INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction.

- 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
- 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame.
- 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of "sectioning" the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
- 4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department.
- 5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed.

·

·

.

8505918

Thompson, Darrell Ray

THE EFFECT OF DECISIONAL STATES UPON ORGANIZATIONAL CLIMATE IN PUBLIC SCHOOLS

The University of Oklahoma

Рн.D. 1984

. .

University Microfilms International 300 N. Zeeb Road, Ann Arbor, MI 48106

Copyright 1984

by

Thompson, Darrell Ray

All Rights Reserved

.

·

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark $\sqrt{}$.

- 1. Glossy photographs or pages _____
- 2. Colored illustrations, paper or print_____
- 3. Photographs with dark background _____
- 4. Illustrations are poor copy
- 5. Pages with black marks, not original copy_____
- 6. Print shows through as there is text on both sides of page_____
- 7. Indistinct, broken or small print on several pages _____
- 8. Print exceeds margin requirements _____
- 9. Tightly bound copy with print lost in spine _____
- 10. Computer printout pages with indistinct print _____
- 11. Page(s) ______ lacking when material received, and not available from school or author.
- 12. Page(s) ______ seem to be missing in numbering only as text follows.
- 13. Two pages numbered _____. Text follows.
- 14. Curling and wrinkled pages _____
- 15. Other_____

University Microfilms International

.

·

.

THE UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

THE EFFECT OF DECISIONAL STATES UPON ORGANIZATIONAL CLIMATE IN PUBLIC SCHOOLS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

.

···· .

DOCTOR OF PHILOSOPHY

by

DARRELL RAY THOMPSON

Norman, Oklahoma

THE EFFECT OF DECISIONAL STATES UPON ORGANIZATIONAL CLIMATE IN PUBLIC SCHOOLS

By: Thomas Wj Parker F. Jack Ε. Ρ Joh Seaberg, J Arthur Van Gund

DISSERTATION COMMITTEE

Copyright by Darrell Ray Thompson 1984 All Rights Reserved

ACKNOWLEDGEMENTS

The writer would like to acknowledge his appreciation to those individuals who have made the completion of this research a reality.

I would like to express my sincere gratitude to Dr. Thomas W. Wiggins, Chairman of the Doctoral Committee, for his inspiration, support, encouragement, understanding, guidance, and interest in me which were crucial to the development and completion of this work. Sincere appreciation is also extended to Dr. Jack F. Parker, Dr. Arthur Van Gundy, Dr. John J. Seaberg Jr., and Dr. Loy E. Prickett, members of the doctoral committee. Their patience, interest, and assistance to me during this project have truly enriched my life.

The writer would like to acknowledge the assistance of public school teachers and administrators in the State of Oklahoma who participated in this research endeavor and those who assisted me in obtaining the understanding of statistical procedures used in data analysis.

The writer would like to acknowledge the assistance of Allison Patrick, Research Design Specialist, in the use of the computer for data analysis. A sincere thank you is also extended to Jacqueline Wickliffe, a computer instructor, who assisted me in the final formulation of this document. A special thanks is extended to Howard Hamilton for his extensive editing efforts.

A respectful acknowledgement is expressed to my parents, Carl R. Thompson and Lois S. Thompson, who always had confidence and faith in my capabilities and always have encouraged me to set my goals in life high.

A very special thanks is extended to my wife, Thomascina, for the love, understanding, and sacrifice she experienced during these efforts. Also, I would like to thank my two daughters, Dawn Reneé and Deede Raeshel, for their love, understanding, and patience they displayed during this project.

These pages are humbly dedicated to my youngest and late sister, Mary Ellen (Thompson) Farmer; my brother, Don W. Thompson; my oldest sister, Ramona Mayo; and most especially my loving wife, Thomascina.

TABLE OF CONTENTS

ACKNOWLEDGEMENTSiii		
CHAPTEI	R	
I.	INTRODUCTION	
	Background of the Problem	
II.	THEORETICAL FRAMEWORK AND RESEARCH Introduction	
III.	RESEARCH DESIGN	
	Introduction	

Restatement of the Problem......48 Presentation of the Statistical Hypotheses.......49 Population and Sampling.......50

Description of the Instruments.....51 Profile of Organizational Climate...53 Method of Collecting Data......55 PRESENTATION AND ANALYSIS OF THE DATA IV. Introduction.....63 Pilot Testing the Measurement Instruments.....64 Administering and Scoring the Measurement Instruments......65 Design Alternatives Considered.....67 Testing the Hypotheses......69 Operational Hypothesis I......70 Operational Hypothesis III......72 Operational Hypothesis IV.....72 Operational Hypothesis V.....73 Discussion.....74 V. SUMMARY, CONCLUSIONS, IMPLICATIONS, DELIMITATIONS, AND RECOMMENDATIONS Introduction.....78 Conclusions......82 Implications......84 Delimitations.....85 Recommendations for Further APPENDICES Appendix A - Permission request to authors to use assessment instruments.....102 Appendix B - Permission granted to use assessment instruments.....105 Appendix C - Assessment instruments used.....108

Appendix D -	Inter-Item
	Correlation
	Results119
Appendix E -	Analysis of Variance125
Appendix F -	Tukey and Duncan's
	T-Test Results127
Appendix G -	Mean Scores and
	Standard Deviations133
Appendix H -	Histograms of
	Organizational
	Climate Patterns146
Appendix I -	Comparison of Six
	Decisional Studies163

.

THE EFFECT OF DECISIONAL STATES UPON ORGANIZATIONAL CLIMATE IN PUBLIC SCHOOLS

CHAPTER I

INTRODUCTION

Background and Setting of the Problem

The relationship between levels of participatory decision-making and organizational climate has been an area of concern in organizational settings. Researchers as well as school practitioners are interested in what type of relationship exists between these two variable domains. Questions that surface are: How involved are individuals in the decision-making processes of the organization? Are the individuals of the organization participating at the level they desire? Do the decision-making levels of participation determine what type organizational climate exists?

Participatory Decision-Making

There has been little research conducted that examined the relationship between organizational climate and decisional states. The concept, decisional states, was coined by Belasco and Alutto (1972). It referred to the

states of involvement (participation) that individuals in the organization have in the decision-making process. Numerous conceptualizations of decisional states have been proposed from historical, philosophical, sociological, and psychological perspectives. The most clearly articulated usage and perspective utilized was participatory decision-making.

The general notion of decisional states (participatory decision-making) and decision-making in general were addressed early by Adam Smith in the Wealth of Nations (1790/1969). He developed the model of economic man which was based upon the assumption that every individual weighed the economic alternatives available and consistently chose an alternative which resulted in the highest net gain. Simon (1947) rejected this theory of economic man as insufficiently descriptive of what decision-makers actually Simon stated that it was impossible for the behavior of do. a single isolated individual to reach any degree of rationality. Furthermore, the number of alternatives an individual must explore were so great and the information needed to evaluate them was so vast that even an approximation of objective rationality would be too hard to achieve. Simon (1947) coined the term "satisficing" which replaced the optimization of making decisions. Satisficing suggested that the first satisfactory solution would be the determining factor rather than proceeding to maximize the

utility. March and Simon (1958) pointed out that because decisions and choices were most often made on the basis of a limited, approximate, simplified model of the real situation, that people behave rationally only with the respect to their own ability to abstract and perceive the real world.

Soelberg (1966) studied decision-making and the characteristics involved. He concluded that the decision maker does not satisfice or maximize, but confirms the decision. The decision-maker selects the alternative which simply confirms the "right" decision. In Belasco and Alutto's (1972) studies, it was suggested that the proper decision, the satisficing decision, the optimizing decision, and other decisions should properly result from the "decisional states" of the individual or the employees working in the organization.

As a result of Belasco and Alutto's suggestion, many researchers began linking "decisional states" with areas that produce problems as well as formulate solutions. Tannebaum (1968) suggested that increased participation in organizational decision-making was directly related to increased administrative control over the activities of organizations. Tannebaum hypothesized that increased participation in the decision-making process of policy formulation would result in greater member acceptance of the legitimacy of their administrative superiors in implementing

such policies. Stinett and associates (1966) previously, in presenting the employee (teacher) viewpoint regarding the process, argued that the demand that has arisen for a negotiations process resulted from the employees' desire to participate actively in the decision-making process.

Hey (1979) found that in order to manage change and innovation in a public school organization, it was necessary to address the human needs of the teachers that were affected by the innovation or change. In helping staff members adapt to inevitable organizational changes, personnel motivation and participation at all levels of planning, implementing, monitoring, and evaluating were necessary for institutional efficiency.

Gwinn (1981) suggested that there were effective and efficient ways of creating a climate for change. Gwinn concluded from his studies that the most effective and efficient method of bringing about needed change was to set the course, focus upon the forces of support and resistance, and make the decisions. As these interact in creating a positive acceptance for bringing about the change, it was essential to involve all persons affected by these changes. He also suggested that decision-makers involve persons to the degree that they wish to be involved.

Kanter (1981) recommended that organizational employees, administrators, and staff use the information set forth recently in social science research as it related to

and effective power, power-sharing, leadership. She that each organization possesses concluded a power To achieve the goals and objectives of that structure. organization, while simultaneously meeting the needs of the employees in sharing power and involving the employees in the decision-making processes, one must permit employees to be involved in making the decisions.

McNeely's (1983) studies suggested that ineffective organizational patterns, work motivation, and burnout in public schools were caused by teachers' noninvolvement in decision-making, participation in establishing performance guidelines, and the constant exposure to routinization and undesirable division of labor.

Other Related Decision-Making Research

Many of the research endeavors mentioned previously reinforce what has been found earlier. Coch and French (1948) conducted a series of field experiments at the Harwood Manufacturing Corporation. Three carefully matched groups of employees were studied (Nelson, 1983, p. 32). One was not permitted to participate in the group decision-making processes that affected changes that were to be made within the organization. The second group was permitted to participate in the decision-making process through a representation process. The third group was permitted to participate in the decision-making process

totally. In the first group, production did not improve; and increased absenteeism, employee turnover, and the number of grievances filed resulted. In the second and third groups, where participation opportunities were available, production rose; and absenteeism, employee turnover, and the number of grievances filed were almost nonexistent.

Bass (1965) identified a descriptive attribute which stronger commitment to the goals and stated that a objectives of an organization existed when the individuals employed in the organization were involved actively in the with major task-oriented decisions associated the achievement of those goals and objectives. Patchen (1970) suggested that increased participation in the organizational decision-making process was related to greater job performance and satisfaction, personal performance and satisfaction, effectiveness and efficiency, and personal integration in that organization.

Yarborough (1976) reviewed 42 studies to determine how teachers felt about participatory decision-making. Her studies were systematically delineated into three broad categories: (a) satisfaction and morale, (b) effectiveness and productivity and, (c) leadership and supervision. The findings of these studies indicated that, with few exceptions, teachers favored active participation in decision-making.

Organizational Climate

an organization's climate on effect of the The employees of that organization has long been of interest to educational researchers and policymakers whose interests have included what to look for in an organization's climate and how to look for it. The subject, however, is complex. Studying human behavior in public schools, as in any organization, involves "ordering and conceptualizing a buzzing confusion of simultaneously existing multilevel, mutually interacting variables" (Argyris, 1958, p. 501). To provide the reader with adequate background to understand the theoretical foundation of this investigation, a brief review of the development of the concepts related to decision-making organizational climate will be and presented.

Behavioral scientists have used the meteorological term climate metaphorically in the study of organizations (Rice, 1980, p. 2). Climate refers to the set of characteristics that describe an organization, distinguish it from other organizations, and influence the behavior of people in that organization (Dessler, 1976). Climate affects the members of the organization, influences their behavior, and can be described in terms of the value of the characteristics of the organization (Tagiuri, 1968).

The concept of organizational climate is fundamental to the understanding of complex organizations. The term

"organizational climate" was not used in the literature until the middle of the 1960's, but the concept was implied in noting that human behavior was a function of a person's psychological "field" and of personality. In the 1930's Lewin attempted to describe the essential characteristics that joined human behavior to generalized environmental stimuli. Lewin explained his theoretical understanding of this psychological "field" in this manner:

To characterize properly the psychological field, one has to take into account such <u>specific</u> items as particular goals, stimuli, needs, social relations, as well as more <u>general</u> characteristics of the field as <u>atmosphere</u> (for instance, the friendly, tense, or hostile atmosphere) or the account of freedom. The characteristics of the <u>field as a whole</u> are as important in psychology as, for instance, the field gravity for the explanation of events in classical physics. Psychological atmospheres are empirical realities and are scientifically describable facts (Lewin, 1951, p. 241).

In a classical paper entitled "Patterns of Aggressive Behavior in Experimentally Created 'Social Climates'", Lewin, Lippitt, and White (1939) reported their initial attempt to study climate as an empirical reality (Rice, 1980, p. 3). Lewin and associates creatively changed the different leadership styles in the atmospheres they studied. Results of these studies suggested that experimentally created climates changed the behavior in numerous boys' clubs. Lewin and associates (1939) concluded: "It can be reported that in nearly all cases differences in club behavior can be attributed to differences in the induced

social climate rather than to constant characteristics of the club personnel" (Lippitt and White, 1958, p. 506).

Scientific Management Approach

The classical view of the concept organization was addressed by Taylor (1947) and developed by Fayol (1949) and Urwick (1956). Their emphases were primarily with the process of administration and the characteristics of successful administrators. In their analyses of organizations and the administration of organizations, it was assumed that an atmosphere (climate) is an inherent part of any organization.

Kahn and Rosenthal (1964) contributed to the theoretical development of the organizational climate concept in their interpersonal, organizational theory (Rice, 1980, p. 4). In the development and points of importance, their role-set theory is psychosocial. The assumption made in their theory is that the behavior of an individual in an organization is a result of the motivational forces generated by the role-sets. The role-sets continuously influence the behavior of the individual, requiring the individual to behave in the ways that are expected.

Katz and Kahn (1966) developed the open system concept which had an impact upon the development of organizational theory. As a result of the interaction with the environment and the feedback loops, the researchers turned their

interest toward the organization as an environmental setting individual for the investigation of behavior. The development of the concept organizational climate was directly influenced by the discovery that organizations psychologically definitive possessed and meaningful environmental dimensions.

The Human Relations Movement

The investigation of human behavior in organizations magnified and fertilized a seed of thought that had been sown in the minds of researchers. The seed, a concern for the human factors in organizations, had begun to grow. This seed became known as the Human Relations Movement. Follett (1934/1940) emphasized coordination as the underlying strategy of an effective organization. Her fundamental principles were: coordination by direct contact of the responsible persons concerned; coordination in early stages policy making and planning; coordination as of the reciprocal relationship of all factors in a situation; and coordination as a continuing process. Subsequent research provided the empirical supporting evidence to the human relations movement as presented by Follett. This research was performed at the Western Electric Company between 1923-1932. These studies were reported by Roethlisberger and Dickson (1939), and they were known as the Hawthrone Studies.

Murray (1938) developed the need-press theory. The need-press theory viewed environmental press as a counterpart of personality need. Performance in an environment was viewed as the congruence between need and press. This suggested a dichotomy of organizational needs and individual personality needs.

Pace and Stern (1958) were the first researchers to objectively formally and attempt to measure the organizational climate concept. Pace and Stern attempted to match the environmental press to the perceived climate of a college or university campus. They sought information about the global college atmosphere in hopes that they could apply the descriptive information gathered to be used with prospective students. They were also interested in the improvement of the prediction of academic performance by studying a student-university match.

Humanistically-oriented management theorists had placed emphasis upon permitting individual differences to be expressed within the organizational setting. By suggesting the importance of individual expression in organizations, Barnard, Argyris, Halpin and Croft, Getzels and Guba, and Parsons have contributed to the development of the organizational climate concept as observed in industrial and business settings. Barnard (1938/1964) viewed the human side life as the "efficient" and of organizational the organizational task as the "effective". Argyris' (1957)

contribution came in the era of transition from the humanistic to the social systems era. He suggested that personnel resources were becoming more a consideration in organizations than had been previously involved. Argyris used the terms demand of the organization as being counterparts of the need for the healthy individuals. Other researchers were addressing and voicing similar views.

In the book, The Human Side of Enterprise, MacGregor (1960) presented the notion of psychological climate to illustrate his analysis by formulating what he called Theory MacGregor described orientations that X and Theory Y. individuals in an organization use to react to the organizational climate. Theory X suggested that people were docile, lazy, and required being told what to do and how to do it. Theory Y, on the other hand, viewed individuals in the organization as creative, ambitious, hardworking, self-directing, and desiring a voice in what goals and objectives were to be addressed and how. According to MacGregor, it was a formulation of many subtle behavioral manifestations of managerial attitudes that fostered the psychological climate between managers and their employees.

Halpin and Croft (1962) reflected upon the organizational/individual dichotomy in a different way. As proponents of the social systems viewpoint, Halpin and Croft used the terms "initiating structure" and "consideration". "Initiating structure" referred to the relationship between

the leader and members of the work group in attempting to establish patterns of organization, channels of communication, and methods of procedures. "Consideration" referred to the behavioral implication of leadership, i.e., mutual respect, warmth, and relationship between the leader and members of the staff.

In the early 1960's, Astin and Holland (1961) developed the <u>Environment Assessment Technique</u>, a measurement instrument, to measure the atmosphere of a college by identifying the characteristics of the students, the average intelligence of students, and the size of the institution. In summarizing the results of their study, they concluded that the characteristics of the student body had a considerable influence upon the total environment.

Social Systems Theory

Parsons (1951) in his consideration of social theory implied the importance of the social system. He suggested that consideration of the nature of a social system may be adequate to study the implications of achievement of goals and objectives of an organization. Getzels and Guba (1957) expanded the interpretation of the social system as initiated by Parsons. They presented the terms "nomothetic" and "idiographic". "Nomothetic" was the term that referred most specifically to the aspects of organizational task aspect of the total social system. "Idiographic" dealt with

the human or individual/personal aspect of the social system. Getzels and Guba's conceptual system generated theoretical implications focused upon the linking characteristics of the goals and objectives of both the structural organization and the human aspects of the organization.

Likert (1961) developed an interaction-influence model and assigned central importance to the characteristics of an organization as they were perceived by the individuals employed in the organization. Causal variables such as size, structure, goal directions, and supervisory practices interact with the personal characteristics of an individual to formulate perceptions. It is through these perceptions the relationship between causal and end-result that variables can be understood. As an intervening variable, organizational climate can reflect the internal state and well-being characteristics of an organization.

Other Organizational Climate Research

Halpin and Croft (1962) were significant contributors to the concept of organizational climate in schools. They studied organizational climate in the public schools, and they described it as the "feel" that the employee has for the organization. The dimensions identified by Halpin and Croft established a climate continuum ranging from "open" to

"closed". Their research examined how subordinates felt about superordinates.

first review of the The literature dealing with research on organizational climate was presented by Forehand and Gilmer (1964). One hundred four pertinent studies were cited psychology, education, sociology, from and administration. From the review of the research, Forehand and Gilmer hypothesized that organizational climate affected individual's behavior defined by stimuli, the which confronted the individual, placed constraints upon freedom rewarded/punished behavior of of choice. and that individual.

Presthus (1965) discussed findings similar to those of Forehand and Gilmer. His work dealt with administration in organizations and the power structure that affected it. "If an individual rejects authoritative social value, it seems that he might also deny the legitimacy of organizational norms and expectations" (Presthus, 1965, p. 117). Presthus also suggested that individuals working in an organization are rewarded or punished as a result of the stimuli they receive from the organization.

Tagiuri and Litwin (1968) examined the emerging concept of organizational climate from numerous viewpoints. Tagiuri (1968) defined organizational climate concepts as a set of constructs that would explain the behavior present in an atmosphere or setting outside a laboratory where the

environment could be held constant. An environment was interpreted as a setting in which the individuals in an organization have a specific quality which affects their behavior within the organization.

Litwin and Stringer (1968) explored the concept of organizational climate in much the same way as did Tagiuri. They described organizational climate as the recognition of both structural variables and subjective variables. In their organizational climate research, Litwin and Stringer attempted to discover if various and different environments demanded or aroused various types of motivation. By changing the leadership styles, Litwin and Stringer were able to illustrate that an experimentally created organizational climate was capable of temporarily arousing a particular motive and, through the demands of the motive, alter performance as well as job satisfaction.

Campbell and associates (1970) expressed a concern that in the contemporary organizational climate research few climate dimensions had emerged. In their review of four organizational studies, Campbell discovered four common dimensions: individual autonomy, reward orientation and consideration, structure, and warmth and support. Because of the variety of research efforts being conducted in the organizational climate field, Campbell recommended that future research attempt to formulate and identify as many organizational climate dimensions as possible.

Schneider (1972) challenged many of the major organizational climate research questions and the theoretical deficiencies (Rice, 1980, p. 11). Schneider hypothesized that organizational climate reflected the interaction of personal and organizational characteristics. "Global perceptions of the organization emerge as a result of numerous activities, interactions, reactions, and other daily experiences the person has with the population" (Schneider, 1972, p. 447). By identifying organizational climate as an individual attribute, Schneider was able to provide congruence between human behavior and the specific environmental situation.

Statement of the Problem

According to the literature dealing with decision-making and organizational climate, there is a concern about how the variable domains of decisional states and organizational climate are related. Researchers and school practitioners agree that each organization possesses some type of decision-making, and each organization has some type of climate. The literature reflects little effort in the linking of these two constructs. Since numerous research efforts deal with each of these constructs independent of each other, the thrust of this research examines the _relationship of the variable domains. The problem of this research was: What is the relationship between decisional states and organizational climate? Specific research questions to be investigated include:

Is there a relationship between teachers who are "decisionally saturated" and the organizational climate of a school?

Is there a relationship between teachers who are "decisionally deprived" and the organizational climate of a school?

Is there a relationship between teachers who are at "decisional equilibrium" and the organizational climate of a school?

Definition of Terms

<u>Decisional State</u>: "the level of participation in decision-making that the individuals in the organization have and/or desire to have" (Belasco & Alutto, 1972).

<u>Decisional Saturation</u>: "the condition in which an individual is involved in more decision-making opportunities than s/he desires" (Belasco & Alutto, 1972).

<u>Decisional Deprivation</u>: "the condition in which an individual desires to be involved in more decision-making opportunities" (Belasco & Alutto, 1972).

Decisional Equilibrium: "the condition in which an individual has as many decision-making opportunities as s/he desires" (Belasco & Alutto, 1972).

<u>Organizational Climate</u>: the set of characteristics that describes an organization, distinguishing it from other organizations, and influences the behavior of people in that organization (Dessler, 1976). Argyris (1957) defined organizational climate as "the personality of an organization".

<u>Structure</u>: a dimension of organizational climate which describes "the feeling that employees have about the constraints in the group, how many rules, regulations, procedures there are; is there an emphasis on 'red tape' and going through channels, or is there a loose and informal atmosphere" (Litwin & Stringer, 1968, p. 81).

<u>Responsibility</u>: a dimension of organizational climate that describes "the feeling of being your own boss; not having to double-check all your decisions; when you have a job to do, knowing that it is your job" (Litwin & Stringer, 1968, p. 81).

<u>Reward</u>: a dimension of organizational climate that describes "the feeling of being rewarded for a job well done; emphasizing positive rewards rather than punishment; the perceived fairness of the pay and promotion policies" (Litwin & Stringer, 1968, p. 81).

<u>Risk</u>: a dimension of organizational climate that describes "the sense of riskiness and challenge in the job and in the organization; is there an emphasis on taking calculated risks, or is playing it safe the best way to operate" (Litwin & Stringer, 1968, p. 81).

<u>Warmth</u>: a dimension of organizational climate that describes "the feeling of general good fellowship that prevails in the work group atmosphere; the emphasis on being well-liked; the prevalence of friendly and informal social groups" (Litwin & Stringer, 1968, p. 81).

<u>Support</u>: a dimension of organizational climate that describes "the perceived helpfulness of the managers and other employees in the group; emphasis on mutual support from above and below" (Litwin & Stringer, 1968, p. 81).

<u>Standards</u>: a dimension of organizational climate that describes "the perceived importance of implicit and explicit goals and performance standards; the emphasis on doing a good job; the challenge represented in personal and group goals" (Litwin and Stringer, 1968, p. 81).

<u>Conflict</u>: a dimension of organizational climate that describes "the feeling that managers and other workers <u>want</u> to hear different opinions; the emphasis placed on getting problems out in the open, rather than smoothing them over or ignoring them" (Litwin & Stringer, 1968, p. 82).

<u>Identity</u>: a dimension of organizational climate that describes "the feeling that you belong to a [school] and you are a valuable member of a working team; the importance placed on this kind of spirit" (Litwin & Stringer, 1968, p. 82).

<u>Organizational Climate Pattern</u>: a construct that combines dimensions of an environment to formulate a specific type of environmental setting.

Organizational Climate Structure Pattern: one specific unit of a construct that "measures the perception of formality in formal organizations, and is negatively related to achievement motivation" (Litwin & Stringer, 1968).

Organizational Climate Challenge Pattern: one specific unit of a construct that "measures the perception of challenge and excitement generated by the organizational climate. This pattern includes the Risk, Responsibility, and High Standards scales. All three of these dimensions are of critical importance to the arousal of achievement motivation. Achievement, by definition, is proportional to the challenge involved. This pattern may be thought of as the 'motivators' for achievement, i.e., these factors which positively arouse and stimulate higher levels of motivation" (Litwin & Stringer, 1968).

Organizational Climate Social Inclusion Pattern: one specific unit of a construct that "includes the Warmth and Friendliness and Identity scales, and measures the perception of the environment's emphasis on sociability, belonging, and group membership. It includes measures of social salience of approval. the These climate dimensions tend to arouse affiliation motivation, but do not directly effect achievement motivation. They do, however, act as background supports for achievement-oriented activity" (Litwin & Stringer, 1968).

Organizational Climate Rewards and Support: one specific unit of a construct that "includes the Rewards, Support, and Tolerance for Conflict scales. It measures the climate's emphasis on positive reinforcement rather than punishment or inhibition of task behaviors. It measures the degree to which individuals perceive that their freedom is 'legitimized' in the organization. All of these dimensions are positively related to the arousal represents the 'motivators' for achievement, Pattern IV (rewards and support) represents the 'hygienic factors' needed to sustain and reinforce achievement" (Litwin & Stringer, 1968).

Significance of the Study

Organizations, including public schools, have been challenged by employees and persons obtaining services from the organization to make organizational modifications. Some of the modifications apparent today include implications to permit employees greater autonomy and permit employee participation in establishing, implementing, monitoring, and evaluating the qoals, objectives and activities of their organizations. In order to further knowledge about organizational life, researchers have studied personnel motivation, job satisfaction, job performance, and participation in decision-making as that which affects the efforts to achieve the goals and objectives of the organization. Even though this study is of a descriptive nature, it is an effort to provide additional empirical evidence to further the causes of organizational understanding. Specifically, this research is focused upon the domains of the decisional states of teachers and the relationship of that domain to the organizational climate of the school. This relationship is delicate and significant to the organizational well-being of the school particularly as schools attempt to meet the diverse and pluralistic demands of constituent populations which are apparent today.

In summary, this chapter was designed to introduce the reader to the concepts of decisional states (participatory decision-making) and organizational climate and a basis upon which to understand this investigation and its related processes. This chapter presented a brief introduction to the literature, the statement of the problem, questions posed to generate the problem statement, definitions by which the reader may understand the foundation upon which this study is based, the significance of the study, and an introduction to the forthcoming chapters of this study.

CHAPTER II

THEORETICAL FRAMEWORK AND RESEARCH

Introduction

The concept of decisional states (participatory decision-making) evolved from the needs that teachers have in being involved in the decision-making processes in the public schools. A teacher's desire to be or not to be actively involved in the decision-making process in the school in which s/he works may have an important overall effect upon the achievement of the goals and objectives of that teacher as well as the organization.

The concept of organizational climate emerged out of the concern for discovering how organizations set limits and influence human behavior. Climate describes the characteristics of an organization at a single point in time. An individual's personality, needs, abilities, and values affect the perception of the organization, thereby, influencing the individual's behavior.

The organizational climate construct "provides educators with a conceptual link between the elements of the organizational system and the determinants of individual
behavior" (Litwin & Stringer, 1968, p. 44). Organizational climate provides educators with a construct which links organizational practices and procedures that describe the concerns and needs of individual workers. Educational administrators aspire through research on organizational information about climate to generate how different practices and procedures can stimulate or fail to stimulate the needs, behaviors, and motivations of teachers. Litwin (1968) reviewed the possibility of integrating concepts into some major theories of human behavior and into some primary social and social-psychological theories of human behavior. Litwin concluded from his studies that the theories of human behavior had not assigned a major emphasis to the analysis of organizational climate.

In summary, the individual (teacher) and the organization in which s/he works have specific needs that achieve their respective will help them qoals and objectives. This chapter examines the theory and research of two variable domains, decisional states and organizational climate, and links them together to form a marriage between the two. This union will assist the researcher in examining the conceptual hypotheses to be postulated.

Participatory Decision-Making Theory and Research

The concept of participatory decision-making identified a construct that met the needs of some individuals in formal

organizations. Participatory decision-making encompasses a large body of research. Decision-making theory itself incorporated the needs of the organization and the needs of the individuals employed by that organization.

Smith (1790/1969) developed the model of economic man which was based upon the assumption that every person weighed the economic alternatives available and consistently chose an alternative which resulted in the highest net gain. Simon (1947) rejected this theory of economic man as insufficiently descriptive of what decision-makers actually did. He stated that it was impossible for any one individual to reach any degree of rationality. Furthermore, the number of alternatives an individual must examine and evaluate was so great and the information needed to evaluate them was so vast that even an approximation of objective rationality was difficult to achieve.

Simon (1947) coined the term "satisficing" which replaced the optimization of making decisions. Satisficing meant an individual will use the first satisfactory solution possible. March and Simon (1958) stated that decisions and choices were most often made on limited, simplistic abstractions of what the decision-makers perceive the real world to be.

Soelberg (1966) suggested that rather than reaching optimizing and satisficing decisions, one could simply confirm the "right" decision. In Belasco and Alutto's (1972)

studies, it was suggested that the proper decision, the satisficing decision, the optimizing decision, and other decisions should properly result from decisional states, configurations of teacher participation in school system decision-making. Decisional states were the levels of participation that individuals in the organization had or desired to have. The decisional states identified by Belasco and Alutto (1972) were: <u>decisional saturation</u>, the condition in which the person was involved in more decisions than s/he desired; <u>decisional deprivation</u>, the condition in which the person desired to be involved actively in making more decisions; <u>decisional equilibrium</u>, the condition in which the person had as many decision-making opportunities as s/he desired.

As a result of Belasco and Alutto's suggestion many researchers are linking decisional states with areas that produce problems as well as formulate solutions. Four studies resulted from Belasco and Alutto's (1972) findings. They were Best (1973), Conway (1976), Richardson (1978), and Nelson (1983). These studies reflected that the teachers sampled in western New York State, Kansas, and Oklahoma as a majority felt they were decisionally deprived. These teachers who felt decisionally deprived sought greater participation opportunities in their schools.

Tannebaum (1968) suggested that increased participation in organization decision-making was directly related to

increased administrative control over the activities of organizations. Tannebaum hypothesized that increased participation in the decision-making process of policy formulation will result in greater member acceptance of the legitimacy of their administrative superiors in implementing such policies. Stinett and associates (1966) had previously presented the employee (teacher) viewpoint regarding the process, and they have argued that the interest and demand that have arisen for a negotiations process resulted from the employees' desire to participate more actively in the decision-making processes.

Hespe and Wall (1976) suggested that participation will be more meaningful to workers when those to be affected participate in decisions concerning the practices to be adopted in their own workplace. Their studies ranged from coal mines to a number of hospitals. The studies revealed considerable individual and organizational differences in the manner and extent of desired participation. Hespe and Wall concluded from their studies that the higher level forms of participation may be inappropriate where the climate of the organization denied employees suitable opportunities to participate in decisions. Participation in decision-making seemed more appropriate when the decisions were more directly relevant to their everyday activities.

Hey (1979) found that in order to manage effective change and innovation in a public school organization, it

was necessary to address the human needs of the teachers who were affected by the innovation or change. In helping staff members adapt to inevitable organizational changes, personnel motivation and participation at all levels of planning, implementing, monitoring, and evaluating were necessary for institutional efficiency.

McGeown (1979) hypothesized that the dimension of attitudes educational teacher toward innovations was important in the formulation process of innovation in the schools. He validated scales to measure general change-related values. These scales involved innovation-specific attitudes and behavioral orientation, adoption of innovations, and ongoing participation in change to be involved directly in the decision-making processes while the innovational change was in its formulation stage.

reported in her studies (1980) Kilmer that the evaluation of critical factors in decision-making was essential in making decisions in early childhood In viewing decision-making in policy-making organizations. situations, individuals must carefully consider the characteristics of the decision-making. Individuals must carefully consider the characteristics of the decision-making setting, role perceptions, individual social influence, individual personality traits, problem contact, and organizational and social influences. Once these items were carefully examined and evaluated, Kilmer recommended

that policies be formulated by active participation in the decision-making process by those individuals who desire participation and possess the abilities to accept the responsibilities attached to that decision-making right.

(1981)recommended that Kanter organizational employees, administrators, and staff use the information set forth recently in social science research as it related to power, power-sharing, and effective leadership. She concluded that each organization possessed a power structure to achieve the goals and objectives of that organization while simultaneously meeting the needs of the employees in involving the employees sharing power and in the decision-making processes, one must permit employees to be involved in making the decisions.

Gwinn (1981) suggested that there were effective and efficient ways of creating a climate for change. He concluded from his studies that the most effective and efficient method of bringing about needed change was to set the course, focus upon the forces of support and resistance, and make the decisions. As these interact in creating a positive acceptance for bringing about the change, it was essential to involve all persons affected by these changes. He also suggested that decision-makers involve persons to the degree they wish to be involved.

Kerchner and Schuster (1982) hypothesized that the effective use of crises can, under certain conditions, be

transformed into instruments of organizational good. They suggested that especially during times of shrinking resources, increased participation in decision-making can increase the effectiveness and productivity of the organization while simultaneously meeting critical needs of the individuals employed in the organization.

The McNeely (1983) studies suggested that ineffective organizational patterns, work motivation, and burnout in public schools were caused by teachers' noninvolvement in decision-making, participation in establishing performance guidelines, and the constant exposure to routinization and undesirable division of labor.

Degrees of Participation in Decision-Making

Many of the research endeavors mentioned previously reinforced what had been discovered earlier. Coch and French (1948) conducted a series of field experiments at the Harwood Manufacturing Corporation. Three carefully matched groups of employees in that organization were studied (Nelson, 1983, p. 32). One group was not permitted to participate in making decisions that affected changes which were to be made within the organization. The second group was permitted to participate in making decisions through a representation process. The third group was permitted to participate in making decisions totally. In the first group, production did not improve; and increased absenteeism,

employee turnover, and number of grievances filed resulted. In the second and third groups which possessed participation opportunities, production rose; and absenteeism, employee turnover, and number of grievances filed were lessened or eliminated.

Bass' (1965) studies identified a descriptive attribute which stated that a stronger commitment to the goals and objectives of an organization existed when the individuals employed in the organization were actively involved in the major task-oriented decisions associated with the achievement of those goals and objectives. Patchen (1970) suggested that increased participation in the organizational decision-making process Was related to greater job performance and satisfaction, personal performance and satisfaction, effectiveness and efficiency, and personal integration in that organization.

Yarborough (1976) reviewed 42 studies to determine teachers' attitudes toward participatory decision-making. Her studies were systematically delineated into three broad categories: (a) satisfaction and morale, (b) effectiveness and productivity, and (c) leadership and supervision. These studies indicated that, with few exceptions, teachers seemed to favor active participation in making decisions.

The research of Hopps (1979) reflected quite a different phenomenon. It showed that schools need to develop specific strategies to deal effectively with occupational

stress that affect job satisfaction. Occupational stress was defined "as a dynamic reciprocal relationship between an individual and the work environment" (Hopps, 1979). The antecedents or moderators of strain that lead to job dissatisfaction were role ambiguity, role conflict, quantitative and qualitative overload, boundary spanning, role responsibility, and personality traits. "As the definition of stress implies, stress is caused by a degree of imbalance between a person's needs and skills and the organization's requirements and demands" (Hopps, 1979, p. 34).

HYPOTHESIS I: There is a relationship between saturation in decision-making among teachers and the organizational climate.

Participation Levels in Decision-Making

Hespe and Wall (1976) suggested that participation will be more meaningful to workers when those to be affected participate in the decision-making processes concerning the practices to be adopted in their place of employment. Hespe and Wall's studies ranged in organizations from coal mines to a number of hospitals. The studies reveal considerable individual and organizational differences in the manner and extent of desired participation.

Stewart and Miskell (1977) reported that schools were functioning in an era of rapid change and ever increasing mobility. "In an effort to mobilize the organizational structure to meet the standards being dictated by society, the school district reorganized the administrative structure to emphasize decentralized decision-making for direct educational functions" (Stewart & Miskell, 1977, p. 26). hypothesized that teachers would and Miskell Stewart perceive a change in bureaucratic structure, organizational processes, and school effectiveness. Though a single classification of variance procedure across the pretest and posttest scores was conducted, only limited support of this hypothesis was found. Stewart and Miskell stated that this attempt to provide opportunities for teacher was an involvement in decision-making and policy formulation. They found differences in degrees of participation in decision-making and policy formulation.

Howard (1978) reported that there was a definite need to balance the needs of people in the organization and the resources available to meet the goals and objectives of the organization. "Faculty, by the very nature of the educational enterprise, are not only at the center of the operation, but are involved in much of the most critical management activity. As such, there can be no effective implementation of decisions nor optimum cost-effectiveness apart from their voluntary support" (p. 17). In order to increase productivity, the major task of the educational administrator is to organize faculty participation, develop the sort of climate, and provide the resources and tools to

make it effective. The objective of matching human resources (people) with organizational resources was to improve communication, and, through the teaching of management skills, make possible more effective desired levels of participation in the decision-making process. Howard recognized the importance of matching desired levels of participation in the decision-making process to the overall effectiveness of organizations while simultaneously achieving job satisfaction and performance.

Van Patten (1979) suggested that modern educational philosophy too often considered product-oriented efficiency the highest priority of the educational system, to the detriment of the actual learning process. This situation could be altered by a shift in public and administrative attitudes toward the professional educator. "Teachers should have more of a voice in the decision-making process. They should be given more latitude in developing personal classroom techniques and should not be pressured into adopting either an innovative or a traditional style" (Van Patten, 1979, p. 10-11). Van Patten echoed the findings of other researchers in that desired participation levels were much more desirable than automatic increased involvement or reduced involvement and participation in decision-making. There was more demands for increased participation in decision-making in schools than there are for reduced participation, but there were educators who experience too

much involvement in decision-making, and as a result task overload occurs. Balancing a person's desired level of participation with the demands of the organizational goals and objectives is difficult; but to maintain organizational effectiveness and meet the needs of individuals, it is essential to do so.

Moracco and McFadden (1979) reported in their study that "burnout is a condition that exacts a heavy toll on organizational effectiveness" (p. 10). "Conditions that contribute to burnout in human services organizations are lack of funds, lack of flexibility, lack of decision-making power of middle managers, task overload, little recognition for efforts, and the nature of client population" (Moracco & McFadden, 1979, p. 12). Moracco and McFadden recommended that schools establish strategies to prevent burnout which include instituting a social-professional support group which would provide opportunities for organization self-assessment, methods to reduce conflicts, feedback and rewards, timeout for individuals, and screening procedures for new individuals joining the organization. They further stated that burnout could contribute to job dissatisfaction many things including task overload due to in all educational activities and decision-making. Moracco and McFadden recognized situations in which teachers could experience job dissatisfaction as much as being involved in

too many decisions as they could with having too little involvement in the decision-making processes.

Hopps (1979) stated that a model that proposed the congruence of persons and environments in organizations seemed appropriate to reduce strain and increase job satisfaction. "Determinants of job satisfaction include mentally challenging work, autonomy, variety, task identity, need recognition, higher order strengths, need for independence, education levels, participation, and role perceptions" (Hopps, 1979, p. 43). He also recommended that individuals be provided with those skills necessary to detect potentially stressful situations and cope with anticipated stressors, job and, thus, improve the individual's total effectiveness.

Clagett (1980) conducted a day long workshop at Prince George's Community College to identify the sources of stress affecting the faculty and to examine possible strategies for managing stress. Clagett reported that the factors contributing to teacher job dissatisfaction, burnout, and turnover resulted from the lack of faculty participation in decision-making and the increase of under-prepared students coupled with student expectations of higher grades, apathetic peers, and low salaries. The afternoon session investigated ways of reducing stress. This investigation yielded one hundred fifty-three strategies for reducing stress. "The study reviews the literature of 'professional

burnout', and presents a model for understanding stress, in which burnout is seen as a breakdown in the relationship between the individual and the organization" (Clagett, 1980, p. 54).

Gratz and Salem (1981) hypothesized that there was a difference between those individuals actively involved in decision-making as well as policy-making and those who were Gratz and Salem stated that there was a major not. difference in the amount of communication flow, information quality, and the whole communication process itself as it related to individuals involved and those who were not. Gratz and Salem recommended examining carefully the need to assess the information needs of subordinates and the methods They also recognized the fact that several of diffusion. individuals experience too much requirement for involvement when the individual desired less involvement. Gratz and Salem stated that finding the happy medium in involvement in decision-making and communication was the key to greater productivity and effectiveness. They recommended that administrators examine their organization carefully because the assumption that every individual wants more involvement in decision-making and the communication process may well be Gratz and Salem stated that it was possible to erroneous. have an individual in an organization that desired less involvement in the decision-making and policy-making in

organizations, but the dimensions of equilibrium and saturation were also possible.

HYPOTHESIS II: There is little difference among teachers in experiencing decisional saturation.

In light of the research that has been cited, it becomes apparent that there are different degrees of participation in decision-making in organizations. Since there are different degrees of participation, one could speculate that there are also different levels of desired participation. The research suggested that it was desirable individual to be involved to permit an in much as decision-making s/he desired while simultaneously as achieving the goals and objectives of the organization in the most effective and efficient manner. Balancing human and organization needs is difficult, but demands have arisen to do just that in public schools as well as business.

Organizational Climate Theory and Research

Organizational climate constructs have been easily integrated into the theories of organizational behavior. Conceptualizing organizational climate has drawn from many sources. Tagiuri (1968) developed a taxonomy which provided an effective sorting system. Tagiuri's taxonomy for categorizing organizational climate fit the data being obtained both rationally and empirically. Tagiuri defined organizational climate as well as environment as summary concepts dealing with the total environmental climate which included its <u>ecology</u> (the physical and material aspects), its <u>milieu</u> (the social dimension concerned with the presence of persons and groups), its <u>social system</u> (the social dimension concerned with the patterned relationships of persons and groups), and its <u>culture</u> (the social dimension concerned with belief systems, values, cognitive structures, and meaning) (Anderson, 1982, p. 369).

Moos (1974) and Insel and Moos (1974) developed a similar categorization device to conceptualize the human environment as it related to organizational climate. Their delineation of human environments was called social ecology. It involved human interactions with physical and social dimensions of organizational climate. In their system, organizational climate and psychosocial characteristics were two of the six approaches to the human environment.

Tagiuri's (1968) system was preferable to Moos', because it reflected the growing consensus of many organizational climate researchers that organizational climate included the environmental quality within a given school building (Anderson, 1982, p. 369).

Dieterly and Schneider (1974) studied the process by which perceptions of organizational climate was transformed into individual behavior. They hypothesized that behavior was a function of self perception of power and the organization. Organizational climate perceptions and individual self perceptions were prerequisities for planned

behavior. Such self-perceived power will affect the actions of those individuals. Self-perception is the key point of organizational climate research. When measuring the organizational climate, perception depended in part, and cannot be separated from, previous experiences, needs, and values (Bloom, 1976; Davis, 1963; Hellriegel & Slocum, 1974; Mitchell, 1967). Herr (1965) reported similar findings. He indicated that participants generalized from their own perceptions environmental experiences to of press, suggesting that perceptual data from individuals of varying life experiences will differ. Reliance upon perceptual data meant that organizational climate now included variance that resulted from individual differences as well as Individual personal attributes organizational differences. influence organizational climate indistinguishable from personal data or individual characteristics (Hellriegel & Slocum, 1974; Hoover, 1978; Moos, 1979; Tannebaum & Bachman, 1964).

This research focuses upon organizational climate at the building level rather than the school district or individual classroom level. Bidwell and Karsarda (1975) studied organizational climate at the school district level. They performed exhaustive research in attempting to study organizational climate at the school district level. They discovered that the variables were so vast that when they controlled one variable at one level, it was almost

impossible to control the other variables at the other levels. Though they recommended that additional research may be needed, they also recommended the possibility of using a more manageable unit of analysis.

The previously mentioned research findings suggested that accuracy of perception was inconclusive. Hellriegel and Slocum (1974), Hoover (1978), Moos (1979), and Tannebaum and Bachman (1964) suggested that climate perceptions were a function of the individuals studied. Therefore, a number of researchers have found teacher, student, and administrator perceptions to be independent of each other, although perceptions within one group were quite consistent (Ellett et al., 1977; Ellett & Walberg, 1979; Maxwell, 1968; Sargent, 1967). On the other hand, another quite different aspect arose. Other researchers have reported that the responses of teachers, students, and administrators when organizational measured were similar, suggesting that climate was perceived relatively the same by all individual members of the school (Davis, 1963; Pace & Stern, 1958; Perkins, 1976). These perceptual issues have led researchers to advocate more objective measures of organizational (Barker & Gump, 1964; Hellriegel & Slocum, 1974; climate James & Jones, 1974; Mitchell, 1967).

Stern (1970) developed the <u>Organizational Climate Index</u> as one of the series of environmental measures developed in research for the expansion of knowledge in the field of

organizational climate. It was used in business as well as college environments. Stern hypothesized that students and business employees (individuals) perceived organizational climate relatively the same as did all members of an organization.

Perceptual data have been accepted as the indicators of normative organizational climate. On that basis the assumption which Halpin and Croft (1963) made in their original research has continued to be the guiding light for most organizational climate research. The actual behavior was less important than the perceived behavior, because perception was what controlled an individual's responses in any formal organization.

HYPOTHESIS III: There is a relationship between the non-involvement of teachers in decision-making and the organizational climate.

Organizational Climate Categories

Halpin and Croft (1962) studied organizational climate in the public school and described organizational climate as the "feel" that the employee had for the organization. Litwin and Stringer (1968) described organizational climate as the recognition of both structural variables and subjective variables. Waters and associates (1974) combined Halpin and Croft's questionnaire, the <u>Organizational Climate</u> <u>Description Questionnaire</u>, with that of Litwin and Stringer the Profile of Organizational Climate, to see if they could generate comparisons. Some minor comparisons did result, but Waters and associates suggested that more research would be required to produce any substantial benefits. They plotted the organizational climate variable in at least three (l) climate separate and distinct categories; as an independent variable, (2) climate as an intervening variable, and (3) climate as a dependent variable. Further research and refinement of existing research could possibly bring about important further understanding.

Guion (1973) suggested that how an individual viewed organizational climate could influence satisfaction and He hypothesized that the more positive an performance. individual viewed the organizational climate, the more satisfied s/he would be, and as a result would perform the tasks of the organization in a more effective as well as efficient manner. Schmuck (1973) hypothesized much the same in his studies as did Guion. He suggested that permitting the decision-making individuals more participation in processes brought forth greater productivity. He went on to state that schools which involve the teachers in decision-making activities experience more effectiveness and efficiency in organizational productivity. The improved clarifying communication, productivity resulted from establishing clear goals, solving conflicts, improving meetings, and making decisions.

Kanter (1981) hypothesized that the changing society made new demands on leaders and on the organizations they design and manage. She also stated that increased participation of the employees in decision-making processes was the direct result of increased productivity as well as increased job satisfaction. Conversely, Kanter suggested that nonparticipation in the decision-making processes reduced the organization's productivity and job satisfaction of individuals employed in that organization.

Fraser and Rentoul (1982) hypothesized that the secondary school teachers' behaviors were influenced by perceptions of the dimensions of school and classroom environment. Wiggins (1975) had found similar results in his study of socialization and its effect upon perceptions of organizational climate. Fraser and Rentoul have reported results similar to those of Wiggins. They stated that the longer teachers remained in the secondary school, the more they became socialized. The five dimensions of school environment (organizational climate) Fraser and Rentoul examined professional affiliation, were: interest, achievement orientation, formalization, and innovativeness. The dimensions Fraser and Rentoul identified as dimensions of classroom environment were: personalization, participation, independence, investigation, and By examining a relationship between the indifference. dimensions of these variable domains, Fraser and Rentoul

hypothesized that organizational and classroom climate were interrelated and have reciprocal effects upon each other, and as a result, the longer time teachers remain in the secondary school, the more they become socialized.

HYPOTHESIS IV: There is a difference in the measures of organizational climate during teachers' participation and/or nonparticipation in decision-making.

Social Relationships Within Organization

Sociological theory was used to designate research perspectives that present the school as a system of social relationships among family, teachers, students, and administrators (Brookover & Erickson, 1969, 1975; Brookover et al., 1979; Waller, 1932/1961; Wegner, 1978). "Research considers how these relationships act to meet educational goals" (Anderson, 1982, p. 382). Individual behavior was seen as a function of the social processes of the school, its norms, expectations, evaluation, and relationships.

Etzioni (1968) attempted to reemphasize the concept of basic human needs as an important construct to modern sociological theory. Etzioni stated that it was useful to assume that a universal set of basic human needs existed which were not determined by cultural patterns, social structure, or the socialization process (Rice, 1980, p. 32). He also inferred that a specific human need required no specific response since it could be satisfied by several stimuli. Etzioni recommended that classification of human

observable and could needs were not not be tested effectively, because they were never found in isolated form. He agreed that modern large organizations possess rules and procedures that did not easily lend to the fulfillment of such human needs as recognition, affective relations, and security. Even though basic human needs demand gratification, formal organizations do not immediately alter goals and objectives to meet the needs of individual participants. Schneider (1972) suggested that the individual formal organization adapted to some in a degree of homeostatic balance with the psychological environment as a result of the organization not altering its rules and procedures to meet the needs of the individual.

Downey, Hellriegel, and Slocum (1975) hypothesized that organizational climate and job satisfaction were congruent when openness, reward, and participation in decision-making were present. Organizational climate and job performance were partially congruent but not as consistently as organizational climate and job satisfaction. They further stated involvement that openness, reward, and in decision-making were desirable, but they did not relate as closely to pay and promotion satisfaction as they did with co-worker and supervisory satisfaction.

Sorensen and Hallinan (1977) argued that intellectual knowledge was a more important outcome than social effects, and that research should focus both on immediate advancement

of knowledge relevant to the meeting of individual as well as group needs. Furthermore, because schools and the individuals employed in the schools have multiple goals and different priorities, organizational climate might in fact affect a goal that was not being measured as a criterion (Epstein & McPartland, 1976; Levin, 1970; McPartland et al., 1976; Schneider et al., 1979; Spady, 1973). This research identified a need to investigate the following proposed hypothesis:

HYPOTHESIS V: There is a relationship between the desire of teachers to be involved in decision-making and the organizational climate.

In summary, this chapter presented a comprehensive review of the literature and theory dealing with participatory decision-making and organizational climate. theory developed progressively to formulate The the theoretical framework of the two variable domains investigated in this study. The review suggests that since each organization inherently possesses the responsibility for decision-making within an organizational climate, there is a need to achieve organizational goals and objectives while simultaneously meeting the needs of the persons employed in that organization who collectively make-up the of the organization. These theoretical climate considerations resulted in the generation and presentation of five conceptual hypotheses.

CHAPTER III

RESEARCH DESIGN

Introduction

This chapter has been prepared to present the research design for this study. Chapter I presented the background and setting of the problem to be investigated, presented a brief introduction to the related literature, and provided the definitions used in this study. Chapter II presented the theoretical framework and literature review. Once the variable domains are chosen, a problem statement formulated, definitions constructed, and a comprehensive review of literature has been performed, a need exists to formulate a design that will enable the researcher to investigate the problem posed. This is the function of the research design chapter.

Restatement of the Problem

The problem for this research was: What is the relationship between decisional states and organizational climate? This study identified three dimensions of participatory decision-making and nine dimensions of organizational climate in the definition section of Chapter

I. An analysis of the teachers' perceptions of their school building environment and their desired levels of participation in the decision-making process provided information about the meeting of human resource needs and the needs of the organization. The relationship between desired of participation levels in organizational decision-making processes and organizational climate was explored. Finally, this study examined the relationship between the perceived environment of teachers and the levels of participation these teachers experience in decision-making.

Presentation of the Statistical Hypotheses

The following statistical hypotheses were derived from the conceptual hypotheses and presented for investigation:

HYPOTHESIS I: For those teachers who are in a state of "decisional saturation" as defined by the <u>Decisional</u> <u>States Scale</u>, the 'should be participating' <u>decisional</u> state score will be a significant predictor, at the .05 level, of organizational climate pattern scores as measured by the Profile of Organizational Climate.

HYPOTHESIS II: For those teachers who are in a state of "decisional saturation" as defined by the <u>Decisional</u> <u>States Scale</u>, the 'already participating' decisional state score will not contribute significantly, at the .05 level, to the prediction model.

HYPOTHESIS III: For those teachers who are "decisionally deprived" as defined by the <u>Decisional States Scale</u>, the 'already participating' decisional state score will be a significant predictor, at the .05 level, of organizational climate pattern scores as measured by the <u>Profile of Organizational Climate</u>.

HYPOTHESIS IV: For those teachers who are "decisionally deprived" as defined by the <u>Decisional States Scale</u>, the 'should be participating' decisional state score will not contribute significantly, at the .05 level, to the prediction model.

HYPOTHESIS V: For those teachers who are in the state of "decisional equilibrium" as defined by the <u>Decisional</u> <u>States Scale</u>, both 'already participating' and 'should be participating' decisional state scores will be significant predictors, at the .05 level, of the organizational climate pattern scores as defined by the Profile of Organizational Climate.

Population and Sampling

The population for this study was the public schools in the State of Oklahoma. The unit of analysis upon which the sample was selected was the public school. The sample was randomly selected by using a table of random numbers to obtain a sample of schools from the Oklahoma Educational Directory, a publication distributed by the Oklahoma State This publication lists all the Department of Education. public schools in the State of Oklahoma. The population was stratified by geographic location. The stratification was performed in the following way: the State of Oklahoma was divided into eight geographic regions, and the table of random numbers was applied to each region to select the schools for the sample. This process enabled the researcher to secure a representative sample of schools from the different geographic regions of the State of Oklahoma. Schools from each of the following geographic regions of Oklahoma participated in this study: Northeast, including counties Osage and Delaware (N=4); Northwest, including counties Texas and Custer (N=3); Southwest, including

counties Jackson and Caddo (N=14); Southeast, including counties McCurtain and Atoka (N=4); Central, including counties Cleveland Oklahoma and (N=9); East Central, including counties Pottawatomie and Pontotoc (N=10); South Central, including counties Cotton and Comanche (N=9); and West Central, including counties Grady and Stephens (N=5). Sample schools ranged in size from small (8 teachers), to medium (25 teachers), to large (75 teachers). The average size school responding consisted of 25 teachers. The Southwest, Central, and Southeast regions possessed respondents from small schools, medium-size schools, and large schools. In the other geographic regions small schools and medium-size schools participated. The selection process yielded a sample in which 58 schools were identified and selected (N=58).

Description of the Instruments

The author requested permission from the originators of the <u>Decisional States Scale</u> questionnaire and the <u>Profile of</u> <u>Organizational Climate</u> to use the instruments in this study (see Appendix A). Correspondence from the originators of the measurement instruments granting permission to use the instruments in this study is contained in Appendix B.

Decisional States Scale

The <u>Decisional States Scale</u>, a participatory decision-making measurement instrument, was developed by

Belasco and Alutto in 1972. This instrument was used to assess the perceptual aspects of employees' desire to participate or not participate in decision-making in the public schools. The design of this measurement instrument was established in a way which would seek two responses from an individual to a single stimulus. A situation in a public school was stated and the individual responded either "yes" or "no" to two dimensions of that statement. One dimension was: Do you feel "you are already participating" in this decisional situation? The second dimension was: Do you feel "you should be participating" in this decisional situation?

For the purposes of this investigation a pilot study was conducted. Decisional states were defined in a manner similar to that proposed by Belasco and Alutto's <u>Decisional</u> States Scale (see Appendix C).

Individual teacher scores were obtained by scoring the items on the Belasco and Alutto instrument with a score of either a 0 or a 1. A "yes" response to either the 'already participating' or 'should be participating' was scored as a 1, and the "no" responses as 0.

Operationally, teachers who were in a state of "decisional saturation" were those teachers with a positive score. Teachers who were in a state of "decisional deprivation" were those teachers whose total score was negative. Teachers who were in a state of "decisional equilibrium" were those who possessed a total score of zero.

The reliability of a measuring instrument requires a determination of the consistency of separate but comparable measures of the same person, group, or event. Reliability may be established and estimated on the basis of as few as two measures of each person in a sample of the population upon which the measuring instrument is to be used. Belasco and Alutto's (1972) Decisional States Scale possessed a test-retest reliability coefficient that ranges from .85 to .95 for 151 teachers in public school settings in the New York City area. A pilot study was conducted for this study to obtain a reliability coefficient for this measuring instrument by using the Oklahoma public schools. The pilot study was conducted in the largest school district in this sample. The reliability coefficient reflected in this confirmatory analysis was a .65.

Profile of Organizational Climate

The <u>Profile of Organizational Climate</u>, an organizational climate questionnaire, was developed by Litwin and Stringer in 1968. The instrument was used to assess the perceptual aspects of employees concerning the organization in which they work. The design of the <u>Profile</u> <u>of Organizational Climate</u> is based on Lewin's notion of restraining versus driving forces in an environment. It utilized a forced choice Likert-type scale. There were fifty situations for the individual to respond to on this questionnaire. The response choices were: definitely agree, inclined to agree, inclined to disagree, and definitely disagree. The <u>Profile of Organizational Climate</u> had been frequently used in business and similar organizations. In order to use it in a public school setting, it was necessary to conduct a pilot test in a large school district to determine the congruence of the results of the pilot study with results obtained by other researchers in other organizational settings.

Results of the pilot study were factor-analyzed by varimax rotation to determine if the resulting factor structure was similar to the factor structure identified by However, a problem was discovered Litwin and Stringer. during the analysis in that the sample size of the pilot group was too small as well as being too diverse to produce a stable factor structure. This diversity resulted from there being nine schools which participated but with only a few respondents from each school. Because of this, four schools contributing the greatest number of returned and completed questionnaires were analyzed separately and an inter-item correlation was performed. Items that correlated highly and were clustered together were compared to the Litwin and Stringer factor structure. The inter-item correlations supported the clustering of items, but the An analysis factor analysis proved unsuccessful. was performed using the completed questionnaires from a more homogeneous school district, i.e., with results from

teachers in similar or identical schools in size and instructional patterns. This analysis reflected an even closer match to the Litwin and Stringer's factor structure than did the initial comparison. The homogeneous pilot study obtained an .87 test-retest reliability coefficient for 117 teachers in a southwest Oklahoma public school district. In summary, Litwin and Stringer's <u>Profile of Organizational</u> <u>Climate</u> questionnaire was judged an appropriate instrument for measuring the organizational climate dimensions that exist within the public school setting.

Method of Collecting Data

To collect data for this study, the researcher asked How many schools are needed to obtain a the guestion: significant difference if a relationship exists? The researcher addressed that question in this manner. The parameters used to test the statistical power of the sample of this study were an alpha level of .05 and power (1-beta) of .80. This means the probability of falsely failing to reject the null hypothesis is .05, or 1 time out of 20. The probability of detecting a true difference was set at .80. This means that there is 1 chance in 5 that the sample size will be too insensitive to detect an effect which actually exists. These are commonly accepted values for alpha and 1-beta (type I and type II errors). Alpha was chosen to be .05 and 1-beta was chosen to be .2. Using these parameters the required sample size was 42. Therefore, a sample size of

58 should provide more than ample power to detect the postulated relationship. The postulated relationship was based on the results of the pilot study.

sample was identified, the researcher After the contacted the administrator in each randomly selected school seeking permission to collect data from his/her school. Nine agreements with their schools hađ teacher of the organizations which permitted the teacher organization to approve or disapprove jointly a research request of this nature.

The researcher sought permission to administer the survey questionnaires to the teachers of the participating schools. Forty-three of the schools permitted the researcher to administer the questionnaires. When the researcher went to the schools to administer the survey questionnaires, the researcher read the instructions to the respondents and answered any questions relating to the questionnaires in a general faculty meeting. After the instructions were read procedures described, the survey and the response questionnaires were passed out to the respondents. The survey questionnaires required approximately 10 minutes of teachers' time. Upon completion of the survev the questionnaires, the respondents returned the questionnaires to the researcher, and they were then excused from the meeting. In the schools permitting the researcher to

administer the survey questionnaires, the response rate was 86 percent.

Representatives from fifteen of the schools stated that it would be inconvenient for them to have a faculty meeting just for the purpose of permitting the researcher to collect In this case, the school representative asked the data. researcher to mail the surveys to be administered. When the survey questionnaires were mailed to the schools, the school representative placed the survey questionnaires in each teacher's mailbox with instructions attached to return the questionnaires by a specific date. Once the respondent obtained the survey questionnaire, s/he read and interpreted the instructions himself/herself. Even though a telephone number was included in the cover letter attached to the questionnaires, no additional information was requested. When the mailout procedure was used, the response rate was 53 percent.

In summary, each administration procedure obtained voluntary participation from the teachers. In the researcher administration process, the questionnaires were presented to a group; whereas, the mailout administration process presented the questionnaires to the teachers individually. The data collection process yielded 561 teacher respondents. The smallest school surveyed had five teachers, and the largest school surveyed had 120 teachers. More specifically, 58 schools provided data, but only 43 schools were analyzed

because 15 of the schools did not provide sufficient number of responses to permit the construction of multiple regression model for each organizational climate variable.

Method of Analyzing Data

This study had three primary interests: (1) to observe perceptual and affective changes in teachers who experience different degrees of decision-making in an organization, (2) to discover the differences in job satisfaction as it related to decision-making opportunities, and (3) to investigate the relationship between participatory decision-making and organizational climate patterns.

The researcher asked the question: With decisional state scores, can one predict the organizational climate scores? If this is possible, it is necessary to apply a statistical method to make such predictions. When the purpose is to predict one score from another, multiple regression can appropriately be used for prediction purposes (Glass & Stanley, 1970, p. 186; Huck, Cromier, Bounds, 1974, p. 154). Multiple regression possesses the ability to predict one score, the dependent variable, from another, the independent variable. "Stated broadly, the purpose of multiple prediction (regression) is the estimation of a dependent variable, from a linear variable Y, the combination of m independent variables X_1, X_2, \dots, X_m (Glass & Stanley, 1970, p. 186).

The prediction models are based upon a multiple regression prediction procedure in which two multiple regression problems are solved and then compared to determine whether the prediction capability of the mathematical models are statistically significant. These are:

$$Y_1 = B_0 + B_1 + B_2 X_2 + e$$
 (Full Model)
and
$$Y_2 = B_0 + B_2 X_2 + e$$
 (Reduced Model)

Where Y, is the criterion for the full prediction regression model, in this case, each of the four Litwin and Stringer organizational climate patterns (variables); the B's are constants, and the X's are the two scores resulting from the <u>Decisional States Scale</u>. Y₂ is the criterion for the reduced multiple regression model, but is the same as Y_1 The purpose of the reduced for computational purposes. multiple regression model is to determine whether the score from X₁ significantly contributes to the predictive power of full multiple regression model. If statistical the significance is obtained when the second model is compared to the full model, the conclusion to be drawn is that X₂ contributes the predictive power to the model, and X, is not a powerful predictor. To be meaningful, the comparison of the full multiple regression model to the reduced multiple regression model assumes that the full model is a more
powerful predictor of the criterion than is the mean of the obtained scores. Statistical significance is determined by computations incorporating the multiple regression coefficients of both the full multiple regression model and the reduced multiple regression model.

The researcher selected this statistical method of analyzing the data obtained because multiple regression's major purpose is prediction. Because of the theoretical framework of this study, the researcher wanted to be able to predict organizational climate pattern scores from decisional states scores.

The major justification for the researcher's use of predictive statistics, i.e., multiple regression, was because it reflected back to the nature of the theoretical assumptions of this study. The theoretical framework, as developed previously, suggested that meeting the needs of individuals in the organization is an important concern. Of course, the theory suggested that achieving the goals and objectives of the organization in an effective and efficient manner was also essential. The review of literature pointed out that it was desirable to balance the needs of the human resources with those of the organization.

Though balancing human and organizational needs is a difficult process, the researcher desired to discover ways of achieving this goal in the most effective and efficient manner possible. As the literature and theory revealed,

there had been no simple ways discovered to achieve this goal, therefore, investigations of this nature are needed.

After the data were collected, the researcher factor analyzed the data by varimax rotation to determine if the resulting factor structure was similar to the factor structure identified by Litwin and Stringer. An inter-item analysis was performed and a similar factor structure was discovered (see Appendix D).

The data collected provided the researcher with measures from each of the variable domains investigated. The researcher obtained both decisional states scores and organizational climate scores. From the decisional states scores, the organizational climate pattern scores were predicted. The presentation and analysis of the data collected will be addressed in the following chapter of this study. Plausible explanations of the data derived from the multiple regression analysis will be performed, if necessary, by the use of ANOVA (see Appendix E) (Glass & Stanley, 1970, p. 333), Tukey's Studentized Range Test (see Appendix F) (Huck, Cromier, & Bounds, 1974, p. 68), and Duncan's Multiple Comparison Test (see Appendix F) (Glass & Stanley, 1970, p. 382).

In summary, this chapter presented an introduction, presented the restatement of the problem, posed operational (statistical) hypotheses, randomly selected the sample population from the public schools of Oklahoma, described

the measurement instruments used to collect data, described the method of data collected from both variable domains, and described the method of analyzing the data. Chapter III provided the background for Chapter IV which will address the presentation and analysis of the data collected.

CHAPTER IV

PRESENTATION AND ANALYSIS OF THE DATA

Introduction

The statistical results and analysis of the data presented in this chapter were based upon the research design addressed in Chapter III of this study. The research design required the administration of two measurement instruments to collect necessary data from the stratified randomly selected sample of the population. One measurement instrument was used to assess each of the two variable domains, decisional states and organizational climate. The instrument used to assess decisional states was the Decisional States Scale, a questionnaire consisting of ten major decisional situations requiring two responses for each decisional situation (see Appendix C). The instrument used organizational climate was the Profile of access to Organizational Climate, a questionnaire consisting of fifty situations (see Appendix C). The presentation and analysis of the data collected have been organized according to the order in which the hypotheses of this study were proposed in Chapter III. This chapter begins with a precise analysis of

the response levels and procedures of the decisional states and the organizational climate questionnaires.

Pilot Testing the Measurement Instruments

Prior to the onset of the data collection for the organizational climate investigation of the schools, the Profile of Organizational Climate was pilot tested in selected schools in a large metropolitan school district in the State of Oklahoma. The pilot test data reflected an phenomenon. unanticipated Although there were 111 respondents, only a few completed questionnaires were received from each of the nine schools. This produced a sample which had as its source nine separate and unique schools in one large school district. Results from the nine schools were factor-analyzed using a varimax rotation to determine if the resulting factor structure was similar to the factor structure generated and identified by Litwin and Stringer. The factor analysis attempted to verify the Litwin and Stringer factor structure, but it produced results which did not match the results of Litwin and Stringer. In view of the few respondents from each school, the factor structure procedure did not produce stable and reliable results.

Since the factor analysis procedure did not produce a verification of Litwin and Stringer's factor structure, an inter-item correlation procedure was used to test whether a factor structure existed in a school organization similar to the factor structure generated and identified by Litwin and

Stringer. The correlations were computed on all item scores which Litwin and Stringer found constituting the four organizational climate constructs of (1) structure, (2) challenge, (3) social inclusion, and, (4) rewards and support. It was found that, although the correlations were not all statistically significant, the inter-item correlations were positive (.45 to .75 range) and in the expected direction. The failure to achieve statistical significance for all the inter-item correlations was probably due to the small size of the sample rather than from chance perturbation. Based upon the pilot inter-item correlation results, the Profile of Organizational Climate was deemed to be an appropriate measurement instrument for use in the public schools. The results of the inter-item correlations are included in Appendix D.

Administering and Scoring the Measurement Instruments

Survey instruments consisting of a cover letter, the <u>Decisional States Scale</u>, and the <u>Profile of Organizational</u> <u>Climate</u> were administered by the researcher to 43 schools and mailed to 15 schools in the State of Oklahoma. A total of 561 surveys were returned for a return rate of 71 percent. The 561 completed and returned forms from 58 schools by teachers constituted the sample for this study.

Each measurement instrument was scored in accordance with instructions obtained from the authors who developed and tested the instruments. The Decisional States Scale

scores were obtained by assigning a value of 1 to each "yes" response and a 0 to each "no" response for each of the two response sections of the measurement instrument. Total scores from each section were obtained by adding the values. This generated one score for the 'already participating' decisional state score and one score for the 'should be participating' decisional state. The 'should be participating' decisional state score was subtracted from the 'already participating' decisional state score to obtain a decisional state category. Operationally, teachers who were in a state of "decisional deprivation" were those teachers whose total score was negative. Teachers who were in a state of "decisional equilibrium" were those who possessed a total score of zero. Teachers who were in a state of "decisional saturation" were those who possessed a positive total score. In summary, the negative total score "decisionally decisional state category was termed deprived"; a total score of 0 produced a state of "decisional equilibrium" category; and the positive total score produced a category of "decisional saturation". The Profile of Organizational Climate responses were grouped to form the four organizational constructs found to contribute to overall organizational climate. Items were scored in accordance with scoring instructions including the reverse scoring of items. Total scores for each organizational

climate pattern were obtained by summing the forward and reverse scored items.

Design Alternatives Considered

Initially, some consideration was given to using the Decisional States Scale score to produce five categories. The categories considered were: (1) severely saturated, (2) mildly saturated, (3) mildly deprived, (4) severely deprived, and, (5) equilibrium. When the data were analyzed at the public school district level with a series of one-way analyses of variance, however, it was discovered that even using the three major decisional state categories, as proposed by Belasco and Alutto there were no differences in the means of the scores on the Litwin and Stringer's organizational climate variables across decisional states (see Appendix E). The analysis of the four organizational climate patterns across the three decisional states produced a 3 X 4 matrix design. This indicated that any further division of decisional states scores into finer (smaller) categories would only unnecessarily create degrees of freedom problems by expanding the matrix design to a 5 X 4. The reduction of cell size could reduce the number of analyzable schools and school districts to an unacceptable level. In the 3 X 4 matrix design there were twelve cells in which to analyze. If the model was expanded to a 5 X 4 matrix design, there would be twenty cells to be analyzed. In performing multiple regression analysis with the number

of respondents of this study, it was necessary to have at least four respondents per cell. In 15 of the randomly selected schools, there were sufficient respondents to use the data in the analysis process (see Appendix E). If a 5 X 4 matrix design was used, there would be even fewer schools that could be utilized in the analysis of data. Therefore, the three decisional state categories as originally proposed by Belasco and Alutto were used.

Presentation of Hypotheses

The hypotheses formulated for the analysis of the data collected made necessary the comparisons of prediction models to demonstrate that some decisional state categories contributed to the prediction of organizational climate pattern scores. The hypotheses posited were:

HYPOTHESIS I: For those teachers who are in a state of "decisional saturation" as defined by the <u>Decisional</u> <u>States Scale</u>, the 'should be participating' decisional state score will be a significant predictor, at the .05 level, of organizational climate pattern scores as measured by the Profile of <u>Organizational Climate</u>.

HYPOTHESIS II: For those teachers who are in a state of "decisional saturation" as defined by the <u>Decisional</u> <u>States Scale</u>, the 'already participating' <u>decisional</u> state score will not contribute significantly, at the .05 level, to the prediction model.

HYPOTHESIS III: For those teachers who are "decisionally deprived" as defined by the <u>Decisional States Scale</u>, the 'already participating' decisional state score will be a significant predictor, at the .05 level, of organizational climate pattern scores as measured by the Profile of Organizational Climate.

HYPOTHESIS IV: For those teachers who are "decisionally deprived" as defined by the <u>Decisional States Scale</u>, the 'should be participating' decisional state score will

not contribute significantly, at the .05 level, to the prediction model.

HYPOTHESIS V: For those teachers who are in the state of "decisional equilibrium" as defined by the <u>Decisional</u> <u>States Scale</u>, both 'already participating' and 'should be participating' decisional state scores will be significant predictors, at the .05 level, of the organizational climate pattern scores as defined by the <u>Profile of Organizational Climate</u>.

Testing the Hypotheses

To test the hypotheses posited in this study, a total of 172 multiple regression computations were made. This resulted from the four organizational climate number patterns being tested in each of the 43 schools. Only 43 schools of the possible 58 schools were used in the analysis, because 15 of the schools did not provide a sufficient number of responses to permit the construction of the multiple regression model for each organizational climate variable. The multiple regression prediction model was applied to any of the organizational climate variables across each decisional state category where possible. However, every school except three had only the "decisional deprived" category. Two schools vielded "decisional saturation" categories, and one school yielded a "decisional equilibrium" category. In no school did more than one decisional category exist in sufficient numbers to analyze.

Initially, the full multiple regression prediction model was tested to determine whether the decisional state scores were capable of predicting the organizational climate

pattern scores better than the school mean decisional state The full multiple regression model produced a score. prediction capability better than the school mean decisional state scores for only 16 of the 172 multiple regression models tested. Using an alpha level of .05, a researcher could expect nine of the equations to yield significant results by chance alone. Therefore, these results are only slightly better than chance level. Only two schools produced more than one statistically significant prediction model, and these produced two each. However, the small number of returns from these schools (six and eight respectively) yielded highly unstable results for any multiple regression prediction equation. Therefore, the apparent predictive power of these equations may only be caused by the instability of the results rather than a true prediction capability. Only one of the prediction models in the "decisional saturation" category schools produced statistically significant predictive ability. None of the multiple regression models in the "decisional equilibrium" school were significantly better than the decisional state mean scores. A complete listing of the multiple regression results with the resulting F-ratios and indications of statistical significance are in Appendix D.

HYPOTHESIS I: For those teachers who are in a state of "decisional saturation" as defined by the <u>Decisional</u> <u>States Scale</u>, the 'should be participating' decisional state score will be a significant predictor, at the .05 level, of organizational climate pattern scores as measured by the <u>Profile of Organizational Climate</u>.

As Hypothesis I was tested against the data collected, it was discovered that 2 of the 43 schools sampled reflected a state of "decisional saturation". Only one of the two schools in a state of "decisional saturation" produced statistically significant predictive ability. This is illustrated in a complete listing of the multiple regression equation results with resulting F-ratios and indications of statistical significance in Appendix D. As a result of the findings in the data collection process and the analysis of that data, Hypothesis I was rejected.

HYPOTHESIS II: For those teachers who are in a state of "decisional saturation" as defined by the <u>Decisional</u> <u>States Scale</u>, the 'already participating' decisional state score will not contribute significantly, at the .05 level, to the prediction model.

As Hypothesis II was subjected to the test, it was discovered after the scoring procedure was performed that two schools of the total sample did exhibit states of "decisional saturation". However, only one of the prediction models in the "decisional saturation" category schools produced statistically significant predictive ability. This is presented in the complete listing of the 172 multiple regression prediction equation results with corresponding F-ratios and indications of the statistical significance in Appendix D. As a result of the researcher's findings from the 58 schools sampled and 43 analyzed, Hypothesis II was not rejected because the 'already participating' decisional

state scores did not contribute significantly to the multiple regression prediction model.

HYPOTHESIS III: For those teachers who are "decisionally deprived" as defined by the <u>Decisional States Scale</u>, the 'already participating' decisional state score will be a significant predictor, at the .05 level, of organizational climate pattern scores as measured by the Profile of Organizational Climate.

When this hypothesis was tested, it was discovered that "decisionally deprived" state was present, but the а "decisionally deprived" state scores would not predict organizational climate pattern more the score anv effectively than would the decisional state mean scores (see Appendix G). Forty of the schools sampled reflected a "decisionally deprived" state, but only two schools of these produced more than one statistically significant These two schools only produced two prediction model. statistically significant prediction models (see Appendix D). These statistically significant occurrences may well have been by chance and not by the true prediction capability of decisional state scores. Therefore, Hypothesis III was rejected.

HYPOTHESIS IV: For those teachers who are "decisionally deprived" as defined by the <u>Decisional States Scale</u>, the 'should be participating' decisional state score will not contribute significantly, at the .05 level, to the prediction model.

When Hypothesis IV was tested, it was discovered that "decisionally deprived" state scores would not predict the organizational climate pattern scores any better than the decisional state mean scores (see Appendix G). Forty of the

43 schools which possessed sufficient responses were categorized as "decisionally deprived", but only two of statistically produced more than one these schools significant prediction model. These two schools only produced two statistically significant models (see Appendix The few number of returned responses from these schools D). vielded unstable results for а multiple regression prediction model. The predictive power of these unstable results was small, and possibly no true result of its prediction capability existed at all. Therefore, because of these findings Hypothesis IV was not rejected. The 'should be participating' decisional states score did not contribute significantly to the prediction model.

HYPOTHESIS V: For those teachers who are in a state of "decisional equilibrium" as defined by the <u>Decisional</u> <u>States Scale</u>, both 'already participating' and 'should be participating' decisional state scores will be significant predictors, at the .05 level, of the organizational climate pattern scores as defined by the Profile of Organizational Climate.

When the multiple regression model was applied to Hypothesis V, it was found that one school was classified as being in a state of "decisional equilibrium". The multiple regression equation was tested against the school possessing "decisional equilibrium". The result of that application indicated that none of the equation prediction models were any better at predicting organizational climate pattern scores than were the means of the decisional state scores (see Appendix G). Therefore, Hypothesis V had to be rejected because of the lack of support provided by the data collected.

Discussion

Because the prediction model failed to demonstrate reliably a significant predictive capability, the decisional categorical were tested across all state scores organizational climate patterns using analysis of variance (ANOVA) procedures (see Appendix E). To insure that the most sensitive procedures were used, Duncan's Multiple Comparison Test was utilized to test for differences among cell means (see Appendix F). Duncan's Multiple Comparison Test used an alpha level equivalent to the experimental alpha, or .05, divided by the number of comparisons. Even with this conservative test applied to the equations, no difference was found. The Tukey Studentized Range Tests for cell mean differences were used also (see Appendix F), and still no significant difference was discovered.

As a result of the statistical methods applied to the data collected Hypotheses I, III, and V had to be rejected, because the analysis of the data reflected little support of predictive power the of decisional state scores to The prediction models failed to organizational climate. predict, consistently, a significant amount of variance in the organizational climate variables. Any statistical method upon the variance between of analyzing data depends variables. However, these data contain only little variance

from respondent to respondent or from school to school. Consequently, the hypotheses that stated decisional state scores would be significant predictors of organizational climate patterns were not supported.

Hypotheses II and IV were not rejected, because they 'already participating' and 'should that be stated participating' decisional state scores would not significantly predict organizational climate pattern scores. Only 16 of the 172 multiple regression This was true. prediction models produced a prediction capability better than the school mean decisional state score. Therefore because of the lack of variation in the organizational climate, variable scores across decision categories as measured by the ANOVA's (see Appendix E) and because of the failure of a total proposed prediction model to predict consistently a significant amount of variance in the organizational climate patterns, decisional state scores are not significant predictors of organizational climate as measured by the Profile of Organizational Climate in a public school setting.

Although decisional state scores did not significantly predict organizational climate pattern scores, there is an item of interest that resulted during the data analysis. It was discovered in the histograms of organization variables. No matter where the school was geographically located or how many teachers were in the school, the organizational climate

pattern results were similar among schools in the district as well as among school districts (see Appendix H). The researcher, therefore, might ask: Since decisional state scores did not predict organizational climate patterns, what was happening in public school organizations that caused the organizational climate pattern results to be similar regardless of the level of school, i.e., elementary, junior high school, or high school, or the geographic location of the school?

Summary

This chapter presented the analysis of statistical results of the data collected through the administration of the Decisional States Scale and the Profile of Organizational Climate. This chapter was organized into three sections according to the order in which the hypotheses were presented in Chapter III. After a brief introduction of the analysis response level, section one described which procedures were used to establish а verification of the factor structure identified by Litwin and Stringer. Section two presented and analyzed the data collected. Section three described briefly the acceptance or rejection of the hypotheses posited in this study. Three of the five hypotheses posited dealt with decisional state scores as predictors of organizational climate patterns. The other hypotheses posited the 'should be participating' and 'already participating' decisional state scores would not significantly predict organizational climate pattern scores.

Results of the data analysis encouraged the researcher to make the final decisions concerning the acceptance or rejection of the proposed hypotheses: Hypotheses II and IV were not rejected. Hypotheses I, III, and V were rejected.

CHAPTER V

SUMMARY, CONCLUSIONS, IMPLICATIONS, DELIMITATIONS, AND RECOMMENDATIONS

Introduction

This study emerged from an interest in researching the relationship between levels of participatory decision-making and organizational climate. After reviewing the literature on decision-making and organizational climate, it became apparent that both of these variable domains appeared to affect life in organizations. The investigation of the two variable domains addressed questions the researcher and school practitioners were posing. The review of literature suggested that each organization allowed its members some degree of participation in the decision-making processes, atmosphere (climate) was inherent in and any an organization. The literature review reflected little effort in linking participatory decision-making and organizational climate characteristics. Since numerous research efforts dealt with these two constructs independently, the thrust of this research was to examine the relationship between these variable domains. Therefore, the purpose of this study was to investigate participatory decision-making and organizational climate in the public school setting.

This final chapter is the appropriate place to summarize the findings, draw conclusions from the data results, discuss the implications of the study, present delimitations, and make recommendations for further research.

Summary

After the preliminary items presented in the preceding introduction were performed, the problem for this research was formulated. The problem of this research was: What is the relationship between decisional states and organizational climate? The conceptual questions that were investigated were:

Is there a relationship between teachers who are "decisionally saturated" and the organizational climate of a school?

Is there a relationship between teachers who are "decisionally deprived" and the organizational climate of a school?

Is there a relationship between teachers who are at "decisional equilibrium" and the organizational climate of a school?

The sample for this study ultimately consisted of 43 schools from different size and from different geographic regions of the State of Oklahoma. Each of the 561 teachers in the 43 schools completed and returned the two survey questionnaires. The measurement instruments used were: the <u>Decisional States Scale</u> and the <u>Profile of Organizational</u> <u>Climate</u>. When the questionnaires were scored according to the instructions provided by the authors, the researcher obtained the needed data to use in the statistical analysis process. The researcher wished to predict from one score (participatory decision-making) to another score (organizational climate pattern score) on the basis of the theoretical framework. In order to make such predictions, the multiple regression prediction model was chosen. Hypotheses I, III, and V investigated the possible relationship of decisional states to organizational climate:

HYPOTHESIS I: For those teachers who are in a state of "decisional saturation" as defined by the <u>Decisional</u> <u>States Scale</u>, the 'should be participating decisional state score will be a significant predictor, at the .05 level, of organizational climate pattern scores as measured by the <u>Profile of Organizational</u> <u>Climate</u>.

HYPOTHESIS III: For those teachers who are "decisionally deprived" as defined by the <u>Decisional States Scale</u>, the 'already participating' decisional state score will be a significant predictor, at the .05 level, of organizational climate pattern scores as measured by the Profile of Organizational <u>Climate</u>.

HYPOTHESIS V: For those teachers who are in a state of "decisional equilibrium" as defined by the <u>Decisional</u> <u>States Scale</u>, both the 'already participating' and 'should be participating' decisional state scores will be significant predictors, at the .05 level, of the organizational climate pattern scores as defined by the Profile of Organizational <u>Climate</u>.

In order to test these hypotheses, the researcher matched the data collected with the multiple regression prediction models. The results reflected that decisional states scores, neither 'already participating' nor 'should be participating', are significant predictors of organizational climate pattern scores as measured by Litwin and Stringer's Profile of Organizational Climate in the public schools participating in this research. Therefore, Hypotheses I, III, and V were rejected.

Hypotheses II and IV were investigated in the reverse manner.

HYPOTHESIS II: For those teachers who are in a state of "decisional saturation" as defined by the <u>Decisional</u> <u>States Scale</u>, the 'already participating' decisional state score will not contribute significantly, at the .05 level, to the prediction model.

HYPOTHESIS IV: For those teachers who are "decisionally deprived" as defined by the <u>Decisional States Scale</u>, the 'should be participating' decisional state score will not contribute significantly, at the .05 level, to the prediction model.

When the researcher tested Hypotheses II and IV, it was found that decisional state scores were not significant predictors of organizational climate pattern scores as measured on Litwin and Stringer's <u>Profile of Organizational</u> <u>Climate</u>. Hypotheses II and IV were not rejected in the null form.

When the hypotheses were tested, and it was found that little or no significant relationship between organizational climate and participatory decision-making was present, the researcher applied Duncan's Multiple Comparison Test to the data collected (see Appendix F). Duncan's Multiple Comparison Test was a more conservative test than was the ANOVA procedure (see Appendix E) applied to detect differences in decisional state scores. When Duncan's Multiple Comparison Test was applied to the data, the results reflected no significant difference (see Appendix The researcher became convinced that there was no F).

significant relationship between these two variable domains. The researcher further applied the Tukey Studentized Range (HSD) Test for variables to the data to substantiate previous results (see Appendix F). Again, no significant difference was discovered. The researcher concluded that decisional state scores of teachers were not significant predictors of organizational climate pattern scores as measured by Litwin and Stringer's <u>Profile of Organizational</u> <u>Climate</u> in the public schools which constituted the sample for this research.

Conclusions

Although decisional state scores did not significantly predict organizational climate pattern scores, the data reflected unanticipated but interesting analysis an That phenomenon was that no matter where the phenomenon. school was located or what size it was the organizational climate patterns were similar. When the characteristics of organizational climate in the public schools setting were examined, the results were depicted in the form of histograms (see Appendix H). The researcher concluded from the multiple regression model that decisional state scores did not significantly predict organizational climate pattern scores.

All statistical procedures used to analyze data measure the difference in variance from one score to another. Since the nature of descriptive research is to measure variance

from one score to another the researcher concluded that most felt that they were decisionally deprived, teachers therefore, little variance occurred. Since little or no variance between scores occurred, the multiple regression prediction model was not any better at predicting organizational climate pattern scores than were the means of The researcher concluded from the decisional states scores. histograms presented in Appendix H that extraneous variance may hold the key to variables that may have caused the organizational climate patterns to be formulated. It was also concluded that care should be taken by administrators in involving teachers in the decision-making processes, because decisional states do not significantly predict or affect organizational climate patterns. It was additionally concluded that the measurement instrument of this study, though deemed appropriate, may not have been valid enough to test a possible relationship between the two variable domains.

review of literature cited the theoretical The assumptions of both participatory decision-making and organizational climate. This literature review suggested that there was a need to balance the needs of human resources and those of the organization. This study examined exactly those aspects and found little or no significant relationship (see Appendix D). Has the literature formulated strong enough theoretical assumptions? This study challenged

the theoretical bases of both participatory decision-making and organizational climate.

The results of this investigation contradicted the previous research findings. It showed that no matter how individuals were involved or not involved in decision-making in the public school setting in Oklahoma, the organizational climate patterns were not significantly affected. The investigation, therefore, challenged the credibility of the findings of previous research.

Implications

The central implication of this research for practicing school executives is that no matter how involved teachers are in the decision-making process or where the teachers are employed, they do not significantly affect the formulation of organizational climate patterns in the public schools of Oklahoma. To further support this general implication cited the following implications exist: (1) the geographic location of the school in the State of Oklahoma does not significantly affect or change the type of organizational climate patterns that are being formulated; (2) the size of the school does not significantly affect the formulation of organizational climate patterns; (3) whether or not the school is urban or rural does not have any significant effect upon the formulation of organizational climate patterns; (4) whether or not the school is an elementary school, a middle school (junior high school), or a senior

high school makes no significant difference in what type organizational climate patterns will be formulated; and (5) the length of time the teacher has been in the teaching field, where, or if s/he is male or female has no significant effect upon the formulation of organizational climate patterns in the public schools of Oklahoma.

In summary, this research discovered that the extent of the involvement which teachers experience in the decision-making process does not significantly affect the formulation of organizational climate patterns. Additionally, the geographic location of the school has no significant effect upon the formulation of organizational climate. These implications should provide a more rational basis for administrators to utilize in the critical area of school governance and decision-making.

Delimitations

The results of this investigation rejected the hypotheses that were posed. This suggests that an additional examination of the theoretical bases of decisional states (participatory decision-making) and organizational climate may be appropriate. The theoretical assumptions included in the literature may not be strong enough to discover a relationship between decisional states and organizational climate if one, in fact, exists.

There may be other plausible explanations why the hypotheses of this study were rejected. One plausible

explanation may be that 300 of the survey questionnaires were administered by the researcher and 475 WATA administered by a school representative in the school sampled. When the researcher went to the school to administer the survey questionnaires, the researcher read the instructions to the respondents and answered anv questions relating to the questionnaires in a general faculty meeting. After the instructions were read and the response procedures described, the survey questionnaires were passed out to the respondents. Upon completion of the survey questionnaires, the respondents returned the questionnaires to the researcher, and they were then excused from the meeting. When the survey questionnaires were mailed to the schools, the school representative placed the survey guestionnaires in each teacher's mailbox with instructions attached to return the questionnaires by a specific date. Once the respondent obtained the survey questionnaire, s/he read and interpreted the instructions himself/herself. Even though a telephone number was included in the cover letter attached to the questionnaires, no additional information The requested. researcher sought biographical was information about age, sex, years in teaching, years employed in that school, and years taught in that school district. When the mean scores and standard deviations of those individuals were compared considering the different biographical categories little or no differences were found in the individuals' scores within the same school or in the

individuals' scores in schools located in different geographic regions of Oklahoma.

Another plausible explanation for rejecting the hypotheses provided was cited by Anderson (1982)who reported that in medium-size and large-size school districts there appeared to be a normative organizational climate existing in schools. A normative organizational climate being formulated or generated by a powerful leader or a small group of powerful individuals of a school district sets the climate at the school district level. This study investigated the relationship between decisional states and organizational climate at the school building level.

An additional plausible explanation for rejecting the hypotheses may be that the randomly selected geographically stratified sample may have been representative of predominantly a rural population rather than the urban population in previous studies.

Finally, a plausible explanation for rejecting the hypotheses of the research may be that the teachers felt basically decisionally deprived at the time they responded to the survey questionnaires. Those teachers who felt they were decisionally deprived did not report any clear-cut efforts to bring about increased participation in the decision-making process in his/her school, thus, accepting whatever organizational climate that prevailed in that school. In summary, there was no significant relationship between decisional states and organizational climate in the public schools in Oklahoma.

Recommendations for Further Research

The central thrust of this research was to investigate (participatory decision-making) decisional states and organizational climate and the relationship between them The investigation of participatory that was postulated. decision-making and organizational climate was only as comprehensive as the measurement instruments, the Decisional States Scale and the Profile of Organizational Climate, would permit. The Decisional States Scale was designed specifically for school decision-making situations. Even though information about participatory decision-making was provided, а further examination of participatory decision-making is needed. The Decisional States Scale posed subjects concerning their involvement in questions to decisional situations that were general in nature. Possibly a more comprehensive measurement instrument citing school decisional situations in more specific terms could be designed to examine more precisely teacher involvement in the public school decision-making process. Even though the organizational climate questionnaire revealed information about the organizational climate patterns in public school settings, a further investigation into what variables contribute to the formulation of organizational climate

patterns is needed. An instrument similar to the Profile of Organizational Climate, but designed specifically for assessing organizational climate patterns in public school settings, could bring attention to the unique characteristics of public schools. Such a measurement instrument would provide specific information, thereby school permitting public personnel to become more affects knowledgeable and to what aware as the organizational climate of public schools.

measurement instruments specifically Once the are designed to participatory decision-making examine and organizational climate in the public schools, the researcher suggests this study be replicated to re-examine the possible relationship between decisional states (participatory decision-making) and organizational climate. The researcher also suggests that another sample be selected to investigate this same proposed relationship. Every measure possible to obtain a representative sample should be explored and used to ensure that is the case. The researcher suggests that the organizational climate patterns be examined carefully to see what characteristics (factors) contribute to their formulation. Many questions have been generated for researchers to consider. Some questions that have arisen are: Is it the social relationships among teachers that formulate and change organizational climate and their perceptions of their involvement in decision-making? Did only the teachers who were basically feeling decisional

deprivation respond to the survey instruments? Did the teachers who are basically decisionally deprived not try to bring about changes that affect organizational climate and its formulation? If decisional states (participatory decision-making) do not predict or affect organizational climate, what factors do and how can they be measured?

In summary, this final chapter briefly summarized the investigation proposed in this study, reported the problem statement, the literature review, method of collecting and analysis of data, reported the results, and conclusions drawn from the analysis of data results. Implications, such as, a large percentage of this sample indicated a feeling of decisional deprivation which reinforced findings from Belasco and Alutto's (1972), Best's (1973), Conway's (1976), Richardson's (1978), and Nelson's (1983) studies were presented. Delimitations, such as, the different methods used to collect data in the mailout and researcher's administration, and Anderson's (1982) presentation of the notion of normative organizational climates being formulated in medium-size large-size school districts. The to recommendations, such as, design measurement instruments that are valid to the extent to test a possible relationship between decisional states and organizational climate were presented.

BIBLIOGRAPHY

- Alutto, J. A., & Belasco, J. A. (1972). Typology for Participation in Organizational Decision Making. Administrative Science Quarterly. 17, 117-125.
- Alutto, J. A., & Belasco, J. A. (1979). <u>Decisional</u> <u>Deprivation, Equilibrium, and Saturation as Variables</u> <u>in Educational Research</u>. Working Paper No. 93, State University of New York at Buffalo.
- Anderson, C. S. (1982). The Search for School Climate: A Review of the Research. <u>Review of Educational</u> <u>Research</u>. 52:3, 368-420.
- Argyris, C. (1957). <u>Personality and Organization</u>. New York: Harper & Row, Publishers.
- Argyris, C. (1958). Some Problems in Conceptualizing Organizational Climate: A Case Study of a Bank. Administrative Science Quarterly. 2, 501-520.
- Astin, A. W., & Holland, J. L. (1961). The Environmental Assessment Technique: A Way to Measure College Environments. Journal of Educational Psychology. 52, 308-318.
- Barnard, C. (1938/1964) <u>The Functions of an Executive</u>. 15 ed. Cambridge, Massachusetts: Harvard University Press. (Original work published in 1938).
- Barker, R. G., & Gump, P. V. (1964). <u>Big School-Small</u> <u>School</u>. Stanford, California: Stanford University Press.
- Bass, B. M. (1965). <u>Organizational Psychology</u>. Boston: Allyn and Bacon.
- Belasco, J. A., & Alutto, J. A. (1972). Decisional Participation and Teacher Satisfaction. <u>Educational</u> Administration Quarterly. 8, 44-58.
- Belasco, J. A., & Alutto, J. A. (1972). Patterns of Teacher Participation in School System Decision Making. Educational Administration Quarterly. 9:1, 27-41.

- Best, J. A. (1973). <u>A Study of the Relationship Between</u> <u>Decisional Condition/Decisional Deviation and Teacher</u> <u>Morale</u>. Unpublished Dissertation, State University of New York at Buffalo.
- Bidwell, C. E., & Karsarda, J. D. (1975). School District Organization and Student Achievement. <u>American</u> <u>Sociological Review</u>. 40, 55-70.
- Bloom, B. S. (1976). <u>Human Characteristics and School</u> <u>Learning</u>. New York: McGraw-Hill.
- Brookover, W. B., & Erickson, E. L. (1969). <u>Society</u>, <u>Schools and Learning</u>. Boston: Allyn and Bacon.
- Brookover, W. B., & Erickson, E. L. (1975). <u>Sociology of</u> <u>Education</u>. Homewood, Ill.: Dorsey Press.
- Brookover, W. B., Schweitzer, J. H., Schneider, J. M., Beady, C. H., Flood, P. K., & Wisenbaker, J. M. (1978). Elementary School Social Climate and School Achievement. <u>American Educational Research Journal</u>. 15, 301-318.
- Brookover, W. B., Beady, C., Flood, P., Schweitzer, J., & Wisenbaker, J. (1979). <u>School Social Systems and</u> <u>Student Achievement</u>. New York: Praeget.
- Campbell, J. P., Dunnette, M., Lawler, III, E., & Weick, K. Jr. (1970). <u>Behavior Performance and Effectiveness</u>. New York: McGraw-Hill Book Company.
- Claggett, C. A. (1980). <u>Teacher Stress at a Community</u> <u>College: Professional Burnout in a Bureaucratic</u> <u>Setting</u>. Prince George's Community College. Largo, Maryland: Office of Institutional Research.
- Coch, L. & French, J. (1948). Overcoming Resistance to Change. <u>Human Relations</u>. 1, 512-532.
- Conway, J. (1976). Test of Linearity Between Teachers' Participation in Decision Making and their Perceptions of their Schools as Organizations. <u>Administrative</u> <u>Science Quarterly</u>. 21, 130-139.
- Cristie, S. G., & Kurplus, D. J. (1978). A Systematic Collaborative Approach to Problem Solving. In D. J. Kurplus (Ed.). <u>Learning: Making Learning Environments</u> <u>More Effective</u>. Muncie: Accelerated Development.

- Davis, J. A. (1963). Intellectual Climates in 135 American Colleges and Universities. Sociology of Education. 37, 110-128.
- Dessler, G. (1976). <u>Organization and Management: A</u> <u>Continguency Approach</u>. Englewood Cliffs, N. J.: Prentice-Hall, Inc.
- Dieterly, D. L., & Schneider, B. (1974). The Effects of Organizational Environment on Perceived Power and Climate: A Laboratory Study. <u>Organizational Behavior</u> and Human Performance. 11:3, 316-337.
- Downey, H. K., Hellriegel, D., & Slocum, J. W. (1975). Congruency Between Individual Needs Organizational Climate, Job Satisfaction, and Performance. <u>Academy of</u> <u>Management Journal</u>. 62, 38-42.
- Ellett, C. D., Payne, D. A., Masters, J. A., & Pool, J. E. (1977). <u>The Relationship Between Teacher and Student</u> <u>Assessments of School Environment Characteristics and</u> <u>School Outcome Variables</u>. Paper presented at the 23rd <u>Annual Meeting of the Southeastern Psychological</u> Association. Hollywood, Florida.
- Ellett, C. D., & Walberg, H. J. (1979). Principals' Competency, Environment, and Outcomes. In H. J. Walberg (Ed.). <u>Educational Environments and Effects</u>. Berkeley, Calif.: McCutchan.
- Epstein, J. L., & McPartland, J. M. (1976). The Concept and Measurement of the Quality of School Life. <u>American</u> Educational Research Journal. 13, 15-30.
- Etzioni, A. (1968). Basic Human Needs, Alienation and Inauthenticity. <u>American Sociological Review</u>. 33, 870-885.
- Fayol, H. (1949). <u>General and Industrial Management</u>. Trans. Constance Storrs. London: Sir Isaac Pitman & Sons Ltd.
- Follett, M. P. (1934/1940). Business as an Integrative Unit. In H. Metcalf & L. Urwick (Eds.). <u>Dynamic</u> <u>Administration: The Collected Papers of Mary Parker</u> <u>Follett. New York: Harper and Brothers. (Original work</u> <u>published in 1934).</u>
- Forehand, G. A., & Gilmer, V. V. H. (1964). Environmental Variation and Studies of Organizational Behavior. <u>Psychological Bulletin</u>. 62, 361-382.

- Fraser, B. J., & Rentoul, A. J. (1982). Relationships Between School-Level and Classroom-Level Environment. Alberta Journal of Educational Research. 28, 212-225.
- Getzels, J., & Guba, E. (1957). Social Behavior and the Administrative Processes. School <u>Review</u>. 55.
- Glass, C. V., & Stanley, J. C. (1970). <u>Statistical Methods</u> <u>in Education and Psychology</u>. Englewood Cliffs, New Jersey: Prentice-Hall, Inc.
- Gratz, R. D., & Salem, P. J. (1981, November). <u>Research on</u> <u>Organizational Communication and Higher Education:</u> <u>Don't Ask Me; I Just Work Here</u>. Paper presented at the Annual Meeting of the Speech Communications Association. Annaheim, California.
- Guion, R. M. (1973). A Note on Organizational Climate. Organizational Behavior and Human Performance. 9, 120-125.
- Gwinn, D. G. (1981). Meeting New Challenges: Creating a Climate for Change. <u>College and University</u>. 57, 13-25.
- Halpin, A. W., & Croft, D. B. (1962). <u>The Organizational</u> <u>Climate of Schools</u>. (U. S. Office of Education, Dept. of Health, Education, and Welfare. Washington, D. C.: Contract Number SAE 543 (8639)).
- Halpin, A. W., & Croft, D. B. (1963). <u>The Organizational</u> <u>Climate of Schools</u>. Chicago: University of Chicago.
- Hellriegel, D., & Slocum, J. W. Jr. (1974). Organizational Climate: Measures, Research and Contingencies. <u>Academy</u> of <u>Management Journal</u>. 17, 255-280.
- Herr, E. L. (1965). Differential Perceptions of "Environmental Press" by High School Students. Personnel and Guidance Journal. 43, 678-686.
- Hespe, G., & Wall, T. (1976). The Demand for Participation Among Employees. <u>Human Relations</u>. 29:5, 411-428.
- Hey M. H. (1979). Human Resources Development for Change and Innovation. <u>Canadian Vocational Journal</u>. 15:1, 7-11.
- Homer, J. S. (1978). <u>Leadership and Organizational</u> <u>Communication: Mary Parker Follett's Contribution to</u>

the Understanding of Leadership. Master's Thesis, Simon Fraser University.

- Hoover, M. R. (1978). Characteristics of Black Schools at Grade Level: A Description. <u>Reading Teacher</u>. 31, 757-762.
- Hopps, Z. J. (1979). <u>Dimensions of Occupational Stress:</u> <u>Implications for Vocational Education</u>. Ohio State University, Columbus, Ohio: National Center for Research in Vocational Education.
- Howard, H. C. (1978, May). <u>The Human Dimension: Balancing</u> <u>People Needs and Resources</u>. Paper presented at the Annual Association for Institutional Research Forum (18th), Houston, Texas.
- Huck, S. W., Cromier, W. H., & Bounds, W. G. Jr. (1974). <u>Reading Statistics and Research</u>. New York, N. Y.: Harper & Row, Publishers.
- Insel, P. M., & Moos, R. H. (1974). Psychological Environments Expanding the Scope of Human Ecology. <u>American Psychologist</u>. 29, 179-188.
- James, L. R., & Jones, A. P. (1974). Organizational Climate: A Review of Theory and Research. <u>Psychological Bulletin</u>. 81, 1096-1112.
- Kahn, R. L., & Rosenthal, R. A. (1964). <u>Organizational</u> <u>Stress</u>. New York: John Wiley and Sons.
- Kanter, R. M. (1981). Power, Leadership, and Participatory Management. <u>Theory in Practice</u>. 20:4, 219-224.
- Katz, D., & Kahn, R. L. (1966). <u>The Social Psychology of</u> <u>Organizations</u>. New York: John Wiley and Sons.
- Kerchner, C. T., & Schuster, J. H. (1982). The Uses of Crisis: Taking the Tide at the Flood. <u>Review of Higher</u> <u>Education</u>. 5:3, 121-141.
- Kilmer, S. (1980). Early Childhood Specialists as Policy-Makers. <u>Education and Urban Society</u>. 12:2, 241-251.
- Levin, H. M. (1970). <u>A New Model of School Effectiveness: A</u> <u>Report on Recent Research on Pupil Achievement.</u> Stanford, California: Stanford University, Stanford Center for Research and Development on Teaching.
- Lewin, K. (1951). <u>Field Theory in Social Science</u>. New York: Harper & Brothers.
- Lewin, K., Lippitt, R., & White, R. K. (1939). Patterns of Aggressive Behavior in Experimentally Created 'Social Climates'. Journal of Social Psychology. 10, 271-299.
- Likert, R. (1961). <u>New Patterns of Management</u>. New York: McGraw-Hill Book Co.
- Lippitt, R., & White, R. K. (1958). An Experimental Study of Leadership and Group Life. In T. M. Newcomb & E. L. Hartley. (Eds.). <u>Readings in Social Psychology</u>. 491-511. New York: Holt, Rinehart and Winston.
- Litwin, G. H. (1968). Climate and Behavior Theory. In R. H. Tagiuri and G. H. Litwin. (Eds.). <u>Organizational</u> <u>Climate: Exploration of a Concept</u>. 35-61. Boston: Division of Research, Graduate School of Business Administration, Harvard University.
- Litwin, G. H., & Stringer, R. A. Jr. (1968). Motivation and Organizational Climate. Boston: Division of Research Graduate School of Business Administration, Harvard University.
- McGeown, V. (1979). School Principals' Decision-Making Behaviour in the Management of Innovation. <u>CORE</u>. 3:2, pf 9-10.
- MacGregor, D. (1960). <u>The Human Side of Enterprise</u>. New York: McGraw-Hill Book Company.
- McNeely, R. L. (1983). Organizational Patterns, Work, and Burnout in the Public School. <u>Urban Education</u>. 18:1, 82-97.
- McPartland, J. M., Epstein, J. L., Karweit, N. L., & Slavin, R. E. (1976). <u>Productivity of Schools:</u> <u>Conceptual and Methological Frameworks for Research</u>. (Report No. 218) Baltimore, Maryland: John Hopkins University, Center for the Study of Social Organization of Schools. (ERIC Document Reproduction Service No. ED 133 316).
- March, J. G., & Simon, H. A. (1958). <u>Organizations</u>. New York: John Wiley and Sons.
- Mayo, E. (1960). <u>The Human Problems of an Industrial</u> <u>Civilization</u>. New York, N. Y.: The Viking Press.

- Maxwell, R. E. (1968). Leader Behavior of Principals: A Study of Ten Inner-City Elementary Schools of Flint, Michigan. Unpublished doctoral dissertation, Wayne State University, 1967. <u>Dissertation Abstracts</u>. 1968, 28A, 2950A.
- Mitchell, J. V. Jr. (1967). <u>A Study of High School Learning</u> <u>Environments and Their Impact on Students</u>. Report, U. S. Office of Education, Project No. 5-8032. Rochester, N. Y.: University of Rochester.
- Moos, R. H. (1974). Systems for the Assessment and Classification of Human Environments: An Overview. In R. H. Moos & P. M. Insel (Eds.). <u>Issues of Social</u> Ecology. Palo Alto, Calif.: National Press Books.
- Moos, R. H. (1979). Educational Climates. In H. J. Walberg (Ed.). <u>Educational Environments and Effects</u>. Berkeley, Calif.: McCutchan.
- Morocco, J., & McFadden, H. (1979, October). Organizational Burnout in Counseling Agencies. Paper presented at the Annual Convention of the Southern Association for Counselor Education and Supervision. Daytona Beach, Florida.
- Murray, H. A. (1938). <u>Explorations in Personality</u>. New York: Oxford University Press.
- Nelson, S. J. (1983). <u>Professional Negotiation and</u> <u>Teachers' Decisional States</u>. Unpublished Dissertation, University of Oklahoma, Norman.
- Pace, C. R. (1969). College Environments. In <u>Encyclopedia</u> of Educational Research. 4th ed. London: Macmillan.
- Pace, C. R., & Stern, G. G. (1958). An Approach to the Measurement of Psychological Characteristics of College Environments. <u>Journal of Educational</u> <u>Psychology</u>. 49, 269-277.
- Parsons, T. (1951). <u>The Social System</u>. Glencoe: The Free Press.
- Patchen, M. (1970). <u>Participation</u>, <u>Achievement</u>, and <u>Involvement on the Job</u>. Englewood Cliffs, New Jersey: Prentice Hall.
- Perkins, M. L. (1976). <u>Canonical Correlational Analysis of</u> <u>the Relationships</u> <u>Among School Climate</u>, <u>Teacher</u> <u>Morale</u>, and the Educationally Relevant Performance of

Fourth-Grade Students. Unpublished doctoral dissertation, University of Georgia. <u>Dissertation</u> Abstracts International, 1977, 37,4309A.

- Presthus, R. (1965). <u>Behavioral Approaches to Public</u> <u>Administration</u>. University of Alabama Press. University of Alabama, Tuscaloosa.
- Reavis, C. A. (1979). A Macrosociological Interpretation of Effective Climate. In H. R. Smith (Ed.). <u>School</u> <u>Climate</u>. San Diego, California: Teacher Corps Network, San Diego State University. (ERIC Document Reproduction Service No. ED 190 599).
- Rice, G. H. (1980). Learning Climate and the Satisfaction and Alienation of Law Students. Unpublished doctoral dissertation. University of Oklahoma, Norman.
- Richardson, D. E. (1978). <u>Teacher Work Values and</u> <u>Decisional States</u>. Unpublished Dissertation, University of Oklahoma, Norman.
- Roethlisberger, R. J., & Dickson, W. J. (1939). <u>Management</u> <u>and the Worker</u>. Cambridge, Massachusetts: Harvard University Press.
- Rutter, M., Maughan, B., Mortimore, P., Ouston, J., & Smith, A. (1979). <u>Fifteen Thousand Hours: Secondary</u> <u>Schools and Their Effects on Children</u>. Cambridge, Mass: Harvard University Press.
- Sargent, J. C. (1967). <u>Organizational Climate of High</u> <u>Schools</u>. Research Monograph No. 4. Minneapolis: University of Minnesota, Educational Research and Development Council.
- Schmuck, R. A. (1973). Humanizing the School Organization. Catalyst for Change. 2:2, 26-27.
- Schneider, B. (1972) Organizational Climate: Individual Preferences and Organization Realities. Journal of Applied Psychology. 56, 211-217.
- Schneider, B. (1972). Toward Specifying the Concept of Work Climate: A Study of Roman Catholic Diocesan Priests. Journal of Applied Psychology. 56, 447-455.
- Schneider, J. M., Glasheen, J. D., & Hadley, D. W. (1979). Secondary School Participation, Institutional Socialization, and Student Achievement. <u>Urban</u> <u>Education</u>. 14, 285-302.

- Simon, H. A. (1947). <u>Administrative Behavior</u>. New York: The MacMillan Company.
- Smith, A. (1790/1969). Adam Smith today: An Inquiry into the Nature and Causes of the Wealth of Nations. Port Washington, N. Y.: Kennikat Press. (Original work published in 1790).
- Soelberg, P. (1966, December). Unprogrammed Decision-Making. Papers and Proceedings, 26th, Annual Meeting. <u>Academy</u> of Management.
- Sorenson, A. B., & Hallinan, M. T. (1977). A Reconceptualization of School Effects. <u>Sociology of</u> <u>Education</u>. 50, 273-289.
- Spady, W. B. (1973). The Impact of School Resources on Students. In F. N. Kerlinger (Ed.). <u>Review of Research</u> in Education. 1. Itasca, Peacock.
- Stern, G. G. (1970). <u>People in Context: Measuring</u> <u>Person-Environment Congruency in Education and</u> Industry. New York: Wiley.
- Stewart, D. A., & Miskel, C. (1977, April). Changing the Organizational Structure to Affect Perceived Bureaucracy, Organizational Processes, Loyalty, Job Satisfaction, and Effectiveness. Paper presented at the Annual Meeting of the American Educational Research Association. New York, N. Y.
- Stinett, T. M., Kleinmann, J., & Ware, M. (1966). <u>Professional Negotiations in Public Education</u>. New York: The Macmillan Company.
- Tagiuri, R. (1968). The Concept of Organizational Climate. In R. Tagiuri & G. H. Litwin (Eds.). <u>Organizational</u> <u>Climate: Exploration of a Concept</u>. Boston: Division of Research Graduate School of Business Administration, Harvard University.
- Tannebaum, A. S. (Ed.). (1968). <u>Control in Organizations</u>. New York: McGraw-Hill Book Company.
- Tannebaum, A. S., & Bachman, J. G. (1964). Structural versus Individual Effects. <u>American Journal of Sociology</u>. 69, 585-595.
- Taylor, F. W. (1947). <u>Scientific Management</u>. New York: Harper & Row.

- Urwick, L. F. (1956). <u>The Pattern of Management</u>. Minneapolis, Minnesota: University of Minnesota Press.
- Van Patten, J. J. (1979). <u>Human Values and Educational</u> <u>Goals: Addressing the Cult of Efficiency</u>. Position Paper. Arkansas, Journal Announcement RIEDEC79.
- Waller, W. (1932/1961). <u>The Sociology of Teaching</u>. New York: Russell & Russell. (Originally published 1932).
- Waters, L. K., Roach, D., & Batlis, N. (1974). Organizational Climate Dimensions and Job Related Attitudes. <u>Personnel Psychology</u>. 27, 465-476.
- Wegner, E. E. (1978). A New Look at Research on School Environments. <u>Integrateducation</u>. 16:2, 36-39.
- Wiggins, T. W. (1975). Conceptualizing Principal Behavior in School Climate: A Systems Analysis. In E. Monahan (Ed.). <u>Theoretical Dimensions of Educational</u> Administration. New York: Macmillan.
- Yarborough, T. B. (1976). <u>Teacher Attitudes Toward</u> <u>Participation in Decision-Making</u>. Master's Thesis, University of Maryland. RIEDEC77.

APPENDICES

--- ...

APPENDIX A

Permission Request to Use Assessment Instruments

September 19, 1983

Dr. Joseph A. Alutto State University of New York at Buffalo Buffalo, New York

Dear Dr. Alutto,

Currently, I am in the process of designing a prospectus in an attempt to prepare my doctoral dissertation. I am planning to write my dissertation on Organizational Climate and Decisional States. I have examined several survey instruments, and I have found that your coauthored Decisional States Scale with Dr. James A. Belasco a useful instrument, and I would like permission to use this survey instrument in my research. It would be beneficial to me and my research if I could obtain the following items from you:

- 1. Permission to use the instrument in my research
- 2. A manual that reflects important information such as,
 - a. Reliability coefficients of this instrument
 - b. Validity coefficients of this instrument
 - c. Validity of this survey instrument as a total instrument
 - d. Validation of the individual items of the survey instrument
 - e. Has the instrument ever been used in public schools?
 - f. How the survey instrument is scored.
 - g. What type score will determine the different decisional states?
 - Is a computer program available to identify h. the different decisional states? If so, where and how can it be accessed?

Would you please provide the previously described information? If so, it would be greatly appreciated.

Thanking you in advance for your anticipated positive and prompt assistance in this important matter.

Sincerely, Darrell R. Thompson Darrell R. Thompson

Division of Research Graduate School of Business Administration Harvard University Boston, Massachusetts

Dear Sir:

Currently, I am in the process of designing a prospectus in an attempt to prepare my doctoral dissertation. I am planning to write my dissertation on Organizational Climate and Decisional States. I have examined several survey instruments, and I have found George H. Litwin and Robert A. Stringer's <u>Profile of Organizational Climate</u> a very useful instrument, and I would like permission to use this survey instrument in my research. It would be very beneficial to me and my research if I could obtain the following items from you and the publisher:

- 1. Permission to use the instrument in my research
- 2. A manual that reflects important information such as,
 - a. Reliability coefficients of this instrument
 - b. Validity coefficients of this instrument
 - c. Validity of this survey instrument as a total instrument
 - d. Validity of the individual items of the survey instrument
 - e. Has the instrument ever been used in public schools?
 - f. How the survey instrument is scored.
 - g. What type score will determine if a climate of Responsibility etc. has been obtained?
 - h. How can one organizational climate be distinguished from another by using this survey instrument?
 - i. Is a computer program available to identify the different organizational climates? If so, how is it accessed?

Would you please provide the previously described information? If you are unable to provide me with each item of those described above could you tell me how to personally contact George H. Litwin and Robert A. Stringer, Jr.?

Thanking you in advance for your anticipated positive assistance in this very important matter.

Sincerely, Darrell R. Thompson

Darrell R. Thompson

APPENDIX B

-

Permission Granted to Use Assessment Instruments

106

SCHOOL OF MANAGEMENT

October 6, 1983

Mr. Darrell R. Thompson 1400 South Mission Anadarko, OK 73005

Dear Mr. Thompson:

Attached is a copy of the decision making scales used with teachers. We have only used the initial Yes-No responses to each question as well as responses to item C of each question. Test-retest stability coefficients (over two week intervals) have ranged from .85-.95 in seven different samples of teachers, nurses and manufacturing personnel.

I have also enclosed copies of a few published articles that may be of interest to you. You may also wish to review the following dissertations completed at SUNY @ Buffalo for background data (J. Best, 1973; C. Lusthaus, 1974 or 75; and E. Lusthaus, 1974 or 75).

You have my permission to use the decision making scale in whole or part, although I would like to receive at least a summary of your findings if possible. Good Luck!

Sincerely Joseph A. Alutto

Dean

JAA/dk Enclosures

103 CROSBY HALL BUFFALO, NEW YORK 14214 TEL. (716) 831-3533

September 19, 1983

Division of Research Graduate School of Business Administration **Barvard University** Boston, Massachusetts

Dear Sir:

Currently, I am in the process of designing a prospectus in an attempt to prepare my doctoral dissertation. I am planning to write my dissertation on Organizational Climate and Decisional States. I have examined several survey instruments, and I have found George H. Litwin and Robert A. Stringer's Profile of Organizational Climate a very useful instrument, and I would like permission to use this survey instrument in my research. It would be very beneficial to me and my research if I could obtain the following items from you, the publisher:

1968

De att Joury here no Braniero, 20

1. Permission to use the instrument in my research 2. A manual that reflects important information, such as,

- A. Reliability coefficients of this instrument
 b. Validity coefficients of this instrument
 c. Validation of this survey instrument as a
 - total instrument Validation of the individual items of the survey instrument
 - e. Has the instrument ever been used in public schools?
- f. How the survey instrument is scored. g. What type score will determine if a climate
- of Responsibility etc. has been obtained. h. How can one organizational climate be distinguished from another by using this survey instrument?
- 1. Is a computer program available to identify the different organizational climates? If so, how is it accessed?

Would you please provide me the previously described information? If you are unable to provide me with each item of those described above, could you tell me how to personally contact George H. Litwin and Robert A. Stringer, Jr.

Thanking you in advance for your anticipated positive assistance in this very important matter.

Sincerely, Darrell R. Thompson 1400 South Mission Anadarko, OK 73005 (405) 247-6605 Office We R. Thompson Anadarko, OK 73005 (405) 247-6605 Office

APPENDIX C

Assessment Instruments Used

.

.

•

Darrell R. Thompson 1400 South Mission Anadarko, OK 73005

Dear Teacher,

I am doing research for my doctoral dissertation in the area of Educational Administration at the University of Oklahoma under the direction of Dr. Thomas Wiggins and four other excellent professors.

۰.

Your organization was chosen along with organizations from other schools in the State of Oklahoma to be surveyed because it met the criteria established for this research endeavor.

The two questionnaires were designed to measure your views on the organizational climate of your school and the decision-making in your school setting. I am particularly interested in what you perceive the school building climate to be and the decisions which are most important to you as a teacher in that school.

The questionnaires are designed so they will take only a few moments of your valuable time. Because your name does not appear on the questionnaires, your responses will be confidential.

I think you will agree that your input is important in trying to determine the role of teachers in the decision-making process in the different organizational climates. I will be eager to see how you candidly respond on your completed questionnaires.

Please take a few moments to complete these questionnaires. Upon completion of the questionnaires, return them to me. If you cannot complete these questionnaires at this time, return them to your building administrator, and I will pick them up.

If you have any questions regarding the study, please ask at this time or feel free to call me a (405) 247-6605.

> Thank you, Darrell R. Thompson Darrell R. Thompson

I will be more than happy to provide you with a report of this study. If you would like for me to do so, please fill out the information below and enclose it with the questionnaires. Detach this portion from the questionnaires to maintain your confidentiality.

Name

Address

City, State, Zip Code_____

110

DEMOGRAPHIC INFORMATION

Name of Your School District

Name of Your School/Assignment Location

Level(s) presently teaching or assignment area

Age

Gender

<u>Male Female</u> (Circle One)

How many total years have you been teaching ______ How many in: this school building? ______ this school district? ______ other school districts? ______

MARKING INSTRUCTIONS

Printed below is an example of a typical item found on the <u>Decisional States Scale</u>:

Sample:

I F	EEL I A	M AL	READY				I	FEEL	I	SHOULD	BE
	PARTICI	PATI	NG					PART	IC	IPATIN	G
	(CIRCLE	ONE)	DECISIONA	AL	SITUATIONS	5	(CIR	CL	E ONE)	
YES)		TEACHER	E١	VALUATION		Q	ES)	NO

In this sample the respondent circled the NO alternative to show that s/he is not already involved in the teacher evaluation process of setting the criteria by which a teacher is to be evaluated. The respondent circled YES in the second instance to indicate s/he should be involved in setting the evaluation criteria at present or in the future. Of course, other alternate ways could have been selected, depending upon how the respondent felt s/he was involved or should be involved in the specific decisional situation. It is possible for a respondent to have YES-YES marked, NO-NO marked, or NO-YES marked as alternatives.

Please mark your responses clearly, as in the example. PLEASE BE SURE THAT YOU MARK EVERY ITEM. <u>CIRCLE</u> one response before each decisional situation and <u>CIRCLE</u> one response after each decisional situation which most nearly reflects your desire to or not to participate and to whether you are or are not participating in these decisional situations....Authenticity of the response is very important. Do give the most accurate response that you can....Either a pencil or a pen may be used in marking the questionnaire.

112

DECISIONAL STATES SCALE

Questionnaire

INSTRUCTIONS: In filling out this questionnaire, be sure to <u>circle</u> one response on both sides of each of the Decisional Situations.

I FEEL I AM ALREADY I FEEL I SHOULD BE PARTICIPATING . PARTICIPATING (CIRCLE ONE) (CIRCLE ONE)

DECISIONAL SITUATIONS

YES	NO	IN HIRING NEW FACULTY MEMBERS	YES	NO
YES	NO	IN PREPARING SCHOOL BUDGETS	YES	NO
YES	NO	IN SELECTING NEW TEXTBOOKS	YES	NO
YES	NO	IN ESTABLISHING DISCIPLINARY POLICIES	YES	NO
YES	NO	IN PLANNING NEW BUILDING FACILITIES	YES	NO
YES	NO	IN DETERMINING FACULTY SALARIES	YES	NO
YES	NO	IN DETERMINING GRIEVANCE PROCEDURES	YES	NO
YES	NO	IN DETERMINING POLICY CONCERNING EXTRA DUTIES	YES	NO
YES	NO	IN DETERMINING APPROPRIATE CLASS SIZE	YES	NO
YES	NO	IN ESTABLISHING GENERAL INSTRUCTIONAL POLICIES	YES	NO

----- ,

MARKING INSTRUCTIONS

Printed below is an example of a typical item found in the Profile of Organizational Climate:

- 1. Definitely Agree
- 2. Inclined to Agree
- 3. Inclined to Disagree
- 4. Definitely Disagree

Sample: SITUATIONS IDENTIFIED

1(2)

) 3 4 People in this school trust each other.

In this example the respondent circled alternative # 2 to show that the interpersonal relationship described by this item s/he is "inclined to agree" with in his/her school. Of course, any of the other alternatives could be selected, depending on how you perceive what happens in your school.

Please mark your responses clearly, as in the example. PLEASE BE SURE THAT YOU MARK EVERY ITEM. <u>CIRCLE</u> the numeral which most nearly describes your perception of the situation identified.....as accurate a response as you can....Either a pencil or pen may be used.

PROFILE OF ORGANIZATIONAL CLIMATE

Questionnaire

Response Alternatives

- Definitely Agree
 Inclined to Agree
 Inclined to Disagree
 Definitely Disagree

RESPONSES

SITUATIONS IDENTIFIED

1	2	3	4	1.	The jobs/tasks in this school are clearly and logically structured.
1	2	3	4	2.	In this school it is sometimes unclear who has the formal authority to make a decision.
1	2	3	4	3.	The policies and organization structure of this school have been explained.
1	2	3	4	4.	Red-tape is kept at a minimum in this school.
1	2	3	4	5.	Excessive rules, administrative details, and red-tape make it difficult for new and original ideas to receive consideration.
1	2	3	4	6.	Our educational processes sometime become ineffective due to lack of organization and planning.
1	2	3	4	7.	In some of the projects I participate in, I have not known who my supervisor was.
1	2	3	4	8.	Our school administration is not concerned about formal organization and authority.
1	2	3	4	9.	We do not rely too heavily on individual judgement in this school; almost everything is double-checked.

Response Alternatives

-

- Definitely Agree
 Inclined to Agree
 Inclined to Disagree
 Definitely Disagree

RES	PONS	ES			SITUATIONS IDENTIFIED
1	2	3	4	10.	In this school, the administration resents your checking everything with them; if you have the right approach you just go ahead and do it.
1	2	3	4	11.	Supervision in this school is mainly a matter of setting guidelines for our subordinates; you let them take responsibility for the job.
1	2	3	4	12.	You will not get ahead in this school unless you stick your neck out and try things on your own.
1	2	3	4	13.	Our philosophy in this school emphasizes that teachers should solve their problems by themselves.
1	2	3	4	14.	There are a lot of excuses used in this school when someone makes a mistake.
1	2	3	4	15.	One of the problems in this school is that individuals will not take responsibility.
1	2	3	4	16.	We have a promotion system in this school that helps the best person to rise to the top.
1	2	3	4	17.	In this school the rewards and encouragements you get usually outweigh the threats and the criticism.
1	2	3	4	18.	In this school people are rewarded in proportion to the excellence of their job performance.
1	2	3	4	19.	There is a great deal of criticism in this school.

.

- Definitely Agree
 Inclined to Agree
 Inclined to Disagree
 Definitely Disagree

F	RESPON	SES		S	SITUATIONS IDENTIFIED
נ	2	3	4	20. There recogni good wo	is not enough reward and tion in this school for doing ork.
נ	2	3	4	21. If you you wil	make a mistake in this school l be punished.
נ	2	3	4	22. The phi is that fastest sure.	llosophy of our administration in the long run we get ahead by playing it slow, safe, and
]	2	3	4	23. Our tea increas calcula	aching effectiveness has been ed dramatically by taking ted risks at the right time.
כ	2	3	4	24. Decisio cautiou maximum	on making in this school is too as (slow and cumbersome) for a effectiveness.
נ	L 2	3	4	25. Our ad take a	ministrator(s) are willing to chance on a good idea.
3	L 2	3	4	26. We hav occasic effecti	e to take some very big risk onally to increase our teaching veness.
]	L 2	3	4	27. A frier the tea	ndly atmosphere prevails among chers in this school.
]	1 2	3	4	28. This s relaxed	chool is characterized by a l, easy-going working climate.
]	L 2	3	4	29. It is this so	hard to get to know people in thool.
]	L 2	3	4	30. People and alc	in this school tend to be cool of toward each other.
	12	3	4	31. There relatic adminis this so	is a lot of warmth in the onship between the school strators and the teachers in chool.

Responses Alternatives

- Definitely Agree
 Inclined to Agree
 Inclined to Disagree
 Definitely Disagree

RES	PONS	ES			SITUATIONS IDENTIFIED
1	2	3	4	32.	You do not get much sympathy in this school from school administrators if you make a mistake.
1	2	3	4	33.	The school administrators make an effort to talk to you about your career aspirations in this school.
1	2	3	4	34.	People in this school really do not trust each other.
1	2	3	4	35.	The philosophy of our school administration emphasizes the human factor, how people feel, how they want to be involved, etc.
1	2	3	4	36.	When I am on a difficult assignment, I can usually count on getting assistance from my supervisor (principal, etc.) and coworkers.
1	2	3	4	37.	In this school we set high standards for performance.
1	2	3	4	38.	Our school administration believes no job is so well done that it could not be done better.
1	2	3	4	39.	In this school there is a feeling of pressure to continually improve your individual and group performance.
1	2	3	4	40.	The school administrator(s) believe that if teachers are happy, teaching effectiveness and higher student achievement will result.
1	2	3	4	41.	To get ahead in this school it is more important to get along than it is to be an excellent and effective teacher.

:.

.

.

Response Alternatives

- Definitely Agree
 Inclined to Agree
 Inclined to Disagree
 Definitely Disagree

RES	PONS	ES			SITUATIONS IDENTIFIED
1	2	3	4	42.	In this school teachers do not seem to take much pride in their effectiveness and performance.
1	2	3	4	43.	The best way to make a good impression in this school is to steer clear of open arguments and disagreements.
1	2	3	4	44.	The attitude of our school administrators is that conflicts between competing teachers and/or departments can be very healthy.
1	2	3	4	45.	Teachers are encouraged to speak their minds, even if it means disagreeing with the school administration.
1	2	3	4	46.	In staff meetings the goal is to arrive at a decision as smoothly and as quickly as possible.
1	2	3	4	47.	Teachers are proud to belong to this school.
1	2	3	4	48.	I feel I am a member of a well functioning team.
1	2	3	4	49.	There is little personal loyalty to this school.
1	2	3	4	50.	In this school, teachers and school administrators tend to look out for their own individual interest.

.

.

:.

APPENDIX D

Inter-item Correlation Results

. .

INTER-ITEM CORRELATION RESULTS BY SCHOOL BUILDINGS

							REDUCĘD	REDUCED
				FULL		FULL	MOD'R ²	MOD R ²
DIST	SCHOOL	ORGVAR	DECAT	MOD R ²	N-1	MOD F	TOT PAR	TOT SEPAR
						(DFn.d)		
						(
Aalts	SHS	Struct	Deprived	.042417	55	1.17(2.53) NS	036282	003858
		Chall	Deprived	001026	55	03 NG	000577	.005050
		Con Inc	Deprived		55	.05 NS	.0005/7	.000398
		SOC Inc	Deprived	.040167	23	1.07(2,52) NS	.004382	.038621
		R&S	Deprived	.008452	55	.23 NS	.005479	.001858
Aalts	NEJH	Struct	Deprived	.025279	16	.18 NS	.000099	.023008
		Chall	Deprived	.069372	16	-52 NS	.064583	.024272
		Soc Inc	Deprived	178542	16	1 57(2 14) NG	002261	167944
		PCC	Depertued	467620	16	(15/2,14)		.107244
			Deptived	.407520	10	0.13(2,14) p(.03	.413520	.19/28/
Aalts	RIEL	Struct	Deprived	.046375	12	.24 NS	.008441	.046245
		Chall	Deprived	.407997	12	3.45(2.10) NS	339538	000480
		Soc Inc	Deprived	532928	12	5 7(7 10) - 4 05	145742	186375
		PLC	Deputred	366903	10		100005	.1003/3
			Debilined	. 300002	12	2.9(2,10) NS	.190932	.313/09
Banad	EAEL	Struct	Deprived	.128285	14	.81 NS	.032998	.110900
		Chall	Deprived	.050039	14	.32 NS	.047056	.007644
		Soc Inc	Deprived	053547	14	34 NS	000051	057770
		P L C	Deprived	025900	14	14 110	.0000071	015201
		n a s	DebitAnd	.023609	14	.10 NS	.000676	.015391
Banad	SHS	Struct	Deprived	.067519	15	.47 NS	.051684	-001344
		Chall	Deprived	070018	15	49 NS	047006	063371
		See Tee	Deprived		15		.047000	.003371
		SOE INC	Deprived	.40/029	15	5.7(2,13) p2.05	.041092	.4144/4
		Kas	Deprived	-303261	15	1.83(2,13) NS	.099176	.302816
Banad	MIDS	Struct	Deprived	- 579366	5	2.07(2.3) NS	049674	574328
		Chall	Deprived	491875	ŝ	1 45(2 3) NS	457444	18/029
		Soc Tee	Deprived	020566	ž	07 NG	016412	011720
		Soe me	Deprived	.020300	2	.03 NS	.010413	.011/39
		K & S	Deprived	.000031	۰.	3.0(2,3) NS	.593220	.001753
Banad	SUEL	Struct	Deprived	.045944	14	.29 NS	.008843	.044834
		Cha11	Deprived	113449	15	83 NS	075779	006690
		Soc Tre	Deprived	180076	15	1 42(2 12) NE	007505	175320
			Deprived	.1000/0	15	1.45(2,15) 33	.00/505	.175520
		K a S	Deprived	.033469	15	.24 NS	.031342	.015038
Banad	FYRC	Struct	Deprived	.563213	7	3.22(2.5) NS	.488889	.258065
		Chall	Deprived	355676	7	1.38(2.5) NS	004675	.332719
		See Tee	Deputied	0/1769	÷	11 NG	0/1222	002022
			Deprived	.041/09	<u> </u>	.11 05	.041322	.002933
		K G S	Deprived	- 202038	/	.89 N5	.14116/	.212/11
Banad	WAEL	Struct	Deprived	. 998295	3	292.8(2.1) p<.05	.949020	.545924
		Chall	Deprived		-			.757895
		Sac Tee	Deprived	026780	2	02 NS	.944578	.036437
		Soc Inc	Deprived	.030/09	2	10 8/2 11 116	00578	609385
		K & S	Deprived	.962284	د	12,0(2,1) NS	. , , , , , , , , , , , , , , , , , , ,	
Candr	ELEM	Struct	Saturation	.948718	3	9.25(2,1) NS	.771429	.111111
		Chall	Saturation	692308	3	1.125(2.1) NS	.057143	.666667
		Soc Tec	Saturation	538462		58 NS	-466667	.111111
			Sacuración	530462	2	58 NS	466667	.111111
		K G D	Sacuracion	. 336462	3			
Dapch	ELEM	Struct	Deprived	.583089	15	9.09(2,13) p<.05	.279401	.388675
-		Chall	Deprived	.092433	15	.66 NS	.045397	.033433
		Soc Inc	Denrived	254853	15	2.22(2.13) NS	.173679	.118073
			Departured	064000	15	42 NS	049497	.008111
		~ a >	Debrined		13	-72		
Dapch	SHS	Struct	Deprived	.310669	7	1.13(2,5) NS	.228663	.159053
		Chall	Deprived	.289386	7	1.01(2,5) NS	.245603	.108029
		Soc Inc	Deprived	.009785	7	.02 NS	.007252	.004953
		RAC	Deprived	498973	. 7	2.5(2.5)	.347066	.051383
		~ ~ ~ ~	Dehrrad		,			

.

INTER-ITEM CORRELATION RESULTS BY SCHOOL BUILDINGS (Con't)

DIST	SCHOOL	ORGAVAR	DECAT	FULL MOD R ²	N-1	FULL MOD F	REDUCED MOD R ² TOT PAR	REDUCED MOD R ² TOT SEPAR
						(DFn,d)		
Earap	ELEM	Struct	Deprived	.644112	11	8.14(2.9) p < .05	.075750	.436398
		Chall	Deprived	.178498	11	.98 NS	.033584	.171812
		Soc Inc	Deprived	.440509	11	3.54(2.9) NS	.376339	.008302
		R & S	Deprived	.440007	11	3.54(2,9) NS	.008579	.434334
Earap	SHS	Struct	Deprived	.145010	9	.59 NS	.124224	.001239
		Chall	Deprived	.372948	9	2.08(2,7) NS	.371625	.104435
		Soc Inc	Deprived	.010856	9	.04 NS	.001775	.010783
		R&S	Deprived	.185025	9	.79 NS	.100879	.010633
Fashr	ELEM	Struct	Deprived	.453149	9	2.9(2.7) NS	.197661	.034945
		See Tee	Deprived		7	4.43(2.7) NS	0	.39/040
			Deprived	.300123	~	2.20(2,7) NS	500053	.274390
		K G S	Debiined	.003013	9	7.50(2,7) p < .05	.582257	.020189
Fashr	SHS	Struct	Deprived	.099906	8	.33 NS	.002459	.091110
		Chall	Deprived	.704542	8	7.15(2,16) p 05	.353153	.251559
		Soc Inc	Deprived	.154897	8	.55 NS	.017281	.121322
		R&S	Deprived	.877652	8	21.5(2,6) p<.05	.537281	.223178
Gheth	ELEM	Struct	Equilib	.674202	4	2.07(2.7) NS	674202	674202
		Chall	Equilib	. 572511	4	1.34(2.2) NS	572511	572511
		Soc Inc	Equilib	.104456	Ā	12 NS	106456	104456
		RAS	Fauilth	.047619	Ā	05 NS	104456	047619
	•				-		.104490	
Gbeth	JRHI	Struct	Deprived	.285308	5	.6 NS	.253653	.245294
		Chall	Deprived	.863488	5	9.5(2,3) NS	.849854	.590239
		Soc Inc	Deprived	.691388	5	3.36(2,3) NS	.691388	.388420
		R&S	Deprived	.144902	5	.25 NS	0	.063496
Hcic	GREL	Struct	Deprived	.234809	11	1.38(2.9) NS	.143787	.107196
		Chall	Deprived	.095228	11	.47 NS	.001874	.091061
		Soc Inc	Deprived	.006088	10	.02 NS	.005990	.002065
		R&S	Deprived	.115817	11	.59 NS	.111077	.000081
Hcic	SHS	Strue	Deprived	.179568	14	1.3(2,12) NS	.007408	.157853
		Chall	Deprived	.080780	14	.53 NS	.060160	.031960
		Soc Inc	Deprived	.067447	14	.43 NS	.059980	.002370
		R&S	Deprived	.017098	14	.10 NS	.007181	.012360
Hcic	INTR	Struct	Deprived	.428956	9	2.63(2,7) NS	.158730	.424837
		Chall	Deprived	.042424	9	.16 NS	0	.022624
		Soc Inc	Deprived	.355640	9	1.93(2.7) NS	.335317	.084967
		R&S	Deprived	.063796	9	.24 NS	.060150	.015242
Hchic	JRHI	Struct	Deprived	.136023	12	.79 NS	.135410	.020931
		Chall	Deprived	.262832	12	1.78(2,10) NS	.004428	.233585
		Soc Inc	Deprived	.018542	12	.09 NS	-011483	.015241
		R&S	Deprived	.277737	12	1.92(2,10) NS	-099503	.054482
Hcic	LIEL	Struct	Deprived	.154081	7	.46 NS	.025561	.137783
		Cnail	Deprived	.3/1235	7	1.48(2,5) NS	.003086	. 431884
		Soc Inc	Deprived	.153614	7	.45 NS	.148148	.043478
		R&S	Deprived	.860241	7	15.4(2,5) p <.05	.416667	.002174
Hchic	MIDS	Struct	Deprived	.051494	10	.22 NS	.042308	.026720
		Chall	Deprived	.075870	10	.33 NS	.075862	.009325
		Soc Inc	Deprived	.284373	10	1.59(2,8) NS	.078571	.274725
		R & S	Deprived	.374781	10	2.4(2,8) NS	.267568	.241749
Hchic	CHEL	Struct	Saturated	.133816	9	.54 NS	.003831	.102564
		Chall	Saturated	.447917	9	2.84(2,7) NS	.043103	392628
		Soc Inc	Saturated	.749695	8	8.99(2,6) p 2.05	642857	.016129
		R & S	Sacuraced	.097654	9	.38 NS	.080460	.078144

•

•

•								
							REDUCED	REDUCED
				FULL 2		FULL	HOD R4	MOD R4
DIST	SCHOOL	ORGVAR	DECAT	MOD R ⁴	N-1		TOT PAR	SBPAR
						(Drn,d)		
Hchic	SWEL	Struct	Deprived	.046487	20	.44 NS	.045911	.000387
		Chall	Deprived	.133724	20	1.39(2.18) NS	.107402	050607
		Soc Inc	Deprived	184918	20	2 04(2 18) NS	093192	055203
			Deprived	002700	20	2.04(2,10) A3	.073182	.033273
			Debitived	.092/99	20	.72 13	.091338	.000331
Vahia	NCET	C	Decendered	066697		33		
ACUTC	WOLL	SERUCE	Debrived	.033367	1.5	.34 NS	.032755	.000338
		Chall	Deprived	.171017	13	1.13(2,11) NS	.022751	.145032
		Soc Inc	Deprived	.044935	13	.26 NS	.043416	.030101
		R & S	Deprived	.021191	13	.12 NS	.00100	.015310
Idela	ELEM	Struct	Deprived	.533800	3	.57 NS	.030303	.531011
		Chall	Deprived	.998101	3	262.8 p∠.05	.308642	.526480
		Soc Inc	Deprived	359471	ĩ	.28 NS	105376	195900
		RSS	Deprived	938814	3	7.67(2 1) NS	594108	202788
			50011100	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,.,		
Idela	SHS	Semice	Deprived	974194	5	56 6(2 3) = 4 05	002102	441176
		Cha11	Beneficial	170000	ž	1 22(2,3) p < .03	202250	.4411/0
			Deptived	.4/0000	2	1.55(2,5) 85	.202/39	.451/65
		Soc inc	Deprived	.064516	2	.1 N5	.030033	.005693
		R & S	Deprived	.548387	5	1,82(2,3) NS	.413793	0
		•						
Idela	JRHI	Struct	Deprived	.596262	3	.74 NS	.504673	.102804
		Chall	Deprived	.258015	3	.17 NS -	0	.117280
		Soc Inc	Deprived	.329609	3	.25 NS	301676	085830
		9 2 6	Deputied	407317	5	34 NG	220269	.005050
		A G S	Deprived	.40/31/	2	.34 35	.329208	.055432
Thing	না মধ	Service	Deprived	135990	7	39 NG	00098/	112500
			Deperved			05 10	.000304	
•		Cnail	Deprived	.020323	0	.US NS	.025455	.006481
		Soc Inc	Deprived	.331118	7	1.24(2,5) NS	.000562	.301786
		R & S	Deprived	.222025	7	.71 NS	.060479	.212766
Idela	SHS	Struct	Deprived	.493665	7	2.44(2,5) NS	.490909	.015781
		Chall	Deprived	.583670	7	3.5(2.5) NS	.485767	.147611
		Soc Inc	Deprived	-460813	6	1.7(2.4) NS	420050	010945
		RAS	Deprived	.351868	7	1.36(2.5) NS	324569	044380
			reprinte	1321000	•	1130(2,3) 13	1324303	.044.000
Jhint	JRHI	Struct	Deprived	.852799	4	5.79(2.2) NS	.765625	.021739
		Chall	Dentived	894981	Å	8.57(2.12) NS	840278	048913
		See Tee	Departured	774/02	7	3 (3 (3 3)) MC	0200270	712/20
		SOE INC	Deprived	.//4402		3.43(2,2) 35	.030934	./13439
		8 & 5	Deprived	.553987	4	1.24(2,2) NS	.137931	.157609
		C a a a a	N	110500		1 00/0 151 10		
Knook	<u></u>	SEFUCE	Deprived	.119522	17	1.02(2,15) NS	110029	.018083
		Chall	Deprived	.066/89	17	.54 NS	.051062	.023180
		Soc Inc	Deprived	.214759	17	2.05(2,15) NS	.175449	.021096
		R & S	Deprived	.388876	17	4.77(2,15) p <.05	.076570	.346489
		-	_					
Khook	SHS	Struct	Deprived	.352548	8	1.63(2,6) NS	.188253	.252083
		Chall	Deprived	.177630	8	.65 NS	.172887	.029589
-		Soc Inc	Deprived	.005926	8	.02 NS	005545	0
		R&S	Deprived	499379	8	2.99(2.6) NS	321021	070175
					•			
Lidbl	CNEL	Struct	Deprived	.005196	10	.02 NS	0	.004259
		Chall	Deprived	014867	10	06 15	013095	000110
		Soc 7n-	Dopution	070700	10	3 20	.013073	
		302 112	Deprived	-0/0/90	10		.020105	.009/19
		R 5 S	Deprived	.314092	10	1.83(2,8) NS	.251004	.000071
14453	CIIC	C	Destruct	020373	10	17 10	A1 6775	
LIGHT	3113	JLIUCE	Deprived	.0202/3	10	.1/ 35	.018//5	.001842
		Chall	Deprived	.051030	18	.43 NS	.008634	.049773
	•	Soc Inc	Deprived	.468221	18	7.04(2,16) p <.05	.016336	.399339
		R & S	Deprived	.247108	18	2.63(2,16) NS	.070305	.247019
								_
Lidbl	JRHI	Scruct	Deprived	.277592	10	1.54(2,8) NS	.274476	.032805
		Chall	Deprived	.189548	10	.94 NS	.008355	.152744
		Soc Inc	Deprived	.010373	10	.04 NS	.009537	.002675
		RAS	Deprived	529086	10	4.49(2.8) n / 05	526818	016820
					~ • •			"ATOOTO

.

۰.

INTER-ITEM CORRELATION RESULTS BY SCHOOL BUILDINGS (Con't)

INTER-ITEM CORRELATION RESULTS BY SCHOOL BUILDINGS (Con't)

DIST	SCHOOL	ORGVAR	DECAT	FULL MOD R ²	N-1	FULL MOD F (DFn,d)	REDUCED MOD R ² TOT PAR	REDUCED MOD R ² SBPAR
Lidbl	SEEL	Struct	Deprived	.143817	7	.41 NS	.109385	.037500
		Chall	Deprived	.327207	7	1.22 NS	.309425	.014306
		Soc Inc	Deprived	.364758	7	1.44(2.5) NS	.09006	-282384
		R&S	Deprived	.144484	7	.42 NS	.049494	.098339
Mster	ELEM	Struct	Deprived	.346461	6	1.06(2.4) NS	.108803	.076179
		Chall	Deprived	.853930	6	11.7(2.4) p < .05	.028567	. 523126
		Soc Inc	Deprived	. 526087	6	2.22(2.4) NS	.147423	.523515
		R&S	Deprived	.783413	6	7.23(2,4) p<.05	.386096	.070503
Mster	SHS	Struct	Deprived	.480216	3	.46 NS	-033898	.421053
		Chall	Deprived	.970491	3	16.4(2,1) NS	-151968	.750223
		Soc Inc	Deprived	.99566	3	114.7(2.1) NS	.573616	.335447
		R&S	Deprived	- 950497	3	9.6 (2,1) NS	.878935	.122807
Nempl	ELEM	Struct	Deprived	.163133	• 7	.49 NS	.013135	.162721
•		Chall	Deprived	.232414	7	.76 NS	.171262	.114034
		Soc Inc	Deprived	.769060	7	8.33(2,5) p∠.05	.420078	.003259
Ntmpl	SHS	Struct	Deprived	.718364	4	2.55(2.2) NS	.698068	426808
•		Chall	Deprived	.322679	4	.48 NS	.002382	.105240

.

.

124 INTER-ITEM CORRELATION RESULTS BY SCHOOL DISTRICTS

					REDUCED	REDUCED	TOTPAR	SBPAR	TOTPAR	SBPAR PROB	FULL
		FULL		FULL	MOD R4	MUD K4	F RATIO	TEST	PROB	rop	ACD .
DIST	ORGVAR	MOD R-	N 1	MOD F	TUTPAR	SBPAR	(TEST)	F RATIO	J (TEST)	TEST	P AI
Aalts	Struct	.026463	91	1.21(2,89) NS	.012294	.011546	1.36	1.30	.244 NS	.26 NS	NS
	Chall	.007777	91	.33	.006083	.000710	.59	.107	NS	NS	NS
	Soc Inc	.174663	86	8.89(2,84)	.025466	.134103	4.128	15.18	p <.05	p∠.05	p<.05
	R&S	.122398	89	5.997(2,86)	.019078	.111255	1.10	10.21	.29 NS	p<.05	₽ ∠ .05
Banad	Struct	.037820	68	1,297(2,66)	.033980	.012303	1.75	.26	.19 NS	NS	NS
	Chall	.091409	69	3.37(2,67)	.000540	.079631	.87	6.6	NS	p<.05	p <.05
	Soc Inc	.143418	69	5.61(2,67)	.010874	.143400	.001	10.37	NS	₽<.05	p<.05
	R & S	.031350	69	1.08(2,67)	.013677	.025871	- 38	1.22	NS	.27 NS	NS
Candr	Struct	.790431	7	9.43(2,5)	.386100	.053571	17.6	9.65	p <.05	p <.05	p <.05
	Chall	-388228	7	1.59(2,5)	.117509	.036159	.67	2.21	NS	.196 NS	NS
	Soc Inc	.232704	7	.758	0	.055556	1.15	0	.33 NS	NS	NS
	R & S	.336164	7	1.27(2,5)	.259459	.033611	2.28	.58	.19 NS	NS	ns
Dacph	Struct	.193379	31	3.48(2,29)	.001847	. 191035	6.89	1.19	NS	p<.05	p<.05
	Chall	.034883	31	.524	.022959	.005702	.88	.36	NS	NS	ns
	Soc Inc	.137188	31	2.2(2,29)	.080757	.030162	3.60	1.90	.06 NS	.18 NS	NS
	R&S	.120824	30	1.924(2,28)	.048254	.047461	2.34	2.31	.13 NS	.14 NS	ns
Earap	Struct	.09251	24	1.17(2,22)	.023980	.084748	.28	1.76	NS	.20 NS	NS
-	Chall	.227184	24	3.23(2,22)	.208275	.045183	5.18	.54	p<.05	ns	ns
	Soc Inc	.013026	24	.145	.006221	.004624	.19	.15	NS	NS	NS
	R & S	.093472	24	1.134(2,22)	.005949	.092791	.02	2.12	NS	NS	NS
Fashr	Struct	.260398	21	3.34(2,19)	.123496	.078084	4.68	3.52	p <.05	.07 NS	NS
	Chall	.325015	21	4.57(2,19)	.079239	.174629	4.23	6.9	.051 NS	p<.05	p<.05
	Soc Inc	.141369	21	1.56(2,19)	.011145	.106922	.76	2.88	NS	10 NS	NS
	R&S	.526624	21	10.57(2,19)	.419351	.028934	19.97	4.3	₽<.05	p <.05	p < .05
Gbech	Struct	.005688	19	.04	0	.005305	.006	0	NS	NS	NS
	Chall	.058292	22	.62	.029992	.008894	1.05	.60	.32 NS	NS	NS
	Soc Inc	.222214	20	2.57(2,18)	.142503	.017549	4.74	1,84	p < .05	.19 NS	NS
	R & S	.106177	21	1.13(2,19)	.098048	.000453	2.13	.17	.16 NS	NS	NS
Hbrox	Struct	.859682	4	6.13(2,12)	.827586	.415678	6.33	.46	.13 NS	NS	p<.05
	Chall	.536792	4	1.159(2,12)	.512968	.067401	2.03	.10	.29 NS	NS	NS
	Soc Inc	.085300	3	.047	.005714	.082353	.003	.09	NS	NS	NS
Vahda	R&S	.212267	4	.269	.169571	.002530	.53	-11	NS	N5	NS
ACUIC	Chall	.023003	121	1.42(2,119)	.001339	.022338	-09	2.03	NS	.10 NS	NS
	See Tre	.027000	110	1.71(2,117) 2.122(1.117)	.000125	.02/00/	2 2	3.40	11 11	.00 NS	NS D (OS
	R&S	.025357	121	1.55(2,119)	.000060	.025350	.0008	3.09	NS	.08	NS
Tdala	C	025125	14	110	03//32	009220	22	009	NC	110	NC
IGGTH	Chall	044193	14	.210	.034423	.0003339	.33	.000	NS	NC	NC
	Soc Inc	-272834	14	2.25(2.12)	085933	088972	3.03	3.08	10 NS	10 NS	NS
	RAS	.198222	14	1.48(2,12)	.000129	.169203	.43	.296	NS	.10 NS	NS
Thint	Struct	201738	22	2 53(2 20)	019075	111257	2 27		14 NC	n / 05	NC
	Chall	.266687	21	3.4(2.19)	249163	.102160	4.26	45	nz .05	NS	NS
	Soc Inc	.342368	21	4.95(2.19)	.001770	.310871	.91	9.8	NS	n05	p 2.05
	R&S	.212556	22	2.70(2,20)	.001245	.163854	1.24	5.37	.28 NS	p∠.05	NS
Khook	Struct	.079134	33	1,33(2,31)	. 002701	.067474	. 39	2.57	NC	א וו	NS
	Chall	.010457	33	.16	001940	006592	12	27	NS	NS NS	NS
	Soc Inc	.095438	33	1.64(2.31)	.063189	.015315	2.75	1.1	.10 NS	.30 NS	NS
	R&S	.101670	33	1.7(2,31)	.096011	.000092	3.5	.19 .	.067 NS	NS	NS
LIAN	Struct	.035529	51	. 90	035790	.006978	1.45	- 01	. 23 NG	NC	NS
01001	Chall	.160578	51	.50	.055250	.017267	.13	0	NS	NS	NS
	Soc Inc	.160578	51	4.69(2.49)	.008745	.157386	-19	8.86	NS	p < .05	DZ.05
	RES	.048753	51	1.26(2,49)	.003561	.030867	.92	2.33	NS	13 NS	NS
Mster	Struct	.141790	13	.91	.002600	.108810	- 50	1.78	NS	.21 NS	NS
	Chall	.473460	13	4.95(2.11)	.088840	.222512	5.24	8.04	.04	p 2.05	p2.05
	Soc Inc	.438366	13	4.293(2.11)	. 163312	.118529	6.26	5.39	p<.05	p < .05	P < .05
	R&S	.673789	13	11.36(2,11)	.583711	.000032	22.7	3.04	P<.05	.11 NS	₽∠•05
Nempl	Struct	.004248	17	.03	.000923	003821	006	05	NC	ve	NC
· ·····	Chall	.135337	17	1.17(2.15)	.096451	.020866	1.99	.67	-18 NC	50 NC	NS
	Soc Inc	.140876	17	1.23(2.15)	.014022	.014022	.53	2.21	NS	.15 NS	NS
	R&S	.345594	17	3.96(2,15)	.166865	.233467	2.57	4.1	.13 NS	.06	p < .05

APPENDIX E

Analysis of Variance Results

ANALYSIS OF VARIANCE

TEST RESULTS OF THE MEAN ORGANIZATIONAL VARIABLE ACROSS DECISIONAL STATES - BY SCHOOL DISTRICTS

DIST	ORCVAR	SOURCE	DE	SUN SO	NEAN SO	F-VAL	22>F	B ²	CV	SOURCE	DF	STD4 SO	XEAN SO	P2>F	CV MEAN
								-							
ALLE	Struc	Model	÷	6 71760722	0.01208167	0.01	0.9412	0.00000	5 366%	Error	31	571 74419707	6 777/1070	Reaching	SETUC
	Sociac	Hodel	î	5.24827591	5.74487759	0.91	0.3603	0.010226	10.7706	FITOE	89	507.65517241	5.76880878	RootHa	Sociar
	RES	Model	ĩ	13.47783013	13.47783013	2.90	0.0923	0.030833	5.6467	Error	91	423.64040449	44 4.65538955	LOOTHE	R 4S
	C	Mad - 1					0 2107	0.015336	10 2022			3/1 2000000	2 6000000	2 M	6
Sanad	Chall	Model	1	3./36321/4	3-/30321/4	1.04	0.3107	0.015335	5.7138	Error	68	241.20000000	7 37674434	ROOTASE	Chell
	Sociac	Hodel	ĩ	18.85824176	18.85824176	3.27	0.0751	0.045834	11.1905	Error	68	392.58461538	5.77330317	RootHse	Sociac
	R 4 S	Model	1	5.69670330	5.69670330	0.71	0.4035	0.010284	7.3128	Error	68	548.24615385	8.06244344	RootMae	R & S
• • • •		M-1-5	•			. <i>.</i> .									
CERGE	Chell	Model	2	0.12500000	0.10416667	0.42	0.5802	0.142857	1 5010	ETTOR	2	2 66666667	0.13000000	ROOCHER	Strue
	Sociac	Model	2	0.75000000	0.37500000	2.50	0.1768	0.500000	1.7407	Error	ś	0.75000000	0.15000000	Roothe	Sociac
	R & S	Model	2	0.45833333	0.22916667	0.81	0.4962	0.244444	1.4633	Error	Š	1.41666667	0.28333333	LOOTHSE	245
Deneh	Com	Madal	•	0 67500000	/ 83750000	3 14	0 2626	0 000526	0 7069	-		97 2000000	1 76177/1/	8- coM	
oapen	Chall	Model	2	27.67875000	13.83937500	1.14	0.3347	0.072701	7.5005	Error	29	353.0400000	12.17379310	ROOCHEE	Chall
	Sociac	Hodel	2	8.96000000	4.48000000	0.73	0.4926	0.047660	11.2941	Error	29	179.0400000	6.17379310	RootMae	Sociac
	R 6 S	Model	2	6.83763441	3.41881720	0.52	0.6017	0.035637	6.5806	Error	28	185.0333333	6.60833333	RootHae	RES
Faran	Servic	Model	1	9 77515157	0 77515157	1 70	0 7047	0 069956	13 5800	Freeze	77	131 09/9/9/9	5 738/7167	2005 400	
	Chall	Model	ĩ	22.34181818	22.34181818	2.28	0.1450	0.090030	6.4686	Error	23	225.31818182	9.31818182	ROOLNa	Chall
	SocInc	Model	ĩ	1.01878788	1.0187788	0.12	0.7298	0.005289	14.3460	Error	23	191.62121212	8.33135705	RootMae	Sociac
	R 4 S	Model	1	21.19333333	21.1933333	1.98	0.1727	0.079269	8.6457	Error	23	246.16666667	10.70289855	RootHse	R é S
Fashr	Struc	Model	2	9.47368421	4.73684211	1.35	0.2823	0.124654	9.3484	Error	19	66.52631579	3.50138504	ROOTHS	Struc
	Chall	Model	2	2.08133971	1.04068986	0.10	0.9013	0.010879	6.6314	Error	19	189.23684211	9.95983380	ROOCHSE	Chall
	SocInc	Model	2	0.17942584	0.08971292	2 0.02	0.9795	0.002178	9.5722	Error	19	82.36363636	4.32548476	ROOCME	SocInc
	RSS	Model	2	0.20574163	0.10287081	0.01	0.9853	0.001560	6.7892	Error	19	131.65785474	6.92936288	ROOCME	R 6 S
Gbeth	Struc	Model	2	8.90454545	4.45227273	3 0.66	0.5278	0.072424	14.3495	Error	17	114.04545455	4.45227273	RootMae	SETUC
	Chall	Model	2	4.50698758	2.25349379	0.30	0.7455	0.028939	5.6672	Error	20	151.23214286	7.56160714	RootHad	: Chall
	Sociac	Model	2	15.16071429	7.58035714	0.96	0.4008	0.096594	14.0668	Error	18	141.79166667	7.87731481	ROOCHE	Sociac
	R 4 5	Rodel	2	35.58041958	17.79020979	3.20	0.0635	0.231836	6.1772	Ertor	19	105.69230769	5-56275304	ROOCME	R 4 5
fibrox	Struc	Model	1	0.12333333	3 0.1333333	3 0.04	0.8588	0.012346	10.59	34 Erro	e :	3 10.66666667	3.55555556	RootMse	Struc
	Chall	Model	1	1.633333333	3 1.6333333	3 0.11	0.7635	0.034900	8.22	07 Erro	e (3 45.16666667	15.05555556	RootMae	Chall
	SocInc	Model	1	0.08333333	3 0.0833333	3 0.02	0.9024	0.009524	9.57	09 Erro	r }	3 8.6666667	4.333333333	RootMae	SocInc
	X 6 S	Nodel	1	0.133333333	3 0.:333333	3 0.02	0.8929	0.007092	6.59	90 EFT6	c .	3 19-0000001	0.122222222	ROCCIER	KBS
Heic	Struc	Hodel	2	7.09609352	3.5480467	6 1.49	0.2299	0.024010	7.60	55 Erra	e 12	1 288.45229353	2.38390325	RootMse	Struc
	Chall	Model	2	5.98780704	2.9939035	2 1.51	0.2248	0.024366	5 3.01	15 Erro	r 12	1 239.75412844	1.98143908	RootHse	Chall
	Sociac	Model	2	11.07574378	5.5378718	9 2.76	0.0673	0.044331	L 6.54	34 Erro	e 11	9 238.76851852	2.00645814	RootHa	Sucine
	X # 2	HOGEL	2	5.25217520	2.5260876	0.8/	U-4208	0.014204	• •.30	/1 5170	- 12	1 304.32201833	3.0123/800	ROOLASE	
Idela	Struc	Model	1	1.90476190	1.9047619	0 0.46	0.5080	0.034423	3 11.05	79 Erro	r 1	3 53.42857143	4.10989011	RootMae	Serve
	Chall	Model	1	0.17142857	0.1713285	7 0.02	0.8952	0.001387	7 6.61	23 Erro	r 1	3 123.42857142	9.49450549	RootHae	Chall
	Sociac	Model	1	2.51904762	2.5190476	2 0.31	0.5895	0.022956	5 11.70	57 Erro	- 1	3 107.21428571	8.24725275	RootHse	SocInc
	~ • 3	THOUGH	-			13 0.34	0.5/19	0.025219	9 11.46	29 Erro	F]	3 225 . 5000000	17.34615385	RootHee	R 6 S
Jhinc	Strue	Hodel	1	9.94202899	9.9420289	9 3.33	0.0822	0.136926	5 8.69	40 Erro	r 2	1 62.56656667	2.98412698	RootMee	Serve
	Chall Seeles	Nodel Model	1	1.16363636	1.1636363	6 0.27	0.6101	0.013244	4.50	49 Erro	r 2	0 86.7000000	4.33500000	RootHse	Chall
	S L S	Node1	1	8 57946377	8 \$72/272/2	7 3.08	0.0944	0.133551	L 11.85	06 Erro	F 2	0 144.50000000	7.22500000	RootMae	SocInc
_			•		0.3724377	0.01	0.3/72	0.3/314	9-93	91 LITO	e 2	1 221.50000000	10.53174603	RootMse	R & S
Khook	Struc	Model	2	10.10672259	5.0533613	4 1.39	0.2640	0.082346	5 10.07	89 Erro	r 3.	1 112.62857143	3.63317972	RootHae	Struc
	Chall	Model	z	11.20168067	5.6998403	0.37	0.6941	0.02328	5 8.40	96 Erro	r 3	1 469.85714286	15.15668203	RootMse	Chall
	RÍS	Nodel	ź	24.27521008	12,1376050	17 U.48 14 1.40	0.5230	0.030066	5 11.25	67 Erro	= 3 - 7	1 190.10714286	6.13248848	RootHse	Socine
	_		-				2003				ن -	- 100.10/14280	0.04001/31	AUQ1734	
LIGPT	Struc Chall	Model	1	1.03623757	1.0362375	0.33	0.5688	0.006537	7 9.38	82 Erro	r 5	0 157.48299320	3.14965986	RootMse	SETUC
	Sociar	Model	1	0.24188904	0.0423861	10.01 F	0.9401	0.000114	5.78	33 Erto 57 Erto	ε 5 - F	U 371.26530612	7.42530612	Rootha	Chall
	RÍS	Model	ī	0.61025641	0.6102564	1 0.03	0.8594	0.000634	5.83	Ol Erro	c 3 c 5	0 252.66666667	5.00533333	ROOTMS	RÉS
Marar	Serve	Model		A 6966/119										_	
	Chall	Model	1	8. 32034637	8.3203443	2 0.77	0.5034	0.005250	J 10.46 7 6.79	11 5	r 1	∠ 118.30303030 2 179 30303030	9.85858586	RootMae	Strue
	SocInc	Model	ī	9.42857143	9.4285714	3 1.95	0.1878	0.13983	1 10.19	16 Erro	- 1 - 1	2 58,0000000	4.83177777	Roor	Soctor
	R 4 S	Model	I	6.31168831	6.3116883	1 1.02	0.3334	0.078060	0 6.51	01 Erro	r 1	2 74.54545455	5.21212121	RootMa	RÁS
Ntmol	Struc	Model	1	1,17361111	1,1776111	1 0 23	0. 6104	0.01407	7 17 4.	98 F	_ ,	6 97 / 3760000		Beert	
	Chall	Model	î	12.25000000	12.5000000	0 1.17	0.295A	0.068054	6 6.79	00 ATTO 29 Erro	e 1 e 1	6 167,7500000	10.13234/31	ROOTINS	Ch+11
	Socine	Model	1	0.17361111	0.1736111	1 0.02	0.9040	0.000938	3 16.81	22 Erro	- 1 - 1	6 184,91750000	11.55859375	RootHe	
	2 5 8	Hodel	1	16.0000000	16.0000000	0 2.06	0.1700	0.114286	5 7.07	77 Erro	r i	6 124.00000000	7.75000000	ROOTHE	RÍS

APPENDIX F

Tukey and Duncan's T-Test Results

----- 、

TUKEY AND DUNCAN'S T-TEST RESULTS

. .

	SCR	VAR	TEST	ALPRA LEVEL	đf	MSE	CRITICAL VALUE STUDEN BANGE	MIN SIG DIFF	EARM MEAN	æ	MEAN	X	DEC	TEST	ALPHA LEVEL of	C	RITICAL VALUE	MIN SIG DIFF	HARM MEAN	GP	MFAN N	DEC	
	Aalta	Seruc	TUKEY	0.05	91	2.2957	2.809	1.50783	7.65591		19.000	4	Equ	DUNK	0.05 91	2.2957	1.98638	1.50783	7-66591		19.000 4	Ecu	
		Chall	TUKEY	0-05	91	6.27741	2.809	2.54371	7.65591	Ä	18.944	89 4 89	9 Dep 4 Equ 9 Dep 4 Equ	DUNN	0.05 91	6.27741	1.98638	2.54372	7.65591	Ă.	18.944 89 47.750 4	Dep Equ	
		SocInc	TUKEY	0-05	88	5.76881	2.810	2.80288	5.8	Ā	22.345	22.345 4		4 Equ	DUNN	0.05 88	5.76881	1.98729	2.80288	5.8	Â	22.345 4	Equ
		R 4 S	TUKEY	0.05	91	4.65539	2.809	2.19056	7.65591	*	21.000 40.000 38.124	40.000 4 38.124	21.000 40.000 4 38.124	Equ	DUNN	0.05 91	4.65539	1.98638	2.19957	7.65591	A A A	40.000 87 38.124 89	Dep Equ Dep
	Banad	Struc	TUKEY	0.05	67	3.6	2.823	1.75858	9.27536	A	18.500	64	Dep	DUNN	0.05 67	3.6	1.99601	1.75858	9.27536		18.500 64	Dep	
		Chall	TUREY	0-05	68	7.32624	2.822	2.50664	9.28571	Â	49.400	49.400 5	Equ	DUNN	0.05 68	7.32624	1-99547	2.50665	9-28471	Â	49.400 5	Equ	
		SocIac	TUKEY	0.05	68	5.7733	2.822	2.22517	9.28571	*	2.1615	65 65	Dep Dep	DUNN	0.05 68	5.7733	1.99547	2.22518	9.28571	Å	47.215 65 21.615 65	Dep Dep	
		R 6 S	TEREY	0.05	68	8.06244	2.822	2.62957	9.28571	*	19.600 5 38.908 65 37.800 5	5 65 5	Equ Dep Equ	DUNN	0.05 68	8.06244	44 1.00547	2.62958	9.28571	*	19.600 5 38.908 65 37.800 5	Equ Dep Equ	
	Earap	Struc	TUKEY	0.05	23	5.73847	2.926	3.04999	5.8		19.333	3	Equ	DUNN	0.05 23	5.73847	2.06866	3.04989	5.28		19.333 3	Equ	
		Chall	TUREY	0.05	23	8.33136	2.926	3.67501	5.28	Å	17.409 51.000	22	Dep Equ	DUNN	0.05 23	9.81818	2.06866	3.98935	5.28	Å	17.409 22 51.000 3	Dep Equ	
		SocIac	TUKET	0.05	23	8.33136	2.926	3.67501	5.28	Å	48.091 20.667	22 3	Dep Equ	DUNN	0.05 23	8.33136	2.06866	3.67489	5-28	Å	48.091 22 20.667 3	Dep Equ	
		R & S	TUKEY	0.05	23	10.7029	2.926	4.16535	5.28	A A A	20.045 40.333 37.500	22 3 22	Dep Equ Dep	DUNN	0.05 23	10.7029	2.96866	4.16521	5.28	*	20.045 22 40.333 3 37.500 22	Dep Equ Dep	
	Hbrox	Struc	TUREY	0.05	3	3.55556	4.501	5.47801	2.4		18.000	2	Equ	DUNN	0.05 3	3.55556	3.18245	5.47803	2.4		18.000 2	Equ	
		Chall	TUREY	0.05	3	15.0556	4.501	11.2724	2.4	Å	47.667	3	Dep	DUNN	0.05 3	15.0556	3-18245	11.2725	2.4	*	17.667 3 47.667 3	Dep	
		Sociac	TUREY	0.05	2	4.33333	5-811	9.87664	1.5	Å	46.500 22.000	6.500 2 2.000 1	z Equ I Equ	סנגמ	0.05 2	4.33333	4-30265	10.3423	1.5	Å	46.500 2	Equ Equ	
		R & S	TUREY	0.05	3	6.22222	4.501	7.24672	2.4	Å	21.667 38.000	3	Dep Equ	DUNN	0.05 3	6.22222	3-18245	7.24675	2.4	*	21.667 3 38.000 2	Dep Equ	
										*	37.667	3	Dep							•	37.667 3	Dep	
	Idela	Struc	TUKEY	0.05	13	4.10989	3.055	4.53341	1.86667	7 A A	18.429 17.000	14	Dep Equ	DUNN	0.05 13	4.10989	2.16037	4.33341	.1.00007	Â	17.000 1	Zqu	
•		Chall	TUKEY	0.05	13	9.49451	3.055	6.89043	1.86667	7 A A	47.000	1 14	Equ Dep	DUNN	0.05 13	9.49451	2-16037	6.89042	1.86667	Å	47.000 1 46.571 14	Dep	
		SocIac	TUREY	0.05	13	8.24725	3.055	6.42192	1.86663	7 Å	24.643 14	14	Dep	DUNN	0.05 13	8.24725	2.16037	6.42191	1.86667	Å	24.643 14 23.000 1	Dep Equ	
		R & S	TUKEY	0.05	13	17.3462	3.055	9.32347	1.86665	7 Å	36.500 34.000	14 1	Dep Equ	DUNN	0.05 13	17.3462	2-16037	9.31346	1-86667	*	36.500 14 34.000 1	Dep Equ	
	Jhint	Struc	TUKEY	0.05	21	2.98413	2.941	2-65849	3.65217		22.000	2	Equ	DUNN	0.05 21	2-98413	2.07961	2.65846	3.65217		22.000 2	Equ	
		Chall	TUKEY	0.05	20	4.335	2.950	3.22096	3.63636	A 	19.667 46.300	21 20	Dep Dep	DUNN	0-05 20	4.335	2.08596	3.22094	3.63636	Å	19.667 21 46.300 20	Dep Dep	
		SocInc	TUREY	0.05	20	7.225	2.950	4.15824	3.63636	A A	45.500 23.000	2 20	Equ Dep	DUNN	0-05 20	7.225	2.08596	4.15822	3-63636	A 45	45.500 2 23.000 20	Equ Dep	
		R & S	TUREY	0-05	21	10.5317	2.941	4.99432	3.65217	A	19.500 37.665	2 21	Equ Dep	DUNN	0.05 21	10.5317	2-07961	4.99427	3.65217	Å	19.500 2 37.665 21	Equ	
										Ā	35.500	2	Equ						5105217	Ā	35.500 2	Equ	
	11db1	Struc	TUKEY	0.05	50	3.14966	2.841	2.12023	5.65385	Å	18.939 18.333	49 3	Dep Equ	DUNN	0.05 50	3.14966	2.00856	2.12012	5-65385	*	18.939 49 18.333 3	- Dep Equ	
		Chall	TEREY	0.05	50	6.0117	2.841	3.25543	5.65385	A	47.122	49 3	Dep Equ	DUNN	0.05 50	6.0117	2.00856	2.92905	5.65385	Å	47.122 49 47.000 3	Dep Equ	
		SocInc	TURET	0.05	50	6.0117	2.841	2.9292	5.65385	5 A A	22.333	3 49	Equ Dep	DUNN	0.05 50	6.0117	2.00856	2.92905	5.65385	*	22.333 3	Equ Dep	
		R 6 S	TUKET	0.05	50	5.05333	2.841	2.68559	5.65385	5 .	38.571 38.333	49 3	Dep Equ	DUNN	0.50 50	5.05333	2.00856	2.68545	5.65385	Å	38.571 49 38.333 3	Dep Equ	
	Mster	Struc	TUKET	0-05	12	9.85859	3.081	4-45569	4.71429		19.182	11	Dep	DUNN	0.05 12	9.85859	2.17881	4.5589	4.71429	*	19.182 11	Dep	
		Chall	TUKEY	0.05	12	10.7828	3.081	4.65981	4.71429	, î	50.333	3	Equ	DUNN	0-05 12	10.7829	1.17881	4.66008	4-11429	Å	50.333 3	Equ	
		SocInc	TUREY	0.05	12	4.83333	3.081	3.11983	4.71429	, A	22.000	11	Dep	DUNN	0.05 12	4.83333	2.17881	3.11997	4.71429	*	48.455 11 22.000 11	Dep	
		Rés	TURET	0.05	12	6.21212	3.081	3.53694	4.71429		20.000 38.636 37.000	3 11 3	Dep Equ	DUNN	0-05 12	6.21212	2.17881	3.53711	4.71429	Å	20.000 3 38.636 11 37.000 3	Equ Dep Equ	
	Ncmpl	Struc	TUKEY	0.05	16	5.15234	2.998	3.60907	3.55556	5 🗛	19.000	2	Equ	DUNN	0.05 16	5.15234	2.11991	3.60894	3.55556		19.000 2	Equ	
		Chall	TUKEY	0.05	16	10.4844	2.998	5.1483	3:55556	5 A	18.188	16 2	Dep Equ	DUNN	0.05 16	10.4844	2.11991	5.14812	3.55556	A	18.188 16 50.000 2	Dep Equ	
		Sociac	TUREY	0.05	16	11.5586	2.998	5.40561	3-55556	A 5 A	47.375 20.500	16 2	Dep Equ	DUNN	0.05 16	11.5586	2.11991	5.40543	3-55556	*	47.375 16 20.500 2	Dep Equ	
		R & S	TUREY	0.05	16	7.75	2.998	4.42633	3.55556	5 A A	20.168 42.000 39.000	16 2 16	Dep Equ Dep	DUNN	0.05 16	7.75	2.11991	4.42617	3.55556	*	20.168 16 42.000 2 39.000 16	Dep Equ Dep	
													-										

	SCH	VAR	TEST	ALPHA LEVEL	CONFI LEVEL	đf	MSE	CRITICAL VALUE STUDENT RANGE	CRITICAL VALUE T	DEC CAT	SIMUL LOWER CONFI LIMIT	DIFF BETWEEN MEANS	SIMUL UPPER CONFI LIMIT
	Candr	Servic	THEFY	0.05	0 95	5	0.15	4.601		Sar-Den	-0 712	0 250	1 212
	ognet.	Jerue	IUNEI	0.05	0.33		0.15	4.001		Sat-Dep	-1 159	0.250	1 450
										Den-Sat	-1 212	-0.250	0 717
										Dep-Equ	-1.455	0.000	1.455
										Equ-Sat	-1.659	-0.250	1,159
										Equ-Dep	-1.455	0.000	1.455
		Struc	DUNN	0.05	0.95	5	0.15		3.53411	Sat-Dep	-0.795	0.250	1.295
										Sat-Equ	-1.280	0.250	1.780
										Dep-Sat	-1.295	-0.250	0.795
										Dep-Equ	-1.581	0.000	1.581
										Equ-Sat	-1.780	-0.250	1.280
			-			-				Equ-Dep	-1.581	0.000	1.581
		Chall	TUKEY	0.05	0.95	2	0.533333	4.601		Equ-Sat	-2.657	0.000	2.657
										Equ-Dep	-2.410	0.333	3.077
										Sat-Equ	-2.65/	0.000	2.657
										Sat-Dep	-2.077	-0 333	2.148
										Dep-Equ Dep-Sat	-2148	-0.333	7 491
		Chall	DIINN	0.05	0.95	5	0.533333		3.53411	Equ-Sat	-2.886	0.000	2.886
						-			3120	Equ-Dep	-2.647	0.333	3.314
										Sat-Equ	-2.886	0.000	2.886
										Sat-Dep	-1.638	0.333	2.305
										Dep-Equ	-3.314	-0.333	2.641
										Dep-Sat	-2.305	-0.333	1.638
		SocInc	TUKEY	0.05	0.95	5	0.15	4.601		Equ-Sat	-0.659	0.750	2.159
										Equ-Dep	-0.455	1.000	2.455
							•			Sat-Equ	-2.159	-0.750	0.659
										Sat-Dep	-0.712	0.250	1.212
										Dep-Equ	-2.455	-1.000	0.455
		500700	יריתות	0 05	0.05	e	0.15		9 69/11	Dep-Sat	-0.790	-0.250	0.712
		SOCTUC	DOWN	0.03	0.95	2	0.15		3.33411	Equ-Sac	-0.780	1 000	2.200
										Equ-Dep	-2 280	-0.750	0 780
										Sar-Dep	-0.795	0.250	1.295
										Dep-Equ	-2.581	-1.000	0.581
										Dep-Sat	-1.295	-0.250	0.795
		R&S	TUKEY	0.05	0.95	5	0.283333	4.601		Dep-Sat	-0.906	0.417	1.739
						-				Dep-Equ	-1.333	0.667	2.666
										Sat-Dep	-1.739	-0.417	0.906
										Sat-Equ	-1.686	0.250	2.186
										Equ-Dep	-2.666	-0.667	1.333
										Equ-Sat	-2.186	-0.250	1.686
		RSS	DUNN	0.05	0.95	5	0.283333		3.53411	Dep-Sat	-1.020	0.417	1.853
										Dep-Equ	-1.506	-0.667	2.839
		•								Sat-Dep	-1.853	-0.417	1.020
										Sat-Equ	-1.853	-0.667	2.353
										Equ-Dep	-2.839	-0.007	1 953
										Equ-Sat	-2.333	-0.230	1.000
	DAPAC	Star	TINEY	0.05	0 05	20	3 35170	2 / 12		a -		1 200	1 677
	212 110	04204	IUNEI	0.05	0.95	49	3.331/2	3.493		Sat-Dep	-2.123	2 400	4.323
										Sat-Equ	-1.383	-1 200	2 122
										Dep-Sat	-4.323	1 200	3 415
										Dep-Lou Fey-Sat	-6 183	-2.400	1.383
		-								Fou-Dep	-3.415	-1.200	1.015
		Struc	DUNN	0.05	0.95	29	3,35172		2.54091	Sacalan	-2.218	1.200	4.618
										Sat-Equ	-1.492	2.400	6.292
•										Dep-Sat	-4.618	-1.200	2.218
										Dep-Equ	-1.079	1.200	3.479
										Equ-Sat	-6.292	-2.400	1.492
		.			.					Equ-Dep	-3.479	-1.200	1.079
		Chall	TUKEY	0.05	0.95	29	12.1738	3.493		Sat-Equ	-5.009	2.200	9.409
										Sat-Dep	-2.812	3.520	9.852
										Equ-Sat	-9.409	-2.200	5.009
										Equ-Dep	-2.901	1.320	2.241
	•									Dep-Sat	-7.852	-3.320	7 0012
		Chall	DUNN	0.05	0.95	20	17 1739		2 5/001	Dep-Equ	-2.241	2,200	9.617
				0.05	J. 75	27	12.1/30		2.34071	SateDer	-2.005	3,520	10.035
										Fau-Set	-9,617	-2.200	5.217
										Equ-Dep	-3.023	1.320	5.663
										Dep-Sat	-10.035	-3.520	2.995
										Dep-Equ	-5.663	-1.320	3.023

TUKEY AND DUNCAN'S T-TEST RESULTS (Con't)

•

.

TUKEY AND DUNCAN'S T-TEST RESULTS (Con't)

	600	174 D	-	ALPHA	CONFI			CRITICAL VALUE STUDENT	CRITICAL VALUE	DEC	SIMUL LOWER CONFI	DIFF BETWEEN	SIMUL UPPER CONFI
	sca	VAR	TEST	LEVEL	LEVEL	ar	MSE	RANGE	T	CAT	LIMIT	MEANS	LIMIT
		SocInc	TUKEY	0.05	0.95	29	6.17379	3.493		Dep-Fou	-1.726	1,280	4.286
										Dep-Sat	-3.229	1.280	5.789
										Ecu-Dep	-4.286	-1.280	1.726
										Equ-Sat	-5.134	0.000	5.134
										Sat-Dep	-5.789	-1.280	3.229
		SocInc	DUNN	0.05	0.95	29	6.17279		7 5/001	Sat-Lou	-5.134	0.000	5.134
									2.34091	Dep-See	-1.813	1.280	4-373
										Equ-Den	-3.339	1.280	5.919
										Equ-Sat	-5.282	0.000	5 782
										Sat-Dep	-5.919	-1.280	3.359
										Sat-Dep	-5.282	0.000	5.282
		R & S	TUKEY	0.05	0.95	28	6.60833	3.499		Sat-Equ	-4.422	0.900	6.222
										Sat-Dep	-3.015	2.667	6.348
										Equ-Sat Fau-Den	-0.222	-0.900	3 893
										Dep-Sat	-6.348	-1.667	3.015
										Dep-Equ	-3.893	-0.767	2.360
		R & S	DUNN	0.05	0.95	28	6.60833		2.53647	Sat-Equ	-4-577	0.900	6.377
										Sac-Dep	-3.151	1.667	6.484
										Equ-Sat	-6.377	0.900	4.5//
										Lqu-Dep Dep-Sat	-2.451	-1 667	3,151
										Dep-Equ	-3,985	-0.767	2.451
	Fashr	Struc	TUKEY	0.05	0.95	19	3.50139	3.593		Dep-Equ	-3.376	0.518	3.692
										Dep-Sat	-1.719	3.158	8.035
										Equ-Dep	-3.692	-0.158	3.3/0
										Sat-Dep	-2.022	-3.158	1.719
										Sat-Equ	-8.822	-3.000	2.822
		Struc	DUNN	0.05	0.95	19	3.50139		2.62511	Dep-Equ	-3.494	0.158	3.810
										Dep-Sat	-1.882	3.158	8.198
										Equ-Dep	-3.810	-0.158	3.494
										Sac-Dec	-3.010	-3.158	1.882
										Sat-Equ	-9.016	-3.000	3.016
		Chall	TUKEY	0.05	0.95	19	9.95983	3.593		Equ-Sat	-9.319	0.500	10.319
										Equ-Dep	-4.934	1.026	6.986
										Sat-Equ	-10.319	-0.500	9.319
										Sat-Dep Dep-Tou	-/.099	-1.026	4.934
										Dep-Equ Dep-Sat	-8.752	-0.526	7.699
		Chall	DUNN	0.05	0.95	19	9.95983		2.62511	Equ-Sat	-9.647	0 500	10 647
										Equ-Dep	-5.132	1.026	7.185
										Sat-Equ	-10.647	-0.500	9.647
										Sat-Dep	-7.974	0.526	9.026
										Dep-Equ	-7.185	-1.026	5,132
		SocIac	TUKEY	0.05	0.95	19	4.32548	3.593		Sat-Dep	-5.158	-0.526	1.974
								2-072		Sat-Ecu	-5.971	0.500	6.971
										Dep-Sat	-5-684	-0.253	5.158
										Dep-Equ	-3.691	0.237	4.165
										Equ-Sat	-6.971	-0.500	5.971
		SocInc	DUNN	0.05	0.95	19	4.32548		2 62511	Equ-Dep Sam-Dep	-4.165	-0.237	3.691
									2.02511	Sat-Egu	-6.187	0.205	7.187
•										Dep-Sat	-5.865	-0.263	5.338
										Dep-Equ	-3.822	-0.237	4.295
										Equ-Sat	-7.287	-0.500	6.187
		Rés	TUKEY	0.05	0.95	19	6 97936	3 503		Equ-Dep	-4.295	-0.237	3.822
						47	V+34730	2.25		Sat-Fey	-7.600	0.211	8.600
										Dep-Sat	-7.072	-0.211	6.651
										Dep-Equ	-4.682	0.289	5.261
										Equ-Sac	-8.690	-0.500	7.690
		REC	יתאיזר	0.05	0.05	10	6 02026			Equ-Dep	-5.261	-0.289	4-682
			DOWN	0.05	0.95	19	0.92930		2.62511	Sat-Dep	-6.879	0.211	7-300
										Dep-Sat	-7.300	-0.211	8.903
										Dep-Eau	-4.848	0.289	5.426
										Equ-Sat	-8.963	-0.500	7.963
										Equ-Dep	-5.426	-0.289	4.848

.

•

sch	VAR	TEST	ALPHA Level	CONFI LEVEL	df	Mse	CRITICAL VALUE STUDENT RANGE	CRITICAL VALUE T	DEC CAT	SIMUL Lower Confi Limit	DIFF Between Means	SIMUL UPPER CONFI LIMIT
Gbeth	Struc	TIKEY	0.05	0.05	17	6 70956	3 6 3 8				.	
			0.05	0.95	17	0.70036	3.020		Dep-Sat	-6.304	0.636	7.576
									Sac-Dep	-7.576	-0.636	6 304
									Sat-Equ	-6.298	0.750	7.798
									Equ-Dep	-4.474	-1.386	1.701
									Equ-Sat	-7.798	-0.750	6.298
	Struc	DUNN	0.05	0.95	17	6.70856		2.65500	Dep-Sat	-6.546	0.636	7.819
									Dep-Equ	-1.809	1.386	4.582
									Sac-Sey	-/.819	-0.030	8 044
									Equ-Dep	-4.582	-1.386	1.809
									Equ-Sat	-8.044	-0.750	6.544
	Chall	TUKEY	0.05	0.95	20	7.56161	3-578		Equ-Dep	-2.173	0.911	3.994
									Equ-Sat	-6.254	1.125	8.504
									Dep-Equ	-3.994	-0.911	7 416
		•							Sar-Fou	-8.504	-1.125	6.495
									Sat-Dep	-7.651	-0.214	6.987
	Chall	DUNN	0.05	0.95	20	7.56161		2.61259	Equ-Dep	-2.273	0.911	4.095
									Equ-Sat	-6.495	1.125	8.745
									Dep-Equ	-4.095	-0-911	2.273
							•		Dep-Sat	-7.222	0.214	7.651
									Sat-Equ	-8.745	-1.125	7 222
	Sector	THEFT	0.05	0.05	19	7 87731	3 609		Sat-Dep	-7.039	0.417	7.872
	Socrac	TOUR	0.05	0.35	10	/.0//31	5.007		Sat-Equ	-5.473	2.125	9.723
									Dep-Sat	-7.872	-0.417	7.039
									Dep-Equ	-1.561	1.708	4.978
									Equ-Sac	-9.723	-2.125	5.473
									Equ-Dep	-4.978	-1.708	1.561
	Socinc	DUNN	0.05	0.95	18	7.87731		Z.63914	Sat-Dep Sat-Ten	-7.293	2 125	0 091
									Den-Sat	-8.176	-0.417	7.293
									Dep-Equ	-1.673	1.708	5.089
									Equ-Sat	-9.981	-2.125	5.731
									Equ-Dep	-5.089	-1-708	1.673
	RSS	TUKEY	0.05	0.95	19	5.56275	3.593		Sac-Equ	-4.855	1.500	7.855
									Sat-Dep	-2.372	3.846	10.064
									Equ-Sac	-0.346	2.346	5.039
									Dep-Sat	-10.064	-3.846	2.372
								•	Dep-Equ	-5.039	-2.346	0.346
	R & S	DUNN	0.05	0.95	19	5.6275		2.62511	Sat-Equ	-5.067	1.500	8.067
									Sat-Dep	-2.579	3-846	10.271
									Equ-Sat	-8.067	-1.500	5.067
									Equ-Dep	-0.436	-1 8/6	2 570
									Dep-Sac	-5.128	-7.346	0.436
Rehia	C	****	0. OF				• • • • •		Dep Squ	20000		
ACUIC	SCIUC	TUKET	0.05	0.95	121	2.3839	3.356		Equ-Dep	-1.424	0.251	1.927
									Equ-Sat	-0.907	1.100	3.107
									Dep-Equ	-1.92/	-0.251	1.424
									Sat-Fon	-3.107	-1 100	2.039
	e		_						Sac-Dep	-2.059	-0.849	0.362
	Struc	DUNN	0.05	0.95	121	2.3839		2.42772	Equ-Dep	-1.463	0.251	1,966
									Equ-Sac	-0.953	1.100	3.153
									Dep-Equ	-1.966	-0.251	1.463
									Dep-Sat	-0.390	0.849	2.087
									Sac-Equ	-3.153	-1.100	0.953
•	Chall	TUKEY	0.05	0.95	121	1.98144	3.356		Dep-Fou	-1 520	-0.049	1 575
									Dep-Sat	-0.296	0.807	1.911
									Equ-Dep	-1.535	-0.007	1.520
									Equ-Sat	-1.030	-0.800	2.630
									Sat-Dep	-1.911	-0-807	0.296
	Chall	DUNN	0.05	0.95	121	1.98144		7 /7779	Sac-Equ	-2.630	-0.800	1.030
								c. 46112	Den-Sar	-1.556	0.007	1.570
									Equ-Dep	-1.570	-0.007	1.554
									Equ-Sac	-1.072	0.800	2.677
									Sac-Dep	-1.936	-0.807	0.322
	Sector	TIPEY	0.05	0.0-					Sat-Equ	-2.672	-0.800	1.072
	200186	LUKEI	0.05	0.95	113	2.00646	3.357		Sat-Equ	-1.209	0.667	2.542
									Sat-Dep	-0.046	1.120	2.314
									Equipan	-2.542	-0.667	1.209
									Dep-Sat	-2.287	-1,120	0.044
									Dep-Equ	-1.992	-0.454	1.084

.

..

TUKEY AND DUNCAN'S T-TEST RESULTS (Con't)

.

.
TUKEY AND DUNCAN'S T-TEST RESULTS (Con't)

								CRITICAL	CRETTONE		SIMUL	DIFF	SIMUL
				ALPHA	CONFI			STUDENT	VALUE	DEC	CONFI	BETWEEN	CONFI
	SCH	VAR	TEST	LEVEL	LEVEL	đ£	MSE	RANGE	T	CAT	LIMIT	MEANS	LIMIT
		SocInc	DUNN	0.05	0.95	119	2.00646		2.42829	Sat-Equ	-1.252	0.667	2.585
										Sat-Dep	-0.0/3	-0.667	2.314
										Equ-Dep	-1,120	0.454	2.027
										Dep-Sat	-2.314	-1.120	0.073
										Dep-Equ	-2.027	-0.454	1.120
		R&S	TUKEY	0.05	0.95	121	3.01258	3-356		Sat-Equ	-1-956	0.300	2.556
										Sat-Dep	-0.648	0.713	2.074
										Equ-Sac Fou-Dep	-2-330	-0.300	2 297
										Dep-Sat	-2.074	-0.713	0.648
										Dep-Equ	-2.297	-0.413	1.471
		R&S	DUNN	0.05	0.95	121	3.01258		2.42772	Sat-Equ	-2.008	0.300	2.608
										Sat-Dep	-0-679	0.713	2.105
										Equ-Sat	-2-608	-0.300	2.008
										Equ-Dep	-1.514	0.413	2.340
										Dep-Sau Dep-Equ	-2.340	-0.413	1.514
	Khook	Struc	TUKEY	0.05	0.95	31	3-63318	3.481		Dep-Sat	-4.631	0.143	4.917
										Dep-Equ	-0.735	1.543	3.820
										Sat-Dep Sat-Ten	-4.917	-0.143	4.031
										Ecu-Dep	-3.820	-1.543	0.735
										Equ-Sat	-6.539	-1.400	3.739
		Struc	DUNN	0.05	0.95	31	3.63318		2.53093	Dep-Sat	-4.767	0.143	5.052
										Dep-Equ	-0.799	1.543	3.885
										Sat-Dep	-5-052	-0.143	4.767
										Sat-squ	-3,885	-1 543	0.585
										Equ-Sep Equ-Sat	-6.685	-1.400	3.885
		Chall	TUKEY	0.05	0.95	31	15.1567	3.481		Sat-Equ	-8-496	2.000	12.496
									•	Sat-Dep	-6.823	2.929	12.680
				•.						Equ-Sat	-12.496	-2.000	8.496
										Equ-Dep Des-Sep	-3.723	0.929	5.581
										Dep-Sat	-12,000	-2.929	3 773
		Chall	DUNN	0.05	0.95	31	15.1567		2.53093	Sat-Equ	-8.794	2.000	12.794
										Sat-Dep	-7.099	2.929	12.956
										Equ-Sat	-12.794	-2.000	8.794
										Equ-Dep	-3.855	0.929	5.712
										Dep-Sat	-12.956	-2.929	7-099
		SocInc	TUKEY	0.05	0.95	31	6.13249	3.481		Dep-Sat	-6.024	0.179	6.381
							0010249			Dep-Equ	-1.781	1.179	4.138
										Sat-Dep	-6.381	-0.179	6.024
										Sat-Equ	-5.677	1.000	7.677
										Equ-Dep Equ-Sep	-4.138	-1.179	1.781
		SocInc	DINN	0.05	0.95	31	6-13749		2.53093	Den-Sar	-6.200	0.179	6.557
		vocane		0.05		51	0113249		2.33373	Dep-Equ	-1.864	1.179	4.221
										Sat-Dep	-6.557	-0.179	6.200
•										Sat-Equ	-5.866	-1.179	7.866
										Equ-Dep	-4.221	1.000	1.864
		RéS	TUKEY	0.05	0.95	31	8.64862	3.481		Sat-Ear	-7.000	4 000	3.000
										Sat-Dep	-2.545	4.821	12 1929
										Equ-Sat	-11.929	-4.000	3.927
										Equ-Dep	-2.693	0.821	4.336
						•				Dep-Sat-	-12.188	-4.821	2.545
		R&S	DUNN	0.05	0.95	31	8.64862		2.53003	Dep-Equ Sat-Fau	-4.336	-0.821	2.693
										Sat-Der	-2.753	4.000	12.153
										Equ-Sat	-12.153	-4.000	4.153
										Equ-Dep	-2.792	-0.821	4.435
										Dep-Sat	-12.396	-4.821	2.753
										Dep-Equ	-4.435	-0.821	2.792

-. ·

-

APPENDIX G

Mean Scores and Standard Deviations of Decisional States and Organizational Climate MEAN VALUES OF DECISIONAL STATES FOR TEACHERS

•

VAR	LABEL	N	MEAN	STANDARD DEVIATION
TEACHER	DIST=AALTS SCH=ALEL			
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	2 2 2	5.50 6.50 -1.00	2.12 2.12 0.00
TEACHER	DIST=AALTS SCH=SHS			
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	56 56 56	1.77 7.73 -5.96	1.03 1.27 1.51
TEACHER	DIST=AALTS SCH=NEJH			
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	19 19 19	2.74 6.95 -4.21	1.69 2.53 2.64
TEACHER	DIST=AALTS SCH=RIEL			
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	15 15 15	2.60 6.67 -4.07	1.30 2.58 2.60
TEACHER	DIST=BANAD SCH=EAEL			
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	17 17 17	1.76 6.35 - 4.59	1.25 2.53 2.62
TEACHER	DIST=BANAD SCH=SHS			
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	16 16 16	1.81 6.50 -4.69	1.38 2.53 2.02
TEACHER	DIST=BANAD SCH=MIDS			
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	6 6 6	3.50 8.17 -4.67	1.87 0.98 2.42
TEACHER	DIST=BANAD SCH=SUEL			
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	19 19 19	1.74 5.84 -4.11	1.59 2.57 2.69
TEACHER	DIST=BANAD SCH=WAEL			
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	4 4 4	2.00 8.75 -6.75	1.83 1.26 2.99

MEAN VALUES OF DECISIONAL STATES FOR TEACHERS (Con't)

VAR	LABEL	N	MEAN	STANDARD DEVIATION
TEACHER	DIST=BANAD SCH=5YRC			
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	8 8 8	1.88 7.25 -5.38	0.99 1.49 2.07
TEACHER	DIST=CANDR SCH=ELEM			•
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	8 8 8	5.00 4.50 0.50	3.25 2.62 5.68
TEACHER	DIST=DAPAC SCH	·		
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	1 1 1	3.00 7.00 -4.00	• •
TEACHER	DIST=DAPAC SCH=ELEM			
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	18 18 18	3.72 7.33 -3.61	2.35 0.91 2.57
TEACHER	DIST=DAPAC SCH=SHS			
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	11 11 11	2.91 3.82 -2.91	2.34 2.79 3.27
TEACHER	DIST=DAPAC SCH=JRHI			
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	2 2 2	9.00 8.00 1.00	1.41 0.00 1.41
TEACHER	DIST=EARAP SCH=ELEM			
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	15 15 15	2.67 5.87 -3.20	1.11 2.61 2.83
TEACHER	DIST=EARAP SCH=SHS			
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	10 10 10	1.70 6.00 -4.30	1.34 2.26 2.00

MEAN VALUES OF DECISIONAL STATES FOR TEACHERS (Con't) STANDARD VAR LABEL Ν MEAN DEVIATION TEACHER DIST=FASHA SCH=ELEM Totpar Current Decision State Score 12 2.58 2.68 Totsbpar Optimum Decision State Score 12 6.42 2.57 Decstat Current Score Minus Optimum Score 12 -3.83 2.41 TEACHER DIST=FASHA SCH=SHS Totpar Current Decision State Score 3.20 1.93 10 Totsbpar Optimum Decision State Score 10 6.40 1.90 Decstat Current Score Minus Optimum Score 10 -3.20 2.74 TEACHER DIST=GBETH SCH=. Totpar Current Decision State Score 2 3.00 1.41 Totsbpar Optimum Decision State Score 2 4.50 0.71 Decstat Current Score Minus Optimum Score 2 -1.50 2.12 TEACHER DIST=GBETH SCH=BEI3 Totpar Current Decision State Score 1 3.00 Totsbpar Optimum Decision State Score 6.00 1 Decstat Current Score Minus Optimum Score 1 -3.00 TEACHER DIST=GBETH SCH=ELEM Totpar Current Decision State Score 9 3.44 1.33 1.66 Totsbpar Optimum Decision State Score 9 3.67 Decstat Current Score Minus Optimum Score 9 -0.22 0.67 TEACHER DIST=GBETH SCH=SHS Totpar Current Decision State Score 3.20 5 1.10 Totsbpar Optimum Decision State Score 5 5.40 1.95 Decstat Current Score Minus Optimum Score 5 -2.20 2.28 TEACHER DIST=GBETH SCH=JRHI Totpar Current Decision State Score 2.67 2.07 6 Totsbpar Optimum Decision State Score 6 6.17 1.72 Decstat Current Score Minus Optimum Score 6 -3.50 1.38 TEACHER DIST=OBOON SCH=. Totpar Current Decision State Score 2 3.50 0.71 Totsbpar Optimum Decision State Score 6.50 0.71 2 Decstat Current Score Minus Optimum Score 2 -3.00 1.41

MEAN VALUES OF DECISIONAL STATES FOR TEACHERS (Con't) STANDARD VAR LABEL Ν MEAN DEVIATION TEACHER DIST=OBOON SCH=ELEM Totpar Current Decision State Score 1 1.00 Totsbpar Optimum Decision State Score 7.00 1 Current Score Minus Optimum Score 1 Decstat -6.00 TEACHER DIST=HBROX SCH=ELEM Totpar Current Decision State Score 4 3.25 2.22 Totsbpar Optimum Decision State Score 4 5.50 3.70 Decstat Current Score Minus Optimum Score 2.87 4 -2.25 TEACHER DIST=HBROX SCH=PUSC Totpar Current Decision State Score 0.00 1 Totsbpar Optimum Decision State Score 5.00 1 Decstat Current Score Minus Optimum Score 1 -5.00 TEACHER DIST=HCHIC SCH=CHEL Totpar Current Decision State Score 3 2.33 0.58 Totsbpar Optimum Decision State Score 1.73 3 6.00 Decstat Current Score Minus Optimum Score 3 -3.67 1.53 TEACHER DIST=HCHIC SCH=GREL Totpar Current Decision State Score 13 2.08 1.38 Totsbpar Optimum Decision State Score 13 7.38 2.18 Decstat Current Score Minus Optimum Score 13 -5.31 2.29 TEACHER DIST=HCHIC SCH=SHS Totpar Current Decision State Score 15 3.00 1.56 Totsbpar Optimum Decision State Score 15 7.00 2.14 Current Score Minus Optimum Score 15 -4.00 2.45 Decstat TEACHER DIST=HCHIC SCH=INTR Current Decision State Score 3.73 1.48 Totpar 12 Totsbpar Optimum Decision State Score 12 6.67 1.44 Decstat Current Minus Optimum Score 12 -2.92 1.73 TEACHER DIST=HCHIC SCH=JRHI Totpar Current Decision State Score 13 2.85 2.12 Totsbpar Optimum Decision State Score 13 7.69 1.25 Decstat Current Score Minus Optimum Score 13 -4.85 1.91

MEAN VALUES OF DECISIONAL STATES FOR TEACHERS (Con't) STANDARD VAR LABEL Ν MEAN DEVIATION TEACHER DIST=HCHIC SCH=LIEL Totpar Current Decision State Score 8 2.75 1.39 Totsbpar Optimum Decision State Score 8 7.75 1.28 Decstat Current Score Minus Optimum Score 8 -5.00 1.07 TEACHER DIST=HCHIC SCH=MISC Totpar Current Decision State Score 23 4.17 1.99 Totsbpar Optimum Decision State Score 23 4.48 1.88 Current Score Minus Optimum Score 23 Decstat -0.30 2.98 TEACHER DIST=HCHIC SCH=SWEL Totpar Current Decision State Score 21 2.52 1.25 Totsbpar Optimum Decision State Score 21 7.86 1.28 Decstat Current Score Minus Optimum Score 21 -5.33 1.96 TEACHER DIST=HCHIC SCH=WSEL Totpar Current Decision State Score 14 3.71 2.05 Totsbpar Optimum Decision State Score 14 7.50 1.29 Decstat Current Score Minus Optimum Score 14 -3.79 1.48 TEACHER DIST=IDELA SCH=ELEM Totpar Current Decision State Score 5 1.40 0.89 Totsbpar Optimum Decision State Score 5 6.00 3.81 Decstat Current Score Minus Optimum Score 5 -4.60 3.65 TEACHER DIST=IDELA SCH=SHS Totpar Current Decision State Score 6 1.83 0.98 Totsbpar Optimum Decision State Score 5 8.83 0.75 Decstat Current Score Minus Optimum Score -7.00 6 0.89 TEACHER DIST=IDELA SCH=JRHI Totpar Current Decision State Score 4 2.00 1.41 Totsbpar Optimum Decision State Score 4 8.25 0.96 Current Score Minus Optimum Score -6.25 0.96 Decstat 4 TEACHER DIST=JHINT SCH=ELEM 2.80 1.40 Totpar Current Decision State Score 10 Totsbpar Optimum Decision State Score 5.50 1.84 10 Decstat Current Score Minus Optimum Score 10 -2.70 2.71

MEAN VALUES OF DECISIONAL STATES FOR TEACHERS (Con't)

.

•

۰.

. •

VAR	LABEL	N	MEAN	STANDARD DEVIATION
TEACHER	DIST=JHINT SCH=SHS			
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	8 8 8	1.75 7.38 -5.63	0.89 1.92 2.20
TEACHER	DIST=JHINT SCH=JRHI			
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	5 5 5	2.40 7.40 -5.00	1.34 1.52 2.45
TEACHER	DIST=KHOOK SCH=ELEM			
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	20 20 20	3.45 7.30 -3.85	2.37 1.13 2.48
TEACHER	DIST=KHOOK SCH=SHS			
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	13 13 13	3.31 6.15 -2.85	2.56 2.67 3.16
TEACHER	DIST=KHOOK SCH=JRHI			
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	1 1 1	3.00 7.00 -4.00	• •
TEACHER	DIST=LIDBL SCH=CNEL			
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	11 11 11	1.64 6.73 -5.09	1.43 2.28 2.12
TEACHER	DIST=LIDBL SCH=SHS			
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	20 20 20	2.25 6.60 -4.35	1.92 2.28 2.18
TEACHER	DIST=LIDBL SCH=JRHI			
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	11 11 11	2.73 7.82 -5.09	1.90 1.83 2.30

ł	TEAN VALUES OF DECISIONAL STATES FOR	TEAC	HERS (Con	't)
VAR	LABEL	N	MEAN	DEVIATION
TEACHER	DIST=LIDBL SCH=SEEL			
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	10 10 10	2.00 5.70 -3.70	1.70 2.79 2.98
TEACHER	DIST=MSTER SCH=ELEM			
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	9 9 9	2.89 6.56 -3.67	2.26 2.79 2.65
TEACHER	DIST=MSTER SCH=SHS			
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	5 5 5	4.40 6.80 -2.40	1.95 1.48 2.51
TEACHER	DIST=NTMPL SCH=ELEM			
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	10 10 10	3.10 6.30 -3.20	1.20 2.67 3.08
TEACHER	DIST=NTMPL SCH=SHS			
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	5 5 5	2.40 7.40 -5.00	1.52 2.51 1.41
TEACHER	DIST=NTMPL SCH=JRHI			
Totpar Totsbpar Decstat	Current Decision State Score Optimum Decision State Score Current Score Minus Optimum Score	3 3 3	1.67 7.67 -6.00	2.08 2.31 1.73

۰.

٠

.

.

· ·

••

MEAN VALUES OF THE ORGANIZATIONAL CLIMATE PATTERNS FOR TEACHERS

DIST	=AALTS	SCH=ALEL	DIST=	DIST=BANAD	
		STANDARD			STANDARD
VARIABLE	MEAN	DEVIATION	VARIABLE	MEAN	DEVIATION
Struct	17.00	1.41	Struct	19.83	2.64
Chall	43.50	4.95	Chall	46.50	3.08
SocInc	22.50	2.12	SocInc	23.33	2.50
R&S	40.00	1.41	R&S	39.50	2.43
DIST	=AALTS	SCH=SHS	DIST=	=BANAD	SCH=SUEL
Struct	19.34	0.90	Struct	18.33	1.33
Chall	46.63	2.12	Chall	48.21	3.05
SocInc	23.17	1.37	SocInc	21.32	2.24
R&S	37.68	1.72	R&S	38.47	2.59
DIST=	AALTS	SCH=NEJH	DIST=	BANAD	SCH=WAEL
Struct	18.30	1.95	Struct	18.25	2.06
Chall	47.15	3.08	Chall	46.00	1.83
SocInc	20.60	3.14	SocInc	19.50	2.08
R&S	38.90	2.77	R&S	38.75	2.63
DIST	=AALTS	SCH=RIEL	DIST=	BANAD	SCH=5YRC
Struct	18.60	1.99	Struct	18.00	2.27
Chall	46.73	2.66	Chall	47.75	1.58
SocInc	21.36	2.92	SocInc	21.50	1.77
R&S	39.00	2.48	R&S	39.38	2.45
DIST	=BANAD	SCH=EAEL	DIST=	CANDR	SCH=ELEM
Struct	17.53	1.97	Struct	20.13	0.35
Chall	48.29	2.91	Chall	45.88	0.64
SocInc	21.29	2.71	SocInc	22.25	0.46
R&S	39.53	3.41	R&S	36.38	0.52
DIST	=BANAD	SCH=SHS	DIST=	-DAPCH	SCH=.
Struct	19.25	1.44	Struct	20.00	•
Chall	45.88	2.09	Chall	48.00	•
SocInc	21.63	2.58	SocInc	21.00	•
R&S	38.00	2.92	R&S	•	•

۰.

MEAN VALUES OF THE ORGANIZATIONAL CLIMATE PATTERNS FOR TEACHERS

DIST=I	DAPCH	SCH=ELEM	DIST=	=FASHR	SCH=SHS		
		STANDARD	·		STANDARD		
VARIABLE	MEAN	DEVIATION	VARIABLE	MEAN	DEVIATION		
Struct	18.50	1.65	Struct	18.00	1.41		
Chall	46.56	2.77	Chall	46.80	2.90		
SocInc	22.28	2.78	SocInc	21.50	2.32		
R&S	38.28	2.16	R&S	38.40	2.91		
DIST=	DAPCH	SCH=SHS	DIST	-GBETH	SCH=.		
Struct	18.73	2.28	Struct	12.00	•		
Chall	43.91	3.99	Chall	47.50	6.36		
SocInc	21.91	2.21	SocInc	17.00	•		
R&S	40.36	2.84	R&S	38.50	6.36		
DIST=1	DAPCH	SCH=JRHI	DIST	DIST=GBETH		ST=GBETH SCH=BEI3	
Struct	19.50	2.12	Struct	17.00	•		
Chall	50.00	1.41	Chall	51.00	•		
SocInc	20.50	0.71	SocInc	26.00	•		
R&S	39.00	1.41	R&S	36.00	•		
DIST=	EARAP	SCH=ELEM	DIST	=GBETH	SCH=ELEM		
Struct	18.07	2.46	Struct	17.88	2.47		
Chall	48.53	2.90	Chall	49.78	2.22		
SocInc	21.27	2.58	SocInc	18.56	2.13		
R&S	38.27	2.60	R&S	37.78	2.49		
DIST=	EARAP	SCH=SHS	DIST	=GBETH	SCH=SHS		
Struct	17.00	2.36	Struct	20.00	2.16		
Chall	48.30	3.80	Chall	46.40	1.52		
SocInc	18.40	2.37	SocInc	22.00	1.41		
R&S	37.20	4.29	R&S	39.00	2.58		
DIST=	FASHR	SCH=ELEM	DIST	=GBETH	SCH=JRHI		
Struct	19.83	1.90	Struct	18.17	1.60		
Chall	48.25	3.08	Chall	48.33	2.07		
SocInc	21.92	1.73	SocInc	20.17	2.64		
R&S	39.08	2.19	R&S	38.50	2.07		

•

143

MEAN VALUES OF THE ORGANIZATIONAL CLIMATE PATTERNS FOR TEACHERS

DIST=	OBOON	SCH=.	DIST=	HCHIC	SCH=SHS
VARIABLE	MEAN	STANDARD DEVIATION	VARIABLE	MEAN	STANDARD DEVIATION
Struct	19.50	0.71	Struct	20.47	1.60
Chall	46.50	0.71	Chall	46.40	1.12
SocInc	21.50	2.12	SocInc	21.67	2.06
R&S	37.00	0.00	R&S	35.80	2.70
DIST=	OBOON	SCH=ELEM	DIST=	HCHIC	SCH=INTR
Struct	19.00	•	Struct	19.50	0.67
Chall	48.00	•	Chall	46.00	0.43
SocInc	20.00	•	SocInc	21.83	0.72
R&S	40.00	•	R&S	36.00	1.04
DIST=	HBROX	SCH=FLEM	DIST=	DIST=HCHIC	
Struct	17.25	1.26	Struct	20.77	1.88
Chall	45.75	1.26	Chall	46.31	1.55
SocInc	22.33	1.53	SocInc	21.15	1.95
R&S	37.50	2.38	R&S	34.23	1.69
DIST=	HBROX	SCH=SHS	DIST=	HCHIC	SCH=LIEL
Struct	20.00	•	Struct	21.88	1.13
Chall	53.00	•	Chall	47.50	1.85
SocInc	20.00	•	SocInc	21.00	0.53
R&S	39.00	•	R&S	34.50	2.39
DIST=	HCHIC	SCH=CHEL	DIST=	HCHIC	SCH=MISC
Struct	18.00	1.00	Struct	19.56	0.58
Chall	47.00	1.00	Chall	46.24	0.93
SocInc	19.00	0.00	SocInc	22.54	0.59
R&S	34.33	1.53	R&S	36.36	0.86
DIST=	HCHIC	SCH=GREL	DIST=	HCHIC	SCH=SWEL
Struct	20.38	2.02	Struct	19.86	0.85
Chall	47.92	1.93	Chall	46.62	1.24
SocInc	21.00	1.81	SocInc	21.62	1.02
R&S	35.62	1.19	R&S	35.62	1.43

MEAN VALUES OF THE ORGANIZATIONAL CLIMATE PATTERNS FOR TEACHERS

DIST=	HCHIC=	SCH=WSEL	DIST=JHINT		SCH=JRHI
VARIABLE	MEAN	STANDARD DEVIATION	VARIABLE	MEAN	STANDARD DEVIATION
Struct	21.79	1.63	Struct	18.60	0.89
Chall	47.86	1.10	Chall	46.00	2.24
SocInc	21.93	1.21	SocInc	25.20	1.48
R&S	36.36	1.69	R&S	39.60	2.41
DIST=	=IDELA	SCH=ELEM	DIST-	-KHOOK	SCH=ELEM
Struct	18.80	1.30	Struct	18.80	1.82
Chall	46.80	1.30	Chall	46.80	2.93
SocInc	23.60	3.13	SocInc	22.30	2.68
R&S	35.00	6.20	R&S	37.80	2.44
DIST=	IDELA=	SCH=SHS	DIST	=KHOOK	SCH=SHS
Struct	18.00	2.00	Struct	19.00	2.20
Chall	48.00	3.16	Chall	44.92	4.37
SocInc	25.50	1.76	SocInc	21.69	2.10
R&S	38.00	6.20	R&S	39.92	2.90
DIST=1	IDELA	SCH=JRHI	DIST	=KHOOK	SCH=JRHI
Struct	18.25	2.99	Struct	20.00	•
Chall	44.25	3.30	Chall	54.00	•
SocInc	24.25	3.86	SocInc	20.00	•
R&S	35.50	3.70	R&S	32.00	•
DIST=	JHINT=	SCH=ELEM	DIST	=LIBL	SCH=CNEL
Struct	20.80	1.55	Struct	18.00	1.34
Chall	45.89	1.36	Chall	47.82	2.27
SocInc	21.10	2.08	SocInc	21.91	2.77
R&S	35.70	1.64	R&S	37.82	2.36
DIST	=JHINT	SCH=SHS	DIST	=LIBL	SCH=SHS
Struct	19.50	2.07	Struct	19.45	1.76
Chall	46.75	2.66	Chall	46.10	1.83
SocInc	23.14	3.18	SocInc	22.05	2.48
R&S	38.38	4.17	R&S	38.20	2.57

.

.

MEAN VALUES OF THE ORGANIZATIONAL CLIMATE PATTERNS FOR TEACHERS

DIST:	=LIBL	SCH=JRHI	DIST=	NTMPL	SCH=JRHI
VARIABLE	MEAN	STANDARD DEVIATION	VARIABLE	MEAN	STANDARD DEVIATION
Struct	19.00	2.41	Struct	17.00	2.65
Chall	46.82	2.56	Chall	47.00	5.29
Socinc	22.91	2.30	SocInc	18.67	4.16
R&S	39.09	_1./6	R&S	41.00	1.73
DIST	=LIBL	SCH=SEEL			
Struct	18.70	0.95			
Chall	48.70	3.92			
SocInc	21.30	2.11			
R&S	39.50	1.51			
DIST	-MSTER	SCH=ELEM			
Struct	20.22	2.68			
Chall	48.44	2.51			
SocInc	21.80	2.30			
R&S	38.56	2.65			
DIST	=MSTER	SCH=SHS			
C to make t	17 00	2 65			
Chall	17.00	2.05			
SaaTaa	49.00	4.50			
Dic	21.00	2.49			
K@S	37.80	2.39			
DIST	=NTMPL	SCH=ELEM			
Struct	18.10	2.38			
Chall	48.00	3.20			
SocInc	20.20	3.33			
R&S	39.20	2.97			
DIST	=NTMPL	SCH=SHS			
Struct	19.40	1.34			
Chall	47.40	2.70			
SocInc	21.20	3.11			
R&S	38.60	3.29			

.

-

APPENDIX H

Organizational Climate Patterns

•

.

HISTOGRAMS OF ORGANIZATIONAL CLIMATE

•

.

SCHOOL SCHOOL ASSIGNED

				OBCANIZATIO	AL VARIABLE S	TRUCTURE HEAR S	CORE BY SCHOOL
OPCANIZATIONA	L VARIABLE ST	RUCTURE HEAN S	CORE BY SCHOOL		SCHOOL DIS	STRICT - JHINT	
	SCHOOL DIS	TRICT . TOPLA			BAR CHA	et of Heans	
	300000 000			STRUCT 1	EAM		
	BAR CHAI	LT OF HEAKS		1	*****		

STRUCT NE					*****		
•				1	** ** *	*****	
18 1							
				· 18 -			
· · ·							
L.				1			
16 +							
	*****			16 🕹			
:		*****	*****	· · ·	*****		
		*****		1	** * * *	*****	
14 🗧				14	*****	*****	
1					** * * *	*****	*****
i	** * * *		*****		*****		
				1			
12 -				17 1			
1							
· · · · ·	** * * *		*****			•••••	*****
			*** **				
10 .				10 +			
•							
1							
				8.∔	** * * *		
1				- 1			
i	*****						
6 🕯	*****				*****		
1		*****		6 +		*****	
1	*****			1	*****	*****	
	*****		*****			*****	*** **
4 •	** * * *			4			*** * *
1			*****	•••			

. !			*****				
4.			*****	2:	*****		
I. I.				1	** * * *		
1				i i	*****	*****	
·		******		<u>i</u>	*****		
	EL.EM	SHS	INI		E.D.	SHS	JENT
504002	SCHOOT ASS	TONED					
				SCHOOL	SCHOOL AS	SIGNED	

.

HISTOGRAMS OF ORGANIZATIONAL CLIMATE

SCHOOL	SCHOOL AS	STORED		
	CHEL	2005	JERT	SET

1		** * * *		
1				
- 1	*****	** * * *		
· · · ·	*****	*****		
	*****	****		
1				
·- ,				
30	*****	** * * *		
1		*****		
}	*****		****	
ł				
15 +	*****	*****	*****	
	*****	** * * *		
1				
1				
20 .				
- i	*****		*** • •	
1	****	*****		*****
1		*****	*** **	
ĩ	*****			
25				
•	*****	*****		
1				
- 1		*****	*****	
30 -	*****	*****		*****
. !				
		*****	*** **	
35 🔹		*****	*****	

1				
f				
***	*****			
10	*****			•••••

i	*****		*** **	
i i				
45				*****

CHALL NEAN	t i i i i i i i i i i i i i i i i i i i			
		SAR CRART OF	51.A35	
		CHOOL DISTRICT	- LIDBL	
ORCA	HIZATIOHAL VI	RIABLE CHALLEN	CE NEAN SCORE I	X SCHOOL

	SCHOOL I	ISTRICT - KHOO	ĸ
	BAR C	LART OF HEARS	
STRUCT :	HEAN		
20			
!			

18 1			****

		****	*****
		*****	*****
16		* ***	*****
}			
1	*****		
14		*****	*****
		*****	*****
12 -		*****	
** :			
:		*****	*** **
10 1		*****	
		* * * * * *	
1			

8 ÷			*****

· · •			*****
1			*****
6 2			*****

....

SHS

...

JRHI

41

2

1

SCHOOL

.

ELEX

SCHOOL ASSIGNED

ORGANIZATIONAL VARIABLE STRUCTURE MEAN SCORE BY SCHOOL

-

.

. .

	*****	*****	
(
1			
12 4			
ł		*****	
10			
10 0			***
!			•••
6 ÷			

i			
. 1			
• •			
1			

•			
÷			
	ELDI	SHS	JEN
SCH	DOL SCHOOL AS	SIGNED	
_			
ORGANIZAT	IONAL VARIABLE CH	ULLENCE NEAN SC	ORE BY S
	SCHOOL DIS	BICT - LIDBL	
	BAR CHAR	OF HEANS	
CHALL NEAN			

ORGANIZATIONAL VARIABLE STRUCTURE MEAN SCORE BY SCHOOL SCHOOL DISTRICT - OBOON BAR CHART OF HEANS STRUCT MEAN ţ 18 16 Į I 14 12 Ī I 10 . 6 L ī 4 Ī 2 1 • ELEN SCHOOL SCHOOL ASSIGNED

ORCANIZATIONAL VARIABLE STRUCTURE HEAN SCORE BY SCHOOL

10

8

6

4

z

SCHOOL ASSIGNED

.

-

ORGANIZATIONAL VARIABLE CHALLENGE MEAN SCORE BY SCHOOL SCHOOL DISTRICT - BANAD BAR CHART OF MEANS CHALL HEAN 45 40 35 30 25 20 ----15 10 5 NIDS SUEL WAT SYRC ZAEL SMS SCHOOL ASSIGNED SCHOOL

ORCANIZATIONAL VARIABLE CHALLENCE MEAN SCORE BY SCHOOL

ORGANIZATIONAL	VARIABLE CHALLENGE HEAN	SCORE B	A SCHOOL
	SCHOOL DISTRICT - DAPAC		
	THE CHART OF MELLS		

SCHOOL	SCHOOL ASS	ICHED		
	•	EL.DI	5H 5	INNE
		•••••	••••• 	****
1				
1				

		*****	* * * * *	
10 1	•••••	** * * *		

1		*****		
		** * * *	*****	*****
	*****	*****		
20		*****		
1	*****	*****		
		*****	*****	
	****	*****	*****	*****
30		*****		
	*****	*****		
1	*****	*****	*****	
ł		** * * *	*** **	
· 1	**	*****		
40		*****		
1				
i				
1	*****			
50 9				
CHALL MEAN				

	ORGANIZATIONA	L VARIABLE CHA	LLENGE MEAN SCI	DEE BY SCHOOL										
		SCHOOL DISTR	ICT - GBETH											
		BAR CHART	OF HEANS											
CHALL MEAN	I					0	CANIZATIONA	L VARI		MALLE	icz hej	u scos	E BY S	1006D
50								SCHO	OL DIS	TRICT	- HCH]	c		
1		*****		*** * *				54	r cur	CC 07 8	TANS			
- i		*****		*****										
i	*****	*****					MEAN							
40 •		****	*****	*** **										
1						45								-
1	*****		*****	*** **		1		=	=	=	==			
1	** * * *				*****	40 1								==
						i		=	-					
30 .		*****			*****	35					==	_		
1		*****						_	-					
1		*****		*** * *		10						=		==
				*	*****			=	=	_				
!					*****						==			
20 T						23 i	<u> </u>	=		==				
1									_	=	=	=		
						20 j		=		_	==			==
						14						-		==
10						~ i		=	-	=		==		1212
						10			=	=		=	_	
								=	_					
	*****					5 1					==	.=		==
		*****				- i		=	=	==	=	==		=

	•	BEIS	EL.EN	SHS	JRMI		CHEL CREL	SHS	INTR	INNI	LIEL	HISC	SEEL	USEL.
SCHOOL	SCHOOL AS	SIGNED				SCHOOL	SCHOO	AL ASSI	CNED					

۰.

.

. •

ORGANIZATIONAL VARIABLE CHALLENCE MEAN SCORE BY SCHOOL

SCHOOL DISTRICT - LIDEL

BAR CHART OF NEANS

-

,

SCHOOL ASSIGNED

ORGANIZATIONAL VARIABLE CHALLENCE MEAN SCHEE BY SCHOOL SCHOOL DISTRICT - OBOOM

ORG	WIZATIONAL VARIABLE	SOCIAL INCLUS	TON HEAN SCORE	BY SCHOOL			
	SCHOOL DISTRICT - AALTS						
	SAR	CHART OF HEAH	5				
soc	INCL HEAN						
-		****					
22 1							

20							

. 18 .		****	*** **				

14		*****					
10							
14							
12							
		****	*****	*****			

		****	*****				
10		*****					
	1						
			*** **				
	1						
6							

		*****	*****				

•	• ••••	*****					
	1						
2							
	1						
	ALEL	SHS	nejh	RIEL			
sœ	IOOL SCHOOL ASS	SICKED					

.

ORGANIZATIONAL VARIABLE SOCIAL INCLUSION NEAN SCORE BY SCHOOL SCHOOL DISTRICT - BANAD

. ..

JENE

.

۰.

SCHOOL

SCHOOL ASSIGNED

GREANIZATIONAL VARIABLE SOCIAL INCLUSION MEAN SCHEE BY SCHOOL SCHOOL DISTRICT - CRETH

ORGANIZATIONAL VARIABLE SOCIAL INCLUSION MEAN SCORE BY SCHOOL SCHOOL DISTRICT - SCHIC

.

.

ORGANIZATIONAL VAL	LIABLE SOCI	LAL THELUSION HEA	N SCORE BY SCHOOL
:	SCHOOL DIST	NOOK - TOIN	
	BAR CHAR	OF MEANS	
SOCINCL HEAN			
22	*****	•••••	
20		****	
18	*****	****	****
16	•••••	*****	
		••••	
14	•••••	6 - 4 - 4 6 - 6 - 4 6 - 6 - 6	* * * * * # * * * * * * * * *
12	** * * * *	••••• ••••• •••••	· · · · · · · · · · · · · · · · · · ·
10	•••••	****	
•		•••••	
6	•••••	• • • • • • • • • • • • • • • •	*****
•		• • • • • • • • • • •	****
2			•••••
	•••••	• •	
	ELEX	SHS	JRHI
SCHOOL	SCHOOL A	SSICHER	

	SCHOO	DL DISTRICT - L	IDSL.			
BAR CHART OF MEANS						
SOCINCL HE						
1						
22 -	*****	*****				
1		*****				
1	*****	*****				
			*** **			
20		*****				
1						
1						
18 4	*****	*****				
1		*****				
1	*****	*****	*** **	*****		
			* * * * *			
10 -			*****			
1						
1						
14 :		** * * *				
· · ·	*****					
i		*****		*****		
		*****		*****		
12 -		*****				
	••••	*****	****			
ł						
10						

- i	*****	*****		*****		
		*****	*** **	*****		
4 •		*****				
1						
6						
- i		*****				
1		*****		*****		
. 1	*****	*****				
••	*****		*****	*****		
t						
2 :	*****					
· • •		*****				
	*****	*****				
<u> </u>	*****	*****	*****	*****		
	CHE.	585	JRHI	SEEL		
SCH001.	SCHOOL AS	SIGNED				

ORGANIZATIONAL VARIABLE SOCIAL INCLUSION MEAN SCORE BY SCHOOL

HISTOGRAMS OF ORGANIZATIONAL CLIMATE

ORCI

.

.

ANTZATIONAL VAL	TABLE SOCIAL IN	CLUSION HEAR SCO	RE BY SCHOOL
5	CHOOL DISTRICT	+ HSTER	
	BAR CRART OF N	ZANS	
SOCINCI.	HEAN		
22 •		*****	
		*** **	
70 1			
. 1			
i		*****	
	** ***	*** **	
10 1			
	** * * *		

16 🛉	** * * *	*****	

14			
- 1			
	** * * *	*****	

44 7			

10 🗸	*****	*****	
1	** * * *	*****	
1			
8 -			
1	*****		
	** * * *	*****	
	*****	*****	
• •			
. 1	*****		
• •			
		*** **	
		44444	
2 :	*****	*****	
1	** * * *	*****	
1		*****	
	••••••••••••••		
	EL.EM	585	
SCHOOL	SCHOOL ASS	ICHED	

•

020

	SCHOOL DISTRI	ci - Nimi	
	BAR CHART G	P HEARS	
DCINCL H	EAN		
1		*****	
1		*****	
0 🔶	** ** *		
1	** * * *	*****	
ł	*****	*****	

• i			
- 1	*****		
. 1	*****		
5 •	*****		
1	*****	*****	*****
- 1	*****		*****
' î			
1			
1	*****		
÷	** * * *	*****	
1	** * * *	*****	
			*** **
. 1		*****	

- 1	*****		
1 ÷	*****	*****	
4	*****	*****	*****
1	*****		
	*****	*****	****

1			
1	*****		
, .	*****		
1	*****	*****	

		*****	*****

1			
	6.01	585	JRNI

ORCANIZATIONAL VARIABLE SOCIAL INCLUSION MEAN SCORE BY SCHOOL

OBGANIZATIONAL VARIABLE REMARDS AND SUPPORT MEAN SCORE BY SCHOOL SCHOOL DISTRICT = AALTS

ORGANIZATIONAL VARIABLE REMARDS AND SUPPORT MEAN SCORE BY SCHOOL School District - Banad

ORGANIZATIONAL VARIABLE REMARDS AND SUPPORT MEAN SCORE BY SCHOOL

SCHOOL DISTRICT - CBETH BAR CHART OF MEANS RENSUPP HEAN -----1 35 30 ł 25 20 15 10 ***** 5 585 JRHI BEIE . SCHOOL SCHOOL ASSIGNED

. ORGANIZATIONAL VARIABLE REMARDS AND SUPPORT MEAN SCORE BY SCHOOL

ORGANIZATIONAL VARIABLE REMARDS AND SUPPORT MEAN SCORE BY SCHOOL SCHOOL DISTRICT . HCHIC

.

HISTOGRAMS OF ORGANIZATIONAL CLIMATE

5	CHOOL DISTRIC	T - JHINT	
	BAR CHART OF	HEANS	
	AM		
40 1			
· · ·			
1			
1			
14			
1	*****		444.44
1	*****		

30 🕹	*****		
1	*****		*****
1	*****		
1	*****		
1	****		*****
25 -	*****		
1			
1			
1			*****
			*** **
20 1			
15 4			
··· ·			
1			
	*****		*** **
10 ÷	** * * *	****	*** **
1	****	*****	*** **
1	*****		

e			
	*****	*****	

1			*****
•			*** **
	••••	····	*****
	ELD(5 83	JRHI
SCHOOT	504007 45		

ORGANIZATIONAL VAR	LABLE REMARK	S AND SUPPORT M	TAN SCORE BY SCHOOL		
	SCHOOL DIST	RICI - KHOOK			
	BAR CHART	OF MEANS			
RESSUPP HE	NN N				
40		••••			
1					
Ĺ					
1	*****	*****			
1	*****	*****			
35 -	*****	•••••			
i i					
i					
10 1					

	** * * *	*****			
1	*****				
1	*****		*** **		
25 ÷		*****	*** **		
	*****	*****			
1	** * * *	*****			
J			*** **		
	*****		*****		
20 •	*****				
!					
!					
15 1					
1					
;					
1	*****				
10 ÷	*****				
		****	*** **		
	*****	****			
1		*****			
- 1	*****	*****	*****		
	*****	*****			
1					
I					
ł					
	81.0H	SHS	JRHI		
SCHOOL	SCHOOL SCHOOL ASSIGNED				

۰.

ORGANIZATIONAL VARIABLE REVARDS AND SUPPORT HEAN SCORE BY SCHOOL SCHOOL DISTRICT - LIDEL

	SAR	CHART OF MEANS		
REWSUPP H	ZAN			
40.				

1	*****	*****		
1	*****	** * * *		
í			* * * * * *	
35 +	*****	*****		

		*****	*****	

10		*****		*****
25				
1				
1				

20 🐳		*****		
1	*****	*****	*** **	

		** * * *		
		** * * *	*** **	* * * * *
12 4				
1				
	*****	*****	*** **	
	*****	*****		
10	*****			
j		*****	*****	

5 2				
11				
1				
1				

	CHEL	282	JEEL	SEEL
SCHOOL	501002. 455			

SCHOOL ASSIGNED

ORGANIZATIONAL VARIABLE REMARDS AND SUPPORT MEAN SCORE BY SCHOOL SCHOOL DISTRICT - OBOON

5	CHOOL DISTRICT	- HBROX		
	BAR CHART OF	YEANS		
EFSISTER N	Tam			
1	** * * *			
i		*****		
i		*** **		
14 [÷]	*****			
	*****	* * * * *		
1	*****	• • • • •		
1		• • • • • •		

10 -		*****		
}				
1				
1				
25 -	*****			
1	*****			
1	*****			
i		*****		
20 +	** * * *	*****		
1	** * * *	*****		
		* * * * *		
{		*****		
15		• • • • • •		
:				
1	*****			
10 ÷	*****	*****		
1	*****	*** **		
1	*****	*****		
1	*****	*****		
< 1	*****	* * * * *		
11		*****		
}		* ****		
1		*****		
	ELDI	SKS		
SCHOOL				
	SCHOL ASSIGNED			

APPENDIX I

Comparison of Six Decisional Studies

.

۰.

•

COMPARASION OF THE PERCENTAGES OF TEACHERS CATEGORIZED INTO THE THREE DECISIONAL STATES IN SIX STUDIES

Study	N	DEPRIVED	EQUILIBRIUM	SATURATED
Belasco & Alutto	454	57.20%	23.60%	19.20%
Conway	166	72.00%	24.40%	3.60%
Best	182	81.80%	15.90%	2.20%
Richardson	91	80.20%	14.30%	5.50%
Nelson	160	96.25%	2.50%	1.25%
Present Study	561	87.70%	8.91%	3.39%

.

.