 1; 

end; 

Figure 11. Updating procedure in Algorithm V [Vitter 1987) 
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Vitter proved that the length of the message encoded by 

Algorithm V will exceed the length of the output from the 

static Huffman method by at most one bit per codeword [Vitter 

1987]. Often, the length will actually be less, due to the 

adaptation. 

The Bentley, Sleator, Tarjart and Wei (BSTW) Method 

This is an adaptive method in which locality, or the cor

relations between symbols, is taken into account. In this 

algorithm, a word is processed as an entity rather than 

processing characters individually, and a codeword is an 

integer denoting the position of the word in a self-organiz

ing list. Frequently-used words are near the front of the 

sequential list, in order to have shorter integer encodings 

[Bentley et al. 1986; Hester and Hirschberg 1985]. As in all 

adaptive methods, the encoder and the decoder construct lists 

that are the same at corresponding points in the message. 

Initially, the list (of size N) is empty (N = 0). The 

encoder looks for the words in the list before transmitting 

each word. If a word exists at position P in the list, the 

value of the integer P is transmitted, and the word moves to 

the front of the list. If the word does not exist in the 

list, the integer N+1 is transmitted followed by the word 

itself, and the word is inserted at the front of the list. 

If the list is already full when an insertion needs to take 

place, the most aged element, which is located at the rear of 

the list, should be deleted first. 
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The decoder receives an integer P and replaces it with 

the word in the P-th position in the list, if it exists. 

Again, the word moves to the front of the list. If there is 

no word in the P-th position, the decoder accepts a new word 

and inserts it at the front of the list. Just as in encoding, 

the least recently used element at the rear of the list is 

deleted before the insertion, if the list is already full. 

The source text in Example 3 is taken from Bentley, 

Sleator, Tarjan and Wei's original article [Bentley et al. 

1986]. This example shows how the list is updated while 

encoding proceeds. 

Example 3: 

source ensemble "THE CAR ON THE LEFT HIT THE CAR I LEFT" 

msg lTHE 
list THE 

msg lTHE 2CAR 
list CAR THE 

msg lTHE 2CAR 30N 
list ON CAR THE 

msg lTHE 2CAR 30N 3 
list THE ON CAR 

msg lTHE 2CAR 30N3 4LEFT 
list LEFT THE ON CAR 

msg lTHE 2CAR 30N 3 4LEFT SHIT 
list HIT LEFT THE ON CAR 

msg lTHE 2CAR 30N 3 4LEFT SHIT 3 
list THE HIT LEFT ON CAR 

msg lTHE 2CAR 30N 3 4LEFT SHIT 3 s 
list CAR THE HIT LEFT ON 

msg lTHE 2CAR 30N 3 4LEFT SHIT.3 5 6I 
list I CAR THE HIT LEFT ON 



msg 
list 

lTHE 2CAR 30N 3 4LEFT SHIT 3 5 6I 5 
LEFT I CAR THE HIT ON 
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The decoder should build the list in exactly the same way, in 

order to decode the message. 

Since this algorithm works with one word at a time, the 

message ensemble has to be grouped into words so that a 

processor knows where each word ends. The character domain 

is grouped into two disjoint sets first, letters and non-

letters. A message is an alternating sequence of words that 

consist only of letters and words that consist only of non-

letters. 

It is up to the user to determine what are letters and 

non-letters, and they should be chosen using criteria appro-

priate to the application. In English text, it may be a good 

choice to set all of the ordinary letters and numbers as 

"letters" and all other characters as non-letters. But if a 

message contains many special characters combined with 

alphabetic characters to form certain names, and if they are 

used repeatedly, for example, care should be taken in order 

not to break up one name into several pieces. Breaking a name 

not only fills up the list unnecessarily, but also increase 

the length of the encoded message. 

For example, if a message contains some often-repeated 

hyphenated words, it might be best to declare the hyphen to 

be a "letter", so that the hyphenated words, rather than just 

their individual components, are considered as "words" in the 

encoding. Similarly, in encoding a PASCAL program containing 

-
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many references to array elements LIST[J], square brackets 

should perhaps be declared to be letters. Having to know the 

characteristics of the source ensemble for the best result may 

be the weakest part of this algorithm. 

A self-organizing list is used in the BSTW method. It 

involves three basic operations: insertion, deletion, and 

searching. A move-to-front operation which moves the most 

recently used element to the front of the list is just a 

deletion followed by an insertion. A linked list was used in 

this work to simplify the implementation, whereas Bentley et 

al. discussed using an interlinked binary tree and a binary 

trie [Knuth 1973]. Neither Bentley et al., nor anyone else, 

however, has produced a production code for this algorithm 

using these data structures, according to the published 

literature [Bentley et al. 1986]. 

Insertions and deletions will not differ between the two 

implementations, but the searching would be a lot faster with 

a trie structure, at the cost of complicating the list 

updating [Bentley et al. 1986]. Either way, each node in the 

list must be large enough to hold the longest word. For a 

defense against a possible overflow (a word longer than the 

maximum word length allowed a priori) , it would be a good idea 

to have encoding start all over from the beginning with an 

empty list from the overflow point, if overflow ever does 

occur. 

Encoded messages consist of numerical position numbers, 

letter strings, and non-letter strings. Since a decoder has 
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to know where each string ends, a one-byte character was used 

to denote end-of-word in a test program. But if the algorithm 

were to be used only on the seven-bit ASCII character domain, 

the highest bit of each eight-bit byte could be set as a flag 

to indicate either an end-of-letter (or non-letter) string or 

a decimal position number, since 7 bits are enough to repre

sent all ASCII characters. 

Because the output from the BSTW encoding is still in 

byte-oriented character form, it is possible to use another 

compression technique that takes byte form as input, such as 

Huffman coding, after the BSTW method has been applied, in 

order to compress the message further. In published tests 

[Bentley et al. 1986], the BSTW method has not been imple

mented in the basic form described above. Instead, the output 

from the BSTW method has been further compressed. For 

example, Bentley et al. themselves wrote [Bentley et al. 

1986], "For ease of implementing the prototype, we encoded 

the position in the list by a Huffman code, which implies that 

an implementation would have to make two passes over the 

data." Similarly, Fiala and Greene wrote, "Since the 

empirical results in (BSTW] do not actually give an encoding 

for the positions of words in the list or for the characters 

in new words that are output, we have taken the liberty of 

using the V compressor (Vitter's adaptive-Huffman algorithm) 

as a subroutine to generate these encodings adaptively." 

In this thesis, we pave chosen to implement the BSTW idea 

in a simple block-to-block scheme, in order to see how much 
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compression the word-list idea achieves by itself. This is 

what we refer to from here on as BSTW. Separately, we 

implemented BSTW-followed-by-Huffman; it is the results of 

this compound algorithm that should be compared to published 

BSTW results [Bentley et al. 1986]. 

One question that remains unanswered is whether BSTW 

encoded characters into new words using Huffman compression, 

and if not, why not. The quote above implies that they did 

not, but this would seem to be a strange thing to do, because 

the compression ratio achieved by the BSTW alone will be very 

poor, as will be seen in Chapter V. 

Arithmetic Coding 

This method was invented by Elias and implemented by 

Rissanen [1976], Rubin [1979], Cleary and Witten [1984a], and 

Witten et al. [ 1987]. This method is rather similar to 

Huffman coding: symbols are encoded independently and the 

correlations between symbols are not considered. In arith

metic coding, a message is represented by an interval of real 

numbers between 0.0 and 1.0. Each symbol in a source message 

specifies a subinterval and the subinterval maps into the 

interval [0.0, 1.0) again. 

Initially, a real interval between 0.0 and 1.0 is divided 

into subintervals corresponding to the probability of each 

symbol. The more frequent symbols take larger subintervals 

within the interval between 0. 0 and 1. o. When the first 

symbol a 1 in the source message is entered, the subinterval 
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that belongs to the symbol a1 is expanded and mapped into the 

interval [0.0, 1.0). All of the subintervals get new ranges. 

Figure 12 shows an example of this narrowing, expanding, and 

remapping process as each input symbol in the source message 

"eaii!" is processed using arithmetic encoding, based on the 

sample probability table in Table 2. 

Every time a subinterval expands to map into the inter

val [0.0, 1.0), the new range of each symbol can be defined 

by the following formulae [Lelewer and Hirschberg 1987]. 

new left = prev left + msgleft x prev_size 
new size = prev:size x msgsize 

TABLE 2 

A PROBABILITY TABLE FOR THE ALPHABET 
{a, e, i, o, u, ! } 

Svmbol Probability Range 

a .2 [0.0, 
e .3 [0.2, 
i .1 [0.5, 
0 .2 [0.6, 
u .1 [0.8, 

.1 [0.9, 

0. 2) 
0.5) 
0. 6) 
0.8) 
0.9) 
1.0) 

(2) 
(3) 

For example, after the first character "e" is seen, the new 

range of the symbol becomes [0.2, 0.5) by plugging numbers 

into the formulae (2) and (3) above; 

new left= 0.0 + 0.2 x (1.0 - 0.0) = 0.2, 
new size = (1.0 - 0.0) x (0.5 - 0.2) = 0.3, 
(new_right = new left + new size = 0.5). 



And after the character "a" is seen, 

new left = 0.2 + o.o x 0.3 = 0.2, 
new size = 0.3 x (0.2 - 0.0) = 0.06, 

and therefore the new range becomes [0.2, 0.26). 
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At the end of encoding, the two real numbers that define a 

final range contain all of the information needed to be 

decoded. In fact any one number within the last range will 

serve the purpose sufficiently. The example in Figure 12, 

"!" has the final range [0.23354, 0.2336), and a number 

within the range such as 0.23355 can be the encoded message 

for the string "eaii!". 

interval 

o.o 1.0 
[ 0' 1) e 

0.2 0.5 
e [0.2, 0.5) 

0.2 0.5 
a [0.2, 0.26) 

0.23 0.236 
i [0.23, 0.236) 

0.233 
i [0.233, 0.2336) 

0.23354 0.2336 
[0.23354, 0.2336) 

Figure 12. Static Arithmetic Codings for the Message "eaii!" 
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The decoding process is almost identical with the 

encoding process. The encoded message, which is a number in 

the final range in the interval [0.0, 1.0), shows which part 

of the original interval the encoded number came from. For 

example, the encoded message of Figure 12, 11 0.23355", shows 

that the number belongs to the range of the symbol "e", [0.2, 

0.5) in the original segment [0.0, 1.0). The symbol "e" is 

sent to the output and the range [0.2, 0.5) is mapped into the 

interval [0.0, 1.0) just as in encoding. The number "0.23355" 

is found this time in the range of the symbol "a", which is 

[0.2, 0.26). So the symbol "a" is sent to the output and the 

substring of range 0.2 and 0.26 expands again. This could go 

on forever since the decoder would not know when to stop 

expanding. For example, the number o.o could mean "a", "aa", 

"aaa", "aaaa", etc. Obviously a decoder needs to know when 

to stop. The symbol "!" in the example in Table 2 and Figure 

12 is being used as an end-of-message symbol. 

Witten et al. [1987] show the complete algorithm in c 

language. They also show that the encoded message doesn't 

need to be held until the final range is calculated. Whenever 

the leftmost digits of the endpoints of the current interval 

do not show any further change, those digits can be sent to 

the output. In the example in Figure 12, instead of waiting 

until the whole message is encoded, digit 2 could be sent out 

after the symbol "e", because that digit is not going to 

change any more, and digit 3 could be sent after the first "i" 

is seen, and so on. 
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This algorithm can be implemented either as a static 

algorithm or as a dynamic algorithm. In static arithmetic 

coding, the probabilities of the symbols are given ahead of 

time, and in a dynamic coding, the estimated probabilities of 

symbols entered so far are used. Witten et al. show the 

algorithm written inc [Witten et al. 1987], where generally 

known probabilities in English text are used in the static 

model instead of exact probabilities of the symbols in the 

text to be compressed. 

Because arithmetic coding does not produce one codeword 

for each symbol, it can produce fewer bits of output for a 

given message than does the static Huffman method. 

The Ziv-Lempel Method 

The Ziv-Lempel method is a class of compression methods 

rather than a single compression algorithm. The Ziv-Lempel 

style of parsing and textual substitution in adaptive text 

compression was suggested by Ziv and Lempel [Lempel and Ziv 

1976; Ziv and Lempel 1977; Ziv and Lempel 1978], but different 

implementations by many others [Storer and Szymanski 1982; 

Rissanen 1983; Welch 1984) improved the algorithm in many 

ways. Basically, the encoding process parses the message 

repeatedly to find the longest recognized string that exists 

in the string table [Ziv and Lempel 1977; Lelewer and Hirsch

berg 1987]. 

Welch's implementation was chosen here to show how the 

algorithm works. Initially, the string table contains single-
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character symbols which are assigned unique code values [Welch 

1984]. This saves some expansion during initial encoding, in 

comparison to using the table without single-character symbols 

at the beginning [Lelewer and Hirschberg 1987]. Next, source 

text is parsed just until the parsed part of the string does 

not exist in the table. In other words, the parsing stops 

when the longest recognized string plus one more symbol have 

been parsed. This new string is added to the table with a 

unique code value assigned, and the code value of the longest 

recognized string (without the new symbol) becomes output. 

The final symbol that made the string different from the 

longest recognized string in the table is the beginning of the 

next string and the beginning of the next parsing. This step 

is repeated until the source text is exhausted. Figure 13 

shows Welch's version of the Ziv-Lempel compression algorithm 

[Welch 1984]. 

Initialize table to contain single-character strings. 
Read the first input character -> prefix string w 

Step: Read next input character K 
If no such K exists (end of input): 

code (w) -> output; EXIT 

If wK exists in string table: 
wK -> w; repeat Step. 

Else wK not in string table: 
code (w) -> output; wK -> string table; 
K -> w; repeat Step. 

Figure 13. LZW (Lempel-Ziv-Welch) Compression 
Algorithm 
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Figure 14 shows an example for Welch's Ziv-Lempel encod

ing process and the string table that is created. All of the 

symbols a, b, and c are first stored in the table with unique 

codes 1, 2, and 3 assigned before actual parsing takes place. 

The source message is parsed up to the first "b", since the 

longest recognized string at this point was "a". The codeword 

for the recognized string "a", namely 1, is sent to the output 

and the new string "ab" in the alternate form "1b", in actual 

practice is added to the table and assign a new codeword "4". 

The extension character "b" becomes the start of the next 

string, parsing stops at the second "a", and the codeword for 

the longest recognized string "b", namely 2, is sent to the 

output and the new string "ba" in the form "2a" is added to 

the table with a new codeword 5. The extension character "a" 

is the beginning of the next parsing and the parsing stops 

after "abc", since "ab" is the longest recognized string. 

The codeword for "ab", namely 4, is sent to the output and 

the new string "abc" in the shorter alternative form "4c" is 

added with a new codeword. This process continues until the 

end of the source message is reached. It is easy to see that 

the encoded message for the example source message is "1 2 4 

3 5 8 1 10 11". When storing the string table in Welch's 

implementation, since each table entry is a prefix string plus 

a single character, it can be stored in a fixed length of 

storage. Each table entry is encoded as (~ c), where i is the 

codeword for the prefix string and c is the extension 
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character (Welch 1984; Lelewer and Hirschberg 1987]. The 

alternative table in Figure 15 makes storing the string table 

easier to understand. 

source message = "a b a b c b a b a b a a a a a 

gosition table out gut 
1 a 
2 b 
3 c 

1 (= a ) 
4 ab = lb 

2 (= b ) 
5 ba = 2a 

4 (= ab ) 
6 abc = 4c 

3 (= c 
7 cb = 3b 

5 (= ba 
8 bab = 5b 

8 (= bab) 
9 baba = Sa 

1 (= a ) 
10 aa = la 

10 (= a a ) 
11 aaa = lOa 

11 (= aaa) 
12 aaaa = lla 

Figure 14. Compressing a Source Message by the 
LZW Algorithm 

a a" 

Rodeh et al. [ 1981] point out that a straightforward 

implementation of the Ziv-Lempel algorithm takes 0(n2 ) time 

to process a string of length n. Hashing was proposed by 

Welch [1984] to achieve O(n) processing time, and the fixed-

size entries in string table are well suited for it. The 
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public domain UNIX utility compress implements LZW, Welch • s 

version of the Ziv-Lempel algorithm. In compress, once the 

string table is full, the table construction starts over from 

scratch (in effect the current table is destroyed and the 

algorithm starts over using only the single-character 

symbols). 

string table alternative table 
a 1 a 1 
b 2 b 2 
c 3 c 3 

ab 4 lb 4 
ba 5 2a 5 
abc 6 4c 6 
cb 7 3b 7 
bab 8 5b 8 
baba 9 Sa 9 
a a 10 la 10 
aaa 11 lOa 11 
aaaa 12 lla 12 

stored table = { (O,a), (O,b), (O,c), (l,b), (2,a), (4,c), 
(3,b),(5,b), (S,a), (l,a), (lO,a), (ll,a)} 

Figure 15. Generating LZW String Table 

The decompression process constructs the table in the 

same way, as the message is translated. 11 Compression-in-

reverse 11 (such as in the BSTW decompression) can be a simple-

minded implementation that shows the concept of the decompres-

sian algorithm in a simple way. In this implementation, it 

is assumed that the string table stores variable-length whole 



42 

strings rather than shorter, fixed alternative forms, in order 

to provide a way to search a string in the table. Decompres-

sion is a recursive operation in which the codeword produces 

the last (extension) character and the codeword of the prefix 

string in reverse order. Figure 16 shows simplified steps in 

this implementation, and also illustrates a certain problem 

that occurs. Since the last character in a string is peeled 

off one at a time, the output string comes out in reverse 

order, even though Figure 16 s~ows strings in the right order 

for the sake of comprehensibility. 

message to decode = "1 2 4 3 5 8 1 10 11 11 

:eosition table out:eut 
1 a 
2 b 
3 c 

a (= 1 ) 
b (= 2 ) 

4 ab 
ab (= 4 ) 

5 ba 
c (= 3 

6 abc 
ba (= 5 

7 cb 
? (= 8 ) 

Figure 16. Decompression by "Reverse Compression" 

These steps are almost like the steps in Figure 14, 

except that after the string "ba" is produced, the decoder 

cannot go on any more, since it has not learned what is in 
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the table at position 8. Only substrings of the form KwKwK 

will cause this problem while decompressing, according to 

Welch [.1984]. A complete decompression algorithm that solves 

this problem [Welch 1984] is shown in Figure 17. (The line 

that starts with "###" is present in Welch's decompression al-

gorithm but it should be ignored, because it is not necessary 

and does not make sense. ) Hashing is not necessary in 

decompression since the string table is accessed directly by 

codewords, and therefore decompression is faster than the com-

pression process. 

Decompression: First input code -> CODE -> OLDcode; 
with CODE= code(K), K ->output; 

K -> FINchar; 
Next Code: Next input code -> CODE -> INcode; 

If no new code: 
EXIT; 

If CODE not defined: 
FINchar -> output; 
OLDcode -> CODE; 

####code(OLDcode, FINchar) -> INcode; 

Next Symbol: If CODE= code(wK): 
K -> stack; 
code(w) -> CODE; 
Go to Next Symbol; 

If CODE= code(K): 
K -> output; 
K -> FINchar; 

Do while stack is not empty: 
stack top -> output; 
POP stack; 

OLDcode, K -> string table; 
INcode -> OLDcode; 
Go to Next Code; 

Figure 17. LZW Decompression Algorithm 
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The Ziv-Lempel parsing method is often called a greedy 

parsing method because the longest recognized string is sought 

while parsing rather than attempting to achieve global 

optimality. As an example, if the source message in Figure 

14, "ababcbababaaaaaaa", can somehow be broken into "ab", 

"cb", and "aaaa" instead of into the 12 pieces produced by the 

Ziv-Lempel method, we would have needed only 4 codewords and 

would have accomplished a greater compression. 

Iteration and Combining Methods 

Some text compression algorithms such as the BSTW and 

Ziv-Lempel methods take byte-oriented source messages and 

produce byte-oriented encoded messages, while some others such 

as both static and dynamic Huffman codings produce bit

oriented output rather than bytes of constant length. This 

leads us to think about the possibility of running one method 

followed by another. If one method compressed a source text 

and produced byte-oriented output, surely it is possible to 

see more compression on that output by running the output 

through another method that produces bit-oriented output, 

since there is a possibility of wasting bits in byte-oriented 

output. This approach is investigated in Chapter V of this 

thesis. 



CHAPTER IV 

AUTOMATIC RESYNCHRONIZATION IN 

STATIC HUFFMAN CODES 

The static Huffman coding method has an advantage not 

shared by any other method we have described. If an error 

occurs in transmission, such as the corruption of a few bits 

by noise, static Huffman decoding may produce a few errorneous 

symbols because it is not starting the decoding of each symbol 

on a correct "first" bit, but will almost certainly 

resynchronize itself automatically and decode the rest of the 

message correctly. In this chapter the average distance from 

any random bit to the next synchronization point, in decoding 

a message encoded with the static Huffman method, is 

calculated, assuming a simple probabilistic model. 

Imagine a complete encoded message that contains code-

words for letters a1 , a2 , ••• , am whose frequencies are n11 n2 , 

. . . . ' nm, with the length of codewords 111 .... , 
respectively (see Table 3). Let 

I\'\ 
•. • • + n = I: n. 

m i=l • 

denote the number of characters in the original message. 
1'\'\ 

Let M = . I: ( ni · li] denotes the number of bits in the encoded 
•""I 

message, and let p(aj) be the probability of aj in the Huffman 

method. Then 
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which can be rewritten as 

( 4) • 

Let p 1 (i) be the probability of any bit being the first bit 

of any occurrence· of the letter ai in the encoded message. 

From the definition of a probability as a relative frequency, 

p1 ( i) = (# of occurences of the codeword ai) 

I (total bits) 

= ni I M 

= ni I £ [ nk • lk] (from ( 4) ) . 

TABLE 3 

SAMPLE FREQUENCY TABLE 

symbol frequency probability code-length 

totals N 1 

Now, let s be the probability of any random bit being the 

first bit of any character in the encoded message. Then 

M • 
s = .~, PI ( 1. ) 

·-
= ~ · [ n. I ~ ( nk · lk) ] 

i::OI I k':l 
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m 

= [1 I ~1 (nk · 
m 

lk)] · I:(p(a·) · N) 
i"'"\ I 

(by ( 4) ) 

= [ 1 I ~ (nk • 
K=l 

lk)] • 1 • N . "' (s~nce I:p(ai) = 1) 
t:.t 

= 1 1 [ N'"1 t ( nk · lk) ] 
K•l 

r¥1 
= 1 I [I: (p(ak) • lk)] 

t::l 
(by ( 4)) 

= 1 I d ( 5) , 

where d is the average length (in bits) of a codeword. With 

this preparation completed, we will state and prove the 

following theorem. 

Theorem 1 : If the decoder is out of synchronization at 

the current bit, and if it has a constant probability of 

resynchronizing after the next letter is decoded, regardless 

of how many incorrect letters have been decoded up to that 

point, the average distance from the current bit to the next 

resynchronization point is D = d, and the average number of 

incorrect symbols produced before resynchronization occurs is 

(d - 1) • 

Proof : The probability of the next bit being the first bit 

of any letter is 

p = 1 I d (by ( 5) ) . 

and the probability of the next bit not being the first bit 

of any l.atter is 

q E 1 - p = 1 - 1 I d ( 6) • 

The distance from the current bit to the synchronization point 

will be 
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1, if the next bit is the first bit of any encoded 

letter, 

2, if the decoder misses the next first bit and gets 

resynchronized on the following first bit, 

i, if the decoder misses the next (i - 1) first bits and 

gets resynchronized on the i-th first bit, ( 7) ' 

Therefore, 

D = p • 1 + ( 1-p) • p • 2 + ( 1-p) 2 • p · 3 + • • . + ( 1-p) i • p • ( i + 1 ) 

+ 

CD 

[i q(i-1)] = p :E . 
j:l 

(by ( 6)) 
al qi] = p :E [dldq 
j~l 

00 • 

= p dldq :Eq' 
i•l 

= p dldq [11(1-q)] 

= p [ 1 I C 1-q) 2 J 

= p. [ 1IP2) 

= 1 I p 

= d Q.E.D 

Theorem 1 shows that the average number of characters decoded 

from a random starting point to the resynchronization point 

is equal to the average length in bits of an encoded codeword 

in the Huffman scheme. The last decoded symbol in this 

sequence is the first correct symbol, so that on the average 
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(d - 1) incorrect symbols will have been produced. The model 

used here is the common discrete exponential stochastic 

distribution [Feller 1957]. 

Theorem 1 provides only an "average" distance, and a case 

that violates our assumption can be constructed. Imagine a 

perfectly balanced Huffman tree with all of the leaf nodes on 

the same level of the tree, and therefore all of the codewords 

being the same length. In that case, resynchronization will 

never take place [Gilbert and Moore 1959]: If the decoder once 

assumes that what is actually the second bit of a codeword is 

the first bit, then it will produce an incorrect decoded 

symbol from the incorrect codeword and, because the length of 

all codewords is constant, will again arrive at the incorrect 

second bit of the next codeword, and will repeat this same 

process indefinitely. However, Huffman code trees are almost 

never well-balanced in practice (a perfectly-balanced tree 

implies that no compression before packing into binary bits 

is possible). As a result this case is of little practical 

interest and there is reason to hope that the hypothesis of 

Theorem 1 may be approximately true in practice. In Chapter 

V we will find that Theorem 1 holds rather accurately in some 

test cases. 

Example 4 shows resynchronization while decoding, where 

the encoded message is wrong in two places. One of the 

Huffman code sets that the source text "ABRACADEBRA" produces 

can be o, 110, 100, 1011, 1010 and 111 for symbols A, B, c, 

D, E and R respectively. After the second bit of the codeword 
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in the first "B" is lost, the decoder produces wrong symbols 

"E" and "A" before resynchronization occurs. After the first 

bit of the codeword for the symbol "E" is altered, th!= wrong 

symbols "A", "A", "D" and "A" are produced before resynchroni-

zation occurs. The average length of the codewords is 

calculated by 
6 

[J~' (code length for symbol aj) x (frequency)] 

/(total frequencies) 

= (4·1 + 2·3 + 1·3 + 1·4 + 1·4 + 2·3) 1 11 

= 27 I 11 ~ 2.5, 

and, the expected number of wrong symbols before the resyn-

chronization is 

d - 1 = 2.5 - 1 = 1.5. 

Example.4: 

Suppose that Huffman codewords for alphabet A, B, c, D, 

E and R are 0, 110, 100, 1011, 1010, and 111 respectively, 

and that a message "ABRACADEBRA" needs to be transmitted. 

The underlines in the encoded message denote missing or 

altered bits, and the up arrows (t), the resynchronization 

points. 

source message A B R A C AD E B R A 

correct encoded 
message 0 1_!0 111 0 100 0 1011 _!010 110 111 0 

incorrect encoded 
message 0 10 111 0 100 0 1011 0010 110 111 0 

t t 
decoded message A D E A A D AAD A R A 
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Most natural language and computer language texts can be 

encoded using an average of only three or four bits per 

character, according to our experiments. Thus, on the average 

only two to three incorrect symbols will be produced from 

static Huffman decoding of these texts, after a transmission 

error occurs, before automatic resynchronization takes place. 

Test cases and their analysis are considered in Chapter v. 



CHAPTER V 

PERFORMANCE ANALYSIS AND COMPARISONS 

Choosing Test Data 

We tested twenty message ensembles: eight PASCAL program 

files, eleven c program files, and one English text file. The 

sizes-of the files vary from 92 bytes to about 59K bytes (1K 

= 1024). Files of small sizes are chosen to demonstrate that 

some of the methods will not perform well in the initial stage 

of compression. 

We used one English text file to test resynchronization 

on static Huffman coding and one PASCAL program source code, 

which is the largest in volume, to test the speed of the 

various basic methods. 

Measure of Performance 

The primary measure of performance is the compression 

ratio, which is calculated by 

C1 = [(size of input- size of output) 

I size of input] x 100%, (8) 

and it shows the percentage by which the file size has been 

reduced. The larger the compression ratio is, the better the 
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compression. Some other authors such as Fiala and Greene 

[1989] define the compression ratio as 

C2 = [size of output 1 size of input] x 100%, (9) 

which is essentially a "lack-of-compression ratio" rather than 

a compression ratio. The relationship between two compression 

ratios defined by (8) and (9) is 

100% - C1 = C2. 

According to our definition, 0% compression ratio means that 

the size of the text file is not changed by compression, and 

100% means that the size of output becomes zero (even though 

this is not realistic). 

The compression ratios yielded by each method is shown 

in the tables (Tables 4, 5, 6, and 7) in later section. The 

tables contain the names of the files, the sizes of the files 

before compression in bytes, the compression ratios, and the 

average compression ratio of each method. 

The prefixes in the file names of "PAS", "C", and "TXT" 

represent PASCAL program files, c program files, and English 

files, respectively. The file C7 uses mostly tab characters 

to achieve indentation, while all other program files use 

blanks for the same purpose. 

Whenever the actual size of a compressed file is known, 

we try to use actual numbers for the compression ratio, but 

when the software used for the tests did not produce an output 

file (when the size of file does not decrease) , we used "N/A". 

So if "N/A" is shown in place of the size of the compressed 

file, it means that the size of the file has not been decreas-
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ed but has actually been increased by the compression. "AVRG-

RATIO" is the average ratio of each method performed on the 

seventeen files that are large enough (larger than 600 bytes) 

to show positive compression ratios for every method. 

All of the test cases were run on UNIX, and some of 

methods were run on an MS-DOS system too to compare the re-

sults. In every case the length of each compressed file·was 

exactly the same when run on these two systems, provided that 

"carriage return" characters were interpreted the same way in 

both systems to make the input files identical. (Normally, 

MS-DOS adds a "line feed" character after each "carriage 

return".) 

The secondary measure of performance is execution time 

of each method on the UNIX system. Table 8 shows the results 

from the tests of execution time. Absolute execution times 

are hard to measure because the system load is changing 

constantly. For execution time, we tested seven methods once 

one after another using the UNIX utility time, and repeated 

this four more times, and averaged the execution times over 
/ 

five tests. 
-\., 

Description of Methods 

We programmed static Huffman coding straightforwardly as 

described in Chapter III. For adaptive Huffman coding, the 

UNIX utility pack was used. 
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We programmed the BSTW method using a linked-list as an 

auxiliary data structure, which can store a word (of letters 

or non-letters) of up to 100 characters in each.node in the 

list. We tested two sizes of lists that contain 255 and 127 

nodes, respectively. The number 255 is the maximum size of 

list that allows one ASCII character to be used as an end-of

word character, which has ASCII value 255. When the size of 

the list is 127, only 7 bits are needed to represent a 

position in the list. Instead of using an end-of-word 

character, the first bit can be used as a flag to denote 

whether the next character string is a word or a position 

number. Table 5 shows the results from the tests where the 

size of the lists are 255 and 127, and when the flag is used 

when the size is 127. 

For arithmetic coding, both fixed and adaptive implemen

tations, we used the program by Witten et al. [Witten et al. 

1987], and for the Ziv-Lempel method, we used the UNIX utility 

compress, which is an LZW implementation. 

Two other techniques which combine more than one method 

described above were also tested. Since the output from the 

BSTW method is byte-oriented, we also applied another method, 

static Huffman coding, that takes byte-oriented output from 

the BSTW method as input and compressed it further. 

In program source files, indentation for readability such 

as in nested loops takes up a lot of space. Since most of the 

test files we used are program source files we also tried a 

method that substitutes for consecutive blanks an illegal 
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character followed by the number of blanks, as described in 

Chapter I, before a compression method was applied. 

In testing the resynchronization model, in order to cal

culate the number of incorrect characters produced before the 

resynchronization from any random bit position, the encoded 

message was decoded starting from each bit to the next 

synchronization point. The synchronization points are the 

beginning bit positions of successive symbols in the encoded 

message, and were prestored by the compression routine in an 

external file. For instance, while the message "ABRACADEBRA" 

in example 6 is compressed, the starting bit positions o, 1, 

4, 7, 8, 11, 12, 16, 20, 23, 26 are stored externally so that 

the decoder can use them as a synchronization index. While 

decoding, the decoder keeps on checking whether or not the 

current first bit position is in the index list, while 

proceeding one bit at a time. If the current first bit is 

found in the list, that is a resynchronization point. 

Comparisons 

Results from tests of the compression methods mentioned 

above are shown in Tables 4, 5, 6, and 7. The first column 

in the table shows file names and the SIZE column gives the 

input file sizes in bytes. All other columns show the 

compression ratios when each method on the top row was applied 

to the files in the leftmost column. on the top row of the 

table, "S.H" denotes static Huffman coding, "A.H", adaptive 

Huffman coding, "BSTW (255)", the BSTW method with list size 
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255, "F.A", fixed arithmetic coding, "A.A", adaptive arith

metic coding and "Z.L", the Ziv-Lempel method. "B.H (255) 11 

means that the BSTW method with list size 255 was applied and 

then to the result of it, static Huffman coding was applied. 

The code table that needs to. be transferred from the 

encoder to the decoder in static Huffman coding is saved by 

the encoder externally, and therefore the size of the code 

table is not counted into the compression ratio results. The 

size of the code table is a constant, and when the file is big 

enough, its size is negligible compared to the file itself. 

As shown in Table 4, the Ziv-Lempel method shows a better 

compression ratio than any other single or composite method 

tested. As a single method, static Huffman coding performed 

the second best, but even the combination of the BSTW method 

and static Huffman did not do any better than the Ziv-Lempel 

method (and even with substituting for blanks, as we will see 

later in this chapter). The fact that the BSTW method 

[Bentley et al. 1986] was developed after the LZW implemen

tation [Welch, 1984] was, and that Ziv-Lempel still outper

forms BSTW, is rather surprising and justifies the rather 

contentious claims of Horspool [Horspool 1986] • The BSTW 

method suggests an interesting way of reflecting locality in 

data. And the fact that the encoded message is byte-oriented 

makes it somewhat easier to program than some other methods 

that result in bit-oriented encoded messages. But this method 

alone does not yield satisfactory results. 



FILE SIZE S.H 
NAME fBYTESl 

PAS1 92 42.4% 
PAS2 184 44.0% 
PAS3 640 45.2% 
PAS4 666 44.6% 
PASS 794 47.5% 
PAS6 1052 44.0% 
PAS7 34457 52.2% 
PASS 59003 54.7% 

C1 361 43.2% 
C2 3507 49.2% 
C3 4589 39.0% 
C4 7123 48.7% 
C5 12214 44.1% 
C6 12578 42.8% 
C7 13238 43.6% 
cs 13348 42.2% 
C9 13784 39.0% 
C10 33470 48.7% 
C11 47650 39.7% 

TXT1 13020 45.0% 

AVRG-RATIO 45.3% 

TABLE 4 

COMPRESSION RATIOS(%) 
(% REDUCTION) 

A.H BSTW F.A 
(255) 

N/A -40.2% 22.8% 
N/A -17.4% 25.5% 
34.8% 4.8% 28.9% 
35.1% 15.5% 26.0% 
39.9% 18.1% 32.3% 
37.4% 20.5% 26.5% 
51.9% 58.0% 38.8% 
54.5% 66.5% 39.8% 

N/A -10.0% 32.1% 
46.8% 27.7% 36.1% 
36.7% 15.1% 26.3% 
47.4% 39.0% 26.0% 
43.2% 32.0% 34.3% 
41.9% 27.3% 31.7% 
42.9% 50.7% 3.1% 
41.4% 42.3% 31.8% 
38.2% 41.8% 21.6% 
48.4% 44.1% 36.9% 
39.4% 31.9% 29.0% 

44.3% 11.3% 44.2% 

42.6% 32.2% 30.2% 
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A.A Z.L B.H 
(255) 

10.9% 2.2% 10.9% 
19.6% 18.5% 21.7% 
32.5% 35.2% 33.4% 
32.1% 38.6% 41.1% 
36.5% 45.3% 42.3% 
34.8% 41.4% 42.2% 
51.8% 71.8% 69.5% 
54.6% 75.2% 75.1% 

26.0% 29.6% 26.6% 
45.8% 59.7% 52.5% 
36.3% 46.5% 38.5% 
46.7% 62.8% 54.8% 
43.3% 57.3% 50.3% 
41.9% 59.2% 49.2% 
42.5% 64.4% 61.2% 
41.1% 61.4% 55.7% 
38.0% 60.1% 55.1% 
48.5% 67.2% 59.1% 
39.7% 60.7% 50.0% 

43.9% 48.8% 39.4% 

41.8% 56.2% 51.1% 

Witten et al. [1987] claims that the Ziv-Lempel method 

does not have great potential for compression unless raw speed 

is the main concern, but nothing is further from the truth. 

Arithmetic coding.performs about the same as static Huffman 

coding does, at best. When the fixed implementation of 

arithmetic coding was used, most of the files show compression 

ratio between 25% and 40%, but file C7 shows extremely poor 
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performance. The fact that file C7 contains many tab charac-

ters for indentation hurts its compression ratio because the 

probabilities used in this fixed model are based on the 

probabilities of English text files, which normally don't use 

many tab characters in proportion to the whole text. In the 

test of fixed arithmetic coding, the English text file TXT1 

showed the best performance, as would be expected. 

Table 5 shows the result from the BSTW method with two 
. 

diffe~ent sizes of buffers, 255 and 127, with and without a 

flag bit when the size of buffer is 127. The result shows 

that the larger buffer yields a better compression ratio 

unless the overhead is avoided by using a flag bit. 

Table 6 shows the result of substituting for consecutive 

blanks by a special character followed by the number of 

blanks, before applying each compression method. Slightly 

better compression ratios are achieved for most of the 

methods, comprared to the result from the tests without 

substituting for the blanks before the compression. This 

combining of methods did not produce enough improvement to 

make the extra time spent in compression worthwhile, and hence 

it is not recommended. 

Iterating Methods 

Static Huffman coding was iterated repeatedly for each 

file to see how much improvement it makes. When static 

Huffman coding was applied twice in a row, the compression 

ratio increased about 3% on the average compared to when the 
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file is compressed only once by static Huffman coding. When 

applied fOUr timeS 1 apprOXimately 4% Of COmpreSSiOn ratiO 

increase was seen on the average. More than four times of 

iteration did not improve the compression ratio. Iteration 

of static Huffman coding is judged not to be effective, and 

we do not recommend it. 

TABLE 5 

THE RESULTS FROM THE BSTW METHOD 
(% REDUCTION) 

FILE SIZE 255 127 127 
(BYTES) no-flag w/flag 

PAS1 92 -40.2% -40.2% -19.6% 
PAS2 184 -17.4% -17.4% 0.5% 
PAS3 640 4.8% 4.8% 17.3% 
PAS4 666 15.5% 15.5% 25.4% 
PASS 794 18.1% 18.1% 27.2% 
PAS6 1052 20.5% 20.7% 29.9% 
PAS7 34457 58.0% 49.7% 53.7% 
PASS 59003 66.5% 60.2% 62.1% 

C1 361 -10.0% -10.0% 3.1% 
C2 3507 27.7% 27.7% 33.1% 
C3 4589 15.1% 10.7% 19.5% 
C4 7123 39.0% 30.9% 37.2% 
cs 12214 32.0% 26.7% 33.7% 
C6 12578 27.3% 21.4% 28.0% 
C7 13238 50.7% 46.0% 50.3% 
C8 13348 42.3% 34.9% 40.3% 
C9 13784 41.8% 36.2% 41.2% 
C10 33470 44.1% 36.1% 41.7% 
C11 47650 31.9% 21.7% 28.8% 

TXT1 13020 11.3% 1. 3% 11.1% 

AVRG-RATIO 32.2% 27.2% 34.1% 



FILE SIZE 
(BYTES) 

PASl 92 
PAS2 184 
PAS3 640 
PAS4 666 
PASS 794 
PAS6 1052 
PAS7 34457 
PASS 59003 

Cl 361 
C2 3507 
C3 4589 
C4 7123 
cs 12214 
C6 12578 
C7 13238 
ca 13348 
C9 13784 
ClO 33470 
Cll 47650 

TXTl 13020 

TABLE 6 

THE RESULT FROM SUBSTITUTING BLANKS 
BEFORE COMPRESSION 

(% Reduction) 

S.H A.H BSTW F.A A.A 
(255\ 

40.2% N/A -40.2% 14.1% 9.8% 
39.7% N/A -16.3% 10.9% 17.4% 
43.4% 32.5% 8.6% 24.7% 31.9% 
42.5% 32.4% 16.7% 21.2% 30.8% 
46.4% 38.2% 23.4% 27.0% 36.0% 
42.7% N/A 22.4% 20.2% 34.0% 
54.8% 54.4% 63.9% 42.5% 54.5% 
57.8% 57.6% 71.2% 45.4% 57.9% 

44.9% N/A 2.22% 32.7% 29.9% 
53.6% 50.8% 44.7% 40.6% 50.3% 
38.3% 35.7% 18.6% 31.5% 35.7% 
53.1% 51.7% 44.9% 30.4% 51.3% 
47.0% 46.0% 39.3% 35.7% 45.9% 
44.6% 43.5% 40.4% 31.5% 43.7% 
43.2% 42.4% 51.2% 1.7% 42.1% 
42.0% 41.1% 46.5% 27.4% 41.1% 
37.7% 36.8% 43.1% 17.5% 36.6% 
52.9% 52.5% 50.9% 42.1% 52.7% 
39.9% 39.6% 37.3% 27.6% 39.9% 

44.3% 43.6% 11.4% 42.9% 43.1% 

• 
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Z.L B.H 
(255) 

1.1% 8.7% 
16.9% 20.7% 
35.8% 34.4% 
39.0% 41.3% 
46.0% 44.1% 
42.5% 42.5% 
72.0% 71.5% 
76.4% 76.8% 

31.0% 31.6% 
60.5% 57.8% 
46.5% 39.0% 
63.6% 57.4% 
58.0% 53.1% 
59.1% 53.7% 
64.5% 61.5% 
61.3% 57.5% 
60.1% 55.8% 
68.0% 61.8% 
60.7% 52.3% 

48.8% 39.4% 

AVRG-RATIO 46.1% 43.7% 37.3% 30.0% 42.8% 56.6% 52.9% 

NOTE : "*" mark in AVRG-RATIO for the adaptive 
Huffman means that not all seventeen files were 
involved in the calculation. The file Cl was not 
counted because the compression ratio was not 
available. 
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TABLE 7 

THE RESULT FROM ITERATING STATIC HUFFMAN METHOD 
(% REDUCTION) 

FILE SIZE S.H S.H S.H 
CBYTES) ONCE TWICE 4 TIMES 

PAS1 92 42.4% 
PAS2 1S4 44.0% 
PAS3 640 45.2% 50.5% 5S.3% 
PAS4 666 44.6% 50.0% 57.2% 
PASS 794 47.5% 52.2% 57.9% 
PAS6 1052 44.0% 47.2% 51.4% 
PAS7 34457 52.2% 54.5% 54.5% 
PASS 59003 54.7% 56.9% 57.1% 

C1 361 43.2% 
C2 3507 49.2% 52.8% 53.9% 
C3 45S9 39.0% 40.9% 41.7% 
C4 7123 4S.7% 52.9% 53.7% 
C5 12214 44.1% 46.0% 46.2% 
C6 1257S 42.S% 45.3% 45.6% 
C7 1323S 43.6% 46.2% 46.6% 
CS 1334S 42.2% 44.0% 44.1% 
C9 137S4 39.0% 40.5% 40.6% 
C10 33470 48.7% 51.0% 51.1% 
C11 47650 39.7% 41.2% 41.4% 

TXT1 13020 45.0% 45.9% 46.0% 

AVRG-RATIO 45.3% 4S.1% 49.8% 

Table S shows average execution time of each method when 

applied on the file PASS five times. A UNIX utility time was 

used for each set of seven methods to get the average execu-

tion time. compress and pack are the fastest methods and static 

Huffman coding is next to them. The BSTW method and arith

metic coding are both eight times or more slower than the 
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fastest methods. One should bear in mind that this implemen

tation of the BSTW method is not a production quality code (no 

one, including Bentley et al., has yet claimed to have 

produced such a production code) , and consequently the times 

for the BSTW method may be susceptible to great improvement. 

Similar excuses, however, cannot be made for the arithmetic 

compression routines. Arithmetic coding, at least as imple-

mented by Witten et al., appears to be inherently slow. 

TABLE 8 

EXECUTION TIMES ON FILE PASS 

Methods 

A.H 
Z.L 
S.H 
BSTW (127) 
F.A 
A.A 
BSTW (255) 

Execution Times 

4.4 Sec. 
4.9 Sec. 

12.2 Sec. 
35.5 Sec. 
36.9 Sec. 
42.0 Sec. 
46.0 Sec. 

Automatic Resynchronization in Static 

Huffman Codes 

One English text file (TXT1) was used to examine the 

automatic resynchronization in static Huffman decoding. The 

decoding process was iterated 5001 times (arbitrarily chosen 

large number) each such that bits 1, 2, ... , and 5001 were 

the starting positions for decoding, respectively. Figures 
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18 and 19 show the distribution of length of codewords and 

number of wrong characters produced, respectively. The 

histogram (frequency table) in Figure 19 is also plotted on 

a log scale in Figure 20. T:1e value 0 in the "# of wrong 

chars" column in Figure 19 means that the starting position 

happened to be a resynchronization position, and therefore no 

wrong characters were produced in these cases. 

code-length frequency 
Cin bits> 

1 0 
2 0 
3 3513 
4 5185 
5 1668 
6 1952 
7 606 
8 52 
9 83 
10 95 
11 63 
12 44 
13 10 
14 6 
15 0 

average code-length = 4.45 bits 

Figure 18. Histogram of code lengths after 
processing 5001 bits in TXT1 

For the file TXT1, the predicted average distance is 

(average code-length - 1 ) = 4.45 - 1.0 = 3.45, 
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and the actual average distance is 3.12, and this is about 

10% better than the prediction. The model obviously does not 

fit the situation exactly, but the agreement is good. 

All of the results from tests above will be summarized 

in Chapter VI. 

# of wrong characters 
(in bits) 

0 
1" 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

occurences 

1082 
948 
696 
579 
429 
347 
241 
163 
131 
105 
79 
55 
39 
31 
27 
14 
9 
7 
8 
5 
3 
2 
1 
0 

Figure 19. Histogram of No. of wrong chars 
in 5001 bits of file TXT1 
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Comparison to Previous Results 

We should compare some of our results to earlier pub

lished results. In order to do this, we will first summarize 

the results from the two published articles containing 

substantial compression results. 

BSTW [Bentley et al. 1986] compressed seven c language 

source files having sizes from 16282 bytes to 23225 bytes, 

five PASCAL files of sizes 8535 bytes to 31930 bytes, one 

terminal session of 142762 bytes, and eight book sections of 

sizes . 15104 to 22360 bytes. They found that compression 

improved as the list length N increased, flattening out around 

N = 32 to 256, depending on the file. For N = 256, they 

achieved compressions (using the definition used in this 

thesis) of about 55% for the terminal session, 57% to 74% for 

the source code file, 52% to 61% for the book sections. There 

was no consistent trend of greater compression for larger 

files or vice versa. An ordinary byte-oriented Huffman 

encoding achieved compression of about 33% to 43% for all 

files; a word-oriented Huffman scheme achieved about the same 

compression as did the BSTW (plus Huffman) method. 

Fiala and Greene [1989] compressed 1185 source files, 

134 technical memoranda files, five news service files, and 

a selection of object code, boot, font, and image files, using 

fourteen variants of several methods. They present some 

average compression values. Static Huffman compressed the 

source code files about 27% and the English language files 
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Dynamic Huffman performed slightly poorer. A 

basic Ziv-Lempel method achieved 49% and 54% on source and 

English, respectively. compre~ achieved 48% and 54%, BSTW

with-Huffman achieved 57% and 55%, a slow third-order Markov 

method by Cleary and Witten [1984b] achieved 63% and 66%, and 

a new Ziv-Lempel "windowing" variant by Fiala and Greene 

[1989] achieved 64% and 62%. 

Fiala and Greene [1989) also present graphs showing the 

dependence of compression on file length. Each method is 

shown as a smooth and usually monotonic curve. Byte Huffman 

gives approximately a flat curve and two-byte Huffman gives 

a falling curve (less compression for longer files). All 

other methods give dramatically rising compression for larger 

files. These curves are inconsistent with the results of BSTW 

[Bentley et al. 1986]. We suspect that the curves have been 

heavily smoothed. The authors give no explanation of their 

methods of plotting and/or smoothing the curves, of the great 

improvement of most compression on long files, or of the 

poorer performance of two-byte Huffman on long files, nor do 

they compare their results to those of BSTW [Bentley et al. 

1986]. 

The results from the tests in Bentley et al. [1986] show 

a little better compression ratio than the results from our 

test of BSTW-with-Huffman for similar sizes of files. Our 

results do not agree with the results from the tests of Fiala 

and Greene [1989] in many ways. It is interesting to see that 
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the results of the same UNIX utility compre~ in the two tests 

are rather different. Our results for comp~~ on source code 

files on the average show about 9% higher compression than 

theirs. And also their BSTW-wi th-Huffman performs better than 

compress with about 10% higher compression ratio, while our 

test shows that compress is a better method than BSTW-with-

Huffman. Table 9 shows comparisons of results from our test, 

BSTW's, and Fiala and Greene's. 

METHODS 

TABLE 9 

COMPARISONS OF RESULTS WITH OTHER TESTS 
(% REDUCTION) 

Static Huffman BSTW-Huffman 

TESTED BY CHOI BSTW F&G CHOI BSTW F&G 

Sources 45.3% 35.4% 26.8% 51.9% 66.7% 57.4% 

Enalish 45.0% 38.8% 41.0% 39.4% 55.1% 53.5% 

comvress 

CHOI F&G 

56.7% 47.9% 

48.8% 55.8% 

These results are not the same but are not definitely 

incompatible either. The difference could be due to different 

file content andjor due to the differences in lengths of the 

files used for the tests. Our tests show definite improvement 

of compression ratios for PASCAL source files as the size of 

files grow, when the BSTW-Huffman, or Ziv-Lempel was used, but 

there is less trend, if any, for the C files. This is not 

completely contradictory with Fiala and Greene but the 
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smoothness of their curve seems to have been greatly over

simplified. 



CHAPTER VI 

SUMMARY, CONCLUSIONS, AND SUGGESTIONS 

FOR FUTURE WORK 

The measures of performance used in this thesis were the 

compression ratio and execution time on the UNIX system. The 

Ziv-Lempel method outperforms any other single or composite 

method tested. The BSTW method followed by the static Huffman 

method performs the second best. 

Arithmetic coding does not show much strength and did 

not outperform static Huffman in the way claimed for this 

method [Witten et al. 1987]. As a single method, static 

Huffman showed the second best performance. 

The BSTW method yields better performance with the larger 

buffer, but if the buffer size has to be smaller than 127, 

setting one bit as a flag bit is advised. 

Substituting for consecutive blanks by a special charac

ter followed by the number of blanks before applying other 

compression method improved the compression ratios slightly, 

but probably not enough to make the effort worthwhile. 

Iterating static Huffman coding twice increased the 

compression ratios by about 3% on the average, and iterating 

four times showed a 4% increase compared to doing static 

Huffman coding just once, and after that iteration made almost 
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practical use. 
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This iteration is not recommended for 

The test of automatic resynchronization shows that the 

average distance from one point to the next resynchronization 

point in our model (D = d, where d is the average length of 

a codeword in bits) is a good prediction. 

For most practical text compression applications, we 

recommend the LZW method as implemented in the public domain 

UNIX utility compress. It is fast and, on the average, 

outperforms all other methods tested here. (The documentation 

of compre~ could use considerable improvement, however.) 

The recent work on text compression using Markov state 

models appears promising, and strong claims are being made 

for some of these methods [Bell and Moffat 1989). When 

efficient algorithms for these methods are developed, they 

should be tested and compared to the methods we have tested 

here. 
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