
SYSTEM DESIGN FOR A MULTI-·USER MICROPROCESSOR-

iASED APPLICATION

By

NEENENDRA R. PANDYA

.Bacfuelor of Engineering

Bangalore University

Bangalore, India

1979

Submitted to the/ Faculty of the Graduate College
of the O~lahoma State University

in partial ftilfillment of the requirements
for the Degree of
MASTER OF SCIENCE

December, 1981

SYSTEM DESIGN FOR A MULTI-USER MICROPROCESSOR-

BASED APPLICATION

Report Approved:

~- z: . . #..L-:~
()~ll~

Dean of the Graduate College

ii

ACKNOWLEDGMENTS

I am grateful to my principal, adviser, Dr. John R. Phillips, for

his constant guidance and willing help throughout the course of my study.

I would also like to thank my committee members, Dr. G. E, Hedrick

and Dr. M. Fol~ for their encouragement and assistance. I would like

to express my gratitude to Dr. D. D. Fisher, head of the department, for

his advice and guidance.

I thank Mrs. Grayce Wynd for her excellent typing of the report.

I also wish to express my since,re appreciation to Dr. Meg Kletke

for being very helpful and considerate during my position as a Graduate

Research Assistant in the Department of Agricultural Economics.

I am deeply indebted to my parents, brothers and sister for their

constant inspiration, encouragement and guidance; they have made all of

my achievements possible.

iii

TABLE OF CONTENTS

Chapter

I. -INTRODUCTION

II.

III.

IV.

Objective
Project Overview
Approach to System Design.

THE HARDWARE SYSTEM

Selection and Classification of Essential
Hardware Functions .. ,

Description of Specific Jiardware Components .
Polling •.... ,
Interrupt I/0
Direct Memory Access (DMA) .

THE SOFTWARE SYSTEM

General Considerations in Operating System
Selection

Object-oriented Operating Systems
Types of Operating Systems ..
An Operating System's Resource Management
Processor-time Management

Multi-user Capability
Synchronization Between Interacting

Processes e ••••••

Mailbox Communication
Deadlocks and Their Resolution

Prevention
Automatic Detection
Operator Detection

Memory Management
Peripheral Management
File Management

Selecting a Specific Operating System
Reentrant Program Considerations

APPLICATIONS OF SYSTEM DESIGN

A Real-Time Alarm System
A Reentrant Text Editor ..

iv

..

Page

1

1
1
2

7

7
10
12
14
18

21

21
22
25
26
26
28

28
30
31
31
32
32
32
34
39
43
47

so

50
62

Chapter

V. SUMMARY, CONCLUSIONS, AND FUTURE WORK

LIST OF REFERENCES .••.••.•••.••

V

Page

69

71

TABLE

Table

I. Programmable Interrupt Modes Operation

vi

Page

14

LIST OF FIGURES

Figure Page

1. A Critical Path Chart 4

2. System Architecture of the iSBC 86/12A Single-Board
Computer • . • . . • • • 11

3. Three Methods of I/0 Control. . . 13

4. Handling More Than Eight External Devices . . 16

5. iSBC 534 Four Channel Communications Expansion Board
Block Design. . • . . . •.••••• 17

6. iSBC 206 Disk Controller Block Design 19

7. Hierarchy in a Computer System •.••• 23

8. A State Diagram of a Process • 24

9. Resources to be Managed by an Operating System. 27

io. A Process Control Block 29

11. Interprocess Communication Using P and V Operators. . . 31

12. Single Contiguous Allocation. 33

13. Interrupt Handling •.• , 36

14. Single Buffering (a:), Double Buffering Strategy (b) , .. 38

15. An Operating System's File Management System. . . . 40

16. Logical File Organization - Sequential (a), Random
(b), and Indexed Sequential (c) • . • • . . . 42

17. Stack Area Setup During a PL/ M Procedure Call . . . 49

18. Connections to the System's Programmable Interrupt
Controller . , . • • • . • . • . • . 52

19. Connections to Ports A and B of the 8255A Programmable
Peripheral Interface •.• , ••.••.•.•• , 53

vii

Figure

20. User-System Interface Process 'EXEC'

21. Read/Set Alarm Process 'RDALARM'

22. Alarm Process 'ALARM(N)' ..•.•

23. Monitor for Alarm Message 'AMSG' .

24. ·Routine 'PMSG' to Print Message on CRT.

25. User Command Process .

26. Editor Flowchart .•

viii

Page

55

57

58

60

61

65

67

LIST OF ACRONYMS

CRT - Cathode-ray tube

DMAC - Direct memory access controller

I/0 - Input/output

iSBC - Intel single board computer

MULTIBUS - Intel single board computers' system interface bus

OS - Operating system

PIC - Programmable interrupt controller

PIT - Programmable interval timer

PPI - Programmable peripheral interface

RAM - Random access memory

ROM - Read-only memory

UART - Universal asynchronous receiver-transmitter

USART - Universal synchronous and asynchronous receiver-transmitter

µC - Microcomputer

µP - Microprocessor

ix

LIST OF DEFINITIONS

Allocation technique - The method of providng a process with access to a
shared resource.

Communcation expansion board - A board containing hardware to provide
expansion of systems communications capability.

Direct memory access controller - A specialized processor designed to
perform high speed data transfers between memory and the device.

DISKIO - The disk input/output module of the RMX/80 operating system.

Disk sector - Fixed length sections that a track is divided into on a
disk.

Dynamic load - Refers to an electrical circuit where events occur that
vary in amplitude and duration with time.

Expansion boards - Boards that provide system expansion and support
through CPU, memory, and I/0 boards.

Extent - A collection of several contiguous disk sectors.

IBM 5440-type disk drive - Top-load~ cartridge-type disk drive with a
controller drive interface, mechanically sectioned for 12 sectors.

Interrupt level - A unique level at which the occurrence of an interrupt
can be identified.

Logic state analyzer - Used in debugging software and complex software
hardware faults. Presents the flow of the system's program by monitor

. ing all important circuit points.

Master-slave programmable interrupt controller (PIC) configuration - A
configuration used to handle more than eight external devices. One PIC
is at a higher level than the others; it is called the master, and the
others are called slaves.

Memory protection - A method of ensuring that the contents of main memory
within certain variable limits are not altered or inadvertently destroyed.

Networking - Sharing and accessing of information between computer systems.

Non-contiguous allocation - An allocation method that assigns physically
nonadjacent sectors to a file.

X

Object-oriented architecture - Makes an operating system easier to under
stand. It uses objects (data structures) as building blocks that the
operators (system calls) manipulate.

Primitive - Operation provided by an operating system nucleus for use in
synchronization.

Programmable interrupt controller (PIC) - A programmable device that
handles interrupt requests from more than one external device.

Resource - Any device or item used by a computer, including special areas
of memory such as buffers.

RMX/80 disk file system - A module of the RMX/80 operating system that
provides for the filing and retrieving of data using disks.

RS232C - An Electronics Industry Association (EIA) standard that covers
the electrical specifications for bit-serial transmission, as well as
the physical specifications.

Serial input/output - Required for certain devices such as teletype, tape
and disk communication. Each time a bit is passed on a single line
according to a serial standard.

Time-slicing - A technique that shares processor time among several
processes. The quantum of time allocated to a process is termed a time
slice.

Universal asynchronous receiver-transmitter (UART) - A serial-to-parallel
and parallel-to-serial converter.

Universal flexible diskette controller - A diskette controller capable of
supporting virtually any software - sectored, single density diskette
drive.

xi

CHAPTER I

INTRODUCTION

Objective

This report develops a paper system design for a multi-user micro

processor based application. It gives the novice designer a feel for·

approaching and tackling the task of microcomputer system design. A

few detailed applications illustrate the design process. None of the

examples presented is intended to be a complete or specific design. A

result of this report is guidelines for the systematic approach to the

design process. Such an approach greatly simplifies,the process of sys

tem design. Although terms are explained at a general level, this report

deals with specifics quite often to elucidate certain design criteria.

Project Overview

When a designer embarks on a microcomputer system design project,

he should take a systematic approach to the design process. In the

section on "Approach to System Design," hints about hardware and soft

ware design are presented. Examples using the INTEL 8086 CPU with

PL/M-86 as the application language are used throughout the design

process. Use of diagnostic routines and discipline in software are also

explained. Finally, the importance of economics, testing, and system

integration in design are given.

The chapter on the hardware system first distinguishes essential

1

hardware functions needed in the design. Specific boards to implement

these functions are then selected along with the justification of their

selection. The advantages of the processor and language selected are

also given.

In the software systems chapter, first basic terminology used in

operating systems is explained and the keypoints in selecting an oper

ating system are given. The keypoints indicate the usefulness and

power of an operating system. This section gives the designer a handle

on selecting the operating system he needs. In the next section, a

specific operating system is selected based on the points in the pre

vious section. The selected operating system is shown to be very suit

able to our design requirements. Considerations for reentrant pro

gramming are also presented. When and how procedures can be declared

reentrant in a high-level language PL/M-86 for the INTEL 8086 chip are

specified. These points would prove useful to a designer using PL/M-86

as the design language for his application.

After having defined the software and hardware systems, a few

design applications are presented in sufficient detail to make the sys

tem design process clearer. The applications consist of a real-time

alarm system and a text editor, Depending upon the application, the

hardware components chosen earlier may not all be necessary.

Approach to System Design

A systematic approach to microcomputer system design is necessary

to achieve smooth implementation of the design process. The design

process, especially the software part, takes some adjustment. For a

first microcomputer design effort, it would be best to follow the key

2

suggestions given below:

1. Pick a small job which resembles closely a design previously

completed.

2. Study in detail and understand the manufacturer's literature

on the selected microprocessor.

3. Select carefully microcomputer-development systems, logic

state analyzers and other microprocessor test tools.

4. A key to successful microcomputer'design project is to plan

carefully the work to be done (22).

Figure 1 shows a critical path chart which is of great help in

project planning. The chart shows what tasks must be completed and in

3

the order they are done for a small design project. The first step, over

all design, indicates that the designer should understand clearly what the

system is supposed to do before selecting the microprocessor. The engi

neer can use pre-manufactured cards for ease in design, and hence can

start designing necessary application dependent input-output hardware

while waiting for the cards to arrive.

Most engineers start the hardware design by tackling the CPU first.

CPU design usually starts with the clock. The clock should be designed

according to the characteristics the specifications call for. The cir

cuit is then checked under dynamic load. The designer may have to

design and implement a manual operator's panel if the product requires a

moderate sized program and more than a few integrated circuits. The next

important hardware design aspect is the handling of memory. When design

ing a microcomputer's read-only-memory (ROM) and random-access-memory

(RAM), one must always leave sufficient room for expansion. The program's

basic definition may change or its length may have been under-estimated.

Overall Block Select
Design (3) Diagrams GPU

---- .. .;;;, .. -·· ·(··· ·····--··"'-··········
2) (2)

......_
(")

rl ..._..
------------------0----------,

,-...
If"\
r---1 ._,

OJ
~
~
lH
0

Cf)

.µ
(I)

I/0 Desig.£:, Build I/0 IOJ
: (10) (20) 0

J/Selec~u:1 H~;~~:re __ ! ~=~~g& (20)
~M~dia (2) (35~ (10)

\
0

007 ~) f"I ,(,.e,

\ 0 ~~

l o c/"><v

~j <,~;/o"

· Total Time= 14 Weeks, Min

Note: (n) = Working Days to Complete Indicated Task

Figure 1. Critical Path Chart. The 14-week Minimum Total Elapsed Time is Typical
for a Newcomer to µP 1 s attempting to Perform a Relatively Simple Task
with Which he is Reasonably Familiar

--0

r

~

5

The microprocessor can be used to test the hardware with the help of

diagnostic routines. A diagnostic program can diagnose some faults and

report them. Typical diagnostic routines test memory and input/output

equipment. When testing the hardware with these routines, they are

placed in an accessible location for the debugging monitor, thus provid

ing an on-line diagnostic tool. This helps to decide whether the hard

ware or software is at fault.

In software design, regardless of how the software and hardware

design areas are assigned, the problem definition must be exact. It can

not be incomplete or imperfect, as that would cause grave problems later

on in software development. Software development is at least as hard as

hardware development, Paper designs are relatively cheap and easy to

change and, in most cases, there are numerous alternative methods of

design. Choosing the software design is normally based on economics,

because the cost of software development in a microcomputer system pro

ject can be significant. In designing a microcomputer system from the

chips up, software will cost about as much as hardware, But if the pro

ject develops around a microcomputer bought from a vendor, software costs

exceed hardware costs.

Another important task to be performed in system design is testing

and verifying the operation of the final microcomputer system. In many

instances, the testing phase has not been planned well ahead, and results

in a less reliable system. The test plan should be designed with the end

user's as well as the engineer's own viewpoint. It should reflect normal

and abnormal situations expected in the field. A tester should bear in

mind that a debugged program is one that has not yet received the inputs

that will make it fail. Hence, the tester should try to design test cases

6

to make the program fail. The crux of the testing issue can be stated as:

the programmer and engineer debugging an imperfect system try to develop

test cases that will make the system work. On the other hand, a test plan

must aim at making the system fail (22).

System integration is the point at which the software and hardware

designed are put together, and they work together. This is the point at

which most failures appear. If the hardware and software were subjected

to tests earlier, then only errors remaining at system integration time

would be misinterpreted interfaces. On the other end of the line, inte

gration can take months if the hardware designer completes his work

assuming that the software to test his hardware will be correct, and the

software designer expects debugged hardware to test his programs. Thus,

a reasonable amount of time must be allowed in the design for this purpose.

CHAPTER II

THE HARDWARE SYSTEM

Selection and Classification of Essential

Hardware Functions

In the system design for many applications, use of off-the-shelf com

ponents, such as single board computers, I/0 expansion boards, can result

in savings in time and increased efficiency on the system designer's part.

INTEL offers a wide range of products, and in most cases all the designer

must do is decide on the components he needs. At the same time, the

design should be flexible so that future modifications and expansions

would not pose a problem.

The task of designing the hardware system can be simplified by first

classifying the necessary functional elements. These classes can be

broadly categorized, as shown below:

1. A central.processing unit powerful enough to handle many users.

2. An efficient input/output system.

3. Sufficient main memory and secondary storage.

4. Necessary expansion boards and peripheral controllers ..

The INTEL 8086'CPU is chosen because it is a powerful processing unit

with an architecture to handle high-level languages (HLLs) efficiently.

Selection of a microprocessor language is influenced by cost-effectiveness

and deciding which language is most suitable for a given application.

Working with an HLL is much easier than working with assembly languages.

7

8

An HLL is easy to learn and can boost daily code production far beyond

that of an assembly code. Programs written in HLL are generally portable

'with a few modifications. The disadvantage of HLLs are that they are

less efficient than assembly languages, and require more memory and

larger execution times (18). But PL/M-86, a systems implementation lan

guage; is designed specifically for the special requirements for micro

computers and also produces an efficient code. It is the language chosen

in this multi-user application design because of its reentrant capabili

ties and several other features, including: high-level constructs for

machine control, especially interrupt hanqling, direct port I/0.and

access to absolute memory locations; pointers and based variables; string

manipulation; LOCKSET, a procedure for multiprocessing environments (20).

PL/M-86 makes it easy to divide a programming task into subtasks,

thus encouraging top-down design. Modularity also simplifies program

development and maintenance. PL/M-86 includes special features for writ

ing systems software: I/0 handlers, device drivers, system monitors-

any executive program that directly controls hardware even if imbedded in

application software. Unlike FORTRAN or PASCAL that require an operating

system or run-time. support to perform system-level functions, PL/M-86

does not need this support, resulting in savings in memory. Hence, PL/M-

86 offers the memory efficiency of system-level code and the programming

efficiency of an HLL.

PL/M-86 execut~s on the 8086 CPU which is the chosen processing

unit for this design. Due to the HLL efficiency of the 8086, the PL/M-86

compiler increases memory requirements by no more than 1.45 times those

of the ASM-86 assembler. The execution speed is only 1.19 times that of

ASM-86 programs (depending on compiler options and the applications)(19).

9

The size of reentrant code can be reduced as much as 54% compared with the

same code run through the PL/M-80 compiler. The 8086 CPU uses an optimum

amount of registers to implement HLL efficiently. Based on a study by

A. Lunde, it was shown that three index registers and six registers all

together are used 90% of the time for forty-one scientific DEC system-10

programs. The 8086 provides eight general registers--four of which can be

used as index registers. These are enough to support the required 90%

usage. Too many registers increase the interrupt-service time. The

8086 handles the storage of constants to generate memory efficient code.

It also provides all necessary addressing modes to support data manipula

tion in an HLL, from simple direct addressing to the complex base+ index

+ displacement.

In addition to the above features of the INTEL 8086 CPU and PL/M-86

language, the following considerations led to selecting the hardware com

ponents of this design from the INTEL range of products. Before the

advent of single-board computers and system expansion boards, system

designers were hindered in two ways: hardware complexities and test

requirements confined them to assembled computer subsystems or production

volumes being low did not justify hardware and software development costs.

But these hurdles can now be overcome by using families of single-board

computers and expansion boards such as the INTEL SBC-80 series. These

boards are ready-to-use, flexible, and inexpensive. These boards provide

programmable parallel and serial I/0 structures that provide design flexi

bility in I/0 interfacing. The Multibus, the SBC-80 system bus allows

modular performance expansion by providing a defined, standard interface

between the SBC-80 single-board computers and expansion boards. Besides

the wide variety of INTEL SBC boards, there are a number of non-INTEL SBC

10

compatible boards that make system expansion and support possible.

Expandable backplanes and card cages are also available to support multi

board systems (21).

Description of Specific Hardware Components

INTEL offers a line of single board computers that have limited RAM,

ROM, and I/0 capabilities (10). The iSBC 86/12A Single board computer

has an 8086 16-bit HMOS microprocessor which, with the proper software

and hardware, can handle many users efficiently (10, 11). The iSBC 86/

12A also has nine levels of vectored interrupt control, expandable on

board to 64K bytes. The system memory is expandable to one million

bytes. Hence, the applications program and executive routines can both

be resident in the system memory often. This computer also has the MULTI

BUS interface on board, which allows for system expansion, thus not limit

ing the system's capabilities to those of the single board computer (12).

A block diagram of the iSBC 86/12A is shown in Figure 2.

Having decided on the single board computer, the designer faces the

problem of implementing an input/output system capable of handling many

users efficiently. From Figure 2 it can be seen that the iSBC 86/12A has

limited serial I/0 capability. But by using appropriate serial I/0 expan

sion boards, the designer can connect many terminals to the system.

Microcomputers are parallel systems, hence in serial communication,

an eight-bit byte of, data must be converted to serial form before output,

and from serial to parallel form before input (8, 4). There are two ways

to perform this conversion: by software, or with a UART (universal

asynchronous receiver-transmitter). The advantage of a progral1l!~ed imple

mentation is simplicity and the elimination of external hardware.

OUAl-PQqT
COr-.THOLLER

lCl.: xE
flQJ..~·FP!•OM
(SOCK~TSl

.l.lVLTlf3VS

&085
CPU

€:'59A
~ i'RGGR;..,,.tMABLE

l'lff:.;:;'l:..':.,-T
"(-r' . CO,'Ht{Ou.ER

!253
1WO

PROGRt..).)1,,ABLE
",J'-1E RS

Jr

RS-n~
COl.iPA l!Bl£ •

DEVICE·

~251>.
Fnosf,t.Ml..lA8LE

co~.o.:~!',J".:A ilONS
I~, 1 l ;,F;.,::f

('uSARD

fr

14 Pf!OGRAI.O.UBU:
PARA.UH ll'O LINES

PROGr-t..VV.ASLE !25..5.1.

SA:_1 :).P_A. TE PROGP.Al,.lMABLE

Gt.HtRAlOR PUtPHEPAL
INTERFACE

D i

--=>
Source: 2ystems Data Ca~, Intel Corporation (1980).

Figure 2. System Architecture of the iSBC 86/12A Single
Board Computer

11

12

However, it is slow and might impair the microprocessor's performance.

Also, no reliable delays can be implemented in a system using inter

rupts. A hardware implementation is required. Moreover, the INTEL 8251

USART (Universal synchronous and asynchronous receiver-transmitter)

already exists on the iSBC 86/12A and serial I/0 expansion boards.

Basically, there are three methods of input-output control (8).

They are:

1. programmed I/0, or polling

2 •. interrupt-controlled I/0

3. direct memory access.

These three methods are illustrated in Figure 3.

Polling

In polling, all transfers to and from devices are performed by the

program. The processor sends and requests data; all in~ut and output

operations are under control of the program being executed. The trans

fers must be coordinated by a "handshaking" process. This technique

has two limitations:

1. It is wasteful of the processor's time, as it needlessly checks

the status of all peripherals all the time.

2. It is intrinsically slow, since it checks the status of all I/0

devices before coming back to any specific one. This cannot be toler

ated in a real-time system, where a peripheral expects service within a

specified time. Fast devices such as the floppy disk or a CRT require a

near-instantaneous response time in order to transfer data without loss.

BASIC INPUT-OUTPUT

MEMORY

r-::-1 DATA BUS

~v---------,~----;,,::---v POLLING

I I ?
I '---------
1
'- - - - - - - - - - - - - - - - - - _,,

I MEMORY]
I 1 f MPU L I I

1----=--------.-.,..----........ --:-:: INTERRUPT

+ 110 110=:J
I._ _1l'_Jr_, _________ ,_,'--'N"""T ___ ~;~n

I i
, HOLD I MEMG'!Y'] [O,'M 1

~-~~-;-!_,_':__.,...,.._;_1_1_I_..J_,..·....-~~-~ ONA : e LS
Source:

L---- ____ !-

Zaks, Rodnay and Lesea, Austin.
processor Interfacing Techniques

Micro
(1979),

Figure 3. Three Methods of I/0 Control

13

14

Interrupt I/0

The interrupt-controlled I/0 method guarantees the fastest P,Ossible

response to an input-output device and is the method used in this system

design (8). The iSBC 86/12A board provides nine vectored interrupt lev--

els, the highest level being non-maskable is directly connected to the

8086 CEU. The INTEL 8259A programmable interrupt controller (PIC) pro-

vides ve·ctoring for the next eight interrupt levels. A selection of four

priority processing modes is available to the system designer as shown

in Table I.

Mode

Fully nested

Auto-rotating

Specific
priority

Polled

TABLE I

PROGRAMM:ABLE INTERRUPT MODES OPERATION

Operation

Interrupt request line priorities fixed at Oas highest,
7 as lowest

Equal priority. Each level, after receiving service,
becomes the lowest priority level until the next inter
rupt occurs.

System software assigns lowest priority level. Prior
ity of all other levels based in sequence numerically
on this assignment.

System software examines priority - encoded system
interrupts status via interrupt status register.

Source: §ystems ~ Catalog. Intel Corporation (1980).

Any combination of interrupt levels may be masked, via software,

15

The PIC generates a unique address in memory. for each interrupt level.

These addresses are equally spaced at four byte intervals. These loca

tions contain unique instruction pointers and code segment offset values

for each interrupt level. The PIC determines which of the incoming inter

rupt requests is of the highest priority, then determines if this request

is of h~gher priority than the level being serviced and, if appropriate,

issues an interrupt to the CPU. The CPU acknowledges the interrupt and

obtains a device identifier byte from the 8259A PIC. It then stores its

status flags on the stack and executes an indirect CALL instruction

through the vector location (derived from the device identifier) to the

interrupt service routine.

In the present system design, additional interrupt levels are requir

ed so that slave 8259A PICs can be interfaced via the system bus. A total

of 65 unique interrupt levels may be generated by these additional vector

addresses. Figure 4 shows the general concept of tying 8259A PICs in a

master-slave configuration.

Only one serial device can be connected to the iSBC 86/12A board via

the asynchronous RS232C compatible serial interface provided on board.

To provide expanded serial I/0 communication and implement the interrupt

controlled method of I/0, we can consider the iSBC 534, an INTEL product.

The iSBC 534 is a four-channel communication expansion board that provides

serial I/0 expansion through four programmable synchronous and asyn

chronous communication channels (10). This board provides a flexible and

easy means for interfacing iSBC 80 and system 80 based systems to RS232C

compatible terminals. The block diagram of the iSBC 534 is shown in

Figure 5. Two independent Intel 8259 PICs provide vectoring for 16 inte·r

rupt levels. Two jumper selectable interrupt requests (eight total) can

$l.&Vf
fl2".)SA.

INHRRVPT
CONTHOllf..\

'-'-----c===:::~ ;H,J

•
•
•
•
•

[EXTERNAL DE'1CE o]J---<,

..
•
e

•
"

[EXTERNAL 0£1/ICE 15 }----;

•RI INT

IR2

IRJ

rn,

•RS

IRG

IR7

SLAVE
82594

1NTERRL;?T
CONT~CLLER

·H:J

IRi INT

IR2

IR3

IRG

IRS

IR6

•R7

" • ..
<>

•
SLAVE
8259.',

INTERRUPr
CONTRVllER

EATfR-.;,t :J'.:'.'ICE ,:,-: JRQ

§~·~7il-
•
•
•
•
•

1;;;1 l~H

,a;

IRJ

ia,
IRS

IRS

~

MASTEF\
ll~S3A

INTEPFl:Jn
::o"J fROL lE R

IRO

,css
Ffi0CESS0Fi

-->JAi INC 1-----<"'il!'\TR

IR2

IRJ

'"'
IRS

IR6

Source: Morse, Stephen P. The 8086 Jrimer -
An Introduction to its Architecture,
System Design, and ~ramming (1980)

Figure 4. Handling More than Eight
External Devices

16

'

t\")"
DIVll'.f

-~_J
'(Sl ~~~·::;l[

' II/T1f''1UPT

fl!t"•.'1Sf

U', 7J.'C CVRP(!,jJ
cc.,.,,_• .. 11su· COYrA·unt ux,.,.

.lLb ~
~~~ 

tl,",tJU flA!t 
(jP,.,[l!AIOfl 

' ' Jt""P(R ' • )'.JYP(ill I scuc1ki.U srLtcTAetl 

r~v\,1\,,, • ..,,.hi..E 
fPL::'IJl.<.ll 

' PROG~A'.•'~ABLE 
1'..-------1 rw...:,s 

Source: SY§J:emspata Catalog, Intel Corporation (1980). 

Figure 5. iSBC 53Lf Four Channel Communications Expansion 
Board Block Design 

17 



18 

be generated automatically by each USART when a character is ready to be 

transferred to the system bus, or a character has been received. Depend

ing upon the number of users to be connected to the system, one or more 

iSBC 534 boards can be used. 

Direct Memory Access (DMA) 

Although interrupts guarantee the fastest possible response to an 

input/output device, service to the device is still accomplished by soft

ware. This may still not be fast enough for processes involving fast 

memory transfers such as disk transfers. The solution is to replace 

software by hardware by using a direct memory access controller (DMAC), 

which is a specialized hardware processor. 

INTEL offers two peripheral controllers, the iSBC 204 and the iSBC 

206. These boards are fully compatible with the iSBC 80 and iSBC 86 

single board computers (10). 

The iSBC 204 is a universal flexible diskette controller capable of 

supporting four single density diskette drives. It has a wide range of 

compatibility without any sacrifice in performance. The iSBC 206 is a 

disk controller that can control up to four IBM 5440-type disk drives, 

providing up to 40 million bytes of storage. Though the iSBC 206 does 

not have as wide a range as the iSBC 20Lf, it allows for a large secon

dary storage system which may well be necessary in a multi-user appli

cation. Figure 6 shows the block diagram of the iSBC 206 which actually 

is a two-board set, a channel board and an interface board. 

Another attractive feature of the iSBC 206 is that it is supported 

by both the disk file and DISKIO levels of RMX/80s disk file system. 

The RMX/80 is INTEL's real-time multitasking operating system used 



Channel Board 

.- DO/-D7~ 
'----' ..., AM ,- I IB~~J-"G~ffer tMter 

----', LogJ~ -·Contro1 
I j INTEL 
JI DAT 0/- DAT Ft __:__' 3000 Seri 

<=-=: l Bipolar 
Micro-

,_ADR1-(-::-_ADR13 I ---J;rocessor 
<:------ I Sys tern 

BHE/ ----
1 

-~ i 

MKO/-ljK7 

DO/-D7/ 

mma-B-<ls-~ 

Status __ 

20 MHz 
Clock 

I 
i 
! 

l 

! ! I I EXTP/-EXT 

l I 
J 
I ~ ilnterrupti~4:--~--

Matrix I -- . 

Interface Board 

MKO / - MK 7 / Co.nt..r..o,,...~1---,., 
1-::::::::::::::.:::=========~-lj Drive and 
l-- • • Status r------ 1 Read/Write k--------1 c~ Co~trol 

DO/-D7 j j . 1 · / I t-----==t.:- .,. Ser1a izer IE&ad 1-----.-__ Tc_p_;;:;-.Ul1ll"1JlQ.S __ ,.,=·-- ,---> Deserialize Data 
Status ··--·- · 

'r---,.--·n 

l~ ------:-. Data 
1

~nco:e and k- _w_r_i_~: 
Clock 

1 ---· CRC Generator I Data I 
I FH/NR r--~ . I 

Switc i 

* 
I , J External I , 

EXTO -4 .! Bus ~----~ - · - · ):!ultiplexolj'Y-'=========· EXT 7 , Js-
Test/Run Status 

Record Drive, 
Size Attention 

Switches j 

P2 Conn~ctor 
I 

Jl Connector 
(to Drives) 

Source: Sy2 _tens _Da_t?.:. <;atalo_g_, · Intel Corporation_ (1980). 

Figure 6, iSBC 206 Disk Controller Block Diagram 
I-' 
'-0 



20 

especially with INTEL's wide range of single-board computers. Files are 

named symbolically and may be created, deleted, or updated. All of the 

data transfers are carried out through DMA operations. 



CHAPTER III 

THE SOFTWARE SYSTEM 

General Considerations in Operating 

System Selection 

Currently available microcomputer operating systems range from 

simple noninterrupt-driven to full-blown multitasking/multiuser operating 

systems. To evaluate and to select the operating system that is best for 

an application, one requires knowledge of some basic microcomputer soft

ware terminology. 

Microcomputer system designers now have very sophisticated hardware 

and are demanding equally capable software, both at the application and 

system level (14). The evolution of operating systems for microcomputers 

is much faster than that of minicomputers. There is a trend toward cod

ing operating systems in high-level languages (HLLs) or a mixture of an 

assembly language and an HLL. Another advanced capability available in 

a number of operating systems is networking. Due to variability in ven

dors' descriptions of their operating systems, one must understand terms 

used to describe the software before he can compare vendors' offerings 

intelligently. 

An operating system (OS) controls a microcomputer (µC) and acts as 

a mediator between the computer and its users; it relieves the users of 

the task of writing code that deals directly with system hardware 

resources. 

21 



A representative model of a total µC system is shown in Figure 7. 

At the innermost layer lies the hardware, surrounded by the operating 

system software. The next layer contains the application programs and 

system utilities - editors, compilers, assemblers, and debugging aids. 

The users interact with this layer and the OS fields all requests for 

servic~s and handles all inputs and outputs, interrupt processing and 

task coordination. Hence, users need concern themselves with only 

their applications. 

22 

The user interfaces with the µC system by submitting a job - a col

lection of steps needed to accomplish a specific amount of work. These 

job steps are usually executed sequentially. Presented with a job, an 

OS might break the job up into tasks and create processes to service 

them. Each process is a computation that can occur simultaneously or 

concurrently with other processes. Multitasking denotes a system with 

several concurrently executing processes - either running, ready, or 

waiting (Figure 8). 

Object-oriented Operating Systems 

The complexity of many operating systems makes it difficult for 

users to grasp their organization. But OSs exhibiting object-oriented 

architectures have well defined mechanisms and are consistent, which 

makes them much easier to understand. For example, RMX/86 is a real

time modular object-oriented OS for the INTEL 8086 16-bit micro

processor. The RMX/86 architecture resembles that of 8086, as it has 

operators (system calls) that manipulate objects (OS data structures) 

much like the 8086's operators.manipulate operands. Tasks, semaphores, 

mailboxes, connections, memory segments, and jobs are some of the OS's 



\ 
\; 

\ 
\. 

._., ~- .. - . -- ..,...__, .. - . 

People 

-·· -::•·~-· -~~~-r:v.,_ 

-,-0···"" ... ~-- Loaders .. , ........ ""'-.,.,.. 
'--~1.~._-

,1",/i'" System Translators 
,;/' Compilers Assemblers 

/'' Applic};}lons_t2:_ograms 

I ,/',,,, .... Opser_att.ing "',,~ 

1· Y§~ \ 

( / (::d~are \ \ 
l l ! l 
l t I Z , ' / I \ \ ,,., / 
\ \, ~ ,r 
\ ~ / 
~ v.':c- ,./ ' ~~ ,,,.~ 

\ ··1t:~-·.,b,~.=~ .• c:,;~"°~-

' Debugging Aids 
",_ System Utilities ·,.,'!; 

.... ~ .... 

"-,"-·· 
....... """ 

"· Editors 
·~. 

---~; --· •• ,, _..., • .,,-- ~~:!""-;;, 

-- ··-;:;,..,,__, ..... ,...,. 

Figure 7. Hierarchy in a Computer System 

23 



Process ff ask 
Assigned to µP 

Process/Task 
Must Wait for I/0 

Completion 

I/0 has Completed 

Source: Hemenway, Jack,. and Ko telly, George. "Microcomputer 
Operating Systems Directory." EDN, November 5, 1980. 

Figure 8. A State Diagram of a Process 

24 



25 

objects. RMX/86 treats data structures symmetrically, so users can 

create their own objects and write their own operators to configure cus

tom OS functions. This type of architecture uses objects as building 

blocks that the operators manipulate. Each type of object has a spe

cific set of attributes, and once one becomes acquainted with these 

attributes, he is familiar with all of the objects they describe. 

The main advantage of object-oriented operating systems is that one 

can master the OS in a short time, and hence focus only on the objects 

he plans to use. 

Types of Operating Systems 

Operating systems can be classified in terms of user funtion as 

follows: 

1. Development OS: This type of OS serves to produce software 

either to run on the host µC or another target µC. Intel's ISIS, 

Motorola's MDOS, Digital Research's.CP/M are a few examples. 

2. Real-time or Process Control OS: Generally serves to control 

industrial processes that require fast responses from the µC, because 

slow responses could impair or seriously degrade the processes. Com

puterized oil-refinery control is an example of a real-time application. 

Intel's RMX80 and RMX86, and Texas Instruments' RX are examples of such 

operating systems. 

3. General-purpose OS: These are generally associated with bus

iness or scientific applications. For example, the CP/M OS is used in 

word processing, accounts-receivable generation, and mailing list main-

tenance. 

Many OSs provide capabilities in all three areas. A further 



26 

classification is sometimes used to describe OSs. Any of the above three 

OSs can be either a multiuser or single-user system. A multiuser OS pro

vides computational services to many on-line users. It achieves the 

effect of simultaneous service by sharing system resources in a round

robin fashion: each user in turn gets an allocation of system resources 

and no user gets more than any other - unless a priority scheme over

rides someone's turn or allocates more resources to a higher priority 

user. A single-user OS> on the other hand, usually allows one user to 

submit jobs serially (14). 

An Operating System's Resource Management 

An OS manages resources by allocating them on the basis of user 

needs and system capabilities. It performs this task by maintaining 

lists of available resources and noting which user has control of a par

ticular resource and who has the highest priority. As shown in Figure 

9, an OS allocates four resources: process time, memory, peripherals, 

and files. 

Processor-time Management 

Efficient processor management is one hallmark of an effective µC 

operating system. Sequential execution of processes or jobs can be 

very inefficient because many of these jobs are independent. Hence, a 

better way to utilize processor time would be multiprogramming. Sev

eral jobs can be handled simultaneously by overlapping or interleaving 

their execution. Another technique known as multitasking is the same 

as multiprogramming, but applied at the task level (14). The number of 

tasks allowed in an OS gives an indication of its capabilities. An even 



Hardware 

Source: 

File and Software 
Management 

Processor 
Management 

I/0 Device 
Management 

Memory 
Management 

Hemenway, Jack, and Kotelly, George. 
computer Operating System Directory." 
November 5, 1980. 

"Micro
EDN, 

Figure 9. Resources to be Managed by an OS 

27 



28 

more effective measure is whether the OS supports intertask communica

tion. This communication is necessary to allow processes to synchronize 

their execution and pass data among themselves. A further indication of 

an OS's power is the ability of tasks to start, .stop, or suspend other 

tasks. 

Multi-user Capability. A multitasking OS can have many users. Such 

a time-sharing OS makes each system terminal a separate task, assigns 

exclusive memory to each user, builds in protection mechanisms to keep 

users from getting in each other's way, and makes most system utilities 

re-entrant. Interuser communication facilities, common data bases, and 

other features make an OS even more powerful. Thus, how many users an 

OS supports and how much memory is needed for each user provides a rough 

measure of the OS's power and expense. In addition, some OSs accommo

date multiprocessing wherein a different microprocessor can serve each 

task. This structure permits true parallel processing, but it also com

plicates the operating system's processor-management routine. 

A process is the basic computational unit within an OS. There are 

two types of processes - an abstract process and a software process. A 

software process is uniquely identified by a process control block (PCB), 

which contains a state variable, a save area, and information about 

resources required by the process and allocated to it (Figure 10). An 

abstract process is the computation that results from the execution of 

such a software process (14). 

Synchronization Between Interacting Processes. Defining the rules 

by which processes interact is one of the OS's main taks. This inter

action is controlled by synchronization and communication between the 



Process Identification 

Saved Registers 

// 
~- - -- r //) 

;-_______ / 

State of Process / / 1-----------------a __________ ,,___/ / I .//,. Priority 

r------P-0_1_· 1-1-t:-e_r_s_t--o-O_t_h_e_r_P_r_o_c_e--s-s-e-s-~-~--1// 

f,,/ 

Source: 

=---( 

Other Pointers and Data 

Hemenway, Jack, and Kotelly, George. 
computer Operating System Directory." 
November 5, 1980. 

Figure 10. A Process Control Block 

Hicro
EDN, 

29 



30 

processes. 

In a good operating system, concurrently executing processes are 

unaware of each other's presence. The only contact necessary between 

processes occurs when information must pass between them (14). To imple

ment this contact, an OS can use different techniques. A typical scheme 

uses a physical entity called a lockbyte, or a semaphore, to represent 

each shared resource. By convention, a zero semaphore value indicates 

that resource is available and a one indicates that resource is in use. 

To access this semaphore, a microprocessor's resource request produces a 

communication signal, LOCK(X), release of the resource produces UNLOCK(X). 

A general form of the above scheme uses semaphores that can assume 

a range of integer values. Two operations - P and V - change the value 

of a semaphore. This technique serves in systems that require more 

sophisticated traffic management, such as the producer/consumer model in 

Figure 11 (14). 

Mailbox Communication. The mailbox is another form of synchroni

zation. If a process needs to communicate with another process, it 

requests creation of a mailbox to connect the processes and pass messa

ges (mail) between them. The message is then put in the mailbox and the 

second process can pick it up at any time. The mailbox ensures that the 

second process eventually receives the message. The mailbox is imple

mented by the OS as a data structure with associated rules to define its 

operation. 

Another important factor in OS process or control is the monitor. 

It is a section of code enclosing critical code sections and allowing 

entry to the code only through defined entry points. It guarantees the 



exclusive use of a resource. 

Producer Process (P) 
p 

Produce ..• 

(Produce Item) 

(Put Item in Buffer) 

Jump to Produce 

Consumer Process (P) 
C 

Consume 

(Get Item From Buffer) 

(Consumer Item) 

Jump to Consumer 

Figure 11. Interprocess Communication Using P and 
V Operators 

Deadlocks and Their Resolution. With synchronization procedures, 

31 

such as the use of semaphores, processes can block and unblock each other 

to synchronize their operation. But the OS must exercise careful resource 

management to avoid a condition wherein two processes hold each other's 

requirements and are unwilling to relinquish them. This condition is 

termed a deadlock and could halt a computer. Hence, every OS requires a 

policy to deal with deadlocks. Three approaches are prevention, auto-

matic detection, and operator detection. 

Prevention. The OS maps all processes, thus preventing dead-

locks. A simple way to implement this would be to allow one process to 

execute at a time which is not a realistic technique. Another method is 

not to let the process execute until all of its required resources have 

been allocated to it - a technique termed preallocation. 



Automatic Detection. This technique allows a system to reach 

the deadlock state, but provides a means of detecting such states once 

they occur. 

Operator Detection. This approach assumes that deadlocks are 

infrequent and not worth worrying about. The operator generally must 

restart the system when a deadlock does occur. 

Memory Management 

Main memory is often th_e most critical and limiting resource in a 

µC system. Hence, an OS's method of allocating and administrating main 

memory is of importance to the system designer. 

32 

For a user wanting to run only one job at a time and not interested 

in maximizing the use of main memory, single contiguous allocation tech

nique is appropriate (Figure 12). This method treats available memory 

as one unit and then divides it into several sections, two of which are 

the operating system and the user job areas. This method produces inef

ficiencies in memory-management under more demanding circumstances. 

Hence, most of OS's use other storage-allocation techniques to assign 

storage to a job. These techniques also apply to system software. A 

good OS would probably store some driver routines on disk until they are 

needed (14). 

Other memory-management tasks making up a good OS are relocatable 

code generation and extension of available memory. Overlaying is a 

scheme of extending available memory. When a routine in memory is not 

needed, another routine residing on disk is called and replaces the 



I 0000 · . 

. OPERATING 

SYSTEM , 
· .... · 

USER 

PflOGRAM 

AREA 

··y" .. 
·. -~ 

.¥ 

f,-11<. / . ______ r 

Figure 12. Single Contiguous Allocation 

33 



routine in the main memory. By.this approach, the size of a µC memory 

can be less than the actual size of the OS. In overlaying schemes, a 

common area is established and data is transferred through this common 

area from one routine to the next. During evaluation of an OS, the 

designer should determine how an OS handles the overlay problem. 

34 

A second technique of extending available memory is called swapping. 

Unlike overlaying, swapping does not use any common area. Transfer of 

control is between programs rather than routines. This method is suit

able in a time-sharing environment where control is transferred among 

user programs. When a swap takes place, the status of the interrupted 

program is saved and is restored when execution of the interrupted pro-

gram resumes. 

Another technique called segmentation provides automatic overlays. 

In this scheme, the logical parts of a program are placed in their own 

segment of memory which is a variable sized block of memory. Thus, the 

OS can store segments in non-contiguous memory locations. Though this 

is a flexible scheme, it usually needs special hardware to implement 

the addressing scheme efficiently. 

An essential factor one must consider before he selects an OS is 

its memory protection scheme. There are schemes ranging from a system/ 

user mode classification to the IBM 360/370 scheme of associating pro

tection keys with each 2K block of memory (14). 

Peripheral Management 

A good OS must handle peripherals efficiently and utilize them 

properly. Peripherals normally account for a good share of the cost of 



35 

a µC system. 

There are broadly two types of peripherals, those for input/output 

and those for storage. Line printers, card, paper-tape readers and CRTs 

fall under the first category. Peripherals sucn as disk and tape drives 

are storage peripherals. Under storage types there are different groups 

related to access times. A serial-access storage medium such as a cas

sette tape provides for serial access. Data can only be accessed sequen

tially and hence the time to access a particular data depends on its 

position relative to the start of the tape. Main memory, on the other 

hand, signifies a direct access unit, The time to access a particular 

datum in memory is independent of its position in memory. A compromise 

between the above two methods for accessing storage peripherals is 

denoted by disk peripherals. In this case, the µC system moves the disk 

drive 1 s head to the appropriate track and waits until the desired sector 

passes under the head. It then reads the sector serially into a buffer 

block. 

An OS often manages the peripherals by using an interrupt scheme. 

This mal<.es the most efficient use of processor time (14). In this scheme, 

when a peripheral needs to transfer data, it sends an interrupt signal to 

the processor. The processor saves the status of all its registers and 

the program counter, and then transfers control to an interrupt service 

routine. After serv,icing the interrupt, control returns to the inter

rupted program by restoring the saved program counter and registers. 

Figure 13 shows the steps taken in interrupt handling. If the µC system 

consists of only one peripheral device, the OS's task of peripheral 

management is simplified. But when there are several peripheral devices, 



Source: ·Hemenway, Jack, and Kotelly, George. 
11Hicrocomputer Operating System Direc
tory." EDN, November 5, 1980. 

Figure 13. Interrupt Handling 

36 



fhere could be several interrupt request signals appearing at the same 

time. These interrupts can have scheduled priorities allowing the most 

important jobs to be performed first. Also, either the µC system.hard

ware must provide vectored interrupts, or else a polling procedure is 

required. 

37 

Besides providing a good interrupt structure, an OS must provide 

synchronization between its data-transfer program and each device. The 

clocks used by peripherals are always asynchronous with the system clock. 

This synchronization is brought about in part by hardware such as con

trollers and by software. Additionally, properly formatted data and cor

rect control signals must be supplied to·each device by the µC system. 

A well designed OS minimizes the time consumed by this task. 

In systems where high speed data transfer is to be achieved, direct 

memory access (DMA), a hardware function, can be employed. An OS can 

use a processor's time efficiently if it provides multibuffering. Multi

buffering is the scheme wherein the peripheral devices are so scheduled 

that some of them can operate simultaneously. In this way, the proces

sor and the devices are not kept idle. Figure 14 shows singlefand double

buffering and the latter's advantage over the former scheme. The buffers 

could reside in the peripherals, in main memory or in both, depending on 

the buffer administration policies enforced. 

Often a µC system could be slowed down due to slow peripherals. For 

example, low speed printers can bog down a µC system. A scheme known as 

SPOOLING makes a device that is dedicated to appear to be shareable. Files 

on a tape can be copied onto a disk and when a program tries reading from 

a tape, a SPOOLING routine converts it to a read from disk, which is a 

unit that can be shared, This method greatly improves the throughput of 



f1E,;O Ff,OM 
OlSK 

INTO Gl!F F[i1 

(a) {b) 
f1E,\:'.l DISK 

INTO 1 
BU'FEH 1 

Pf1'!Hl!l l v:~1r FOH I 
\\L~Y 

-~ y~ ·I rPirgFour 
fJUF; Ell 2 · --·-c-______ 

Source: Hemenway, Jack, and Kotelly, George. 
"Microcomputer Operating System Direc
tory." EDN, November 5, 1980. 

Figure 14. Single Buffering (a), Double 
Buffering (b) 

38 



39 

a system (14). 

Another important feature of the peripheral management routines of 

an OS is the allocation strategies used. There are two types of alloca

tion - static and dynamic. Static allocation is the allocation of devices 

before a program executes. The input/output scheduler handles this task. 

In dynamic allocation, devices could be reassigned within a program. 

Each device has a device handler to make these dynamic allocations. A 

shared device such as a disk appears as a group of dedicated devices to 

the user. It is the OS's responsibility to specify and allocate a defi

nite portion of a device to the user program. 

Device independence is another nice.feature that some OSs provide. 

The user need not concern himself with a particular device's character

istics. The OS would even format the output to fit the console's require

ments. ·This good feature of an OS improves programming productivity. 

File Management 

A file manager consists of routines which provide the interface 

between user programs and storage devices. The users do not have to be 

concerned with the details of data storage and retrieval. The programmer 

thus does not have to specify the actual mechanics of reading and writing 

a ·file, the location of files on storage devices, and the allocation and 

deallocation of storage space. Figure 15 shows a block diagram of a 

file-management system consisting of several levels of organization. 

A file is basically a collection of records, each record containing 

some information. When referring to a file, all a user has to do is to 

give a symbolic name for the file. This name corresponds to an entry in 

a directory. The entry in turn translates the name to the file's 

• 1.,f 



LOGICAL 
ORGANIZATION 

DIRECTORY 
RETRIEVAL 

GASIC FILE • - ·J, 
SYSTEM •·· __ 

PHYSIChl ORGt..NlZATION 

[ DFVIC[ llANOLEH'i=i 

t 

Source: Hemenway, Jack, and Kotelly, 
George. 11:Microcomputer 
Operating System Directory." 
EDN, November 5, 1980. 

Figure 15. An Operating System's 
File :Management 
System 

40 



attributes. In a single user system, one master directory is suffici

ent, but in a multiuser environment, an account identifies each user. 

41 

The file's local name is looked up in the account directory. This in turn 

points to a unique entry in the master directory of all files. This 

allows for file sharing, which is an important feature that avoids unne

cessary duplication of data. When selecting an OS, the designer should 

be aware of this fact (14). 

Another important factor that affects a µC system's performance is 

how the OS allocates disk storage space. There are basically two meth

ods - contiguous and noncontiguous allocation. The first method pro

vides efficient file access due to minimal disk head movement. But its 

drawback lies in its deallocation. Holes are left in the disk, and hence 

the disk has to be repacked often; this consumes time. In noncontiguous 

allocation, although there is more disk head movement, the processing is 

more efficient. This scheme is implemented as either a linked list of 

disk sectors or by the use of extents. In a linked list technique, 

after the disk has been used for a while the linked list of sectors 

becomes fragmented, resulting in excessive head movement. In the extent 

method, the basic unit is an·extent that consists of several contiguous 

sectors. A file consists of extents which are not themselves necessarily 

contipguous. Though this scheme also has the disadvantage of excessive 

head movement, it is to a lesser degree than in the linked list technique. 

The logical organization of files must also be considered before 

selecting an OS. There are three-main types: sequential, random, and 

indexed sequential, as shown in Figure 16. In a sequential organization, 

the records are read sequentially. There are two types of random files: 

byte and record addressable, depending on the type of application. The 



{a} 

RcCORD 5 

RECOF;D 6 

R(CORD7 

RECOr.D 8 

RECCRD 9 

RECORD N 

INDEX 

KEY 1 

KEY 2 

KEY 3 

l<EY ~ 

(b) 

(c) 

DATA FILE. 

1 Ot-.TA 1 

0ATA2 

OATA4 

CATA 3 

Source: Hemenway, Jack, and Kotelly, 
George. 11Microcomputer 
Operating System Directory." 
EDN, November 5, 1980. 

Figure 16. Logical File Organi
zation - Sequential 
(a), Random (b), and 
Indexed Sequential 
(c) 

42 



43 

user can process subsets of a file without having to search sequentially. 

In an indexed sequential file organization, a file is organized into an 

index portion containing keys and pointers to sequential data in the 

other portion. This organization provides faster access than a sequen

tial file organization. 

Coding at the assembler level is often complex when trying to access 

a file-management system's facilities. A good high-level language (HLL) 

should provide constructs to access the file management facilities. 

Hence, all these facilities should be accessible from an HLL as is the 

case in most implementations of available HLLs. 

The last function of the file-managerof an OS is its password and 

security-protection features. Files must be well protected from other 

users and the user himself. The protection could be delete protect, 

write protect, or both. 

Selecting a Specific Operating System 

The above methods to select and evaluate an OS can be used for the 

selection of a specific OS for this application design. The "Microcom

puter Operating Systems Directory" article in the November 5, 1980, issue 

of the magazine EDN, contains a list of 69 operating sys terns available in 

the market, summarizing the essential features of each OS. This directory 

has been used in the selection of an appropriate OS. 

The iSBC 86/12A single board INTEL computer will form the heart of 

the sample system. Other compatible components such as serial I/0 expan

sion and interrupt handler boards must also be considered while choosing 

an OS. The OS should be able to support multiusers and PL/M86 and ASM86 

languages. The application program may be coded in PL/M86 or ASM86 or a 



44 

combination of both, depending on the type of application. 

The foregoing techniques of OS evaluation have been summarized in an 

OS checklist (14). The same checklist has been used to select the OS 

needed for this application. The INTEL real-time operating system iRMX.86 

for the INTEL8086 will not be considered due to its inability to support 

multiusers. In this system design it would be necessary to have a real-

time operating system. 

The operating system checklist is reproduced below: 

General 

Name: 
Date first released: 
Primary application: Development ( ), process control ( ), 

general purpose ( ) 
Target processor: 
Target model: 
Sysgen program available: 
Languages supported: 
Language(s) system written in: 
System residency: RAM ( ), disk ( ), RAM and disk ( ) 
System ROMable: 
Minimum hardware required: 
Networking supported ( ) How, and to what extent: 
Sources available ( ) Price (single unit): 

PROCESSOR-ALLOCATION MANAGEMENT 

System vs User mode supported: 
Multitasking ( ) If so, how many tasks allowed? 
Intertask communication ( ) Tasks can start/stop/suspend 

other tasks ( ) 
Multiuser ( ) If so, how many users supported? 
Minimum RAM needed per user: 
Multiprocessing ( ) If so, how many µPs supported? 

Synchronizing scheme used: 
Ifmultitasking.or multiuser, type of synchronizing scheme used: 

Semaphores ( ) monitors ( ) mailboxes ( ) other ( ) 

MEMORY MANAGEMENT 

Single contiguous allocation ( ) 
Overlays supported ( ) 
Swapping supported ( ) 
Chaining supported ( ) 



Segmentation supported ( ) 
Static relocation supported ( ) 
Dynamic relocation supported ( ) 
When is binding done? Assembly/compilation time ( ) linki~g 

time ( ) loading time ( ) 
Memory protection available ( ) 

PERIPHERAL MANAGEMENT 

Peripherals supported: 
Interrupts used ( ) 
I/0 multibuffering used ( ) 
SPOOLing supported ( ) 
DMA supported ( ) 
Device independence supported ( ) 
One configuration supports more than one type of mass-storage 

device (for example, a mix of hard disks and floppies) ( ) 

FILE MANAGEMENT 

Named file system ( ) 
Sequential organization supported ( ) 
Contiguous organization supported ( ) 
Random organization supported ( ) 
Indexed sequential access method (ISAM) supported ( ) 
Multilevel directory supported ( ) 
Type of allocation used: Linked list of sectors ( ) 

extents ( ) single continuous ( ) 
File management systems accessible from an HLL ( ) 
Constructs in HLL to support file access ( ) or file access 

performed with assembler subroutine calls ( ) 
Password/security protection available. 

45 

Using the above checklist for a multiuser application, the main fea-

tures an OS must have for this application are: 

Development and real-time OS 

INTEL 8086 CPU as the target processor 

Support PL/M-86 and ASM-86 compilers 

Allow multitask~ng 

Support multiusers 

Provide memory protection 

Uses interrupts, supports CRTs and line printers 

Applying the above features, and referring to the microcomputer 



operating systems directory, the following multiuser operating systems 

for the 8086 CPU are considered, DIOS, MICRO COBOL BOS, M2SP/8086, 

POLYFORTH, XENIX and UMDS. MICRO COBOL BOS, M2SP/8086, POLYFORTH, 

46 

XENIX and UMDS operating systems do not support-PL/M-86. XENIX and UMDS 

are not real-time operating systems. Hence the DIOS operating system by 

Systeinathica Consulting Group, Ltd., was selected, It has all the desir-

able features for the system design. It supports the 8080 and 8086 CPUs. 

It is also a development, general-purpose and real-time operating system 

supporting the following languages: ASM 80/86 assemblers: BASIC and 

PASCAL (P-code) interpreters; FORTRAN, PLM, PL/I and BASIC compilers 

(14). 

The essential features of the DIOS operating system are summarized 

below: 

Name: DIOS 

Software Manufacturer: Systemathica Consulting Group, Ltd. 
4732 Wallingford St 
Pittsburg, PA 15213 
Phone (412) 621-8362 

SYSTEM RESIDENCY: RAM and disk 
ROMABLE SYSTEM: Yes 
MINIMUM HARDWARD NEEDED: Depends on configuration-modular structured OS 

RELEASE DATE: 1977 (8080 CPU version) 
PRICE: Depends on configuration 
TARGET MODEL: Disystem Series 
SUPPORT LANGUAGES: ASM 80/86 assemblers; BASIC and PASCAL (P-code) 

interpreters; FORTRAN, PLM, PL/I and BASIC compilers 
SYSGEN PROGRAM: Yes SOURCE CODE: Yes 
LANGUAGE SYSTEM: PiM and assembler 
NETWORK SUPPORT: Time sharing and multiprocessing 

PROCESSOR ALLOCATION/MANAGEMENT 

Automatic batch processing 
Multitasking: number of tasks depends on system mapping using 

intertask communication 
Multiusage: number of users depends on definable user/memory map 
Synchronizing scheme: mailbox type 



PERIPHERAL MANAGEMENT 

Supports CRTs, character and line printers, floppy- and hard-
disk drives, modems, magnetic- and paper-drives and plotters. 

Provides DMA and spooling 
Uses interrupts 
Acconnnodates a mix of mass-storage devices 

MEMORY MANAGEMENT 

Overlays 
Segmentation 
Binding during linking and locate times 

FILE MANAGEMENT 

Named file system 
Random organization 
Allocation type: extents and linked list of sectors 
Can access file system from HLL containing constructs 
Password/security protection 

47 

COMMENTS: DIOS is RAM buffered (multitrack, multisector) and transparent 
to user. Most disk I/0 executes at RAM-access speed. 

Reentrant Program Considerations 

PL/M-86, a high-level language for the Intel 8086 chip, has several 

nice features that make it applicable as the language in which the appli-

cation code can be written. Since in this design multiple users are 

allowed and they have different priorities, a user with the higher prior-

ity can interrupt a lower priority user. Hence, it would be desirable to 

have some of the routines reentrant. 

A reentrant subroutine is a subroutine that may be invoked while it 

is already in execution from a previous invocation. A procedure calling 

itself is one way a procedure might be reentered. Another way is for a 

procedure to call a second procedure which, in turn, calls the original 

procedure. These two forms of reentrancy are called recursion (1). A 

procedure can also be reentered if an interrupt occurs while the pro-

cedure is being executed and during the processing of the interrupt 



48 

service routine the procedure is called again. In PL/M-86, a procedure 

can be termed reentrant if it has the REENTRANT attribute in its declar

ation. Any procedures that might be entered more than once before 

returning must be designated as REENTRANT if thtiy are to execute cor

rectly. All the data such as local variables and parameters utilized by 

a reentrant procedure must have a unique memory location for each con

current invocation of the subroutine; otherwise, data used by a previous 

invocation may be oven;rritten by data used in the current invocation. 

The rules summarizing the use of the REENTRANT attribute in PL/M-86 

are given below: 

Any procedure that may be interrupted and is also activated from 

within an interrupt procedure should have the REENTRANT attribute. Any 

procedure that is directly recursive should have the REENTRANT attri

bute. Any procedure that is indirectly recursive should have the 

REENTRANT attribute. Any procedure activated by a reentrant procedure 

should also have the REENTRANT attribute (3). 

The REENTRANT attribute cannot be used in the same declaration as 

the EXTERNAL attribute. It may be used only in a PROCEDURE statement 

at the outer level of a module. A procedure declaration having the 

REENTRANT attribute may not have another procedure declaration nested 

inside it. 

Most HLLs store local procedure variables on the stack which allows 

the procedure to be.both reentrant and recursive (19). Storage is allo

cated dynamically during execution time rather than statically during 

compiling. As shown in Figure 17, all parameters are passed on the stack, 

and local variables a,re stored there. 



CALL P (A,B,C) 

p 

PUSH A 
PUSH B PASS ARGUMENTS 
PUSH C 
CALL P 

PUSH BP 
MOVE BP, SP 
SUB SP, LOCALS 

11 

11 

II 

SAVE OLD BP 
SET UP NEW BP 
ALLOCATE STACK 

CODE FOR PROCEDURE P 
II 

II 

II 

MOVE SP, BP 
POP BP 
RET 

OLD BP 

OLD SP 

BP 

SP 

REALLOCATE STACK 
RESTORE OLD SP 
STRIP PARAMETERS 

MEMORY 

--· 
-. 

<' A 

B 

C 

D 

RET ADDR. 

, OLD BP 

LOCALS 
~~ 

HIGH 
ADDRESSES 

STACK 
GROWS 

-"'-: -- ss 
LOW 
ADDRESSES 

Source: Laphan, Stephen A. "The 8086 Micro
processor has the Architecture to 
Handle High-level Languages Effici
ently." Electronic Design, March l, 
1980. 

Figure 17. Stack Area Setup During a Pro
cedure Call 

49 



CHAPTER IV 

APPLICATIONS OF SYSTEM DESIGN 

A Real-Time Alarm System 

The hardware and software systems defined in the previous chapters 

could be applied to a real-time application to illustrate its use. The 

real-time alarm system described here is b'ased on the real-time ·appli

cation of the October 20, 1979, issue of EDN magazine (15). 

A typical example consists of events being monitored. The event 

being monitored could be the temperature exceeding a safe limit, or 

pressure exceeding a maximum limit in an industrial environment. There 

could be numerous other events being monitored. The events in turn can 

trigger an alarm scheme connected to the single board computer through 

its input ports. Important information regarding each event can be 

recorded by the computer. 

The hardware system can consist of only the INTEL single board com

puter iSBC86/12A and a 7-segment LED display and a CRT. The additional 

hardware described in a previous chapter would not be needed in this 

application. The sofbvare system involves code pertaining to the partic

ular application and selection of an operating system. The OS should be 

a development and real-time OS that supports the INTEL 8086 CPU. It must 

support PL/M-86, ASM-86, CRT and line printers. It must allow multitask

ing and provide primitives such as WAIT, SIGNAL, keyboard and CRT I/0. 

It should also monitor access to the CRT to resolve contentions that.may 

50 



51 

arise. Applying the OS checklist to the operating systems directory, it 

appears that the DIOS, MTOS-86 and iRMX-86 are applicable in this case 

· (14). On closer inspection, the DIOS operating system, although it has 

all of the desirable features for this application, has more capabilities 

than needed. It is sophisticated and not economical for this application. 

The MTOS-86 operating system is a multitasking, general purpose and real

time OS for the 8086. It supports PL/M-86 and FORTRAN-86 compilers. How

ever, it is not a development OS and does not support ASM-86. The iRMX 86 

operating system developed by Intel Corporation specifically for the 8086 

CPU is a development, general-purpose and .real-time OS. It supports multi

tasking, ASM-86, PL/M-86, and CRTs. It can readily be used in this appli

cation. 

The system monitors the inputs from eight alarms, prints alarm mes

sages on a CRT, and lights a 7-segment LED display with the number of the 

alarm currently being monitored. As shown in Figure 18, the 8259A pro

grammable interrupt controller's interrupt request lines are connected to 

the 8253 programmable interr~pt timer's outputs and to the 8251A USART's 

interrupt outputs. The ports of the 8255A programmable peripheral inter

face are used to interface with the alarm sensor's inputs and the 7-segment 

LED as shown in Figure 19. The alarm inputs are connected to port A and 

port B, the output port is connected to the 7-segment LED display. Port 

C is not used. 

Before the system is used, it has to be initialized. The iSBC86/12A 

system debugger initializes the 8259A programmable interrupt controller and 

the 8251A USART. Hence, it is the designer's responsibility to write code 

that initializes the two timers and the 8255A PPI. 

To ensure proper performance of the system, the different tasks to be 



---·-----C TMR.> 

_r-·-

8259,\ 
PIC 

<>---~ ,, ___ _ 

____ I 

8253 f --<C1HIR1 

PIT 

11- l"""rn ----g D: INTfl 

8251A 
USMH 

Source: Hemenway, Jack, and Teja, Edward. 
"Advanced Software Systems Design 
Course.'.' EDN, October 20, 1979. 

Figure 18. Connections to the System's 
Programmable Interrupt 
Controller 

52 



+5V 

All lk 

PA., 
L 

AL,\RM, 
PA, ---< A~\Rl,l, 
PA1 

I -< AUR 1,I; 

PORT 
PA 3 ---< ALAR1,1, 

C3 PA, -----<: A LA F .. \\ 

PAs --< All~R~~f!o 
p~ ALAP1~ 1 

PA7 /...LA?~ ... ~, 

Q 

PB, a 
--~1 C :1 

PB2 

I~ ~; P83 PORT 
CA ',) 

t:: J 
PB, 

·~ [] , PBs 

PB, c==:::=:J 
d 

7-SEGMENT 
PB1 OlSPLAY 

PC • 
PC 1 

PC: 
PCfH PC, 
·CC F~, 

PC!. 
PC, 

Source: Hemen\vay, Jack, and Tej a, Edward. 
"Advanced Software Systems Design 
Course. 11 EDN, October 20, 1979. 

Figure 19. Connections to Ports A and B 
of the 8255A Programmable 
Peripheral Interface 

53 



54 

accomplished by the system can be implemented as processes. Hence, the 

application code would be distinguished into code for each process. Fig

ures 20 through 24 give the flowcharts of the different processes. Before 

explaining the action of each flowchart, it would be in order to list the 

symbolic names used along with their significance~ 

ALARM(N) - represents the process executed to perform the 

function necessary for alarm N 

AQUEUE(N) - represents the condition queue for alarm N. It is 

AMSG 

AMASK 

ASTAT(N) 

a queue of blocked processes 

- the message displayed on the screen with the appro

priate alarm number 

- the system alarm mask 

- the alarm number N state variables if 'TRUE' the 

ALARM(N) process is set; if 'FALSE' the ALARM(N) 

process is not set 

AMSGINUSE - state variable that controls access to the resource 

AMSG, resolving contention 

AMSGAVAIL - represents the condition queue of processes waiting 

to use the resource AMSG 

ACQRT 

REL CRT 

operating system function called to acquire the CRT 

- operating system function called to release the CRT. 

The interface between the user and the system is provided by the 

process 'EXEC' shown in Figure 20. 'EXEC' recognizes the following com

mands entered at a keyboard: 

E, n 

D, n 

p 

Enable alarm tin 

- Disable alarm tin 

- Print alarm status 



No 
">"<: 

"'Yes 

Input If N 

I - - - - - - -i- - - - - -·1 

! Set Appropriate j 
Bit in ' ,\.'!.ASK' I 

J . : 

Initialize State 
Variable 

ASTAT(N) • False 

Input /IN 

r - - - - - - - - - - - - - -., 
I I 
1 Reset Appropriat I 

Bit in 'ANASK 1 I 
I 
I 
I 

r-~~~~"--~~~~I 

Initialize 
St~ta Variable 
ASTAT(N) • False 

I 
I 
I 

Print Out 
Alarm Status 
for Each Alarm 8 

l-L-. -Ennblc I . -~~ ~j L_D~s~~l: ~:!~;: On- _J 
1 

( ' ~ rn~ITT 
ERROR 

Figure 20. User-Svstem Interface Process 'EXEC', \Jl 
\Jl 



56 

Q - Quit, return to the monitor. 

At startup time, all the alarms are disabled. The user can selectively 

enable or disable the alarms he wants. He can also print the status of 

each alarm at any time by typing 'P'. Finally, when the user wants to 

halt the system, he enters 'Q'. 

When the command 'E' is input, the corresponding bit in the system 

alarm mask Af.1ASK is set, and the alarm state variable ASTAT(N) is ini-

tialized to FALSE. These actions enable the alarm N. Similarly for 

command 'D', to disable alarm N instead of setting the bit in Af.iASK, it 

is reset. For command 'P', the status of each alarm (enabled or dis-

abled) is printed on the CRT. The EXEC process will keep executing con-

tinuously until a 'Q' command is entered. 

A di t 1 'RDAI,Arn1 1 , h ' F' 21 ' 1 rea se a arm process, _ N.' sown in igure is a ways 

either running or on the ready queue. Its function is to read the 8255A 

PPI's alarm port (port A) and if there exists an alarm condition for any 

of the enabled alarms, the RDALARM process signals the appropriate alarm 

process. The RDALARM process continuously reads or senses the alarm 

inputs for an alarm condition, a necessary function. 

When a process for alarm #N, ALARM(N) is signalled, the following 

are the actions performed by the process as shown in Figure 22. The 

status of the alarm ASTAT(N) is first checked to see if it is set. If it 

is not, then the process enters a wait state until the status is set. 

The process then tries to acquire the resource AMSG. After doing so, it 

sends the alarm number N to the 7-segment display and prints out the mes-

sage with the alarm number. The resource Af.1SG is then released and the 

whole process repeats. The alarm processes are either waiting on the 

condition queue AQUEUE (N) for a si.gnal from RDALARM or are active. 



~ ..---~---3'-I 
vJ 

L Get 'AMASK-;--J 

~! 
.. ,_,......,.,,.___...,~ 

Read in Alarm 1· 

Inputs From Port A • -r~=-~ 
J, 

Maslfout· -1 
Disabled Alarms . 

_.., .,,.v 
No /Any o , 
~ the Alar1;1 Sen> 
I "s~s ~.ctive-Y' 

""'i Yes 

~ ~, 

~ermine the ! 
, Ala~1s Ss;,.i;____~ 

{signal A;pro;~i~~j 
~ Alarm Processes J 

l 
----~--· ,.Jl 

Figure 21. Read/Set Alarm Process 
'RDALARM' 

57 



A 
:( 

r--~t~ No 

I ~;:~/N "> . ,_------:1 ··-----

1~ j. Wait Until l.: 
Yes Set I 

, ·-]- - - ---. ..! 

~--· -·-· =--"'=-~...,,. 

Gsc I - l -~S-'•" 

-,-S-,e-nd~o LEd--l 
17-Segment Displa~ ___ ! ___ _ 

i. 

_____ .;,;.,{! ----·----

Print Missage With 
Appropriate Alarm# 

! 
, __ _,,_..,_ t __ t 
r . RELAMSG . 1 L_T~--~ 

Figure 22. Alarm Process 'ALARM(N)' 

58 



59 

The alarm message to be printed, 'AMSG', is treated as a critical 

resource and hence the alarm number, which is critical data, is protect

ed during message display. A monitor shown in Figure 23 is used to con

trol access to the resource. The monitor has two entry points, 'ACQAMSG' 

and 'RELAM:SG', that function as the names suggest. In 'ACQAMSG' if the 

status variable 'AMSGINUSE' is TRUE, then the resource is being used and 

hence the request is placed on a condition queue where it waits until a 

previous process relinquishes control of the resource AMSG. Then the 

state variable AMSGINUSE is set to TRUE, indicating that the resource 

has been acquired. 'RELAMSG', on the other hand, releases the resource 

by setting 'AMSGINUSE' to FALSE and signalling the next process waiting 

on the condition queue. 

The routine PMSG shown in Figure 24 is used whenever a message is to 

be printed on the CRT. It first acquires the CRT by an operating system 

call ACQCRT. It then prints the message one character at a time on the 

CRT until the end of the message is reached. The CRT is then released 

by an operating system call, RELCRT. 

It can be seen that the processes EXEC, RDALARM, ALARM(O) .... 

ALARM(7) are continuously executing. The EXEC and ALARM processes could 

be waiting or active. These ten processes execute concurrently. This 

is achieved by time-sharing wherein each process is allocated a fixed 

amount of time, say, 25 milliseconds before control is transferred to 

another process. This is a very essential feature in real-time system. 

The above system design illustrates a typical application of the 

design process presented previously. 



. 'ACQAMSG' Entry 

-~ 
':Entd (! ) 

"'r 
~-,Yes 
~n Use? ')c.-· -----··· ;~~~~~-~quest on 

' No Condition Queue 
Enter Wait State 

/ _____ =:r--···=-~---1 
f,:i~,-------

,--~~~~" ' 
t , AHSGINUSE, ·1; 

o True ---------,,__ .. 

'RELAHSG' ENTRY 

Set I AfvISGI~TUSE-;---! 

.· to]:_~, 
Signal (Wake up) 
Next Process on 
Conditi1 Queue ___ J 

'JI 
Ret 

Figure 23. Monitor for Alarm Message 'AMSG' 

60 



/~-<.:~\\ 

/Enter\ 
\ r 

'..,, .. ,._,,,./ 

I L ___ l 
Acquire CRT . 

...-.....-:J . 

Ge~f a M~~:::;~~] 
Yes 

t 
....-----''-' -----~ 
J ~i~p~ay Characterl 

I ~----1. ___ ......, 
Incr~men~~-i 

Pointer to Messag~ 
'i - I 
1 <---------------1 
1 r 
i I 
""L---.. ~-=~,. 

Figure 24. Routine 'PMSG' to Print Message on CRT 

61 



62 

A Reentrant Text Editor 

A text editor providing sufficient string-manipulation capability 

can be designed as an 8086-resident program making use of the INTEL 8086 

CPU's powerful string manipulation instructions. By making the text 

editor program reentrant, multiple users can access the text editor. 

The selection criteria in hardware and software systems design can 

also be applied here. In the hardware design, the 8086 CPU based single 

board computer iSBC86/12A is the main board. Due to its limited serial 

I/0 capabilities, several serial I/0 expansion boards · (iSBC 534) can be 

used, enabling many users to be connected to the single board computer. 

Additional CRT terminals will be necessary, depending on the number of 

users. Secondary storage will be needed in a multi-user application. A 

diskette controller (iSBC 206) can be used, providing fast transfer of 

files from secondary storage to memory, and vice versa. A line printer 

will also be needed if the users wish to obtain a hard copy of the list

ings of the contents of their files and other operations. 

In the software design, the first step involves selecting a suitable 

operating system. The OS checklist presented earlier is used. For a 

reentrant text editor, the operating system must have at least the follow

ing necessary features: 

Primary application: Development or general purpose 

Target processor: INTEL 8086 CPU 

Languages supported: PL/M-86 and ASM-86 

Processor management: Multiuser and multitasking 

Peripheral management: Support CRT, keyboard, line printer. Use 

interrupts . 

. Using the above criteria and referring to the operating systems 



63 

directory, the selection task can be narrowed down to four operating 

systems. They are the MTOS-86, iRMX-86,XENIX, and DIOS operating systems 

· (14). MTOS-86 developed by Industrial Programming, Inc., is a general 

purpose and real-time operating system. It sup~orts PL/M-86 and pro-

vides multitasking, but it does not support multiusers and ASM-86. 

XENIX~ a level 7 UNIX operating sytem,produced by Microsoft, is both a 

development and general-purpose OS. It also supports up to 25 users, CRTs, 

character and line printers, and uses interrupts. Though the XENIX oper

ating system has several nice features, it does not support PL JM-86. The 

iRMX 86 operating system is a development, general purpose and real-time 

OS developed by Intel Corporation. Designed especially for the INTEL 8086 

CPU, it provides multitasking, supports PL/M-86 and ASM-86. It does not 

support multiusers. The OS selected for this application is the pros 

operating system developed by the Systemathica Consulting Group, Ltd. The 

DIOS is a development, general purpose and real-time OS. It has all of 

the desirable features for this application. DIOS supports PL/M-86, ASM-

86, provides multitasking and allows multiple users. 

The second step in software design involves design of the application 

code. The operating system divides the memory, allocating storage to 

each user. Hence, each user has his own buffer area, protected from use 

by other users connected to the system. A user's file residing on sec

ondary storage is read into the user's buffer area, where the text is 

edited. After the ~diting session, the text could be transmitted back to 

the secondary storage device, 

In this application, each user is assigned equal priority and a 

simple time-slicing mechanism is employed. Each active user is treated 

as a process, and is allocated a fixed time-slice, say 25 milliseconds. 



64 

At the end of 25 milliseconds, an interval timer interrupts the CPU and 

control is transferred to an interrupt service routine. Depending on the 

number of users and the system response time, the time-slice is deter

mined. For a reentrant program to work correctly, each time the program 

is reentered, the CPU registers and local variables in the program must 

be saved. Each user must have his own save area for this purpose. The 

process control block shown in Figure 10 has a register save area. A 

pointer to a save area for the reentrant program's local variables can 

also be placed in the process control block for each user. The save area 

needed for the variables has.to be determined by the designer. 

When a user logs on to the system, a user command process is created 

as shown in Figure 25. Part of the initialization procedure would con

sist of setting up a process control block. A prompt is then displayed, 

and the user enters a command. The user can enter any system command at 

this level. EDITOR can be one of the commands at this level. If the 

EDITOR command is entered, the local variables in the editor program are 

loaded with the values (appropriately initialized) pointed at by the 

process control block. Control then transfers to the editor program. For 

an unrecognized command, an appropriate error message is printed and the 

command prompt is redisplayed. 

Only one process can be running at a time. The other waiting proces

ses are placed on a ready queue. This is accomplished by a linked list of 

process control blocks. When a time-slice interrupt occurs, the inter

rupt service routine must perform the following functions in order: 

Save registers in process control block of running process. 

If the interrupted process was executing the editor, save editor's 

local variables in save area pointed at by process control block of the 



INITIAIZATION 
SET UP PROCESS 

.:_ PRINT PROMPT· 

r 
GET COMMA ... 1'm 

LOOK UP COJ:.IMAND 
IN COMMAND 

TABLE 

-~ NO 

FOUND? ~..;----t 
PRINT ERROR -u 

MESSAGE 1 

NO 

YES 
LOAD EDITOR I ~' 

LOCAL VARIABLES f ' 
WITH VALUES 1-/ --1,EDITOR) 

............__P_O!.;~~ \.,~"-'-/ 

r-1 CALL RELEVANT 1 
COMMAND PROCESSOR l 

Figure 25. User Command Process 

65 



interrupted process. 

Place the interrupted process on the READY queue. 

Issue non-specific end-of-interrupt to the programmable interrupt 

controller. 

Remove new running process from READY queue, 

Restore registers. 

If the new running process was interrupted within the editor, 

restore editor's local variables from the save area pointed at by the 

process control block of the new running process. 

Transfer control to new running process. 

66 

The text editor uses b~sic routines to perform the editing functions. 

Source files for programs or text can be created and altered by using the 

editor. By specifying commands (within the editor), routines are. util

ized to accomplish the necessary tasks. Logically, the commands fall 

under two classes: input/output and editing commands. The main control

ling loop of the editor is shown in Figure 26 (13). Upon entry of the 

text editor, registers and pointers to the beginning of the buffer, end 

of buffer, current line, end of text in buffer are initialized. The 

editor prompt is printed and the user enters a command or commands that 

are read into a command buffer. After the command buffer is filled, a 

command table is searched for the requested command. If the command is 

not found, an error message is printed and the editor command prompt is 

redisplayed; otherwise, a call occurs to the relevant command processor. 

After executing the command recognized, the command buffer is checked for 

stacked commands. If there are any present, they are shifted left in the 

buffer, and the controlling loop executes as before, searching for and 

executing commands. 



c::. EDllOR · 

PRINT 
EHROR 

MESSAGE 

NO 

NO 

INITIALIZE POINTERS 
OPEN FILES 

PRINT PROMPT 

GET COI.IMAND(S) 

LOOK UP 
COl,!\IAND IN 

.COMMAND TABLE 

CALL RELEVANT 
CO!.!!.'MID 

PROCESSOR 

SHIFT COMMANDS 
LEFT Ql;E IN 
co~.~ t.~t-.ND 

BUFFER 

Source: Hemenway, Jack, and Teja, Edward. 
"Character String Manipulations 
Power a Text Editor." EDN, 
August 20, 1979. 

Figure 26. Editor Flowchart 

67 



68 

This design puts forth the concept of designing a reentrant text 

editor. The design of editor commands are not covered in this design and 

can be implemented at a more detailed design level. 



CHAPTER V 

SUMMARY, CONCLUSIONS, AND FUTURE WORK 

System design-is a carefully planned process. The designer must 

know precisely at the beginning what the system is expected to do. 

Hence, the overall design must be planned very carefully. The designer 

can use block diagrams to represent what the overall system is supposed 

to do. 

Having put down his thoughts on paper, the designer's next task is 

to design the hardware and software system. Tradeoffs between hardware 

and software can be made at various places. Such tradeoffs are the sys

tem designer's decision. Some of the important factors affecting his 

decision could be speed of execution and cost of the overall system. 

Bearing this in mind, the software and hardware tasks are defined and 

designed. Throughout the design process, hardware and software tools 

such as logic analyzers and diagnostic routines are used to check out 

the system as it is being built. This makes the complete system con

sist of fewer errors during system integration. The designer should 

also bear in mind the wide range of off-the-shelf components available 

before he tries to design the hardware. Similarly in the software design 

process, software packages are available that free up the designer and 

allow him to concentrate only on the application code. The final prod

uct shotild be tested thoroughly from the end-user's and the designer's 

viewpoints. For a newcomer to microcomputer design, the total time 

69 



spent in the design process normally exceeds the estimated ti~e. To 

become a productive designer, one must put textbook techniques into 

action by writing code and constructing the hardware. Practice makes 

perfect. 

70 

Based on this report, some interesting design projects can be ini

tiated. The real-time alarm system can easily be expanded. Port C of 

the 8255A programmable peripheral interface is presently not being used. 

It can be used to drive an audible alarm or it can be interfaced with a 

printer. The alarm process itself could perform a more complicated task. 

It could trigger a relay, for instance. Based on the text editor appli

cation given, one can actually go about the task of coding a reentrant 

text editor and also designing the editor commands. Hence, a microcom

puter design project can be decided on, and the task of software and 

hardware systems design allocated. 



LIST OF REFERENCES 

(1) Morse, Stephen P. The 8086 Primer - An Introduction~ its 
Architecture, System Design! and Programming. New Jersey: 
Hayden Book Company, Inc., 1980. 

(2) MCS-86 Macro Assembly Language Reference Manual. California: 
Intel Corporation, 1979. 

(3) PL/M-86 Programming Manual. California:· Intel Corporation, 1980. 

(4) Peatman, John B. Microcomputer-Based Design. New York: McGraw
Hill Book Company, 1977. 

(5) The 8086 Family User's Manual. California: Intel Corporation, 
1979. 

(6) Madnick, Stuart E. and Donovan, John J, Operating Systems. New 
York: McGraw-Hill Book Company, 1974. 

(7) Hayes, John P. Computer Architecture ~nd Organization. New York: 
McGraw-Hill Book Company, 1978. 

(8) Zaks, Rodnay and Lesea, Austin. Microprocessor Interfacing Tech
niques. California: Sybex, Inc., 1979. 

(9) MCS-86 User's Manual. California: Intel Corporation, 1979. 

(10) Systems Data Catalog 1980. California: Intel Corporation, 1979. 

(11) iSBC 86/12A Single-Board Computer Hardware Reference Manual. 
California: Intel Corporation, 1979. 

(12) Intel Multibus Specification. California: Intel Corporation, 1979,· 

(13) Hemenway, Jack and Teja, Edward. "Character String Manipulation 
Power a Text Editor." EDN (August 20, 1979), pp. 111-116. 

(14) Hemenway, Jack and Kotelly, George. "Microcomputer Operating 
Systems Directory." EDN (November 5, 1980), pp. 276-338. 

(15) Hemenway, Jack and Teja, Edward. "Advanced Software Systems Design 
Course." EDN (October 20, 1979), pp. 294-336. 

(16) RMX/86 User's Guide. California: Intel Corporation, 1980. 

71 



(17) Ripps, David L. On Operating Systems. New York: Industrial 
Programming, Inc., 1980 . 

. (18) Schnabel, Dennis. "MDL/µ - A New Language for Effective Micro
processor Software Development." Electronic Design (Sepbem

ber 13, 1979), pp. 102-104. 

(19) Laphan, Stephen A. "The 8086 Microprocessor has the Architecture 
to Handle High-Level Languages Efficiently." Electronic 
Design (March 1, 1980), pp. 97-99 •. 

72 

(20) E"lmore, Mary J. "PL/M-86 Combines Hardware Access With High
Level Language Features." Electronic Design (April 20, 1980), 
pp. 181-186. 

(21) Adams, George. "Reduce Your Microcomputer-Based System Design 
Time by Using Single Board Microcomputors." Electronic 
Design (February 1, 1978), pp, 56-66. 

(22) Ogdin, Carol A. "Microcomputer Design Course!' EDN (November 20, 
1976), 

(23) Ogdin, Carol A. "Software Design Course." EDN (June 5, 1977). 



VITA 

Neenendra R. Pandya 

Candidate for the Degree of 

Master of Science 

Report: SYSTEM DESIGN FOR A MULTI-USER MICROPROCESSOR-BASED 
APPLICATION 

Major Field: Computing and Information Science 

Biographical: 

Personal Data: Born in Madras, India, October 7, 1957, the son 
of Ramanlal and Bhadrabala Pandya. 

Education: Graduated from St. Peter's High School, Maharashtra, 
India, in December, 1973, with an Indian School Certificate 
(Senior Cambridge); received Bachelor of Engineering degree 
in Electrical Engineering from Bangalore University, 
Bangalore, India, in July, 1979; completed requirements for 
the Master of Science degree at Oklahoma State University, 
Stillwater, Oklahoma, in December, 1981. 

Professional Experience: Graduate Research Assistant, Department 
of Agricultural~Economics, Oklahoma State University, 
Stillwater, Oklahoma, February 1980, to September~ 1981; 
Software Engineer, Time Management Software, Inc., Cushing, 
Oklahoma, September, 1981, to present. 




