
INTERACTIVE ACCESS TO GIS DATA

By

SOHAIL AMJAD

Master of Science

University of Karachi

Karachi, Pakistan

1992

Submitted to the faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

July] 996

INTERACTIVE ACCESS TO GIS DATA

Thesis Approved:

Thesis AdVisg~0

~ t &cf;~~Vd!--

Dean of the Graduate College

ii

ACKNOWLEDGMENTS

I wish to express my appreciation and gratitude to my advisor Dr. Mitchell L.

Neilsen for accepting to be my major advisor, hi advice, and his intelligent guidance, for

the completion of my thesis work. His perseverance, and hard work inspired me to venture

into the advanced aspects of this work. I would like to express my sincere thanks to Dr.

J.P Chandler for the guidance and help he has given me during the entire period of my

graduate studies. I also wish to thank Dr. Blayne E. Mayfield for serving on my graduate

committee.

Additionally, I want to thank Dr. David Waits, my supervisor in the Department of

Geography, Oklahoma State University, for his support and for employing me as a

Graduate Research Assistant

My respectful thanks goes to my parents Mr Altaf Hussain and Mrs. Altaf

Hussain. Last but not the least, I would like to express my sincere gratitude to all other

member of my family for the love, continued support and encouragement, without which

this endeavor would not have been successful.

iii

Chapter

TABLE OF CONTENTS

Page

T ABLE OF CONTENTS.. IV

LIST OF FIGURES VI

INTRODUCTION I

1. 1 THESIS.. .. 3
1.2 ORGANIZATION.. 5

2 RELATED WORK.. 7

2.1 GEOGRAPHIC INFORMATION SYSTEM AND WORLD WIDE WEB 7

3 LITERATURE REVIEW 9

3 1 GEOGRAPHIC INFORMi\TION SYSTEM .. <;I

3.2 GEOGRAPHIC RESOURCES ANALYSIS SlJPPOJn SYSTEM (GRASS)

A POWERFUL GIS TOOL " 10
3.3 OBJECT ORIENTED PROGRAMMING 12

3.3.1 Encapsulation... 13
3.3.2 Polymorphism.......................... 13
3.3.3 Inheritance.................................. . 13
33.2 Dynamism..... . 14

3 4 JAVA NETWORK PROGRAMMING LANGUAGE ..

3.5 WWW CONVENTIONS AND PROTOCOLS .

14

..................... 17

3.5.1 HyperText/Hypermedia. 17
3.5.2 HyperText Transfer Protocol (HTTP)... 18
3.5.3 Common Gateway Interface (CGI) 19

jv

4 IMPLEMENTATION ISSUES 21

4.1 ENVIRONMENT 21
4.2 CLA SES DE CRlPTION 22
4.3 USER INTERFACE CONTROL 26
4.4 CGI INTERFACE TO GRASS 28

5 PERFORMANCE ANALySIS 30

6 CONCLUSION AND FUTURE WORK 34

6.] SUMMARy 34
6.2 FUTURE WORK 35

BIBLIOGRAPHy 36

APPENDICES 38

APPENDIX A: GRASS COMMANDS USED IN THIS PROTOTypE 39

APPENDIX B: PROGRAM LISTING 41

APPENDIX C: CGI SCRIPTS 7]

Figure

LIST OF FIGURES

Page

1. Representation ofJava Platform Independent Bytecode 16

2. Session Running Client Side Image Map Program for Oklahoma State 24

3. Snapshot Showing UTM Coordinates and Overlaying of Different Themes

Simultaneously 25

4. Snapshot Showing Dialog Box for Selecting Raster, Vector or Site Layers 27

5. Comparison of CPU Usage on Client-Server Machine 30

6. CPU Load Characteristics on Iient-Server Machine 3 I

7. Variation of Load on Server with Increasing Number of Clients 32

vi

CHAPTER 1

INTRODUCTION

In the early days of stand-alone, non-networked computing, users executed programs

only on local machines. With the growth of networks and distributed computing, the

client/server paradigm emerged. In this paradigm a client requests services from a remote

se.rver. After some processing, the server replies and typically data get displayed back to

the client. The advantage of this model is that users with low cost computers can share

access to high cost services, and organizations can optimize company-wide distribution of

the services to minimize cost and maximize efficiency. A number of protocols and

programming interfaces, such as HyperText Transport Protocols (HTTP) rI], OSF/DCE,

have been developed within the client/server paradigm.

However, this paradigm does not automatically scale up very well in the new world of

the Internet and laptop computing. This new world is characterized by :

• Wide Area Interconnected Network'l. People using the Internet are connecting

from their sites (possibly their homes) to servers located anywhere in the world,

crossing several types of physical networking (satellite, optical fiber, wireless, etc)

in one connection, each with a very different type of bandwidth and latency

F""

properties The overall perfonnance and behavior are not that of local network or

leased lines.

• Nomadic Computing: People travel with their laptops and turn them on and off,

which implies network connection are geographically moved and turned on and

off as well.

• Platform Independence: Services offered to users where the service provider has

no control of the user's platform unlike an enterprise context, where desktops and

servers follow a corporate equipment plan.

Although the typical connection-oriented client/server model may still be appropriate

in this new world, for some applications it is not, for example, applications where a client

wants to have the server continue computations even though the client has been turned

off, and get the results when it is booted again, or applications where the network

bandwidth or latency make the application impossible to run with satisfactory response

time; e.g. applications which require the visualization of complex data. An image or

symbolic diagram is computed from data and displayed to the scientist. As a scientist runs

experiments that modify the data, the image is modified.

As long as scientists visualize static displays, the bandwidth and latency of the

network are minor but not overwhelming issues. When it comes to dynamic displays, it no

longer makes sense to compute images on the server side and send every image back to

the client. The network becomes a bottleneck.

2

A solution to those problem is that of mobile code. In this model, code resides on a

computer is shipped over the network to execute onto a remote place. Mobile code can be

used to run remote computation while the original computer is down, or it can be used to

overcome the latency and bandwidth issues by first shipping code and data over the

network and then executing that code locally, without requiring any further network

traffic.

Mobile code inherently requires open systems; mobile code applications shipped over

the network must execute on all the platforms available. It also raises issues of portability,

security, interpretability and salability, as well as new challenges in distributed computing.

In 1995, Sun Microsystems introduced the Java' technolof,'Y and the associated

HotJava Web browsers. Java has the potential to significantly enhance the capability of the

World Wide Web (WWW) and more generally mobile code technology.

Java's contribution is to augment the present WWW capabilities to transmit static

information with a new capabilities to transmit programs in a secure and pOl1able fashion

Using Java, smart data, new protocols, animation, distributed programs, multimedia

publishing, scientific visualization, process control, networks games, network management

tools can be disseminated via the Internet.

1.1 Thesis

Geographic Resources Analysis Support System (GRASS) software was made available

via WWW using Common Gateway Interface (CGI) and Java language. This facilitated

access to geographical data sets and allowed simple analyses to be performed without

I Java and Hol1ava arc the regi.stered trademarks of Sun Microsystem, Inc.

3

actually downloading data or software in an interactive, and intuitive way. A platform

independent, display-only map creation interface provided a good browsing facility for

potential data consumers. The data conversion capabilities of GIS were used to

demonstrate the presentation of spatial data using image maps allowed users to reach

particular data sets quickly and efficiently. This interface demonstrated the capacity to

view manipulate, and distribute geographic data via WWW in an efficient, organized,

interactive, and user-friendly manner. This Interface is a major advancement in information

sharing for GIS data.

Thi s work also demonstrate the potential of the Internet for overcoming spatial data

access problems and for facilitating the use of GIS by large numbers of diverse users of

Internet. The Internet is an international communication infrastructure comprised of

thousands of regional networks scattered throughout the globe [5]. This world-wide

connectivity includes more than 13,500 foreign networks and over 20 million users in over

50 countries. Presently, more than 15,500 billion bytes of information are tran ferred per

month across these networks.

The objective of this work is to transfer a simple task from the server side to client

side in order to improve performance, and the integration of heterogeneous, di tributed

GIS methods and data. This is achieved using the Java language after a convenient way to

transfer Java executable programs called applets to the client side. These applets improved

performance with respect to user interaction and network bandwidth latency

We developed a prototype to access current, ubiquitous, intuitive, and interactive GIS

data. The main features of the prototype are user-controllable image overlaying, client side

4

computing of Universal Transverse Mecator (UTM), and threaded loading of resources to

minimize stagnant time while applet set up.

GRASS was chosen for this project because it has an open file format [10] and it is a

public domain package. GRASS was de eloped using federal money and distributed

without charge. GRASS includes a graphics production system with powerful map

production capabilities. This package is written in C and is UNIX 2 oriented. Like the

other GIS packages, however, GRASS requires its users to have significant knowledge of

not only the GIS, but also of computers, including the UNIX system as well as the

input/output devices, the database being analyzed, the areas under analysis, and the

requirements of the analysis [18]. The ability to produce thematic maps is only a small part

of GRASS's powerful functionality, but users still must go through a learning curve to

accomplish this job. It is impractical to ask a casual user of GRASS to take a great deal of

time to go through the entire learning process for occasional use.

1.2 Organization

The thesis is divided into the following chapters

• Chapter 2: A discussion on previous work related to GIS and WWW is presented.

• Chapter 3: Literature overview is presented in this chapter.

• Chapter 4. A detail discussion of the work and implementation details are given.

2 UNIX is the registered trademark of UNIX System Laboratories. Inc.

5

• Chapter 5: Performance metrics used to evaluate the performance of GRASS

applet and the result are explained.

• Chapter 6: A summary of the thesis and suggestions for future work are

presented.

6

o

CHAPTER 2

RELATED WORK

In this section, we place our work in the context of GIS and World Wide Web and

accessing database system from GRASS-apple!. This list of approaches, concepts, and

systems discussed does not claim to encompass all relevant work in the area. We restrict

the discussion to those that we think to bear the most direct relationships to our problem

and solution.

2.1 GIS and WWW

In a related pr~ject [11] ArcView is used at the client side to display maps. This method

also has the advantage of avoiding the processing of data at the server side, but additional

software is necessary for every chent Our approach aims at a system which is accessible

with a standard WWW browser. This enables the system to provide data and methods to

everyone and avoid a lot of cost for large institutions using the data.

Some other scientists are working with GIS and WWW; most of them are situated in

the United States. Often information about the systems are only available on the web itself

Good starting points for search are [28], [26], [3] and [19]. Some exampl.es of the

capabilities of the other system are located at [19], [J 2], [14] and [17] These

7

system offers different subsets of the functionality required in Environmental Information

System (EIS). Our approach includes additional features such as combination of maps

(overlaying images), client side computing of Universal Transverse Mecator (UTM)

coordinates and user-friendly interface as well as to transfer simple tasks from the server

side to the client in order to provide the functionality of Geographic Information System

using off-the-self WWW browsers. No additional software tools at the client side are

required. Furthermore, GRASS-applet improves the performance with respect to user

interaction. It can be used to overcome some of the current limitation of the World Wide

Web.

8

CHAPTER 3

LITERATURE OVERVIEW

First, a brief overview of GIS integrated GIS data organization, browsing, analysis,

and transfer system is given. Secondly, an overview of Object-Oriented methodology and

brief introduction to Java Programming Language is presented. Following this overview is

a brief tour of important WWW protocols and conventions.

3.1 Geographic information System

In the strictest sense, GIS is a computer system capable of assembling, storing,

manipulating, and displaying geographically referenced information; ·i.e. data identified

according to their location [19]. Practitioners also regard the total GIS as including

operating personnel and the data that go into the system

GIS data are usually stored in one of two representations: raster or vector. The

former uses a cell-based approach for data handling and performing analyses. Raster data

may be viewed as a matrix of geographically-referenced cells, each containing an attribute

value. The latter representation handles the data in terms of vectors (such as points, arc,

and polygons). Both approaches have their advantages and disadvantages Selection of an

appropriate data representation or format depend upon problem at hand.

9

Geographic information system technology can be used for scientific investigation,

resource management, and development planning. For example, a GIS might allow

emergency planners to easily calculate emergency response times in the event of a natural

disaster, or a GIS might be used to find wetlands that need protection from pollution.

An active GIS market has resulted in lower costs and continual improvements in the

hardware and software components of GIS. These developments will result in a much

wider application of the technology throughout government, business and industry.

Through a function known as visualization, a GIS can be used to produce images; not just

maps, but drawing, animation, and other cartographic products. These images allow

researchers to view their subjects in ways that have never been seen before. The images

often are equally helpful in conveying the technical concepts of GIS study subjects to non

scientists.

3.2 GRASS: A Powerful GIS Package

GRASS is a powerful, general purpose software package with a great flexibility. The basic

requirements to use the software are relatively high. Users must have knowledge of the

Geographical Information System as well as computer including input/output devices, and

operating systems.

GRASS was designed and developed by researchers at the U.S Army Construction

Engineering Research Laboratory. It is written in C and is UNIX oriented [18]

J()

GRASS was first released in August, 1985 and version 4.2 was released in August,

]995. In version 4.0, each command can be used either interactively or through the

command-line interface. The command-line interface provides programmers with a great

working flexibility. GRASS is distributed with source code. Portability is the first priority

in GRASS design. It comes before a friendly user interface and execution speed.

GRASS has many capabilities, including the handling of different representations of

data. These include

• Raster Data: raster (or grid cell type) data can be used for analyzing,

overlaying and modeling aerials features such as soil types or forested areas.

• fTec(or Data: vector data can be used to represent linear features such as roads,

streams or areas edged and can be combined with raster data for display purpose

or for analysi s

• Point Data: point data can be used to represent landmarks or the location of'

significant sites.

• ImagelJi Data: the ability to display, Geo-refrence, compare and classify satellite

and aerial photographic imagery.

• Mapdev: the ability to input map data and print hard copies on various printers,

including the ability to create output to a pen plotter that runs or emulates HPGL.

• DBMS: the ability to link to a Database Management System for help in managing

data

II

..

-

With the current release of GRASS, the development staff also distribute a Spearfish,

South Dakota data set. The Spearfish data set covers two topographies I :24,000 quads in

western South Dakota. The names of quads are Spearfish and Deadwood North, SO. The

area covered by data set is in the vicinity of Spearfish, SO and includes a majority of the

Black Hills National Forest. We use this data set as a test data for the GRASS-applet.

3.3 Object-Oriented Programming

An object-oriented programming (OOP) is a new step of the programming concept. It

takes recent developments in programming language to their next logical step to increase

clarity, modularity, and programming efficiency [27]. An object oriented language is a

language which centers its programming paradigm on data, rather than the traditional

procedural approach of non-object-oriented languages. Data and operations on that data

are logically grouped Operations on these data are called methods. The resulting package,

comprising the data plus the methods specific to data, is called object. Objects are

organized into classes according to the information they represents and the method they

share to operate on that data. The data that an object holds are often called the instance

variables of the objects.

Object-oriented languages usually provide mechanisms to suppOl1 four key

characteristics: encapsulation, inheritance, polymorphism, and dynamism.

]2

-

3.3.1 Encapsulation

The notion of encapsulation refers to the ability to hide the particular data structures and

methods used in the implementation of particular class [6]. It helps the programmer

organized the data and structure of a program in a more modular manner by effectively

viewing implementation as a solved problem, thus facilitating incremental development

and software fe-use. Encapsulation is also used to solve a name-space problem so that

instance variables and methods of different classes can use the same name.

3.3.2 Polymorphism

Polymorphism is an object's ability to select the correct internal method based on the type

of data received in a message [6]. A print object may receive a message containing an

integer, a real number, or an ASCII string. The print object may take an appropriate action

depending on the incoming message without knowing the contents of the me sage.

3.3.3 Inheritance

Inheritance is the ability to create classes that will automatically model themselves on

other classes. It is a language mechanism for deriving a new class of object from an

existing class [6]. When a class B has been defines so as to model itself on class A, class B

is a child class of class A. It inherits data and method from class A. Class B need only

contain the actual code and data for new or changed methods. Normally a class can have

zero or more parent calls or child class.

13

-

3.3.4 Dynamism

Dynamism encompasses a wide range of capabilities, both at compile and runtime to

make the language and system more flexible and powerful for both the user and developer.

Dynamic typing means the ability to determine at runtime the type of an object and its

operations. In other words, an object's type can remain ambiguous at compile-time but

will be determined at runtime. Dynamic loading and binding make it possible for an

object's defmition and instantiation to be deferred until when it is needed at runtime,

thereby allowing for the addition of object components dynamically as a program runs.

3.4 Java Programming Language

In the context of distributed programmmg languages for the World Wide Web, Sun

Microsystems has recently introduced the Java programming language environment. Java

was originally designed by Sun to facilitate the development of embedded system software

[24], but has initially been positioned as a language for web programming because of its

ability to simplify the development of flexible, portable, distributed applications with a

high-level graphical user interface [25). Java is derived from C and C++, but the language

has been restricted to eliminate many of the most costly common programming errors

Java shows promise of greatly improving developer productivity in the great domain.

Java originated as part of a research project to develop advanced software for a wide

variety of networked devices and embedded systems[23). The research project initially

chose to use C++ for the development. But subsequently the developers encountered so

many difficulties with C++ that they decided it would be best to design an entirely new

14

language environment. Java offers a number of important improvements over developing

software in currently popular languages such as C and C++.

Java borrows the familiar syntax of C and C++. Like C++, Java is object-oriented,

but it is much simpler than C++. Java's designers intentionally discarded redundant

language features that were present primarily to support backward compatibility with

legacy code. An additional benefit of its simplicity is the small size of its run-time system.

Sun reports that the basic interpreter is about 40KB, and that basic libraries and thread

support add approximately 175KB[25].

The development cycle is much faster because Java supports both interpreted and

just-in-time compiled implementations. During development and rapid prototyping,

developers save time by using the interpreter.

Application software is more portable because the Java environment carefully

specifies a machine independent intermediate bytecode representation which can be

transferred between heterogeneous network nodes and interpreted or compiled to native

code on demand by the local Java run-time environment (see Fig 3.1).

Application software is more robust because Java s run-time environment provide

automatic garbage collection The Java language has been designed to eliminate the

possibility of dangling pointers and memory leaks.

Applications are adaptable to changing environments because code modules can be

downloaded dynamically from other network nodes without necessitating a system restart.

Security is enforced by built-in protection against viruses and other tampering This

protection is implemented by simple theorem provers that analyze downloaded bytecode

15

Java compiler
(pentium)

Java Inteqlreter
(Pentium)

Ja\'a Interpreter
(SPARC)

Java Interpreter
(power PC)

Ja\'a Byte code
(platform independent)

Java code

Java comlliler
(SPARC)

Fig 3.1 Representation of Java Platform Independent Bytecode

J()

before attempting to execute them.

High peJformance is achieved by incorporating support for just-in-time translation of

portable bytecode to the native machine language of the local host. According to Sun,

peJformance of translated code is roughly equivalent to the speed of current C and C++

programs.

3.5 WWW Conventions and Protocols

The World Wide Web (also called WWW, W3, or Web) is a Wide-area hypermedia

information retrieval system providing access to a myriad of documents and data on the

Internet. WWW is also a body of software and a set of Protocols and Conventions to

provide easy and consistent access to information on the Web.

With the development of the WWW, opportunities arose to orgaruze vanous

resources found on the Internet in an efficient and user-friendly manner. One major type of

resource is GIS data.

Fo:llowing is a brief overview of important Protocols and Conventions of WWW.

These includes the Hypertext Markup Language, the Hypertext Transfer Protocols, and

Common Gateway Interface.

3.5.1 HypertextlHypermedia

The operation of the Web relies mainly on hypertext and hypermedia as means for

interacting with the users. Hypertext is basically the same as regular text but it "points" to

other documents in the case of hypertext on the Web, these other documents are on the

17

Internet. Hypermedia is hypertext with a slight difference. Hypermedia documents have

hyperlinks not only to text but other multimedia forms, such as images, sound files, video

files, etc. Hypermedia can be viewed as a combination of hypertext and multimedia.

Hypertext Mark Language (HTML) is standard markup language for creating and

recognizing Web documents[2, 4]. As a markup language, HTML allows the user to

control the information presented in a number of ways (e.g., fonts and colors). HTML

documents are typically 7-bit ASCII files with formatting codes that contain information

about document structure and hyperlinks. WWW uses Uniform Resource Locators

(URLs) to represent hypermedia links and links to network services(hyperlinks) within

HTML documents [2].

3.6.2 HyperText Transfer Protocol (HTTP)

Web software is designed around a distributed client-server architecture. A Web browser

is client software that can send requests for documents to any Web server. A Web server

is a program that, upon a request for a document, processes the client's request and send

back the document or an appropriate message (e.g., an error message) The processing of

a request is done by the server and presentation of data is left to the client. The language

that the Web client-server interface uses is the Hypertext Transfer Protocol (HTTP)[I].]t

utilizes the Transmission Control Protocol/Internet Protocol (TCP/IP) for communication

between Internet hosts [l3].This processing of client-server interaction involves the

following process.

18

-

• Client makes TCP/IP connection to the server using the URL address (domain

name and port; the default port is 80 for HTTPD server)

• Server accepts the connection

• Client sends a request for the URL using HTTP

• Server processes the request and sends back the requested document as a byte

stream.

• Server closes the connection and client terminates the TCP/IP connection

All Web clients and servers must be able to speak HTTP in order to send receive

hypermedia documents.

There are many Web servers, including the CERN server, NCSA server, the PERL

server, and other. These servers, like FTP deamon [21], are programs that respond to an

incoming connection and provide a service to the client. Hypertext Transfer Protocol

Daemon (HTTPD) is a public domain Web server developed by the NCSA [17J written in

C for UNIX platform. HTTPD also records the date and time of requests along with th

IP number of the client, which is useful for keeping track of traffic.

3.7.3 Common Gateway Interface

The Common Gateway Interface (CGI) [15] is an interface under a Web server, such as

HTTPD, for running external programs or gateways. CGI facilitates the handling of the

information requests and can act as a gateway for returning the appropriate document or

creating a document ol1-the..:f7y. With a CGI, a Web server can provide information which

19

-

is not in a form readable by the client (e.g., GRASS binary raster files) and can act as a

gateway between the server and the client for interaction.

Gateway programs or scripts are server-side executable programs that are run (upon

request from a client) to server information. These gateways are initiated when the client

requests the URL corresponding to the gateway. Since these scripts are executed on the

server, gateway programs are independent of the client's operating environment.

Gateways interact with the client and server using the HTTP. Gateways conforming to the

HTTP specifications can be developed in any programming language, such as C,

FORTRAN, Pascal, PERL, Bourne Shell, C Shell, etc.

Information requested from the server to CGI script is handles using command line

arguments as well as environment variables. The environmental variables used in this study

were:

• REQUEST_METHOD: The method with which the request was made. Request

method "POST" is used

• QUERY_STRING: The information that follows the "?" in the URL when the

gateway script is referenced. This QUERY_STRING should be decoded in the

gateway script.

• CONTENT_TYPE: This defines the type of data attached with the request to the

server

• CONTENT_LENGTH: The length of the content attached to the URL which is

required to decode the CONTENT of the request from the client.

20

CHAPTER 4

IMPLEMENTATION

The following sections describe the environment in which the GRASS-applet was

developed and its implementation in details. The principal objectives in designing this

project are to reduce work load on the server and increase interactive performance with

respect to user interaction. The model presented here is designed with these motives in

mind.

4.1 Environment

The GRASS-applet is implemented on a SunJ SPARCstation I1.Inning Solaris 2.4. This

operating system along with OpenWindows Graphical User [nterface (GUI), productivity

tools, and DeskSet make up the complete Sun UNIX environment. GRASS-applet is

coded i.n Java network programming language, and uses Advance Window Toolkit (AWT)

function for GUI.

Being implemented in Java, GRASS-applet can be executed as an applet within

HTML pages, while being browsed by Java-enabled browsers like Netscape 2.0. GRASS

applet conforms to Beta Application Programmer Interface (API) and can also be

executed standalone by AppletViewer provided with Java Development Kit (JDK)

3 Sun and Solaris l.x a re the registered trademarks of Sun MicrosysteTll. Inc.

21

We have developed a set of classes (a class is roughly a unit of software capable of

perfonning a set of operation on a certain kinds of data) and CGI scripts. These classes

perform interactive operations and provide GUI interface while CGI scripts runs GRASS

on the server in order to generate requested maps. Following are descriptions of these

classes, GUl, and CGI scripts used in this project.

4.2 Classes Description

GrassApplet Class

GrassApplet is a subclass of Java Applet and serve as a root class. It creates and layout

the interface, initiates help and other classes instances, and dispatches repaint requests to

them and handles user input. User input comes from pressing on control buttons or

clicking the mouse anywhere in the applet's panel Button presses typically display ub

panel giving the user a chance to select required data. GrassApplet class creates a thread

so that it can continuously update (repaint) its image canvas without taking over the

process in which it is running. This class uses RunnabJe interfa.ce to provide its threaded

behavior.

ImageMap Class

This class is used for Imagehyperlink and Information Extraction. This class retrieves

additional information from the server that specifies pre-defined area in the image and

display information as a pointer passes over them, and hyperlink to additional resource

22

when these areas are clicked. For example, in an image map of Oklahoma State when user

moves the pointer the name of county is also shown on the status line of the browser,

suppose that client select the Texas County. Clicking on that area leads user to Texas

County page and runs GRASS-applet there. Fig 4.1 shows the sessions running ImageMap

class. This image map was created using the mapedit

software.

ImageCanvas Class

This class implements ImageObserver which provide an asynchronous update interface for

receiving notifications about image information as the image is constructed. The class is

used to composite several images into a single image. When a user should turn off or on

the components, the layer of composite containing it would simply be removed or

replaced. Fig 4.3 shows that user has selected three different image simultaneously.

County Class

This class inherits properties from parent Frame class provided in java.lang.awt package.

The user can selecte a county from given lists of counties in the Oklahoma State. Clicking

on the "Query Server" causes the document of the selected county be loaded on the client

browser. Where user can choose data and maps available in that particular county

Raster Class

This class creates a frame through which user can select available raster, vector or sites

-

Fig 4.1 Session Running Client Side Image Map Program.

24

-

TIl*' ~~ At:cwnJe> 0/11 D-. Ttt.Uhor- ,, ill AntIINMrW,t Pnta.........
Un",.,.

UTM CoordImage Coord

(275,0)

Fig 4.2 Snapshot Showing UTM Coordinates and Overlaying of Different Themes.

2S

-

maps to be displayed on the client machine. The method PostData() of this class assemble

selected items into a data block exactly the same as POST method does to send data to the

http server.

BookMark Class

BookMark class creates the Uniform Resource Locator (URL) objects of the documents

where counties data resides. It has two parts: name and URL. When user selects county

and presses button, the LinkToO method is called, which tells the browser to load the

URL referenced by that Boomark. It is possible to store each county data on different http

server.

4.2 User Interface Control

The AWT provides many standard GUT components such as buttons, lists, menus and text

area. It also includes containers (such as window and menu bars) and higher-level

components (such as a dialog for opening or saving files).

The User Interface is provided mainly through separate Frame window. All action

are carried out by clicking buttons on the GRASS-applet a separate window pops lip

whenever one these buttons are presses for further action to be taken. For example

clicking on "Display" button pops up new window on the client machine (see Fig 4.2). The

user has given the option to select one raster layer, multiple vector layers and one site

layer. The selected data layers along with the location name are posted when user click on

query server button which in turn runs CGI scripts on the server. Since we cannot submit

form data in the applet a separate function is written which mimic what a WWW browser

26

-

7'Ilirll ...r__.....»CiW~.n,,~"wrllM",-",--,~ ..,
l6a(l1Mlfll

Fig 4.3 Snapshot Showing Dialog Box for Selecting Raster, Vector or Site Layers.

27

-

does to send data using POST method. The technique is straightforward, open a socket to

the server and send data with header of the form:

POST cgi-script HTTPIlO

Content-type:

Content-length:

4.3 eGI-lnterface to GRASS

CGr scripts are written using Bourne Shell [3]. The CGI script "grass.cgi" is invoked

when GRASS-applet send data to the server. Program pos/query is used to encodes data

receives from the client and to executes scripts to generate images on-the-fly i.e., if

requested map's gif file already exits then the applet load that file and add it to the list

panel, otherwise it fork off the child and execute CGI script wass. cgi with the user name

determine by the http.conf file on the server The six maps called grassO.... grass6 are

implemented, all own by the web. These mapsets need to be created so that they can be

used by user web. Mapset grassO is never used directly by GRASS-applet, but serves as a

place to store any GRASS specific maps, files, MASK, etc. Mapsets grass (0-5) have

maps created by GRASS-applet users, are cleared out periodically

Within each of the mapsets grass (0-5) there is a file "UNLOCK" which is moved to

"LOCK" to prevent concurrent use of mapsets. This file can an empty file created by

touch.

When the grass. cgi starts GRASS it checks in the home directory of the appropriate user

name (eg., web) for the .grassrc (1-5) file. The home directory variable for GRASS-applet

is set in grass.cmd file All .grassrc (1-5) have LOCATION, MAPSET, GISBASE,

28

-

LOCATION_NAME, GISDBASE, PAINTER, and MAPLP variable set, corresponding

to that mapsets (1-5).

The selected data layers and corresponding map compositions are sent to another file

rast2gif which process arguments and develop a script fil.e that can be redirected into

p. map.new, the map making program of GRASS. By using NetPBM (Extended Portable

Bitmap Toolkit), the map file is converted into (Portable Pix Map) PPM raw format. After

converting into PPM raw format using a data conversion software, ppmlogif. the PPM file

is converted to transparent (Graphical Interchange Format) GIF me. The applet finally add

the file name into list panel. Selecting an item in the list panel displays the area overlayed

on the base image on the image canvas.

29

J

-

CHAPTERS

PERFORMANCE

The metrics used for the performance analysis includes:

• The utilization of CPU on the client-server machine.

• The variation of CPU utilization on the Server with increasing number of clients.

60 -r---------------------------,

-+-- Load on Server

---.- Load on Client

50

40

~

G.i
Cl
<II

30III
::l
::l
Co
(.)

20

10----

8070605040302010

O~:....--_r_--.=....,---.,__--__.__'._~___,_-=----~";;;:O"~_.____"e'O-____I

o

Time, seconds

Figure 5.1 Comparison of CPU Usage on Client-Server Machines

30

-

part is done on the local machine in real t.ime.

monitoring various system parameter provided by SunOS Solaris 2.4.

CPU usage was measured by usmg Performance Meter (perfmeter), tool for

Fig 5.1 shows the comparison of CPU utilization on the client/server machines From

100

-+-- Load on Client (\ \90 --- Load on Server

~
80

/ \70

";f!. 60 / ~
or
ell {III 50III

I::l
::I
C.

Iu 40

I
30 I

~

L._20 ,r/
/

10 / /.
.-........------ "-. •0

0 20 40 60 80 100 120 140 160 180 200
Time, seconds

rather than on server's. After distributing codes on the client machine. The processing

involved in calculating UTM coordinat.es, overlaying of maps and other user interaction

the graph it is evident that the program developed uses CPU cycles on the client machine

Fig 5.2 CPU Load Characteristics on Client-Server Machine

If the requested map already available, the server provides the requested map on-the-

fly to the client, i.e., without generating a new map. otherwise it has to create new map

31

-

100 r------------------------,

analysis, therefore it has lower CPU usage as compared to other client machines.

--+- load on wse

-.- load on neptune

- - load on wsb

--load on wsc

10

70

80

60

90

Fig 5.3 shows the CPU usage on the server with increasing number of client. The

;;e
Qj
Ol

::: 50
::J
::J
C.

<.)
40

machines used were different. Machine neptune was the fastest machine used in this

resources on the server side. Approximately 60 seconds are required to create new map.

program was tested to run from the different machine simultaneously. The speed of

does not ex.ist. This is due to running CGI scripts and generating map which requires

this is shown in Fig 5.2. The CPU usage on the server increase only if the requested map

25020015010050

ot:=-----..:'~-~~-~~~::L.~-'~=----__r_---__1

o
Time, seconds

Figure 5.3 Variation of Load on Server with Increasing Number of Clients

32

d

-

In this study CPU usage on the server is not significantly affected by the increasing

number of clients simultaneously. This feature help in reducing load on the server as

number of clients increases and optimize load balancing of client-server resources to

provide better performance of distributed programs.

31

-

CHAPTER 6

CONCLUSION

5.1 Summary

GRASS-applet interactive graphical interface to the GRASS GIS was made available via

WWW using CGI and Java network programming language. The work presented here has

convinced us that Web-based applets are an ideal solution for presenting our GIS data to

the community.

The distributed computing client/server paradigm is showing limitation, in particular

In light of the extraordinary growth of the Internet. We have seen from the previous

chapter the client/server model can be advantageously extended with mobile code

technology. Mobile code makes it possible to reduce the network trame, to optimize load

balancing of the client-server resources, and to provide better performance.

Mobile code also offers a new possibility for software distribution at large, if the

technology runs across multiple platforms. Thus, mobile code technolo.6'Y is becoming of

increasing importance

Undoubtedly, mobile code technology has additional requirements that make it hardly

possible to run with performance of comparable to native code. But, of course, native

code is not mobile.

34

-

The Java mobile code technology as proposed by Sun Microsystems is a good

candidate for becoming the mobile code standard in the open systems industry. It offers a

simple but powerful programming language. Java programs should be easy to write as

programs in other programming languages, but probably easier to maintain and exhibits

better defect density. Because of the dynamic loading and security features, Java offers a

reasonable base to deploy mobile code over the Internet.

5.2 Future Work

Future work may evaluate additional GIS-related application vIa WWW.Asimilar

interface can be developed usmg other GIS software, such as ARC/INFO, by taking

advantage of mobile code technology to move processing from the server side to the client

side in order to use improve performance, and the integration of heterogeneous,

distributed GIS methods and data.

J5

-

BIBLIOGRAPHY

I. Bemers-Lee, T , 1994a. HTTP: A protocols for networked information, Internet
Draft. Internet Engineering Task Force.

2. Bemers-Lee, T.]994b. Uniform Resource Locator, a syntax for the expression of
access information of objects on the network, Internet Draft. Internet Engineering
Task Force. W3

3. Behrens, c., Charles, C.S., Geosight Project. Technical report, 1995.

4. Bemers-Lee, T. and Connolly, D.W. 1995. Hypertext markup language - 2.0, Internet
Draft. Internet Engineering Task Force. W3 Consortium and MIT Laboratory for
Computer Science, 545 Technology Square Cambridge, Massachusetts

5. Comer, D.E.]995. The Internet Book, Prentice Hall, Englewood Cliffs, N.J

6. Duncan, R., 1991. Power Programming: A look at Difference Between C and C++.
PC Magazine (July): 444.

7. ERIN. Environmental Research Institute (ERl) Austraha. Technical report,]995

8. GRASS 4.1 User's Menu, Engineers Construction Engineering Research Laboratory
(Unpub.), July,]991.

9. GRASS 4.] Programmer's Menu. Engineers Construction Engineering Research
Laboratory (Unpub.) August,]992.

10 Gardels, K. 1993. What is open GIS?, GRASS CLlPINGS: The Journal of 0 en
Geographic Information Systems 7(1):40.

I]. Henning, R. Mayer-Foil, M. Muller, E. Schmid, H.Spandl. Projekt GLOBUS
Konzeption lind prototypische Realisierung einer aktiven Auskunftskompponente
fur globale Umwelt-Sachdaten im Umwelt informations system Baden
Wurttemberg, Phase II -1995.

12. Huse, S Grasslinks (A system based on the PD GIS GRASS). Technical report,
1995.

l3. Hunt, c., 1992. TCP/IP Network Administration, A Nutshell Handbook, May 1994
edn, O'Reilly & Associates, Inc. Sebastopol, Calif.

36

-

14. Illinois State Museum. Faunmap (base on ARC/INFO data). Technical report, 1995.

15. McCool, R., 1995. The common gateway interface, Software available from National
Center for Supercomputing Applications at University of Illinois in Urbana
Champaign.

16. Netscape Communication Corporation 1995. Welcome to Netscape, Software
available from Netscape Communication Corporation, 501 E. Middlefield Rd.,
Mountain View, California.

17. NCSA 1995a. NCSA hUtp lA, Software available from the National Center of
Supercomputing Application at the University of lIlinois in Urbana-Champaign.

18. NSCA 1995b NCSA mosaic, Software available from the National Center of
Supercomputing Application at the University of Illinois in Urbana-Champaign.

19. OGIS,Open GIS Consortium. Technical report, 1995.

20. PB:MPLUS, pbmplus manuals and sources. Technical report, 1995.

21. Postel, J and Reynold, J 1985. File Transfer Protocols (FTP), Internet RFC-959,
Internet Engineering Task Force.

22. Papas, Chris H. and William, H Murray. 1990. Turbo C++ Professional Handbook.
New York: McGraw-Hill, Inc.

23. Ritchey, T., Java 1995, Indianapolis, [ndiana: New Riders Publishing. pp. 365.

24. Sun Microsystems Inc., The Java Lan ua re Environment: A White Pa er 1995, Sun
Microsystems Inc.· Mountain View, CA

25. Sun Microsystems Inc, The Java Language Overview. 1995, Sun Microsystems, [nco
Mountain View, CA

26. Thoen, B.,WEB-GIS. Technical report, Oct. 1995

27. Tello, Ernes R. 1991. Object-oriented Programming for Windows. New York: John
Willey & Sons, Inc

28. US Census Bureau, Tiger Mapping Service TMS .. Technical report, 1995.

37

.;jI.

~

-~'. .

-

APPENDICES

38

, ,

-

APPENDIX A

GRASS COMMAND USED IN

THIS PROTOTYPE

39

~~
:-..
j~
~.

~~
-oc
:a= .
:;)

~~
:"'"

-

GRASS COMMANDS USED 'IN THIS PROTOTYPE

For reference, all the GRASS commands used in the map making script are listed in

this appendix. The source for the description of each command is from the GRASS

Reference Manual..

g.reglOn

g.glsenv

man. release

p.map

exit

p.map.new

r whatrast

r.stats

Program to manage the boundary.

Outputs the user's current GRASS variable setting.

Releases the graphics monitor.

Hardcopy color map output utility.

Exits the user from the current GRASS.

Produces color maps for output on a color hardcopy.

Output can include raster map, any number of vector

overlays, site data, text labels, and other map elements.

Query the catagory contents of multiple cells in one or more

of multiple raster layers.

Generates area statistics for raster map layers

40

-

APPENDIX B

PROGRAM LISTING

-

1* This is Grass applet main program. It create instance of other classes and import

java packages used in this program. It extends one of java class Applet found in

java.applet and implment it as a Runnable i.e., Applet start in a different thread to improve

performance of the program.

*1

public class imageoverlay extends java.applet.Applet implements Runnable {

import · . *Java.awt. ;

import · . *.Java.awtJmage. ,

import java.lang. *;

import java.util *;

import java applet. *;

import java. net *;

import · . *Java.lo. ;

1*

*
*/

This class does all the initialization, read files from the server and add

component (canvas, panel, buttons etc) to itself

int

String

Image

ii, i2, iJ, i4, tempcbint, i.;

labelparam, imageparam, tempstring;

1m,

Graphics offscreen; Iithis is used in the double -buffering lines

imageoverlaycanvas lcanvas;

Vector labels, images, cbvec, utm;

GridBagLayout gb;

GridBagConstraints gbc;

Checkbox tempcb;

Label myname, lon, lat,

42

-

Thread

boolean

int[]

AboutBox

List

County

String

DatalnputStream

mainthread;

tempcbval;

Iistitems;

aboutbox;

itemlist;

county;

line;

fis, fis 1, utmptr;

int n, s, e, w;

int rows, cols;

lJRL inputfile, inputfile), utmfile;

InputStream conn 1 = null;

Raster raster;

String url = "http://www.geog.okstate.edu/grasslinks/spearfish/img. txt",

String urI) = ''http://www,geog.okstate.edu/grasslinks/spearfish/labels,txt";

String urJ2 = ''http://www.geog.okstate.edu/grasslinks/spearfish/utm.dat'',

public void initO {

try {

im = createlmage«this.sizeO) width, (this.sizeO).height);

//a pplet size is width * height

offscreen = im.getGraphicsO;

}

catch(Exception e) {

offscreen = null;

icanvas = new imageoverlaycanvas(this);

labelparam = getParameter("labels");

imageparam = getParameter("images");

labeis=newVector(l, I);

43

-

images = new Vector(1, 1);

utm = new Vector(l, 1);

try {

inputfile = new URL(url);

}

catch (MalformedURLException e) {

System.out.println("Bad Uri : " + inputfile);

}

try {

InputStream conn = inputfile.openStream();

£Is = new DatalnputStream(new BufferedlnputStream(conn));

while «line = fis.readLineO) 1= null) {

System. out. println(line);

images. addElement(line);

System.out.println("Image Size = II + images.sizeO);

catch(lOException e) {

System.out.println("IO Error: " + e.getMessageO);

try {

inputfile 1 = new VRL(urll);

catch(MalformedURLException e) {

System.out. println("Bad Uri : II + inputfile1);

}

try {

InputStream conn 1 = inputfilel.openStream();

fis 1 = new DatalnputStream(new BufferedlnputStream(conn 1»),

-

while «line = fisl.readLineO) != null) {

System. out. println(line)~

labels. addElernent(line);

Systern.out.println("lmage Size = II + labels.sizeO);

}

}

catch (IOException e) {

System.outprintln("IO Error: II + e.getMessageO);

try {

utmfile = new URL(urI2);

}

catch(MalformedURLException e) {

System.out.println("Bad Url : II + utmfile);

}

try {

InputStream utmcon = utrnfile.openStream();

utrnptr = new DatalnputStream(new BufferedlnputStream

(utmcon»;

while ((line = utmptr.readLineO) 1= null) {

System.out. println(line);

utrn. addElernent(line);

Systern.out.println("Image Size = II + utm.size(»;

}

}

catch (IOException e) {

System.out.println("10 Error: II + e.getMessageO);

}

n = Integer.valueOf«(String) utmelementAt(O»intValueO;

s = Integer.valueOf«String) utm.elementAt(l».intValueO;

45

-..
-04...
I~
I.a
••.~••....
:;:>

.=...
~,....
'''4
')
.~

d
:>
~..,
~
)I

-

e = Integer.vaJueOf(String) utm.elementAt(2».intVaJue();

w = Integer.valueOf«String) utm.elementAt(3».intValueO;

rows = Integer.valueOf(String) utm.elementAt(4».intValueO;

cols = Integer.valueOf«String) utm.elementAt(5».intVaJueO;

System.out.println(" North: II + n);

System.out.println(" South: " + s);

Systern.out.println(" East: " + e);

System.out.println(" West: II + w);

System.out.println(" Rows: " + rows);

System.out.println(" Cols : " + eols);

Panel bottomPanel = new PanelO;

Panel centerPanel = new PanelO;

setLayout(new BorderLayoutO);

bottomPanel.setLayout(new GridLayout(2, 2, 5, 5»,

bottomPanel.add(new Label("lmage Coord", LabeI.LEFT»,

bottomPanel.add(new Label("UTM Coord", Label. LEFT»,

lat = new Label("O", Label.LEFT),

lat. setForeground(Color. blue);

lat.setFont(new Font("Helvetiea", Font.BOLD, 14»;

bottomPanel.add(lat);

Ion = new Label("O", LabeI.LEFT);

Ion. setForeground(Color. blue);

10n.setFont(new Font("Helvetica", Font.BOLD, 14»;

bottomPanel.add(lon);

add(" South", bottomPanel);

itemlist = new List(3, true);

Panel p = new PanelO;

p setLayout(new GridLayout(2, 0»;

padd(itemlist);

Label myname = new Label("Select Image to view"),

46

..........
,~

:a
••
'OC
;;.....
::;)

I~
'-C

3::...
')

~
:>••
:1
~
~I

"

-

p.add(myname);

add("East", p);

add("Center", icanvas); /* add image canvas to applet */

Panel buttons = new Panel(); /* create panel and add button */

buttons.setLayout(new GridLayout(O, 5));

buttons. add(new Button("Display"»;
buttons.add(new Button("Rec1ass"»;

buttons.add(new Button(" Area"»;

buttons.add(new Button("Open"»;

buttons.add(new Button("Info"»;

buttons.showO;

add("North", buttons);

about.box = new About.Box(this);

add(about.box);

aboutbox.reshape(80, 80, 200, 150);

for (i I = 0; i1 < labels.sizeO; i 1++) {

itemlist.addltem«String) (Iabels.elementAt(i I)));

icanvas. setimages(images),

/* create thread to load images and watach for user interaction

*/

public void startO {

if (mainthread == null) {

mainthread = new Thread(this),

mainthread.startO;

47

''I....~
'~I.a

-

public void update(Graphics g) {

paint(g);

}

public void update(int x, int y) {

lat.setText("(" + x + "," + Y+ ")");

}

/ * calculate UTM coordinates from the coordinate of image where

the mouse pointer is currently pointing

*/

public void utmupdate(int x, int y) {

float east, north;

east = (float) (e - w) * (x - I) / cols + w;

north = (float) n - «n - s) * (y - 1) / rows);

lon.setText("(" + east + "E," + north + "N)");

public void realpaint(Graphics g) {

}

/* run thread forever */

public void runO {

while (true) {

try {

mainthread.sleep(15), /* take a nap */

}

-l8

••
"OOC
;.....

-

catch(Exception e) {

}

mainthread.yieldO;

for (i4 = 0; i4 < labels.sizeO; i4++) {

tempcbval = ((Checkbox) (cbvec.elementAt(i4))).getStateO;

if (tempcbval == true) {

tempcbint =];

}

else {

tempcbint = 0;

icanvas. setimagestate(i4, tempcbint),

}

/* set image current state in the canvas */

tistitems = itemlist.getSelectedlndexesO;

for (i4 = 0; i4 < labels.sizeO; i4++) {

icanvas.setimagestate(i4, 0);

}

for (i4 = 0; i4 < listitems.length; i4++) {

icanvassetimagestate(1istitems[i4], I);

}

/* repaint canvas area all the time */
icanvas.repaintO;

}

/* stop thread if user leave */

public void stopO {

if(mainthread 1= null) {

49

;.-;;)
i~

''"'
~
,~

'J
I~

~
)
"
:1

~

-

mainthread. stopO;

mainthread = null;

}

}

public void paint(Graphics g) {

if (offscreen != null) {

1* more double -buffering *1

realpaiot(offscreen);

1* the REAL paint method *1

g.drawlmage(im, 0, 0, this);

} else {

realpaint(g);

lithe REAL paint method

}

1* handle all the user action clicks. This can be done by overiding

handle evenet method.

*1

public boolean handleEvent(Event evt) {

switch (evt.id) {

case Event.ACTION EVENT:

if (evt.target instanceofButton) {

String label = «Button) (evttarget».getLabel();

if (label. equals(t1 Info"» {

aboutbox.show();

else if (Iabel.equals(IOpen "» {
county = new County(this);

county.packO;

50

......
~

county.showO;

}

else if (label. equaJs("Display"» {

raster = new Raster(this);

add(raster);

raster. packO;

raster. showO;

}

}

break;

default:

return super.handleEvent(evt);

}

return true;

}

1* This class use to create image canvas. It is implement as ImageObserver. simply

wait until image is constructed

*1

class imageoverlaycanvas extends java.awtCanvas implements ImageObserver {

Graphics offs;

Image warpedimage, im;

Graphics actual;

Dimension thisd = new Dimension(200, 200);

Color col = new Color(220, 220, 220);

Ilback coJor

51

-

int il, i2 , i3, i4;

Vector ivec = new Vector(1, 1);

URL codeb;

Applet parentapp;

imageoverlay myapplet;

/* constructer for imageoverlay canvas

*/

public imageoverlaycanvas (Applet parent) {

this.parentapp = parent;

this.myapplet = (imageoverJay) parent;

try {

thisd = parentapp.sizeO;

thisd.width = thisd.width - 150;

this. resize(thisd);

im = createlmage«this.sizeO).width, (this.sizeO).height);

//applet size is used for teh float buffered image Ize.

otTs = im.getGraphicsO;

//gets the graphics object representation of Image illl.

}

catch (Exception e) {

•..
•...
".:I

~
OIl.........
)
~

j
)

•
•
f

ofts = null,

}

codeb = parentapp.getCodeBaseO,

/* paint canvas */

public void paint (Graphics g) {

52

//ifthere 's a problem

//make offscreen null

-

//this is straightforward, hopefully

if«im == null) II (offs = null» {

im = createImage«this.sizeO).width, (this.sizeO).height);

/Iapplet size is used for teb float buffered image size.

offs = im.getGraphicsO;

}

if (offs 1= null) {

Ilif Graphics offscreen is not undefined...

realpaint(offs);

/Ipaint on it(image of graphics object stored in Image im,

previously defined)

g.drawlmage(im, 0, 0, this);

Iidraw the image of Graphics offscreen

}

else {

realpaint(g);

Ilexecute the true paint method

/* update call paint method */

public void update(Graphics g) {

paint(g);

/* set images into vector give the abstraction of link list. *1

public void setimages (Vector stringvec) {

/Ijust a little OOP stuff...

il = 0,

for (il = 0; il < stringvec.sizeO; il++) {

try {

53

~..........
)..
J
)
4

•I

"'"""

ivec .addElement(parentapp.getImage(codeb,

(String) (stringvec.elementAt(i I»»;
}

catch(Exception e) {

}

ivec. addElement(new Integer(0»;

}

/* set image state whether to display or not */

public void setimagestate(int image, int state) {

ivecsetElementAt(new Integer(state), (image * 2) + 1);

}

public void realpaint (Graphics g) {

g.setColor(col);

g.fillRect(O, 0, this.sizeO.width, this.sizeOheight);

for (il = 0; il < (int) (ivec.sizeO /2); il++) {

jf «(Integer) (ivec.eJementAt«il * 2) + I »).intValueO ==

I) {

g.drawImage«lmage) (ivec.elementAt(i I * 2», 0, 0,

null);

}

/* handle event to calculate coordinate as user moves the

pointer on the image.

*/

public synchronized boolean handleEvent (Event evt) {

switch (evt. id) {

54

•...

~......
~

:)

•
!
)

•f
I

--

case Event.MOUSE MOVE:

myapplet.update(evt.x, evt.y);

rnyapplet.utmupdate(evt.x, evt.y);

return true;

default:

/* all other event handle by super class */

return super.handleEvent(evt);

}

}

}

/* class to contruct about the box dialog showing name of author

and help if user click on help button

*/

class AboutBox extends Panel {

public AboutBox (Panel parent) {

setBackground(new Color(150, 150, 150»;

Label I = new LabeJ("GIS Interface", Label.CENTER);

I. setForeground(Color. red);

l.setFont(new Font("Helvetica", Font.BOLD, 14»;

add("North", I);

I = new Label("Developed By Sohail Amjad", LabeICENTER);

l. setForeground(Color. blue);

1.setFont(new FontC'Helvetica", Font.ITALIC,]0»;

add("Center", I);

//add to panel

Panel p = new PanelO;

//p.setLayout(new BorderLayoutO),

55

•-;,
~........
)
4,
•)
I

I

-
p.add(new Button("Ok");

p.add(new Button("Help");

add("South", p);

hideO;

}

public void paint (Graphics g) {

Rectangle bounds = boundsO;

g. setColor(getBackgroundO);

g.draw3DRect(0, 0, bounds.width - 1, bounds. height - I,

true);

}

public Insets insetsO {

return new Insets(5, 5, 5, 5);

}

/* simply hide dialogbox */

public boolean action (Event evt, Object obj) {

hideO;

return true;

}

} Ilend class aboutbox

I * create a frame in order to choose counties from the list

of Oklahoma counties *1

class County extends Frame {

•
4

•a......

......
~

)

List

String

I = new List(5, false);

link;

56

-

Bookmark blist[] = new Bookmark[3];

Applet parentapp;

public County (Applet parent) {

parentapp = parent;

//super(parent);

setBackground(new Color(192, 192, 192»;

//setLayout(new GridLayout(1, I»);

Label label = new Label("Select County", LabeI.CENTER);

label.setForeground(Color.red);

label.setFont(new Font("Helvetica", Font.BOLD, 14);

add("North", label);

l.addltem(IAlfalfa");

l.addltem(IBlaine");

1. addltem("Cimarron");

1. addltem("Canadian ");

l.addltem("Delware");

1. addItem(" Ellis"),

l.addItem("Garfield");

1. addltem(IGrant");

l.addJtem("Hughes");

1. addItem("Johnston");

1. addJtem(ILerflore");

1. addItem(ILatirner");

Jaddltem("Muskogee");

l.addltem(IOklahoma");

LaddItem("Wasington");

add("Center", I);

Panel p = new PanelO;

57

4
~....
•)

p.add(new Button("Query Server"));

p.add(new Button("Cancel"));

add("South", p);

hide();

}

public void initO {

blist[O] = new Bookmark("Alfalfa",

.. httpJ/www.geog.okstate.edu/grass/htmIlAlfalfa.html ..)~

blist[1] = new Bookmark("Blaine",

.. httpJ/www.geog.okstate.edu/grass/html/Blaine.html ..);

blist[2] = new Bookmark("Cimarron",

.. httpJ/www.geog.okstate.edu/grass/htmI/Cimmarron.html ..);

blist[3] = new BookmarkC'Canadian",

.. httpJ/www.geog.okstate.edu/grass/htmI/Canadian.html ..);

blist[4] = new Bookmark("Delware",

.. http://www.geog.okstate.edu/grass/html/Delware.html ..)~

blist[5] = new Bookmark("ElIis",

.. http://www.geog.okstate.edu/grass/html/El1is.html ..);

blist[6] = new Bookmark("Garfield",

.. http://www.geog.okstate.edu/grass/html/Garfield.html ..);

blist[7] = new Bookmark("Grant",

''http://www.geog.okstate.edu/grass/html/Grant.htrnl'');

blist[8] = new Bookmark("Hughes",

.. http://www.geog.okstate.edu/grass/html/Hughes.html ..);

blist[9] = new Bookmark(t1 Johnston",

.. http://www.geog.okstate.edu/grass/html/Johnston.html tl
);

blist[lO] = new Bookmark("Lerflore",

''http://www.geog.okstate.edu/grass/htmIlLerflorehtml'');

S8

'"...,
"

blist[ll] = new Bookmark("Latimer",

Ihttp://www.geog.okstate.edu/grass/htmIlLatimer.html");

blist[12] = new Bookmark(IMuskogee",

"http://www.geog.okstate.edu/grass/html/Muskogee.html");

blist[13] = new Bookmark(IOklahoma",

"http://www.geog.okstate.edu/grass/html/Oklahoma.html");

blist[14] = new Bookmark("Wasington",

Ihttp://www.geog.okstate.edu/grass/html/Wasington.html");

}

public boolean handleEvent(Event evt) {

switch (evtid) {

case Event.ACTION EVENT

if (evt. target instanceof Button) (

String label = ((Button) (evt.target».getLabeIO,

if(label.equals("Cancel"))

hideO;

/* link to the page where county data exits */

else if (label.equals("Query Server"» {

link = I.getSelectedItem();

link += ".html";

System. out. printlnOink);

LinkTo(link);

}

}

break;

default:

return super.handleEvent(evt);

59

}

return true;

}

/* link to sel.ected counties page */

public void LinkTo(String name) {

URL theURL = null;

initO;

for (int i = 0; i < blist.length; 1++) {

if (name. equal s(blist[iJ. name)) {

theURL = blist[i]. uri;

}

}

/* get the applet context and show document */

if(theURL 1= null)

System.out.println("now loading: " + theURL),

parentapp.getAppletContextO·showDocument(theURL);

/* conturcter for creating URL object. */

class Bookmark {

String name;

URL uri;

Bookmark(String name, String theURL) {

this. name = name;

60

try {

this.url = new URL (theURL);

}

catch(MalformedURLException e) {

System.out.println("Bad URL:" + theURL);

}

/* create frame and add all available raster, vector and sites maps available

to the counties

*/

class Raster extends Frame {

List I = new List(5, false);

Applet parentapp;

private String item;

private String raster = "ANALYSIS=displayerl &RASTER=";

private String vector = "VECTOR=";

private String vcolor = "YCOLOR=";

private String sites = "SITES=";

private String scolor = "SCOLOR=black&",

private String region = "REGION=I2 County Bay and Delta Area&";

private String giCsize = "GIF_SIZE=";

private final String script = "/cgi-bin/myquery";

private final String ctype = "application/x-www-form-urlencoded";

private String sdata =

"YECTOR=none&YCOLOR=black&SITES==none&SCOLOR==bJack®ION==

12 County Bay and Delta Area&GIF_SIZE=medium";

private String rdata = "";

private String home,

Gl

private int port;

Socket sock;

OutputStream outp;

InputStream mp;

DataOutputStream dataout;

DataInputStream datain;

List 11 = new List (5, false);

List 12 = new List(5, false);

List 13 = new List(5, false);

Choice c, sIze;

String color;

/* constructer for frame Raster */
public Raster (Applet parent) {

parentapp = parent;

setBackground(new Color(192, 192, 192»;

setLayout(new GridLayout(I, 1);

Label label = new Label("Raster Avialable", LabeI.CENTER);

label. setForeground(CoJor.red);

label.setFont(new Font("Helvetica", Font.BOLD, 14»;

add(1abel);

//adding raster files

Panel bottomPanel = new PanelO;

Panel centerPanel = new PanelO;

setLayout(new BorderLayoutO);

bottomPanel.add(new Button("Query Server"»;

bottomPanel.add(new Button("Cancel"»;

c = new ChoiceO;

c. addItem("black ");

c.addltem("white");

caddItem("red");

62

c. addItem("orange");

c.addItem(lblue");

c.addItem(lindigo");

c.addltem("brown");

c. addItem("yellow");

c.addItem(lgreen");

bottomPanel. add(c);

size = new ChoiceO;

size.addItem("maximum");

size.addItem("medium");

size.addltem("minimum");

size.select("medium ");

bottomPanel. add(size);

add(l South", bottornPanel);

centerPanel.setLayout(new GridLayout(I, 3»;

/* add available raster maps */

Panel pI = new PanelO;

p1.setLayout(new BorderLayoutO);

label = new Label("Raster Avialable", LabeI.CENTER);

label.setForeground(Color.red);

label.setFont(new Font("Helvetica", Font.BOLD, 14»;

pl.add("North", label);

11 = new List(5, false);

II.addItem(lnone");

11.addItem(l Roads");

J] .addltem("Railroads");

l1.addItem("Streams");

II.addltem("Landuse");

11.addItem(ITractids");

I] .addItem("Vegecover");

G3

-r-

--

11.addltem(ISoils");

11. addltem(IGeology");

11. select(O);

p l.add(ICenter", Ii);

centerPane1.add(pl); /* add this to center of panel */

Panel p2 = new PanelO;

p2. setLayout(new BorderLayoutO),

/* add all availlable vector to the frame lists */

label = new Label("Vector Avialable", LabeI.CENTER);

label. setForeground(CoJor.red);

label.setFont(new Font("Helvetica", Font.BOLD, 14»;

p2.add("North", label);

12 = new List(5, false);

12.addItem("none");

12. addItem("Roads");

12addItem("Railroads"),

12.addltem("Streams"),

12. addItem(" Streams II);

12.select(O);

p2.add("Center", 12);

centerPanel.add(p2);

Panel p3 = new PanelO;

p3 .setLayout(new BorderLayoutO),

label = new Label("Sites Avialable", LabeI.CENTER);

label.setForeground(Color.red),

labe1.setFont(new Font("Helvetica", Font.BOLD, 14»,

p3.add("North", label);

13 = new List (5, false);

13.addltem("none"),

13. addItem("Bugsites");

64

13 .addItem("Archsites");

13. select(O);

p3.add(ICenter", 13);

centerPanel. add(p3);

add("Center", centerPanel);

hideO;

}

/* create data block as other browser use to send

data to the http servers. using method POST

*/

public boolean handleEvent (Event evt) {

switch (evt.id) {

case Event.ACTION EVENT

if (evt.target instanceof Button) {

String label = «Button) (evt.target)).getLabeIO;

if (labeLequals(ICancel"»

hideO;

else if (labeLequals("Query Server"» {

item = 11.getSelectedltemO,

raster += item,

raster += "&";

item = 12.getSelectedItemO;

vector += item;

vector += "&";

raster += vector;

item = c.getSelectedItemO;

vcolor += item;

vcotor += "&";

raster += vcolor;

65

item = 13 .getSelectedItemO;

sites += item;

sites += "&";

sites += scolor;

raster += sites;

raster += region;

item = size.getSeJectedltemO;

giCsize += item;

raster += gif_size;

System.out.println(raster);

hideO~

PostData(raster); /* send data to server */

/* server updates files, therefore load document again */

parentapp.getAppletContextO. showDocument(parentapp. getDocumentBaseO);

}

break;

default

return super. handleEvent(evt);

return true;

}

/* This function send data to client similar to what other browser do to

send data to server.

public void PostData(String data) {

/* get the pon where http is ruuning on */

home = parentapp.getDocurnentBaseO.getHost();

port = parentapp.getDocumentBase().getPortO:

66

if (port = -1)

port = 80;

/* open up a scoket */

try {

sock = new Socket(home, port);

}

catch (Exception e) {

rdata = e + " (socket: Host: " + home + "\tPort: " + port + ")";

return;

}

try {

/* get the output stream to put data on */

outp = sock.getOutputStreamO;

inp = sock.getlnputStreamO; /* get input stream to read data *1

}

catch (Exception e) {

rdata =e + " (getstream)";

/* if error occur close socket */

try

sockcloseO;

catch(IOException ee);

return;

/* create objects for Input/Out.put Data stream */

try {

dataout = new DataOutputStream(outp);

datain = new DatalnputStream(inp);

}

67

catch (Exception e) {

rdata = e + II (Dstream)";

}

/* close seoket if error occur in opening input/output stream */
try {

sock.c1oseO;

catch(lOException ee),

return;

}

//send http stuff

try

{

dataoutwriteBytes("POST 11 + script + 11 HTTP/I.O\r\n");

dataout writeBytes("Content-type: II + ctype + "\r\n");

dataoutwriteBytes("Content-length: II + data.lengthO + "\r\n");

dataout writeBytes(l\r\n");

System. out println(data);

dataout writeBytes(data);

dataout. writeBytes(l\r\n");

boolean body = false;

String line;

while « line = datainreadLineO) 1= null) {

if(body)

rdata += "\n" + line;

else if (line. equals(""»

body = true;

}

}

catch(Exception e) {

<i8

rdata = e + " (write)";

try

sock.closeO;

catch(Exception ee);

return;

}

//close socket

try

{

dataout.closeO;

datain.closeO;

}

catch(IOException e);

try

sock. close(),

catch(IOException e),

}

public void paint (Graphics g) {

StringTokenizer st = new StringTokenizer(rdata, "\n");

int line = I,

int line_sp = getFontMetrics(getFontO).getHeightO + 1;

while (sthasMoreTokensO) f

g.drawString(st.nextTokenO, 5, line * line_sp),

69

-

}

}

}

70

.....

-

APPENDIX C

CGI SCRIPT

71

-

-

#!/bin/sh

#####################NN#########################ff#l!{1##################

#

#

File Name . grass.cmd

#

#

This scripts setup path for home directory of http user and setup environment

variable for the GRASS.

#

#

##

${GISBASE?}

trap '/bin/mv -f $LOCAnON/LOCK $LOCATIONIUNLOCK' 0 I 2 3 5 9 15

GISBASE=/dsk3/grass

export GISBASE

home=/dsk3/home/http

GISRC=$home/.grassrc

export GISRC

GISDBASE=/dsk3/data

export GISDBASE

LOCATION_NAME=spearfish

export LOCATION_NAME

GIS LOCK=$$

export GIS_LOCK

ETC=$GISBASE/etc

PATH=$GISBASE/bin$GISBASE/scripts$GISBASE/gardenJbin:$PATH

export PATH

72

-

#eval 'SHELL=/bin/sh tset -s -Q'

#stty -tabs

#g.gisenv MONITOR=

#eval 'g.gisenv'

##

step through available grass mapsets.

locnumber= I

location=$GISDBASE/$LOCATION_NAME/grass

while test $locnumber -It 10

do

if mv -f $location$locnumber/UNLOCK $location$locnumber/LOCK

then

touch $location$locnumber/LOCK

mapset=grass$locnumber

Jocation=$GISDBASE/$LOCAnON_NAME/$mapset

gisrc=$home/.grassrc$locnumber

break

else

locnumber=· expr $Iocnumber + I'

if [$Iocnumber = 6]

then

sleep 5

locnumber=l

fi

fi

done

73

!//4//I/#N#####tlHHl/llflHNHt/#################H!JtJlI

reset GRASS environment variables

location=$GISDBASE/$LOCAnON_NAME/$mapset

GISRC=$gisrc

export GISRC

LOCATION=$location

export LOCATION

MAPSET=$mapset

export MAPSET

g.gisenv GISDBASE=/dsk3/data

g.gisenv LOCATION_NAME=speamsh

ggisenv LOCATlON=$LOCATION

g.gisenv MAPSET=$MAPSET

eval 'g.gisenv'

###

Run the GRASS command

#sh="'basename ${SHELL=/bin/sh }'II

$*

##

Exit GRASS

monitor=' g.gisenv MaNITO R'

74

-

if ["$monitor"]

then

$ETC/mon.release -v $monitor

fi

g.gisenv MONITOR=

eva] 'g.gisenv'

LOCATION=${GISDBASE?}/${LOCATION_NAME?}/${MAPSET?}

75

•

#Ilbin/sb

File Name grass.cgl

#

This cgi script use to set up some path and runs the appropriate scripts.

#

trap fIrm -f /export/wohler/tmp_grass/posted.$$; exit 1" 0 1 2 3 5 9 15

PROG_PATH=/dsk2/httpd/htdocs/grass/spearfish./scripts

TMP_PATH=/tmp/tmp_grass

GIF_PATH=/dsk2/httpd/htdocs/grass/spearfish./scripts

GISBASE=/dsk3/grass

PBM_ PATH=/dsk2/httpd/htdocs/grass/spearfish/scripts

export PROG_PATH

export TMP_PATH

export GISBASE

export PBM_PATH

export GIF_PATH

ANALYSIS='grep "ANALYSIS =" $TMP_PATHlposteddat I sed 's/ANALYSIS =//"

echo $ANALYSIS

$PROG_PATHltimer 300 $PROG_PATH/grasscmd $PROG_PATH/$ANALYSIS

$TMP_PATH/posted.dat

if [$? -eq 137]

then

echo ''The process you requested has timed out.<p>

This may have been because our computer is overloaded,

but it could also be because your request was incomplete

or specified a non-terminating query. <p>

76

-

-

fi

Please check that all the entries in the query form are et

correctly before resubmitting. <p>"

77

-

#!/bin/sh

############II###ffIlIlHII######Ii#f!#########111/##//#HHHf{H!!###########HI11/####

#

#

File Name: display.cmd

#

Starts a GRASS and run rast2gifscript for the selected map.Also calculate the

UTM coordinates of the selected map.

#

##

RASTER='grep "RASTER =" $) I sed 's/RASTER = II"

GRASTl='echo $RASTER I sed 'sl 1+/gl'

GRASTER='$PROG_PATH/parser_rast $GRASTl'

REGION='grep "REGION =" $) I sed 's/REGION = II"

GREGl='echo $REGION I sed 'sl 1+/g"

GREGION='$PROG_PATHIparserJeg $GREG1'

GIF_SIZE='grep "GIF_SIZE =" $) I sed 's/GIF_SIZE = 11'1 awk '{ print $1 }"

VECTOR='grep "VECTOR =" $1 I sed 's/VECTOR = II"

GVECT1='echo $VECTOR I sed 'sl 1+/g"

GVECTOR='$PROG_PATH/parser_vect $GVECTI'

SITES=' grep "SITES =" $1 I sed 's/SITES = II"

GSITE 1=' echo $SITES I sed 'sl 1+/g"

GSITES=' $PROG_P ATH/parser_sites $GSITE L.

VCOLOR='grep "VCOLOR =" $1 I sed 's/VCOLOR = //"

SCOLOR='grep "SCOLOR =" $1 I sed 's/SCOLOR = II"

if [$RASTER != "none"]

-

I""'"'"

then

GIF=$RASTERgif

fi

if [$VECTOR != "none"]

then

GIF=$VECTOR.gif

fi

if [$SITES 1= "none"]

then

GIF=$SITES .gif

fi

case $GREGION in

raster)

g.region rast=$GRASTER

*)

gregion region=$GREGION

esac

g.remove rast=MASK > /dev/null 2>& I

COORDS=' g.region -p'

ZONE='echo COORDS Iawk '{print $5r

79

-

NORTH='echo $COORDS Iawk '{print $7}"

SOUTH='echo $COORDS I awk '{print $9}"

EAST='echo $COORDS Iawk '{print $11 }"

WEST='echo $COORDS Iawk '{print $13}"

GRES='echo $COORDS Iawk '{print $15}"

COLS='echo $COORDS I awk '{print $19}"

ROWS='echo $COORDS Iawk '{print $21}"

echo "$NORTH"» $TMP PATH/utm$$

echo "$SOUTH" »$TMPPATH/utm.$$

echo "$EAST" »$TMP PATH/utm.$$

echo "$WEST" »$TMP PATH/utm.$$

echo "$COLS" »$TMP PATH/utm.$$

echo "$ROWS" »$TN1P PATH/utm$$

$PROG_PATHIrast2gif$GIF $GRASTER $GVECTOR $GSrTES $VCOLOR

$SCOLOR $GfF SIZE

80

#I/bin/sh

###########################III!!lI/!!#II###f:I##################################

#

File Name: rast2gif

#

This file use to create transparent gif file. It store varaible in script file and runs

GRASS utility p.map.new to generate map in raw format. Finally it ppmtogif

used to convert ppm file to giffile.

#

###

trap "/bin/rm -f$TMP_PATHJgrass.$$.ppm" 0 I 23 5915

GIF=$1

GRASTER=$2

GVECTOR=$3

GSITES=$4

VCOLOR=$5

SCOLOR=$6

GIF SIZE=$7

SCRIPT=$TMP_PATHJpmap_script.$$

GIF_PATH=/dsk2/httpd/htdocs/grass/spearfish

touch $SCRIPT

p.select ppm> /dev/null 2 & J

if [$GRASTER 1= "none"]

then

echo "raster $GRASTER" » $SCRIPT

81

fi

if [$GVECTOR != "none"]

then

echo "vector $GVECTOR" » $SCRIPT

echo" color $VCOLOR" » $SCRIPT

echo" end" »$SCRIPT

fi

if[$GSITES 1= "none"]

then

echo "sites $GSITES" »$SCRIPT

echo" color $SCOLOR" » $SCRIPT

echo" end" » $SCRIPT

fi

echo "end" > $SCRIPT

p.map.new input=$SCRlPT > /dev/null 2>& 1

case $GlF SIZE in

($PBM_PATH/pnmscale -xysize $MAX_RES $MAX_RES < $MAPLP I
$PBM_PATHlppmquant 2561 $PBM_PATH/ppmtogif -transparent white>

$GIF_PATH/$GIF) 2> /dev/null

82

parser_rasFile Name:
#! /bin/sh
#
#
convert requested raster map selected in htrnl to full map names

case $1 in

none) MAP="none" ;;

Roads) MAP="roads@PERMANENT" ;,

Railroads) MAP="railroads@PERMANENT" ,;

Streams) MAP="streams@PERMANENT" ;;

Landuse) MAP="landuse@PERMANENT" ;,

Tractids) MAP="tractids@PERMANENT" ,;

Vegetation Cover) MAP="vegcover@PERMANENT" ;;

Soils) MAP="soils@PERMANENT" ;;

Geology) MAP="geology@PERMENENT" ;;

Restricted Areas) MAP="rstrct@PERMANENT" ;;

Soil PH Values) MAP="soils.ph@PERMANENT" ,;

Erosions) MAP="erode@PERMANENT" ;;

Fields in Spearfish) MAP="fields@PERMANENT" ;,

Soils K factor) MAP="soils.Kfactor@PERMANENT" .,

Soils T factor) MAP="soils.Tfactor@PERMANENT" ,;

Range of Soil) MAP="soils.rang@PERMANENT" ;;

Transportation Misclleneous) MAP="transport.misc@PERMANENT" ;;

USGS Quads) MAP="quads@PERMANENT" ;;

Geology) MAP="geology@basis" ,;

83

Elevation Dimension) MAP="elevation.dted@PERMANENT" ~;

Elevation) MAP="e1evation. dem@PERMANENT" ;;

Slope) MAP="slope@PERMANENT" ;;

Elevation) MAP="elevation.dem@PERMANENT" ~;

Texture) MAP="texture@PERMANENT" ;;

Rushmore) MAP=rushmore@PERMANENT" ;;

*) MAP=$l ..
"

esac

echo $MAP

84

#! /hin/sh
File Name : parser veet
#

convert requested map selected in html to full map names

case $1 in

none) MAP=lnone" ..
"

Roads) MAP="t.roads@PERMANENT" ,;

Railroads) MAP="t.railroads@PERMANENT" ;;

Streams) MAP="streams@PERMANENT" ;;

Fields) MAP="fields@PERMANENT" ;;

USGS Quads) MAP="quads@PERMANENT" ;;

Restriction Areas) MAP=l rstrct@PERMANENT" ;;

Sections) MAP="sections@PERMANENT" ;;

Soils) MAP=" soils@PERMANE T";;

Tracts) MAP=luracts@PERMANENT" ;;

Roads Information) MAP="t.roads.inf@PERMANENT" ;;

Tractids) MAP="ttracts@PERMANENT" ;;

Transport Misclleneous)="transport. mise" ;;

Power Lines) MAP="t.powerJines@PERMANENT" ;;

Hydro) MAP="t.hydros@PERMANENT" ;;

Primary Roads) MAP="t.roads.prime@PERMANENT" ;;

Secondary Roads) MAP="t.roadsseeond@PERMANENT" ;,

Twp Range) MAP="twp.range@PERMANENT" ;.
esac

85

echo $MAP

86

#! /bin/sh
File Name : parser_sItes
#
This scrlpt convert requested map selected in html to full map names

case $1 in

none) MAP="none" ;;

Bugsites) MAP="bugsites@PERMANENT" ;;
Archsltes) MAP="bugsites@PERMANENT" ;;

esac
echo $MAP

87

#!/bin/sh

####################/11111 #11#############

#

Checks for files older than one hour

and deletes them.

#

######################################

LOCATION_NAME=/dsk3/data/spearfish

PROG_PATH=/dsk2/httpd/htdocs/grass/spearfishlscripts

clean out GRASS tmp directory

cd /tmp/tmp_grass

/bin/ls I

$PROG_PATH/checktimes I

/bin/xargs /bin/rm -f

clean out GRASS tmp directories

for i in I 2 3 4 5

do

oIR=/ds.k3/data/spearfishlgrass$i

cd $D!Rltmp

Ibin/ls I

$PROG_PATH/checktimes I

/bin/xargs /bin/rm -rf

done

clean out grass mapsets by

deleting all files in the mapset subdirectories, but none

of the top level files or directories.

RS

for i in grass1 grass2 grass3 grass4 grass5

do

(

cd $LOCAnON NNvtE/$i

for j in *
do

(

if[-d $i]

then

cd $i

if[t -z "'/bin/ls''']

then

find' /bin/ls' -print I

$PROG_PATHJchecktimes I /bin/xargs /bin/rm -rf

fi

fi

)

done

)

done

R9

/* File Name: postquery.c

This program decodes data submitted by uri

*/

#include <stdio.h>

#include <unistd.h>

#include <string. h>

#include <stdlib. h>

#define MAX ENTRIES 10000

#define PATH2 "/dsk2/httpd/cgi-binJgrass.cgi"

#detine PATH3 "/dsk2/httpd/htdocs/grass/spearfish/"

typedef stmct {

char *name;

char *val;

} entry;

char *makeword(char *line, char stop);

char *fmakeword(FILE *f, char stop, int *Ien),

char x2c(char *what);

void unescape_url(char *url);

void plustospace(char *str);

FILE *fp, *fptr 1, *fptr2;

main(int argc, char *argv[]) {

entry entries[MAX_ENTRIES];

90

register int x,m=O;

int cl;

char filename[J 00];

char answer[100];

int ret_val, status;

if(strcmp(getenv("REQUEST_METHOD"), "POST"» {

printf("This script should be referenced with a METHOD of POST.\n");

printf("Ifyou don't understand this, see this ");

printf("<A HREF=\''http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/Docslfill

out-forms/overview.html\">forms overview.%c", I0);

exit(l);

}

if(strcmp(getenv("CONTENT_TYPE"),"application/x-www-form-uriencoded"» {

printf("This script can only be used to decode form results. \n");

exit(J);

J
cI = atoi(getenv("CONTENT_LENGTH"»;

fore x=O;cl && (!feof(stdin»;x++) {

m=x;

entries[x].val = fmakeword(stdin,'&',&c1);

pJustospace(entries[x]. val);

unescape_url(entries[x].val);

entries[x].name = makeword(entries[x]. val,'=');

fp = fopen("/tmp/tmp-Erass/posted.dat","w+");

fore x=O; x <= m; x++)

fprintf(fp,"%s = %s%c",entries[x].name, entries[x].vaJ, I 0);

91

fclose(fp);

fptf 1 = fopen("/dsk2/httpd/htdocs/grass/spearfish/img. txt"," a");

fptr2 = fopen("/dsk2/httpd/htdocs/grass/spearfish/labels.txt ","a")~

if(strcmp("none",entries[l].val))(

strcpy(answer,entries[I].val);

sprintf(filename, "%s%s.gif',PATH3,entries[1].val)~

}

else

if(strcmp("none",entries[2].val)) {

strcpy(answer,entries[2]. val);

sprintf(filename, "%s%s.gif',PATH3,entries[2].val);

}

else

if(strcmp("none", entries[4]. val)) {

strcpy(answer,entries[4]. val);

sprintf(filename, "%s%s.gif",PATH3 ,entries[4]. val)~

}

/* check if the requested map already exits */

if(access(filename,F_OK)) {

fprintf(fptr I, "%s.gif' ,answer);

fprintf(fptr2, "%s" ,answer),

fprintf(fptrl, "\n");

fprintf(fptr2, "\n");

fclose(fptr I);

fclose(fptr2);

/* update files */

/* ** *

*

*

File Name: checktime. c *
*

*
*
*
*

This program check the file older than one hour and deletes them from the

directories where tmp maps are created.

*
*

*
*

***/

#define POSIX 409

#include <sys/types.h>

#include <sys/stath>

#include <sys/timers.h>

#include <stdio.h>

struct stat files_info;

struct timespec current_time;

char buffer[2000];

extern int ermo,

main (int argc, char **argv)

{

if (getclock(T1MEOFOAY , ¤t_time» {

fpri ntf(stderr, "could not get time of day\n"),

exit (1);

}

while (gets (buffer)) {

if(stat (buffer, &filesjnfo) {

fprintf(stderr, "could not stat %s\n", buffer);

fprintf(stderr, "error number = %d\n", ermo);

continue;

94

}

}

/*printf("%d\n", current_tirne.tv_sec - filesjnfo.st_atime); */

if (current_time tv_sec - filesjnfo.st_atime > 3600) {

printf ("%s\o", buffer);

}

}

95

/***

*

*
*
*
*

File Name : time.c

This file check timer approximately 30 seconds. if the map can not be

made within 30 seconds the process got kill on the server

*
*

*
*
*

**/

#include <unistd. h>

#include <signal.h>

#include <stdio.h>

dieO

{

/* killing process 0 really means to kill all process in my */

/* process group -- see man 2 kill */
kill(O, SIGKILL)'

}

main(argc, argv, envp) {"

int argc;

char **argv;

char **envp;

int status;

/* make my a new process group */
/* so that only this process and its subprocesses get killed */

setsidO;

96

}

/* set alarm specified in grass.cgi file */

signal(SIGALRM, die);

aJarm(atoi(argv[I]);

/* fork off child to do work */

if(forkO) {

waite&status);

exit(status);

} else {

execve(argv[2], argv + 2, envp);

fprintf(stderr, "path= %s\n", argv[2]);

fprintf(stderr, "argv-= %s\n", *(argv+2»;

fprintf(stderr, "argv+l= %s\n", *(argv+3»;

fprintf(stderr, "envp= %s\n", envp);

fprintf(stderr, "execve failed\n");

97

VITA

Sohail Amjad

Candidate for the Degree of

Master of Science

Thesis: INTERACTIVE ACCESS TO GIS DATA

Major Field: Computer Science

Biographical Data:

Persona] Data: Born in Karachi, Pakistan, on April 04, 1969, the son of H. Altaf
Hussain and Fahmida Begum

Education Graduate from Karachi National High School, Karachi, Pakistan;recieved
Bachelor of Science in Engineering and Master of Science in Applied Physics from
University of Karachi, Karachi, Pakistan in December 89 and May 1992, re pectively
Completed the requirments for the Master of Science degree with a major in
Computer Science at Oklahoma State University in July] 996.

Experience: Research Assistant, Department of Geography, Oklahoma State University,
August,]995 to present Teaching Assistant, Department of Applied Physics,
University of Karachi, Karachi, Pakistan, January,]993 to June 1993 .

