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CHAPTER 1

INTRODUCTION

A sequ,ential computer executes one CPU instruction at a time. Over the years

sequential computers have increased steadily in performance primarily as a result of

improvements in digital hardware technology. One major concern of computer de

signers is that logic and memory devices are approaching ultimate physicallirnits on

their size and speed. While size reductions and speed increases of a few orders of mag

nitude beyond present levels seem feasible, further improvements in the performance

of sequential computers may not be achievable at acceptable cost. A more economic

solution is to design systems that can process more than one CPU instruction at a

time. This is known as parallel processing. Paranel processors are also referred to

as distributed systems. These systems consists of an interconnected collection of au

tonomous computers [Sta84]. There are many ways of classifying distributed systems

ba;sed on their structure or behavior.

Based on Flynn's taxonomy of computer architectures, distributed systems belong

to the MIMD (multiple instruction multiple data) class of computer architectures

[Tan92]. The MIMD class consist of two categories: those that have shared memory

(tightly coupled), and those that do not (loosely coupletl).
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As shown in Figure 1.1, each category can be furthered divided based on the

architecture of the interconnection network. In bus-based systems, there is a single

network, backplane, bus, cable, or other medium that connects all machines. Switched

systems connect machines by individua~ wires.

MIMD

tightly couPy loosely coupled

Multi- Multi-
processors computers

/' ~ / ~
bus-based switched bus-based switched

I I
Hyper-

Sequent RP3 LAN cube

Figure 1.1 MIMD Hierarchy

Tightly coupled systems are also referred to as multiprocessors. In multiproces-

sor systems, at least part of the primary memory is shared as shown in Figure 1.2. A

system with this shared (globaQ primary memory organization provides a convenient

message depository for fast processor to processor communication.
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A shared memory can, however, be a major bottleneck, p.articularly when the

processors must share large amounts of information since normally only one processor

can access a given memory module at a time [Hay88]. Tightly coupled systems tend

to be used more as parallel systems (working on a single problem).

PE 1 PE • • • PEn2

Interconnection Network N

Memory

M

Processing

elements

Shared

Memory

Figure 1.2 Tightly Coupled System

Loosely ooupled systems are also referred to as multicomputers. In multicom-

puter systems, processors only have access to their own local memories and processors

communicate through message passing as shown in the system of Figure 1.3.
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Loosely coupled systems are easy to build with the disadvantage of more complex

software. Software designed to run on distributed systems give them a high degree of

cohesiveness and transparency. Loosely coupled systems tend to he used for working

on many unrelated problems.

r---------
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1

Processors
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P
2

T----------
p
n

Ml M2 Mn

...

l

PE 1 I, PE 2 PEnI:
1
I
1- - -- - - -- L. ____ ---- -- -- - - --

Interconnection Network N

Figure 1.3 Loosely Coupled System
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Initially, researchers strictly followed the common parallel programming paradigms:

shared variables (for tightly coupled systems) and message passing (for loosely cou

pled systems). More recently, efforts to combine the advantages of multiprocessors

(easy to program) and multicomputers (easy to build) have lead to communication

paradigms that simulate shared memory on multicomputer systems [SZ90). These

paradigms allow multicomputers to communicate through Distributed Shared Memory

(DSM). Distributed Shared Memory is an attractive abstraction because it provides

processes with uniform access to local and remote information. This uniformity of ac-

cess simplifies programming, eliminating the need for separate mechanisms to access
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local state and remote state informat.ion. Several techniques have been proposed to

allow multicomputers to communicate through Distributed Shared Memory (DSM)

[BT91, LH89, MSRN93, MSZ93,. SZ90, FL92, AHJ91, GLL+90]. Each technique pro

vides its own level of coherence. An important class of DSM implementations is one

which uses cache memories to improve efficiency. Brown, Afek, and Merritt proposed

cache-consistency pwtocols that provide a lower level of coherence. Such protocols

are useful for applications that do not require strict consistency among all sites in

a distributed system [ABM89, Br090]. Mizuno, Zhou, Singh, and Neilsen proposed

more efficient algorithms which enforce the same level of coherence as Brown's proto

col [MSRN93, MSZ93]. These protocols use the abstraction of a single copy of shared

memory to enforce sequential consistency. This provides the advantage of a simple

implementation and a clean correctness proof. However, a single copy of shared mem

ory could become a bottleneck. Typically, if remote accesses to shared memory is

costly, this would also decrease performance and object availability.

1.1 Thesis

In this thesis, we present a decentralized cache-consistency protocol for DSM which

provides the same level of coherence as the protocols presented in [ABM89, Bro90,

MSRN93, MSZ93J. Our protocol distributes the shared objects among all processors

in the network providing an increase in performance and object availability. Our

protocol is not dependent on the system architecture, therefore allowing the algorithm

to scale to a large number of processors more efficiently than the protocols in [ABM89,

8r090, MSRN93, MSZ93]. As memory cost decreases and the cost of communication

become more expensive, we show that the increase in memory performance/cost of

our protocol is minimal as compared to the reduction in communication cost. We

prove that our protocol satisfies a formulation of sequential consistency. Next, we

provide an in-depth comparison/analysis of our protocol and the previously proposed



6

protocols. Lastly, we show performance metrics of each protocol and explain which

protocol performs better or worse in various situations.

In summary, this thesis is three-fold:

1. To present a decentralized cache-consistency protocol for DSM.

2. To prove that the protocol enforces sequential consistency.

3. To provide a comparison of our protocol with proposed protocols.

1.2 Organization

The thesis is divided into the following chapters:

• Chapter 2: A literature review of cache-consistency protocols for DSM is pre

sented.

• Chapter 3: A discussion of the decentralized cache-consistency protocol is pre

sented.

• Chapter 4: A comparison of cache-consistency protocols for DSM is presented.

• Chapter 5: A summary of the thesis and suggestions for future work are pre

sented.

• Appendix A: Related proofs are included.

• Appendix B: Memory and communication costs of the existing protocols are

presented.

• Appendix C: DSM simulation parameters are presented.



CHAPTER 2

LITERATURE REVIEW

The extent to which all processors can be kept busy depends on the computer

architecture, the tasks being performed, and the manner in which the task have been

programmed. A major concern in designing and programming efficient parallel ap

plications is in avoiding conflicts in the use of shared resources e.g. memory. In order

to maintain an appropriate performance level, often multiple copies of shared data.

are maintained. In most distributed applications, all updates are performed on a

primary copy and all reads are performed on a local copy that is cached. The value of

a primary copy is replicated to remote cached copies once an update occurs. Repli

cation introduces the problem of having inconsistent copies of the same logical data.

Complications also arise because the operations on shared data may not be instanta

neous. A memory consistency model defines certain restrictions on the use of shared

memory. Applications that adhere to these restrictions are given guarantees about

the coherence of that memory. Several notions of consistency have been proposed in

the literature to implement DSM [HW90, Lam79, AHJ91, GLL+90, FL92].

2.1 Memory Consistency

Herlihy and Wing proposed the idea of linearizability, which is a correctness condition

for concun-ent objects that allows strict consistency providing a high level of coher

ence. Linearizability provides the illusion that each operation applied by concurrent

processes takes effect instantaneously. Linearizability is more appropriate for appli

cations such as multiprocessor operating systems in which concurrency is of primary

interest.

A correctness condition which provides a less restricted form of consistency than

7
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rithm incurs less latency as compared to fBro90]. As shown in Appendix B, the cost

performance of this algorithm also requires an expensive atomic broBJdcastjmulticast.

Mizuno, Singh, Raynal, and Neilsen Algorithm

Mizuno, Singh, Raynal, and Neilsen proposed a memory consistency protocol in

[MSRN93, MSZ93] that allows the same set of sequentially consistent executions

as the protocol in [Bro90]. This protocol maintains additional information in shared

memory in order to reduce the amount of communication (i.e. no multicasting). The

architecture organization consists of a shared memory module (SMem), residing at

a network processor, and multiple processors. SMem keeps track of the most recent

write operation on each object as well as the values in the local cache of each processor.

This is done by maintaining state information and capturing causal relations among

read/write operations at SMem. All updates are performed on local cached copies

and also at SMem. All reads are performed locally if the object is presentjotherwise

the object is read from SMem. After each access to SMem, a process is notified of any

out-of-date values through an acknowledgment. As shown in Appendix B, this mem

ory consistency protocol uses the communication verses memory and computation

trade-off to achieve efficient performance.

2.3 Definitions

As stated in the previous section, most DSM implementations are based on cache

consistency protocol which use different variations of the notion of sequential consis

tency. In this section, we review definitions of consistency on which our implementa

tion is based. Some of the definitions and notations introduced in this section foHow

[MSRN93, MSZ93J. A shared memory system consists of a set of processors P and

a memory M. Ewch processor in P may execute a sequence of read and write oper

ations on objects in M. A write operation by processor i on an object x is denoted
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by Wi(X)V, where v is the value written on x by this operation. A read operation on

x by i is denoted by r,:(x)u, where u is the value of x returned by this operation. For

simplicity, we assume that all values written by read and write operations are distint.

An execution history of a shared memory system is a poset (; = (U, -+u), where

U is a set of read and write operations and -+u is an irreflexive and antisymmetric

relation on U; that is, -+u is a partial order on U. In the following we give some

definitions:

• We say that an execution history fJ = (U, -+u) is processor-ordered if the oper

ations of each processor in U are totally ordered by -+u.

• An execution history S= (8, -+8) is a sequential history if it is processor-ordered

and -+8 is a total order.

• A sequential history S= (8, -+8) is legal if for every read operation r( x)v in 8,

there exists a write operation w(x)v such that w( x)v -+s r(x)v and there does

not exist a write operation w(x)u such that w(x)v -+8 w(x)u -+8 r(x)v.

• A restriction of V = (V, -+v ) to the set U, where U ~ V, is an execution history

(; = (U, -+u) such that for any operations 0 and 0' in U, 0 -+u 0' iff 0 -+v 0'.

• We define (; I i to be the restriction of history (; to the set of operations

performed by i.

• Two execution histories Sand (; are equivalent if for every processor i, S I i =

[/ Ii.

•' Two execution histories S = (8, -+8) and (; = (U, -+u) are result-equivalent

if S = U; that is, corresponding read operations return the same value and

corresponding write operations write the same value on both Sand (;. For
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example, WI (x)l, W2( x )2, r2(x)1 and Wl (x )1, r2(x )1, w2(x)2 are result-equivalent

but not equivalent.

• (; = (U, --+v) respects V = (V, --+v) if V ~ U and for any two operations 0 and

0' in V, if 0 --+v 0' then 0 --+u 0'

Definition 1: A memory M is consistent if for each of its execution histories H,

there exists a legal sequential execution history WR = (WR, --+WR), where W R is

the set of aU read and write operations in II, such that II and WR are equivalent.

Definition 2: A memory M is consistent if for each of its execution histories H,

there exists a legal sequential history W = (W; --+w), where W is the set of all write

operations in iI, such that the following property holds for each processor i

(a) Let W R i = W u~, where R is the set of read operations performed

by processor i in iI. Then, there exists a legal sequential history WR =

(WR, --+WR) such that WR i respects Wand iI I i = W14 Ii.

It has been shown in [MSRN93! that Definitions 1 and 2 are equivalent. Def

inition 1 considers a sequential history for the entire system. This consists of the

read and write operations issued by all processors. Definition 2 considers a sequential

history for each processor i. This consist of the write operations issued by all the

processors and the read operations issued only by processor i. We will use the defini

tions in Appendix A, to prove that our protocol satisfies a formulation of sequential

consistency.



CHAPTER 3

PROBLEM STATEMENT

The previously proposed protocols in [Br090, ABM89, MSRN93, MSZ93], each

require the abstraction of a single processor centralized memory to enforce the real

time ordering on writes. As this simplifies the implementation and provides a dean

correctness argument, in reality this strategy would perform poorly. Particularly, as

the number of processors/objects increase, and each processor accesses shared mem

ory more frequently. In order to maintain an efficient performance, [Br090, ABM89,

MSRN9'3, MSZ93] assume the architecture consists of a set of processors connected

by a shared bus. In this thesis, we consider a larger scale system architecture in

which computers are logically fully-connected and communicate over costly point

to-point links. Due to the cost of remote accesses, a single processor centralized

memory strategy would become a bottleneck; decreasing the performance and object

availability.

In this chapter, we present a decentralized cache-consistency protocol for DSM

which manages objects distributed among all processors in the system. This pro

vides an increase in access performance due to the locality of reference. It also allows

the algorithm to scale to a large number of processors/objects more efficiently than

the previous protocols, by avoiding the bottleneck of a single processor centralized

memory. Our protocol preservers the real-time ordering on write operations, and al

lows the same set of sequentially consistent executions as [Br090, MSRN93, MSZ93]

without requiring atomic broadcast/multicast. As memory cost decrease and the

cost of communication become more expensive, we show that the increase in memory

performance/cost of our protocol is minimal as compared to the reduction in commu

nication cost. In the following sections we give an overview of the protocol, followed

by a description of two implementations of the the protocol. Finally, we show the

13
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performance of the protocol in terms of memory and communication cost.

3.1 Overview of Protocol

We assume that the system consist of logically fully-connected autonomous computers

communicating across point-to-point links. Each processor contains two threads of

control, a Processor Manager and an Object Manager, which share a single address

space. This address space contains state information to capture causal relations of

read/write operations to an object, and to notify a processor of invalid objects. Each

processor initially owns a set of objects, and no two processors own the same object.

An owner of an object, owns the most consistent version of an object, as updates to

an object are only allowed to be processed by the owner of that object. This allows

the real-time ordering on write operations to an object to be preserved; but only with

respect to the owner of the object. Therefore, all other processors only maintain local

cache copies. Each processor manager communicates with the owner of an object for

a read/write request, if:

1. During a read to an object not currently owned, the value in the cache is invalid.

2. A write operation is issued to an object not owned by the current process.

Otherwise, the read/write operation is performed locally.

3.1.1 Distributed Manager Implementations

In the next section, we describe two management schemes used to keep track of the

owner of an object. A primary problem with distributed manager schemes is the

initial distribution of objects. As show in Figure 4.7 , an optimal solution would be

to distribute an object to a processor who accesses the object most frequent.
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Fixed Distributed Manager

The fixed distributed manager scheme distributes the central manager's (SMem) role

to every processor in the system, thereby avoiding a single processor bottleneck sit

uation. In this scheme, every processor keeps track of owners of a predetermined set

of objects (determined by a mapping function H) [LH89]. The primary difficulty in

such a scheme is choosing an appropriate mapping from objects to processors. If we

assume there are M objects in the system and I = {l, ... ,M}. H is defined as a

hashing function such that

H(p) =p mod N

where pEl and N is the number of processors. Therefore, when processor i requests

to access an object p, processor i contacts tbe object manager H(p), and the protocol

proceeds as in the centralized protocol in [MSRN93, MSZ93].

Dynamic Distributed Manager

In the dynamic distributed manager scheme, every processor keeps track of the own

ership of an object in its local cache. This is maintained through the use of the

vector Probowner [LH89]. The value Probowner[o] contains the owner of object o.

As processors that frequently access an object can cause the object to migrate, this

value can either be the true owner or the probable owner of an object. This value is

used as a hint to locate the true owner of an object.

When a processor wants to perform a remote operation on some object 0, it sends

a request to the processor i indicated by the Probowner[o] field. Upon receipt of the

request, if processor i is the true owner of the object the algorithm proceeds as in the

centralized protocol described in [MSRN93, MSZ93]. Otherwise, processor i forwards

the request to the processor indicated in its Probowner[0] field. This continues until

the true owner of the object is found. The hint in the Probowner[o] is updated after
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every remote operation to object o. In Appendix A, we show that the implementation

of the dynamic distributed manager algorithm requires at most (N - 1) forwarding

request messages to locate an owner of an object in a system containing N processors.

In the optimal case, only one extra message is require to forward a request; assuming

the hint of the probable owner is correct. Because, the hints are updated as a side

effect of different migration policies, the average number of messages required should

be much less.

Migration Policies

Our dynamic distributed manager scheme allows objects to migrated between pro

cessors. This introduces the notion of a migration policy which could upgrade or

degrade the performance of the protocol due to the locality of reference. There are

two policies that can be used: Random Policy and Threshold Policy. OUf thesis is

only concerned with the threshold policy. We consider migration on read, write, and

read/write accesses.

• Random Policy - The random policy is a simple migration scheme that uses no

state information. An object 0 is simply migrated to process i after process i

request a remote operation on object o. The problem with this approach is that

useless object migration can occur when an object is migrated to a processor

that doesn't access it frequently.

• Threshold Policy - The problem of useless object migration under the random

policy can be avoided by maintaining statistical information of an object most

frequently accessed by a processor. Based on locality of reference, this strategy

chooses the best processor to engage in migration of an object.
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This is very costly in terms of memory. Each processor must maintain a thresh

old vector T of size N x M; where N denotes the number of processors and M

denotes the number of objects. Moreover, T[p, 0] contains the expected number

of accesses by processor p on object o.

3.1.2 Data Structures

Each processor manages the foUowing data structures:

Let N denote the number of processors and M denote the number of objects.

Fixed Distributed Manager Scheme

1. Memory area C[M]. Ci[M} contains the values cached at processor i.

2. One-dimensional array Causal[M], used to capture causal relations among write

operations. Causali[o] keeps the version number of the most recent write on

object 0 of processor i.

3. A set of valid cache objects valid. The set validi is initialized to the objects

owned by processor i.

Dynamic Distributed Manager Scheme

1. Same as the Fixed Manager Scheme.

2. One-dimensional array Probowner[M). Entry Probownerdo] contains the hint

of the owner of object 0 by processor i.

3.2 Description of Protocol

In this section, we provide the actual description of the protocol using a syntax similar

to the C programming language. We denote all elements in a one dimensional array R
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by R[*]. Note that all operations on an object local or remote are executed atomically.

Therefore, simultaneous updates to local memory by the processor manager or the

object manager are synchronized.

Variable Definitions

In this section, we define and motivate all variables used in the our description of the

protocol.

1. Let x be an integer value denoting the object to access in the cache.

2. Let v represent any data structure or block of data structures to he stored in

shared memory.

3. Let valid represent a set of integer values to denote the valid objects stored in

the local cache.

4. Let Causal be an integer vector used to capture causal relations among write

operations to a shared object.

5. Let C be a vector of the type v to represent the shared objects maintained in

the cache.

6. Let i and j be integer values to denote the processor id.

7. Let Probowner be an integer vector used to denote the owner of an object.
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Fixed Distributed Manager

In this section we provide a description of the decentralized protocol using the fixed

distributed manager scheme.

OBJECT MANAGER at processori:

Process [write,j,x,v, CausaljH ] message from processorj ::
Cdx] = Vj

increment(Causali[xJ);
Invalidate(Invalidi);
validi = (validi - Invalidi) u {x};
send[Causah[*]] message to processorj

Process [read,j, x, Causalj(*] ] message from processorj ::
Invalidate(I nvalidi)j
validi = (validi-Invalidi) U {x};
send[Ci[x], Causali[*]J message to processorj

Procedure Invalidate(var Invalid) ::
Invalid = '0j

For each y EM, Y # x do
if (Causali[Y] < Causalj[Y]) then
Causali[Y] = OJ
Invalidi = Invalid; U {y}

endif
enddo

PROCESS MANAGER at processori:

write (x, v) ::
if (H(x) # i) then

send[write, i, x, v, Causali[*]] message to proceSSorH(x)
receive[Causalj[*]J message from processoTH(x)
InvaJidate( I nvalidi);
Causali[x] =Causalj[x];
valid; = valid; - I nvalidi ;

else
increment (Causali[x));

endif
validi = validi U {x};
Ci[X] = Vj
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read(x) ::
if x ¢ Validj then

send [read,j, x, Causalj[*] } message to prO€eSSoTH(x)
receive [v,Causalj[*] ] message from procesSOTH(x)
Invalidate(Invalidj);
Causali[x] =Causalj[x];
validj = (validj - Invalidj) U {x};
Cj[x] = Vi

endif
return(Cj[xD;

Dynamic Distributed Manager

In this section we provide a description of the decentralized protocol using the dy

namic distributed manager scheme.

OBJECT MANAGER at prOCeSSOTj:

Process [write/ forwardw,j, x, v, Causaljf*] ] message from processorj ::
if (Probownerj[x] == i) then

checkthreshold(x, j);
Ci[X] = v;
increment(Causalj[x));
Invalidate(I nvalidi);
validi = (validj - Invalidd U {x};
send[Causaljf*] , Probownerj[x]] message to processorj

else
send[jorwardw,j, x, v, Causali!*]] message to processorprObOWneTj[X)

Process [read/ fOTwardr,j, x, Causalj[*J ] message from proce.'Jsorj ::
if (Probownerj[x] == i) then

checkthreshold(x, j)j
Invalidate(Invalidd;
validi = (validi - I nvalidi) U {x};
send[Ci[x], Causalil*] , Probownerj[x]] message to processorj

else
send[jorwardr, j, x, Causal;[*]] message to processorpTobowneTilx]

Procedure Invalidate(var Invalid) ::
Invalid = 0;
For each y EM, Y :I: x do

if (Causali[Y] < Causalj[Y]) then
Causali[Y] = 0;
Invalidi = lnvalidi U {y};

endif
enddo



Procedure checkthreshold(x,j) ::
increment(TilJ, x])j
if Ti Ii, x] > t then

Probowneri[x] = j;
endif

Procedure resetthreshold(x) ::
if (Probownerj[x] == i) then

for each j E N do
Tjfj, x] = OJ

enddo
endif

PROCESS MANAGER at proceSSOTi:

write (x, v) ::
if (Probowneri[x] =I i) then

send[write, i, x, v, Causali[*]] message to processorProboumer;[x)
receive(Causalj [*], owner) message from processorProbowneT; [x]

Probownerdx] = owner;
Invalidate(Invalidj);
resetthreshold(x)j
Causali[x] =Causalj[x]j
validj = validj - Invalidi;

else
increment Causali[x]j

endif
validj = validj U {x}j
Cj[x] = v;

read(x) ::
if X (j. Validj then

send [read,j,x,Causah[*]] message to processorprobownerifx]
receive lv, Causalj[*], owner] message from processorprobowner;(x]
Probownerdx] = ownerj
Invalidate(Invalidi );
resetthreshold( x);.
Causali[x] =Causalj[x]j
validj = (validi - Invalidi) U {x};
Ci[X] = v;

endif
return(Cilx])j

21
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Cost Performance

Our decentralized protocol requires one round of message exchange for a write oper

ation if the current process is not the owner of the object; else the value is written

to the local cache. A read operation requires one round of message exchange if the

value in the local cache is not valid and the current process is not the owner of the

object; else the value is read from the local cache. We provide a protocol similar to

[MSRN93, MSZ93], that does not require an atomic broadcast capability, and utilizes

less message rounds due to the locality of reference (refer to Appendix B).

In particular, if we consider performing all read operations, our protocol provides

about the same level of performance as the protocols in IMSRN93, MSZ93]. Although

on the average, our protocol requires slightly fewer messages than the single shared

memory protocols in [MSRN93, MSZ93]. This is because remote reads to objects

owned by a process can be performed locally, were as, it must always be performed

remotely using the protocols in [MSRN93, MSZ93].



CHAPTER 4

PERFORMANCE ANALYSIS AND RESULTS

In this chapter, we simulate our protocol and the protocols presented in [BrogO)

MSRN93, MSZ93]. We analyze the behavior of each protocol under various condi

tions, and show which protocol behaves better or worse using different metrics. Our

simulation consists of a process scheduler, which schedules discrete events involving

multiple processes. Processes created can communicate by using sendO and l"e

ceiveO fuctions. The simulation provides several process synchronization techniques

such as: send/receive, signal/wait, and release/acquire. We run each simulation us

ing a 486DX4 100-MHz computer running the Linux Operating System. We assume

the simulation parameters given in Appendix C, and the maximum duration of any

protocol to be 10000000 (i.e. in simulation ticks).

4.1 DSM Simulation

4.1.1 Performance Metrics

For each protocol we assume the simulation parameters given in Appendix C. We

model the performance of each protocol and provide various metrics such as: local

access efficiency, average time for an operation, average wait time for an operation,

average number of forward messages per forward request, and the comparison of

performance between two algorithms.

Given the total access time t a , and the percentage of local access operations

P1ocal, we define an access time ratio r = ta.mem/t%x:.o.l; where ta,OCo.l is the Local

Read/Write time and t a•mem is the Remote Read/Write time. We calculate the Re

mote Read/Write time as the time to send the request to shared memory, process the

request, and receive the result/complete (refer to Appendix C for actual times).

23
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Because Brown's Algorithm requires different access times for remote reading and

writing, the access time at shared memory ta.~mem is defined as follows:

ta..mem = RemoteReadTime* p + WritelnvalidationTime* (1 - p)

where p is the probability of performing a read operation. For all other algorithms,

the remote read/write access times are equal (refer to Appendix C). We define the

average access time taa.lle as:

Eq. 1

We define the local access efficiency e = taIOCa.Jtaa"e' to be the ratio of local access

time to the average access time [Hay88]. This determines the factor by which t aalle

differs from its minimum possible value talocal' From Eq. 1 and r = ta.mem/t/Jloca.P we

obtain

e = 1/(1' + (1 - r) *Ploca,) Eq. 2

The wait time per operation is defined as the time spent waiting for shared memory

to perform the request. Due to contention of processors for shared memory, this could

vary among the different algorithms. We relate the performance of two algorithms,

say X and Y, by showing how much of a percentage faster X is than Y. This is

denoted as follows

P/aIJter = ((ExecTimey - ExecTimex)/ExecTimex) * 100
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4.2 Analysis

In the next sections, we analyze the behavior each protocol in various conditions, and

show which protocol behaves better or worse and by what metrics. Except for as

designated in the following figures, we assume:

• the total number of processors is 100.

• the total number of objects is 100.

• the total number of operations is 1000 per processor.

• the probability of performing a read/write operation is equally likely (i.e. 0.5)

• objects are selected from a uniform distribution.

4.2.1 Centralized Protocols

In this section we show the performance of the algorithms proposed in [Br090, MSRN93,

MSZ9'3].

As defined in Eq. 2, e is calculated as a fraction of P1ocal. Figure 4.1 shows that it

is important to achieve high values of Plocal (between 0.9 and 1.0), in order to make

e ~ 1 (i.e. taa"e ~ talocal)' Because all writes must be performed at shared memory,

the local access efficiency directly depends on the probability of reading an object;

which can be performed local or remote. If the probahility of reading is very high, the

local access efficiency increases; while the access time decreases. Based on Figure 4.2,

these algorithms will probably perform better-in terms of object accessibility-if

the application using these algorithms consisted of more reads than writes.

i
I

---1
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Figure 4.1 Access Efficiency vs the Probability of Reading

Figure 4.2 Average Access Time vs the Probability of Reading
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Figures 4.3 and 4.4 show the average time of an operation as the number of pro-

cessors scale from 50 to 1000 and the total objects scale from 50 to 400; assuming a

point-to-point architecture. If we consider the parameters in Appendix C-such as

LATENCY, Local Read, and Remote Read/Write Time-and the number of proces-

sors in Figure 4.3, the access time for Browns algorithm can range from 1 to 105105

clocks, and 1 to 202 clocks for the Centralized protocol. As predicted, Brown's algo-

rithm performs much worst. This is due to the expensive mult,icast implemented as a

set of point-to-point messages, which increases the write access time linearly with the

number of processors .. As the number of objects increase, both algorithms maintain

a constant average access time.

Figure 4.3 Average Access Time vs Number of Processors
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Both the algorithms presented in {Bro90, MSRN93, MSZ931, perform all writes and

reads to/from the single processor centralized memory in a single atomic operation.

This creates a bottleneck typically when several processors are contending to access

the centralized shared memory. This results in a wait time at the centralized memory

until the request can be handled. In Figures 4.5 and 4.6, we show the average wait

time as the number of processors scale from 50 to 1000, and the number of objects

scale form 50 to 400. We will show that our Decentralized protocol scales the number

of processors much better by distributing objects uniformly to all processors; which

in turn decreases processor contention, as well as, access time.
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Figure 4.5 Average Wait Time vs Number of Processors

I-,

Figure 4.6 Average Wait Time VB Number of Objects
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4.2.2 Decentralized Protocol

In this section we show the performance of our protocol as compared to the cen

tralized protocol in [MSRN93, MSZ93]. We examine both the fixed manager and

dynamic manager schemes to implement our protocol. If we consider the parameters

in Appendix C,such as LATENCY, Local Read, and Remote Read/Write Time, then

the access time for our decentralized protocol ranges from 1 to 202 ticks.

In certain situations the decentralized algorithm could provide an optimal level of

performance. Figure 4.7 shows that if a processor accesses the objects it owns more

frequently, the average access time per operation decreases significantly, as the local

access efficiency increases. This is due to the locality of references to processor owned

data objects.

Figure 4.7 Locality of Reference
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Although migration in the dynamic manager scheme can be performed on read, write,

and read/write accesses, Figure 4.8 shows that read/write migration yields a lower

average access time for low values of the threshold t. As the threshold increases, the

average access time for all migration schemes approaches to 83.0.

Figure 4.8 Average Access Time VB Threshold

As proved in Appendix A, the worst case number of forward request using the dynamic

manager scheme is N - 1; where N is the total number of processors. Because,

the hints in the Probowner field are updated as a side effect of different migration

policies, overall the average number of messages required should he much less; and

is dependent on the threshold IDevelt and the probability of performing a remote

operation (1 - Plocal)' Figure 4.9 shows the average forward messages per forward

request.
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Figure 4.9 Average Forward Messages/Forward Request

For the remaining analysis, we assume a 50% chance of selecting an owned object

using both the fixed and dynamic manager schemes. We also assume read/write

migration for the dynamic manager scheme. As shown in Figures 4.10 and 4.11, the

decentralized algorithm performs significantly better. In particular, the local access

efficiency ,e approachs 1 slightly faster than the centralized algorithm (Figure 4.10).

This is due to the locality of reference; as reads and writes can both be performed

locally if the object is owned by the current processor.
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Therefore, our algorithm performs better than the centralized algorithms in cases

were reads/writes are equally likely to occur. OUf protocol scales more efficiently than

the centralized protocol as the number of processors increases from 50 to 1000 (Figure

4.11). Particularly, in maintaining low access times for low numbers of processors;

increasing up to the maximum value of 202 ticks which is constantly maintained by

the centralized protocol.

rn
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Figure 4.10 Access Efficiency vs the Probability of Reading
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Figure 4.12 shows that for a low number of processors, the decentralized protocol

maintains a low wait time; which increases up to a maximum of 202 ticks as the num-

ber of processors increase. The centralized protocol maintains a significant increase

in waiting time; due to the contention among processors to the centralized shared

memory. This in turn increases the average access time; which is at a maximum of

202 dock ticks (refer to Figure 4.11).
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Figure 4.12 Average Wait Time vs Number of Processors

For our simulation,. the decentralized protocol distributes objects to processors

uniformly. Figures 4.13 and 4.14, show that as the number of objects scale from 50

to 400, the average access/waiting time per operation decreases for the decentralized

protocol and is constant for the centralized protocol. In the decentralized protocol,

if objects are not distributed among processors evenly, or if the number of objects

is less than the number of processors, then the possibility of processor contention

to the shared objects increases; which in turn increases the access/wait time per

operation. Therefore, it is probably best to distributed objects to processors evenly,

and to processors which access the object more frequently.
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Figure 4.13 Average Access Time vs Number of Operations

Figure 4.14 Average Wait Time vs Number of Objects
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Finally, we compare the performanc~interms of execution--of our protocol to

the single shared memory protocol in [MSRN93, MSZ93]. As shown in Figure 4.15, the

fixed manager scheme performs better than the dynamic manager scheme. This could

be due to the overhead associated with forwarding messages which could increase the

locality of reference, as well as, the average access time. Given that 50% of all accesses

are performed on owned objects with a 50% chance of reading and writing, and there

are 100 processors and 100 objects, our algorithm is significantly faster than the

centralized protocols. As shown in Figure 4.15, these assumptions directly effect the

performance; as the locality of reference is very high. If the assumptions are such

that the locality of reference is very low, our protocol's performance decreases (Figure

4.16 and 4.17).

Figure 4.15 Comparison of DSM Algorithms .5 read, .5 owner selection
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The assumptions made about the simulation throughout the thesis may provide

results which are misleading. In order to justify our results, we provide a performance

comparison using an 80% probability for a read, and a 0/20% probability of selecting

an owned object. As shown in Figure 4.16 and 4.17, the decentralized algorithms still

perform better due to the localitty of reference; as read and write operations can both

be performed locally.

Figure 4.16 Comparison of DSM Algorithms .8 read, .2 owner selection
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CHAPTER 5

CONCLUSION

5.1 Summary

In this thesis, we presented a decentralized cache-consistency protocol for DSM which

manages objects distributed among all processors in the system. Our protocol pre

servers the real-time ordering on write operations, and allows the same set of sequen

tially consistent executions as [Br09G, MSRN93, MSZ93] without requiring atomic

broadcast or multicast. In contrast, we prove that our protocol enforces sequential

consistency (Refer to Appendix A). We give performance metrics to show that our

protocol provides an increase in access performance due to the locality of reference;

and scales to a large number of processors more efficiently than the previous proto

cols, by avoiding the bottleneck of a single processor centralized memory. Although

our protocol requires additional state information, the tradeoff of memory cost to

communication cost provides reduction in overall communication performance.

5.2 Future Work

In this thesis, we are concerned with the performance of our protocol. Future work

in protocol performance would be to reduce memory cost using a method simalar to

[MSZ93]. Other future work would be to look at fault-tolerance issues that could effect

the performance of the protocol such as transient failures. More work needs to be

done simulating different distributions to distribute, access, and migrate objects.

40
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A.I Proof of Prog.ram Correctness

In this section we prove that our protocol preserves the real-time ordering on write

operations and allows the same set of sequentially consistent executions as [BrogO,

MSRN'93, MSZ93]. The following proof is based on [MSRN93].

Theorem~ The implementation is consistent; that iS t it satisfies Definition 2.

Assumptions.:

(a) No two prooessors initially own an object simultaneously.

(b) All operations on an object local or remote are executed atomically.

(c) Assume, for all processors, that all objects 0 owned by a processor i make

up the distributed shared memory. If we let DSM == hI Uh2U...Uh N ; where

N is the number of processors. Since DSM is the global shared memory, all

writes are performed only on objects maintained in DSM. More formally,

let P == (PhP2, ... tPN) be a set of processors, 0 == (Ot,02, ... ,OM) be a

set of objects maintained in the system, H == (hI, h2, .•• , hN ) be a set of

objects owned by each processor such that V[Pi] E P, 3[hi n hj == 0]. Since

all updates to an object 0 E hi are performed only by processor pi, this

maintains the strict ordering among writes for each hi E DSM.

Proof: Let it be an execution history of the protocol for object o. In order to

show the implementation is consistent, by Definition 2, we have to show that:

(i) We can construct a sequential history Wo == (Wo , -+wJ, where Wo is the

set of all write operations in It, (This preserves the real-time ordering on

writes for each object separately)
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(ii) For each processor j we can construct a legal sequential history W;Rj =

(WoRj , --+WoRj)' where WoRj = WoURj and Rj is the set of read operations

performed by processor j on object 0 in it, such that WaRj respects ""0
and 110 I i = W;Rj I i iff process i owns o.

1. Now let Wo = (Wo, --+wJ be a history such that if 0 and 0' are operations in

Wo then 0 --+Wo 0', jf 0 is processed before 0' by the owner of the object denoted

OWNERo. Because the OWNERa processes the write operations sequentially,

Wo = (Wo, --+wJ is a sequential history. We will show (ii) by constructing a

legal sequential history W;Rj = (WoRj , --+WoRj) as follows:

(a) For any two operations 0 and 0' in WaRj which access OWNERa, 0 --+W
O
R

1

0' if 0 is processed before 0'.

(b) For any two operations oJ and oJ performed by processor j, oJ --+WoRJ oJ,
if o} is processed before oJ.

(c) Let r j1 , rj2' .•. , r iN be a sequence of consecutive local read operations by

process j ( thus, Tjl --+WoR
J

rh --+W"R
J

••• --+WoRj rjN due to the ordering

enforced by (b)). Let Oz be an operation by any processor z which accesses

OWN ERa and immediately follows OJ at OWNERa (thus, OJ -WoRJ Oz

due to the ordering enforced by (a)). Then, TjN --+W"Rj OJ-

2. From (a) and the fact that all operations in Wo access the OWNE Ra , we have

that W;Rj = (WoRj , --+WoR,) respects Woo From (b), fIo I j = W;Rj I j.

Finally, we win show that W;Rj is legaL

Proof: Assume that WoRj is not legal for any processor j. Then there must

exist a read operation r(x)v such that w(x)v --+WOWNERzR
J

w(x)u --+WOWNERzRJ

T(X)V and there does not exist w(x)s such that w(x)u --+WOWNERzRj w(x).s --+WOWNERzRJ

r(x )v. There are three cases to consider:
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Case 1: Operation r(x) performed by processor i, accesses OWNERr = z.

Then the last value written by any processor j is the most recent write. There

fore, history w(x)v --+WOWNERxRJ w(x)u --+WOWNER%Rj r(x)v never occurs.

Case 2: Operation r(x) accesses OWNERx, and processor i is not the owner.

Clearly, from the protocol, w(x)u writes u to COWNER%[X], and r(x) is performed

after w(x)u to OWNERx ' Thus, r(x) does not return v, and the history

w(x)v --+WOWNERxRj w(x)u --+WOWNERxRJ r(x)v never occurs.

Case 3: Operation r(x) is a local read and processor i is not the owner of x.

Let OJ be the last operation before i(x) by processor j which accesses some

shared object . There are three cases to consider:

(a) w(x)v --+WOWNER",RJ w(x)u --+WOWNER%RJ OJ --+WOWNERxRj r(x)v: In this

case, assume the owner of the object is processor k. There are two cases

to consider:

(1.) w(.x)u is issued by processor j: Then w(x)u sets Cdx] = 'l.l, Causalk[x]

is incremented, and Gj[x] = u, Causalj[x] = Causalk[x), and validj[x] =

1. Since there does not exist w( X)8 ordered by --+ WkR
J

in between w( x)u

and rex), the values of validj[x] and Cj[x] stay unchanged at least until

r(x) is performed. Thus, r(x) locally reads value u from Cj [x], and history

w(x)v --+WOWNER",Rj w(x)u --+WOWNER",RJ r(x)v never occurs.

(2.) w(x)u is not issued by processor j: Execution of w(x)u sets Ck[x] = u

and Causalk[x] is incremented. After OJ accesses the OWNERx = k,

validj[x] = 1 at processor j.. Since r(x) is a local read, validj[x] must

be 1 when rex) is performed by processor j. This means validj[x] has

been changed to 1 before OJ is completed. From the protocol, validj[x]

can be changed to 1 only if a read or write operation on x by processor

j is performed at OWNERx = k. By the assumption, there does not



47

exist w(x)s ordered in between w(x)u and rex) by --+WOWNER,rRJ" There

fore, there must be a read operation by processor j which reads Ck[x] at

OWN ERx = k between w(x)u and OJ, including 0,, This read operation

also sets validj[x] = 1 and Cj[x] = u. Thus, rex) returns u, and history

w(x)v -+WOWNERrRJ w(x)u --+WOWNERrR] r(x)v never occurs.

(b) OJ is w(x)u: Then, the operation w(x)u sets validj[x] = 1 and Cj[xj = u.

Since there is no operation by processor j which accesses an object at

OWNERx = k between w{x)u and r(x),r(x) returns u. Thus, history

wex)v --+WOWNERrR) w(x)u --+WOWNERrR) r(x)v never occurs.

(c) OJ --+WOWNER;rRJ w(x)u: In this case~ rule (Ie) above orders rex) in between

OJ and w(x)u. Hence, a history w(x)v --+WOWNERrRJ w(x)u -+WOWNERrR;

r( x)v never occurs.
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A.2 Proof of Bound on Forward Messages

The two critical questions about this algorithm are whether forwarding request even

tually arrive at the true owner and how many forwarding request are needed in the

worst case. In order to prove these questions, consider aU Probowners of an object 0

as a directed graph Go = (V, Eo) where V is the set of processors numbered 1,... ,N,

and I Eo J= N and an edge (i,j) E Eo, iff the Probowner for an object 0 on processor

i is j. The foHowing proof follows [LH89].

Theorem: A request for an object assumed to be owned by the hint in

Probowner, will reach the true owner in at most N - 1 forwarding request

messages.

Lemma: Because read/write request are executed atomically and migration

is done only during a remote operation, this ensures that migration occurs

sequentially. Assuming migration takes place in the worst case (i.e. on every

access), every Probowner graph Go = (V, Eo) has the following properties:

1. there is exactly one node i such that (i, i) E Eo;

2. Graph G~ = (V,Eo - (i,i) is acyclic; and

3. for any node x, there is exactly one path from x to i.

Proof: By induction on the number of migrations of object 0, all Probowners of

the processors in V are initialized to a default processor, and all three properties

are satisfied. After one migration of object 0 , say from i to j, the node (i, i)

(i .e. the current owner of object 0) is deleted from Eo, and the node (i, j) is

inserted into the Probowner graph Go. This ensures there is only one path

from i to j; satisfying property 3. As node (i,j) was the root, the subgraphs

are still pointing to i and remain unchanged and are acyclic; satisfying property
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2.. The node (j, i) is deleted from Eo, because j now becomes the owner (root of

i); therefore a new node is inserted into the graph Go denoted Eo = (j,i). This

satisfies property 1. After k migrations of an object 0, the Probowner graph

Go satisfies the three properties.

Proof: By Lemma 1, there is only one path to the true owner and there is no

cycle in the Probowner graph. So, the worst case occurs when the Probowner

graph is a linear chain

in which case the number of forwarding request is N - 1 when processor VI

request an operation from processor VN.
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Table B.l.

Memory Cost Performance

Assumptions: K = # of object, N = # of processors

Protocol Process Memory Size

[ABM89] Processor IN Queue Unbounded

OUT Queue Unbounded

Cachet ] K

Shared Memory Cachet ] K

[Bro90] Processor Queue Unbounded

Cachet ] K

Shared Memory Cachet ] K

(MSRN93] Processor Valid[ ] K

Cache[ ] K

SMem M[ 1 K

Cache_Vert ][ ] NxK

Causal( ] K

[MSZ93] Processor Valid[ J K

Cachet ] K

SMem hlw[ ][ ] N x K binary

vector
,

Causal[ J K

Fixed Processor C[ ] K

Manager valid[ ] K

Decentralized Causal[ ] K

Distributed Processor C[ ] K

Manager Probowner[ ] K

Decentralized valid[ J K

Causal[ ] K
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Table B.2.

Communication Cost Performance

Message [BrogO, ABM89] [MSRN93] [MSZ93] Decentralized

Reads oif valid 1 if .., valid oif owner

1 if.., valid oif valid 1 if.., owner

Writes N 1 oif owner

1 if.., owner

Forwards N/A N/A Best case: 1

Worst case: N - 1
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Table C.l.

Simulation Parameters - Browns Protocol

Assumptions: No Special Hardware, N = # of processors

Process Operation Clock Cycly Time

Process Manager Read/Write Local 1

Remote Read 10

Write SMem + Invalidations 10 + (10 * (N-l))

Equeue Invalidations 1

Communication Latency 100

Duration between Operations 5

Shared Memory Process Request 2

Table C.2.

Simulation Parameters - Mizuno, Raynal, Singh, and Neilsen Protocol

Process Operation Clock Cycly Time

Process Manager Read/Write Local I

Remote Read/Write 10

Communication Latency 100

Duration between Operations 5

SMem Process Request 2



Table C.3.

Simulation Parameters - Decentralized Protocol

Thread Operation Clock Cycly Time

Process Manager Local Read/Write 1

Remote Read/Write 10

Communication Latency 100

Duration between Operations 5

Object Manager Process Request 2

Forward Request 2
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