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CHAPTER I

INTRODUCTION

1.1 Overview

The onset of the digital age has seen the advent of the Internet and associated

multimedia technologies. The emphasis has been on using these technologies to

disseminate information. Consequently we have multimedia databases of images, video,

audio and text. Some of these include digital image databases in photography. medicine,

engineering, science and the entertainment industry. Due to increases in the number of

satellites, available bandwidth, and in commercial applications, these databases have

been expanding rapidly.

The preferred method of access to these databases has been via specification of a

query and consequent retrieval of results similar to the query in tenns of semantics.

Access to some of these databases has been inhibited due to their large sizes. Current

access technologies perform satisfactori ly for tex t databases and the same has been

extended to databases of images and video. As part of this implementation, the various

image and video entities in the database are annotated by text keyword descriptors

relating to their semantics. These are termed metadata. The retrieval results based on this

technology for image and video databases have been far from satisfactory. since plain



text descriptors offer limited encapsulation of entity semantics. Thus, issues like access

automation and metadata relevancy limit the effectiveness of this retrieval technology.

In order to remedy these defects of conventional approaches recent research has

focussed on content based retrieval (CBR) approaches to manage and utilize large image

databases. The emphasis has been on encapsulating the semantics of the database entities

in their descriptors. This is accomplished via image processing. As part of this approach

various mathematical models for image properties like color and texture have been

formulated. The eventual goal is to assess similarity between images by means of their

semantic properties arising from image processing parameters like color and texture.

Early approaches were based on global models of color and texture. Such image models

might not be suitable for CBR. For example an image of a red Ferrari might match up to

a red flowerbed in terms of a global color model. Thus these primitive image models do

not retain the semantic image information in them.

The challenges lie in the gap between high level semantic information and low

level features. Researchers have turned to biological vision systems to tackle this

problem. It is a known fact that researchers have for long attempted to emnlate biological

vision systems given that these are the best known working vision systems. Irving

Biederman in 1987 proposed a theory of human image understanding [13]. According to

this theory the perceptual recognition of an image involves a process of the segmenting

the image at regions of deep concavity into simple geometric components. In image

processing parlance this can be construed as extraction of homogeneous regions in an

image, i.e. segmentation. These regions might be homogeneous in terms various image

properties like color and texture. Figure 1 illustrates this concept of image segmentation.
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Thus rather than just annotating an image of a zebra with the text keyword "zebra" we

would like to annotate it with zebra (object/segment) specific information like texture

pattern and shape information. These features cannot be obtained via a global model

since these are segment specific.

Figure 1. An image and an ideal segmentation

Clearly segmentation is the key to CBR; accurate segmentations would result in

semantically meaningful results. A segmentation algorithm for CBR would need to work

on real world images, which are typically rich in color and texture. Hence relatively few

researchers have attempted to address this issue of segmenting an image- for CBR [47 J

[48] [34]. However most of these approaches have involved human interaction anel

various heuristics like edge linking, region merging which we aim to reduce. Some of

these segmentation mechanisms achieve a certain degree of automation; however, the

quality of their results has yet to be established. Another drawback in these approaches is

that they seek a complete partition of the image. Such an approach might result in an over

segmentation resulting in semantically needless comparisons for retrieval. Rather what is



required is only extraction of objects of interest. This approach yields lower comparison

complexity and faster retrieval performance.

This thesis presents a computational approach to segmentation and consequent

feature extraction for CBR. Chapter 11 briefly reviews the various approaches ro image

segmentation and outlines a well-motivated approach for CBR image segmentation. A

unique area morphological scaling technique is described and two segment extraction

paradigms are documented. Thus segments corresponding to regions of homogeneous

texture/color are extracted for semantic feature extraction. in chapter III we outl ine

various global and local feature extraction frameworks for CBR. As part of these feature

extraction frame3works color, texture and shape features are computed. A hierarchical

matching strategy and segment matching strategies are described in chapter TV. Various

methods of numerical computation of feature similarity are also given. Experimental

results using a database of natural and flower imagery are given. The results using the

local features are contrasted with those derived from conventional global features, These

retrieval results highlight the impact of segmentation on retrieval quality. The actual

segmentation and feature extraction are done off-line during ingestion 'Of images into

database while the query specification, retrieval are performed on line. Chapter V

discusses issues like end-users of such CBR systems and other CBR applications. Apart

from the prototypical image searching application we present real W0rld CBR

applications for remote sensing and automated inspection. The various CBR applications

are outlined and results demonstrating the successful extension of CBR to real world

problems are given. In chapter VI we comment on our experimental results and discuss

4



unresolved research issues in the CBR arena. Figure 2 below shows a general layout of

our proposed CBR system.

II II" II

,J I I I
I r 1'1
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1I1 11'YRI III I

Figure 2. A general layout of our proposed CBR engine
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CHAPTER II

LITERATURE SURVEY

2.1 Background

The nineties have seen the explosive growth of the Internet and consequently

multimedia rich databases. As briefly mentioned above, conventional image database

management tools have been based on text metadata. In an effort to yield more efficient

searches the focus has shifted to content based management of these databases.

Consequently CBR has emerged as one of the research frontiers in image processing and

the next generation of multimedia content based search engines [17l [34] [42]. Recently

CBR tools for diverse applications like automated inspection, database management and

web based searches [49] [48] have emerged.

Past eBR engines include QBIC [40], Photobook [42], Virage [7], Blobworld

[12], VisualSeek [55], and Netra [34]. The earlier CBR engines provided for queryi ng of

images based on various image models mostly global in nature while some used

manually/automated extracted regions of interest. A more detailed account of some of

these CBR engines is necessary to highlight our objectives and contributions.

6



2.1.1 QBIC (Query By Image Content) [40]

Query By Image Content (QBIC) from IBM research was one of the first CBR

engines in the research community. The various features used by QBIC for image

retrieval corresponded to global and local models. QBIC involved object extraction

mechanisms, which can be construed as a type of segmentation. These segmentation

routines involved heuristics and a significant amount of human interaction. Some of these

heuristics involved pixel selections for flood filling, interactive outlining using snakes.

QBIC allowed for image searches based on color, texture, shape and metadata

information. The texture features were measures of coarseness, contrast and directionality

of patterns and were computed over moving windows. The color features essentially were

histograms in various color spaces like RGB, YChCr, elE - Lan, MTM (Mathematical

Transform to Munsell). The shape features involved both heuristics and traditional shape

features. The shape features used were from the traditional pattern recognition arena like

area. circularity, eccentricity, major axis orientation, compactness and moment invariants.

In addition to these quantitative image features the database images were annotated with

metadata, more specifically text keyword descriptors. QBIC allowed for different types

of queries based on these features. These ranged from query by sketch to user specified

weighted combi nations of different features.

2.1.2 PHOTOBOOK [42]

Photobook from MIT focussed on retrieval by semantic indexing of

image/video content. One of the interesting things about Photobook was its emphasis was

7



on semantics preserving compression. The compression was achieved by representing the

images in the database by coefficients representing image features. Some of these

features were based on a Karhunen-Loeve transform. These fealUres were used for the

twin purposes of CBR and reconstruction. The authors sought to argue that such a large

set of feature parameters would allow for more flexible query formulation and better

retrieval results. The principle features used were shape, texture and a database specific

cigen-faces feature. The authors address the issue of segmentation via identification of

model instances, for indexing in the database. In other words extract content (predefined)

specific information/features for the purpose of CBR. The mechanisms introduced for

this purpose used "clustering in conjunction with affine motion models" and a method of

keyframe extraction [20] [58]. The Brodatz database was used for demonstration of

texture retrieval, while a face database was used for retrieval of faces. A database of

airplanes (single object) was used for similar shape retrieval. The texture features were

based on a "Wold" decomposition model [42]. The 2-D Wold-like decomposition call be

considered to be "a superposition of three mutually orthogonal components: a purely

indeterministic field, a generalized-evanescent field and a harmonic fieJd~' [42]. Shape

similarity was assessed by means of "the strain energy required to align two shape feature

sets" [42]. These feature sets were based on a finite element model [42]. The authors

sought to argue that their features are semantics preserving by visual evaluation of the

quality of their results.



2.1.3 BLOBWORLD [12]

Blobworld was a product from the Berkeley digltal library initiative. For

purposes of retrieval images were modeled as a set of elliptical blobs with texture, color

and spatial properties. These blobs were derived from a color/texture space segmentation.

Segmentation was automatically perfonned by "iteratively modeling the joint distribution

of color and texture with a mixture of Gaussians .. [12l The color distribution was

derived from the hue-saturation-value (hsv) space while the texture distribution was

modeled as a neighborhood property. One of the interesting things about Blobworld wa~

that the scale parameter for texture description/modeling was selected automatically

based on an analysis of the extent of dominant orientations in a neighborhood. The blobs

were used for computing spatial properties and refinement of queries, while the

color/texture properties were derived from the segmentations. For similarity analysis the

user assigned the various feature weights. The authors compared their method 10 the color

indexing method of Swain and Ballard [56] and concluded that their blob repre~entation

had superior results because of its content specific representation. The quality of results

was assessed qualitatively.

2.1.4 NETRA (34]

Netra was a product of research under the Alexandria digital library initiative

[34]. The focus was on a robust segmentation algorithm as the basis for CBR. For the

purposes of retrieval. segment specific shape. color and texture features were used. The

segmentation was based on a propagation of edge energy flow in terms of texture/color.

9



Edges were extracted from this process and were linked by a heuristic edge-linking

process to generate the segmentations. A heuristic region merging algorithm was

incorporated for the purpose of reduction of number of regions. The texture features

incorporated were derived from a Gabor fiherbank, while the shape features were based

on the Fourier shape descriptors. Netra also involved a color quantization scheme, which

reduced the color depth. Color features were extracted from this reduced color space. The

system was demonstrated on prototype databases of sunsets, flowers and natural scenery.

The authors did not provide for evaluation of the results on the grounds of lack of ground

truth.

Among other CBR engmes were commercial products like the Virage image search

engine from Virage corporation [7]. This was a CBR engine based on text metadata and

global features. From the above survey it can be seen that some techniques are not suited

for a practical application where an image database contains a large number of images.

Thus more recent CBR frameworks have focussed on a segment specific feature

representation for querying. Some of them suffer from drawbacks due to incorporation of

only specific features, A few CBR engines have achieved a certain degree of automation.

which is necessary ali current image databases contain a large number of images.

However they incorporate a level of human interaction and various heuristics like

interactive outlining, edge linking and region merging, which we seek to avoid, Most

segmentation mechanisms serve to partition the image compktely. We differ in this

aspect. We believe that when a user specifies a query, the image contains alan object(s)

of specific interest. Hence we strive for a segmentation extracting the most significant

objects of interest in an image. This we feel would provide improved retrieval results and

10



a well-motivated system. Another advantage of this approach is that it reduces the

amount of computation to be performed for segment specific similarity analysis.
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CHAPTER III

IMAGE SEGMENTATION

3.1 Introduction

Higher level image processing tasks like image understanding requIre the

isolation of different objects in an image [13]. This isolation of image objects is termed as

image segmentation. It is segmentation that enables an image processing system to

organize raw data in a manner such that processing can focus on specific regions and

objects in the scene rather than the entire collection of raw data. In this chapter we chiefly

outline our segmentation mechanism for CBR. Section 3.1.1 gives a brief review of

image segmentation. Section 3.2 outlines the Gabor filter approach to image

segmentation while section 3.3 describes a simplified Gabor decomposition model for

image segmentation. Section 3.4 elaborates on a scaling methodology for textured image

segmentation and section 3.5 documents two paradigms for segment extraction.

3.1.1 Background on Image segmentation

A vast literature exists on segmentation of digital imagery. Segmentation

is based on the minimum level of detail acceptable; to be designated an object. The level

of detail is tuned by an image processing parameter : scale. Classical approaches to

image segmentation have been mainly edge-based and region based. Most edge-based

12



segmentation approaches have attempted to achieve segmentations via creating a scale­

space and then detecting edges [36] in this scale-space. Edges are defined to be sudden,

sustained changes in average Image intensity that extend along a contour, while a scale­

space is a set of filtered representations of an image proceeding from fine to coarse. The

fine level in a scale-space has a lot of detail while in the coarse representation the detail

has been smoothed out. Usually most of these edge-based approaches require a heuristic

edge-linking algorithm to link edges and yield closed contours for the purpose of segment

extraction. In contrast region based segmentation approaches yield closed contours. Some

of these region based segmentation algorithms are multidimensional clustering and region

growing [28]. Clustering involves grouping of pixels based on intensity while region

growing involves growing of regions in the interior of objects until the boundaries of the

regions correspond to the edges of the objects being segmented. It can be seen that region

growing segmentation algorithms too involve the concept of scale enunciated above.

Traditionally the segmentation approaches outlined above have been based

on gray-scale/color, which do not work well with textured images, particularly those

containing macrotextures. Textures whose primitives are large are referred to as

macrotextures. The net result is that the detail in the textures is captured as segmentation.

Such a segmentation would be an erroneous portrayal of texture perception. Texture is

characterized by a spatial distribution of grayscale/color in a given neighborhood.

Conventional segmentation algorithms fail when applied to textured images, as they are

based on point/pixel definitions. Thus, on the other hand, we have purely texture based

approaches to solve this problem. Early texture approaches were based on primitives like

image statistics. The most successful among these were those of gray-level co-occurrence

13
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matrices. The primary motivation wa<; to capture the spatial distribution of pixels which

researchers at that time felt contributed to the perception of texture. A gray-level co­

occurrence matrix pO, j) defined fOT a displacement vector d = (dx,dy). is the number of

pixels separated by d having gray levels i andj. Various features like energy, contrast and

homogeneity are defined in terms of algebraic operations on the entities of these gray­

level co-occurrence matrices. These features were used for purposes of texture

classification and discrimination typically using a linear classifier (30]. Gray-level co­

occurrence matrices have performed well in case of microtextures [30]. Tex tures whose

primitives are small are referred as microtextures. However these statistical methods of

texture analysis were largely heuristic and seldom performed well for general Imagery

[32].

A series of advances extending from the late sixties to mid eighties in

VISIOn psychophysics and physiology had a profound impact on subsequent texture

research III tmage processll1g and computer VISIOn. Various researchers characterized

cortical cell responses of some mammalian (cat) vision systems as being a function of

spatial frequency f18] [29] [14] [19]. More specifically these vision system.., were akin to

independent linear channels sensitive to narrow ranges of spatial frequencies. Marcclja

[35J pointed out the similarity between the cortical receptive field profiles and Gabor's 1­

D elementary signal (27]. Daugman [21) extended the I -0 principle of the time­

frequency uncertainity principle to 2-D and proved that the 2-D versions of the Gabor's

elementary signals achieved the lower bound on this joint spatia-temporal uncertainty

principle. Various researchers in the image processing community have successfully used

this biological Gabor model of texture description to segment and classify highly oriented

1~
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juxtaposed textures like those of the Brodatz image database. The typical approach has

been to generate multiple filtered representations of an image vla a Gabor filterbank

tuned to various texture frequencies and generating a segment map via postprocessing

and linear classification of these fi ltered representations [16].

However the drawback in most of these color/texture approaches has been

In their lack of general applicability. Most researchers have in these approaches used

specifically tuned parameters to achieve good results for specific images. A majority of

these require considerable parameter tuning and heuristics. A segmentation algorithm for

CBR would need to be robust, automated and require little or no parameter specification.

Needless to say the resultant segments would need to be in reasonable concordance with

a perceptual depiction of objects in the image. Thus it is apparent that ready application

of the segmentation algorithms in the literature is not appropriate for CBR.

3.2 Gabor Filter Approach to Texture Image Segmentation

3.2.1 Overview

Biological systems pertaining to aural and visual perception are known to

use both time and frequency information for purposes of perception. Various researchers

have thus motivated joint time-frequency analysis for texture analysis and segmentation.

Joint space-frequency analysis techniques aim to overcome the drawbacks of

conventional spatial and Fourier analysis techniques. In case of texture analysis the

drawbacks of the spatial texture analysis techniques have been highlighted earlier.

15



Conventional Fourier analysis techniques are not suited for local analysis as they provide

a global decomposition. Ideally these Fourier based techniques would be suitable for

single frequency component (monochromatic) signals. However common test

signals/images consist of multiple components, which renders interpretation of Fourier

domain representations limited in nature. Thus Fourier based techniques are not jointly

localized in the space and frequency domains.

A standard measure of localization of a 2-D function is the product of the

bandwidths in spatial and frequency domains, which represents the joint resolution in

space and frequency domains. The effective bandwidth of a function is given by the

square root of the variance of its energy distribution. For a 2-D function f(x, y) and its

Fourier transform f(u, v), the effective bandwidths in the spatial and frequency domains

are given by

and

(Lli)2 = f f x
2
f(x, -",)f' (x, y)dxdy

ff f(x,y)f'Cx,y)dxd.v

( )

2 ffy2fCx,y)f'Cx,y)dxdy
6v =~~--------. ff f(x, y)f' (x, y)dxdy

7 ffu
2
F(u, v)F' (u, v)dudv

(6u)- =--'----'::-;:--------ffF(u, v)F' (u, v)dudv

2 ffv
2
F(u, v)F' (u, v)dudv

(6v) =-,---,-----------ffFCu, v)F' Cu, v)dudv

CI )

(2)

(3)

(4)



The Heisenberg uncertainity principle imposes a lower bound on the joint resolution in

spatial and frequency domains i.e.

(5-1 )

(5-2)

where I1t,111 are function (I-D) bandwidths in the time and frequency domains while

11x,l1y,l1u,l1v are function (2-D) bandwidths in the spatial and frequency domains.

In 1946 D. Gabor in his classic monograph [27] showed that a class of

functions now termed as Gabor functions achieves the maximum possible joint resolution

in spatial and frequency domains. These Gabor functions or Gabor elementary functions

were defined to be a Gaussian function modulated by a sinusoid. Daugman [21] showed

that the 2-D versions of the Gabor functions achieved the lower bound on the joint spatio-

temporal uncertainty principle.

Gabor functions are Gaussian modulated sinLlsoids In the space domain

and hence shifted Gaussians in the frequency domain. The general form of a 2-D Gabor

function h(x, y) is given by

hex, y) =g(x, y)exp[2Jrj(Ux+ Vy)],

R(x, y) =(_I1 )exp[- x
2

+ [2]
21[0'" 2<1

(6 )

where g(x,y) is a 2-D Gaussian function with scale parameter <1. The pair (V, V) gives

the center frequencies of the 2-D Gabor filter. The 2-D frequency response of the

Gaussian g(x, y) is given by

(7)
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The frequency response of the 2-D Gabor function is just a shifted version of the above

equation. It is given by

(8)

The center frequencies U, V can be represented in polar form by a radial center frequency

F, an orientation e

F = .JU 2 +V 2 Cycles/pixel or cycles/sample,

e =Tan-I (%) degrees or radians measured w.r.t. the u axis (9)

Since 2-D Gabor function achieves the upper bound of the 2-D space-frequency

uncertainity principle, it optimizes the balance between localization in the spatial and

frequency domains and achieves maximum possible joint resolution. Figure 3a shows the

magnitude of the real part of a Gabor filter in the spatial domain.

6

5

3

2

0 -
25 20 15

10 o 30

l

Figure 3 a. Surface plot of magnitude of real part of a Gabor filter in the
sDatial domain

If an image were to be filtered by a Gabor function. the complex

magnitude of the filtered image will be maximized over regions with texture oriented at



the center frequencies of the Gabor filter. This behavior of the Gabor filter is illustrated in

figure 3 b. A particular texture can be extracted from an image by applying a bank of

Gabor filters tuned to the dominant frequencies in that texture. Thanks to human visual

system's natural high frequency roll-off response, a bank of Gabor filters tuned to a few

0') ------.---------.. ---- - r

0" ,
0\1:. I

I
Ott i
0"

I

01 I
n," I

I
0(1;

at\<o '0 .'D

Figure 3 b. Row one - Periodic texture image (cosine in horizontal direction 0.1
cycles/pixel), I-D slice of periodic texture image. Row two - Periodic texture image
filtered with Gabor filter (U=O.1 Cycles/pixel, V=O Cycles/pixel, I-D slice of Gabor
filtered image.

low/intermediate frequencies is usually enough to capture effectively the texture layout in

an image for segmentation purposes.
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3.2.2 Gabor Filter Design Parameters

By varying the center frequency, orientation and the scale parameter of the

Gabor filter, different image features can be localized in the spatial and frequency

domains. The center frequency and consequently the orientation of the Gabor filter

determines the pattern of texture the filter is tuned to, while the scale parameter

determines the extent of the filter in space. A large scale parameter implies that the outpul

of the filter will be affected by more neighboring pixels, while a small scale parameter

implies that the output will be affected by fewer neighboring pixels. Thus the scale

parameter intuitively corresponds to the size of the tex.ture primitives. Hence the Gabor

design parameters intuitively correspond to the frequency of the texture,. the size of the

texture primitives and the orientations of the texture primitives.

Consider the T1 peak contour of a 2-D Gabor filler in the /-IV plane shown

in figure 4. The TJ peak contour corresponds to the portion of the Gabor filter, which is TJ

times its peak response. The axes correspond to the u and v frequency axis respectively

whi Ie r, corresponds to the radial center frequency of the Gabor fi Iter. The fi Iter

magnitude response is at a fraction TJ of the peak response at the radial frequencies rt

and '2 .The orientation bandwidth 8 is the angle between the two tangents to the TJ peak

contour, pass through the frequency origin. Figure 5 shows the filter evaluated on a line

from the frequency origin through its center frequency ,; .
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v

Figure 4. 1] peak contour of a 2-D Gabor filter in the uv plane

The ry peak radial octave bandwidth of a Gabor filter is defined by

Evaluating the] -D signal in figure 5 for r2 and r
J

we have,

~- Inry
r = r - ---'----:::==----

I m r;:;
'J L1U5
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Figure 5. 2-D Gabor filter in figure 4 evaluated along a line passing through the origin
and center frequency

The 77 peak radial octave bandwidth of the Gabor filter is specified in our framework as a

design parameter. In our experiments we have usually used design parameters of B = I

octave and 77 =0.5. We use a Gabor filterbank similar to the one documented in [31].

Figures 6 a,b,c,d illustrate this particular Gabor filterbank.



u=O .D067 ,v=-0.0369

u=0.D392,v=-02152

u=O .0347 ,v=-O.D579

u=O 0121 ,v=-0.0664

u=O .0705 ,v=-O.3873

u=O.0625,v=-O.1042

u=0.0218,v=-0.1195

u=0.D193,v=-0.0322

u=0.1125,v:-0.1875

Figure 6 3. Frequency domain representation of Gabor filterbank in [39]
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u=02025,v=-O.3376

u=O .0952,v=-O .0755

u=O .0357 ,v=-O .011 4

u=O.0294 ,v=-O.0233

u=0.1714,v=-O.1358

u=0.0643,v=-O.o206

u=0.0529,v..-O.0419

u=O.3085,v=-O.2445

u=0.1157,v=-O.037

-

Figure 6 b. Frequency domain representation of Gabor filterbank in [39]
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u=O.2083,v=-O .0667

u=O.3609,v=O.0034

u=0.0871,v=0.0198

u"O.3749,v=-O.12

u"O.0269,v"O .0061

u=0.1569,v=O.015

u"0.2005,v=O.0019

u=0.0484,v"0.011

u=O .2824 ,v=00269

Figure 6 c. Frequency domain representation of Gabor filterbank in [39]

u=O.016,v=0.0485

u=0.0931,v=O.0261

u=O.0287,v=o .0873

u=O.1675,v=O.047

u"0.0517,v=0.1572

Figure 6 d. Frequency domain representation of Gabor filterbank in [39]
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The 2-D Gabor filterbank approach provides a versatile model for texture

description and optimizes the balance between localization in the spatial and frequency

domains. Moreover, 2-D Gabor filters are known to mimic the biological perception of

texture. As part of this approach images are decomposed into multiple oriented spatial

frequency channels.

3.3 A Simplified Gabor Decomposition Model

The real part of the Gabor function (6) is given by

Itr (x, y) =g(x, y) cos(Ux + Vy)

while the imaginary part of is given by

h, (x, y) = g(x, y) sin(Ux + Vy)

(13)

(14)

7r:
Equations 13 and 14 and are out of phase W.r.t. each other by along the direction -of

2

(0. Figures 7 a,b show equations 13 and 14 as a surface. In [16] the real and imaginary

parts of the Gabor responses have been used to distinguish boundaries between phase

shifted regions within a texture, i1Jusory contours. However such instances are more

prevalent among synthetic superpositions of highly oriented textures like the Brodatz

database (17] and synthetic textures. Hence we argue that the usage of the magnitude of

the Gabor response suffices for our goa] of extracting objects of the most significant

interest from the image (rather than partitioning the image completely). Moreover our

target image databases consist of genera] imagery in which instances of highly orienled

textures are extremely rare.
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Figure. 7 a. Real part of a 2-D Gabor function plotted as a surface U=O.2 cycles/pixel,
V=O.! cycles/pixel

Figure 7 b. Imaginary part of a 2-D Gabor function plotted as a surface U=O.2
cycles/pixel. V=O.l cycles/pixel

27



A Gabor expansion of any n-dimensional function is a weighted sum of appropriately

shifted Gabor functions [27]. The weights are usually signal-specific describing the

weight of each Gabor reponse.

I(x,y):::: I,Cmnuvlh(x.y),
m.Il.U.v

(15-1 )

( 15-2)

where [(x, y) is the original image and III (x, y) is its Gabor response. The expansion

coefficients are computed in a 4-0 grid whose dimensions correspond to u, v,x and y. A

simple aggregation of various Gabor responses would he an erroneous approximation as

Gabor functions are fundamentally non-orthogonal. Two functions f(x) and g(x) are said

h

to be orthogonal on the interval a:S; x"$ b if J!(x)g(x)dx =O.

"

Basstians [l0] developed an analytical technique for determining the coefficients in a

Gabor expansion. Zeevi and Porat extended this concept to 2-D [601. The expansion

coefficients CmllUV for all possible (discrete) center frequencies, orientations and grid

shifts are sufficient for com plete recon structi on of the image I(x,y). However we are

interested in extracting segments of homogeneous texture rather than a faithful

reconstruction of the image. Hence we do not require the expansion coefficients for a

Gabor expansion. Our goal is to extract segments of homogeneous texture directly via the

Gabor responses. We tenn this approach a simplified Gabor decomposition for analysis

and extraction of segments of homogeneous texture i.e.

--

S,(X,y)~ U{llr(x,y)}.
m.~.U.v
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Here S,(x,y) constitutes the various Gabor filter responses of the image l(x.y). The

simplified Gabor decomposition contains regions of homogeneous texlUre as locally

maximized regions. It is our goal to extract these regions and classify them as

representative of the textured objects in the image. Thus we motivate a scaling

methodology and paradigms for extraction for these segments.

3.4 Scaled Gabor Decompositions For Textured Image Segmentation

Segmentation results based solely on the Gabor decomposition may contain

insignificant or spunous regIons 10 terms of area, which lead to errors and increased

computational burden in CBR. Our emphasis within the context of CBR has been on

matching large scale regions that are similar in terms of texture. The solution presented

here overcomes the difficulties with small scale regions by utilizing scaled versiom of the

Gabor decompositions. Hence we argue that extraction of segments satisfying a minimum

scale requirement results in semantic extraction of objects of interest and reduced

computational complexity for similarity analysis. Hence we use scaled Gabor

decompositions for segment extraction.

3.4.1 Background on Image Morphology

Scaling mechanisms have been used in image processing to remove detail and

to reduce the information content of an image, while retaining the essential features 115].
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The choice of the scaling technique depends on the application. The main requirement we

lay down for scaling in CBR is strong edge localization W.r.t. the Gabor filter responses.

We use an area morphological technique for scaling purposes. True to its

terminology it does involve the "study of shape"; however it differs considerably from

traditional image morphology theory. The area operators affect the image by removing

connected components within the image level sets that do not satisfy the minimum area

criterion. Through the area morphological approach an image can be decomposed into a

number of thresholded binary representations called level sets. This can be likened to

conventional morphology with a liquid structuring element of fixed area; however

operating on image level sets. Thus sub-scale objects can be removed from an image

using a truly scalable nonlinear filter. Various researchers have shown in the literature the

attractive properties of the area morphological filters [I] [50]. These incl ude feature

causality, Euclidean invariance, and edge preservation through scale.

Area murphology has been used in the literature for purposes of image

restoration [37J, segmentation [47] and document processing [39].The drawback in

normal implementations of area morphology is the large computation time given the

sequential naLUre of the level set and connected component analysis. ThIS has precluded it

from being more widely used. Recently there has been an advent of fast area

morphological algorithms, which allow for their inclusion in multimedia frameworks for

content based retrieval [47] and object based coding [5]. The following section is a brief

review of morphological filters and fast algorithms for area morphology.

The basis for morphological operations are the erode and di Iate functions. The

erode operator is given by
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J =Erode [I , B] =1 ED B,

J(i, j) = Min{B 0 I(i, j)}

while the dilate operator is given by

J = Dilate[/. B1= leB ,

J(i, j)= Max{B 0 1(;, j)}

( 17)

( 18)

where the operator B is referred to as the structuring element, I is the image and EEl and e

are the dilation and erosion operators respectively. Thus dilation and erosion are

windowed maxima and minima respectively. The standard morphological operators open

and close are derived from the erode and dilate functions. The open operator IS a

concatenation of the erode and dilate operators in that order. It can be expressed as

J=OPEN[I,Bj,

= 10 B=(leBjCi7B ( 19)

whi le the close operator is a concatenation of the di late and erode operators in that order

and can be expressed as

J=CLOSE[I,B],

= 1 • 8=(I$B)eB (20)

-

where a and. arc the open and close operators respectively.

These standard morphological filters are relatively inexpensive to implement

considering that they decompose into erode and dilate operators. Open filtering can be

modeled as fitting the structuring element under the topological image surface while the

process of fitting the structuring element from above the topological image surface can be

modeled as close filtering. However the application of these morphological operators

does not guarantee removal of sub-scale objects as open removes bright objects that
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cannot be fit entirely by the structuring element. Hence open cannot remove certain sub-

scale bright objects. Hence the inherent grayscale bias of these morphological operators

is an additional drawback of morphological scaling. [54] [41J [8] give an exhaustive

overview and description of standard morphology and scale-space theory.

3.4.2 Area Morphology

The area open-close operator in contrast to standard morphological operations

does not involve a structuring element. As briefly described above it guarantees a

minimum scale by removing sub-scale connected components within level sets. For an

image I with discrete domain D C Z2 and image location pE D, a level set B, at level I,

(where IE Z) is defined by

BI (p)= I if I(p)~l.

= 0 otherwise

Within a level set H" the connected component CB, at p is given by:

(21 )

(22)

where P/~i (p, q) is an unbroken path between image locations p and q for which each

element obeys B, 0= I (satisfying the level set equation). The neighboring pixels in this

path are defined by 4-connectivity in our case. For a level set H" we can define the area

open operation B, <) (s )by

-

s

(x, y) E 0 ( B,) if ICD/(x, y)1 ~ s,
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where ICB1(X, y)l is the cardinality (area) of the connected component at location (x, y) •

.\
and s is the minimum area. On the other hand. the area open implies thaI (x, v) II 0 ( B,) if

ICB/((x. y))1 < s. Similarly we can define the area close operation BI • (s )by

, -
(x,y) E e( 8/) iflC (x,y)1 ~s.

51
(24)

where 1C (x, y)1 is the cardinality (area) of the connected component at location (x, y),
S,

s is the minimum area and it may be noted that this is defined on the complement of the

\

level set CB/. Similarly the area close implies that (x, y) ~ e ( 8 1) if ICB/((x. v»1 < J.

Hence the area open operator removes bright sub-scale objects while area close removed

dark sub-'icale objects within the level sets of the image. For grayscale imagery. each

level set is area open-closed independently, and the final grayscale result is computed by

a stacking operation. The reconstructed area open-close image at scale s is thus given hy

I.-I

(10 (5)) e (5)= L. {(B,D (s))e(s)}
(=0

(25)

--

This image is seen to contain only connected components of a minimum size and above

within each of its level sets. [50] elaborates on the various other interesting propertie~ or

AOC . These include feature causality with scale and more importantly the level lines

(edges of connected components within the level sets) are not distorted with increased

scale. This bodes well in terms of edge localization. The significance of this property for

our CBR will be shown shortly.
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3.4.2.1 A Fast Algorithm for Area Morphology

Traditionally these AGe operations have been cumbersome and time­

consuming due to connected component labeling at each level set. The drawback of

computational cost has been overcome by means of fast algorithms for this area

morphological process. Given a fast algorithm for the area open algorithm. we can

produce an area close result by employing the Boolean complement of the input level sets

used in the area open operation. The fast algorithms presented in the literature are of two

main types (1) Pyramidal [57] and (2) Marker image creation and reconstruction [2]. We

use the second method in view of no restrictions on minimum scale parameter and ih

minimal overall complexity. Essentially this involves the creation of a marker image M

by opening the original image. Then connected components within the level sets thai

partially survive the open operation are fully reconstructed W.r.t. the original image. An

area opening by reconstruction is not considered to be equal to an ideal area opening.

This is because some super-scale connected components may not survive the area

opening thanks to the open filter. For example a single pixel width region of area 30

pixels is removed by opening with a 3x3 square structuring element, although it exceeds

the minimum scale. Hence these fast algorithms are regarded as approximate algorithms.

However the strong point of these fast algorithms is that they vastly improve upon

computational cos1 required [2J.

3.4.2.1.1. Marker image creation using the open filter.

The marker image is created via the traditional open

filter (equation 17), loR. The structuring element corresponds to the minimum scale
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requirements. This would ensure that connected components of insufficient area do not

survive the filtering process. Again as mentioned above some super-scale objects may not

survive this process. Some solutions in the literature have used a combination of opening

with all possible shapes of structuring elements in order to match the actual area open

operation, while some have used a pyramidal basis for creation of the marker image.

However we used the traditional open filter for marker image creation due to its optimum

overall performance [2].

3.4.2.1.2. Reconstruction by geodesic dilation.

Reconstruction of entire connected components within

level sets is based on the partial connected components (within the level sets) and pixel

intensities in the input image 1. These partial connected components are obtained from

the marker image M. The reconstruction is done by selectively dilating these components

one pixel at a time. If a connected component in the marker image has a 4-connected

neighboring pixel that has lower intensity than that of the input image. then that particular

pixel is updated to the minimum intensity between the dilated image and the intensity in

the input image. This can be expressed as :

RI (p) =minL(R I_I <f> K + Xp ), I (p )J (26)

where pE D, Ro=M, and E: is a 3x3 circular structuring element with the origin at the

center. The update in the above equation will stabilize when each of the marked

connected components is reconstructed. requiring T total updates per pixel. The value Tis

bound by the maximum geodesic distance between a boundary pixel of a connected

component in M and the boundary in the reconstructed connected component in R.

Figure 8 a. illustrates area morphological scaling with various minimum area/scale
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parameters. Figure 8 b shows the scale-cubes for AGe scaling and conventional Gaussian

filtering/scaling. A scale-cube is similar to a scale-space. It can be seen that the AGe

scale-cube exhibits less or no edge/feature drift through scale while this is not the case

with the linear daussian scale-space.

The minimum scale s (area parameter) is specified for

each of the images in our database by means of conventional metadata. Each of the Gabor

filter responses are scaled by means of the area morphological scaling technique

dcscrihcd ahovc. These scaled Gabor decompositions (responses) are utilized for segment

extraction, which is described in the next section.

Figure 8 a. The original coins image and AGe scaled versions (area 5x5, lOx 10, 15x 15)
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Figure 8 b. The AGC and Gaussian Scale-cube

3.5 Paradigms For Segment Extraction

3.5.1 Fuzzy C-Means Clustering

The scaled Gabor decompositions contain homogeneous regions

signifying regions of homogeneous texture. We utilize the Fuzzy C-Means (FCM)

clustering technique to extract segments from the scaled Gabor decompositions. The

FCM technique operates by grouping together pixels in a multidimensional space based

on their distance with respect to their pixel intensities. The number of dimensions in this

space is equal to the number of classes specified for the purpose of classification.

For each position (x, y) in the input image, each scale s and each texture

layer t, we have intensities l(x, y, s, t) in the 4-D texture / scale space. These intensities

are used to cluster vectors for each position (x, y) using the FCM algorithm. We can

consider a vector I(x, y) as the evolution of the pixel intensity at (x, y) through scale sand

texture t. The fuzzy clustering technique is based on minimizing an objective functional
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that quantifies the distance between cluster centers and the data within the vanous

clusters. This objective functional is given by

c
J m (U ,J!) = I I(ui(x, y))nt II di(x, y) 11

2

ni=1
(27)

Here, U is the fuzzy C - class partition of the texture/scale- space, where C is the number

of classes. J! is the set of cluster centers, and n is the domain over which the clustering is

done, i.e. (x, y)E .Q. Given a texture I scale space vector I(x,y) at location (x, y), [he

measure

II dj(x, y) 1I=lII(x, y) -Ili II (28)

is the distance between the texture I scale space vector and the i1h cluster center Ili' The

distance is weighed by the fuzzy membership value (of each texture I scale space vector)

Ui (x, y) corresponding to /h class. The fuzzy exponent m has [he range mE [1,001. The

objective functional is iteratively minimized. This iteration is subject to the conditions

I
I IUi(x, y) = 1,
Oi=1

0< IUi(x,y)<lq,
o

(29)

At each iteration the fuzzy membership value for each texture I scale-space vector I(x,y)

is computed by

c ( :2/(/11-1)
Ui(x,y)=I/[II dj(x,y) ]

n )=1 d/x,y)
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Initially this membership value is computed usmg a uniformly-distributed random

number generator. At each iteration, the cluster center ~i is updated according to

I(Ui(X, y»mI(x, y)

~i =..=..0=-- _ (31 )

The clustering proceeds in this iterative fashion until convergence, where convergence is

defined by insignificant changes in the observed objective functional between two

consecutive iterations.

The resultant segmentation provides regIOns that are homogeneous in

terms of texture and are significant in terms of minimum scale. In contrast to the

solutions which use heuristic region merging, the segmentation from texture I scale space

does not require post-processing, nor knowledge of the number of significant regions.

The motivation for multi-scale, multi-Gabor response clustering has been that it improves

classification by clustering members of similar objects more effectively than a fixed scale

classifier [I]. Figure 9 illustrates results via scaled multi-Gabor response clustering.

However this approach suffers from a drawback. This is due to the

inability of AGe to eliminate at times sub-scale connected components, which are in the

middle of a staircase distribution of intensity. This particular sandwiched connected

component would be part of connected components corresponding to either the first or

last steps of the staircase distribution in certain level sets. It would never be an

independent connected component. If the connected component(s) it belonged to, was

super-scale then it would never be discarded. As a result of which the clustering results

sometimes contain certain sub-scale regions, which are a computational irritation in CBR.
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As a remedy we would have to resort to an additional post-processing AGe operation to

remove these sub-scale region. Figure 10 illustrates thIS particular drawback of the

inability of AGe to eliminate at rimes sub-scate connected components,

However if we were to use just the connected components corresponding

10 the levet sets then we would be guaranteed segments of a minimum scale, This is

because the AGe guarantees minImum scale connected components with all the level

sets, Hence we motivate a level set analysis of the scaled Gabor decompositions for

segmentation.

Figure 9 a,b,c,d. Original image, Luminance space, Scaled Gabor response, FCM result
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Figure 9 e. Overlaid segmentation Garden image

"

L ._
---~---- -- -- J

Figure 10. Shows a inabIlity of AGe to eliminate at times sub-scale connected
components (a) contains 3 connected components of gray levels 0, J, 2 and areas of 30 ,
10 and 20 respectively. (b) shows the level set at gray level O. It emcompasses the whole
image. (c). shows the level set at gray level 1(d) shows the level set of gray level 2. None
of the level sets contain the connected component at gray level I which IS sub-scale when
compared to the other two connected components.
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3.5.2 Level Set Analysis

Conventional scale-space segmentation methodologies use an edge-based

technique to extract segments from scaled images. The drawback with this technique is

that the difference in pixels intensities (edges) is sensitive to changes in illumination.

Recent psychovisual studies have shown that the human eye is essentially sensitive to

ordering of gray levels in an image rather than the differences between them [37]. The

concept of level lines has recently been motivated for various image processing tasks like

disocclusion [37]. Level lines are boundaries pixels in level sets. The level lines are

invariant to changes in illumination hence offer considerable advantages over edge based

methods. Hence the extraction of segments using level lines is well motivated. Figure 11

iIJustrates the concept of level lines.

Figure 11. Original cameraman image, scaled version (area = lOx 10), significant Level

lines.
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The level sets of scaled Gabor decompositions contain connected

components satisfying a minimum scale parameter. We consider these to be prospective

segments and would like to extract them for feature extraction purposes. However

extraction of all these connected components would lead to a redundant segmentation as

many of them are self-contained within other connected components or overlappmg with

them. Hence a combinatorial analysis is requir~d to extract non-overlapping, non­

redundant segments.

For a gray-scale image with intensity values ranging from 0 to 255 there

would be a maximum of 256 level sets. However a great many of them differ very

insignificantly from the next lower level set. Hence the level sets could be sub sampled

to reduce number of level sets being analyzed. The level step parameter is a measure of

this sampling step-size. Given a linear level set stepsize /)"b. the level sets would range

from 0 to 256 in steps of /),.b. The magnitude of the constant stepsize /),.h determines how

effectively the level sets are sub-sampled. However a constant step-size might skip some

important level sets containing important information in the form of objects with strongly

localized boundaries. We want to sample only the important level set~. These important

level sets are defined to contain the important information, which may not conform to a

constant stepsize. A more important aspect of this is that this non-linear level step size

has to specified or determined in an automatic manner. The level lines concept

enunciated above is an important indicator of important object information in a level set

in terms of object edge localization. We propose to use the level lines gradient for

determining the level sets to be sampled for purposes of segment extraction.
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Consider a level set B I

=0 Otherwise

where image location p ED, for the discrete domain Dc Z2 and IE Z.

(32)

Within these level sets we define the boundary pixels of connected

components as level lines. We define the boundary as pixels on the boundary rather than

one pixel outsidelinside. We assume 4-neighborhood for connected component labeling.

Given a connected component CHI (p), its boundary pixels satisfy the following

conditions:

(33)

where P, E CSJ(p), NJr(p,) is the set of neighborhood pixels for each pixel in

CHI (p), IN Jr (Pc ~ refers to the cardinality of the set of neighborhood pixels and 'Vp is the

minimum resolution step size of the image (usually 'Vp =1pixel). In other words a pixel

is said to be a boundary pixel if it has at least one off pixel (0 intensity) as a neighbor(4-N

in our case). We define the gradient at these boundary pixels N" (p, ) as

(34)

I,
-"--

GNx and G N\ correspond to the gradients in the x and y directions respectively.

Granu]ometry has traditionally been used in image processing to describe

the size distribution of particles in an image [28]. We use granulometry to parameterize
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the level sets. This parameterization will enable us to extract significant level sets for

segmentation. The parameter we use is cumulative gradient from level lines. This

parameter is recorded for each level set.

We term this metric the Level Lines Gradient Granulometry (LLGG). The

LLGG metric for a level set B I is given by

cc

Lg (B I )= I GN (pJ (35)

where G". (p, ) is the cumulative level lines gradient of a connected component P, and

cc is the number of connected components in the level set 8 1 .The LLGG measure for a

where I is the level set number and usually ranges from 0 to G (maximum number of

complete image is given by

L g (L) =L g (B 1M ) (36)

en
~
.~

C
a
~.""

I

~-

graylevels in the image (G=256 usually»)in steps of tJ.b. tJ.b is a constant level step

parameter (tJ.b=1 usually).

The LLGG metric at each level set is essentially the cumulative absolute

gradient of the level lines in the level set. This metric tracks the behavior of the level

lines across the level sets. The granulometry can be regarded as a I-0 signal whose peaks

correspond to level sets containing important objects with strongly localized boundaries.

We extract these peaks morphologically to eliminate redundancies between sampled level

sets. This process is analogous to determining a variable level step size tJ.b.

Consider a 1-0 LLGG signal L g (B, ). The peaks in this I-0 signal would

need to be defined within a neighborhood n. Computationally the peaks are extracted by

matching equal amplitude-position points between the original signal L g (81 ) and its
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dilated version Lx (B,). s" ' where sn is a I-D structuring element of size n. However

exceptions have to be made for purely flat regions in the original signal L,; (B/) else all

the points in those regions will match with the corresponding region in the dilated signal.

Very closely separated peaks ( in terms of both dimensions) would correspond to

adjacent level sets with important information. However this also means information

redundancy because of the adjacent nature of the level sets. Hence it is important to

compute the peaks within an adequate neighborhood. The particular neighborhood

parameter is a design parameter is our experiments. Increasing the neighborhood size

decreases the number of sampled level sets. This decreases the computation time required

in combinatorial analysis of the connected components collected from these non-linearly

sampled level sets.

3.5.2.1 Connected Component Combinatorial Analysis

The candidate connected components for segmentation are collected from

the level sets specified by the non-linear LLGG metric. In view of redundancies among

these connected components a combinatorial analysis of the same is required. The

combinatorial analysis determines overlapping and redundant connected components.

Given two connected components at locations p and r

CBI (p) ={q: :J~~I(p,q)},

CBI (r) ={q: 3p'~((r,q)}.
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The neighboring pixels in this path are defined by 4-connectivity in our case. COl (p) and

COl (r) are said to overlap if they satisfy the condition

(37)

Equation 37 implies that the two connected components CDI (p) and COl (r) overlap.

Thus in case of spatial overlap these connected components are compared to minimize

total internal variance. In other words the connected component with minimum total

interval variance among the two overlapping connected components overides the other.

The total internal variances of the connected components COl (p) and CB/ (r) are given

by

(38)

(39)

..~

where ICBI(P~ and ICBI(q~ are the cardinality of the connected components, i"and

ii/ are their intensities from the scaled Gabor decomposition at locations p and q

respectively, pi"and Ph/are the mean intensities of these connected components from

the scaled Gabor decomposition. Figures 12 and 13 show segmentations via

combinatorial analysis of scaled Gabor decompositions.

47



Figure 12a. Original Zebra image, luminance space

Figure 12 b. Gabor response u=O.03 cycles/pixel ,v-=O.02 cycles/pixel, Scaled (lahor
response s=45x45
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Figure 12 e. Sampled level sets from figure 12 d.
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Figure 12 f. 'egmentation map, overlayed segmentation
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Figure. 13 b. Scaled Gabor response (from figure 13 a) Area 0:= 15xl5
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Figure 13 c. Image LLGG granulometry of scaled response in figure 13 b
Local Peaks marked in red (neighborhood=200)
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Figure 13 d. Morphologically filtered Image LLGG granulometry of scaled response in
figure 13 b, Local Peaks marked in red (neighborhood=200)

Figure 13 e. Sampled level sets from figure 13 d.
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Figure 13 f. Segmentation map, overlayed segmentation from figure 13 e.

3.5.2.2 COMPLEXITY ANALYSIS

The scaling methodology consists of marker image creation and

reconstruction by geodesic dilation. For marker image creation using the open filter the

computational complexity is 2aN comparisons where a is the area of the structuring

element and N is the size of the structuring element. Hence it can be written as O(aN). In

the case of reconstruction 4 comparisons per pixel are required for dilation and I for

computing the minima, which gives a total of 5TN operations. T is the total number of

reconstruction steps per pixel. Hence the computational complexity can be written as

o(TN ). This can be reduced to o(N X).

Connected component labeling IS sequential in nature, hence its

complexity can be written as O(f3n) where f3 is a constant and n is the number of pixels

in the image. Given nc number of connected components for a combinatorial analysis.

The number of comparisons required for the first connected component is n, - I i.e. it is

compared with each of the other connected components (excluding itself). Progressing
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similarly for all connected components the total number of comparisons required is n, !.

Thus the complexity of connected component combinatorial analysis can be written as

O(nO·

3.6 Chapter Summary

Ideally one would expect a comparison for the segmentation methods outlined in this

chapter. However we are unable to do so as the segmentation via the level set analysis of

scaled Gabor responses results in a partial segmentation. While regular segmentation

methods provide a complete partition of the image. Thus a comparison between such

segmentation methods would be analogous to comparing apples and oranges! However

we do provide two such segmentation results in figure 14 for visual assessment of the

segmentation quality. We can provide comparisons for the segmentation via fuzzy

clustering of scaled Gabor responses. These results are elaborated upon in detail in [471.

These comparisons are to show the superiority of the AOe scaling method oyer other

scaling methods. For this purpose we use the Weighted Majority with Minimum Range

(WMMR) filter and the median filter as comparative scaling methods. The details

regarding formulation of these scaling methods can be obtained in [47]. The

segmentation are achieved by fuzzy clustering of scaled Gabor responses. The only

difference being in the method of scaling. The LLGG metric enunciated earlier in section

can be considered as a measure of edge strength/localization. Figure 15 a shows the

scaling results from the three scaling methods while figure 15 b shows the resultant

segmentations. Figure 15 c shows the LLGG metric for the segmentations via the three
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scaling paradigms mentioned. Figure ]5 c clearly shows the superiority of the AGe

segmentation over those obtained via the median and WMMR scaling methods. This

superiority is measured in terms of edge strengthllocalization.

Thus in this chapter we have outlined a well-motivated approach to image

segmentation for CBR. A Gabor filter based framework has been outlined for texture

region extraction. A novel area morphological scaling method has been described. Two
...-

paradigms for segment extraction from the scaled Gabor decompositions have been

described. Qualitative and quantitative results have been shown, which establish the

superiority of our segmentation and scaling techniques.

Figure 14. Segmentation of the zebra image by FCM clustering and Level set analysis of
scaled Gabor decompositions

Figure 15 a. Median, WMMR and AGe scaled representations of garden image in figure
9 (7 x 7, a = 49)
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Figure 15 b. Clustering results for the median, WMMR, and AGC texture spaces in
figure 15 a (4 classes)

c

LLGG
Metric

AGe

Illi"=:::~R
Scaling Method

Figure 15 c. Superiority of AGC over WMMR and MEDIAN filters via the LLGG
metric computed over the various (scaling techniques) segmentations(Figure 15 a,b).
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CHAPTER IV

FEATURE EXTRACTION

4.1 Introduction

Conventional CBR techniques have focussed on using text keywords as features.

These type of retrieval mechanisms are seen to be ineffective in view of pressing issues

like access automation and metadata relevancy. Hence there has been a renewed thrust on

the usage of segment specific features for CBR. The focus of our research has been on

formulation and demonstration of a robust segmentation algorithm for CBR. This chapter

elaborates on the various features computed for CBR.

A recent thrust on CBR research has focussed on the usage of mathematical

models of image properties like color, texture and object shapes, as criteria for similarity

analysis. More specifically these have been global features pertaining to color and

texture. The drawbacks of these global features have been described in the first chapter of

this manuscript. and the advantages of segment specific features have been highlighted.

Ideally one would envision a purely segment specific matching strategy for CBR.

However modem digital image libraries contain a large number of images, making an

exhaustive segment specific matching process computationally intensive. In order to

achieve a tradeoff between retrieval quality and retrieval time we propose to use a

judicious combination of global and local features for CBR.
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We extract global features pertaining to color and texture. More importantly we

extract local features pertaining to color, texture and shape. A novel color preprocessing

scheme is used to smooth image artifacts, thus aiding in efficient feature extraction. A

coarse color quantization aids in determining the dominant colors for the global color

features. We now elaborate on the specifics of the feature extraction framework for CBR.

4.2 Color feature extraction

The use of color for retrieval is motivated by two principal factors. First, in

automated image analysis, color is a powerful descriptor that often simplifies object

identification and extraction from a scene. Second, in image analysis performed hy

human beings, the motivation for color is that the human eye can discern thousands of

color shades and intensities, compared to about only two-dozen shades of gray [28].

Although the process followed by the human brain in perceiving is a color

physiopsychological phenomenon that is not yet fully understood, the physical nature of

color can be expressed on a formal basis supported hy experimental and theoretical

results.

In 1666, Sir Isaac Newton discovered that when a beam of sunlight is passed

through a glass prism the emerging beam of light is not white, but consists instead of a

continuous spectrum of colors ranging from violet at one end to red at the other [281.

Basically, the colors that human beings perceive in an object are determined by the nature

of the light reflected from the object [28]. Characterization of light is central to the

science of color. If the Iight is achromatic, its only attribute is its intensity. Achromatic

light is what viewers see on a black and white television sel. Thus the term gray level
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refers to a scalar measure of intensity that ranges from black, to grays, and finally to

white. Three basic quantities radiance, luminance and brightness are used to describe the

quality of a chromatic light source. Radiance is the total amount of energy that flows

from the light source, and is usuany measured in watts (W). Luminance, measured in

lumens(lm), gives a measure of the amount of energy an observer perceives from a light

source. Brightness embodies the achromatic notion of intensity and is one of the key

factors in describing color sensation. Owing to the structure of the human eye, all colors

are seen as variable combinations of the three so-called primary colors red (R), green

(G), and blue (B). The primary colors can be added to produce the secondary colors of

light magenta (red plus blue), cyan (green plus blue), and yellow (red plus green). Mixing

the three primaries, or a secondary with its opposite primary color, in the right intensities

produces white light.

4.2.1 Color Models

The purpose of a color model is to facilitate the specification of colors in

some standard, generally accepted way. In essence, a color model is a specification of a

3-D coordinate system and a subspace within that system where each color is represented

by a single point. Most color models in use today are oriented either toward hardware

(such as for color monitors and printers) or toward applications where color manipulation

is a goal (such as in the creation of color graphics for animation). The hardware-oriented

models most commonly used in practice are the RGB (red, green, blue) model for color

monitors and a broad class of color video cameras; the CMY (cyan, magenta, yellow)
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model for color printers; and the YCbCr model. which is the standard for color TV

broadcast [28]. In the third model the Y corresponds to luminance, and Cb and C r are two

chromatic components. Among the models frequently used for color image manipulation

are the RGB model and the HSV (hue, saturation, value) model. In our experiments we

have used the RGB model for color feature extraction. The YCbCr and the CMY color

models are more suited for TV transmission and printing purposes respectively.

4.2.1.1 The RGB color model

In the RGB model, each color appears in its pnmary spectral

components of red, green and blue. This model is based on a Cartesian coordinate

system. The color subspace of interest is the cube shown in figure 16 in which RGB

values are at three corners; cyan. magenta and yellow are at three other corners; black is

at the origin; and white is at the corner farthest from the origin. In this model, the gray

scale extends from black to white along the line joining these two points, and colors are

point on or inside the cube, defined by vectors extending from the origin. For

convenience, the assumption is that all color values have been normalized so that the

cube shown in figure 16, is the unit cube.
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;ue r0,0,1 Cyan

at origin to white at point (I, I, I).

Figure 16. ROB color cube. Points along the main diagonal have gray values, from black
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the ROB color model consist of three independent image planes, one for each primary

color. The RGB system is used for display in monitors. Thus it makes sense to use the

Ir-
ij
"

u
RGB model for image processing when the images themselves are naturally expressed in

terms of this model. Moreover, most color cameras used for acquiring digital images

utilize the RGB format, making this an important model in image processing. For

instance most multispectral satellite imagery consist of various bands. Some of these

bands include R, 0, B and infrared [28J.

4.2.2 Preprocessing for color feature extraction

Most artifacts in real world images are due to errors from noisy transmission

channels, network bit errors and block based coding schemes. A plain color feature

extraction scheme for CBR can produce erroneous features in view of these artifacts. The
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remedy we propose is preprocessing to eliminate these artifacts. More specifically we

propose to smooth these noisy images for semantic color feature extraction. This problem

can be categorized under the broad category of image restoration [9]. This area of research

has been one of the most explored areas in image processing.

One of the most popular smoothing techniques can be broadly grouped

under variational formulations. This involves setting up an energy functional involving

the input image and minimizing it via the principles of variational calculus yielding Euler

equation(s). These Euler equations are solved to get the desired image. Most of the

variational approaches are iterative in nature hence ill-suited for CBR. [38] gives an

excel lent review of various variational formulations in image processing.

Some of the other formulations involve various low pass filtering

techniques like Gaussian filtering. Some of the earliest scale-space formulations

advocated Gaussian filtering for this purpose [59]. However Gaussian filtering is known

to suffer from various drawbacks of feature drift across scale i.e. edge localization

problems.

Mathematical morphology IS a smoothing technique based. on the

fundamental erode and dilate operators which are windowed maxima and mInima

operators, respectively. A more detailed review has already been undertaken in the

chapter III. A point worth repeating here is that these morphological filters smooth noise,

preserve edges and eradicate impulses. However on the downside there are minor points

like the gray-level bias of morphological filters. The various advantages and drawback of

morphological fil ters are elaborated upon in [15].
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Anisotropic diffusion is another smoothing technique, which offers edge

preservation through the image smoothing process. This is achieved via intraregion

smoothing and inhibiting interregion smoothing (diffusion at edges). Anisotropic

diffusion has been widely implemented in image and video processing architectures in

view of its attractive image processing properties. Another point in favor of anisotropic

diffusion is that the localized computation of anisotropic diffusion allows efficient

implementation on a locally interconnected computer architecture. [3] gives an

exhaustive survey of anisotropic diffusion methods. However plain implementations of

anisotropic diffusion are ill-suited for CBR as they are restricted in their ability to remove

impulse noise and small objects [52]. Thus we have seen how various image smoothing

mechanisms are ill-suited for ready application to CBR. We propose a t~chnique, which

combines the strengths of morphology and diffusion based image smoothing techniques.

We now give a brief background on diffusion and elahorate on our image smoothing

technique for color feature extraction for CBR.

4.2.2.1 Background on diffusion

Diffusion is the physical process resulting from random motion of

molecules by which there is a net flow of matter from a region of high concentration to a

region of low concentration. One of the most common examples is the transfer of heat.

The traditional Gaussian filter has been shown to be a formulation of an isotropic

diffusion process governed by
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where I is the image, t is the time instant and .11{ is the Laplacian of I, . Thus to evolve

one pixel of I, we have the following Partial Differential Equation (PDE):

(41 )

As the equation indicates this is an iterative process. The edges from the image processed

by isotropic diffusion suffer from artifacts such as corner rounding and from edge

localization errors (deviations in detected edge position from the true edge position).

Hence researcher') have pursued anisotropic diffusion as an alternative to smooth images

and detect edges [3].

As briefly mentioned earlier anisotropic diffusion inhibits

smoothing at edges, thus yielding intraregion region smoothing rather than interregion

smoothing. This is achieved via the formulation of a diffusion coefficient. Perona and

Malik, in their landmark paper [43] advocated the concept of anisotropic diffusion. They

formulated a non-linear diffusion coefficient, which inhibited smoothing at image edges.

The anisotropic diffusion formulation in [43] is given by

'-..,

·"1IlIIIIII

dl
- =div[cVI]
dt

(42)

where div is the divergence operator, VI is the image gradient, and c is the di ffusion

coefficient. The diffusion coefficient is allowed to vary with the image gradient. Thus the

success of the algorithm depends on the formulation of this diffusion coefficient c. One

formulation in [43] used a diffusion coefficient c of the form

(43)
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where k is a gradient threshold. A low gradient (VI) value drives up (approaches unity)

the value of the diffusion coefficient while a high gradient (VI) value drives down

(approaches zero) the value of the diffusion coefficient. This inhibits smoothing across

edges while promoting smoothing in relatively (w.r.t. edge threshold k ) flat regions with

a low gradient. [43] gives a discrete version of the traditional continuous framework

described above. The discrete iterative solution is given as

(44)

where Iij,d.l is the image pixel value at location (i,j) time t, V N' Vs' V E' Vware image

gradients in the north, south, east and west directions respectively, cN,cS,cE,cWare the

corresponding diffusion coefficients, /1.t is the time step and 0 ~ A. ~ ~ .

In spite of advantages pertaining to edge locality; anisotropic

diffusion is unable to remove small scale features with high contrast. Thus anisotropic

diffusion is ill-suited to remove heavy-tailed noise and thus more importantly in this case

ill-suited as a sampling prefilter. These small scale regions can contribute to erroneous

color features for a particular region. Various such problems of anisotropic diffusion are

elaborated upon in [52]. One possible solution summarized in [3] uses a modification or

the gradient image used in computing the diffusion coefficients. Typically these have

been Gaussian convolved versions of the gradient image. Even though this method

denoises the image, it possesses certain drawbacks wherein the edges are softened and

blotching artifacts appear in the smoothed result. Moreover the introduction of the linear

Gaussian filter reintroduces edge movement thus defeats the primary motivation of the

non-linear anisotropic diffusion process. Segall and Acton in [52J introduced a

morphological diffusion coefficient which was motivated by the need to smooth small
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scale objects while minimizing feature drift, identification of regions without removing

important high frequency content. The morphological diffusion coefficient is of the form

_(iV(le:JoKlj2
r=e (45)

where f is the original image, k is the gradient threshold and (I. K)o K is the result of

applying the morphological close-open filter to the original image I. This particular

formulation allows via anisotropic diffusion the elimination of sub-scale (less than the

structuring element K) objects, at the same time maintaining edge locality. Edge quality

metrics of morphological anisotropic diffusion are given in [52}.

4.2.2.2 The M-CAD scheme for color smoothing

Accurate color feature extraction reqUIres that smoothing be

performed in the color domain, All the smoothing methods described above are for gray-

scale. However these methods have been adapted in the literature for multispectral/color

data [4] [51]. Pope and Acton in [45] extended the modified gradient concept of (52] to

the multispectral diffusion methods in [4] and [51]. [45] also provided comparisons.

which corroborated the fact that the diffusion method of [4] with modified gradients

exhibited superior performance in terms of edge localization and elimination of impulse

noise. More technical data regarding our motivation for using the modified gradient

vector distance dissimilarity diffusion method of [45] can be obtained in [45]. We now

elaborate on our color smoothing paradigm for color feature extraction.
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An ROB color image 1M (M=multispectral) can be expressed in

tenns of its red IR,green IG and blue IB bands. A multispectral gradient can be defined for

this RGB color image I [24], For example the multispectral gradient in the southern

direction can be expressed as

( )
(IR(x,y-l,t)-IR(x,y,t))2 +(IG (x,y-l,t)-l c (x,y,t))2

V', x,y,t =
+ (1 8 (x, Y -l,t)- I B (x, y,t)y

(46)

The gradient terms for the other directions can be defined similarly. The diffusion

coefficient for our color diffusion paradigm can be defined as follows.

(47)

where eM IS the diffusion coefficient for band M of the image 1M and

V'S/M =V(I M • K)o K is the gradient of the result of applying the morphological c1ose-

open filter to band M of the image 1M . Hence we term our color smoothing scheme the

integrated morphological-color anisotropic diffusion (M-CAD) scheme for color

smoothing. The diffusion equation for the M-CAD scheme can be written as

''''I.
\ '

:~
i":

'-

:J.,
.,)
. .,

al M • [ '\7 ]-- =dlV c M Y 1Mdt .
(48)

where cM is the modified diffusion coefficient for the band M of the color image 1M and

VI M is the band M gradient. The discrete version of equation 48 is similar to equation

46. Figure 17 shows a few results from our M-CAD scheme. Before going on to the

numerical formulation of the color features extracted, we would like to describe briefly a



global coarse color quantization scheme used to reduce greatly the color depth in a color

Image.

Figure 17 a. Original image, M-CAD result, global coarse color quantization (level of
quantization-' 1)
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Figure 17 b. Origmallmage, M-CAD result global coarse color quanti".atlon (level or
quantizatlon= I)

70

J

)



..

Figurt' ] c (lngmallma l
''''. M-CAD result, glohaJ coarse color ~uantl/ation (k\ -101"

quantization I)

4.2.3 Coarse color quantization for color feature extraction

Traditionally color quantization rc carch ha~ focussed on redUCIng color

depth for efficient T ,ideo transmission A few researcher:.. han; focussed on USIJ g

color q a tizatlOn for th 3 purposes of segmentation and CRR [23] lienee traditIOnally

color quantizatIOn ha<; b~en defined as a tt::chn 'que used to reduce the hIt rate hy using
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fewer bits. However our goal is to obtain an estimate of the globally/locally dominant

colors, use them for similarity analysis in CBR.

For the purpose of color quantization we operate in the RGB color space.

The color depth is reduced by clustering in the multidimensional color space. This

particular clustering step requires as input the smoothed color image and the number of

classes/clusters. The smoothed color image is generated using the M-CAD color

smoothing scheme outlined earlier. The number of clusters C is specified as metadata for

each image in our digital library. The clustering itself is achieved via the FCM technique

described in detail in Chapter III. Thus each image is partitioned into a fixed number of

clusters. The next step involves determining the top n 3-tuples in each class in the

classified image. i.e. 3-tuples with the highest frequency of occurrence. Each 3-tuple

refers to a unique color in the multidimensional color space. n can be termed as the level

of quantization. Typically in our experiments we use n=1,2,3 in order to obtain a coarse

color quantization. Given the original image 1M , the M-CAD smoothed image S, ,S,
."" M

the FCM result, the global color feature can be expressed as

"
· -'

·-.-.

.;,
, ...
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c~ (1)= IllS,., (pj ~I
m 111

(49)

where I ~ f ~ C, I ~ m ~ n ,.115 I." (pj 11m refers to the mill ranked 3-tuple among the pixels

P, (belonging to class j) in the classified image 5, ' Thus C (j) records the top n 3-
" g

tuples in each of the classes in the classified image. A threshold T is fixed as the

minimum distance between any of the collected 3-tuples. This prevents recording of

redundant colors in terms of perception (light green and lighter green). The global color

feature records the dominant colors in the image by means of a coarse color quantization.
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Search spaces in large digital image libraries can be cut down considerably by use of this

global color feature. The local color feature is of two types. The first type of local color

feature records the dominant 3-tuples (colors) in a segment in a manner similar to the

computation of the global color feature. The second local color feature is the color

probability density function (pdf) confined to the segment of interest. The levels of

quantization are different for both the local features. The dominant local color feature has

a high quantization level i.e. n= 1,2,3. While the local color pdf has either a low

quantization level or none at all, in hope of greater discrimination abilities. The dominant

local color feature can be expressed as ::s

c/ =IIIS'M (~~Im
m

(50)
....
I)

"I
)

;.:

where I ~ m ~ n , IIS'M (~~Im is the m
1h

highest (in terms of occurrence) 3-tuple among the

pixels p, (pixels in the segment I) and thus C, records the dominant 3-tuples(colors) in

the segment I. The local color pdf can be written as

where I ~ I ~ I max' I ma, is the maximum band intensity level, IS, (p, ~ IS the
M ~ J

cardinality of intensity level I among the pixels p, confined to the segment I and is

computed band-wise. Figure 17 also shows some results from the coarse color

quantization scheme described here.

Thu~ we have demonstrated a subsystem for color feature extraction.

Briefly summarizing the process of color feature extraction involves color smoothing

using the M-CAD scheme to denoise images, quantizing the color depth in the smoothed
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image for efficient global and local color feature exTIaction. Figures 18, 19 and 10

Illustrate local and global color feature extraction.

Figure 18. Original Image, highlighted segment, Local color pdr, Glohal dominant
colors, I,ocal dominant colors
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Figure 19. Original Image, highlighted segment, Local color pdf, Global dominant

colors, Local dominant colors
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Figure 20. Original Image, highlighted segment, Local color pdf, Global dominant
colors, Local dominant colors

4.3 Texture feature extraction

As described earlier, texture is a neighborhood property rather than a point

property The optimality of Gabor filters for textured region extraction has been

descnbed in great detail in chapter III. We propose to use a bank of Gabor fitters tor

texture feature extraction. More specifically the Gabor responses of an image is used to

compute its texture features. Equation 15-2 in chapter III gives the equation of the Gahor

response of an image. The texture features defined are hased on the mean, standard

deviation and entropy of the Gabor responses. Intuitively these correspond to the strength

of the Gabor response. A high strength would Indicate the presence of texture at the
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particular center frequency of the Gabor filter. At the local level these feature

computations are confined to the extent of the segment. We term the two texture features

extracted the statistic and stochastic texture features. The global statistic texture feature

T
K

can be expressed as

Tv =PI + ja,
, h h

(52)
".~'.
,~."

...::

where the real pan PI
"

is the mean of the magnitude of the Gabor response I" while the

imaginary part al" is the standard deviation of the magnitude of the Gabor response I",

Similarly the local statistic texture feature can be expressed as

(53)

where P, refers to pixels confined to the extent of segment l. The statistic texture feature

is expressed as a complex number for purpose of ease in similarity computation. The

stochastic texture feature is the entropy of the Gabor response. The entropy of the Gabor

response is a measure of its complexity, i.e. amount of information. The global stochastic

texture feature can be written as

.;
,

' .
.IJ

.. \'
"f
.1..

,:1

'f,
)

'.

(54)

where G is the maximum number of gray levels in the image luminance map (usually

256), PI (k)is the probability of gray level k, which numerically is the reciprocal of the
h

cardinality of its occurrence. Similarly the local stochastic texture feature can be written

as

(55)

where as before PI consists of the pixels in the segment I of the image I.
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These statistic and stochastic texture features are extracted for the various Gabor

responses deri ved via the Gabor filterbank.

4.4 Shape feature extraction

Shape is another important cognitive local property for CBR. Classification and

recognition of 2-D shapes regardless of their position, size and orientation is an important

problem in areas of application such as content based retrieval (CBR), target recognition

and scene analysis. The various methods found in the literature for 2D shape description

are:

I, Fourier analysis of some function derived from the boundary (Fourier

Shape Descriptors (FSDs)) [33] [44] [6].

2. Global statistical approaches based on methods of moments [11] [46].

3. Autoregressive (AR) models. [25] [53J.

For real-time applications and processing involving large image databases (I) is very

attractive due to the usage of the Fast Fourier Transform (FFT), moreover FSD", were

found to have better shape classification results when compared to other methodologies

mentioned above [33],

The FSDs make use of a basic concept that the position of a point along a closed

contour is a periodic function. Traditionally Fourier series have been used to approximate

contours. The resolution of the comour approximation is determined by the number of

terms in the Fourier series, However we propose to use the geometric transform invariant
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, "
'~

...
.~

.)
" .
"

'-
'.
r
•)
\



terms of the Fourier series as shape features. Before going on to the formulation of the

shape features we describe a few boundary models for contour modeling.

4.4.1 Boundary Models

A boundary is considered as a closed sequence of successive

boundary pixel coordinates (X" y,). The varIOUS representations derived from the

boundary coordinate chain are

I. Complex coordinate function

2. Centroidal distance function

3. Closed boundary curvature function

A complex coordinate function IS simply the coordinates of

boundary pixels In an object centered coordinate system. represented as complex

numbers:

z, =(x, - XI )+ jCv, - YI ) (56)

where (x" y, ) are the coordinates of the contour points and (XI' Y, ) is the centroid of the

closed contour.

The centroidal distance function expresses the distance of

boundary points from the centroid (x, ' y, )of the object.

~
' ,r= (x-x)-+(v-vfr j ( ~ j • C
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A curvature function is a function of angular changes of a

boundary tangent. Curvature at a boundary point i can be expressed as a differentiation of

successive tangent values calculated in a window w.

(58)

where I=(O,/ ....N-I J,N= number of boundary points. Note that all the above three models

are periodic since the functions are closed. All models are W.r.t. an object centered frame

of reference hence the functions are translation invariant i.e. insensitive to the placement

of the object in the image plane.

Fourier transformation of a boundary signal function generates a

complete set of complex numbers; the FSDs. To facilitate the use of the FFT the

boundary functions are sampled to 2n samples. These descriptors represent the shape of

the object in the frequency domain. The lower frequency descriptors contain information

about the general shape, while the higher frequency descriptors contain information about

the smaller details. The sub-sampled boundary can be expressed as

"'.­.,
-,
~
'.
~

r,
)

•

d

u(n + fuz)=::x(n + fuz) + jy(n + fuz) (59)

where n=O....N-/.N = number of points on the boundary, tin is the sub-sampling step

size. For a closed boundary periodic with period N, the discrete Fourier transform (OFT)

representation is as follows

Cl IN-I (j2mn )

u(n)=::-La(k)e N O~n~N-1
Nk=o

(60)

t> ,v-I (-j2m,)

where a(k) =Lu(n)e N

n=O
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The complex coefficients ark) are referred to as the FSDs of the

boundary.

The main issues for FSDs W.r.t. CBR are invariance W.r.t.

1. Translation

., Scaling
,.­~,

~ ...
'.

3. Starting Point (Order of contour traversal)

4, Rotation

5. Affine Transformation

Table I gives the various properties of FSDs under various geometric transformations,

An object centered coordinate system eliminates the effects of translation.

TRANSFORMAnON BOUNDARY FOURIER DESCRIPTORS

Tdentity U(n) a(k)

Translation U(n)+uo Ll(k)+u,»(k)

Scaling uu(n) aa(k)

- }2101"t

Startmg Pointe Contour U(n-no) ark) e .IV

Trace)

Rotation
U(n) e j

O" a(k)e f9"

Table 1. PropertIes of FDS under vanous geometnc transformations

From the above table it can be seen that the absolute value of the FSDs i,e, la(k)1 IS

.. .. d . h'] a(k) '.. I' H hInvanant to startIng POInt, an rotatIOn, w I e -1--1 IS Invanant to sca mg. owever t e
a(k)

actual FSD formulation differs based on the boundary models. More details regarding

appropriate weighting of Fourier coefficients for geometric transform invariance can be

found in [33].
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4.4.2 Contour FSDs (Complex Coordinate boundary function)

The contour Fourier descriptors are obtained via FFf

transformation of the complex coordinate boundary representation. The descriptors from

the negative frequency axis are essential as the original function is complex in nature.

The dc component depends only on the position of the shape and hence is discarded. The

absolute value of the first non-zero frequency component is used to scale the absolute

values of the other descriptors to obtain the features. The feature vector for the contour

FSDs is

(62)

where F1 denotes the ith component in the Fourier spectrum and 1denotes the segment I.

4.4.3 Radius FSDs (Centroidal distance function)

The centroidal distance function is transformed by the FFf algorithm to

yield the radius FSDs. Because of the real nature of the centroidal distance function the

FSDs are the same in the positive and negative frequency axes. The normalized FSDs are

obtained by dividing the absolute values of the positive frequency component by the

absolute value of the DC component. The dc component is discarded as it depends only

on the position of the shape. The feature vector for radius FSDs is

"
-
.~·.
·,·J
1",
;.
)..
)

r,
)

(63)
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where F, denotes the ith component in the Fourier spectrum and l denotes the segment l.

4.4.4 Curvature FSDs (Curvature boundary function)

The curvature FSDs are similar to the radius FSDs given above except that

the curvature boundary function is used instead of the centroidal distance function. The

FSDs for curvature FSDs is similar to those of the radius FSDs given in equation 63.

4.4.5 Affine invariant FSDs

A transformation is called affine when any straight line in the first image

is mapped onto a straight line in the second image, while parallelism is preserved. Affine

transformations can be decomposed into a line (matrix) transformation and a translation.

Examples of non-rigid affine transformations are both uniform ano non-uniform scaling.

and shearing. To achieve affine invariance the FSDs are subjected to a normal ization

procedure to remove the effects of affine transformations, For affine invariance the

complex coordinate boundary function is used to formulate the FSDs. Affine invariance

is achieved by applying a normalization procedure to remove the effects of affine

transformations [6]. The affine invariant FSDs are
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where the A, are computed from the equation below.

(IfI' - 1/U' N N
A = '" / P i =-(- - I),.

I U V· - V I;' 2 "' :2 '
p p p. p

(64-1 )

(64-2)

where (! = Fourier transfonnation of the x components of contour points, V = Fourier

transformation of the y components ofcontour points and p is a constant (eg. I)

These affine invariant FSDs can prove to be particularly useful in CBR ror

remotely sensed imagery [48]. The affine invariant shape feature has been incorporated

with a view of matching remote sensing images of overlapping land areas (w. r.t. a query

image) taken at different satellite positions (inferring a change in viewpoints, vi: affine

transformations) Figure 21 illustrat s FSDs for a given segment shape

Figure 21 a . Origmal image, highlighted segment, Segment contour
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Figure 21 b. Contour FSDs for segment in figure 21 Ll.
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Figure 21 c. Radius FSDs for segment in figure 21 a.
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4.5 Chapter Summary

Summarizing hrielly. we have demonstrated varIOUS frameworks for feature

extraction for CBR. An M-CAD scheme for color image smoothing has been outlined.

The smoothed color images are used for computation of global and local color features.

The Gabor responses from the Gabor filterbank are used to derive statistic ands stochastic

texture features. The shapes of local segments are encoded via FSDs. This involves

Fourier transformation of the boundary representations. The number of points on the

contour are subsampled to 2" (usually 64) points in order to facilitate usage of the FFf

algorithm for FSD computation. The invariance of FSDs to various geometric

transformations is achieved by appropriate coefficient weighting.

88

;.
I
~

",
)



CHAPTER V

SIMILARITY ANALYSIS

5.1 Introduction

The concept of CBR depends upon the comparison of two images and their

degree of similarity. Traditionally researchers have judged similarity/dissimilarity by a

similarity/di~similarity metric. We judge similarity by means of the magnitude of feature

errors. We use the term similarity/similarity measure in our experiments for the purpose

of coherence. Hence by our definition of similarity we would ideally like to obtain a low

similarity metric for images similar 10 the query image and a high similarity metric for

images relatively less similar to the query image. The next logical step lies in determining

the parameters based on which the similarity metric can be computed. Irving Biedermann

in [13] proposed a recagnitian-by-components theory. He theorized that an objects i~

analyzed as a whole constituted of individual sub-objects. This can be construed as

analogous to a segmentation. Thus we have adopted a segment based matching strategy

far CBR. A scale based segmentation technique has been demonstrated for general

imagery. A large number of segments would increase the number of comparisons for

similarity analysis. The segmentation technique demonstrated here provides anly

significant segments. The significance of segment is ao;;sessed via a unique LLGG metric
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described in chapter II. The reduced number of segments decreases number of

comparisons to be made for segment bac;ed similarity analysis.

We have experimented with three types of segment similarity assessment

techniques: The first of these is a one to one technique. wherein a query image and query

segment are specified for as part of query formulation. For a given image the best

matching segment contribute~ to the similarity metric for that image, In other words one

to one matching is analogous to finding the best matching segment W,r.l. to a given query

segment. The second type of matching technique is a one to many technique. The

similarity is assessed based on all the constituent segments in the other images. The

similarity metric for a given image would be computed hy aggregation of all its segment

feature errors W.r.t. the query segment feature, The third type of matching is a many to

many matching technique. As the name indicates a similarity metric for an image is

assessed by aggregation of feature errors of all possible segment pairs between the query

image and the target image(s), We now elaborate on the actual numeric computation of

feature based similarity analysis.

5.2 Color

Given two global dominant color features C~1 and Cx2 ' the global color similarity

metric can be wri tten as
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where I :s;; In l :s;; n l ,I :s;; m 2 :s;; n2 , n l ,n 2 are the levels of color quantization described earlier.

Thus J1.C ~ is a measure of the Euclidean distance between the dominant colors

Similarly given two local dominant color features CII and Cn ' the local dominant color

similarity metric can be written as

(66)

where I :s;; ml :s;; n l ,I :s;; m2 ~ n2 , n l ,1l 2 are the levels of color quantization described earlier,

J1.C, is a measure of the Euclidean distance between the dominant local colors

Given two local color pdfs CII (j) and CI2 (j), the local color pdf similarity metric can

be written as

(67)

where f max is the maximum intensity level thatfcan attain. In addition to the color

similarity metric mentioned above matching strategies similar to the segment matching

strategies can be applied. For example a one to one color tuple matching technique would

ensure only similar color tuples contribute to color feature errors.
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5.3 Texture

Given two global statistic texture features TX1 and T
K
2' the global statistic texture

feature similarity metric can be written as

(68)

where /:iT is the absolute value squared of the error between the complex texture
,~

features.

Similarly given two global stochastic texture features T!(, and TK2 , the global stochastic

texture feature similarity metric can be written as

(69)

Since the local and global texture features are essentially the same numeric concept, the

similarity metric can be computed in a similar manner. These texture similarity metrics

are computed over all Gabor responses and are summed up to give the final texture

similarity metric. The total global texture similarity metric can be expressed as

(70)

"

where n is the number of filters In the Gabor filterbank. The local texture similarity

metric can be expressed similarly.

5.4 Shape

Various researchers have focussed on using a reduced number of coefficients in

the FSDs for shape similarity computation. However we have not attempted any such
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methods since it goes beyond the scope of our research. Given two FSDs F, and F2 , the

shape similarity metric can be expressed as

(71 )
n

where n is the number of points in the sub-sampled contour. The above expression can be

used for all types of FSDs described earlier.

5.5 A Logical hierarchical framework for similarity analysis

As mentioned briefly before a purely segment based matching strategy would be

inefficient for large digitaJ image libraries. We propose to use a judicious combination or

global and local feature to achieve a tradeoff between quality of retrieval and retrieval

time. We use global features corresponding to color and texture to trim the initial search

space. This reduced search space is input to the next stage of matching. We term this

matching strategy the hierarchical framework for similarity analysis The number of

stages in this hierarchical framework is a user specified parameter in our experiments.

The user also specifies the various features and cutoff parameters to be llsed in

hierarchical matching.

We have formulated and described vanous feature similarity metric~.

Combination of these various feature similarity metrics is an open research issue. The

issues to be addressed are not just numeric weighting of the various features, but

fundamental issues like the combination of diverse features like color, texture and shape.

Perhaps psychological understanding of how the human brain perceives similarity as a

combination of diverse features wiJl provide an answer to this fundamental research

issue.

93

-------------~ ~



We propose a logical hierarchical framework for combining these diverse

features. The logical hierarchical framework for similarity analysis consists of multiple

stages. The various stage parameters are specified by the user. Matches from one stage

are ordered and a cutoff is imposed on them. This reduced search space is input to the

next stage. Figure 22 shows query and retrieval by shape features in a database of tools.

Figure 23 shows query and retrieval by shape features in a database of natural and flower

imagery. Figure 24 shows differences in retrieval quality based on global histogram,

global color, local color matching. Figures 25 and 26 illustrate differences in retrieval

quality based on global color pdf and local color pdf. Figures 27 and 28 show the benefits

of hierarchical matching in CBR.

1

Figure 22. Query and shape retrieval results via fourier shape descriptors
Ordering - BeSL to worst -Top to bottom - Left to right

<;14
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Figure 23. Query and best results by local shape teatures
Ordering - Best to worst -Top to bottom - Left to right

Figure 24 3. Query and results by global histogram matching
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Figure 24 b. Query and results by global dominant colors

Figure 24 c. Query and best results by local dominant colors matching
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Figure 25. Comparative analysis of retrieval perfonnances of global color pdf and Local
color pdf

Row one - Query and best matches - Global color hislogram matching
Row two - Query and best matche. - One to One Local color pdf matching

Row three- Query and best matches - One to Many Local color pdf matchin I

Row four - Query and best matches - Many to Many Local color pdf matching
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Figure 26. Comparative analysis of retrieval performances of global color pdf and Local
color pdf

Row one - Query and best matches - Global color histogram matching
Row two - Query and best matches - One to One Local color pdf matching

Row three- Query and best matches - One to Many Local color pdfmatching
Row Four - Query and best matches - Many to Many Local color pdf matching
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Figure 27 a. Query and results by global color histogram matching

Figure 27 b. Query and results by local color pdf (One to One matching)
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Figure 27 c. Query and results by Hierarchical matching
Stage one ~ Global dominant colors

Stage two - Local color pdf

Figure 28 a.Query and results by Global histogram matching
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Figu re 28 b. Query and results by Local color pdf (One to One)

Figure 28 c. Query and results by hierarchical matching
Stage one - Global dominant colors

Stage two - Local color pdf
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CHAPTER VI

APPLICATIONS

6.1 Introduction

We have demonstrated a segmentation based CBR engme for general digital

Image libraries. This is a broad definition of the specific CBR applications. CBR

applications can be varying in nature such as Internet applications, geographic

information systems (GIS) and digital image libraries. In general the possible applications

of CBR include digital libraries, medical images, GIS, and consumer applications. [22]

categorizes these applications into three main models: I. The Consumer Model 2. The

Video-on -Demand model and 3. The Digital library model. [22] details the various

:-.pecifics of these models and concludes that the digital library model holds the best

prospect in terms of viahility. Most of our intended applications chiefly fall under the

rcalm of digital libraries. We have already demonstrated a CBR scheme for general

digital imagery. In this chapter we outline an extension of our CBR scheme to remotely

sensed imagery and elaborate on a novel application of CBR namely automated

Inspection.
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6.2 CBR for Remotely sensed imagery

Due to increasing applications of remotely sensed imagery there are been an

increase in the number of satellites, available bandwidth and remotely sensed image

libraries. Remote sensing data are finding applications in many diverse areas including

agriculture, meteorology, geology and urban planning. We use the LANDSAT TM

imagery to demonstrate our CBR engine for remotely sensed imagery. Figure 29 shows a

sample band 3 LANDSAT TM image. It can be seen that the figure is rich in texture and

contains circularly shaped objects.

Figure 29. A sample LANDSA TM band 3 image

This circular shape is due to the center pivot irrigation system (CPIS), on the ground.

Hence we are well-motivated in using shape and texture features for retrieval. Texture

provides a rich description of the type of land (irrigated, unirrigated, urban). The shape

feature helps in distinguishing between various objects like square fields, circular CPIS

fields, lakes and river banks. Figure 30 shows some sample texture feature based retrieval

results from a remotely sensed imagery database. These features could help determining

areas of similar irrigation, vegetation patterns. In short the potential applications can be
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classified under precision agriculture. One problem researchers have faced with remotely

sensed imagery is retrieval of cloud free imagery for analysis. Such a tool would have

applications in studying vegetation patterns and soil moisture indices. The most attractive

part of the remote sensing application is the availability of means to verify results. The

Oklahoma mesonet for example provides ground truth for soi I moisture images. This

ground truth of soil moisture can drive the segmentation process in terms of scale. Also

this ground truth can be used in conjunction with the semantic segmentation to provide

effective retrieval results. Such a CBR prototype can be used to investigate the

effectiveness/validity of various soil moisture models developed. Thus potential

applications of the remote sensing CBR engine include precision agriculture, hydrology,

meteorology and retrieval of cloud-free imagery for image analysis. More details

regarding this remote sensmg application can be found m [48].

Figure 30 a. CPlS Query Image, Best matches - in decreasing order of similarity (left to
right, top to bottom)

104



Figure 30 b. Riverbank query image, Best matches in decreasing order of similarity (left
to right, top to bottom)

6.3 CBR for automated inspection of circuit boards

6.3.1 Overview

Traditional applications of CBR have focussed strictly on digital image

libraries. We have investigated a real world application namely automated inspection. We

provide a brief background of the preliminary work done on the inspection system and

then elaborate on our CBR application for automated inspection.

Traditional testing of circuit boards has been via electrical tests. These

tests are limited in nature given the varied number of defects known to occur on circuit

boards i.e. open and short circuits. Hence at present technicians spend a considerable

amount of time probing circuit hoards that fail conventional electrical tests. It is our goal
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to reduce this waste of technician effort. As part of our inspection system, the circuit

boards are imaged by an infrared digital imaging system. The thermal signature from the

operating chips is captured by an infrared video sequence. AU circuit boards that fail

electrical tests are designated faulty circuit boards (FCB's) while the others are

designated known good boards (KGB's). Figure 31 highlights a FeB W.r.t. to a KGB. The

proposed eBR system is intended to be an integral part of the overall inspection system.

Presently data fwm the last frame of the video sequence is used for CBR, as the chips

have reached thermal equilibrium. Given a query in the fonn of specific intensity features

of a board image. the CBR system retrieves similar images from the board image

database.

.. ..

Figure 31. Highlighting the difference between a bad board and a good "reference" board

The ultimate goal of this eBR system is to retrieve similar FCB's so that they can be

repaired simultaneously.

The proposed eBR system can be broken down into two parts - the actual

search engine and lhe off-line processing that generates the system libraries. Figure 32

shows the outline of the eBR system. We first explain the off-line processing of the

inspection system (previous work) and the consequent generation of the system library.
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Then we elaborate on the methodology for formulation of higher level features to be used

in CBR. Experimental results that demonstrate the successful application of CBR to

manufacturing are given. Figure 33 shows the configuration of the system library.

Infrared
UDlging
Syslml

RECHSTRATION
ROI

SEGMENTATION

FEATURE
EXffiACTION AND

PARAMTIERIZATION

Figure 32. Off-line processing

SYSTEM

ILIBRARY

PRJ MARY HIGHER METADATA
FEATURE LEVEL INFORMATION
LIBRARY FEATURE

LIBRARY
LIBRARY

Figure 33. Configuration of system library

6.3.2 Preprocessing and primary feature extraction

Each of the digital image sequences is first subjected to an image

enhancement routine by which image contrast is improved. Image registration is

performed to remove the effects of translation and rotation during the imaging process.

Various regions of interest (RaJ's) are identified by an image segmentation routine (see

Figure 34). The ROI template delineates regions corresponding to important integrated
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circuit packages on the board. Feature extraction through the video sequence IS

perfonned within image segments specified by the ROJ template.

Figure 34. A segmentation template with RO['s (chips) numbered

Some of the primary features extracted are the average intensity of chip, th

maxnnum inten ity of chip, the minimum intensity of chip, image granulomctry and the

chip iso/anon intensify. The chip isolation intensity IS the heIght of a Gaussian model fit

to the 2-D intensity signature ofa partIcular chIp Figure 35 illustrates thIs concept (,fthe

G ussian chip model This chip isolation rntensity IS used to eliminate the l'ffects or

background temperature on various primary features. Figure 36 illustrates the usage or

the ChIp IsolatIOn II1tensity More detatls regarding the eltmll1atlOn of background

temperature can be found in [49]. In addition to these primary features, each circuit board

in the sequence database library has some associated meladalu The purpose of using

metadata in CBR is to facilitate rapid retrieval of possible match :. In thiS application the

metadata are quite limIted. We are given metadata that reveal the clas. of a board and Its

type (K B/fCB)
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Figure 35. Formulating a Gaussian model of intensity for a chip
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Figure 36. Elimmat;ng the effects of background temperature via image statistics (chip
model)

6.3.3 Formulation of Higber Level Features

The video feature extraction process generates an over bundancc of data

that necessitates reduction to higher level features. A pairwise feature analysIs techmque

is used for fomlUlatlOn of higher level features from primary features The pairwise

relationship of a single primary feature such as avera chip intensity can be visualized as

in Figure 37.
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Figure 37. -Pairwise feature scat1erplot with linear regression
Pairwise feature analysis for prototype modeling

The various points in the scatterplot correspond to vanous FeB's and KGB's A Ime can

be fit to the KGB's (prototype instances) to the feature pair coordinates via linear

regression. The line is defined by

(72)

vhere Po co sponds to the slope and PI corresponds to the y-intercept of the

regre ion line. The idual y of a particular feature pair vector coordinate (x, 'YI) with

respect to the Iinear regr s ion resu It is given by

(n)

This residual is computed for all pairs of prototype features on the feature plot. The mean

of all these residuals is referred to as y 1M! , the standard deviation for the prototy . set

Y,Wfi IS defined as the re idual of a feature pair corresponding to a FCB i.

A tolerance factor f p is computed from the standard deViation of the

features pair value in the prototype set If Y,n'l! _ r p is not satisfied, the corresponding

111



feature pair on FCB i is considered to be an outlier In other words, the point corresponds

to an outlier board. An outlier board has an associated residue factor [; given by

£:=1 Y,WlJ -rp I· (73)

This residue factor is a measure of the distance of the outlier board from the estimated

regression line. Figure 37 shows instances ofoutlter boards.

A list of outlier boards is computed for all pairw'ise feature sets (each

scatterplot). This list of outlier boards for all pairwise features is reduced to a list of

outlier boards associated with each ROI. This list is computed using the aggregate residue

factors corresponding to a particular board in various feature pairs. Hence these boards

have an aggregate residue factor associated with each ROJ. The aggregate residue factors

are designated as higher level features. These results are used to prioritize the various

ROJ on a board in order of most likely cause of defect to least likely cause of defect and

to perform similarity assessment ;n CBR. Figure 38 shows priority factors for various

FCBs.

1

2
1 3

1

Figure 38. FCBs with priority factors for various chips (RGI)

6.3.4 Que'1' f'ormulation and CDR

In this application, we have tested two techniques for CBR. One approach

uses primary features, another exploits higher level features. The pnmary feature used in

the eBR examples in is the chip isolation intensity The query can be formulated by
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specifying the query FCB. The objective of CBR in this context is to find FCB's with a

similar set of faulty chips. Based on the metadata information associated with the query

board, the CBR engine examines only boards within the target class. The candidate

boards are selected from the target database, and a similarity factor is computed by a [east

squares matching between higher level features generated by our pairwise methodology

as compared to CBR using primary features. The matches are displayed in order of their

similarity factors. Figure 39 shows the query FCB and the best match by CBR using

primary features, and Figure 40 shows the query FCB and the best match for CBR using

higher level features generated by our pairwise feature analysis. CBR by higher level

features has shown the advantage of increased match relevance. For the circuit board

application, this rele vance is quantified in tenns of overlapping faulty chips between the

boards with respect to the query FCB.

9731000

Figure 39. Query hoard and best match from CBR using primary features

Query Board 9855142 9788759

Figure 40. Query hoard and best match from CBR using higher level features
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One of the most difficult problems in CBR is the designation of a cutoff

parameter that limits the pool of possible matches. In this application. the cutoff

parameter is specified automatically by the first retrieved KGB in the pool of possible

matches. Figures 41 and 42 show query and results using the cutoff parameter for CBR

using primary features and CBR using higher level features.

8705104

8705112

171S317

Fi~ure 41. Query and results with cutoff paramter for CBR by primary features
Matches ordering - Best to worst (Left to right, top to bottom)

Figure 42. Query and results with cutoff paramter for CBR by higher level features
Matches ordering - Best to worst (Left to right, top to bottom)
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6.3.5 Analysis

We now introduce two terms: the intra-board correlation factor and the

inter-board correlation factor in the analysis of our CBR (for automated inspection)

methodology and our results. The intra-board correlation is a correlation measure

computed for average intensity data sets for various chip pairs. The Karl-Pearson

correlation coefficient is used for this purpose:

Cov(x, y)
P =-----r=======

~Var(x)Var(y)
(74)

Given n chips on each board, each chip has n-l possible chip pairs. On the whole there

are n(n-/) possible chip pairs. Table 2 is indicative of the intra-board correlation factor

behavior over all n(n-l) chip pairs. The standard deviation and the average of the intra-

board correlation factor p from Table 2 clearly portray the linear behavior of the given

data sets. This validates the application of linear regression to the given data sets.

Minimum p 0.92768

Maximum p 0.99912

Mean p 0.97765

Standard Deviation 0.020323
p

Table 2. Intra-board correlation factor behavior for 90 possible chip combinations (i.e. 10

chips)

The inter-board correlation factor is computed by means of a proportionality factor.

Given boards 8, and 8 2 with feature sets (II·····. 1n ) and (II······· Ill)' The
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proportionalit)' factors for HI and R2 are ( .:;.
• I

'~I ). Let the av~rnge proportionality
ill

factor be L .Let us now study the inter-board correlation between the query board and
f

each of the matches. One would expect the correlation to be maximal for a perfect match

and then decrease as the order progresses from best match to worst Thus, the standard

deviation of the associated proportional ity factors should increase Crom the best to worst

matches. Figure 43 shows this relationship, which confinns the CBR results. The fact that

the behavior of the inter-board measure is not monotonic indicates that simple distance

measures or simple proportionality measures do not guarantee a proper relevance of

matches in terms of a decreasing order of similarity.

J o,~
glO:!1I12 I
";~~'"1 I
In, ),,..,,

so
of U\,,ll

f

f
"l:)w

!
,

o H' "
Match number (from brst to worst)

Figure 43. Standard deviation of inter-board correlatIon from best to worst matches for
different query boards

We have developed a working prototype of the CBR engine described here We have also

developed tools to fonnulate queries for CBR by specific chip(s) on a specific board. OUT

experimental results show that the cutoff is reached earlier usmg CBR by higher level

features generated by our pairwise methodology, as compared to CBR usmg primary
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features. The pairwise feature analysis technique has proven to be an effeclive 1001 in the

formulation of higher level features. This novel technique overcomes the shortcomings of

conventional primary feature-based techniques by use of relative pairings of feature

points rather than simple distance measures. The simple distance measures used with

primary features are ineffective when imaging conditions are variable or when inter-chip

interactions are significant. Currently, our focus is on automating the extraction of board

features and consequent generation of the system library. The advantage of our

methodology is associated with the pairwise technique used to generate a significantly

simpl ified, yet comprehensive on-line database library. lending to the increased relevance

of matches.

r 17
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CHAPTER VII

CONCLUSIONS

7.1 Summary

Current searches in databases/libraries are hased on text k~yword descriptors

called metadata. Recent advances in digital library technologies have advocated the

concept of CBR. The emphasis has been on automatic extraction of semantic entity

descriptors and using these descriptors to access the library. Text metadata perform well

for text libraries consisting mainly of documents. Thus the need for CBR is more

apparent in growing multimedia databases. Access to multimedia libraries is based on the

semantic nature of the content. Our research has focussed specifically on digital image

libraries. Text metadata are ill-suited for this purpose. Recent research has focussed on

automated extraction of low level global image descriptors in hope of their contributing

to a crude semantic description of the image. In cue with recent advances in human

psychological understanding, we have advocated a segmentation based CBR. We have

demonstrated a segmentation scheme for CBR. Rather than providing a complete

partition of the image, we provide only segments of significance based on a unique

LLGG metric. As part of an overall system we have used this segmentation to generate

features for retrieval purposes.
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We have also shown an extension of our CBR methodology to remotely sensed

imagery. The potential applications of the remote sensing CBR engine include precision

agriculture, hydrology, meteorology and retrieval of cloud-free imagery for image

analysis. Apart from these rather general applications we have also elaborated on a CBR

application profitable to industry namely automated inspection. CBR for automated

inspection is guided by the simple philosophy that groups of FCBs can be repaired at the

same time saving time and money.

In spite of advances made in CBR research some open research issues remain.

The main amongst these is the combination of the diverse features involved in CBR for

similarity analysis. It is very difficult to determine in an automated manner the object and

associated feature of interest. In our CBR engine the user specifies such parameters.

Perhaps the solution to the problem lies in understanding of how the human brain

perceives similarity as a combination of diverse features. Nevertheless this true problem

of similarity analysis will prove to be an exciting area of research in the years to come.

Some other possibilities include investigation of ground truths for segmentation and

CBR. Validation of segmentation and CBR results can be achieved by development of

quantitative metrics for the same.
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