
~ COMPARISON OF METHODS FOR ,...,

TEXT COMPRESSION

By

SUNNY CHOI
tl

Bachelor of Science

Ewha Woman's University

Seoul, South Korea

1979

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1989

Oklahoma State Univ. Library

A COMPARISON OF METHODS FOR

TEXT COMPRESSION

Thesis Approved:

Dean of the Graduate College

ii

1350122

PREFACE

one of the purposes of this research was to introduce

several well-known text compression methods and to test them

in order to compare their performances, not only with each

other, but also with results from various previous researches.

Welch's implementation of the Ziv-Lempel method was found to

outperform any other single method introduced in this thesis,

or any combination of methods.

One other purpose of this research was to calculate the

average distance from any one bit to the next synchronization

point in static Huffman decoding, following a decoding error.

The average distance in words decoded was predicted to be the

average length of a codeword in bits, and tests on resynchron

ization showed that this was a good prediction.

Acknowledgements and thanks go to my thesis adviser

Professor K. M. George for his help, guidance, and patience

during the entire work. My thanks also go to Professor G. E.

Hedrick and Professor M. Samadzadeh for their thorough

checking and suggestions on the final draft. I wish to thank

Mr. Mark Vasoll and Mr. Roland stolfa for their help with

UNIX.

I am very thankful for the love and encouragement of my

family, and especially my husband John Chandler for his taking

iii

care of both his and my share of parenting of our son during

my final month of research, as well as his valuable sugges

tions and feedback at various stages throughout the work.

iv

Chapter

I.

TABLE OF CONTENTS

INTRODUCTION

Background on Coding and Data Compression
Problem Statement . . . • . •

Page

1

2
4

II. AN OVERVIEW OF TEXT COMPRESSION 6

III.

Classification of T~xt Compression Methods . . . 6
Fixed-Length and Variable-Length Compression 7
Static and Adaptive Text Compression • 10
Hybrid and Other Methods • . • 12

SELECTED TEXT COMPRESSION METHODS

Huffman Coding • . . • . • . • • • •
Static Huffman Coding . • . . .
Adaptive Huffman Coding . • . .

The Method of Bentley, Sleator, Tarjan
and Wei

Arithmetic Coding • . •
The Ziv-Lempel Method • •
Iterating and Combining Methods • • . • • .

13

13
13
17

28
33
37
44

IV. AUTOMATIC RESYCHRONIZATION IN STATIC HUFFMAN
CODES • • • • • • • • • • • • • • • • • • • 45

v. PERFORMANCE ANALYSIS AND COMPARISONS .

Choosing Test Data
Measure of Performance
Description of Methods
Comparisons • • • • . • • .
Iterating Methods
Automatic Resynchronization in

Static Huffman Codes • • . • . . •
Comparison to Previous Results .

VI. SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR FUTURE

52

52
52
54
56
59

63
67

WORK • 71

BIBLIOGRAPHY 73

v

Table

1.

2.

3.

4.

5.

6.

7.

8.

LIST OF TABLES

International Morse Code • • • . . •

A Probability Table for the Alphabet
{a, e, i, o, u} . •

Sample Frequency Table .

Compression Ratios (%) (% Reduction)

The Result from the BSTW Method
(% Reduction) .•••..

The Result from Substituting Blanks
Before Compression (% Reduction) .

The Result from Iterating Static Huffman
Method (% Reduction) • . • . •

Execution Times on File PASS .

9. Comparison of Results with Other Tests .

vi

Page

2

34

46

58

60

61

62

63

69

LIST OF FIGURES

Figure Page

1. A Block-Block Code for STRING . . • . . 8

2. A Variable-Variable Code for STRING • . 8

3. A Sample Frequency Table • • 14

4. Constructing Huffman Codes from the Table
in Figure 3 . • • . • • 15

5. Initial Empty Huffman Tree and Codewords 18

6. Huffman Tree and Codewords After the
First Input "C" • • • 19

7. Huffman Tree and Codewords After the
Second Input "B" • • . • • • • 20

8. Constructing Different Huffman Codes from
the Same Zero-Frequency Table • • 23

9. Initial Huffman Trees Corresponding to Tables
in Figure 8 24

10. Numbering a Huffman Tree Constructed from the
Table in Figure 3 • . • • • • 26

11.

12.

13.

14.

Updating Procedure in Algorithm V

Static Arithmetic Codings for the message
II ' 'I II ea11.

LZW (Lempel-Ziv-Welch) Compression Algorithm

Compressing a Source Message by the LZW
Algorithm

15. Generating LZW String Table ..

16. Decompression by "Reversed Compression" .

17. LZW Decompression Algorithm .•.•...

vii

. 27

. 35

• 38

• • • • 4 0

• • . 41

• • • 4 2

• 43

18. Histogram of Code Lengths After Processing
5001 bits in TXTl . . . • . • • 64

19. Histogram of No. of Wrong Characters in 5001
bits of file TXT1 • . • 65

20. Semilog Plot of Resynchronization Frequencies ... 66

viii

CHAPTER I

INTRODUCTION

Two areas of computational theory that deal with repre

sentation of information are coding theory and information theory.

Coding theory deals with reliability in transmitting

information, and information theory deals with efficiency in

transmitting information.

Data compression is a topic that is involved in both areas

and deals with both reliability and efficiency in transmitting

information. In general, there are two categories in data

compression, lossy data compression and lossless data compression [Storer

1988]. In lossy data compression, the physical size of the

data is reduced while preserving only the relevant information

in the data. Irrelevant data such as leading blanks or

trailing zeros in a business file are deleted. Recovering all

of the data is not expected in lossy data compression and so

it is also called in-eversible data compression [Lynch 1985]. Image

compression and analog data compression are other well-known

examples in this category.

On the other hand, in lossless data compression, pre

serving information so as to recover the data exactly in the

original form is as important as reducing the physical size

1

2

of the data. Lossless data compression is also called

reversible data compression 1 text compression, or database compression [Rub in

1976]. This thesis concentrates on lossless data compression,

which will be referred to hereafter as text compression or

simply data compression.

Background on Coding and Data Compression

Lossless coding occurs in many contexts. One well-known

case is the Morse code introduced for telegraphic

communication by Samuel F. B. Morse in 1838 [Encyclopaedia

Britannica 1988]. Morse code is a trinary number system that

has symbols " ·" 1 "-", and a space. The International Morse

code [Reingold and Hansen 1983] is shown in Table 1.

TABLE 1

INTERNATIONAL MORSE CODE

A N
B 0
c p ·- -·
D Q - -·-
E 0 R
F s
G T
H u
I v
J w
K X
L y -·--
M z - -·.

3

In the international Morse code, the higher frequency letters

are represented by the shorter and simpler sequences of

symbols. For example, 11 e 11 and 11 t 11 are represented by a single

11 • 11 and a single 11- 11 , respectively. This shortens the

transmission time. The 11- 11 is read as 11 dah 11 , and 11 ." as

"dit". When the code is transmitted by sound signals, the

dahs are three times the length of the dit symbols, letters

are separated by a space that is as long as a dit, and words

are separated by a space that is as long as a dah.

The Hamming codes were developed by Hamming in 19 50

(Hamming 1950) to detect and correct some level of errors.

This is still a popular method for error detection and correc

tion today. Many codes for error detection and error correc

tion have been introduced since then (Ingels 1971].

Codes are also used for cryptographic purposes, where

the object is to conceal information (Kahn 1967]. In this

area, simple substitutions of code words for text symbols may

be combined or permuted during the encoding, or the code

alphabet is changed in a secret way after each symbol has been

encoded.

In this thesis, we are interested in lossless coding for

the purpose of text compression. Security will not be a

consideration, althogh a text file could be encoded crypto

graphically for security either before or after it is comp

ressed. Similarly, error detection and/or correction is not

4

addressed in this thesis, but a compressed file could be

encoded for error detection after compression.

Some text compression methods are more suitable for use

on specific cases than other methods, but we will concentrate

on text compression in general, where there is no known

specific format in the text.

Problem Statement

Text compression is a process that encodes a certain

volume of data into a smaller volume in such a way that the

information is . preserved and can be fully recovered in

original form by decoding [Ingels 1971]. Application of text

compression is particularly important in a network environment

and in any system that processes large volumes of ·data.

Transmitting compressed data will take less time than

transmitting uncompressed data, and compressed data take less

space to store in a memory. In this thesis, the best method

is usually the method that produces the shortest compressed

file, although speed of compression is sometimes a

consideration.

The literature on text compression includes some very

simple ad hoc methods. For example, a string of 37 consecu

tive blanks may be replaced by "#37", where "#" is some

reserved or:- "illegal" symbol guaranteed not to occur in the

_source text [Ruth and Kreutzer 1972]. This method and similar

ones can save much space in computer source language files by

removing leading and trailing blanks.

5

(Trailing blanks are

not stored in most microcomputer files, but are stored, for

example, in all FORTRAN source files in IBM mainframe

computers.) Such methods do not fit into the modern

literature on text compression, however, and will not be

discussed further here, but the blank substitution method

described above will be tested in combination with other

methods in Chapter v.

In this thesis, we introduce some of the more well-known

text compression methods and compare them, and try to select

the best method in general. Background information on text

compression and the classification of text compression methods

are discussed in Chapter II. Existing text compression

methods and algorithms, their implementation, and data

structures used are discussed in Chapter III. In Chapter IV,

the automatic self-synchronization in static Huffman decoding

is discussed and the average distance from one point to the

next resynchronization point is calculated. Chapter v

contains results from tests of algorithms discussed in Chapter

III and of combined methods. Chapter VI summarizes all of the

results from tests and discusses future work in the area of

text compression.

CHAPTER II

AN OVERVIEW OF TEXT COMPRESSION

Classification of Text Compression Methods

A code is a mapping of words from the source alphabet

into sequences of the code alphabet. The words from the

source alphabet comprise the source messages, and the sequences

from the code alphabet are called codewords. A source message

is encoded if it is mapped into a codeword, and the codeword is

decoded when it is reverse-mapped into the original source

message to recover the information. A sequence of messages

is called a message ensemble. This notation is used by Lelewer

and Hirschberg [1987] and some other authors, and is a very

general notation because a "message" may be either a symbol

or a string. Other authors would use "symbol" in place of

"message" and "text" or "message" in place of "message

ensemble". We will sometimes refer to "symbols" in the case

of methods that are not string-oriented.

The source ensemble STRING in Example 1 below has source

alphabet {a, b, c, d, e, f, space}. We will use binary numbers

for encoded messages throughout the thesis; thus the code

alphabet is {0, 1}.

6

7

Example 1:

STRING = "aa bbb ecce ddddd eeeeee fffffff" (1)

STRING will be used later in this chapter to demonstrate

different classifications.

It is not always clear how to classify codes, but in

general, codes can be categorized by the lengths of the source

messages and codewords, or by the duration of the codewords

(i.e., by whether a codeword for a message changes) [Lelewer

and Hirschberg 1987]. The classification by the lengths of

messages or codewords divides codings into fixed-length and

variable-length coding, and the classification by duration of

codewords divides codings into static and adaptive coding

[Lelewer and Hirschberg 1987]. Since our purpose of coding

in this thesis is to decrease the physical volume of the

message, or to compress the message the two words codmg and

compression (method) will be used interchangeably.

Fixed-Length and Variable-Length Compression

Either a source message or a codeword, or both, may be

of fixed length. On the other hand, both a source message

and a codeword may be of variable length. Compression methods

can be categorized as block-block, block-variable, variable

block, or variable-variable methods [Lelewer and Hirschberg

1987], where a block-block method is a mapping from a fixed

length message into fixed-length codewords, and a variable

block method is a mapping from a variable-length message into

8

fixed-length codewords, etc. Figure 1 is an example of block

block coding for the message ensemble STRING in (1) and Figure

2 is an example of variable-variable coding.

Source Message

a
b
c
d
e
f

space

Codeword

000
001
010
011
100
101
110

Figure 1. A Block-Block Code for STRING

Source Message

a a
bbb
ecce
ddddd
eeeeee
fffffff
space

Codeword

00
010
11
100
1010
10111
10110

Figure 2. A Variable-Variable Code for STRING

Encoding a source message of fixed length requires a

simple parsing method, and usually one symbol is processed at

a time. A source message of variable length requires a more

complicated parsing method to separate messages out of the

message ensemble. Also, decoding a codeword of fixed length

does not require special parsing techniques, but decoding a

9

codeword of variable length usually does. For example, to

encode a source ensemble STRING using the table in Figure 1

as a code table, one symbol should be parsed at a time to

produce the encoded message

11 000,000,111,001,001,001,111,010, ••• ,101"

{"," is not part of the message, but is used for readability.)

Decoding the message is just as simple: Since the length of

each codeword is 3, take 3 bits at a time and map them into

the source alphabet. If the table in Figure 2 is to be used

as a code table for encoding and decoding the message ensemble

STRING in {1), the situation is very different. The encoder

and the decoder have to "know" where each word and each

codeword ends, respectively.

In general, if other factors are the same, block-block

codes are the simplest to implement and variable-variable

codes are the most complicated to implement in terms of

parsing, and parsing makes up a big part of encode/decode

algorithm complexity. At the same time, the variable length

codes generally are more efficient than fixed length codes

[Lelewer et al. 1987]. When STRING in {1) is encoded, the

size of the compressed message using the table in Figure 1 is

96 {= 32 words of 3 bits each) bits, and the size when using

the table in Figure 2 is 44 bits. If each symbol in STRING

is 8 bits as is usually the case with EBCDIC or ASCII symbols,

the size of STRING is 256 {32 words of 8 bits each) bits. The

compression ratio (which will be defined precisely in Chapter

V) achieved using the table in Figure 1 is

10

(256 - 96) I 256 X 100% = 62.5 %,

and the compression ratio achieved using the table in Figure

2 is

(256 - 44) I 256 X 100% = 84.1 %.

In general, the better compression method yields the higher

compression ratio.

static and Adaptive Text compression

In order to encode a message ensemble, the encoder has

to know the codeword into which each message is mapped.

Codewords can be decided at once, perhaps after the whole

message ensemble is seen at the beginning of the encoding

stage, and remain the same through the encoding process. This

is called a static method. Usually, static methods take two

passes over a message ensemble; once to get the probabilities

of the messages in order to determine a codeword for each

message, and a second time to replace each message with the

corresponding codeword [Huffman 1952]. (The alternative,

which is sometimes used, is to use a fixed set of codewords

chosen ahead of time, based on assumed frequencies of the

messages [Witten et al. 1987].) The shorter codewords are

assigned to the words with higher probabilities. Since the

codeword should be known to the decoder, usually the codetable

is sent to the decoder. Static Huffman coding is a good

example of this method.

In an adaptive method, only one-pass parsing is required

in general, and codewords are "learned" while encoding

11

[Lelewer and Hirschberg 1987]. This is very useful especially

in a network environment where the end of a message ensemble

is not pre~ictable. A codeword for each message changes from

one point· to another in the encoding stage. Usually an

adaptive coding involves at least one data structure that

changes continually to accomodate the changes in the source

ensemble. For example, in dynamic Huffman coding [Knuth

1985], a Huffman tree (a binary tree that is built from the

probabilities of symbols) is updated continually, and in the

BSTW method [Bentley et at. 1986], an auxiliary list that

contains the words used recently, with the most recently used

word at the front of the list, is updated continually. Since

the codewords are changed by the source message, the codeword

table need not be sent to the decoder. Instead, the same

changing data structure that was constructed by the encoder

is constructed while decoding [Bentley et al. 1986; Gallager

1978].

In general, a static compression method is simpler and

easier to implement but not as efficient. It could even be

impractical because of the two-pass nature of the parsing.

A dynamic compression method is more complicated to implement,

but takes only one pass and usually is more efficient. Static

methods pursue the best interests for the message ensemble as

a whole, and therefore the local characteristics of the text

are usually ignored. Adaptive compression methods respond

naturally to local variations in the text, and as a result may

12

actually be more efficient than the corresponding static

methods.

Hybrid and Other Methods

Between different methods within a classification, it

may not always be easy to tell to which category a compression

method belongs. For example, a compression method might block

a message ensemble and compress each block using a static

method. If this method constructs a new probability table for

each block, it is an adaptive method by block, but it is also

a static method within each block. A case like this is hard

to categorize. Also, if after one method compresses a message

ensemble, another method is used to compress the text further,

this combined method is not sui table to be classified as

belonging either to the first compression method used for

compression or the second. Hybrid and other methods include

cases that are hard to categ.orize as just one method [Lelewer

and Hirschberg 1987].

CHAPTER III

SELECTED TEXT COMPRESSION METHODS

Huffman Coding

Static Huffman Coding

The static Huffman method [Huffman 1952] is a block-block

method that constructs minimum redundancy codes by assigning

shorter codewords to the more frequent symbols in the text.

The encoding process involves two parts: building a probabili

ty table and assigning a codeword to each letter, and the

actual encoding.

First, the source text is scanned to get the frequencies

of the symbols. The symbols are sorted by their probabilities

into non-increasing order. From the sorted list, the two

smallest probabilities are taken to build a binary tree in

such a way that the two elements are children of a new node

whose weight is the sum of the weights of its children. This

new weight is inserted into the ordered 1 ist and the two

smallest elements that have just been combined are deleted.

This process is repeated until there is only one element left

in the list. At that point there is one merged binary tree

·and it contains all of the symbols at the leaf level.

13

14

For any internal node of the completed binary tree, the

left child is assigned a bit 'O' and the right child a bit

'1'. A codeword for any particular symbol is a concatenation

of code bits along the path from the root to the leaf node

that contains the symbol [Standish 1980).

Figures 3 and 4 show this procedure with an example. In

Figure 1, symbols a1, a2, a3, a4 and a5 occurred 62, 52, 42,

24 and 20 times respectively in the text. The probabilities

0.31, 0.26, 0.21, 0.12, and 0.10 are the relative frequencies

62/200, 52/200, 42/200, 24/200, and 20/200, respectively. The

two smallest probabilities, 0.10 and 0.12, are combined to

form 0.22. The probabilities 0.10 and 0.12 are deleted from

the list while the probabilities 0.22 is added. The list of

probabilities is maintained as an ordered list. The two

smallest probabilities, 0.21 and 0.22 in the new list, are now

combined. This process is continued until there is only one

element (1.0) in the list.

symbol

a1
a2
a3
a4
as

total

sorted
freg.

62
52
42
24
20

200

prob.

0.31 0.31:!0.43 . p0.57J---?>1.0
0.26 0.26 0.31~ 0.43
0.21_ r0.22 0.26
0.12]--1 0.21
0.10

1. 00

Figure 3. A Sample Frequency Table

15

Figure 4 is a Huffman tree constructed from the table in

Figure 3. The second time the source text is scanned, each

symbol is simply replaced by its codeword.

1.0

y~
0.43 0.57

i'\ i \
0.21 0.22 0.26 0.31

a3 Y'\ a2 a1

0.10 0.12
a5 a4

codewords: a1 - 11, a2 = 10, a3 - 00,
a4 - 011, a5 = 010

Figure 4. Constructing Huffman Codes from
the Table in Figure 3

In order to decode a message, the tree is constructed

from the probability table in exactly the same manner as the

encoder constructed it. The table can be passed on to a

decoder externally or with the encoded message.

The static Huffman method guarantees to build minimum

redundancy prefix codes [Huffman 1952; Lelewer and Hirschberg

1987]. (When the code for one symbol cannot be a proper

prefix of the code for another symbol, the codes are called

prefix codes.)

16

However, this does not guarantee that a

Huffman code will produce an encoded message of minimum

length. The Huffman method assumes that the probability of

each letter is constant and independent of every other letter,

and does not depend on the previous letter or sequence of

letters. In English text, if a letter "q" is seen, the letter

"u" is expected next, and after a letter "j", it is very

unlikely that a consonant will occur. These correlations

imply that the Huffman assumption is usually unrealistic.

Also, the Huffman method separates the encoded bits for each

symbol, a limitation that is overcome by the arithmetic coding

method,

simple

as will be seen later.

and easy to implement

But the Huffman scheme is

and it gives considerable

compression in many cases as will be seen in our experiments

in Chapter v.
One other very strong argument for choosing static

Huffman coding could be the well-known automatic resynchroniz

ation in case of error [Lelewer and Hirschberg 1987]. That

is, if for some reason such as a noisy channel, a bit in an

encoded message gets altered or lost and therefore the decoder

gets out of synchronization, it usually does not take too long

to become resynchronized. There has been some work in this

area, mostly using deterministic analysis [Gilbert and Moore

1959; Rudner 1971] rather than stochastic models. The average

length from any one bit to the next resynchronization point

is discussed later (Chapter IV), and experiments on some test

17

cases are shown in Chapter V.

Adaptive Huffman Coding

Static Huffman coding is very simple to implement and

offers optimum prefix codes. However, it takes two passes to

compress a message. In a situation such as a network environ

ment, making two passes might be impossible. Adaptive Huffman

coding enables a user to start encoding without waiting for

the end of the message to come in order to get the probabili

ties of the symbols. Another motivation for this method is

when the message is known to have blocks of different charac

teristics, so that the overall probabilities are not very

meaningful for the individual sections of the message. A

source program with big blocks of comments is a good example

to show this point. The overall probabilities of the source

message will be quite different from the probabilities of the

comment parts or the probabilities of the program parts. An

adaptive Huffman code "learns" the changes in the probabilit

ies while encoding or decoding, and may remain nearly optimal

for the current estimates.

One way to accomplish some adaptivity is to break the

source into fixed-size data blocks and apply the static

Huffman method to each block; after blocking, the symbols are

counted and sorted to build a Huffman tree, and the second

time the block is scanned, symbols are encoded [Welch 1984].

Details such as multiple buffers to hold continuously incoming

data have to be worked out carefully. This "batched static

18

Huffman" approach is acceptable if a high transmission rate

is not too important and if the data blocks are very large

relative to the size of the translation table [Welch 1984].

But this is not what is usually meant by an adaptive Huffman

code.

The basic idea in fully adaptive Huffman coding is to

encode the k-th message using the Huffman tree constructed

from the frequencies found in messages 1, 2, •.• , k-1. (When

k = 1, we start from a balanced, minimum height tree.)

Figures 5, 6 and 7 show the basic idea of constructing adap-

tive Huffman codes for a sample message ensemble "CBA", where

alphabet is {A, B, C, D, E, F, G, H}.

codewords

:J 0 A 000

0 B 001

c 010

D 011

0
E 100

F 101

Go G 110

H H 111

Figure 5. Initial empty Huffman tree
and codewords

19

Every codeword for an 8-bit symbol set is of length a

bits in the initial empty (zero-frequency) tree in Figure 5.

The message "C" is encoded using one of these codewords. Then

the frequency for the message "C" becomes 1, and the Huffman

tree becomes the tree in Figure 6. So the codeword for the

first symbol in the message ensemble "C" becomes "0", a one-

bit codeword. As successive messages are found and encoded,

their codewords likewise become short (and the codeword for

"C" becomes longer!). Figure 7 shows the change in the tree

after the second input symbol "B" is entered.

c 0 codeword for c 0

codewords for the rest

A
0 A 1000

B 0 B 1001

D D 1010

E E 1011

0

:~
F 1100

G 1101

H l H 111

Figure 6. Huffman Tree and Codewords After the
first input "C" and codewords

c 0 0 codeword for c 00

B codeword for B 01

codewords for the rest

0
A 0 A 1000

D 0 D 1001

0
E E 1010

F F 1011

G
0 G 110

H H 111

Figure 7. Huffman Tree and Codewords After the
Second Input "B"

20

If this were done without modification, however, the

method would become less and less rapid to adapt as k become

very large, because the last 50 messages, for example, would

be a smaller and smaller fraction of the total. Hence the

goal is modified as follows: use the frequencies from some

"recent" subset of messages. This could be done using a

queue, but this would be very slow. So the adaptive al-

gorithms instead multiply each cumulative frequency by a fixed

positive constant c, c < 1, after every N-th message [Gallager

1978]. Except for this multiplication, a frequency is incre-

mented by 1 each time the corresponding message occurs. The

multiplication by c causes the algorithm to "forget" ancient

21

history; it is very similar to an exponential smoothing filter

[Brown 1963]. The value of M = N 1 (1- c) provides a measure

of how well the system adapts to changes in the message. In

general, as the value of M increases, the "memory" will go

back further. If the value of M is too small, the codes will

change too fast and the algorithm only "remembers" a very few

recent symbols [Gallager 1978]. On the other hand, if the

value of M is too large, the change is too slow and the system

does not adapt to changes in the message rapidly enough. For

easy m'\J.ltiplication in programming, c = 2-k (usually, c = 0.5)

should be a good choice, since a simple shift operation can

replace the multiplication.

Just as in the static Huffman coding, it is assumed that

the probability of each letter is independent of every other,

and does not depend on the previous letter or sequence of

letters. Even though there is no concern for correlations

between symbols, this method responds to locality of the

source message, because the codes are changing while the

encoder or the decoder is "learning" the environment. After

each input symbol, the cumulative frequencies up to the

current point are used to encode or decode the next symbol

[Gallager 1978].

A simple implementation of this "learning" concept can

be effected by building a Huffman tree after each input, based

on the cumulative frequencies up to the current point. The

initial frequency table contains all frequencies equal to zero

22

before any symbol is entered from a message ensemble, and the

initial Huffman tree is built based on this table. Since the

initial table contains all zeros for frequencies, sorting is

not necessary. Furthermore, the new position to insert the

sum of the two smallest frequencies can be anywhere in the

list, since the sum of the two frequencies is also zero. As

an example consider the following message:

"a b b b b c" (containing n copies of b)

where a < b < c. There are n+l places where a new copy of b

could be inserted while preserving the order. The shape of

the initial tree depends on how the new position is deter-

. mined, and the shape affects the height of the tree. Trees

in Figure 8 and 9 show the two different possible initial

trees based on the same zero-frequency table for alphabet the

{A, B, c, D} in order. Tree (a) in Figure 9 is built by

inserting the new frequencies at the top of the (sorted) list

as shown in table (a) in Figure 8, and tree (b) in Figure 9

is built by inserting them at the end of the list as shown in

table (b) in Figure 8.

The maximum length of a codeword in tree (a) in Figure

9 is 2, and the maximum length in tree (b) is 3 when the size

of alphabet is 4. We can imagine what kind of difference it

would make in constructing a Huffman tree for the ASCII symbol

set (expressed in eight-bit bytes), where the size of the

alphabet is 256.

symbol
A
B
c
D

freg.

iJb-_j~~
table (a)

freg.

0

symbol
A
B ~ ~~-~~ ~~--~> 0

~] -~)0--' c
D

table (b)

Figure 8. Constructing Different Huffman Codes
From the Same Zero-Frequency Table

23

When the size of the alphabet is 256, a tree (a)-like

construction will produce a perfectly balanced binary tree

with the maximum length of a codeword equal to log2256 = 8,

and a tree (b)- like construction will produce a maximum

length codeword of length 256.

One simple way of keeping the height of the tree as short

as possible is to start with frequencies that are ones instead

of zeros. Then the Huffman tree built from this table

automatically will be a balanced binary tree that contains all

of the ASCII symbols with weight 1 at the leaf level.

After the initial tree is built in this implementation,

the table is updated after each message, and the tree is

rebuilt based on the current table. If one chooses to bias

24

the frequency by 1, it can be easily seen that the increment

for the frequency corresponding to the current symbol should

be at least as large as the size of the alphabet (256, for

example, in an eight-bit ASCII symbol set) instead of 1, in

order to keep the output of the algorithm the same as the

output from the algorithm based on the true frequencies of

the symbols. This brute force method of repeatedly rebuild-

ing the entire tree is very expensive and not very practical,

but it leads us to the next implementation.

/0""' /0~
0 0 0 0

/\ 1\ /\ A

0 0 0 0 0 0
D c B A 1\ B

0 0
D c

tree (a) tree (b)

Figure 9. Initial Huffman Trees Corresponding to
Tables in Figure 8

A method of implementing adaptive Huffman coding effi

ciently was proposed by Faller [1973] and Gallager [1978]

independently, and improved by Knuth [1985], and recently by

25

Vitter [1987; 1989]. The adaptive version of Huffman's

algorithm implemented by Faller, Gallager, and Knuth is called

the FGK algorithm for short. In the FGK algorithm, the tree

is continually updated (not rebuilt from scratch as in the

brute force method) using only the minimum possible number of

pointer exchanges. Unlike the static Huffman or the batched

static Huffman implementation, the probability table need not

be transmitted, because the encoder and the decoder are

synchronized every step of the way.

The FGK algorithm involves two parts: updating the

probability table and updating the Huffman tree. Updating

the table is very simple. Updating a tree in the FGK al-

gorithm is simplified and improved by Vitter in Algorithm V

[Vitter 1987], by reducing the number of pointer exchanges

and by minimizing the height of the tree, even though the

complexity of the algorithm is the same (the time required

for each encoding and decoding operation on one symbol in both

implementations is 0 (l) , where l is the current length of the

codeword for the symbol).

The data structure used in Algorithm v is called a flom-

ing tree, a tree whose pointers are not maintained explicitly.

Instead of keeping an explicit tree, this algorithm uses an

explicit numbering that corresponds to the physical storage

locations used to keep information about the nodes, in order

to maintain the Huffman tree without reconstructing the whole

tree. (A similar method of storing a tree is used in the

26

well-known Heapsort algorithm [Reingold and Hansen 1983].)

If the nodes in Figure 4 are numbered explicitly by their

physical storage locations as Algorithm V would do, they will

be labeled as in Figure 10.

1.0

/~
0.43 0.57

I \3 I \6
0.21 0.22 0.26 0.31

a3

I\~ a2

a1

0.10 0.12
as a4

Figure 10. Numbering a Huffman Tree
Constructed from the
Table in Figure 3

Figure 11 is the updating subroutine of Algorithm V

[1987] , when the (t+1) st symbol· in the message is processed.

The full implementation is found in ·the more recent paper

[Vitter 1989]. There is a special node called the o-node in

this algorithm, which represents all of the symbols whose

weight is zero, or in other words the symbols that have never

occurred so far. Initially the tree contains only one o-node.

The line starting with "####" is not in the simplified version

27

of Algorithm V [Vitter 1987] but needs to be added in order

to update the weights of the nodes involved along the path.

procedure Update;

{The alphabet contains a(l), a(2), ... , and a(n).
The input being encoded is a~) and it is (t+1)st a(i)
entered so far.
There are n-k unused symbols in the 0-node.

}

begin
q : = leaf node corresponding to a(i)t+t;
if (q is the 0-node) and (k < n - 1) then

begin
Replace q by a parent 0-node with two leaf 0-

node children, numbered in the order left
child, right child, parent;

q := right child just created;
end;

if q is the sibling of a o-node then
begin

Interchange q with the highest numbered leaf of
the same weight;

Increment q's weight by 1;
q := parent of q;

end; ·

while q is not the root of the Huffman tree do
begin {main loop}

Interchange q with the highest numbered node
of the same weight;

{q is now the heighest numbered node of the same
weight}

Increment q's weight by 1;
q := parent of q;

end;

Increment q's weight by 1;

end;

Figure 11. Updating procedure in Algorithm V [Vitter 1987)

28

Vitter proved that the length of the message encoded by

Algorithm V will exceed the length of the output from the

static Huffman method by at most one bit per codeword [Vitter

1987]. Often, the length will actually be less, due to the

adaptation.

The Bentley, Sleator, Tarjart and Wei (BSTW) Method

This is an adaptive method in which locality, or the cor

relations between symbols, is taken into account. In this

algorithm, a word is processed as an entity rather than

processing characters individually, and a codeword is an

integer denoting the position of the word in a self-organiz

ing list. Frequently-used words are near the front of the

sequential list, in order to have shorter integer encodings

[Bentley et al. 1986; Hester and Hirschberg 1985]. As in all

adaptive methods, the encoder and the decoder construct lists

that are the same at corresponding points in the message.

Initially, the list (of size N) is empty (N = 0). The

encoder looks for the words in the list before transmitting

each word. If a word exists at position P in the list, the

value of the integer P is transmitted, and the word moves to

the front of the list. If the word does not exist in the

list, the integer N+1 is transmitted followed by the word

itself, and the word is inserted at the front of the list.

If the list is already full when an insertion needs to take

place, the most aged element, which is located at the rear of

the list, should be deleted first.

29

The decoder receives an integer P and replaces it with

the word in the P-th position in the list, if it exists.

Again, the word moves to the front of the list. If there is

no word in the P-th position, the decoder accepts a new word

and inserts it at the front of the list. Just as in encoding,

the least recently used element at the rear of the list is

deleted before the insertion, if the list is already full.

The source text in Example 3 is taken from Bentley,

Sleator, Tarjan and Wei's original article [Bentley et al.

1986]. This example shows how the list is updated while

encoding proceeds.

Example 3:

source ensemble "THE CAR ON THE LEFT HIT THE CAR I LEFT"

msg lTHE
list THE

msg lTHE 2CAR
list CAR THE

msg lTHE 2CAR 30N
list ON CAR THE

msg lTHE 2CAR 30N 3
list THE ON CAR

msg lTHE 2CAR 30N3 4LEFT
list LEFT THE ON CAR

msg lTHE 2CAR 30N 3 4LEFT SHIT
list HIT LEFT THE ON CAR

msg lTHE 2CAR 30N 3 4LEFT SHIT 3
list THE HIT LEFT ON CAR

msg lTHE 2CAR 30N 3 4LEFT SHIT 3 s
list CAR THE HIT LEFT ON

msg lTHE 2CAR 30N 3 4LEFT SHIT.3 5 6I
list I CAR THE HIT LEFT ON

msg
list

lTHE 2CAR 30N 3 4LEFT SHIT 3 5 6I 5
LEFT I CAR THE HIT ON

30

The decoder should build the list in exactly the same way, in

order to decode the message.

Since this algorithm works with one word at a time, the

message ensemble has to be grouped into words so that a

processor knows where each word ends. The character domain

is grouped into two disjoint sets first, letters and non-

letters. A message is an alternating sequence of words that

consist only of letters and words that consist only of non-

letters.

It is up to the user to determine what are letters and

non-letters, and they should be chosen using criteria appro-

priate to the application. In English text, it may be a good

choice to set all of the ordinary letters and numbers as

"letters" and all other characters as non-letters. But if a

message contains many special characters combined with

alphabetic characters to form certain names, and if they are

used repeatedly, for example, care should be taken in order

not to break up one name into several pieces. Breaking a name

not only fills up the list unnecessarily, but also increase

the length of the encoded message.

For example, if a message contains some often-repeated

hyphenated words, it might be best to declare the hyphen to

be a "letter", so that the hyphenated words, rather than just

their individual components, are considered as "words" in the

encoding. Similarly, in encoding a PASCAL program containing

-

31

many references to array elements LIST[J], square brackets

should perhaps be declared to be letters. Having to know the

characteristics of the source ensemble for the best result may

be the weakest part of this algorithm.

A self-organizing list is used in the BSTW method. It

involves three basic operations: insertion, deletion, and

searching. A move-to-front operation which moves the most

recently used element to the front of the list is just a

deletion followed by an insertion. A linked list was used in

this work to simplify the implementation, whereas Bentley et

al. discussed using an interlinked binary tree and a binary

trie [Knuth 1973]. Neither Bentley et al., nor anyone else,

however, has produced a production code for this algorithm

using these data structures, according to the published

literature [Bentley et al. 1986].

Insertions and deletions will not differ between the two

implementations, but the searching would be a lot faster with

a trie structure, at the cost of complicating the list

updating [Bentley et al. 1986]. Either way, each node in the

list must be large enough to hold the longest word. For a

defense against a possible overflow (a word longer than the

maximum word length allowed a priori) , it would be a good idea

to have encoding start all over from the beginning with an

empty list from the overflow point, if overflow ever does

occur.

Encoded messages consist of numerical position numbers,

letter strings, and non-letter strings. Since a decoder has

32

to know where each string ends, a one-byte character was used

to denote end-of-word in a test program. But if the algorithm

were to be used only on the seven-bit ASCII character domain,

the highest bit of each eight-bit byte could be set as a flag

to indicate either an end-of-letter (or non-letter) string or

a decimal position number, since 7 bits are enough to repre

sent all ASCII characters.

Because the output from the BSTW encoding is still in

byte-oriented character form, it is possible to use another

compression technique that takes byte form as input, such as

Huffman coding, after the BSTW method has been applied, in

order to compress the message further. In published tests

[Bentley et al. 1986], the BSTW method has not been imple

mented in the basic form described above. Instead, the output

from the BSTW method has been further compressed. For

example, Bentley et al. themselves wrote [Bentley et al.

1986], "For ease of implementing the prototype, we encoded

the position in the list by a Huffman code, which implies that

an implementation would have to make two passes over the

data." Similarly, Fiala and Greene wrote, "Since the

empirical results in (BSTW] do not actually give an encoding

for the positions of words in the list or for the characters

in new words that are output, we have taken the liberty of

using the V compressor (Vitter's adaptive-Huffman algorithm)

as a subroutine to generate these encodings adaptively."

In this thesis, we pave chosen to implement the BSTW idea

in a simple block-to-block scheme, in order to see how much

33

compression the word-list idea achieves by itself. This is

what we refer to from here on as BSTW. Separately, we

implemented BSTW-followed-by-Huffman; it is the results of

this compound algorithm that should be compared to published

BSTW results [Bentley et al. 1986].

One question that remains unanswered is whether BSTW

encoded characters into new words using Huffman compression,

and if not, why not. The quote above implies that they did

not, but this would seem to be a strange thing to do, because

the compression ratio achieved by the BSTW alone will be very

poor, as will be seen in Chapter V.

Arithmetic Coding

This method was invented by Elias and implemented by

Rissanen [1976], Rubin [1979], Cleary and Witten [1984a], and

Witten et al. [1987]. This method is rather similar to

Huffman coding: symbols are encoded independently and the

correlations between symbols are not considered. In arith

metic coding, a message is represented by an interval of real

numbers between 0.0 and 1.0. Each symbol in a source message

specifies a subinterval and the subinterval maps into the

interval [0.0, 1.0) again.

Initially, a real interval between 0.0 and 1.0 is divided

into subintervals corresponding to the probability of each

symbol. The more frequent symbols take larger subintervals

within the interval between 0. 0 and 1. o. When the first

symbol a 1 in the source message is entered, the subinterval

34

that belongs to the symbol a1 is expanded and mapped into the

interval [0.0, 1.0). All of the subintervals get new ranges.

Figure 12 shows an example of this narrowing, expanding, and

remapping process as each input symbol in the source message

"eaii!" is processed using arithmetic encoding, based on the

sample probability table in Table 2.

Every time a subinterval expands to map into the inter

val [0.0, 1.0), the new range of each symbol can be defined

by the following formulae [Lelewer and Hirschberg 1987].

new left = prev left + msgleft x prev_size
new size = prev:size x msgsize

TABLE 2

A PROBABILITY TABLE FOR THE ALPHABET
{a, e, i, o, u, ! }

Svmbol Probability Range

a .2 [0.0,
e .3 [0.2,
i .1 [0.5,
0 .2 [0.6,
u .1 [0.8,

.1 [0.9,

0. 2)
0.5)
0. 6)
0.8)
0.9)
1.0)

(2)
(3)

For example, after the first character "e" is seen, the new

range of the symbol becomes [0.2, 0.5) by plugging numbers

into the formulae (2) and (3) above;

new left= 0.0 + 0.2 x (1.0 - 0.0) = 0.2,
new size = (1.0 - 0.0) x (0.5 - 0.2) = 0.3,
(new_right = new left + new size = 0.5).

And after the character "a" is seen,

new left = 0.2 + o.o x 0.3 = 0.2,
new size = 0.3 x (0.2 - 0.0) = 0.06,

and therefore the new range becomes [0.2, 0.26).

35

At the end of encoding, the two real numbers that define a

final range contain all of the information needed to be

decoded. In fact any one number within the last range will

serve the purpose sufficiently. The example in Figure 12,

"!" has the final range [0.23354, 0.2336), and a number

within the range such as 0.23355 can be the encoded message

for the string "eaii!".

interval

o.o 1.0
[0' 1) e

0.2 0.5
e [0.2, 0.5)

0.2 0.5
a [0.2, 0.26)

0.23 0.236
i [0.23, 0.236)

0.233
i [0.233, 0.2336)

0.23354 0.2336
[0.23354, 0.2336)

Figure 12. Static Arithmetic Codings for the Message "eaii!"

36

The decoding process is almost identical with the

encoding process. The encoded message, which is a number in

the final range in the interval [0.0, 1.0), shows which part

of the original interval the encoded number came from. For

example, the encoded message of Figure 12, 11 0.23355", shows

that the number belongs to the range of the symbol "e", [0.2,

0.5) in the original segment [0.0, 1.0). The symbol "e" is

sent to the output and the range [0.2, 0.5) is mapped into the

interval [0.0, 1.0) just as in encoding. The number "0.23355"

is found this time in the range of the symbol "a", which is

[0.2, 0.26). So the symbol "a" is sent to the output and the

substring of range 0.2 and 0.26 expands again. This could go

on forever since the decoder would not know when to stop

expanding. For example, the number o.o could mean "a", "aa",

"aaa", "aaaa", etc. Obviously a decoder needs to know when

to stop. The symbol "!" in the example in Table 2 and Figure

12 is being used as an end-of-message symbol.

Witten et al. [1987] show the complete algorithm in c

language. They also show that the encoded message doesn't

need to be held until the final range is calculated. Whenever

the leftmost digits of the endpoints of the current interval

do not show any further change, those digits can be sent to

the output. In the example in Figure 12, instead of waiting

until the whole message is encoded, digit 2 could be sent out

after the symbol "e", because that digit is not going to

change any more, and digit 3 could be sent after the first "i"

is seen, and so on.

37

This algorithm can be implemented either as a static

algorithm or as a dynamic algorithm. In static arithmetic

coding, the probabilities of the symbols are given ahead of

time, and in a dynamic coding, the estimated probabilities of

symbols entered so far are used. Witten et al. show the

algorithm written inc [Witten et al. 1987], where generally

known probabilities in English text are used in the static

model instead of exact probabilities of the symbols in the

text to be compressed.

Because arithmetic coding does not produce one codeword

for each symbol, it can produce fewer bits of output for a

given message than does the static Huffman method.

The Ziv-Lempel Method

The Ziv-Lempel method is a class of compression methods

rather than a single compression algorithm. The Ziv-Lempel

style of parsing and textual substitution in adaptive text

compression was suggested by Ziv and Lempel [Lempel and Ziv

1976; Ziv and Lempel 1977; Ziv and Lempel 1978], but different

implementations by many others [Storer and Szymanski 1982;

Rissanen 1983; Welch 1984) improved the algorithm in many

ways. Basically, the encoding process parses the message

repeatedly to find the longest recognized string that exists

in the string table [Ziv and Lempel 1977; Lelewer and Hirsch

berg 1987].

Welch's implementation was chosen here to show how the

algorithm works. Initially, the string table contains single-

38

character symbols which are assigned unique code values [Welch

1984]. This saves some expansion during initial encoding, in

comparison to using the table without single-character symbols

at the beginning [Lelewer and Hirschberg 1987]. Next, source

text is parsed just until the parsed part of the string does

not exist in the table. In other words, the parsing stops

when the longest recognized string plus one more symbol have

been parsed. This new string is added to the table with a

unique code value assigned, and the code value of the longest

recognized string (without the new symbol) becomes output.

The final symbol that made the string different from the

longest recognized string in the table is the beginning of the

next string and the beginning of the next parsing. This step

is repeated until the source text is exhausted. Figure 13

shows Welch's version of the Ziv-Lempel compression algorithm

[Welch 1984].

Initialize table to contain single-character strings.
Read the first input character -> prefix string w

Step: Read next input character K
If no such K exists (end of input):

code (w) -> output; EXIT

If wK exists in string table:
wK -> w; repeat Step.

Else wK not in string table:
code (w) -> output; wK -> string table;
K -> w; repeat Step.

Figure 13. LZW (Lempel-Ziv-Welch) Compression
Algorithm

39

Figure 14 shows an example for Welch's Ziv-Lempel encod

ing process and the string table that is created. All of the

symbols a, b, and c are first stored in the table with unique

codes 1, 2, and 3 assigned before actual parsing takes place.

The source message is parsed up to the first "b", since the

longest recognized string at this point was "a". The codeword

for the recognized string "a", namely 1, is sent to the output

and the new string "ab" in the alternate form "1b", in actual

practice is added to the table and assign a new codeword "4".

The extension character "b" becomes the start of the next

string, parsing stops at the second "a", and the codeword for

the longest recognized string "b", namely 2, is sent to the

output and the new string "ba" in the form "2a" is added to

the table with a new codeword 5. The extension character "a"

is the beginning of the next parsing and the parsing stops

after "abc", since "ab" is the longest recognized string.

The codeword for "ab", namely 4, is sent to the output and

the new string "abc" in the shorter alternative form "4c" is

added with a new codeword. This process continues until the

end of the source message is reached. It is easy to see that

the encoded message for the example source message is "1 2 4

3 5 8 1 10 11". When storing the string table in Welch's

implementation, since each table entry is a prefix string plus

a single character, it can be stored in a fixed length of

storage. Each table entry is encoded as (~ c), where i is the

codeword for the prefix string and c is the extension

40

character (Welch 1984; Lelewer and Hirschberg 1987]. The

alternative table in Figure 15 makes storing the string table

easier to understand.

source message = "a b a b c b a b a b a a a a a

gosition table out gut
1 a
2 b
3 c

1 (= a)
4 ab = lb

2 (= b)
5 ba = 2a

4 (= ab)
6 abc = 4c

3 (= c
7 cb = 3b

5 (= ba
8 bab = 5b

8 (= bab)
9 baba = Sa

1 (= a)
10 aa = la

10 (= a a)
11 aaa = lOa

11 (= aaa)
12 aaaa = lla

Figure 14. Compressing a Source Message by the
LZW Algorithm

a a"

Rodeh et al. [1981] point out that a straightforward

implementation of the Ziv-Lempel algorithm takes 0(n2) time

to process a string of length n. Hashing was proposed by

Welch [1984] to achieve O(n) processing time, and the fixed-

size entries in string table are well suited for it. The

41

public domain UNIX utility compress implements LZW, Welch • s

version of the Ziv-Lempel algorithm. In compress, once the

string table is full, the table construction starts over from

scratch (in effect the current table is destroyed and the

algorithm starts over using only the single-character

symbols).

string table alternative table
a 1 a 1
b 2 b 2
c 3 c 3

ab 4 lb 4
ba 5 2a 5
abc 6 4c 6
cb 7 3b 7
bab 8 5b 8
baba 9 Sa 9
a a 10 la 10
aaa 11 lOa 11
aaaa 12 lla 12

stored table = { (O,a), (O,b), (O,c), (l,b), (2,a), (4,c),
(3,b),(5,b), (S,a), (l,a), (lO,a), (ll,a)}

Figure 15. Generating LZW String Table

The decompression process constructs the table in the

same way, as the message is translated. 11 Compression-in-

reverse 11 (such as in the BSTW decompression) can be a simple-

minded implementation that shows the concept of the decompres-

sian algorithm in a simple way. In this implementation, it

is assumed that the string table stores variable-length whole

42

strings rather than shorter, fixed alternative forms, in order

to provide a way to search a string in the table. Decompres-

sion is a recursive operation in which the codeword produces

the last (extension) character and the codeword of the prefix

string in reverse order. Figure 16 shows simplified steps in

this implementation, and also illustrates a certain problem

that occurs. Since the last character in a string is peeled

off one at a time, the output string comes out in reverse

order, even though Figure 16 s~ows strings in the right order

for the sake of comprehensibility.

message to decode = "1 2 4 3 5 8 1 10 11 11

:eosition table out:eut
1 a
2 b
3 c

a (= 1)
b (= 2)

4 ab
ab (= 4)

5 ba
c (= 3

6 abc
ba (= 5

7 cb
? (= 8)

Figure 16. Decompression by "Reverse Compression"

These steps are almost like the steps in Figure 14,

except that after the string "ba" is produced, the decoder

cannot go on any more, since it has not learned what is in

43

the table at position 8. Only substrings of the form KwKwK

will cause this problem while decompressing, according to

Welch [.1984]. A complete decompression algorithm that solves

this problem [Welch 1984] is shown in Figure 17. (The line

that starts with "###" is present in Welch's decompression al-

gorithm but it should be ignored, because it is not necessary

and does not make sense.) Hashing is not necessary in

decompression since the string table is accessed directly by

codewords, and therefore decompression is faster than the com-

pression process.

Decompression: First input code -> CODE -> OLDcode;
with CODE= code(K), K ->output;

K -> FINchar;
Next Code: Next input code -> CODE -> INcode;

If no new code:
EXIT;

If CODE not defined:
FINchar -> output;
OLDcode -> CODE;

####code(OLDcode, FINchar) -> INcode;

Next Symbol: If CODE= code(wK):
K -> stack;
code(w) -> CODE;
Go to Next Symbol;

If CODE= code(K):
K -> output;
K -> FINchar;

Do while stack is not empty:
stack top -> output;
POP stack;

OLDcode, K -> string table;
INcode -> OLDcode;
Go to Next Code;

Figure 17. LZW Decompression Algorithm

44

The Ziv-Lempel parsing method is often called a greedy

parsing method because the longest recognized string is sought

while parsing rather than attempting to achieve global

optimality. As an example, if the source message in Figure

14, "ababcbababaaaaaaa", can somehow be broken into "ab",

"cb", and "aaaa" instead of into the 12 pieces produced by the

Ziv-Lempel method, we would have needed only 4 codewords and

would have accomplished a greater compression.

Iteration and Combining Methods

Some text compression algorithms such as the BSTW and

Ziv-Lempel methods take byte-oriented source messages and

produce byte-oriented encoded messages, while some others such

as both static and dynamic Huffman codings produce bit

oriented output rather than bytes of constant length. This

leads us to think about the possibility of running one method

followed by another. If one method compressed a source text

and produced byte-oriented output, surely it is possible to

see more compression on that output by running the output

through another method that produces bit-oriented output,

since there is a possibility of wasting bits in byte-oriented

output. This approach is investigated in Chapter V of this

thesis.

CHAPTER IV

AUTOMATIC RESYNCHRONIZATION IN

STATIC HUFFMAN CODES

The static Huffman coding method has an advantage not

shared by any other method we have described. If an error

occurs in transmission, such as the corruption of a few bits

by noise, static Huffman decoding may produce a few errorneous

symbols because it is not starting the decoding of each symbol

on a correct "first" bit, but will almost certainly

resynchronize itself automatically and decode the rest of the

message correctly. In this chapter the average distance from

any random bit to the next synchronization point, in decoding

a message encoded with the static Huffman method, is

calculated, assuming a simple probabilistic model.

Imagine a complete encoded message that contains code-

words for letters a1 , a2 , ••• , am whose frequencies are n11 n2 ,

. . . . ' nm, with the length of codewords 111 ,
respectively (see Table 3). Let

I\'\
•. • • + n = I: n.

m i=l •

denote the number of characters in the original message.
1'\'\

Let M = . I: (ni · li] denotes the number of bits in the encoded
•""I

message, and let p(aj) be the probability of aj in the Huffman

method. Then

45

46

which can be rewritten as

(4) •

Let p 1 (i) be the probability of any bit being the first bit

of any occurrence· of the letter ai in the encoded message.

From the definition of a probability as a relative frequency,

p1 (i) = (# of occurences of the codeword ai)

I (total bits)

= ni I M

= ni I £ [nk • lk] (from (4)) .

TABLE 3

SAMPLE FREQUENCY TABLE

symbol frequency probability code-length

totals N 1

Now, let s be the probability of any random bit being the

first bit of any character in the encoded message. Then

M •
s = .~, PI (1.)

·-
= ~ · [n. I ~ (nk · lk)]

i::OI I k':l

47
m

= [1 I ~1 (nk ·
m

lk)] · I:(p(a·) · N)
i"'"\ I

(by (4))

= [1 I ~ (nk •
K=l

lk)] • 1 • N . "' (s~nce I:p(ai) = 1)
t:.t

= 1 1 [N'"1 t (nk · lk)]
K•l

r¥1
= 1 I [I: (p(ak) • lk)]

t::l
(by (4))

= 1 I d (5) ,

where d is the average length (in bits) of a codeword. With

this preparation completed, we will state and prove the

following theorem.

Theorem 1 : If the decoder is out of synchronization at

the current bit, and if it has a constant probability of

resynchronizing after the next letter is decoded, regardless

of how many incorrect letters have been decoded up to that

point, the average distance from the current bit to the next

resynchronization point is D = d, and the average number of

incorrect symbols produced before resynchronization occurs is

(d - 1) •

Proof : The probability of the next bit being the first bit

of any letter is

p = 1 I d (by (5)) .

and the probability of the next bit not being the first bit

of any l.atter is

q E 1 - p = 1 - 1 I d (6) •

The distance from the current bit to the synchronization point

will be

48

1, if the next bit is the first bit of any encoded

letter,

2, if the decoder misses the next first bit and gets

resynchronized on the following first bit,

i, if the decoder misses the next (i - 1) first bits and

gets resynchronized on the i-th first bit, (7) '

Therefore,

D = p • 1 + (1-p) • p • 2 + (1-p) 2 • p · 3 + • • . + (1-p) i • p • (i + 1)

+

CD

[i q(i-1)] = p :E .
j:l

(by (6))
al qi] = p :E [dldq
j~l

00 •

= p dldq :Eq'
i•l

= p dldq [11(1-q)]

= p [1 I C 1-q) 2 J

= p. [1IP2)

= 1 I p

= d Q.E.D

Theorem 1 shows that the average number of characters decoded

from a random starting point to the resynchronization point

is equal to the average length in bits of an encoded codeword

in the Huffman scheme. The last decoded symbol in this

sequence is the first correct symbol, so that on the average

49

(d - 1) incorrect symbols will have been produced. The model

used here is the common discrete exponential stochastic

distribution [Feller 1957].

Theorem 1 provides only an "average" distance, and a case

that violates our assumption can be constructed. Imagine a

perfectly balanced Huffman tree with all of the leaf nodes on

the same level of the tree, and therefore all of the codewords

being the same length. In that case, resynchronization will

never take place [Gilbert and Moore 1959]: If the decoder once

assumes that what is actually the second bit of a codeword is

the first bit, then it will produce an incorrect decoded

symbol from the incorrect codeword and, because the length of

all codewords is constant, will again arrive at the incorrect

second bit of the next codeword, and will repeat this same

process indefinitely. However, Huffman code trees are almost

never well-balanced in practice (a perfectly-balanced tree

implies that no compression before packing into binary bits

is possible). As a result this case is of little practical

interest and there is reason to hope that the hypothesis of

Theorem 1 may be approximately true in practice. In Chapter

V we will find that Theorem 1 holds rather accurately in some

test cases.

Example 4 shows resynchronization while decoding, where

the encoded message is wrong in two places. One of the

Huffman code sets that the source text "ABRACADEBRA" produces

can be o, 110, 100, 1011, 1010 and 111 for symbols A, B, c,

D, E and R respectively. After the second bit of the codeword

50

in the first "B" is lost, the decoder produces wrong symbols

"E" and "A" before resynchronization occurs. After the first

bit of the codeword for the symbol "E" is altered, th!= wrong

symbols "A", "A", "D" and "A" are produced before resynchroni-

zation occurs. The average length of the codewords is

calculated by
6

[J~' (code length for symbol aj) x (frequency)]

/(total frequencies)

= (4·1 + 2·3 + 1·3 + 1·4 + 1·4 + 2·3) 1 11

= 27 I 11 ~ 2.5,

and, the expected number of wrong symbols before the resyn-

chronization is

d - 1 = 2.5 - 1 = 1.5.

Example.4:

Suppose that Huffman codewords for alphabet A, B, c, D,

E and R are 0, 110, 100, 1011, 1010, and 111 respectively,

and that a message "ABRACADEBRA" needs to be transmitted.

The underlines in the encoded message denote missing or

altered bits, and the up arrows (t), the resynchronization

points.

source message A B R A C AD E B R A

correct encoded
message 0 1_!0 111 0 100 0 1011 _!010 110 111 0

incorrect encoded
message 0 10 111 0 100 0 1011 0010 110 111 0

t t
decoded message A D E A A D AAD A R A

51

Most natural language and computer language texts can be

encoded using an average of only three or four bits per

character, according to our experiments. Thus, on the average

only two to three incorrect symbols will be produced from

static Huffman decoding of these texts, after a transmission

error occurs, before automatic resynchronization takes place.

Test cases and their analysis are considered in Chapter v.

CHAPTER V

PERFORMANCE ANALYSIS AND COMPARISONS

Choosing Test Data

We tested twenty message ensembles: eight PASCAL program

files, eleven c program files, and one English text file. The

sizes-of the files vary from 92 bytes to about 59K bytes (1K

= 1024). Files of small sizes are chosen to demonstrate that

some of the methods will not perform well in the initial stage

of compression.

We used one English text file to test resynchronization

on static Huffman coding and one PASCAL program source code,

which is the largest in volume, to test the speed of the

various basic methods.

Measure of Performance

The primary measure of performance is the compression

ratio, which is calculated by

C1 = [(size of input- size of output)

I size of input] x 100%, (8)

and it shows the percentage by which the file size has been

reduced. The larger the compression ratio is, the better the

52

53

compression. Some other authors such as Fiala and Greene

[1989] define the compression ratio as

C2 = [size of output 1 size of input] x 100%, (9)

which is essentially a "lack-of-compression ratio" rather than

a compression ratio. The relationship between two compression

ratios defined by (8) and (9) is

100% - C1 = C2.

According to our definition, 0% compression ratio means that

the size of the text file is not changed by compression, and

100% means that the size of output becomes zero (even though

this is not realistic).

The compression ratios yielded by each method is shown

in the tables (Tables 4, 5, 6, and 7) in later section. The

tables contain the names of the files, the sizes of the files

before compression in bytes, the compression ratios, and the

average compression ratio of each method.

The prefixes in the file names of "PAS", "C", and "TXT"

represent PASCAL program files, c program files, and English

files, respectively. The file C7 uses mostly tab characters

to achieve indentation, while all other program files use

blanks for the same purpose.

Whenever the actual size of a compressed file is known,

we try to use actual numbers for the compression ratio, but

when the software used for the tests did not produce an output

file (when the size of file does not decrease) , we used "N/A".

So if "N/A" is shown in place of the size of the compressed

file, it means that the size of the file has not been decreas-

54

ed but has actually been increased by the compression. "AVRG-

RATIO" is the average ratio of each method performed on the

seventeen files that are large enough (larger than 600 bytes)

to show positive compression ratios for every method.

All of the test cases were run on UNIX, and some of

methods were run on an MS-DOS system too to compare the re-

sults. In every case the length of each compressed file·was

exactly the same when run on these two systems, provided that

"carriage return" characters were interpreted the same way in

both systems to make the input files identical. (Normally,

MS-DOS adds a "line feed" character after each "carriage

return".)

The secondary measure of performance is execution time

of each method on the UNIX system. Table 8 shows the results

from the tests of execution time. Absolute execution times

are hard to measure because the system load is changing

constantly. For execution time, we tested seven methods once

one after another using the UNIX utility time, and repeated

this four more times, and averaged the execution times over
/

five tests.
-\.,

Description of Methods

We programmed static Huffman coding straightforwardly as

described in Chapter III. For adaptive Huffman coding, the

UNIX utility pack was used.

55

We programmed the BSTW method using a linked-list as an

auxiliary data structure, which can store a word (of letters

or non-letters) of up to 100 characters in each.node in the

list. We tested two sizes of lists that contain 255 and 127

nodes, respectively. The number 255 is the maximum size of

list that allows one ASCII character to be used as an end-of

word character, which has ASCII value 255. When the size of

the list is 127, only 7 bits are needed to represent a

position in the list. Instead of using an end-of-word

character, the first bit can be used as a flag to denote

whether the next character string is a word or a position

number. Table 5 shows the results from the tests where the

size of the lists are 255 and 127, and when the flag is used

when the size is 127.

For arithmetic coding, both fixed and adaptive implemen

tations, we used the program by Witten et al. [Witten et al.

1987], and for the Ziv-Lempel method, we used the UNIX utility

compress, which is an LZW implementation.

Two other techniques which combine more than one method

described above were also tested. Since the output from the

BSTW method is byte-oriented, we also applied another method,

static Huffman coding, that takes byte-oriented output from

the BSTW method as input and compressed it further.

In program source files, indentation for readability such

as in nested loops takes up a lot of space. Since most of the

test files we used are program source files we also tried a

method that substitutes for consecutive blanks an illegal

56

character followed by the number of blanks, as described in

Chapter I, before a compression method was applied.

In testing the resynchronization model, in order to cal

culate the number of incorrect characters produced before the

resynchronization from any random bit position, the encoded

message was decoded starting from each bit to the next

synchronization point. The synchronization points are the

beginning bit positions of successive symbols in the encoded

message, and were prestored by the compression routine in an

external file. For instance, while the message "ABRACADEBRA"

in example 6 is compressed, the starting bit positions o, 1,

4, 7, 8, 11, 12, 16, 20, 23, 26 are stored externally so that

the decoder can use them as a synchronization index. While

decoding, the decoder keeps on checking whether or not the

current first bit position is in the index list, while

proceeding one bit at a time. If the current first bit is

found in the list, that is a resynchronization point.

Comparisons

Results from tests of the compression methods mentioned

above are shown in Tables 4, 5, 6, and 7. The first column

in the table shows file names and the SIZE column gives the

input file sizes in bytes. All other columns show the

compression ratios when each method on the top row was applied

to the files in the leftmost column. on the top row of the

table, "S.H" denotes static Huffman coding, "A.H", adaptive

Huffman coding, "BSTW (255)", the BSTW method with list size

57

255, "F.A", fixed arithmetic coding, "A.A", adaptive arith

metic coding and "Z.L", the Ziv-Lempel method. "B.H (255) 11

means that the BSTW method with list size 255 was applied and

then to the result of it, static Huffman coding was applied.

The code table that needs to. be transferred from the

encoder to the decoder in static Huffman coding is saved by

the encoder externally, and therefore the size of the code

table is not counted into the compression ratio results. The

size of the code table is a constant, and when the file is big

enough, its size is negligible compared to the file itself.

As shown in Table 4, the Ziv-Lempel method shows a better

compression ratio than any other single or composite method

tested. As a single method, static Huffman coding performed

the second best, but even the combination of the BSTW method

and static Huffman did not do any better than the Ziv-Lempel

method (and even with substituting for blanks, as we will see

later in this chapter). The fact that the BSTW method

[Bentley et al. 1986] was developed after the LZW implemen

tation [Welch, 1984] was, and that Ziv-Lempel still outper

forms BSTW, is rather surprising and justifies the rather

contentious claims of Horspool [Horspool 1986] • The BSTW

method suggests an interesting way of reflecting locality in

data. And the fact that the encoded message is byte-oriented

makes it somewhat easier to program than some other methods

that result in bit-oriented encoded messages. But this method

alone does not yield satisfactory results.

FILE SIZE S.H
NAME fBYTESl

PAS1 92 42.4%
PAS2 184 44.0%
PAS3 640 45.2%
PAS4 666 44.6%
PASS 794 47.5%
PAS6 1052 44.0%
PAS7 34457 52.2%
PASS 59003 54.7%

C1 361 43.2%
C2 3507 49.2%
C3 4589 39.0%
C4 7123 48.7%
C5 12214 44.1%
C6 12578 42.8%
C7 13238 43.6%
cs 13348 42.2%
C9 13784 39.0%
C10 33470 48.7%
C11 47650 39.7%

TXT1 13020 45.0%

AVRG-RATIO 45.3%

TABLE 4

COMPRESSION RATIOS(%)
(% REDUCTION)

A.H BSTW F.A
(255)

N/A -40.2% 22.8%
N/A -17.4% 25.5%
34.8% 4.8% 28.9%
35.1% 15.5% 26.0%
39.9% 18.1% 32.3%
37.4% 20.5% 26.5%
51.9% 58.0% 38.8%
54.5% 66.5% 39.8%

N/A -10.0% 32.1%
46.8% 27.7% 36.1%
36.7% 15.1% 26.3%
47.4% 39.0% 26.0%
43.2% 32.0% 34.3%
41.9% 27.3% 31.7%
42.9% 50.7% 3.1%
41.4% 42.3% 31.8%
38.2% 41.8% 21.6%
48.4% 44.1% 36.9%
39.4% 31.9% 29.0%

44.3% 11.3% 44.2%

42.6% 32.2% 30.2%

58

A.A Z.L B.H
(255)

10.9% 2.2% 10.9%
19.6% 18.5% 21.7%
32.5% 35.2% 33.4%
32.1% 38.6% 41.1%
36.5% 45.3% 42.3%
34.8% 41.4% 42.2%
51.8% 71.8% 69.5%
54.6% 75.2% 75.1%

26.0% 29.6% 26.6%
45.8% 59.7% 52.5%
36.3% 46.5% 38.5%
46.7% 62.8% 54.8%
43.3% 57.3% 50.3%
41.9% 59.2% 49.2%
42.5% 64.4% 61.2%
41.1% 61.4% 55.7%
38.0% 60.1% 55.1%
48.5% 67.2% 59.1%
39.7% 60.7% 50.0%

43.9% 48.8% 39.4%

41.8% 56.2% 51.1%

Witten et al. [1987] claims that the Ziv-Lempel method

does not have great potential for compression unless raw speed

is the main concern, but nothing is further from the truth.

Arithmetic coding.performs about the same as static Huffman

coding does, at best. When the fixed implementation of

arithmetic coding was used, most of the files show compression

ratio between 25% and 40%, but file C7 shows extremely poor

59

performance. The fact that file C7 contains many tab charac-

ters for indentation hurts its compression ratio because the

probabilities used in this fixed model are based on the

probabilities of English text files, which normally don't use

many tab characters in proportion to the whole text. In the

test of fixed arithmetic coding, the English text file TXT1

showed the best performance, as would be expected.

Table 5 shows the result from the BSTW method with two
.

diffe~ent sizes of buffers, 255 and 127, with and without a

flag bit when the size of buffer is 127. The result shows

that the larger buffer yields a better compression ratio

unless the overhead is avoided by using a flag bit.

Table 6 shows the result of substituting for consecutive

blanks by a special character followed by the number of

blanks, before applying each compression method. Slightly

better compression ratios are achieved for most of the

methods, comprared to the result from the tests without

substituting for the blanks before the compression. This

combining of methods did not produce enough improvement to

make the extra time spent in compression worthwhile, and hence

it is not recommended.

Iterating Methods

Static Huffman coding was iterated repeatedly for each

file to see how much improvement it makes. When static

Huffman coding was applied twice in a row, the compression

ratio increased about 3% on the average compared to when the

60

file is compressed only once by static Huffman coding. When

applied fOUr timeS 1 apprOXimately 4% Of COmpreSSiOn ratiO

increase was seen on the average. More than four times of

iteration did not improve the compression ratio. Iteration

of static Huffman coding is judged not to be effective, and

we do not recommend it.

TABLE 5

THE RESULTS FROM THE BSTW METHOD
(% REDUCTION)

FILE SIZE 255 127 127
(BYTES) no-flag w/flag

PAS1 92 -40.2% -40.2% -19.6%
PAS2 184 -17.4% -17.4% 0.5%
PAS3 640 4.8% 4.8% 17.3%
PAS4 666 15.5% 15.5% 25.4%
PASS 794 18.1% 18.1% 27.2%
PAS6 1052 20.5% 20.7% 29.9%
PAS7 34457 58.0% 49.7% 53.7%
PASS 59003 66.5% 60.2% 62.1%

C1 361 -10.0% -10.0% 3.1%
C2 3507 27.7% 27.7% 33.1%
C3 4589 15.1% 10.7% 19.5%
C4 7123 39.0% 30.9% 37.2%
cs 12214 32.0% 26.7% 33.7%
C6 12578 27.3% 21.4% 28.0%
C7 13238 50.7% 46.0% 50.3%
C8 13348 42.3% 34.9% 40.3%
C9 13784 41.8% 36.2% 41.2%
C10 33470 44.1% 36.1% 41.7%
C11 47650 31.9% 21.7% 28.8%

TXT1 13020 11.3% 1. 3% 11.1%

AVRG-RATIO 32.2% 27.2% 34.1%

FILE SIZE
(BYTES)

PASl 92
PAS2 184
PAS3 640
PAS4 666
PASS 794
PAS6 1052
PAS7 34457
PASS 59003

Cl 361
C2 3507
C3 4589
C4 7123
cs 12214
C6 12578
C7 13238
ca 13348
C9 13784
ClO 33470
Cll 47650

TXTl 13020

TABLE 6

THE RESULT FROM SUBSTITUTING BLANKS
BEFORE COMPRESSION

(% Reduction)

S.H A.H BSTW F.A A.A
(255\

40.2% N/A -40.2% 14.1% 9.8%
39.7% N/A -16.3% 10.9% 17.4%
43.4% 32.5% 8.6% 24.7% 31.9%
42.5% 32.4% 16.7% 21.2% 30.8%
46.4% 38.2% 23.4% 27.0% 36.0%
42.7% N/A 22.4% 20.2% 34.0%
54.8% 54.4% 63.9% 42.5% 54.5%
57.8% 57.6% 71.2% 45.4% 57.9%

44.9% N/A 2.22% 32.7% 29.9%
53.6% 50.8% 44.7% 40.6% 50.3%
38.3% 35.7% 18.6% 31.5% 35.7%
53.1% 51.7% 44.9% 30.4% 51.3%
47.0% 46.0% 39.3% 35.7% 45.9%
44.6% 43.5% 40.4% 31.5% 43.7%
43.2% 42.4% 51.2% 1.7% 42.1%
42.0% 41.1% 46.5% 27.4% 41.1%
37.7% 36.8% 43.1% 17.5% 36.6%
52.9% 52.5% 50.9% 42.1% 52.7%
39.9% 39.6% 37.3% 27.6% 39.9%

44.3% 43.6% 11.4% 42.9% 43.1%

•

61

Z.L B.H
(255)

1.1% 8.7%
16.9% 20.7%
35.8% 34.4%
39.0% 41.3%
46.0% 44.1%
42.5% 42.5%
72.0% 71.5%
76.4% 76.8%

31.0% 31.6%
60.5% 57.8%
46.5% 39.0%
63.6% 57.4%
58.0% 53.1%
59.1% 53.7%
64.5% 61.5%
61.3% 57.5%
60.1% 55.8%
68.0% 61.8%
60.7% 52.3%

48.8% 39.4%

AVRG-RATIO 46.1% 43.7% 37.3% 30.0% 42.8% 56.6% 52.9%

NOTE : "*" mark in AVRG-RATIO for the adaptive
Huffman means that not all seventeen files were
involved in the calculation. The file Cl was not
counted because the compression ratio was not
available.

62

TABLE 7

THE RESULT FROM ITERATING STATIC HUFFMAN METHOD
(% REDUCTION)

FILE SIZE S.H S.H S.H
CBYTES) ONCE TWICE 4 TIMES

PAS1 92 42.4%
PAS2 1S4 44.0%
PAS3 640 45.2% 50.5% 5S.3%
PAS4 666 44.6% 50.0% 57.2%
PASS 794 47.5% 52.2% 57.9%
PAS6 1052 44.0% 47.2% 51.4%
PAS7 34457 52.2% 54.5% 54.5%
PASS 59003 54.7% 56.9% 57.1%

C1 361 43.2%
C2 3507 49.2% 52.8% 53.9%
C3 45S9 39.0% 40.9% 41.7%
C4 7123 4S.7% 52.9% 53.7%
C5 12214 44.1% 46.0% 46.2%
C6 1257S 42.S% 45.3% 45.6%
C7 1323S 43.6% 46.2% 46.6%
CS 1334S 42.2% 44.0% 44.1%
C9 137S4 39.0% 40.5% 40.6%
C10 33470 48.7% 51.0% 51.1%
C11 47650 39.7% 41.2% 41.4%

TXT1 13020 45.0% 45.9% 46.0%

AVRG-RATIO 45.3% 4S.1% 49.8%

Table S shows average execution time of each method when

applied on the file PASS five times. A UNIX utility time was

used for each set of seven methods to get the average execu-

tion time. compress and pack are the fastest methods and static

Huffman coding is next to them. The BSTW method and arith

metic coding are both eight times or more slower than the

63

fastest methods. One should bear in mind that this implemen

tation of the BSTW method is not a production quality code (no

one, including Bentley et al., has yet claimed to have

produced such a production code) , and consequently the times

for the BSTW method may be susceptible to great improvement.

Similar excuses, however, cannot be made for the arithmetic

compression routines. Arithmetic coding, at least as imple-

mented by Witten et al., appears to be inherently slow.

TABLE 8

EXECUTION TIMES ON FILE PASS

Methods

A.H
Z.L
S.H
BSTW (127)
F.A
A.A
BSTW (255)

Execution Times

4.4 Sec.
4.9 Sec.

12.2 Sec.
35.5 Sec.
36.9 Sec.
42.0 Sec.
46.0 Sec.

Automatic Resynchronization in Static

Huffman Codes

One English text file (TXT1) was used to examine the

automatic resynchronization in static Huffman decoding. The

decoding process was iterated 5001 times (arbitrarily chosen

large number) each such that bits 1, 2, ... , and 5001 were

the starting positions for decoding, respectively. Figures

64

18 and 19 show the distribution of length of codewords and

number of wrong characters produced, respectively. The

histogram (frequency table) in Figure 19 is also plotted on

a log scale in Figure 20. T:1e value 0 in the "# of wrong

chars" column in Figure 19 means that the starting position

happened to be a resynchronization position, and therefore no

wrong characters were produced in these cases.

code-length frequency
Cin bits>

1 0
2 0
3 3513
4 5185
5 1668
6 1952
7 606
8 52
9 83
10 95
11 63
12 44
13 10
14 6
15 0

average code-length = 4.45 bits

Figure 18. Histogram of code lengths after
processing 5001 bits in TXT1

For the file TXT1, the predicted average distance is

(average code-length - 1) = 4.45 - 1.0 = 3.45,

65

and the actual average distance is 3.12, and this is about

10% better than the prediction. The model obviously does not

fit the situation exactly, but the agreement is good.

All of the results from tests above will be summarized

in Chapter VI.

of wrong characters
(in bits)

0
1"
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

occurences

1082
948
696
579
429
347
241
163
131
105
79
55
39
31
27
14
9
7
8
5
3
2
1
0

Figure 19. Histogram of No. of wrong chars
in 5001 bits of file TXT1

66

3 0

0

0

"""' :>-,
(.)

s::
Q)
;:I
0" ;2..
Q)

H
~ .._,

0
.......

00
(j)

0
.......

Q

0

0 5 10 15
Resynchronization Distance

::20

Figure 20. Semilog Plot of Resynchronization Frequencies

67

Comparison to Previous Results

We should compare some of our results to earlier pub

lished results. In order to do this, we will first summarize

the results from the two published articles containing

substantial compression results.

BSTW [Bentley et al. 1986] compressed seven c language

source files having sizes from 16282 bytes to 23225 bytes,

five PASCAL files of sizes 8535 bytes to 31930 bytes, one

terminal session of 142762 bytes, and eight book sections of

sizes . 15104 to 22360 bytes. They found that compression

improved as the list length N increased, flattening out around

N = 32 to 256, depending on the file. For N = 256, they

achieved compressions (using the definition used in this

thesis) of about 55% for the terminal session, 57% to 74% for

the source code file, 52% to 61% for the book sections. There

was no consistent trend of greater compression for larger

files or vice versa. An ordinary byte-oriented Huffman

encoding achieved compression of about 33% to 43% for all

files; a word-oriented Huffman scheme achieved about the same

compression as did the BSTW (plus Huffman) method.

Fiala and Greene [1989] compressed 1185 source files,

134 technical memoranda files, five news service files, and

a selection of object code, boot, font, and image files, using

fourteen variants of several methods. They present some

average compression values. Static Huffman compressed the

source code files about 27% and the English language files

about 40%.

68

Dynamic Huffman performed slightly poorer. A

basic Ziv-Lempel method achieved 49% and 54% on source and

English, respectively. compre~ achieved 48% and 54%, BSTW

with-Huffman achieved 57% and 55%, a slow third-order Markov

method by Cleary and Witten [1984b] achieved 63% and 66%, and

a new Ziv-Lempel "windowing" variant by Fiala and Greene

[1989] achieved 64% and 62%.

Fiala and Greene [1989) also present graphs showing the

dependence of compression on file length. Each method is

shown as a smooth and usually monotonic curve. Byte Huffman

gives approximately a flat curve and two-byte Huffman gives

a falling curve (less compression for longer files). All

other methods give dramatically rising compression for larger

files. These curves are inconsistent with the results of BSTW

[Bentley et al. 1986]. We suspect that the curves have been

heavily smoothed. The authors give no explanation of their

methods of plotting and/or smoothing the curves, of the great

improvement of most compression on long files, or of the

poorer performance of two-byte Huffman on long files, nor do

they compare their results to those of BSTW [Bentley et al.

1986].

The results from the tests in Bentley et al. [1986] show

a little better compression ratio than the results from our

test of BSTW-with-Huffman for similar sizes of files. Our

results do not agree with the results from the tests of Fiala

and Greene [1989] in many ways. It is interesting to see that

69

the results of the same UNIX utility compre~ in the two tests

are rather different. Our results for comp~~ on source code

files on the average show about 9% higher compression than

theirs. And also their BSTW-wi th-Huffman performs better than

compress with about 10% higher compression ratio, while our

test shows that compress is a better method than BSTW-with-

Huffman. Table 9 shows comparisons of results from our test,

BSTW's, and Fiala and Greene's.

METHODS

TABLE 9

COMPARISONS OF RESULTS WITH OTHER TESTS
(% REDUCTION)

Static Huffman BSTW-Huffman

TESTED BY CHOI BSTW F&G CHOI BSTW F&G

Sources 45.3% 35.4% 26.8% 51.9% 66.7% 57.4%

Enalish 45.0% 38.8% 41.0% 39.4% 55.1% 53.5%

comvress

CHOI F&G

56.7% 47.9%

48.8% 55.8%

These results are not the same but are not definitely

incompatible either. The difference could be due to different

file content andjor due to the differences in lengths of the

files used for the tests. Our tests show definite improvement

of compression ratios for PASCAL source files as the size of

files grow, when the BSTW-Huffman, or Ziv-Lempel was used, but

there is less trend, if any, for the C files. This is not

completely contradictory with Fiala and Greene but the

70

smoothness of their curve seems to have been greatly over

simplified.

CHAPTER VI

SUMMARY, CONCLUSIONS, AND SUGGESTIONS

FOR FUTURE WORK

The measures of performance used in this thesis were the

compression ratio and execution time on the UNIX system. The

Ziv-Lempel method outperforms any other single or composite

method tested. The BSTW method followed by the static Huffman

method performs the second best.

Arithmetic coding does not show much strength and did

not outperform static Huffman in the way claimed for this

method [Witten et al. 1987]. As a single method, static

Huffman showed the second best performance.

The BSTW method yields better performance with the larger

buffer, but if the buffer size has to be smaller than 127,

setting one bit as a flag bit is advised.

Substituting for consecutive blanks by a special charac

ter followed by the number of blanks before applying other

compression method improved the compression ratios slightly,

but probably not enough to make the effort worthwhile.

Iterating static Huffman coding twice increased the

compression ratios by about 3% on the average, and iterating

four times showed a 4% increase compared to doing static

Huffman coding just once, and after that iteration made almost

71

no difference.

practical use.

72

This iteration is not recommended for

The test of automatic resynchronization shows that the

average distance from one point to the next resynchronization

point in our model (D = d, where d is the average length of

a codeword in bits) is a good prediction.

For most practical text compression applications, we

recommend the LZW method as implemented in the public domain

UNIX utility compress. It is fast and, on the average,

outperforms all other methods tested here. (The documentation

of compre~ could use considerable improvement, however.)

The recent work on text compression using Markov state

models appears promising, and strong claims are being made

for some of these methods [Bell and Moffat 1989). When

efficient algorithms for these methods are developed, they

should be tested and compared to the methods we have tested

here.

SELECTED BIBLIOGRAPHY

Aaron, J. Data compression - A Comparison of Methods
(National Bureau of Standards Special Publication
500-12), u.s. Goverment Printing Office, Washington
(1977) 0

Abramson, N. Information Theory and Coding, McGraw-Hill, New
York (1963).

Bell, T., and Moffat, A. "A Note on the DMC Data Compression
Scheme", Computerlouma/32,1 (1989), 16-20.

Bentley, J. L., Sleator, D. D., Tarjan, R. E., and Wei, V. K. "A
Locally Adaptive Data compression Scheme", Commun.
ACM 29,4 (Apr, 1986), 320-330.

Brown, R.G. Smothing, Forecasting, and Prediction of Discrete
Time Series, Prentice-Hall, Englewood Cliffs, N.J.
(1963) 0

Clear~, J~G., and Whitten, I.H. "A Comparison of Enumerative
and Adaptive Codes" , IEEE Trans. on Info. Theory 30, 2 (Mar,
19&4a) , 306-315.

Cleary, J.G., and Witten, I.H. "Data Compression Using
Adaptive Coding and Partial String Matching", IEEE
Trans. on Commun. 32,4 (Apr, 1984b) , 396-402 .

..
Encyclopaedia Britannica, Encyclopaedea Britannica Inc.,

Chicago, IL (1988).

Faller, N. "An Adaptive System for Data Compression", In
Record of the 7th Asilomar Conference on Circuits, Systems and
Computers (Pacific Grove, CA), Naval Postgraduate
School, Monterey, CA (Nov, 1973), 593-597.

Feller, W. AN Introduction to Probability Theory and Its
Applications Vol. 1, John Wiley & Sons, New York
(1957) 0

Fiala, E.R., and Greene, D.H. "Data Compression with Finite
Windows", Commun. ACM 32,4 (Apr, 1989) 490-505.

73

74

Gallager, R.G. Information Theory and Reliable
Communication, John Wiley & Sons, New York (1968).

Gallager, R.G. "Variations on a Theme by Huffman", IEEE Trans.
on Info. Theory 24 , 6 (Nov, 19 7 8) , 6 6 8-6 7 4 .

Gilbert, E.N., and Moore, E. F. "Variable Length Binary
Encodings", Bell Syst. Tech. J. 38,4 (July, 1959) , 933-967.

Hamming, R.W. "Error Detecting and Error Correcting Codes",
Bell Syst. Tech. J. 29,2 (Apr, 1950) , 14 7-160.

Held, G. Data Compression, John Wiley & Sons, New York
(1987).

Hester, J.H., and Hirschberg, D.S. "Self-Organizing Linear
Search", Computing Surveys 17,3 (Sept, 1985), 295-311.

Horspool, R.N. ComputingReviews (Oct, 1986), 518.

Huffman, D.A. "A Method for the Construction of Minimum-
Redundancy Codes", Proc. IRE 40, 9 (Sept, 1952), 1098-
1101.

Ingels, F.M. Information Theory and Coding Theory, Intext,
Scranton, PA (1971).

Kahn, D. The Codebreakers, MacMillan, New York (1967).

Knuth, D. E. "Dynamic Huffman coding", . J. Algorithms 6, 2 (June,
1985)' 163-180.

Knuth, D.E. The Art of Computer Programming Vol. 1, Addison
Wesley, Reading, MA (1973).

Lelewer, D.A., and Hirschberg, D.S. "Data compression", ACM
ComputingSurveysl9,3 (Sept, 1987), 261-296.

Lempel, A., and Ziv, J. "On the Complexity of Finite
Sequences", IEEE Trans. on Info. Theory 22,1 (Jan, 1976),
75-81.

Llewellyn, J.A. "Data Compression for a Source with Markov
Characteristics", Computer Journal 30, 2 (1987) , 149-
156.

Lynch, Thomas J., Data Compression, Van Nostrand Reinhold, New
York, NY (1985).

Mcintyre, D.R., and Pechura, M.A. "Data Compression Using
Static Huffman Code-Decode Tables", Commun. ACM 28, 6
(June, 1985), 612-616.

75

Parker, D.S. "Conditions for Optimality of the Huffman
Algorithm", SIAM1 Comput. 9,3 (Aug, 1980), 470-489.

Pechura, M.A. "File Archival Techniques Using Data
Compression", Commun. ACM 25,9 (Sept, 1982), 605-
609.

Reghbati, H.K. "An overview of Data Compression Techniques",
Computer 14,4 (Apr, 1981), 71-75.

Reingold, E. and Hansen, w., Data Structures. Little Brown
Computer System Series (1983).

Rissanen, J. "Generalized Kraft Inequality and Arithmetic
Coding", IBM 1 Res. Dev 20 (May, 1976), 198-203.

Rissanen, J. "A Universal Data Compression System", IEEE Trans.
on Info. Theory 29,5 (Sept, 1983) , 655-664.

Rodeh, M., Pratt, V.R., and Even, s. "Linear Algorithm for
Data Compression Via String Matching", 1 ACM 28, 1
(Jan, 1981), 16-24.

Rubin, F. "Experiments in Text File Compression", Commun.
ACM 28,1 (Jan, 1981), 617-623.

Rubin, F. "Arithmetic Stream Coding Using Fixed Precision
Registers", IEEE Trans. on Info. Theory 29,5 (Nov, 1979),
672-675.

Rudner, B. "Construction of Minimum-Redundancy Codes with an
Optimum Synchronizing Property", IEEE Trans. on Info.
Theory 17,4 (July,1971), 478-487.

Ruth, s.s., and Kreutzer, P.J. "Data Compression for Large
Business Files", Datamation (Sept, 1972) , 62-66.

Ryabko, B.Y. "A Locally Adaptive Data Compression Scheme",
Commun. ACM 16,2 (Sept, 1987), 792.

Standish, T.A. Data Structure Techniques, Addison-Wesley,
Reading, Mass. (1980).

Storer, J.A. Data Compression. Computer Science Press,
Rockville, Md (1988).

Storer, J.A. and Szymanski, T.G. "Data Compression Via
Textual Substitution", 1 ACM 29,4 (Oct, 1982), 928-
951.

76

Vitter, J .s. "Algorithm 673 Dynamic Huffman Coding", ACM
Trans. on Math. Software 15,2 (June, 1989), 158-167.

Vitter, J.S. "Design and Analysis of Dynamic Huffman Codes",
J. A CM 34, 4 (Oct, 19 8 7) , 8 2 5-8 4 5 •

Welch, T.A. "A Technique for High-Performance Data
Compression", Computer 17, 6 (June, 1984) , 8-19.

Whitten, I.H., Neal, R.M., and Cleary, J.G. "Arithmetic
Coding for Data Compression", Commun. ACM 30,6
(June, 1987), 520-540.

Ziv, J. 1 and Lempel 1 A. "A Universal Algorithm for Sequential
Data Compression" 1 IEEE Trans. on Info. Theory 23 1 3 (May 1

1977) 1 337-343 o

Ziv 1 J. 1 and Lempel 1 A. "Compression of Individual Sequences
Via Variable-Rate Coding" 1 IEEE Trans. on Info. Theory 24 1 5
(Sept, 1978), 530-536.

v
VITA

sunny Choi

candidate for the Degree of

Master of Science

Thesis: A COMPARISON OF METHODS F0R TEXT COMPRESSION

Major Field: Computing and Information Science

Biographical:

Personal Data: Born in Inchon, South Korea, September
29, 1956, the daughter of Mr. and Mrs. Jangsun Choi;

Education: Graduated from In-Il Girls' High School,
Inchon, South Korea, in January, 1974; received
Bachelor of Science degree in Mathematics from Ewha
Woman's University, Seoul, South Korea in January,
1979; completed requirements for Master of Science
at Oklahoma State University in December, 1989.

Professional Experience: Systems Analyst, TMS Inc.,
Stillwater Oklahoma, 1987-1988.

