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CHAPTER I 
 

 

BACKGROUND AND INTRODUCTION  

 

1.1 Theoretical feasibility  

Biological tissue is highly scattering at near-infrared (NIR) wavelengths (600-1000nm), 

and it can be observed from Fig.1.1 that in the range of 700-900nm, the absorption of water is 

much lower than that of oxygenated hemoglobin and deoxygenated hemoglobin. Both features 

ensure considerable penetration depths and possibility of the measuring tissue oxygen saturation 

level with Near-infrared light. With such theoretical basis and assuming homogeneity in 

biological tissue, Near-infrared optical spectroscopy has been developed to monitor the 

hemoglobin concentration and oxygen saturation in human tissue with a single source-detector 

pair. Subsequently, it is demonstrated that with multiple measurements, the heterogeneities of the 

hemoglobin concentration and oxygen saturation level can actually be resolved, which extends 

the spectroscopy system to a tomography system [1].  

The method is successfully implemented in imaging applications such as the diagnosis of 

breast and prostate cancer, the analysis of premature infant brain activities, and imaging of small 

animals as optical contrast generated by functional variation of biological tissue is sufficiently 

high for near-infrared light. However, since scattering dominates the photon propagation in 

biological tissue in the near-infrared band, the resolution of NIR tomography is relatively low.  
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Fig.1.1 Absorption spectrum of human tissue in near-infrared band 

1.2 Computational modeling 

The propagation of photon flux can be analytically modeled by the diffusion 

approximation of the radiative transfer equation, which will be specified in later in this study. For 

imaging geometry, human tissue can be modeled as either infinite (optode insertion, Fig 1.2(a)) or 

semi-infinite (surface detection, Fig 1.2(b)).  

 

(a) Infinite medium                        (b) Semi-infinite medium 

Fig.1.2 Models of light propagation in infinite and semi-infinite medium 

In Fig. 1.2 µs’ is the inverse of the distance where the intensity of incident light is 

scattered to 1/e and at such condition, the scattered light can be regarded as an isotropic source. 
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The modeling of NIR spectroscopy and tomography consists of two parts: 1) a forward 

model, which represents the light interaction to the medium being imaged; and 2) an  inverse 

model, which is solved for the optical properties of the imaged medium. 

For the forward model of NIR spectroscopy, explicit analytical solution of the light 

propagation can be solved. As is shown in Fig 1.2(a), by assuming that all the photons are 

initially scattered at a depth of Z0 (the inverse of reduced scattering coefficient 'sµ ), the photon 

propagation in an infinite medium can be solved. For a semi-infinite medium, by applying mirror 

method with the precondition that photon density is zero at the extrapolated boundary, the 

solution for the photon propagation in infinite medium is derived. However, for more 

complicated tomography cases, which reconstructs the spatially varied of optical property 

distribution, numerical methods such as finite element method and finite difference method are 

used. As to inverse model, NIR spectroscopy only involves the solution of the analytical equation 

set while tomography reconstruction iteratively fits the forward model to the actual 

measurements. 

Although the forward model based on finite element and finite difference methods 

reliably produces a unique solution, there exists disagreement of uniqueness for the inverse model 

of the imaging technique, especially on systems generating only steady state measurement.  This 

problem will be discussed throughout this study and approaches ensuring the unique solutions 

will be introduced. 

1.3 Reconstruction enhancements with a priori information 

Despite careful design of computational methods and instrumentation, since near-infrared 

tomography bases on the interaction between diffused photon and turbid media, the spatial 

resolution of the imaging modality is relatively low (Fig.1.3). Furthermore, non-uniform spatial 

and spectral sensitivity with respect to the optical contrast also limits the resolving power of the 
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imaging technique. Many enhancement approaches have been investigated for more reliable 

image reconstruction.                                                      

 

                        (a) Forward model                                                      (b) Reconstructed image 

Fig.1.3 Low spatial resolution of optical tomography. The structures in the 

forward model cannot be recovered by pure DOT reconstruction 

1.3.1 Spatial prior 

As is shown in Fig1.4-1.7, the imaging modalities such as x-ray, ultrasound, and 

magnetic resonance imaging (MRI) provide higher imaging resolution but low functional contrast 

in biological tissue, which is opposite to optical diffuse imaging. Compensating optical imaging 

with spatial a priori information extracted from ultrasound or MRI imaging can potentially 

improve the specificity of DOT to malignant tissue. 

Fig.s 1.4 [2] and 1.5 [3] demonstrated the MRI spatial a priori information extraction and its 

integration into the geometry generation and region division of the finite element meshes.  
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Fig. 1.4 MRI a priori information utilization in NIR tomography on prostate 

cancer diagnosis 

 

(a)MRI image                                            (b) FEM mesh 

Fig.1.5 MRI a priori information utilization in NIR tomography on brain 

functional imaging 

Compared to the huge system volume of MRI a more compact imaging modality, more 

compact and portable ultrasound imaging devices have also been integrated to optical 

tomography systems. The pioneering works of ultrasound prior guided optical tomography 

reconstruction was conducted in optical imaging group of University of Connecticut. As is shown 
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in Fig.1.6 [4], the suspicious region detected by ultrasound imaging modality is marked and 

densely segmented for higher sensitivity. 

 
(a)                                                                   (b) 

Fig.1.6 Ultrasound a priori information utilization NIR tomography on brain 

functional imaging. (a) Ultrasound image with suspicious target region marked 

(b) FEM mesh generated integrating the spatial prior information 

Since trans-rectal ultrasound is widely used in prostate cancer diagnosis and prostate 

biopsy guidance, our system integrates a sagittal trans-rectal ultrasound imager for struactral 

prior extraction. Fig.1.7 [5] displays one set of experiment on canine cadaver conducted by our 

group. 
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Fig.1.7 Ultrasound a priori information utilization NIR tomography on canine 

cadaver experiment. (a) Ultrasound image (b) FEM mesh (c) Optical tomography 

image 

The application of spatial prior is not limit to FEM generation but also contribute to 

inverse problem regularization. Two categories of methods: hard and soft prior integration to 

reconstruction algorithms are practiced and discussed in several literatures [6]. Hard prior method 

basically divides the imaging volume into several regions according to the contours observed 

from the prior providing image and assumes optical property homogeneity within each region. 

This method substantially reduced the unknown optical properties values compared to traditional 

reconstruction methods (number of regions versus number of nodes in FEM mesh) and generate 

high optical property recovery accuracy. Whereas the soft prior method still reconstructs the 

optical properties of each node of the FEM mesh yet the update ratio of the suspected region is 

intentionally elevated, producing weighted sensitivity distribution, improving the reconstruction 

reliability [6]. However, the structural prior method will not be applicable at occasions where the 

malignant tissue cannot be visibly segmented. Chapter 2 of this dissertation presents a novel 

reconstruction algorithm based on hard prior for stable iteration convergence in an endoscopic 

prostate cancer imaging. 

1.3.2 Spectral prior 

Another type of prior utilizes the variation of absorptive and scattering properties of 

chromophores with respect to wavelength spectrum to generate multiple sets of measurements 

from identical imaging geometry. Therefore, the ill-posed-ness of the inverse problem can be 

fundamentally reduced, leading to more determinant reconstruction results. As is shown in 

Fig.1.8[7] with multiple spectral measurements, the reconstruction variable becomes the 

concentration of the chromophores and the scattering parameter, all of which are constant but can 

produce different absorption and scattering optical properties with respect to the wavelengths. 
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Fig.1.8 Multi-spectral optical tomography. (1) (2) (3) are reconstruction results 

with measurements at different wavelengths 

Fig.1.9 (a) and (b) demonstrates multi-spectral tomography systems with 2 and 6 

wavelengths, respectively. Since the uniqueness of such system structure with steady state 

measurement has been proved by previous studies, it is attractive to obtain reliable reconstruction 

by implementing multiple light sources to steady state measurement systems instead of 

constructing of complicated and expensive frequency domain systems. However, few studies 

have compared the performance between steady state and frequency domain system, which will 

be the topic of chapters 3 and 4 of this dissertation. Moreover, reconstruction artifact estimation 

and optimum wavelength selection methods are also introduced base on the theoretical analysis in 

chapters 3 and 4. 

1.4 Spatially variant sensitivity distribution 

In DOT, a spatially non-uniform sensitivity can be observed in most of the imaging 

geometry, especially in the reflectance imaging geometry for brain activity monitoring and 

endoscopic imaging geometry for prostate cancer detection. The spatially non-uniform sensitivity 

is unfavorable due to the resulted non-uniformity in contrast, resolution, and particularly the 
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biased localization of an occlusion toward the position of local sensitivity maxima [6, 8-11], as is 

shown in Fig. 1.9. 

 

Fig.1.9 Spatial sensitivity profile of an endoscopic. Severe sensitivity magnitude 

variation induces inaccurate target localization in radial direction 

Several previous studies have implemented a weighting matrix to counterbalance the 

degradation of the spatial sensitivity. However, such arbitrary factor could introduce artifacts in 

the reconstructed images. In chapter 6 of this dissertation, a geometric differential sensitivity 

method is presented. The method rescales the solution domain of the inverse problem of DOT by 

linear transformation, leading to spatially less variant sensitivity profile and more accurate target 

depth localization. 

1.5 Instrumentation 

The instrumentation design of NIR tomography system is determined by the system 

measurement type (steady state or frequency domain, single or multiple wavelengths) and light 

delivery/collection approaches. In this study, we focus on the instrumentation of steady state 

measurement systems. 

The most commonly implemented system structure is mechanical source-detector 

switching. As is shown in Fig 1.10(a)[12], which is the schematics of our current clinical 

experiment system, the system integrates two wavelengths with a bifurcated fiber and delivers the 

source light to each source channel by horizontal displacement stage controlled by a PC. 

Similarly, system in Fig. 1.10(b) [13] implements a rotational plate to switch the detector 
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channels. Both systems possess the advantage of using single light source, ensuring the source 

intensity uniformity and signal independence. However, in medical imaging scenarios, it is never 

desirable that the sequential, physical displacement of either the source or detector channels limits 

data acquisition rate.  

 

(a) 

 

(b) 



 

11 
 

Fig 1.10 Mechanical switching. (a) Source channel switching system currently 

used in Oklahoma State University laboratory; (b) Detector channel switching 

system constructed by University of Connecticut 

Rapid data acquisition systems are designed and constructed for capturing instantaneous 

variation of the optical property distributions in the imaging domain.  As is shown in Fig.1.11 

[14], both system facilitate the data acquisition from all sources and detector channel by source 

channel spectral encoding. Fig.1.11(a) realize the encoding by using multiple laser diodes, while 

Fig.1.11(b) utilizes a low coherent broadband light source. The details of these two rapid NIR 

tomography systems structure will be discussed in chapter 5 of this dissertation along with a 

novel wavelength encoding instrumentation approach. 

 

Fig 1.11 Rapid data acquisition near-infrared tomography systems. (a) System 

structure with multiple laser diodes; (b) System structure with multiple low 

coherent broadband light source 

1.5 Fluorescence 

Besides all the computational and instrumentation improvement of the diffuse optical 

tomography mentioned above, the administration of fluorescence emitting material provides an 

ultimate optical contrast enhancement. However, the feasibility of such approach requires the 

specificity of the fluorescence agent to either the background or the target. In this study, 

fluorescence optical tomography for prostate cancer detection will be proposed based on a zinc-
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specific flurorophor under development of a bio-tech company NeuroBio Tex Inc. in Galveston, 

TX. One feature distinguishes the zinc-specific fluorophor from the previous investigated ones is 

that instead of producing fluorophor uptake within the malignant tissue, it concentrates in the 

benign tissue region. Therefore, the imaging scenario will be imaging a dark target within a bright 

ambience, which will be subjective to significant noise level in the measurement. 

 

Fig.1.12 Instrumentation of a frequency domain fluorescence optical tomography 

system 

Fluorescence enhanced optical tomography includes the modeling of light propagation at 

two wave bands, the excitation band and emission band. Fig.1.12 [15] shows the structure of a 

frequency domain fluorescence optical tomography system for breast cancer detection.  

An optical filter will also be added because the significant magnitude difference between 

the excitation and emission band signal might exceed the dynamic range of the CCD camera, 

which will be detailed in chapter 7 of the study. 

Since fluorescence emission spectral does not vary with respect to the excitation 

wavelengths, the traditional rapid system captures light signal from all sources by spectral 

encoding cannot be transformed to fluorescence optical tomography. Chapter 5 introduces a 
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spectral and temporal encoded excitation band source light can, which facilitates rapid 

fluorescence tomography data acquisition. A series of experiments will be designed and 

conducted to validate the system design. 

1.6 Summary 

This dissertation includes the author’s works on both the computational and 

instrumentation aspects on the prostate cancer detection with near-infrared optical tomography. 

Finally the experiment setup negative contrast fluorescence enhanced optical tomography is 

designed and preliminary validated by simulation studies. 
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CHAPTER II 
 

 

NEAR-INFRRARED DIFFUSE OPTICAL TOMOGRAPHY RECONSTRUCTION WITH 

SPATIAL PRIOR 

 

2.1. Introduction  

Prostate cancer is the 2nd most commonly diagnosed cancer and the 2nd leading cause of 

cancer deaths in American men [16]. Prostate cancer screening is recommended by use of digital 

rectal examination (DRE), measurement of serum prostate-specific antigen (PSA) [17], and a 

combination of these tests [18]. The introduction of PSA screening test has resulted in 

substantially increased detection of organ-confined prostate cancer or considerable stage 

migration [19]. However, PSA is not a specific indicator of prostate malignancy and post-

treatment tumor recurrence, except after radical prostatectomy [20]. Only a clearly increased 

serum PSA value (>20 ng/ml) indicates the presence of a prostate carcinoma at a very high 

probability. In the gray zone between 4 and 10 ng/ml the tissue marker PSA is frequently 

influenced by benign alterations, so that it is not possible—on the basis of the PSA value alone—

to differentiate between benign and malignant cases [21-22]. DRE can often distinguish between 

prostate cancer and non-cancerous conditions. DRE may also detect prostate cancers having 

normal PSA levels. However, palpation during a DRE is subjective, insensitive, and more than 

half of all prostate cancers detected today are not palpable [18]. When the suspicion of prostate 

cancer is raised by abnormal PSA and/or DRE, the diagnostic regarding the onset and the
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clinical significance of the tumor can be made only by biopsy. Today, the technique of trans-

rectal ultrasound (TRUS) based trans-rectal prostate biopsy, carried out with a semi-automatic 

coil spring device and an 18-gauge needle, is considered as the gold standard [21].  

Prostate cancer may be identified on TRUS as a hypo-echoic lesion [23]. However, at 

most 60% cancers appear hypo-echoic on TRUS while most of the remaining cancers appear iso-

echoic with respect to the surrounding parenchyma [24]. There can be hypo-echoic, cancer-

suspicious areas that may be histologically either benign or malignant. TRUS can display the 

needle trajectory accurately, but it does not differentiate a tumor reliably from normal tissues. The 

lack of TRUS specificity thereby prompts the “systematic biopsy” strategy with a preference in 

the peripheral zone where most prostate cancers are found, rather than just sampling an area 

abnormal on DRE or TRUS. However, despite years of research, the exact number of biopsies to 

be taken is still largely unknown [25]. The current trend is to use 10- to 12-core biopsy without 

the transition zone as the initial biopsy strategy. A significant number of biopsies are negative, 

and in men with persistent suspicion of prostate cancer after several negative biopsies, more 

extensive protocols (>12 cores) up to saturation biopsy (24 cores) represent a necessary 

diagnostic procedure [26].  

The need for many biopsy-cores for systematic, yet random, tissue sampling of the 

prostate may be alleviated if the acoustic contrast that TRUS relies on can be augmented with 

functional or “surrogate” markers of the prostate tumor. The augment of a functional contrast 

may lead to sampling of the most suspicious lesions. Augmenting TRUS may also desire that 

such a functional imaging modality be non-invasive and non-ionizing as is TRUS. Optical 

tomography based on near-infrared (NIR) light could emerge as one such modality.     

Near-infrared measurements of attenuation through tissue have demonstrated significant 

contrast gradients between blood and parenchymal tissue that is otherwise difficult to obtain [27-

32]. The alteration of vascularity or the hemoglobin content in the tumor renders high intrinsic 

optical contrast between the tumor and benign tissues. This high NIR tumor-tissue contrast has 
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been well-demonstrated in functional imaging of breast cancer [27-32]. When multi-spectral 

detection is engaged, NIR imaging is also known for direct quantification of chromorphore 

concentration that is important for characterization of the malignancy [27-32]. In prostate, studies 

have shown vascular density gradient in malignant versus benign tissue specimens [33], and 

different water concentrations in cancerous and benign tissues in vitro [34]. Invasive NIR 

measurements of prostate have been reported for experimental prostate tumors [35] and human 

prostate [36-37]. Surface measurements of implanted prostate tumors have also been conducted 

[36, 38-39]. These studies have been based on using NIR to detect the prostate cancer. In fact 

NIR diffuse optical measurement, performed interstitially, is becoming an important tool for 

monitoring photodynamic therapy in prostate [36-37]. Non-invasive NIR imaging of the prostate 

has also been analyzed and attempted via trans-urethral probing [2, 40]. Recently, trans-rectal 

NIR imaging of the prostate has been investigated in simulation in the context of assisting MRI 

for treatment decision [27]. Trans-rectal probing is undoubtedly the most suitable way of prostate 

imaging for optical means. This probing option, however, indicates that trans-rectal optical 

imaging may be combined with TRUS to provide broader clinical utility, e.g. prostate screening 

and biopsy guidance.  

To our knowledge, experimental work on trans-rectal NIR tomography has not been 

conducted except for our recent attempts [41-42]. This may largely due to the challenge of 

fabricating an applicator for trans-rectal probing. Optical tomography typically needs 10s of 

channels of NIR optodes in order to achieve reasonable spatial resolution within a large tissue 

volume being interrogated. The NIR illumination can be delivered by small diameter fibers, but 

the detection of weak scattered light prefers using fibers of large diameters and/or large numerical 

apertures. Unlike breast NIR tomography where there is minimum spatial restriction of the optode 

deployment, trans-rectal prostate NIR tomography has to deploy many optodes in a very compact 

space. This restriction could become more pronounced when trans-rectal NIR tomography is to be 

combined with TRUS. Since the depth of tissue interrogation by diffuse NIR light is 
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approximately one-half of the source-detector separation for typical scattering-dominant 

biological tissue, reaching targets centimeters deep in prostate implies an NIR array dimension of 

several centimeters. Trans-rectal administration of an NIR array of such dimension would be 

feasible if the optodes are arranged longitudinally to provide sagittal-view trans-rectal NIR 

imaging. The images obtained by trans-rectal NIR tomography alone would, however, be difficult 

to correlate with the anatomy. Unlike breast imaging where the NIR applicator can be accurately 

positioned, accurate positioning of a trans-rectal NIR applicator with respect to the prostate is 

difficult due to the “blind” intra-pelvic location of the prostate, slow NIR image reconstruction, 

and lack of anatomic details in NIR tomography images. It is thereby imperative to use a real-

time morphological imaging modality concurrently with trans-rectal NIR tomography to provide 

positioning guidance for NIR applicator to correlate the NIR tomography findings with the 

prostate anatomy, and more importantly to use the structural information of the prostate as the 

prior [43] to improve the accuracy of NIR image reconstruction. Among the standard prostate 

imaging techniques, TRUS is perhaps the best modality for combining with trans-rectal NIR 

tomography if the clinical endpoint is defined for screening and biopsy targeting. The integration 

of trans-rectal NIR tomography with TRUS could augment the US anatomic details with NIR 

functional contrast.  

The benefit of complement NIR contrast to ultrasound has been demonstrated in breast 

imaging [44-45]. The methodology of combining NIR/US can certainly be extended from breast 

imaging to prostate imaging; nevertheless, the technique of combining NIR with US cannot be 

applied directly from imaging the breast to imaging the prostate without a combined NIR/US 

applicator suitable for trans-rectal manipulation. In this work, we demonstrate the feasibility of 

trans-rectal NIR optical tomography of prostate in the context of combining NIR with TRUS. 

This work is separately reported in two consecutive papers. The Part-I paper, based solely on 

simulation, investigates designs of NIR tomography applicator that can be integrated with a 

commercial TRUS transducer. The Part-II paper implements the probe design suggested by the 
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Part-I paper, presents the details of the instrumentation of the combined trans-rectal NIR/US 

imager, and demonstrates the feasibility of concurrent trans-rectal NIR/US imaging in phantoms 

and tissue samples including canine prostate in situ. In this Part-I paper a hierarchical image 

reconstruction routine is developed for taking advantage of the TRUS structural a priori 

information. This hierarchical reconstruction method is then used to evaluate a number of NIR 

applicator designs. The results suggest a working geometry of the trans-rectal NIR array that can 

be integrated with a TRUS transducer.  

2.2. Preliminaries 

2.2.1 Working geometry of sagittal trans-rectal NIR array for coupling with sagittal TRUS 

A bi-plane (sagittal and transverse) TRUS probe is commonly used in prostate clinics. 

Sagittal and transverse views are frequently switched during prostate imaging, but for the biopsy 

procedure, the spring-loaded needle is fired in the sagittal plane wherein the needle trajectory is 

accurately marked. We have acquired a bi-plane TRUS probe (Aloka UST-672-5/7.5) as is shown 

in Fig.2.1(a). This bi-plane TRUS probe has a sagittal transducer spanning 60mm×10mm and a 

transverse transducer spanning 120°×10mm. The cylindrical TRUS probe has a maximum 

diameter of 20mm at its distal end. Integrating NIR optical tomography array to this TRUS probe 

implies that the radial and longitudinal dimensions of the NIR array are quite limited. For NIR 

tomography, longer source-detector separation is needed to interrogate deeper targets. The rectal 

insertion also limits the radial extent of the combined probe. Under these conditions, a feasible 

NIR array geometry may be distributing a single line of optodes on each lateral side of the sagittal 

TRUS transducer as illustrated in Fig.2.(b). Considering the supporting structure of the optodes, 

the combined probe will likely have a cross-section that is at least a few millimeters larger than 

the diameter of the TRUS probe. NIR tomography has to use multimode fibers to allow detection 

of weak diffuse light, and these multimode fibers must be delivered longitudinally before being 

side-fired. Bending the fiber is not a viable solution here for side-firing unless the fibers are 
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passed inside the TRUS probe. The side-firing alternatively may be realized by implementing 

micro-optical components. Since the compact space inside or surrounding the probe cannot 

accommodate too many channels of multi-mode NIR fibers, we propose that a working geometry 

of the NIR array for coupling to TRUS is to have 7 channels on each lateral side of the TRUS to 

span 60mm longitudinally as the TRUS transducer window does and the optical channels have 

10mm spacing. The NIR array must leave the 10mm-wide sagittal TRUS transducer unblocked; 

therefore a 20mm separation of the NIR optodes from one lateral side to the other is needed. 

These considerations lead to the NIR array geometry shown in Fig.2.1(c) where 14 optodes are 

spaced 10mm longitudinally and 20mm laterally. Fig.2.1(d) illustrates an NIR/US probe if the 

sagittal NIR array can be fabricated synergistically with the TRUS probe.   

 

Fig.2.1 Geometry of the TRUS-DOT combined probe (a) Photograph of a bi-

plane TRUS transducer. (b) A feasible geometry of NIR array for coupling with 

sagittal TRUS transducer. (c) The NIR imaging geometry for the one depicted in 

(b). (d) Cartoon-art illustration of a fully-integrated sagittal trans-rectal NIR/US 

probe.   

2.2.2 Forward and inverse methods for sagittal trans-rectal optical tomography 
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The prostate and peripheral tissues are scattering-dominant [34-37]. The light 

propagation in scattering-dominant tissue can be modeled using the diffusion approximation to 

the radiative transport equation. We use the well-known frequency-domain photon diffusion 

equation [46]: 

),(),()(),()( 0 ωωωµωκ rqrU
c

irUr a


=++∇⋅∇−                                 (2.1) 

where ),( ωrU   is the photon fluence rate at position r , ),(0 ωrq   is the source term, ω  is the source 

modulation frequency, c  is the speed of light in medium, aµ  is the absorption coefficient, and 

[ ] 1' )(3 −
+= sa µµκ  is the diffusion coefficient with '

sµ  being the reduced or transport scattering 

coefficient.  

We use finite-element method [47] to solve equ. (2.1) under the Robin-type boundary 

condition [46] 

0),(ˆ2),( 000 =∇⋅+ ωκω rUnArU                     (2.2) 

at the boundary 0r
 , where 0n̂  is the outward normal vector of the boundary, A is the refractive 

index mismatch coefficient. The refractive indices of air and tissue are 1 and 1.33 respectively, 

for the tissue-air boundary, leading to A=2.82 as in [46].  

The imaging volume for trans-rectal optical tomography can be divided approximately to 

4 domains or regions-of-interest (ROIs): the rectum wall, the peri-prostate tissue, the prostate, and 

the prostate tumor. When a prostate lesion is shown suspicious on TRUS, the thickness of the 

rectum wall, the size/shape of the prostate, and the spatial information of the prostate lesion can 

be used to guide the trans-rectal NIR image reconstruction. The TRUS structural information is 

utilized in this work as the “hard” prior [43-45]. The “hard” a priori method treats each ROI as 

homogenous; thereby 8 parameters are to be recovered for the aµ  and '
sµ  in the four ROIs. The 

Jacobian values are calculated for each ROI instead of for each node in every ROI and has the 

form of: 
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(2.3) 

where )7,...,2,1,( =jiI ji
 and )7,...,2,1,( =jijiφ  are the intensity and phase terms of ),( ωrU  , 

respectively. In equ. (2.3), “rect”, “peri”, “pros”, and “lesi” denote “rectum wall”, “peri-prostate 

tissue”, “prostate”, and “prostate lesion” respectively.  

The Levenberg-Marquart (LM) algorithm governs the iterative recovery of the optical 

properties by updating the ROI-specific values of aµ  and '
sµ  according to 

)()(])()([ 1
1 kk

T
kk

T
kk xvxJIxJxJxx ∆+⋅+= −

+ λα                                        (2.4) 

where x is the array of parameters to be optimized, J is the Jacobian matrix defined by equ. (2.3), 

ν∆  is the forward projection error, λ  is a penalty or regularization term. A small damping factor 

α  in the range of (0, 1) is introduced in equ. (2.4) to stabilize the convergence. It is shown in 

[48] that an α  chosen empirically could make the LM algorithm more reliable and 

computationally more efficient.  

2.2.3 TRUS prior assisted finite-element mesh for trans-rectal NIR tomography 

reconstruction 

In this study the TRUS images available in open sources [37] are used. Utilizing the US 

prior to guide NIR tomography reconstruction could be performed by direct segmentation of the 

US image. Alternatively, as shown in [44] for breast imaging, the location and size of a suspected 

lesion can be derived from US images to directly generate a mesh that contains 2 ROIs to 

represent the lesion with a dense mesh and the background tissue with a coarse mesh. TRUS 

http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm
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information may be utilized in similar way, but trans-rectal imaging demands a mesh containing 

more ROIs that include at least the rectum wall, the peri-prostate tissue, the prostate, and the 

tumor within the prostate. 

The TRUS image was first imported into a software 3ds-MAX [Autodesk Inc] (shown in 

Fig.2.2(a)). The 3ds-max provides very flexible geometry-deforming functions, with which a 

basic 3-D geometry of the prostate can be outlined manually. The finalized 3-D mesh of the 

prostate is converted to COMSOL Multiphysics [COMSOL AB] compatible format (shown in 

Fig.2.2(b)) with MeshToSolid [Syncode Inc]. The absorption and reduced scattering coefficients 

of rectum, peri-prostate tissue, and prostate in each individual ROI are assigned with the values 

suggested by literature [2]. A spherical shape is adopted for the prostate tumor. Fig.2.3 illustrates 

one example of the completed FEM-mesh of the imaging volume for trans-rectal optical 

tomography derived from a TRUS image. The imaging volume is 80×80×80 mm3 (lateral-medial 

× cranial-caudal × ventral-dorsal).   
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                                                      (a)                                                      (b) 

Fig.2.2 Mesh Generation (a) 3ds-MAX Interface, (b) Mesh-to-Solid Interface 

The Robin-type boundary condition defined in Equ. (2.2) is applied to all of the 6 

surfaces among which only the rectum wall is a physical boundary. Since the dimensions, 

specifically the lateral-medial and ventral-dorsal ones, well exceed the potential volume of 

photon propagation for the NIR array given in Fig.2.1(c), treating the 5 surfaces other than the 

rectum wall as physical boundaries should have negligible effect upon the results.  

 

(a) Coronal View    (b) Axial View  (c) Sagittal View ( d) Perspective View 

Fig.2.3 FEM mesh of the imaging volume generated based on approaches in 

Fig.2.2. 

The prostate in Fig.2.3 has a walnut shape of maximum dimensions of 50×50×30 mm3. 

The rectum wall is 4mm thick and the curvature has a radius of 80mm. This radius is significantly 
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larger than what a rectum could have. However, when an NIR array wider than 20mm is applied 

to the rectum in addition to the cylindrical TRUS transducer, the local rectum lumen is likely to 

be transformed to have an elliptical cross-section. We have also found that setting a larger-radius 

to the rectum curvature gives more flexibility to the details of the posterior prostate region in the 

mesh. A larger rectum radius is therefore utilized. The completed mesh similar to that shown in 

Fig.2.3 contains approximately 4000 nodes and 20000 elements. 

The source modulation frequency ω  in equ. (2.1) has been set at 100MHz for all the 

simulations, and 1% Gaussian noise has been added to all forward calculations to form the 

measurement data. In all the figures presented, the unit of length is millimeter, x  denotes the 

longitudinal coordinate in the range of [0, 80], y  denotes the lateral coordinate in the range of [0, 

80], and z  denotes the depth coordinate in the range of [0, 80], as is shown in Fig.2.3. 

2.3. A hierarchical spatial prior approach for trans-rectal NIR tomography reconstruction 

2.3.1 Sensitivity of the sagittal trans-rectal NIR array 

The NIR array proposed in Fig.2.1(c) has 7 source channels occupying one lateral line 

and 7 detection channels occupying the other line. The sensitivity of this imaging geometry with 

respect to a perturbation of the optical properties is determined by the corresponding Jacobian 

values in equ. (2.3). The sensitivity is calculated by projecting the Jacobian values along a line in 

the imaging volume. Figure 2.4 plots the sensitivity specific to absorption, or 
aijI µ∂∂ ln , for a 

medium optical properties of 101.0 −= mmaµ  and 1' 0.1 −= mmsµ . The Fig.2.4(a) is the longitudinal 

sensitivity in the mid-sagittal plane for a line from (0, 40, 30) to (80, 40, 30), Fig.2.4(b) is the 

lateral sensitivity in the mid-transverse plan for a line from (40, 0, 30) to (40, 80, 30), and 

Fig.2.4(c) is the depth sensitivity in the mid-sagittal plane for a line from (40, 40, 15.1) (here 15.1 

is the z  coordinate, but the actual depth from the rectum surface is 0mm owing to the curvature 

of the rectum) to (40, 40, 80), respectively. The dimension or the locations of the source & 
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detector array is marked on the abscissa of all three plots. The TRUS sagittal plane is located at 

y=40mm, which is the mid-sagittal plane within the NIR imaging volume.  

  Fig.2.4 indicates that the longitudinal sensitivity has ~6dB variation in the middle 75% 

range of the array, and the lateral sensitivity is peaked at the mid-saggital plane. In the middle-

sagittal plane the sensitivity degrades at ~1dB/mm as z-coordinate increases from 20mm, which 

is apparently due to the side-way placement of the NIR array. This type of depth-degrading 

sensitivity will reconstruct a deeper target at a shallower position [41] if no spatial prior is 

incorporated.   

 

                           (a)                                         (b)                                        (c) 

Fig.2.4 Sensitivity plots. (a) mid-sagittal plane, longitudinal sensitivity, (b) mid-

transverse plane, lateral sensitivity. (c) mid-saggital plane, depth sensitivity. The 

marks on abscissa or the origin show the positions of optodes and  x,y,z 

coordinates are denoted according to Fig.2.3. 

2.3.2 Trans-rectal NIR image reconstruction without a priori information 

The performance of recovering tumor target by trans-rectal NIR tomography is first 

examined without the structural prior. The accurate forward measurement is calculated by the 

TRUS-defined geometry as shown in Fig.2.3, and the iterative image reconstruction is conducted 

using mesh of homogenous element density throughout the entire volume. The optical properties 

of a 10mm diameter tumor target are 102.0 −= mmaµ  and 1' 6.1 −= mmsµ , with the parameters of 

other regions identical to those given in Fig.2.3 and listed in Table 2.1. Fig.2.5 lists the results for 

the tumor target being placed at left, middle, and right within the prostate. The top row in Fig.2.5 
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lists the aµ  and 
'
sµ   target images used to calculate the forward data. The forward data is then 

reconstructed with meshes of no prior information to obtain the images listed at the bottom row. 

It is observed that without spatial prior, a tumor target may be localized, but with poor resolution 

in location and spatial content. The accuracy of optical property recovery is also poor. The lesions 

shown, which are recovered by NIR information only as no spatial prior information is utilized in 

the inverse computation, are difficult to interpret without a location correlation with TRUS. 

Further, we have found in simulation that a tumor with negative absorption contrast can hardly be 

recovered by trans-rectal NIR tomography alone without the spatial prior. 

 

                                    (a)                                                               (b) 

Fig.2.5 NIR-only reconstruction of a tumor target in varied longitudinal locations 

 Row 1: target image for calculating the forward data; Row 2: Images 

reconstructed without any spatial prior. (a): aµ  (mm-1) images;  (b): '
sµ (mm-1) 

images.  

2.3.3 A hierarchical spatial prior method for TRUS guided trans-rectal NIR reconstruction  
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Fig.2.6 Local-minimum issue in reconstruction. 

Note: The forward calculation is based on Fig.2.3(a) with assumption of 

homogeneous imaging volume. The projection error is calculated by using 

reduced scattering coefficient of the true value (0.008mm-1), and using an 

absorption coefficient value from 0 to 0.15mm-1 at a step of 0.002mm-1, with 

respect to the forward data. Other than the global minimum, three local 

minimums can be observed where the iteration can stop incorrectly. This is the 

effect of varying only one parameter. More local minimums may occur when 

reconstructing more parameters. 

The tissue volume involved in trans-rectal prostate imaging constitutes nested-structures 

including a thin layer of rectum wall, a large volume of peri-prostate tissue, a relatively absorbing 

prostate, and the lesion within the prostate. These nested imaging domains may be further 

complicated by the pelvic bone that could interfere with the light propagation. Schweiger, et al. 

[49], Kolehmainen et al., [50-52], and Srinivasan et al. [53] investigated the issue of recovering 

the shapes and optical properties of regions with optical contrast inside a non-nested or nested 

domains, where the shapes of the ROIs were derived from optical information when no spatial 

prior is obtained from other complementary imaging modalities. The methods showed sufficient 

robustness in recovering the shapes and optical properties of the ROIs, yet the problem of 



 

28 
 

stability and/or slow convergence was noticed in those approaches dealing with nested-domains. 

In our approach of coupling trans-rectal NIR with TRUS, the shapes of the ROIs for trans-rectal 

optical tomography reconstruction could be defined directly from TRUS.  The simplest approach 

of implementing the TRUS a priori information could be assigning homogenous optical 

properties within each ROIs of the imaging domain. However the convergence and the accuracy 

of reconstruction are still dependent upon the initial guess. This can be attributed to the gradient 

based solver for which the local minimum feature [48] would likely be exaggerated in prostate 

imaging in which the multiple combinations of optical properties of the nested-structures in the 

imaging volume may have multiple combinations of optical properties fitting the measurements. 

There are also disagreements regarding the optical contrast of prostate tumor, namely positive or 

negative. All these features together challenge the accuracy and robustness of image 

reconstruction in trans-rectal optical tomography wherein finding the global minimum for the 

iterations to converge is particularly intriguing as indicated in Fig.2.6. The local-minimum 

problem makes the reconstruction sensitive to the initial guess of optical properties. 

When TRUS prior is available, a conventional way of utilizing the TRUS spatial 

information would be the “hard” a priori method in which the optical properties of each ROIs are 

set homogenous and updated simultaneously at each iteration. However, we have found that this 

conventional approach may not lead to reliable convergence for prostate imaging, which is 

believed to be due to the local-minimum problem. One example is given in Table 2.1 for the NIR 

array shown in Fig.2.1(c). The prostate model is generated according to a previous work [2] (the 

details are given in the later text and Fig.2.8(c)), and a target of 10mm in diameter is located at a 

coordinate setting of (40, 50, 15) that is 15 mm from the rectal surface. When the four ROIs 

including the rectum, the peri-prostate tissue, the prostate, and the prostate tumor are updated 

simultaneously from the same initial guess of aµ  =0.01mm-1 and '
sµ  =1.0mm-1, the iteration stops 
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after 1 round due to the negative aµ  value obtained for the rectum wall. The iteration fails to 

continue due to the local minimum issue. 

Table 2.1 Results of simultaneously updating the 4 ROIs from the same initial guess 

  (mm-1)  (mm-1) 

Regions Surroundin
g Tissue 

Rectu
m 

Wall 

Prostat
e 

Tumo
r 

Surroundin
g Tissue 

Rectu
m 

Wall 

Prostat
e 

Tumo
r 

Set value 0.002 0.01 0.06 0.02 0.8 1 1.27 1.6 
Simultaneo
us Update 

0.1216 -0.008 0.026 0.021
5 

1.1482 2.3602 0.6173 0.707
3 

The local minimum problem may be mitigated by a cascaded initial-guess approach or a 

hierarchical spatial prior method. This hierarchical spatial prior method may allow steady and 

global convergence of the iteration. The fundamental idea of this method is to first reconstruct the 

global optical properties of the entire volume, then to reconstruct the optical properties of prostate 

and rectum wall, and last to reconstruct the tumor lesion area. The 2nd and 3rd steps use the value 

obtained in the previous step as the initial guess of that specific ROI. Therefore at each step, the 

perturbation by a relatively smaller region is less influential and convergence of iteration is better 

warranted. The detailed steps are shown in Fig.2.7 and described in below: 

(a) The first iterations assume an entirely homogenous imaging volume. In this round the 

initial projection errors will be large and the converging process is most likely to be affected by 

the global minimum. Therefore, a single set of optimum values of aµ  and '
sµ  are determined with 

LM algorithm and will be used as the initial guess in the second step. 

 (b) The second iterations consider three regions of rectum wall, peri-prostate tissue, and 

prostate within the imaging volume. The iterations of optical properties of these three ROIs start 

at the same initial guess provided in step (a) and converge at different values.   

 (c) The values obtained from step (b) are used as the initial guess for the same three 

ROIs but with a tumor added to the prostate. The tumor and the prostate take the same initial 

values resulted from the previous step. Now each of the four ROIs (rectum wall, peri-prostate 

tissue, prostate, and tumor) converges to different end values.  
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The change of the overall projection error for the three steps is plotted in Fig.2.7(d). 

Rapid and reliable convergence is observed. The hierarchy of the implementation of initial values 

for iteration is illustrated alternatively in Fig.2.7(e). 

         

                           (a)                                                                        (b) 

                             

                                     (c)                                                                         (d) 

     

                                                                      (e) 

Fig.2.7. The 3-step hierarchical reconstruction method. 

 (a) step 1—one ROI for the entire volume; (b) step 2—three ROIs representing 

rectum wall, peri-prostate tissue, prostate; (c) step 3—four ROIs representing 

rectum wall, peri-prostate tissue, prostate, tumor; (d) change of the overall 

projection error, where the dash lines separate the converging of the three steps in 
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(a)—(c); (e) block chart of the hierarchical initial guess assignment. Note: units 

of colorbars: mm-1 

2.3.4 Evaluation of the hierarchical spatial prior method against literature-given results  

Recently Li et al. reported simulation results for trans-rectal optical tomography 

reconstruction in the context of using MRI anatomic information [2]. Their work is referred as 

“NIR/MRI” in the following text. We have tested the performance of our hierarchical spatial 

prior method using the probe geometry and the optical properties presented in the NIR/MRI 

work. In the NIR/MRI work, the trans-rectal NIR probe is stand-alone from MRI, thereby the 

NIR optodes could occupy the entire surface region of the planar probe. The size and depth of the 

tumor for simulation were not specified in the NIR/MRI work, but our incorporation of a 

diameter of 10 mm and a depth of 15mm from the planar probe surface is considerably close to 

the one presented. The challenge of local minimum is also indicated in the NIR/MRI work. The 

authors set an arbitrary searching range for the optical properties ( aµ :0-0.1 1−mm , '
sµ :0-2 1−mm ), and 

in 4 sets of the results, 3 of the tumor aµ  values reached the limits thereby were stopped from 

further iteration, whereas the 4th value converged at a number more than 2 folds of the set value.  

The NIR/MRI work reconstructed the optical properties of entire regions simultaneously. 

Since our hierarchical spatial prior approach is more robust in avoiding the local minimum 

problem, it is expected that the hierarchical method will even-perform or outperform the 

NIR/MRI one. In the NIR/MRI work, the best result is deducted when 10 sources and 28 

detectors are employed. Therefore the hierarchical method is tested using the same probe 

geometry that is re-plotted in Fig.2.8. The reconstruction is also preformed in transverse-view as 

the NIR/MRI work did. The noise added to the forward solution is 1% in both methods. 
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                                 (a)                                (b)                                 (c) 

Fig.2.8 The FEM mesh generated by following the geometry in NIR/MRI paper. 

 (a) the geometry of the optodes, where the dash rectangle delineates the 

dimension of the NIR array that will be evaluated later for integration with US; 

(b) the 3-d view of the optodes and the imaging volume; (c) FEM containing the 

prostate and the tumor.  

The parameters used are identical to those in Table 2.1., Table 2.2 lists the results of the 

hierarchical method in comparison with those given in NIR/MRI paper. It is observed that the 

hierarchical method (listed as “3-step” in the table), as expected, slightly outperforms the 

NIR/MRI method in terms of the accuracy of recovering optical properties. The results of 

recovering a target of positive absorption contrast are listed in Table 2.3 using the NIR/MRI 

probe geometry and our 3-step method. Since NIR/MRI paper did not present results for the case 

of target with positive absorption contrast, only the 3-step method is presented in Table 2.3 for 

comparison with the set values. In Table 2.3 the absorption coefficient of prostate is set much 

lower than that in Table 2.2 but the tumor optical properties are kept the same as those in Table 

2.2. If the absorption of prostate in Table 2.3 is kept the same as in Table 2.2, the positive 

absorption target can hardly be reconstructed. The choice of lower prostate absorption is for 

testing our hierarchical method, but it does not necessarily disagree with the actual value of 

prostate absorption. As a matter of fact, the absorption properties of prostate has shown large 

variation in literatures [34-37] where the measurement are either taken from in vitro tissue or may 
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be interfered by bleeding of in vivo tissue under invasive measurement. The absorption 

coefficient of intact prostate is not available so far, and if available, is likely lower than the values 

reported in literatures for non-intact prostate.   

Table 2.2 Reconstruction of prostate tumor of negative contrast with respect to the prostate  

  (mm-1)  (mm-1) 

Regions Surrounding 
Tissue 

Rectum 
Wall Prostate Tumor Surrounding 

Tissue 
Rectum 

Wall Prostate Tumor 

Set value 0.002 0.01 0.06 0.02 0.8 1 1.27 1.6 
NIR/MRI 0.0025 0.01 0.0575 0.0448 0.8324 1 1.339 1.075 

3-step 0.002 0.0099 0.06 0.0208 0.8012 1.0028 1.2824 1.3495 
 

Table 2.3 Reconstruction of prostate tumor of positive contrast with respect to the prostate 

  (mm-1)  (mm-1) 

Region
s 

Surroundin
g Tissue 

Rectu
m 

Wall 

Prostat
e 

Tumo
r 

Surroundin
g Tissue 

Rectu
m 

Wall 

Prostat
e 

Tumo
r 

Set 
value 0.002 0.01 0.006 0.02 0.8 1 1.27 1.6 

3-step 0.0020 0.0100 0.0061 0.016
3 0.7998 0.9997 1.2863 1.243

4 
 

The reconstructed images for both negative and positive contrasts are listed in Fig.2.9. 

These results demonstrate the capability of our hierarchical spatial prior method in reconstructing 

prostate lesion with either negative or positive absorption contrast.    
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                                           (a)                                             (b) 

Fig.2.9 Reconstructed images for a target with absorption contrast. 

Top row: forward model; Bottom row: reconstruction images.  (a) negative 

contrast (b) positive contrast. Note: units of colorbars: mm-1 

2.4 Assessment of NIR applicator designs for coupling NIR with TRUS 

It has been previously stated that the dual-line NIR array geometry is feasible for 

concurrent NIR/TRUS imaging considering the space limitation for coupling with TRUS 

transducer and the requirement of endo-rectal insertion. Based on fabrication reality, we have also 

suggested that each line array consist of 7 channels. The 7 channels on each line array could be 

all for source or detector as shown in Fig.2.10(a), or for interspersed source/detector as in 

Fig.2.10(b). If the difficulty of fabrication or insertion is overlooked, there are certainly a number 

of NIR geometries that can be coupled to TRUS sagittal transducer. Compared with the one in 

Fig.2.10(a), more channels could be added to each line-array as shown in Fig.2.10(f), more 

numbers of lines can be added as shown in Fig.2.10(c), or more lines and more channels added as 

in Fig.2.10(h). More options are also listed in Fig.2.10.  
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Fig.2.10 NIR array designs 

The dimension of the sagittal TRUS transducer window is shown in (a). The 

number of the Fig. caption denotes the amount of channels in each lateral side of 

the sagittal TRUS transducer as is depicted in (a). “sd” denotes one line of source 

array and one line of detector array. “ssdd” denotes two lines of source arrays 

and two lines of detector array. “sdsd” denotes mixed source/detector channels in 

one line. “sym” denotes symmetric distribution of the optodes with respect to the 

sagittal TRUS transducer.   

The geometry of (a) is the most desirable one in terms of fabrication easiness and endo-

rectal applicability. The designs in (a), (b), (f) and (g) correspond to an NIR probe with a 

minimum lateral dimension of 20mm. The designs in (c)-(e) and (h-j) correspond to NIR probe 

with a minimum 40mm lateral dimension which is not suitable for endo-rectal use. The 

geometries in (a)—(e) represent a 10mm spacing between the closest optodes, and the geometries 

in (f)—(j) require a 5mm spacing between the closest optodes. The smaller spacing in (f)—(j) 

will be challenging for fabrication considering the number of fiber channels and the side-firing 

configuration if the probe is to be integrated to TRUS probe unless the internal structural of the 

TRUS probe can be altered.   
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(a) 

 

 (b)                                

  (c)  

Fig.2.11 Sensitivity comparison 

 (a) longitudinal direction, (b) lateral direction, (c) depth direction. The upper 

thicker line correspond to  the configuration (h) in Fig.2.10, and the lower thicker 

line correspond to the desired configuration (a)  in Fig.2.10.  

2.4.1 Sensitivity comparison 

It is known that more optodes lead to better NIR imaging performance [54]. The 

sensitivities of all the 10 configurations of Fig.2.10 are compared in Fig.2.11. The mesh in Fig.2.3 
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with homogeneous optical properties ( 101.0 −= mmaµ  and 1' 0.1 −= mmsµ ) is used for the 

sensitivity calculation. Fig.2.11 evaluated the sensitivity at the lines identical to those in Fig.2.4. 

Again only the absorption sensitivity which is the 
aijI µ∂∂ ln  part of the Jacobian values is 

evaluated.   

Several observations could be made from Fig.2.11: (1) increasing the spatial dimension 

of source-detector array generally improves the sensitivity; (2) increasing the number of source-

detector pairs generally improves the sensitivity; (3) interspersed source-detector layout may have 

slightly wider lateral sensitivity but is not necessarily better than non-dispersed source-detector 

layout for other imaging views; (4) the geometry of 26ssdd (the upper thicker line) does have the 

best sensitivity feature among the 10 geometries, therefore it can be used as a reference to 

evaluate the simple geometry of 7sd (the lower thicker line).   

2.4.2 Comparison between the 7sd design and the 26ssdd design 

The 7sd design represents an array less challenging in fabrication and more practical for 

endo-rectal use. The 26ssdd geometry is impractical for endo-rectal application, difficult to 

fabricate, but has the best performance among the designs listed. It is shown in Fig.2.11 that the 

sensitivity of 7sd design is approximately 10dB less than that of 26ssdd in the specified 

longitudinal, lateral, and depth directions. The lack of sensitivity in 7sd design must affect the 

accuracy of reconstruction, but to what extent is unknown. Performance on reconstruction is thus 

compared between these two geometries for representative target variations. The optical 

properties listed in Table 2.2 (set values) are used for the following simulations.    

2.4.2.1 Reconstruction accuracy versus target longitudinal location 

A target with 10mm diameter is placed at the middle-sagittal plane of y=40mm, z=26mm, 

and varied in longitudinal coordinates from x=25 to 55mm with a step of 5mm, as is shown in 

Fig.2.12 (a). The optical properties reconstructed by the two geometries are compared with 

respect to the true values in Fig.2.12 (b) and (c). It is observed that the optical properties 



 

38 
 

recovered by 26ssdd and 7sd designs are close to each other at most of the longitudinal locations, 

but the 7sd design showed large variation in the recovered absorption contrast at x=30mm and 

x=50mm compared to other positions. This large variation may be related to fewer source-

detector pairs that contribute to the target detection when close to the boundary or the existence of 

any “jittering” elements in the mesh for reconstruction. 

 

       (a)                                  (b)                                                (c) 

Fig.2.12 Comparison of two geometries for a target varying in longitudinal 

location in the middle-sagittal plane: (a) illustration of the target location change; 

(b) comparison of absorption coefficient reconstruction; (c) comparison of 

reduced scattering coefficient reconstruction 

2.4.2.2 Reconstruction accuracy versus target depth 

A target with 10mm diameter is placed at the middle-sagittal plane at x=40mm, y=40mm, 

and the depth is varying from z=25 to 40mm at a step of 2.5mm (the last data point is simulated at 

z=39mm, because at 40mm, the target is out of the prostate), as is shown in Fig.2.13(a). The 

reconstructed optical properties are compared in Fig.2.13(b) and (c). The 26ssdd configuration 

outperforms the 7sd one again. However, beyond z=30mm, both designs are incapable of 

recovering the absorption coefficient of the target from the prostate background. This depth 

limitation is related to the maximum span of the NIR array, the absorption coefficient of the 

prostate, and the size of the target. For a larger target such as a diameter of 14mm, it is verified 

that the target may be resolved up to 36mm from the NIR array in comparison to 30mm for the 

mm-

1 
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same NIR array span and prostate absorption coefficient. A potentially smaller absorption 

coefficient of intact prostate will also increase the depth limit of target detection. 

 

      (a)                                                     (b)                             (c) 

Fig.2.13 Comparison of two geometries for a target varying in depth in the 

middle-sagittal plane: (a) illustration of the target location change; (b) 

comparison of absorption coefficient reconstruction; (c) comparison of reduced 

scattering coefficient reconstruction     

2.4.2.3 Reconstruction accuracy versus target size 

Target at middle-sagittal plane of x=40mm, y=40mm and z=26mm is simulated for a 

diameter from 4mm to 14mm with a step of 1mm. The target diameter change is illustrated in 

Fig.2.14(a).  The reconstructed optical properties are compared in Fig.2.14(b) and (c). It is clear 

that the larger the target, the better the accuracy of reconstruction. The 26ssdd can recover the 

absorption contrast of the target when the diameter is greater than 6mm and the 7sd can recover 

the target for target diameter greater than 8mm.  

 

 

 

mm-
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         (a)                                                 (b)                                              (c) 

Fig.2.14 Comparison of two geometries for a target varying in size in the middle-

sagittal plane: (a) illustration of the target size change; (b) comparison of 

absorption coefficient reconstruction; (c) comparison of reduced scattering 

coefficient reconstruction 

These comparisons do suggest that the 7sd design is inferior to the 26ssdd design, 

especially for the reconstruction of absorption properties. However, the accuracy of 

reconstructing scattering properties by the 7sd design is close to that of 26ssdd. With all the 

previously discussed challenges in trans-rectal NIR probing for coupling with TRUS, it is fair to 

consider the 7sd design as a working geometry. 

2.4.3 Capability of recovering two targets by the 7sd design in sagittal plane 

Capability of differentiating two targets is of particular relevance to prostate cancer 

imaging owing to the frequent existence of secondary or multifocal tumors [55-56]. The multiple 

lesions may fall into the same TRUS field-of-view (FOV), or one falls outside the TRUS FOV. 

For the former cases, the US prior serves as the guidance for NIR reconstruction. For the latter 

case NIR may actually be able to interrogate the out-of-plane target owing to its 3-D imaging 

capability. However, the location information of NIR reconstruction of the target will apparently 

not be reliable. Nevertheless the out-of-plane target suggested by NIR may actually help to 

redirect the US to the plane containing the target for further clarification. Thus, the two imaging 

modalities may actually complement each other for multi-lesion cases. In this section, however, 

we investigate only the former cases of two targets residing in the same sagittal plane. This 

mm-
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requires implementing the multi-target location information in the last step of the hierarchical 

spatial prior routine. The following simulations are conducted with the 7sd probe design only. 

 

(a) 

 

(b) 

 
           Fig.2.15 Two suspicious regions at the same depth (colorbar units: mm-1) 

2.4.3.1 Reconstruction of two targets located at the same depth within the sagittal plane 

As is shown in Fig.2.15, two 10mm-diameter regions are added to the prostate, with 

coordinates (25, 40, 26) and (55, 40, 26), respectively. In Fig.2.15(a) only one region is assigned 

true optical contrast, and in Fig.2.15(b) both regions have true optical contrast. In both cases the 

optical contrast can be reconstructed with good accuracy, as is shown in Table 2.4. Accuracy of 

the reconstructed aµ values for the target with true optical contrast is within ±20% of the set 

values and the '
sµ  values can be reconstructed within ±23% of the set values. There are some 

artifact reconstructed for the target with no true optical contrast, nevertheless, the target with true 

optical contrast can be easily differentiated from the other one. 
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Table 2.4 Comparison of reconstructed optical properties(mm-1) in Fig.2.15 

(mm-1) 

Fig. Regions Peri-
prostate Rectum Prostate Target 1 Target 2 

  (a) Set value 0.002 0.01 0.06 0.06 0.02 
Reconstructed 0.002 0.0101 0.0601 0.0778 0.0208 

 (b) Set value 0.002 0.01 0.06 0.02 0.02 
Reconstructed 0.002 0.01 0.0597 0.0207 0.024 

 (mm-1) 

Fig. Regions Peri-
prostate Rectum Prostate Target 1 Target 2 

(a) Set value 0.8 1.0 1.27 1.27 1.6 
Reconstructed 0.7995 0.9935 1.261 1.2187 1.3216 

 (b) Set value 0.8 1.0 1.27 1.6 1.6 
Reconstructed 0.8007 0.9953 1.2343 1.2302 1.2837 

 

(a) 

 

(b) 

 

(c) 

 
 

Fig.2.16 Two targets at different depths: negative contrast cases (colorbar units: 

mm-1) 
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Table 2.5 Comparison of reconstructed optical properties (mm-1) in Fig.2.16 

 (mm-1) 

Fig. Regions 
Peri-

prostate Rectum  Prostate Region 1 Region 2 

 (a) 
Set value 0.002 0.01 0.06 0.06 0.02 

Reconstructed 0.002 0.01 0.0594 0.0674 0.0252 

 (b) 
Set value 0.002 0.01 0.06 0.02 0.06 

Reconstructed 0.002 0.0101 0.0597 0.0592 0.0607 

 (c) 
Set value 0.002 0.01 0.06 0.02 0.02 

Reconstructed 0.002 0.01 0.0596 0.0402 0.0276 

 (mm-1) 

Fig. Regions 
Peri-

prostate 
Rectum  Prostate Region 1 Region 2 

 (a) 
Set value 0.8 1.0 1.27 1.27 1.6 

Reconstructed 0.8009 0.9977 1.2538 1.2167 1.3286 

 (b) 
Set value 0.8 1.0 1.27 1.6 1.27 

Reconstructed 0.8015 0.9931 1.2102 1.2179 1.2083 

 (c) 
Set value 0.8 1.0 1.27 1.6 1.6 

Reconstructed 0.8015 0.9956 1.2177 1.2024 1.2962 
2.4.3.2 Reconstruction of two targets located at different depth within the sagittal view 

Two regions at different depthes are also simulated. The two targets of 10mm diameter 

are located at coordinates of (25, 40, 28) and (55, 40, 24), respectively. Reconstruction results are 

displayed in Fig.2.16 and Table 2.5 for target of negative absorptin contrast.  

For the target at the depth of 24mm, the aµ  and '
sµ   can be reconstructed within ±20% 

and ±25% of the set values, respectively. However, the target at 28mm depth cannot be 

reconstructed. This must be related to the high absorption coefficient of 0.06mm-1 set to the 

prostate. When the prostate absoption is set at a reduced value of 0.006mm-1 and positive optical 

contrast is set in the two target regions, both tartgets can be recovered as shown in Fig.2.17 and 

Table 2.6. For the cases of target with positive absorption contrast, the aµ  of the target can be 

reconstructed within ±5% of the set value, while the '
sµ  is still reconstructed within ±23% of the 

expected values. 
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(a) 

 

(b) 

 

(c) 

 
Fig.2.17 Two targets at different depths: positive contrast cases (colorbar units: 

mm-1) 

Table 2.6 Comparison of reconstructed optical properties (mm-1) in Fig.2.17 

(mm-1) 

Fig. Regions Peri-
prostate Rectum  Prostate Region 1 Region 2 

 (a) Set value 0.002 0.01 0.006 0.006 0.02 
Reconstructed 0.002 0.0101 0.006 0.0083 0.0191 

 (b) Set value 0.002 0.01 0.006 0.02 0.006 
Reconstructed 0.002 0.0101 0.006 0.0116 0.0058 

 (c) Set value 0.002 0.01 0.006 0.02 0.02 
Reconstructed 0.002 0.0099 0.006 0.0208 0.0199 

 (mm-1) 

Fig. Regions Peri-
prostate Rectum  Prostate Region 1 Region 2 

 (a) Set value 0.8 1.0 1.27 1.27 1.6 
Reconstructed 0.7993 0.9934 1.2637 1.2689 1.6722 

 (b) Set value 0.8 1.0 1.27 1.6 1.27 
Reconstructed 0.8008 0.993 1.259 1.2402 1.3586 

 (c) Set value 0.8 1.0 1.27 1.6 1.6 
Reconstructed 0.8049 0.9979 1.2576 1.2538 1.424 

2.5. Discussions 

The purpose of this work is to investigate the feasibility of trans-rectal NIR tomography 

of the prostate in the context of coupling with sagittal TRUS for concurrent trans-rectal NIR/US 

imaging. There is considerable interest emerging recently on trans-rectal NIR tomography to 
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augment existing imaging modalities, but such promise would not be validated or fulfilled 

without an applicator that can be inserted rectally and thereby imaged trans-rectally. With a trans-

rectally applicable probe, trans-rectal NIR tomography can be obtained stand-alone. However, the 

resulted images would be difficult to correlate with the anatomy. Without a position coupling 

with a real-time anatomic imaging modality such as TRUS, the actual position of the NIR probe 

will be unknown due to the disadvantage features of NIR tomography. Fixing the NIR applicator 

with TRUS would provide accurate positioning information that can be used for localization and 

guided image reconstruction of trans-rectal NIR tomography. There could be a variety of NIR 

array designs for coupling with TRUS; however, the rectal application as well as the fabrication 

difficulty will determine the choices on the probe dimensions and number of channels for NIR 

optodes.   

The utilization of a hierarchical spatial prior is under the condition that the anatomic 

information of the prostate tumor is explicit from TRUS. The prostate boundary is well-

delineated in TRUS, and the spatial extent of a tumor can be defined if it is shown as hypo-echoic 

on TRUS. This is when the NIR functional contrast can help determine whether a tissue 

suspicious on US is malignant or not [45]. However, since as many as 40% of the tumors may be 

shown as iso-echoic on TRUS, the utility or accuracy of this hierarchical imaging approach is 

hindered when TRUS images do not specify a suspicious region, or when it is difficult to define 

the spatial extent of a suspicion region in TRUS. Under these circumstances, the third step of 

recovering the tumor lesion in the prostate may proceed by reconstructing the optical properties 

on every element within the prostate instead of treating the prostate as homogenous other than an 

inclusion that is also treated as homogenous in the simulation. Such approach is proven effective 

based on our other investigations, but the accuracy and robustness may be affected by the depth-

dependent sensitivity. More dedicated investigations are needed in the future along with the 

experimental validations of this combined trans-rectal NIR/US approach. Prostate trans-rectal 

optical imaging is a relatively new area where the initial approach should focus on characterizing 
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the lesions most suspicious to TRUS. Trans-rectal NIR imaging of the lesions marginally 

suspicious to TRUS or non-suspicious to TRUS is apparently more challenging and should be 

preceded by trans-rectal NIR/US characterization of a lesion suspicious to US.      

The presented simulations are largely based on setting the absorption properties of 

prostate at a high level of 0.06mm-1. This is significantly larger than that of breast tissue, and it is 

this parameter that dominates the detection depth of trans-rectal NIR tomography for the given 

geometry of NIR array. Recent studies indicate that better measurement condition may lead to a 

lower absorption value of prostate [37]. If in the future the measurement of intact prostate can be 

facilitated by trans-rectal optical tomography, an even lower absorption coefficient of the prostate 

may be obtained by suppression of any invasive interference. A lower absorption coefficient will 

certainly lead to detection of deeper target for the same NIR array geometry. The successful 

development and application of TRUS-coupled trans-rectal NIR tomography may not only help 

characterize lesions suspicious to TRUS, but also help answer the basic questions of optical 

properties of intact prostate.  

2.6 Summary   

The feasibility of obtaining trans-rectal optical tomography of prostate when coupling 

with TRUS is investigated by simulation. The trans-rectal NIR applicator has the geometry 

requirements of integrating with a commercial TRUS transducer for operation in the rectal lumen. 

We first developed a hierarchical iteration method for incorporation of TRUS spatial prior into 

trans-rectal optical tomography reconstruction. This method is based on a cascaded initial-guess 

approach to deal with local minimum problems common to near-infrared optical tomography 

reconstruction and is shown to render more reliable recovery of tissue optical properties for trans-

rectal optical tomography. This reconstruction method is then utilized to evaluate a number of 

designs of near-infrared imaging applicator for integration with a sagittal TRUS transducer. The 

simulations suggested a working NIR imaging geometry that is feasible in terms of the dimension 

for rectal insertion and the easiness for fabrication. This design contains single line of optode on 
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each lateral side of the sagittal TRUS transducer, with 20mm lateral separation between the two 

line arrays and 10 mm longitudinal spacing among the total 7 channels on each line-array. The 

performance of this simple NIR array design is evaluated for the recovery of single lesion in 

prostate by comparison with a more accurate and much complicated design that is virtually 

impractical for trans-rectal use. The simple design is also evaluated for the recovery of two 

targets in the prostate. Results suggest the feasibility of integrating this simple NIR array 

geometry to TRUS for trans-rectal imaging of the prostate.  

The experimental validation of this study[5] presents the instrumentation of a TRUS-

coupled NIR array and demonstrates trans-rectal optical tomography of prostate by the combined 

trans-rectal NIR/US applicator. The trans-rectal NIR array has incorporated the design suggested 

by Fig.2.10(a). Concurrent trans-rectal imaging is acquired in the same sagittal plane by both US 

and NIR optical tomography. The real-time TRUS is used for accurate positioning of the trans-

rectal NIR applicator and for guided NIR image reconstruction with the spatial a priori 

information. Tests on phantoms and tissues using the combined NIR/US imager demonstrate that 

absorption contrast may be recovered by NIR imaging only but with improved accuracy when the 

TRUS spatial prior is incorporated. Trans-rectal imaging of a healthy canine prostate in situ 

administered with tissue contrast validates the rectal applicability of the combined trans-rectal 

NIR/US probe as well as the method of TRUS guided trans-rectal NIR image reconstruction.     
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CHAPTER III 
 

 

PARAMETRIC RECOVERY UNCERTAINTY LEVEL IN NEAR INFRARED DIFFUSE 

OPTICAL TOMOGRAPHY 

 

3.1 Introduction 

Diffuse optical tomography (DOT) based on measurement of near-infrared (NIR) light 

diffused through thick biological tissue aims to quantify the heterogeneities of NIR absorbing 

chromophors and scattering particles [57]. There are generally three categories of DOT 

measurements: (1) continuous-wave wherein only the steady-state or direct-current (DC) 

detection is carried out; (2) time-domain wherein the attenuation and pulse-width broadening of 

the excitation light are the measurands [58-61]; and (3) frequency-domain which is 

mathematically the Fourier-transform equivalent of the time-domain method [8, 31, 45, 62-70] 

but is considerably less complicated in instrumentation. The frequency-domain detection ideally 

renders three types of information: the DC attenuation, the modulation intensity change (AC) and 

the modulation phase shift (PHS). Some frequency-domain DOT works, however, have utilized 

the AC and PHS, rather than the complete measurands of DC, AC and PHS. Excluding the DC in 

frequency-domain DOT reconstruction implied that the DC information was considered unlikely 

to improve the outcome of reconstruction when the AC and PHS are available. Such 

consideration could have been prompted if the DC information had been redundant in frequency-

domain reconstruction, but indeed it has not been either justified or negated.     
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On the other hand, many works in DOT have relied on only the DC measurements [5, 71-

78]. Although lacking phase information will certainly reduce the accuracy or confidence of 

quantitative reconstruction, almost all these studies have demonstrated that the absorption and 

reduced scattering characteristics can be separately and absolutely reconstructed by use of DC 

information only. But all these works lack a direct comparison of the outcome of DC-based 

reconstruction with that of frequency-domain reconstruction, which is needed to provide a basis 

to assess the compromise for reconstruction based solely upon DC information. Out of these DC-

based DOT reconstructions, there also exists a common but not widely-stated feature in the 

images---------the recovered background is usually more homogeneous than the general level of 

background artifacts seen in images reconstructed in frequency-domain. Less image artifacts in 

the background may be beneficial for identifying target-of-interest over a relatively 

heterogeneous background, but what contributes to the less image artifacts in the background has 

not been well-understood.  

 This work studies the level of artifacts associated with measurement-uncertainties in 

three modes of image reconstruction, namely DC, AC+PHS, and DC+AC+PHS. The studies are 

conducted both analytically and by synthetic measurements, to address why the DC-based 

reconstruction results in lower background artifacts and to demonstrate that including DC 

information in frequency-domain generally improves the reconstruction outcome. Clearly the 

analysis of this study shall be based upon the propagation of measurement noises to the image. 

Contributing to the image artifacts are a number of noise sources, among which is an error due to 

coupling loss as studied by Schweiger et al [79]. That study treated coupling errors as coupling 

coefficients appended to the solution space, and demonstrated reconstruction of frequency-

domain data contaminated with synthetic coupling errors. Similar studies are necessary to 

understanding reconstruction with contaminated DC data.  

The level of artifacts is a critical indicator of the capability of reliably recovering the 

optical heterogeneity. Ntziachristos et al. [80] demonstrated that the reconstruction of localized 



 

50 
 

lesions deteriorated as a function of background-heterogeneity. They also found that increasing 

the data set size, specifically the number of detectors used, improves the reconstruction of the 

lesion structure, but does not remove the artifacts. Those results, performed on frequency-domain 

synthetic and experimental data, indicate that certain artifacts are inherent to the image formation 

and thereby cannot be removed completely. The cause of such artifacts must as well be inherent 

to DC-based reconstruction, wherein the outcome relative to frequency-domain reconstruction is 

unknown.          

 The analytic approach of this study is based primarily upon a method introduced by 

Fantini et al [81] to model the accuracies or equivalently the errors associated with a two-distance 

measurement technique for quantifying the optical properties of bulk homogeneous medium. 

Reconstructing optical properties in a homogeneous medium is essentially a process of fitting the 

slopes of measurements with respect to different source-detector distances, for which Fantini et 

al. introduced their models of the “relative error” of absorption and reduced scattering 

coefficients using the intensity exponential factor, AC exponential factor, and phase factor 

between the measurements made at two different source-detector distances. The tomography of 

optical heterogeneity relies on multiple measurements among spatially-resolved sources and 

detectors, and the image reconstruction is a process of optimizing the local optical properties to 

minimize the difference of model prediction for these source/detector pairs with respect to the 

measured values. The accuracy of reconstruction is thereby dependent upon the capability of 

distinguishing the signal variations for single source-detector pair due to all types of measurement 

fluctuations as well as local changes of tissue optical properties, such variations among different 

source-detector pairs, and mapping such variations to the image-space. Hence, the “relative error” 

initially discussed in [81] equally applies to tomography of optical heterogeneity, because the 

“relative error” of measurement determines the upper-limit of reconstruction accuracy, in other 

words it sets the “parameter-recovery-uncertainty-level (PRUL)” in the tomography images.   
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 This study analyzes the PRULs of the absorption coefficient, the reduced scattering 

coefficient, and the diffusion coefficient, for the measurement conditions of DC+AC, DC+PHS, 

and AC+PHS, and examines their representations as image artifacts in synthetic models. Much of 

the analytic approach of this study is based upon the method established in [78]; however, there 

are substantial differences in the measurement configurations investigated, and also in this novel 

study the analytic results partially suggested by [78] are quantitatively evaluated to compare the 

PRULs among these configurations. It is also noted that [78] considered the measurement 

configurations of DC+AC, AC+PHS, and DC+PHS. When FD information is available, it is 

straightforward to apply AC+PHS, as employed by many works [6-12, 14-15], to image 

reconstruction. The utilization of DC+AC and DC+PHS are mathematically valid; however, those 

configurations have seldom been used for image reconstruction. This study investigates the level 

of artifacts in the DC, AC+PHS, and DC+AC+PHS configurations as they are the most likely 

implemented approaches toward image-reconstruction, therefore among the results previously 

stated in [78] only those related to AC+PHS have been included in this study when appropriate. 

The AC+PHS result for absorption coefficient in [78] is cited directly, but the AC+PHS result in 

[78] for reduced scattering is revised to a more generalized form that is consistent with the result 

for absorption coefficient. Table 3.1 in subsection 3.3.1 is introduced to make clear these 

distinctions. This study also investigates reconstruction of the diffusion coefficient, because not 

only are the absorption and reduced scattering coefficients coupled, but also generally the 

diffusion coefficient is involved in the reconstruction process prior to formulating the reduced 

scattering coefficient. The diffusion coefficient image may provide new insights to the study even 

though its artifacts are expected to be close to that seen in reduced scattering image.      

 The rest of the paper is organized in the following sections: Section 2 analyses the PRUL 

for three categories: (1) DC only, (2) AC+PHS, and (3) DC+AC+PHS. Tissue and measurement 

parameters typical to optical tomography applications are implemented to evaluate quantitatively 

the PRULs expected in the images. Section 3 uses synthetic data to examine the uncertainty of the 
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parameters recovered for homogeneous medium, single inclusion with different types of optical 

contrast, and multiple inclusions with specific optical contrasts. These synthetic models are also 

evaluated selectively for the condition of having spatial a priori to the image reconstruction. 

Section 4 discusses the implications of the results.  

3.2 Theory 

The reconstruction accuracy of optical tomography is determined by many factors 

including the accuracy of forward model, the determinacy of inverse formulation, the 

characteristics of instrument noise [82], etc. An analytic approach has been introduced in [78] to 

demonstrate that the uncertainty (or error) in the measurement maps to the uncertainty of 

recovering the assembled optical properties of bulk tissue. The same uncertainty (or error) of the 

measurement, when involved in tomographic reconstruction to recover spatially-resolved tissue 

optical properties, will translate to spatially-varying artifacts that reduces the contrast to noise 

ratio of the target-of-interest. This effect may seem obvious; however, the extent of it was not 

well-understood. This work closes this gap of knowledge in three conditions of DOT 

measurements, namely DC, AC+PHS, and complete frequency-domain information by 

DC+AC+PHS.   

3.2.1 Parameter-recovery-uncertainty-level (PRUL)  

The variation of the recovered optical properties is modeled as “parameter-recovery-

uncertainty-level (PRUL)”, which for AC+PHS has been derived in [78] in terms of the 

attenuation of the AC amplitude and phase shift versus a change of source-detector distances. We 

implement the approach in [78], but extend it to DC only and DC+AC+PHS configurations, and 

applying to diffusion coefficient in addition to absorption and reduced scattering coefficients.   

The frequency-domain measurement of photon density consists of a steady-state and 

time-varying components as ),()(),( ωω rUrUrU ACDCFD


+= , where r  is the position vector, 
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and ω is the angular modulation frequency of the light source. The ),( ωrU FD
  satisfies the photon 

diffusion equation of  

 )(
),(),(),(

)()(
)( 2

rD
rSrUrU

rvD
i

rD
r

FDFD
a









ωωωωµ

−=∇+







+−                             (3.1) 

where v is the speed of light in the medium,  µa is the absorption coefficient, D=[3(µa+µs’)]-1 is 

the diffusion coefficient, µs’ is the reduced scattering coefficient, and the source term ),( ωrS   has 

a direct-current component )(rSDC
  and a time-varying component ),( ωrS AC

 . For a homogeneous 

infinite medium with a detector at  r  and a source at r ′ , thereby a source-detector distance of 

rrd 
−′= , we have 
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It is noted that DCAC kk >  and ACk  is correlated with but not linearly dependent upon 

DCk . The attenuation of DC component of the photon density is thus not equal to or linearly 

dependent upon that of AC component, which is an indication that the DC information would not 

be a duplication of any of AC or PHS.  

Denoting 12 dd >  and 21 dd −=ρ   as the difference of source-detector distance between 

two measurements corresponding to the same source, one has [78] (reproduced here for 

convenience)  
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Table 3.1 lists the “PRUL” of five different measurement configurations, among which three 

were investigated in [78]. As stated previously, the configuration of DC+AC and DC+PHS were 

seldom used for image reconstruction, therefore only the AC+PHS results of [78] are cited for 

this comparative study.  

Table 3.1 Comparison of the analytic derivations in this work with that in [78]

 
 Measurements 

DC DC + AC AC + PHS DC + PHS DC + AC + PHS 








∆

aa

a a
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µ
µ µ

 

This 

study 

[78] [78] [78] This study 
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This 

study 

[78] [78]* [78] This study 
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This 

study 

 This study  This study 

* The derivation was revised to a more generalized form. 

In CW measurement, we have  

2









⋅=
ρ
δµ D

DCa
                                                           (3.5) 

References [83-84] suggest that for steady-state surface measurements µa and D 

collectively determine the diffuse reflectance, denoted as R∞, by the relationship 

[ ] )( ∞=⋅ RKDaµ . It is noted that the diffuse reflectance is not )(rU DC
 , which implies treating 

)( ∞RK  as not significantly dependent upon )(rU DC


, thereby equ (3.5) may be converted to 
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δ
ρ

µ ⋅= ∞ )(RK
DCa

                                                           
(3.6) 

and estimating the PRUL of µa for DC by   
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We have for AC+PHS [78]  
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For DC+AC+PHS measurement, we have   
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and accordingly a PRUL of 
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The PRULs in equ.s (3.7), (3.9) and (3.11) all have the shape of   

( ) 2/1ξη
µ
σ µ ⋅=

                                          
  (3.12) 

that contains a multiplication factor η  and a square root term ξ . The relative levels of these 

PRULs become comparable as 
2

2

φ
σφ ,

2

2

α
σα and

2

2

δ
σδ  are practically the same [78]. It is indicated in 
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Table 3.2 that the PRUL of µa will be the lowest in DC-based reconstruction, but whether the 

PRUL of µa  is lower in AC+PHS or in DC+AC+PHS depends upon the difference in α  and φ  .   

Table 3.2   Comparison on PRUL of µa (
aµ

σ /μa)  

Equ. Condition 
η ξ  Normalized 

 ξη ⋅  Expression Value Expression Normalized 
value  

(3.7) DC  1 
2/1

2

2










δ
σ δ  1 1 

(3.9) AC+PHS 
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Because the image reconstruction recovers D to formulate µs’, it is imperative to analyze 

the PRUL of D. For the case of DC, similar to the derivation for µa we have 
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For AC+PHS and DC+AC+PHS, the expressions are the same: 
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The PRULs of D in (3.15) and (3.16) are compared in Table 3.3. Apparently when AC 

and phase are employed the DC component is redundant for the recovery of D.   
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Table 3.3 Comparison on PRUL of D  

Equ. Condition Expression Normalized 
Value 

(3.14) DC 
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so the PRUL of µs’ for DC is,
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for AC+PHS is [78]*:
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(*Notes: the original derivation in [78] for '
, s
s
µσ

µ  has ρ  in the equation, which is inconsistent 

with that obtained for 
aa

µσ µ
. equ (3.19) corrected this inconsistency) and for DC+AC+PHS 

is: 
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Based on the estimation leading to Table 3.2, the PRULs in Eqs. (3.19) and (3.20) can be 

normalized with respect to equ (3.18). The results are given in Table 3.4.  Again the PRUL of '
sµ  
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will be the lowest for DC. Whether the PRUL of '
sµ  is lower in AC+PHS or in DC+AC+PHS 

depends also upon the difference in α  and φ  as for the PRUL of aµ , but because of the 

dominance of D31
 
over aµ , the difference between AC+PHS and DC+AC+PHS will be less 

than that observed for PRUL of aµ  in Table 3.2. 

Table 3.4 Comparison on PRUL of µs’  

Equ. Condition Expression Normalized 
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3.2.2 Summary of the PRUL analyses 

The DC-only reconstruction seems to give the least level of relative uncertainty of the 

parameter in the reconstruction.  The AC+PHS configuration seems to be equivalent to 

DC+AC+PHS in the level of PRULs of reduced scattering and diffusion coefficient, but it is 

unclear for absorption coefficient. These analyses have been conducted for infinite homogeneous 

medium, but results will be readily translatable to a medium with boundaries and with inclusions.  

3.3 Synthetic studies 

Simulations are carried out to study the practical issues of PRUL, such as background 

noise, the accuracy of optical property recovery, and the inter-parameter cross-coupling, of the 

three measurements setups. 

 

3.3.1 Synthetic model 

The forward model is carried out by finite element method (FEM) solution of equ (3.1) 

using the Robin type boundary condition:  
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0),(ˆ2),( 000 =∇⋅− ωω rUnDArU 
                                                (3.21) 

where A is related to refractive index-mismatch,  and 0n̂  is an outgoing normal vector. The 

Jacobian is structured to the form of: 
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where the indices of each block of Jacobian could be node-based for pixel-wise reconstruction or 

region-based for prior-guided region-wise reconstruction. Utilizing only the first row leads to 

CW, utilizing the second and third rows renders AC+PHS, and utilizing all three rows gives 

DC+AC+PHS.  The inverse solver implements the Levernberg-Marquardt algorithm as 

)()(])()([ 1
1 kk

T
kk

T
kk xvxJIxJxJxx ∆+⋅+= −

+ λα                                    (3.23) 

where x  is the array of unknown parameters, ν∆  is the forward projection error and λ is a penalty 

or regularization term. The value of λ is initially set as 100, and is reduced to its fourth root after 

each iteration of which the projection error is reduced. The damping factor, α , in the range of (0, 

1) is introduced when only region-wise reconstruction is performed to facilitate stable 

convergence [46] and is set at 0.5 in this study when included. For pixel-wise reconstructions 

using NIRFAST [11, 85], α is set to 1.  

3.3.2 Simulation Results  

Synthetic data are generated for a homogeneous medium, a medium with single 

inclusion, and a medium with multiple inclusions with mixed type of optical heterogeneities.  

3.3.2.1 The PRULs in a homogeneous medium  

A cylinder-applicator geometry [54, 86] of 60mm in height and 86mm in diameter with 

16 optodes is adopted, like the one shown in Fig.3.1. The optodes are turned on sequentially for 
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the measurements being taken by all other optodes, generating a total of 240 measurements for 

each data set.   

 

Fig.3.1. Imaging geometry for a homogeneous medium 

The volume is discretized into an FEM mesh of 12695 nodes for forward computation 

while a smaller FEM mesh of 600 nodes is used in the reconstruction.  Because this synthetic 

study specifically investigates the level of artifacts reconstructed to the same level of recovered 

parameter in an otherwise homogeneous medium, the same optical properties of µa=0.01mm-1 and 

µs’=1mm-1 are used for both forward computation and as the initial values of the inverse routine, 

with 1% noise added to the forward simulation data to maintain the same measurement error. In 

addition, all controlling parameters of the inverse model are maintained the same for DC, 

AC+PHS, and DC+AC+PHS configurations.  

Table 3.5 demonstrates that the variations recovered to the parameters of a homogeneous 

medium are lowest in DC, as expected from the analytic analysis. The DC+AC+PHS slightly 

outperforms AC+PHS in µa recovery, but AC+PHS slightly outperforms DC+AC+PHS in µs’/D 

recovery.  

Table 3.5 Mean value and standard deviation reconstructed for homogeneous medium  

 aµ
 

aµ
σ   (mm-1)

 'sµ
 

,
sµ

σ  (mm-1)
 D

 
Dσ  (mm)

 

Abs.  Norm. Abs.  Norm. Abs.  Norm. 
DC  0.01 0.69×10-6 1 1.00 0.80×10-4 1 0.33 2.64×10-3 1 
AC+PHS 0.01 3.13×10-6 4.50 1.00 1.18×10-4 1.47 0.33 3.83×10-3 1.45 
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DC+AC
+PHS 0.01 2.98×10-6 4.29 1.00 1.31×10-4 1.64 0.33 4.24×10-3 1.60 

Note: “Abs.” denotes the absolute value of the standard deviation. “Norm.” denotes the 

standard deviation normalized with respect to the standard deviation of DC. The same notations 

apply to Tables 6 and 8. 

The normalized numbers (1.45~1.64) for µs’/D recovery are considerably close to those 

in the analytical derivation--with the same average optical properties, the background standard 

deviation of the images reconstructed by FD system measurements is at least 1.41 times larger 

than those reconstructed by CW system. However, in µa reconstruction, the variations in FD 

configurations are about twice of those predicted in Table 3.2. It is noted that the analytic results 

in this study are based upon perturbation analysis. It is well-known that DOT is a non-linear 

process wherein the absorption perturbation is more pronounced than scattering perturbation. In 

this specific model of homogeneous medium, the signal perturbation is evenly distributed to the 

entire volume of the homogeneous medium instead of mostly confined to smaller lesions with 

higher optical property contrast as in the later examinations, therefore the perturbations from AC 

and PHS could have been coupled to and non-linearly amplified as the variation of absorptions.     

3.3.2.2 Contrast to noise ratio analysis for single target  

The results in the last subsection indicate that for 1% noise in the measurement of 

homogeneous medium, DC only reconstruction clearly maintains a lower artifact level compared 

to DC+AC+PHS and AC+PHS. This study examines the contrast of a target inclusion in an 

otherwise homogeneous medium at different measurement noise levels when reconstructed by 

DC, AC+PHS, DC+AC+PHS configurations. The synthetic model is similar to that in 3.3.2.1, but 

with a spherical heterogeneity added at (x=0mm, y=-20mm, z=0mm) with µa=0.025mm-1 and 

µs’=1.75mm-1. The reconstruction basis of 2760-nodes is larger than the one used for 3.3.2.1. 

Varying noise levels of 0% to 10% are integrated into the forward data to examine the contrast to 

noise ratios of the target (CNR = [max(target-region-value)-mean(background-value)] / 

background-standard-deviation) with respect to the background artifacts. The background 
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deviation is calculated by excluding the areas within a distance of 1.5 times of the target radius 

away from its center [54]. The calculated CNRs are given in Fig.3.2 for the three types of target 

contrasts. It is observed in Fig.3.2 that the CNR levels of µa and D look similar when compared to 

that of µs’, which supports the assumptions made for deriving PRULs of µa and D in Eqs. (3.7) 

and (3.14). In Fig.3.2, the CNR levels of  µa is found lower than that of µs’, which may be due to 

underestimation of  µa and over-estimation of µs’ in such pixel-wise image reconstruction. 

Despite this, several features can be observed in Fig.3.3: (1) At zero-noise level, the three 

methods are comparable in the CNR; (2) When the noise becomes higher, the DC clearly 

outperforms the other two in CNR, while DC+AC+PHS slightly outperforms AC+PHS. (3) At 

10% noise level, the CNRs of all methods are similar for µs’ and D recovery, but DC still 

outperforms the other two in µa reconstruction. 

 

Fig.3.2. Contrast-to-noise-ratio (CNR) with respect to the measurement noise 

levels.. (a) (b) (c) µa/µs’/D distribution in the z=0 plane of forward model  (d) µa 

CNR Comparison (e) µs’ CNR Comparison (f) D CNR Comparison 

3.3.2.3 Multiple target case 
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The geometry for having multiple inclusion is shown in Fig.3.3, where three spherical 

targets with radius of 7.5mm are located in the longitudinal middle plane (z=0) of the cylindrical 

imaging volume and are all 20mm away from the center of the circular cross-section, ensuring the 

same spatial sensitivity at their positions. The target 1 at the upper-left (x=-14.14mm, 

y=14.14mm, z=0mm) has only absorption contrast (µa=0.025mm-1, µs’=1mm-1), the target 2 at 

upper-right (x=14.14mm, y=14.14mm, z=0mm) has only scattering contrast (µa=0.01mm-1, 

µs’=1.75mm-1), and the target 3 at lower side (x=0mm, y=-20mm, z=0mm) has contrasts of both 

absorption and reduced scattering (µa=0.025mm-1, µs’=1.75mm-1). The gold dashed line in the 

figure marks the position of the target when it presents no contrast in that category.  Table 3.6 

lists the deviation of the background optical property in the reconstructed images. Standard 

deviation values in Table 3.6 are normalized along each column versus those of DC-only 

reconstruction. 

 

Fig.3.3. Simulation studies for reconstructing multiple targets in a 3-dimensional 

cylindrical geometry with the optodes and targets located on one plane. 

Table 3.6 Standard deviation of background optical properties in Fig.3.3 

 aµ
σ   (mm-1)

 
,
sµ

σ  (mm-1)
 Dσ  (mm)

 

 Abs.  Norm. Abs.  Norm. Abs.  Norm. 
DC  1.92×10-4 1 2.46×10-2 1 7.25×10-3 1 
AC+PHS 3.63×10-4 1.89 2.88×10-2 1.17 9.01×10-3 1.24 
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DC+AC+PHS 3.45×10-4 1.79 2.49×10-2 1.01 7.75×10-3 1.07 
 

For background homogeneity, comparison in Table 3.6 indicates that DC only 

demonstrates the lowest artifact level in the image background while the background artifact level 

of DC+AC+PHS and AC+PHS is approximately 1 to 2 times higher. Although the numerical 

simulative result does not exactly match the values in Table 3.2 to 3.4, it qualitatively agrees with 

the analytical derivations. The analytical derivations given in Table 3.2 to 3.4 indicate that 

DC+AC+PHS and AC+PHS produces similar background homogeneity, but the simulation 

results all indicated a slightly lower background artifact level in DC+AC+PHS reconstruction. 

For target accuracy, the reconstructed images in Fig.3.3 and data comparison in Table 3.7 are 

seen with DC+AC+PHS superior to AC+PHS, which along with the comparison on the 

background homogeneity, indicates that including DC generally improves the FD reconstruction. 

In terms of the inter-parameter cross-coupling, the DC has more coupling than FD, which is well-

known. The cross-coupling in DC+AC+PHS is slightly less severe than that in AC+PHS.  

Table 3.7 Comparison of the accuracy of recovered optical properties in Fig.3.3 

 
µa1 (mm-1) µs1’ (mm-1) D1 (mm) 

value error value error value error 
Set  0.025  1  0.325  
DC  0.0125 -50.16% 1.398 39.84% 0.236 -27.35% 
AC+PHS 0.0146 -41.62% 1.293 29.27% 0.255 -21.59% 
DC+AC+PHS 0.0149 -40.30% 1.201 20.06% 0.274 -15.67% 

 
µa2 (mm-1) µs2’ (mm-1) D2 (mm) 

value error value error value error 
Set 0.01     1.75     1.75  
DC  0.0114 13.68% 1.238 -29.25% 1.639 -6.34% 
AC+PHS 0.0107 6.95% 1.250 -28.56% 1.619 -7.47% 
DC+AC+PHS 0.0104 3.81% 1.375 -21.45% 1.635 -6.55% 

 
µa3 (mm-1) µs3’ (mm-1) D3 (mm) 

value error value error value error 
Set 0.025     1.75  0.188  
DC  0.0141 -43.48% 1.639 -6.34% 0.2012 7.37% 
AC+PHS 0.0139 -44.31% 1.619 -7.47% 0.204 8.70% 
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DC+AC+PHS 0.0137 -45.24% 1.635 -6.55% 0.202 7.64% 
 

A similar study is conducted for the same targets in a three-ring setup [86] in Fig.3.4 

which has three identical rings of optodes at the azimuthal planes of z=-10mm, z=0mm and 

z=10mm. Each set of data contains a total of 2256 measurements by turning on one source and 

detecting at all other optodes. The key values are compared in Table 3.8, 3.9. Most features of the 

three aspects discussed for the single ring case can be reconfirmed, except that the target contours 

recovered by FD reconstructions are more accurately defined, but nonetheless the difference 

between DC+AC+PHS and AC+PHS is insignificant. 

 

Fig.3.4. Simulation studies for reconstructing multiple targets in a 3-dimensional 

cylindrical geometry with the optodes located on 3 different planes and targets 

located on the middle plane. 
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Table 3.8 Standard deviation of background optical properties in Fig.3.4 

 aµ
σ   (mm-1)

 
,
sµ

σ  (mm-1)
 Dσ  (mm)

 

 Abs.  Norm. Abs.  Norm. Abs.  Norm. 
DC  2.26×10-4 1 3.00×10-2 1 8.47×10-3 1 
AC+PHS 4.07×10-4 1.80 3.26×10-2 1.09 9.78×10-3 1.15 
DC+AC+PHS 3.95×10-4 1.75 3.18×10-2 1.06 9.51×10-3 1.12 

Table 3.9 Comparison of the accuracy of recovered optical properties in Fig.3.4 

 
µa1 (mm-1) µs1’ (mm-1) D1 (mm) 

value error value error value error 
Set 0.025  1  0.325  
DC 0.0133 -46.93% 1.528 52.81% 0.216 -33.49% 
AC+PHS 0.0169 -32.39% 1.288 28.77% 0.256 -21.43% 
DC+AC+PHS 0.0171 -31.42% 1.292 29.21% 0.255 -21.70% 

 
µa2 (mm-1) µs2’ (mm-1) D2 (mm) 

value error value error value error 
Set 0.01  1.75  0.189  
DC 0.0117 16.95% 1.319 -24.63% 0.251 32.26% 
AC+PHS 0.0104 3.73% 1.427 -18.45% 0.232 22.46% 
DC+AC+PHS 0.0103 3.09% 1.441 -17.66% 0.230 21.31% 

 
µa3 (mm-1) µs3’ (mm-1) D3 (mm) 

value error value error value error 
Set 0.025  1.75  0.188  
DC 0.0156 -37.57% 1.847 5.57% 0.178 -4.73% 
AC+PHS 0.0163 -35.02% 1.731 -1.10% 0.191 1.61% 
DC+AC+PHS 0.0163 -34.77% 1.726 -1.38% 0.191 1.88% 
 

 Prior-guided region-based reconstructions are also performed on both of the imaging 

geometries of Fig.3.3 and 3.4 to examine if including accurate a priori structural information of 

the target affects the outcome of the three reconstruction configurations. As is shown in Fig.3.5 

and 3.6, with the forward models the same as those in Fig.3.5 and 3.6, the inverse model has 

integrated spatial prior information by assuming a homogeneous target of the accurate size in a 

homogeneous background. Results of both cases indicate that with the structural a priori 

information, the performances of the three configurations are essentially equivalent to each other. 
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     (a)                                                                          (b) 

Fig.3.5. Region-based reconstruction for multiple targets in a 3-dimensional 

cylindrical geometry with the optodes and targets located on one plane. (a) 

Imaging geometry and the regions of interest; (b) Comparison of the results for 

DC, AC+PHS, and DC+AC+PHS. 

 

  (a)                                                                        (b) 

Fig.3.6. Region-based reconstruction for multiple targets in a 3-dimensional 

cylindrical geometry with the optodes located on 3 different planes and targets 

located on the middle plane. (a) Imaging geometry and the regions of interest; (b) 

Comparison of the results for DC, AC+PHS, and DC+AC+PHS. 

3.4 Discussions 

Using only the DC information to simultaneously recover the absorption and diffusion (or 

the reduced scattering) distributions has been controversial. The non-uniqueness that may be 

inherent to DC-only measurements was described in a seminal study[87]. However, despite the 

negative predictions in [87] that there could have an infinite number of diffusion & absorption 

pairs leading to the same surface measurements, Harrach [88] proved that at most one of them 

consists of a piecewise constant diffusion and piecewise analytic absorption, and if the true 

medium has these properties as in virtually any practical condition, a reconstruction algorithm 

favoring these properties will pick the right combination of profiles. Harrach’s study theoretically 
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justified the experiences in many works wherein the absorption and scattering distributions have 

been separately and uniquely recovered by surface measurement of DC only.   

The primary aim of this work is to understand the expectation for DC-based 

reconstruction in a more systematic approach, thereby to establish certain level of confidence for 

the recovered information when only DC information can be relied upon. This work, conveyed by 

a side-by-side comparison of the reconstructions based on DC, AC+PHS, and DC+AC+PHS, 

does provide direct evidence that DC-based reconstruction is much less-accurate in recovering the 

absolute optical properties of target-of-interest when no additional spatial information is available 

to confine the reconstruction, as having been universally recognized by the DOT community. 

However, apart from these well-expected shortcomings, it seems that DC-based reconstruction 

may not be completely unfavorable. This study generalized the analytical approach initially 

proposed in [78] to quantify the level of image artifacts that is expressed by the standard 

deviation of a parameter over the parameter itself. Parameters representative of tissue 

measurements are used to evaluate the analytic results and conduct the synthetic studies, in both 

of which the DC reconstruction produced lower level of relative variation in the optical 

parameters recovered, and some advantages in the CNR. It may be argued that DC flattens 

images, leading to a lower standard deviation in the background, and because the background 

standard deviation is the denominator of CNR, the CNR of DC could become better. But if there 

were flattening of the image, then the numerator of CNR would also be flattened, and perhaps 

flattened more strongly owing to the non-linearity of DOT thereby under-estimated at a higher 

level, that collectively might reduce the CNR rather than increase the CNR. The slight but notable 

CNR advantage of DC over FD-based reconstruction demonstrated in this study strongly suggest 

some inherent advantages of DC, but on the other hand, it could be just because DC has lower 

information content, similar to what one could expect by reducing the amount of data available or 

increasing the regularization in FD-based reconstructions.   
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It is worthwhile to note that this study (as well as most other synthetic studies) assumes a 

step change of the optical properties of the target-of-interest with respect to the background.  This 

is not a faithful representation of the actual tissue-imaging applications, wherein the target-of-

interest frequently has a tapered or smooth change of contrast over the background.  The stronger 

cross-talk between absorption and scattering seen for DC-only reconstruction in this study as well 

as many other studies could have been the outcome of the non-uniqueness revealed by [87] that is 

pronounced when the target-of-interest has a step contrast over the background. In fact, the DC-

based reconstruction of in vivo measurements has encountered notably different absorption and 

scattering patterns of a target-of-interest[89], which may indicate a weaker cross-talk for 

smoother contrast of the target-of-interest. It is also noted that this study as well as most other 

synthetic studies assumes a globally homogenous yet locally heterogeneous background. Actual 

tissue environment could be locally homogenous but globally strongly heterogeneous such as 

found in prostate [78]. In such conditions a balance or trade-off may exist between the ability of 

suppressing the background heterogeneity and the likelihood of identifying a target-of-interest of 

which the contrast is strong locally but weak globally.  

This study has also indicated that including DC information in FD-reconstruction can 

sometimes lead to better images than ignoring it.  The expressions of δ and α in equ (3.4) 

demonstrate that the DC attenuation is not linearly dependent upon the AC attenuation, and the 

difference between the two attenuation values increases as the modulation frequency increases. 

The necessity of  including DC in order to optimize the frequency-domain reconstruction is made 

evident by the results in section 3.2.2 and 3.2.3 wherein the  DC+AC+PHS results have always 

been slightly better than the AC+PHS results, on the background artifacts, the target properties, 

and the cross-coupling between µa  and µs’/D. However the slightly better performance of 

DC+AC+PHS over AC+PHS diminishes as the total number of measurements goes up, as is 

shown in the 3-ring case in 3.2.3. When fewer measurements are available in application 
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situations including the DC information in the limited frequency-domain measurements likely 

will improve the overall reconstruction outcome.  

This study is carried out for the measurements at a single-wavelength. Investigating the 

PRUL issues in the context of multi-band frequency-domain measurements will be a natural and 

more practical extension of this work as most optical tomography measurements are conducted 

with some kind of spectral information. Besides, similar approaches may be extended to other 

applications wherein the measurement data contains multiple aspects of information, from which 

the data usage may be optimized for the specific system configuration.               

3.5 Summary 

In conclusion, the level of variations of recovered optical properties in optical 

tomography associated with the measurement-uncertainty under three reconstruction 

configurations of DC-only, the DC-excluded frequency-domain, and the DC-included frequency-

domain, is studied by analytic and synthetic means. It is demonstrated that at the same level of 

measurement uncertainty typical to optical tomography and under pixel-wise reconstruction 

without spatial prior, the standard deviations of aµ  over aµ  reconstructed by DC-only is at least 

1.4 times lower than that by frequency-domain methods. The standard deviations of D  (or sµ′ ) 

over D  (or sµ′ ) reconstructed by DC-only are slightly lower than those by frequency-domain 

methods. Frequency-domain reconstruction including DC generally outperforms reconstruction 

excluding DC, but the difference between the two becomes less significant when the total amount 

of measurements become larger. For frequency-domain reconstruction with no spatial prior and 

less amount of measurements, including DC is recommended. When a priori structural 

information is available, the three reconstruction configurations investigated in this study perform 

equally well.  
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CHAPTER IV 
 

 

SPECTRAL PRIOR UTILIZATION AND OPTIMIZATION IN NEAR INFRARED DIFFUSE 

OPTICAL TOMOGRAPHY 

 

4.1 Introduction 

Multi-spectral near infrared optical tomography aims to reconstruct pathologically-relevant 

optical heterogeneities in biological tissue from information obtained over a spectrum of light 

[66, 90-93]. The technique utilizes measurements at multiple wavelengths to decompose the 

spectrally variant tissue optical properties such as absorption and reduced scattering coefficients 

into spectrally invariant chromophore concentrations and spectrally insensitive scattering 

properties such as scattering power and scattering amplitude [90]. Although discussions remain 

over the uniqueness of optical tomography reconstruction by single wavelength Continuous-

Wave (CW) or Direct-Current (DC) measurements [87-88], the unique solution to optical 

tomography reconstruction based on spectrally-constrained DC measurement has been 

demonstrated by Corlu et al. [90]. Further studies based on DC measurements have been reported 

for imaging of breast [7, 91, 94], prostate [95], brain function [96],  small animal [97], etc., and 

the spectrally-constrained DC-based reconstruction is shown to be more robust than the spatially-

constrained single-wavelength DC-based reconstruction in recovering the and the spectrally-

constrained DC-based reconstruction is shown to be more robust than the spatially-constrained 

single-wavelength DC-based reconstruction in recovering the optical heterogeneities [98].
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In recent studies [63, 99], Wang et al. implemented broadband frequency domain (FD) 

measurements to multispectral optical tomography reconstruction. The studies concluded that 

increasing the bandwidth of FD measurements improves reconstruction results. In their 

subsequent studies, Wang et al. integrated the FD detection with DC [100-101] measurements to 

further expand the effective spectral bandwidth for reconstruction.  The successful outcome of 

such FD/DC complemented approach, nonetheless, underlines a more fundamental enquiry, that 

is, under the same spectral-constraint, how DC based reconstruction performs with respect to FD 

based reconstruction. Intuitively, one might expect FD reconstruction to outperform DC 

reconstruction in all aspects owing to the extra phase information. However, such consideration 

has neither been confirmed nor negated, for which direct comparison of DC and FD 

reconstructions under the same context of spectral-constraint is necessary. For non-spectrally-

constrained optical tomography, or optical tomography at single-wavelength, our previous study 

[102] investigated three conditions of reconstruction: 1) DC-only; 2) DC-excluded FD, i.e. 

utilizing only the modulation amplitude (AC) and phase shift (PHS); and 3) DC-included FD, i.e. 

including DC, AC and PHS. It is revealed that the DC-only reconstruction, despite the less 

accurate estimation of the target optical properties, presents higher Contrast-to-Noise-Ratio 

(CNR) than the FD reconstruction does, thereby potentially better resolves the targets in certain 

noisy circumferences. It is also demonstrated that with spatial-prior, DC-only reconstruction is 

essentially equivalent to FD reconstructions, and without spatial-prior, DC-included FD 

reconstruction generally outperforms DC-excluded FD reconstruction. Will spectrally-constrained 

reconstruction have similar outcome? 

The study in [102] introduced an analytic model to estimate the translation of 

uncertainties in the measurements to the uncertainties in the reconstructed images, namely 

parameter-recovery-uncertainty-level (PRUL). This current study aims to evaluate the PRULs in 

spectrally-constrained optical tomography reconstruction. Specifically, we explore the PRULs of 

the concentrations of several important NIR chromophores, including oxygenated hemoglobin 
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(HbO), deoxygenated hemoglobin (Hb), and water, and scattering parameters such as scattering 

amplitude and scattering power.  The PRUL analyses are for the measurements of DC-only, DC-

excluded FD, and DC-included FD, as did with the study in [102], even though other 

configurations of DC/FD measurements could be employed [81]. The PRUL analyses are, 

essentially, to quantify the gradients of the chromophore concentrations and scattering 

components with respect to DC or FD measurement components. This study seeks to derive the 

wavelength-specific gradients of the chromophore concentrations and scattering components with 

respect to the optical properties in DC or FD measurements, which are then to be integrated with 

the gradients of the optical properties with respect to DC or FD measurements previously 

analyzed in [102] to reach the complete expressions of PRULs in multi-spectral measurements.  

A practical issue arises in spectrally-constrained optical tomography is the selection of 

optimal set of wavelengths given the choices of doing so in the system integration. The 

optimization approaches demonstrated by Corlu et al. [7] and Eames et al. [103] are similar as 

both methods compare the residue and condition numbers of numerically approximated 

sensitivity matrices derived for each set of the wavelength combinations. This current work 

proposes a novel method of optimizing the wavelength selection for spectrally-constrained optical 

tomography reconstruction based on the PRUL analyses. As the gradients in PRULs are 

formatively equivalent to the sensitivity matrices, the new method is shown to optimize the 

wavelength selection as effectively as Corlu’s and Eames’ methods do, but at much lower 

computational load.  

The PRUL analyses under spectral-constraint as well as the newly proposed method for 

spectral-prior optimization are examined by synthetic studies in two imaging geometries. One of 

the imaging geometries is to have the circular applicator enclosing the medium [91, 103]. In such 

geometry the sensitivity along the depth is considerably homogeneous within its imaging domain. 

The other geometry is to have the circular applicator enclosed by the medium for transverse or 

axial imaging, as in endo-rectal NIR tomography scenarios [42, 95]. In such geometry, the 
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sensitivity decays quite significantly as the depth increases. The synthetic studies are to recover 

targets each of which possesses only one independent contrast, and to resolve two closely 

positioned targets of identical studied properties.  Evaluation criteria include the recovered target 

properties and the noise-to-contrast-ratio (NCR). In this study, NCR is defined as, opposed to 

CNR, the absolute levels of the background artifacts normalized by the target-to-background 

contrast, therefore a lower NCR is perferred.  

It is well-known that multi-spectral optical tomography reconstruction can be 

implemented in two ways. A conventional “indirect” method firstly reconstructs wavelength-

specific absorption and scattering distributions and then deduces the chromophore concentrations 

and scattering components [94]. While a “direct” spectrally-constraint method integrates the 

spectral information into the sensitivity matrices to directly recover the chromophore 

concentrations and scattering parameters [7, 90-92, 98-99, 103-105]. Note that the efficacies of 

both methods are ultimately bounded by the determination of the gradient of the spectrally variant 

optical properties with respect to the chromophore concentrations and scattering parameters. 

However, as the direct method has less unknown values than the indirect method does, the 

inverse problem in the direct method is better conditioned. Therefore it is well expected [7, 91-92, 

98, 104] that the direct method outperforms the indirect method in terms of CNR and inter-

parameter cross-talk. In light of this, the “direct” reconstruction method is adopted in the 

simulations of this study for multi-spectral optical tomography reconstruction. 

The rest of the paper is structured to the following sections for the comparison of DC, 

DC-excluded FD, and DC-included FD measurements under the same spectral-constraint: 

analytical derivation of the PRULs, numerical implementation of the derived PRULs, ranking of 

the spectral-priors being implemented for the PRUL analyses, and finite-element-based 

simulation to validate the proceeding numerical evaluations. The simulation study will 

demonstrate that: 1) the ranking of the wavelength sets given by the analytical approach is 

correct; 2) for a given set of tissue chromophores and spatially homogenous detection sensitivity, 
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the DC-only outperforms FD in NCR; however, as the spatial sensitivity becomes significantly 

non-uniform,  the phase information in FD measurement shows robustness for reconstruction 

versus DC-only reconstruction; 3) including DC in FD reconstruction generally improves the 

outcome than neglecting it. 

4.2 Parameter Recovery Uncertainty Level (PRUL) in Multi-spectral Measurement 

4.2.1 General expression of the PRUL 

For a field point at a distance d from the source in an infinite homogenous diffusive medium, we 

define UDC(d, λ), UAC(d, λ) and Ф(d, λ) as the wavelength-specific DC, AC and phase measurands. 

For two field points located d1 and d2 from the source, the differences in their DC, AC, and phase-

shift denoted by δ(λ), α(λ) and φ(λ), respectively, can be expressed as[81, 102] : 
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where ρ= |d1-d2|, ω is the angular modulation frequency, v is the speed of light in the medium, 

and  

i
i

ia c∑= )()10log()( λελµ   (the “log” denotes the natural logarithm) (4.2-μa)               

b
s A −=′ λλµ )(                                                                                             (4.2-μs’) 

{ } 1, )]()([3)( −
+= λµλµλ saD                                                                    (4.2-D) 

are the absorption, reduced scattering and diffusion coefficients of the medium, respectively. In 

equ. (4.2),  εi(λ) is the extinction coefficient of chromophore i at wavelength λ [106],  A is the 

scattering amplitude and b is the scattering power [7, 91]. 
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 The standard deviations, denoted by σδ, σα and σφ, respectively, of the differences of the 

measurands δ , α  and ϕ , in fact represent the measurement uncertainties [81, 102]. The 

translation of the measurement uncertainties into variations in the reconstructed spectrally-

constrained optical properties may be modeled by   
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where x represents the set of chromophore concentrations, scattering amplitude and scattering 

power, M represents the set of δ, α and φ, and µ(λ) represents the set of  absorption and reduced 

scattering coefficients. Note that the σμ(λ) has already been given in tables II and IV of [102], so 

only ∂x/∂µ needs to be derived in this study. The following section only show the crtical steps 

during the derivation, detailed deduction can be found in the appendices. 

4.2.2The PRULs of chromophore concentration 

By expressing equ. (2- μa) in matrix form as following: 
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one has the gradient of chromophore concentration with respect to the absorption coefficients as:  
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Combining equ. (4.5) with 
aµ

σ found in [102], the PRUL of the chromophore concentration 

becomes: 
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4.2.3 The PRULs of scattering amplitude and scattering power 

Take the logarithm of equ. (4.2- μs’) as  

log μs’=logA+(-b)log λ                                                                (4.7) 

and convert equ.(4.7) to the matrix form of: 
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 The PRULs of scattering amplitude and scattering power are then expressed by: 
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where (σµs’(λ)/ µs’(λ)) was available in [102]. 

4.2.4 Qualitative evaluation of the PRULs between scattering amplitude and scattering 

power 
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A qualitative evaluation of equ.s (4.11) and (4.12) can estimate which one, between scattering 

amplitude and scattering power, is less prone to measurement uncertainties. Neglecting the 

common factor σμs’(λ)/ μs’ in equ.s (4.11) and (4.12) as well as the equal denominators in equ.s 

(4.9) and (4.10), only the elements in the 1×m matrices in equ.s (4.9) and (4.10) are to be 

compared. Within the NIR spectral range between 0.6µm and 1µm, i.e, ]1,6.0[∈λ  with the unit 

of µm, one has -1≤log(λi)≤0≤log2(λi)≤1 for the first term in each element and thus  

∑log(λi)< ∑log2(λi)<0.                                                           (4.13) 

For the second terms of -log(λm)∙∑log(λi) and m∙log(λm), apparently m>-∑log(λi)>0 and thus  

m∙log(λm)<-log(λm)∙∑log(λi)<0                                                      (4.14) 

Summing the inequalities (4.13) and (4.14) leads to 

|∑log(λi)+ m∙log(λm)| > |∑log2(λi) - log(λm)∙∑log(λi)|                                                   (4.15) 

which implies that the PRULs of the scattering power should exceed that of scattering amplitude, 

or the scattering power is more prone to noise than the scattering amplitude is.  

4.3 Numerical Evaluation of PRULs in Multi-spectral Measurement 

4.3.1 Sets of spectral-prior used for PRUL evaluation   

We implemented 3 sets of wavelengths used in [7] for spectral-prior for quantitative analyses of 

PRULs in multi-spectral measurements. Each of the spectral-prior sets contains 5 wavelengths as 

shown in Fig.4.1 and Table 4.1. The set 1 expands 186nm from 740nm to 926nm. The set 2 

expands 240nm from 650nm to 890nm. The set 3 expands 280nm from 650nm to 930nm.  
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Fig.4.1 Illustration of the wavelength sets 

4.3.2 Criteria of wavelength optimization in the context of minimizing PRULs  

Wavelength optimization for spectrally-constrained optical tomography would naturally reduce 

the uncertainties in the reconstruction. One approach to optimize is to have a greater set of 

denominators in equ.s (4.5), (4.9) and (4.10). For the scattering aspect in equ.s (4.9) and (4.10),
 

several random attempts show that the value of 2

11

2 ])log([)(log ∑∑
==

−
m

i
i

m

i
im λλ  stays in a narrow range 

of [0.1, 1]. However, for equ. (4.5), the determinant of εTε varies in several orders depending 

upon the wavelengths, which is however not unexpected because the similarities between the 

row-vectors in matrix ε could induce rank deficiency. Corlu et al. [7] and Eames et al. [105] 

indicated such issue of rank deficiency and recommended to construct the sensitivity matrix with 

small residual numbers. From another perspective, however, one could associate the determinant 

of a matrix with the area bounded by the row-vector of the matrix. This suggests that maximizing 

the determinant of the matrix εTε will likely decrease the similarities among the row-vectors in the 

matrix ε and minimize its rank deficiency.  The study in [105] also indicates that within the 

sensitivity matrix, less variation among the sub-matrices with respect to each category of 

reconstruction parameters (such as chromophore concentrations and scattering parameters) 
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renders more favorable reconstruction. This study thereby includes the magnitude uniformity of 

∂x/∂M  in equ. (3) as one of the criteria of wavelength optimization.  

Optimization methods in [7, 103] appraise the residue and condition numbers of 

sensitivity matrix that includes nsource-detector-pair×nmeasurement-wavelength×nnodes terms. The method 

introduced in this study examines equ.s (4.5), (4.11) and (4.12), and the total evaluation number 

is nsource-detector-pair×nmeasurement-wavelength, which is nnodes times less in the computation needed than the 

methods introduced in (8, 20).   Table 4.1 illustrates the outcome when applying our criteria to the 

three sets of spectral-prior, after neglecting the common terms |∂µ(λ)/∂M(λ)|∙σM(λ) in equ. (4.3). 

Since the optimization is in favor of large denominator of the determinant and small variation 

among the gradient values, the set 3 stands out as the best. The set 1 significantly outperforms the 

set 2 in absorption part, whereas the set 2 moderately outperforms the set 1 in scattering part. The 

overall ranking among the three sets of spectral priors is thus (3, 1, 2), which agrees with the 

experimental results demonstrated in [7]. 

Table 4.1 Wavelength sets to be examined and comparison of PRULs evaluation with the 

analytical solutions 

Set Wavelengths / nm 

Absorption Part Scattering Part 

Determinant  

of denominator: 

(εTε) 

Standard deviation 

of extinction 

coefficients dev(ε) 

Determinant of 

denominator 

Standard 

deviation of  

∂x/∂ M(λ) 

(2) 650,700,716,860,890 2.58e-7 388.0 0.37 0.67 

(1) 740,788,866,902,926 8.18e-7 63.7 0.18 1.03 

(3) 650,716,866,914,930 1.30e-5 63.8 0.53 0.45 

 

4.3.3 Quantitative evaluations of relative PRULs  
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To quantitatively evaluate the PRULs in equ.s (4.6), (4.11) and (4.12), we assign the background 

chromophore concentrations and scattering parameters as [105]: CHbO=CHb=0.01mM, CH2O=40% 

and A=b=1. The preset properties of the anomaly are approximately two-folds of those assigned 

to the background, as: CHbO_anom =0.023mM, CHb_anom = 0.023mM, CH2O_anom =80% Aanom=2, and 

banom=2. The relative uncertainties of all measurement differences are assumed as 1% [81], that is: 
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1. With these necessary pre-conditioning, table 4.2 shows the quantitative evaluations of PRULs 

in equ.s (4.6), (4.11) and (4.12), and normalizes the PRULs by the pre-set contrasts of the 

anomaly. Such normalized values relate to the Noise-to-Contrast Ratios (NCR) in the 

reconstruction. In table 4.2, the absolute NCRs are further normalized by those of DC-only in 

each column, the absorption part is further normalized by NCRs of the hemoglobin in each row, 

and the scattering part is normalized by NCRs of the scattering amplitude in each row. Such 

normalizations more explicitly indicate the rankings of NCR among three measurement 

conditions for each reconstruction parameter.  
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Table 4.2 Analytical evaluation of parameter reconstruction uncertainty levels normalized by 

target contrasts (NCRs) 

Se

t 

Measure

-ment 

HbO / mM Hb / mM H2O / % A b 

Abs

. 

Column

--wise 

Norm. 

Row- 

wise 

Norm. 

A

b

s. 

Colum

n -wise 

Norm. 

Row 

-wise 

Norm

. 

Abs. 

Column

- wise 

Norm. 

Row-

wise 

Norm

. 

Abs. 

Column

- wise 

Norm. 

Row-

wise 

Norm

. 

Abs. 

Column

- wise 

Norm. 

Row-

wise 

Norm

. 

(1) 

DC 
0.04 1 2.0 0.02 1 1 0.03 1 1.4 0.01 1 1 0.05 1 5.2 

AC+PH

S 

0.06 1.4

1 

2.0 0.03 1.41 1 0.04 1.41 1.4 0.02 1.41 1 0.08 1.41 5.2 

DC+AC 

+PHS 

0.11 2.5 2.0 0.05 2.45 1 0.07 2.45 1.4 0.02 1.41 1 0.08 1.41 5.2 

                 

(2) 

DC 
0.127 1 9.4 0.014 1 1 0.13 1 9.3 0.01 1 1 0.04 1 3.3 

AC+PH

S 

0.180 1.4 9.4 0.019 1.41 1 0.18 1.41 9.3 0.02 1.41 1 0.05 1.41 3.3 

DC+AC 

+PHS 

0.311 2.5 9.4 0.033 2.45 1 0.31 2.45 9.3 0.02 1.41 1 0.05 1.41 3.3 

                 

(3) 

DC 
0.054 1 5.4 0.010 1 1 0.03 1 3.2 0.01 1 1 0.03 1 3.9 

AC+PH

S 

0.076 1.4 5.4 0.014 1.41 1 0.05 1.41 3.2 0.01 1.41 1 0.04 1.41 3.9 

DC+AC 

+PHS 

0.132 2.5 5.4 0.025 2.45 1 0.08

- 

2.45 3.2 0.01

- 

1.41 1 0.04

- 

1.41 3.9 

 

From the Row-wise Norm. in table 4.2, one would expect that DC reconstruction has the 

least NCRs and accordingly, the least relative uncertainties in the reconstruction. One would also 

expect that including DC measurements in FD at several cases does not necessarily increase the 

reconstruction NCRs. From the Column-wise Norm. in tables 4.2, one would also expect that for 

the three sets of wavelength, NCRC_Hb< NCRC_H2O<NCRC_HbO for the absorption aspect and 

NCRA< NCRb for the scattering aspect. 

 

4.4 Simulation Studies  

4.4.1 Synthetic model and geometries considered 
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The synthetic study is based on NIRFAST package [86]. The forward model computes photon 

diffusion at each wavelength by: 
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where ),,( λωrU  is the photon fluence of wavelength λ at frequency ω (for DC simply assigning 

ω=0) for position r , and ),,( λωrS   is the source term. The Robin type boundary condition is 

assigned as: 

0),(ˆ2),( 000 =∇⋅− ωω rUnDArU 
                                                    (4.17) 

where 0r


 denotes the boundary node; A is the coefficient accounting for the refractive index 

mismatch; and 0n̂  is the outgoing normal vector. The sensitivity or Jacobian matrix is constructed 

according to the measurands [102] as: 
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(4.18) 

where x represents the parameters to be reconstructed, including chromophore concentrations and 

scattering amplitude and scattering power. 

Two imaging geometries are evaluated as shown in Fig.4.2. Fig.4.2(a) shows a circular 

geometry with the medium enclosed by a ring-applicator of 86mm in diameter [91, 103, 105]. 

Fig.4.2(b) includes a circular applicator array of 20mm in diameter that is enclosed by the 

medium, and the medium is bounded within a circle of 40mm from the applicator surface. In both 

geometries, 16 optodes are evenly distributed along the circumference, and each optode functions 

sequentially as the source with the other 15 optodes being the detection channels. The imaging 

geometry in Fig.4.2(a) is discretized into 3418 finite-elements with 1785 nodes. The imaging 

geometry in Fig.4.2(b) is segmented to 3748 elements with 1968 nodes. The two geometries have 
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noticeably different sensitivity distributions along the depth from the applicator surface into the 

medium, as shown in Fig.4.2(c). It will be shown that such difference in sensitivity affects the 

outcome of reconstruction.  

            

                                                (a)                                                               (b) 

 

(c) 

Fig.4.2 Simulation geometries (a) Large applicator enclosing the imaging 

volume. The FEM mesh has a radius of 43mm and includes 1785 nodes and 3418 

elements (b) Small applicator enclosed by the imaging volume. The geometry has 

an inner radius of 10mm. The FEM mesh includes 1968 nodes and 3748 

elements. (c) Sensitivity plot (∂lnI/∂cHbO) along the depth direction into the 

medium. Spatial sensitivity decay in (a) is less significant than that in (b). 

 The optical properties employed in the simulations are identical to those used for tables 

4.2, and ananomaly could have one or multiple contrasts of the properties. Two sets of 

simulations are conducted on both imaging geometries. One set simulates five targets with 
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independent contrasts, and the other set studies two closely positioned targets of identical 

properties. White noise at 1% is added to the forward data before applying the Levernberg-

Marquardt algorithm as the inverse solver. 

4.4.2 Simulation Results 

4.4.2.1 Exterior imaging geometry—reconstructing targets with independent contrasts 

The set targets are five 8mm-radius contrast-regions located 25 mm away from the center of the 

geometry with 0.4π angular separation, as shown in the column set of Fig.4.3. Each of the five 

regions differs from the rest in its contrast. Fig.4.3 shows the reconstruction results for the three 

sets of spectral-priors, and Table 4.4 demonstrates the maximum values of each variable within 

the target regions and the percentage error of the contrast. In terms of the overall reliability of 

quantitative reconstruction, the set 3 show in in Fig.4.3(c) outperforms the other two. Next to the 

set 3 is the set 1 shown in Fig.4.3(a), which in DC reconstruction underestimates HbO and Hb yet 

overestimates A and b due to cross-coupling. The set 2 shown in Fig.4.3(b) is the least accurate as 

it has the highest level of cross-coupling between the HbO and H2O concentrations in FD 

reconstruction. For most cases shown in Fig.4.3 and table 4.3, one could notice that DC 

reconstruction outperforms the other two methods in resolving the targets.  

 

                          (a)                                      (b)                                           (c) 

Fig.4.3 Synthetic study on five targets with independent contrasts in image 

geometry (a) in Fig.4.2. (a)(b)(c) are the results for the wavelength set (1)(2)(3) 
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in table I, respectively. (a) Second best: slight cross-coupling between HbO/A 

and between Hb/b recovery in column DC. (b) Worst: Severe cross-coupling 

between HbO and H2O. (c) Best: minimal cross-coupling and target 

underestimation. Note: target overestimation is not visible because of uniform 

color bars. Look for absolute values in table 4.3. 

Table 4.3 Target accuracy in Fig.4.3 

Data 
HbO / mM Hb / mM H2O / % A b 

Abs. Err. / % Abs. Err. / % Abs. Err. / % Abs. Err. / % Abs. Err. / % 

Set Values 2.3e-2  2.3e-2  0.80  2.0  2.0  

(1) 

DC 1.7e-2 -46 1.6e-2 -55 0.82 5 2.2 21 1.9 -9 

AC+PHS 2.0e-2 -23 2.3e-2 -2 0.81 2 2.4 39 2.3 30 

DC+AC+PHS 2.0e-2 -24 2.2e-2 -6 0.80 0.4 2.3 34 2.2 23 

            

(2) 

DC 2.0e-2 -21 2.4e-2 4 0.72 -21 2.4 40 2.1 7 

AC+PHS 1.6e-2 -56 2.6e-2 24 0.67 -33 2.3 26 2.1 6 

DC+AC+PHS 1.7e-2 -48 2.7e-2 27 0.69 -27 2.2 23 2.1 10 

            

(3) 

DC 2.0e-2 -25 2.3e-2 1 0.83 8 2.3 33 1.9 -11 

AC+PHS 1.8e-2 -42 2.5e-2 16 0.78 -6 2.4 45 2.2 19 

DC+AC+PHS 1.8e-2 -39 2.5e-2 18 0.77 -8 2.4 39 2.2 17 

 Table 4.4 lists the NCRs of the reconstruction results in Fig.4.3, that is, the standard 

deviations (σx) of the reconstructed background values normalized by the maximum target 

contrasts. The σx values are calculated by excluding the areas co-centric to the targets but with the 

radii twice as those of the target regions. Similar to those in table II, the NCRs in Table 4.4 are 

normalized by those of DC-only in each column. Similarly in each row of Table 4.4, the 

absorption part is normalized by NCRs of the Hb and the scattering part is normalized by NCRs 

of the A. The row-wisely normalized NCRs in Table 4.4 unanimously show NCRC_Hb< 

NCRC_H2O<NCRC_HbO for the absorption part and NCRA< NCRb for the scattering part, which 
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agree with those in table II. For column-wisely normalized NCRs, in the sets 1 and 3, both table 

II and IV indicate that the ratio of AC+PHS over DC stays within the range of [1, 2]. The artifact 

levels of DC+AC+PHS reconstruction are shown always lower than those of AC+PHS and 

sometimes lower than those of DC. Similar observations were reported in [102], and collectively 

they conclude that DC component is indeed not-redundant in FD measurements, therefore 

neglecting DC would degrade the accuracy of FD reconstruction. In the set 2, the NCRs are 

slightly lower in FD than in DC-only. This implies that FD measurement is more robust in the 

case of less desirable spectral prior.  

Table 4.4 Absolute and normalized NCRs of the images in Fig.4.3 

Set Measure-
ment 

HbO / mM Hb / mM H2O / % A b 

Abs. 
Colum
n -wise 
Norm 

Row 
-wise 
Nor
m 

Abs. 
Colum
n -wise 
Norm. 

Row 
-wise 
Norm 

Abs. 
Colum
n -wise 
Norm 

Row 
-wise 
Norm 

Abs. 

Colu
mn -
wise 

Norm 

Row 
-wise 
Nor
m 

A
bs. 

Colu
mn -
wise 

Norm. 

Row 
-wise 
Nor
m 

(1) 

DC 0.066 1 1.3 0.052 1 1 0.039 1 0.7 0.022 1 1 0.051 1 2.3 

AC+PHS 0.072 1.6 2.1 0.035 1.4 1 0.066 1.7 1.9 0.038 2.0 1 0.057 1.6 1.5 

DC+AC+

PHS 

0.058 1.2 1.8 0.033 1.3 1 0.049 1.2 1.5 0.032 1.6 1 0.047 1.3 1.4 

                 

(2) 

DC 0.048 1 1.4 0.033 1 1 0.063 1 1.9 0.028 1 1 0.043 1 1.5 

AC+PHS 0.054 0.6 2.2 0.025 0.9 1 0.049 0.7 2.0 0.025 0.8 1 0.037 0.9 1.5 

DC+AC+

PHS 

0.049 0.7 2.1 0.023 0.9 1 0.047 0.7 2.0 0.027 0.8 1 0.036 0.9 1.3 

                 

(3) 

DC 0.049 1 1.9 0.026 1 1 0.040 1 1.5 0.026 1 1 0.038 1 1.5 

AC+PHS 0.072 1.1 1.6 0.044 2.0 1 0.047 1.0 1.1 0.024 1.0 1 0.050 1.8 2.1 

DC+AC+

PHS 

0.052 0.9 1.6 0.033 1.5 1 0.037 0.8 1.1 0.020 0.8 1 0.040 1.4 2.0 

 

4.4.2.2 Exterior imaging geometry—resolving two closely positioned identical targets 

In Fig.4.4, two identical targets of 8-mm in radius are embedded 25mm from the center and the 

angular separation between the targets is π/4. Each target has all five contrast properties as 

previously defined. Fig.4.4 indicates that cross-coupling is more severe in DC as it 

underestimates the concentration of Hb and H2O. To explicitly compare how well the targets are 
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resolved, the parameter contours along the concentric circle of the imaging geometry and across 

the targets (marked with gold dotted loops in Fig.4.4) are plotted in Fig.4.5. Figures 4 and 5 show 

that the absolute target properties are the least accurate in DC reconstruction. However, the two 

targets are always better resolved in DC than in FD. Table 4.5 lists the ratios of target-to-valley 

contrast over target-to-background contrast (both contrasts are illustrated in the upper-left 

subFig.4.of Fig.4.5). Larger ratios indicate better identification of the targets. It is shown that in 

most cases the targets are resolved the clearest in DC.  

 

                    (a)                                        (b)                                         (c) 

Fig.4.4 Synthetic study on two targets with all five parameter contrasts in image 

geometry (a) in Fig.4.2. (a)(b)(c) are the results for the wavelength set (1)(2)(3) 

in table I, respectively. Cross-coupling are severe in all reconstructed parameters. 

(a) Second best: targets are inseparable in H2O distribution recovery by FD 

reconstructions. (b) Worst: targets are inseparable in Hb and b distribution 

recovery by FD reconstructions. (c) Best: targets are separated in all cases. 
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Fig.4.5 Parameter contour plots along the gold dash lines in Fig.4.4. The upper 

left subfigure denotes the target-to-valley contrast and target-to-background 

contrast. DC reconstruction shows relatively deeper contrast valleys between the 

targets for most cases. 

Table 4.5 Comparison of target separation in Fig.4.5 

Note: Data are calculated as the ratio of the contrast of the valley between the two targets over the 
target contrast 

Data HbO Hb H2O A b 

(1) 

DC 0.76 0.56 0.98 0.81 0.68 

AC+PHS 0.15 0.18 0.47 0.93 0.27 

DC+AC+PHS 0.36 0.15 0.35 0.87 0.30 

       

(2) 

DC 0.54 1.07 0.57 0.80 1.01 

AC+PHS 0.25 0.65 0.31 1.01 0.80 

DC+AC+PHS 0.20 0.67 0.21 0.97 0.85 

       

(3) 

DC 0.42 1.06 1.01 0.81 0.93 

AC+PHS 0.19 0.61 0.46 0.99 0.67 

DC+AC+PHS 0.18 0.66 0.52 0.99 0.70 

 

4.4.2.3 Interior imaging geometry—reconstructing targets with independent contrasts 
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The five targets of 8mm in radius are evenly distributed in the azimuthal direction and placed 10 

mm away from the inner boundary of the imaging geometry, as is shown in the column Set of 

Fig.4.6. The contrasts of the targets are identical to those in Fig.4.3. The recovered images for the 

3 sets of spectral priors are displayed in Fig.4.6(a), (b), and (c), respectively. The target recovery 

accuracy and NCRs are compared in Table 4.6 and 4.7. Fig.4.6 shows that all targets are 

recovered at regions shallower than the set regions, due to the significantly depth-dependent 

sensitivity distribution that peaks in the proximity of the applicator as shown in Fig.4.2(c). The 

performance ranking of the three wavelength set as [3, 1, 2] again agrees with the analytical 

prediction. Table 4.6 further demonstrated that FD reconstruction outperforms DC as phase 

information improves target recovery in imaging geometries with noticeable variation of the 

spatial sensitivity. The NCR rankings in Table 4.8 are in most cases similar to that in Table 4.5, 

as NCRC_Hb< NCRC_H2O<NCRC_HbO and NCRA< NCRb.  

 

Fig.4.6 Synthetic study on five targets with independent parameter contrasts in 

image geometry (b) in Fig.4.2. (a)(b)(c) are the results for the wavelength set 

(1)(2)(3) in table I, respectively. (a) Second Best: slight cross-coupling between 

Hb and b. (b) Worst: severe cross-coupling between HbO and H2O. (c) Best: 

barely any cross-coupling. 
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Table 4.6 Target accuracy in Fig.4.6 

Data 
HbO / mM Hb / mM H2O / % A b 

Abs. Err. / % Abs. Err. / % Abs. Err. / % Abs. Err. / % Abs. Err. / % 

Set Values 2.3e-2  2.3e-2  0.80  2.0  2.0  

(1) 

DC 1.3e-2 -76 1.3e-02 -74 0.58 -56 2.1 14 1.4 -63 

AC+PHS 1.9e-2 -29 2.1e-02 -19 0.82 6 2.3 34 1.9 -11 

DC+AC+PHS 1.5e-2 -60 1.7e-02 -48 0.67 -32 2.1 5 1.4 -61 

            

(2) 

DC 1.2e-2 -86 1.7e-02 -46 0.51 -71 2.1 14 1.6 -37 

AC+PHS 1.5e-2 -65 2.4e-02 5 0.64 -41 2.2 19 1.8 -16 

DC+AC+PHS 1.4e-2 -71 2.2e-02 -7 0.60 -49 2.1 10 1.7 -28 

            

(3) 

DC 1.3e-2 -76 1.6e-02 -54 0.60 -49 2.2 15 1.6 -36 

AC+PHS 1.6e-2 -52 2.4e-02 6 0.74 -14 2.2 22 1.9 -12 

DC+AC+PHS 1.6e-2 -52 2.4e-02 5 0.74 -16 2.2 21 2.0 -4 

Table 4.7 Absolute and normalized NCRs of the images in Fig.4.6 

Set Measurement 

HbO / mM Hb / mM H2O / % A b 

Abs. 

Column 

-wise 

Norm. 

Row -

wise 

Norm. 

Abs. 

Column 

-wise 

Norm. 

Row -

wise 

Norm. 

Abs. 

Column 

-wise 

Norm. 

Row -

wise 

Norm. 

Abs. 

Column 

-wise 

Norm. 

Row -

wise 

Norm. 

Abs. 

Column 

-wise 

Norm. 

Row - 

wise 

Norm. 

(1) 

DC 0.102 1 1.0 0.097 1 1 0.083 1 0.9 0.031 1 1 0.066 1 2.2 

AC+PHS 0.071 2.1 1.1 0.063 2.0 1 0.046 1.3 0.7 0.032 1.2 1 0.035 1.3 1.1 

DC+AC+PHS 0.100 1.6 1.1 0.091 1.9 1 0.069 1.3 0.8 0.032 1.0 1 0.062 1.0 1.9 

                 

(2) 

DC 0.118 1 2.1 0.056 1 1 0.098 1 1.8 0.032 1 1 0.038 1 1.2 

AC+PHS 0.085 1.9 2.1 0.042 1.5 1 0.079 1.7 1.9 0.034 1.1 1 0.032 1.1 0.9 

DC+AC+PHS 0.102 1.9 2.2 0.047 1.4 1 0.092 1.7 2.0 0.032 1.0 1 0.036 1.1 1.1 

                 

(3) 

DC 0.105 1 1.7 0.060 1 1 0.068 1 1.1 0.030 1 1 0.035 1 1.2 

AC+PHS 0.093 1.8 2.5 0.038 1.4 1 0.059 1.5 1.6 0.029 1.0 1 0.032 1.2 1.1 

DC+AC+PHS 0.095 1.8 2.4 0.039 1.5 1 0.057 1.4 1.5 0.027 0.9 1 0.029 1.2 1.1 

 

4.4.2.4 Interior imaging geometry—resolving two closely positioned identical targets 

Two identical targets of 8mm in radius are embedded 10mm away from the internal boundary of 

the imaging geometry with angular separation of 0.4π, as is shown in the column Set of Fig.4.7. 
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In Fig.4.7(b), the set 2 does not resolve the two targets in water concentration as clear as the other 

two sets do. The set 1 (Fig.4.7 (a)) and the set 3 (Fig.4.7(c)) are similar. Cross-sectional plots 

along the gold dotted lines are displayed in Fig.4.8. Note that since the non-uniform sensitivity of 

the geometry tends to reconstruct the targets in positions closer to the inner boundary, the radius 

of the dotted circles for reconstructed images is slightly smaller than those for the plots of set 

values. The upper target is recovered with less contrast compared with the lower one is, due to the 

configuration that the lower target coincidently is located in the same angular position of an 

optode and thereby reconstructed with enhanced sensitivity. Table 4.8 lists the target-to-valley 

contrast and target-to-background contrast ratios, comparable to those in Table 4.5. Table 4.8 

indicates slight advantage of DC reconstruction over FD. The sets 1 and 3 separate targets better 

than the set 2 does in water concentration distribution, however, no significant difference between 

the two sets of 1 and 3 can be observed.  

  

                    (a)                                         (b)                                       (c) 

Fig.4.7 Synthetic study on two targets with all five parameter contrasts in image 

geometry (b) in Fig.4.2. (a)(b)(c) are the results for the wavelength set (1)(2)(3) 

in table I, respectively. (a)(c) Targets are separable in all cases. (b) Targets are 

inseparable in HbO, H2O and b distribution recovery by FD measurements. 
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Fig.4.8 Parameter contour plot along the gold dash lines in Fig.4.7. DC 

reconstruction shows slight advantage over FD in most cases. 

Table 4.8 Comparison of target separation in Fig.4.5 
Data HbO Hb H2O A b 

(1) 

DC 0.28 0.23 0.72 0.98 0.66 

AC+PHS 0.43 0.44 0.61 0.95 0.89 

DC+AC+PHS 0.30 0.29 0.45 0.91 0.78 

       

(2) 

DC 0.26 0.76 0.18 0.95 1.03 

AC+PHS 0.20 0.46 0.17 0.87 1.05 

DC+AC+PHS 0.19 0.51 0.15 0.87 1.03 

       

(3) 

DC 0.24 0.69 0.69 0.95 0.78 

AC+PHS 0.27 0.57 0.37 0.88 0.93 

DC+AC+PHS 0.13 0.31 0.18 0.78 0.81 

 

4.4.3 Comparison of μa(λ) and μs’(λ) 

Since the sensitivity matrices of multi-spectral NIR tomography are derived from that of single-

wavelength optical tomography, the reconstruction results of μa(λ) and μs’(λ) could also be 

insightful to evaluating the reconstruction performance. In this section, the analytical model of 
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σμa(λ) and σμs’(λ) will be compared to σμa(λ) and σμs’(λ) derived from synthetic studies. However, there 

is difference between the PRUL calculations of σμa(λ) and σμs’(λ) in analytical model and in 

simulation. For analytical model, the calculations of σμa(λ) and σμs’(λ) involve evaluating μa(λ) and 

μs’(λ) in equation (4.2) with the preset simulation parameters and substituting μa(λ) and μs’(λ) 

values into table II and IV in [102]. Whereas for simulation, μa(λ) and μs’(λ) values are not 

recovered explicitly in the reconstruction under spectral-prior, therefore, the PRULs of the 

recovered parameters need to be reversely projected to σμa(λ) and σμs’(λ), by equ.s(4.19) and (4.20): 
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 Analytical and simulated values of σμa(λ) and σμs’(λ) are plotted verses the wavelengths 

in Fig.4.9 (a) and (b) respectively. The curve shapes agree between the analytical predictions and 

reconstruction results, yet the relative magnitudes of the curves differ slightly. In the analytical 

prediction, the uncertainties always follow the relationship of σDC<σAC+PHS≤σDC+AC+PHS for both 

μa(λ) and μs’(λ). In simulation study, one has σμa(λ)_DC< σμa(λ)_DC+AC+PHS≤σμa(λ)_AC+PHS. However, 

for σμs’(λ), DC reconstruction is not definitely advantageous over FD, even though 

σμs’(λ)_DC+AC+PHS<σ μs’(λ)_AC+PHS stands for all cases.  
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(a) 

 

(b) 

Fig.4.9 Comparison between the artifact levels in absorption and scattering 

coefficients at each wavelength. Curve shapes of analytical model and synthetic 

studies agree in all cases. (a) Absorption coefficients comparison. DC 

reconstructions show least background artifact levels. DC+AC+PHS for most 

cases outperforms AC+PHS. (b) Scattering coefficients comparison. DC 
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reconstructions does not necessarily show least background artifact levels. 

DC+AC+PHS at most cases outperforms AC+PHS. 

4.5 Discussions 

The analytical model is derived for an infinite homogenous medium, but the outcomes are 

apparently applicable to geometries with boundary and with anomaly as those in the simulations. 

The PRUL analyses introduced in [102] actually implicated the uniqueness of the solutions of DC 

only reconstruction in multi-spectral NIR tomography. Previous studies [83-84] suggested that in 

a homogenous medium, the product of μa(λ) and D(λ) can be considered as a constant function of 

the surface diffuse reflectance of the medium as: 

[ ] )( ∞=⋅ RKDaµ                                                                           (4.21) 

Taking equation (4.21) into consideration, μa(λ), D(λ) and μs’(λ) can be independently expressed 

as [102]: 

ρ
λδλλµ )())(()( ⋅= ∞RK

DCa
                                                                

(4.22.1) 

)(
))(()(

λδ
ρλλ ⋅= ∞RKD

DC                                                                    
(4.22.2) 

ρ
λδλ

λ
λµλλµ )()))((

))((3
1()()(

3
1)(' ⋅−=−= ∞

∞

RK
RKD DC

aDCs

                                  
(4.22.3) 

If the DC optical tomography measurement lacks K(R∞), equation (4.22) may become under-

determined and thereby inter-parameter cross-coupling may exist. Under spectral prior, however, 

the ))(( λ∞RK term could be eliminated and subsequently the cross-coupling be reduced. By 

combining equations (4.22.1) and (4.22.3) and substituting into equations (4.2.1) and (4.2.2), the 

DC measurement becomes the function of only the absorption chromophore concentrations and 

scattering parameters as: 
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Therefore one can decouple the unknown values once measurements at sufficient number of 

wavelengths are available. This agrees with the observation in this and several previous studies 

that DC reconstruction with spectral prior successfully resolves the tarter, as evidenced in figures 

3 and 6. Interestingly, as is shown in figures 4 and 7, even in the FD reconstruction the intrinsic 

cross-coupling problem becomes significant when multiple contrasts are assigned to the same 

location [104]. As fewer measurement components in DC reconstruction facilitate less system 

noise in the inverse problem, the level of background artifacts are actually lower in DC 

reconstruction.  

The method of ranking the spectral-prior sets conforms to the recommendation by [7] at 

desirably less computation load. Nonetheless, the optimized wavelength set depends upon a 

reliable sensitivity distribution for the optimal outcome. For example, the set 3 clearly 

outperforms the set 1 in Fig.4.4 but not as clearly in Fig.4.7.  Therefore, the choice of spectral 

prior for a given number of wavelengths is to be associated with the sensitivity distribution in the 

imaging domain.   

The PRUL analyses of both multi-spectral reconstruction parameters and the optical 

properties have been shown reliable. However, there is still disagreement between the analytical 

prediction and simulation results due to the approximation in analytic modeling and smoothing 

effect in synthetic studies. For example, since the analytical model only accounts for the 

perturbations in the measurement, it is predicted that DC-excluded FD will outperform DC-

included FD, yet the simulation shows the contrary. Such aberrations actually explain that extra 

information in DC components has balanced the excessive reconstruction uncertainties and made 

DC+AC+PHS a better choice than AC+PHS for FD reconstruction.  

4.6 Summary 

 A PRUL analysis model has been applied to multispectral optical tomography and used 

to evaluate the sets of wavelength for spectrally-constrained optical tomography reconstruction.  

The analytical predictions are generally supported by simulations. In imaging geometries where 
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reliable sensitivity distribution is available, DC-only reconstruction outperforms FD 

reconstruction. The advantage of the extra phase information in FD measurement becomes 

prominent under significantly non-uniform spatial sensitivity distribution. It is also found that 

including DC component in FD reconstruction improves the overall reconstruction results in 

multi-spectral optical tomography, which is similar to that demonstrated in single-wavelength 

NIR tomography reconstruction. 
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CHAPTER V 
 

 

INSTRUMENTATION OF A RAPID NEAR-INFRARED DIFFUSE OPTICAL 

TOMOGRAPHY SYSTEM WITH WAVELENGTH SWEPT LIGHT SOURCE 

 

5.1 Introduction 

Near-infrared tomography has demonstrated high functional contrast in areas such as 

cancer imaging[5, 11, 13, 107-109], extremity imaging[77, 110] brain functional imaging [111-

113] and small animal imaging[114-116]. However, compared to other imaging modalities such 

as X-ray and ultrasound imaging, the relatively low frame rate of NIR tomography is desired to 

be improved, especially in brain function imaging, which requests video rate image acquisition 

for capturing rapid brain activities. 

Most of traditional NIR tomography system utilizes single light source and delivers the 

source light to each source channel by mechanical/fiber switching [13, 107-108, 110, 117], which 

ensures the intensity uniformity of each source channel but the time delay between channels 

restricts the data acquisition speed. 

Several rapid, video rate imaging acquisition system structures have been investigated 

during the past few years, including temperature controlled multiple laser diodes [118-119] and 

spectral encoding of broad band light source[14]. Temperature controlled multiple Laser diodes 

system demonstrates higher  acquisition rate (approximately 3Hz) but the intensity of the laser 

diodes are subject to fluctuation and for imaging scenarios with large source arrays such as
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Brain functional imaging, the CCD dimension might not be able to cover all the source channels 

dispersed by the spectrometer. Broad-band spectral encoding system possesses the advantage of 

acquiring signals simultaneously from all detector channels by splitting the broadband source 

light with diffraction grating and coupling the light power into linearly arranged source channels. 

However, since continuous spectrum of the broadband light source includes the coupling of 

multiple wavelengths into each source channel, signals from detector channels are cross-coupled, 

which involves a de-convolution process for the distinct separation of the signals from each 

detector channel[14].  

Swept-wavelength light source is widely utilized in optical coherent tomography for its 

flexibility in the manipulation of detection depth[120-122],  and is recently reported to have been 

utilized in optical topology[123]. Considering the rapid wavelength scanning speed and program-

controllable characteristics of the wavelength swept light source, a novel optical tomography 

setup have been designed and constructed. Several advantages have been demonstrated by 

phantom experiments: 1) The spectrally and temporally encoded source light of such system 

facilitates rapid channel switching rate compared to mechanical switching; 2) accurate single 

wavelength source light delivery to each source fiber eliminated cross coupling problem in 

broadband spectral encoding systems; and 3) independent source illumination fundamentally 

extends CCD capacity on the source-channel coverage, which allows more source channels on the 

imaging applicator within a given CCD dimension. 

In addition, it is commonly agreed that the calibration is critical to the reliable 

measurement and reconstruction results for all imaging systems. In the NIR tomography area, 

most of the system calibration includes 2 steps: fitting analytical and numerical light propagation 

model to the experimental measurements. Although the latter is well investigated and generally 

based on iterative solution of the optical properties of a homogeneous medium, the analytical 

model fitting is less concerned. For most of contemporary studies, researchers utilize the 

analytical planar semi-infinite photon diffusion model solved by Fantini et al [81], which 
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approximates the signal intensity attenuation in log scale and phase shift of the measurements to a 

linear model. Such approach demonstrates robustness in many frequency domain systems, in 

which only the gradients of the measurement components are considered in the analytical fitting 

process. However, as to the continuous wave systems, since multiple optical properties cannot be 

strictly decoupled by merely utilizing the attenuation of light signal intensity, the absolute values 

fitting is also required. Therefore, more accurate analytical models specified for the applicator 

geometry of each imaging system are desired, which, for the particular case of this study, is 

derived and reported by Zhang et al[124]. Validated by experiments, the analytical model for 

photon diffusion in cylindrical geometry provides more reliable and accurate on the estimation 

optical properties of homogeneous medium, which ensures that the numerical fitting process 

converges to the optimum solutions for measurement-to-numerical-model offset determination. 

In this paper, the structure of the system will be discussed and experimental results based 

on phantom data will be shown for the performance of system assessment and the novel 

calibration method for imaging applicator in cylindrical geometry is demonstrated in detail. 

5.2 Review of previous system structures 

Before the presentation of our innovative system structure for rapid FDOT system, DOT 

system structure presented by previous studies are briefly reviewed as the basis of our design for 

a CW measurement based, rapid DOT/FDOT system. 

Time multiplexing by mechanical switching is the most commonly implemented structure for 

multi channel DOT systems. As is shown in Fig. 5.1, the fiber switch couples a narrow band light 

source sequentially to each of the source channels. The system is readily extendable to FDOT 

because the excitation and emission band fluorescence signals are independent in time with 

respect to each source channel. However, the data acquisition rate of such system is limited by the 

switching intervals. 
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Fig. 5.1 Illustration of mechanical switching 

Spectral encoding of the source channels method can facilitate the simultaneous 

illumination of all source channels and improve the data acquisition rate. As is shown in Fig.2 the 

system structure either uses parallel discrete laser sources with closely located wavelengths or by 

using a narrow-band light source after splitting the light with a grating. At the detection end, the 

diffused light signals are separated with respect to the wavelength of each source channel by a 

spectrometer and captured by a CCD camera. None the less, such system structure does not 

support fluorescence emission signal acquisition as the fluorescence emission spectrum does not 

vary corresponding to the excitation wavelength. The identification of the fluorescence emission 

signal with respect the the source channels is thereby not possible by a spectrometer and CCD 

system. 
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Fig. 5.2 Illustration of spectral encoding 

The simultaneous source channel illumination can be achieved by frequency modulating 

method. As is shown in Fig.5.3, each source channel is modulated by a unique frequency. The 

fluorescence emission signals can thereby be separated with respect to the source channel with 

frequency lock amplifiers. However, such system structure exceeded our scope of developing CW 

measurement based system. The instrumentation complexity would be significantly elevated and 

the computational modeling would include the phase shift of the light signals. 

 

Fig. 5.3 Illustration of frequency multiplexing 
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Summarizing the system structures shown above, we came to the idea of a wavelength 

swept light source based DOT and FDOT system structure. The structure enables the spectral 

encoding of the source channels and sequential yet rapid switching source channel illumination. 

5.3 Principles 

The initial idea of the system structure is to separate wavelengths by utilizing the 

difference in diffraction angle and capture detection signals from all channels with sufficient 

exposure time for one cycle of wavelength sweeping. As is shown in Fig.5.4, the source light with 

varied wavelengths is dispersed by spectrometer one and sequentially coupled to the source 

channels linearly arranged at the output plane of spectrometer 1. Therefore, the rapidly sweeping 

source light be appears similar to a broadband light, and a spectral source light encoding similar 

to the one reported in [14] is achieved. At the detection end, spectrometer two decodes the light 

signals by dispersion angles and the CCD camera, as is shown in Fig.5.5 (a) (with 1200 

groove/mm grating) and (b) (with 600 groove/mm grating). 

 

Fig.5.4 Principle Illustration of a wavelength-swept       

However, challenges exist in this system scheme as is demonstrated in Fig.5.5: 1. cross 

coupling between the source channels caused by the continuous wavelength swept, which is 
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identical to that in spread-spectral-encoding system; 2. minimization of source channel cross 

coupling with larger grooves per mm gratings exceeds the CCD coverage range; 3. 

synchronization of the source sweep and camera exposure is difficult because of the rapid 

sweeping. 

The source channel cross coupling can be minimized by accurate collimation and 

appropriate source fiber separation. However, for the detection end, the signal overlapping and 

the CCD dimension is contradictory, because CCD cannot cover all the source channel 

wavelengths if the light signal spots are clearly separated (Fig.5.5(a)) and vice versa(Fig.5.5(b)). 

 

(a)                                             (b) 

Fig.5.5 drawbacks of free sweeping mode. (a) image captured with 1200 

grooves/mm grating; (b) image captured with 600 grooves/mm grating 

One solution to such problems is to capture the detection signal from each source channel 

independently in time, per se, by temporal encoding. Mathematically, The spectral and temporal 

encoding can be combined and represented by equ(5.1): 

Loop(t=1:m): {D(t) n×1= (Wm×n)T ×T(t)m×m × Specm×m ×S m×1}                            (5.1) 

Where t is wavelength-swept time slot controlled by PC; D(t)  is the detector signal at 

time t, W is the weight matrix or sensitivity matrix of the imaging geometry; T(t) is the diagonal 
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matrix representing the time-encoding, T(t)(i,i)= 
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spectral encoding matrix. 

According to the theoretical hypothesis, system schematics are shown in Fig.5.6. 

Controlled by the PC, the source light swept stops when maximum source power is coupled to 

each source channel, followed by the CCD exposure. Therefore, for one imaging cycle, image 

acquisition number equals to the number of source channels, instead of one and a spectral-

temporal source light encoding is achieved. Such design facilities the temporal separation of the 

light spots at the detection end despite the spatial overlapping. With all the concerns mentioned, 

the system is constructed. Specifications are detailed in the next section. 

5.4 Instrumentation 

As is shown in Fig.5.6, Superlum BS-840-02 tunable semiconductor light source is 

controlled by Labview to generate spectral encoding source light. The light source provides light 

power up to 4mW and scans in the range of 838nm to 858nmat increment of 0.05nm. The 

wavelength stability is ±2.5pm per five hours. 

The source light is lead out by a 5-μm-diameter fiber with numerical aperture of 0.14 and 

collimated by Thorlabs C230TME-B (focal length 5.51mm), producing  a 0.08 mm-diameter light 

beam cross section, which is significantly smaller that of the source channel fiber optics(1mm 

diameter), indicating that the cross coupling effect can be  minimized if the light beam is 

projected to the center of the source fiber crossection. 

The collimated source light is fiber coupled to a SpectroPro 500i spectrometer by 

Princeton Instrument, the spectrum center of which is set at 850nm. The 1200 groove per mm 

grating and 500mm path length of the spectrometer expand the 20nm-range source light beam 

with incident angle of 20o to approximately 15mm at the output plane of the spectrometer, where 
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the 1mm diameter source fibers are linearly arrange for the sequential coupling of the source 

light. With such setup, 1mm separation on the output plane can be traced back to the split angle of 

two is approx. 0.11 degree, and accordingly the wavelength difference between two neighboring 

channel is approximately 1.5nm.  

 

Fig.5.6 System Schematics 

At the detection end, PIXIS 512 CCD camera with 12.3mm×12.3mm imaging area and 

SpectroPro 2300i with 300mm focal length by Princeton instrument are integrated for signal 

acquisition. Source-detector synchronization is achieved by DAQ card by National Instrument 

and PC serial port, both program controlled by LabView (National Instrument). For each imaging 

cycle, the PC first sends command to tune the source light to the predetermined wavelength at 

which maximum light power is coupled. Afterwards, an external trigger signal is send to the CCD 

camera to capture detection signals. Limited by the source power, a minimum exposure time of 

170ms is required and an extra 150ms CCD readout time has to be added to the total time delay 

before tuning the source light to the next source channel. Therefore for each channel, omitting the 

commands transferring time, approximately 320ms is required, which is equivalent to 

approximately 0.5 per second frame rate. However such acquisition duration can be reduced by 

increasing source and video rate CCD camera. 
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A two dimensional circular endoscopic imaging geometry previously presented by our 

group[42] is used in this study. As is shown in Fig.5.7, the 8 source channels and 8 detector 

channels are fabricated evenly interspersed around the perimeter of the 20mm-diameter probe 

cross-section. However, one source channel (marked in Fig.5.7(c)) is discarded because of its 

significantly low coupling efficiency due to fabrication defect. 

 

Fig.5.7 A circular endoscopic imaging geometry 

The actual experimental system constructed under the considerations described above is shown in 

Fig.5.8. 

 

Fig.5.8 Experimental system constructed 

5.5 System performances 
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With the exposure time and source power introduced above, intensity detected by the 

64bit CCD camera can reach the maximum of 60000 and minimum of 1000, which is above the 

background noise level of the system is approximately 700 unit value of the CCD. 

One set of images captured by submerging the probe into 1% intralipid solution, 

Fig.5.9(a) shows the images acquired after subtracting dark background. Fig.5.9(b) shows the 

summation of the pixel values along each column of the image. Narrow coupling bands can be 

obviously observed, indicating the minimization of channel cross coupling. By averaging through 

the center part (marked with red squares in Fig.5.9(c)),  of each light spots the data points are 

extracted for calibration and reconstruction(Fig.5.9(d)). 

     

                (a) Data spots captured by CCD camera                                    (b) Sources Separation 

 

  (b) Cropped data spots and center average             (c) Extracted measurement intensities 

Fig.5.9 Raw data processing 
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It can be observed from the extracted data points that the source intensities are relatively 

uniform because of the constant output power of the light source at all wavelengths as expected, 

which is another advantage of using swept source over broadband light source. 

5.6 Calibration  

In this study, the calibration algorithm is designed to search for the offset values between 

the experimental data, analytical and numerical model in log scale. 1% intralipid with μa= 0.0023 

mm-1 and μs’=1mm-1 is used in the calibration process. The calibration involves 2 stages: 1) 

estimation of the homogeneous properties with analytical model and; 2) experimental data offset 

determination with numerical model.  

For the analytical fitting process, most of previous studies use the linear model for semi-

infinite homogenous turbid media reported by Fantini et al[81], which is derived under the 

condition that the measurement surface is planar: 
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Where d is the source-detector distance, I is the light intensity, subscript AC and DC 

denotes continuous wave and frequency domain measurement. μa is absorption coefficient and D 

is diffusion coefficient. ω is angular modulation frequency and v is the speed of light in the 

measured media. 

However, experiments shows that such model does not accurately represent the light 

transportation pattern in cylindrical semi-infinite geometry, as is shown in Fig.5.10(a). Zhang et 

al [124] have analytically derived steady-state photon diffusion model for such cylindrical 

geometry and validated their conclusion by experiment: 
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Where S is the source intensity; D=1/(3(μa+μs’)) is diffusion coefficient; R0 is the probe 

radius; Ra=1/ μs’,is the scattering distance of the imaged medium; εm is 2 for m≠0 and 1 for m=0; 

Im and Km are Henkel function of the first and second kind; keff is the attenuation coefficient; φ and 

φ’ are the angular coordinate of detector and source, respectively. 

Therefore, instead of using the conventional linear model, the cylindrical analytical 

model is implemented in the first stage of the calibration. For the evaluation of the model, since 

Henkel function consists of infinite series, approximation is applied by cutting off the series at the 

60th terms. Such approximation is computationally efficient but introduces discontinuity in the 

function evaluation, which is not allowed in the commonly used gradient based fitting algorithms.  

A heuristic random optimization approach [125] is thus integrated into the analytical calibration 

process. It should also be noted that instead of fitting only gradient of the measurement values 

with respect to the source detector distance as in conventional method, this study fits the absolute 

value of the data points because: 1) Only continuous wave measurement is available; 2) the non-

linear function in analytical model cannot be simply represented by slope and intersection of a 

linear model as in the conventional calibration process.  

Since 1) the absolute values are fitted; 2) the duration of the analytical model evaluation 

increases proportionally to the number of sampling points; and 3) calibration process bases on 

homogeneous media, only the analytical model is evaluated only at possible source-detector 

separation in the experimental geometry shown in Fig.5.7. Therefore, only 4 data points are 

evaluated in each analytical fitting iteration. 

It can be observed that S value is independent of the integral in Equ. (5.3), and in log 

scale, it is an amplitude bias of the analytical model, which is found to bring in large projection 

error in the fitting process and might destabilize the searching for other parameters. To suppress 

such instability, the algorithm first minimizes the log(S) value and starts the overall parametric 

search, the result (Fig.5.10(a) red curve) of which is assign to the FEM model as initial guess of 

the second calibration stage. It can be clearly observed from Fig.5.10(a) that the algorithm 
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recognized the larger light intensity attenuation in a nonlinear pattern by correcting the μa initial 

guess of 0.005mm-1 to 0.0029 mm-1. 

For the numerical fitting stage, finite element method is used. A finite element mesh with 

the ring geometry shown in Fig.5.6 is generated with 872 nodes and 1620 elements uniformly 

distributed in the imaging domain. The numerical calibration also starts from searching for the 

optimum amplitude bias, which is subsequently optimized along with the optical properties of 

numerical model. Similar to the conventional image reconstruction process, the optical properties 

of all finite element nodes are uniformly and iteratively updated and the difference between 

finalized model and the measurement data are determined as the offset values. And the final 

model fitting converged to the optical properties of μa=0.0023mm-1 and μs’=0.8982, of which the 

μs’ part could be more accurate if analytical model and measuremenst in frequency domain are 

available. 

 

                     (a)Analytical model calibration                       (b) Numerical model calibration 

Fig.5.10 Data calibration 

5.7 Experiments 

To examine the performance of the novel system configuration, a series of experiments 

are conducted with liquid and solid phantoms. 

5.7.1 Experiments setup 
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        (a)  Experiment setup illustration                                   (b) Solid phantom targets 

Fig.5.11 Experiment setup and materials 

As is shown in Fig.5.11(a), the probe is submerged in a 10in×10in×5inch tank filled with 

intralipid. The inner walls of the tank are painted black to minimize the reflection. The solid 

phantom targets to be imaged are fabricated with black plastic with infinite absorption contrast to 

the background intralipid and synthetic phantom with μa= 0.0056 mm-1 and μs’=1.03 mm-1. As is 

shown in Fig.5.1(b), side lengths of the cubic shape solid phantom range from 5mm to 15 mm. 

The centers of the targets are placed at the imaging plane of the probe and the Horizontal stages 

are used to accurately control the displacement of the targets. Further, the probe is rotated with 

respect of the targets to examine the azimuthal sensitivity of the system. 

5.7.2 Experiment results 

According to the experimental setup, four sets of experiments are conducted to examine 

system sensitivity on 1) inclusion size (Fig.5.12(a)); 2) radial direction (Fig.5.13(a)); 3) azimuthal 

direction (Fig.5.11(a)); and 4) multiple inclusions (Fig.5.12(a));. 

The first set of results is derived from experiments with varied target sizes and target 

materials. Cubic targets shown in Fig.5.11(b) are sequentially embedded in the imaging plane at 

side-to-probe distance of 5mm. 
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Fig.5.12 Experiment on system resolution on inclusion size. (a) Target location 

and size illustration (b) Reconstruction results on black plastic targets (c) 

Reconstruction results on synthetic phantom targets (d) Absorption coefficients 

plot along the dash lines in (b); (e) Absorption coefficients plot along the dash 

lines in (c) 

As is expected and demonstrated by the results in Fig.5.12(b), black plastic materials are 

reconstructed with obviously higher optical absorption properties compared to the synthetic tissue 

phantoms. For all five target sizes, the targets made with black plastic are recovered at the same 

azimuthal location although the recovered volumes decrease with respect to those of the actual 

targets. For the targets fabricated from synthetic phantom, the absolute absorption values are 

close to the actual ones when the cubic volume is sufficiently large. However, targets with 

volumes less than 10×10×10 mm3 are overwhelmed by background artifacts.  
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To compare the absolute values of the recovered inclusions, the absorption values are 

plotted along the yellow dash line in Fig.5.12(b), as is shown in Fig.5.12(c). Fig.5.12(a) indicates 

that the target side to probe distance should be 5mm. However, as can be observed in the cross 

section plot, for targets made of both materials, the target centers are recovered at the depth of 

approximately 3mm. And the maximum absorption values decreases with the volume of the cubic 

phantoms, which should relate to the non-uniform sensitivity of the imaging geometry. 

The second set of experiments examines the system sensitivity along the radial direction. 

A 10×10×10 mm3 cube fabricated from black plastic is imaged at side-to-probe distances from 

0mm to 15mm (equivalent center depths of 5mm to 20mm). 

 

Fig.5.13 Experiment on system sensitivity along radial direction. (a) Target 

location and size illustration; (b) Reconstruction results on 10×10×10mm3 black 

plastic targets; (c) Absorption coefficients plot along the dash lines in (b) 

Recovered absorption distributions are shown in Fig.5.13(b) and the absorption values 

are again plotted along the probe radial direction. Results show that 1) the target cannot be 

recover beyond 15mm center depth; 2) the recover volume decrease as the depth increases; and  

3) similar to experiment shown in Fig.5.12, all of the target centers are recovered closer to the 

probe at the depth of approximately 3mm instead of the actual varied depth up to 15mm.  

However, it is expected that the reconstruction sensitivity should be uniform along the 

azimuthal direction of the probe in the image plane. Therefore, in the third set of experiments, the 

10×10×10 mm3 target is embedded 3mm away from the probe and rotated along the azimuthal 

direction, as is shown in Fig.5.14(a). 
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Fig.5.14 Experiment on system sensitivity along azimuthal direction. (a) Target 

location and size illustration (b) Reconstruction results;  (c) Absorption 

coefficients plot along the dash lines in (b) 

Approximately constant target volume and optical properties can be observed in 

Fig.5.14(b) as expected, and since the targets are located at the most sensitive region of the 

imaging geometry, the target depths are desirably recovered. 

Absorption values are plotted along the 3mm deep circle off the probe (Fig.5.14(c)), as is 

delineated in Fig.5.14(b) by gold dash lines. Although the values fall into the same order, a 

maximum of 4 times absolute values difference is demonstrated. Factors such as the imperfection 

in probe fabrication, positioning error of the experiment system or calibration inaccuracy could 

contribute to such inconsistency. 

The last set of experiments is designed to examine the system capacity of recovering 

multiple targets simultaneously. Two 7.5×7.5×7.5 mm3 black cubes are used in this case in 

consideration that the center separation of larger targets is limited by their dimension and smaller 

targets are more difficult to be recovered. The two targets are both embedded 2mm away from the 
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probe (center depth = 2+7.5/2= 5.75 mm) at different angular positions with respect to the probe, 

as is shown in the Fig.5.15(a). Reconstruction results are shown in Fig.5.15(b). 

 

Fig.5.15 Experiment on recovery of multiple targets. (a) Target location and size 

illustration; (b) Reconstruction results;  (c) Absorption coefficients plot along the 

dash lines in (b) 

It can be observed that for the predetermined depth, angular separation beyond 90 

degrees can be recovered accurately by the system. However, at 45 degree separation, the system 

cannot resolve the gap between the targets and indicates a large light absorbing blob at the correct 

location. Such result is expected, because the minimum angular separation of two neighboring 

sources is 45 degree and the signal intensity received by the detector between the two source 

channels could be substantially reduced by the two targets located in the dominant light 

propagation path tracing to the detector channel. Hence for the limited source-detector pair in this 

imaging geometry, reconstruction algorithm recognize the two sources and one detector channel 

within the 45 degree range as being blocked by one large light absorbing blob, as is shown by the 

first image in Fig.5.15(b) and the green curve in Fig.5.15(b). It should also be noticed that in the 
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135 degree separation case, the absorption value of the top target located at the same location as 

target 6 in Fig.5.14 is again overestimated. 

5.8 Discussion & Future Work 

All the four sets of experiments justified the feasibility of the system structure in 

recovering optical property contrast. By meticulous examinations of the reconstructed images, the 

system in most cases recovered the rectangular contour of the phantoms. Although the 

explanation to such phenomenon could intuitively relate to the element geometries of the finite 

element mesh used in reconstruction algorithm, it cannot be discovered in our previously reported 

studies [42] with almost identical mesh. Therefore, it can be inferred that the temporal and 

spectral encoding of the source light fundamentally reduces the source channel crosstalk between 

source channels, improving the imaging resolution of a predetermined imaging geometry. 

Moreover, with the 4mW source power and 170ms exposure time, targets with center 

depth up to 20mm (Fig.5.13) can be detected. Although the previously reported broad-band 

spectral encoding system possesses higher total power level (20mW), the average power coupled 

to each source channel could be on the same level as or even lower than the system constructed in 

this study. The 0.5 frame per second data requisition rate could be dramatically raised by 

increasing the source power and but the source-by-source exposure pattern will become the 

ultimate upper limit to the frame rate. Further investigations will be conducted to explore the 

trade-off point between the broadband and swept source systems. 

Temporal encoding of the novel system schematics can potentially extend the number of 

sources channel for a system with predetermined imaging sensor dimension. As is shown in 

Fig.5.5(a), for the 12.5mm×12.5mm sensor dimension utilized in this study, only 7 source 

channels with spectrally discernable displacement can be covered simultaneously. However, 

temporal encoding of the source light enables independent signal detection (Fig.5.9(a)) even 

though the source channels spectrally overlap (Fig.5.5(b)). Therefore, with rapid, temporally 

encoded wavelength swept, the identical system can acquire light signals from 14 channels (or 
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more by using low grooves per mm gratings) in a short time expansion. Such feature is especially 

beneficial for imaging scenarios with numerous source locations but require high signal 

acquisition frequency, for instance brain functional imaging[111], as is previously mentioned. 

Calibration with analytical model is proved to be effective and accurate in the circular 

geometries, although fitting experimental data to the approximately evaluated model could be 

computationally intensive and impracticable with the gradient based algorithms. The more 

exhaustive heuristic random optimization approach [125]  is implemented in two stages to the 

calibration process, which is validated by the experimental results. However, the analytical model 

utilized in this study cannot solve phase shift of light propagation in a cylindrical geometry, and 

the continuous wave measurement system also induces the less accurate scattering part 

calibration. It is expected that with frequency domain measurements and appropriate models, 

system calibration reliability can be improved, which contributes to more accurate estimation of 

the absolute optical property values. 

Prospectively, the system structure can also substantially increase the data acquisition 

rate of fluorescence optical tomography [126-128]. Although simultaneous excitation of the 

fluorophor is achievable in multiple laser diodes and broadband spectral encoding systems, varied 

excitation wavelengths produces the same emission spectrum except the difference in 

fluorescence yield ratio, which is infeasible to separate by the CCD-spectrometer system at the 

detection end. Therefore, spectral encoding in optical tomography alone does not work in 

fluorescence tomography cases, and the prominent superiority in data acquisition rate of the novel 

temporal-spectral encoding combined system over the mechanical switching indicates the 

potentially implementation of such system structure in the immediate future work of this study. 

5.9 Summary 

A novel near infrared tomography system based on wavelength swept light source is 

constructed. 0.5 frame per second data acquisition rate is achieved, which can be potentially 

improved with more powerful light source and shorter CCD readout time. The system is 
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calibrated with analytical cylindrical photon diffusion model and the phantom experiment 

demonstrates that, the system with circular geometry can image targets with minimum target size 

of 5×5×5 mm3, target-to-probe distance of 15mm and target angular separation of 45 degrees. The 

system scheme can be readily transformed for fluorescence optical tomography with appropriate 

source sweeping range. 

The depth recovery inaccuracy problem shown by Fig.5.12 and Fig.5.13 will be further 

discussed and improved in the next chapter. 
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CHAPTER VI 
 

 

A GEOMETRIC-DIFFERENTIAL-SENSITIVITY BASED ALGORITHM FOR DIFFUSE 

OPTICAL TOMOGRAPHY IN REFLECTANCE IMAGING GEOMETRY 

 

6.1 Introduction 

Diffuse Optical Tomography (DOT) is well-known for its unique functional imaging 

characteristics, as well as its complexity in terms of the quality dependence of image 

reconstruction upon a number of factors [57]. As the photon propagation through scattering-

dominant regime is governed by a non-linear photon diffusion process, the sensitivity distribution 

of DOT, namely the change of boundary measurement in response to a change in medium optical 

properties, plays a dominating role in defining how well the heterogeneity of interest in the 

medium is to be recovered. A spectrally non-uniform sensitivity is preferred as it is what makes 

DOT functional. A spatially non-uniform sensitivity, however, is unfavorable due to the resulted 

non-uniformity in contrast, resolution, and particularly the biased localization of an occlusion 

toward the position of local sensitivity maxima [6, 8-11].          

        In DOT, the non-uniformity of the spatial sensitivity is also associated with the interfacing 

geometry between the array of optodes and the medium being interrogated. Usually the medium-

array interface has one- or two-dimensional symmetry, e.g. azimuthal symmetry for evenly 

distributed optodes on a circular array, or lateral symmetries along two orthogonal directions on a 

near-planar surface with orderly distributed optodes. Along the direction of the symmetry,
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the spatial sensitivity is uniform except at locations near the optodes; however, orthogonal to the 

direction of the symmetry, specifically along the depth into the medium, the spatial sensitivity 

varies, usually with the maxima at several steps of transport scattering from the medium-array 

interface. Such depth-dependent sensitivity distribution is particularly relevant to brain imaging 

[9, 129], breast imaging using planar remission geometry [10], and prostate imaging via endo-

rectal probing for sagittal [11] or axial [42] imaging, etc.             

        Several studies have demonstrated image reconstruction strategies to mitigate the negative 

yield of spatially-variant sensitivity in DOT. For a circular-array geometry wherein the spatial 

sensitivity is azimuthlly uniform but radially variant, Pogue et al. applied radially variant 

regularization that corrected the radial variation in contrast and resolution and improved the depth 

localization as indicated by the centroid location of the target [8]. For a near-planar geometry of 

which the spatial sensitivity was more depth-dependent than that of circular-array concave-

geometry, Culver et al. employed spatially-variant contras-to-noise-ratio weighting to the 

reconstruction, after the data was corrected for optode miss-positioning, to improve both the 

point-spread-function and the positioning in depth [129]. For similar near-planar geometry, 

Huang et al. [10], Niu et al. [6], and Zhao et al. [130] adjusted the magnitude of the sensitivity 

with respect to depth by introducing a weighting matrix to counterbalance the degradation of the 

spatial sensitivity in depth.                

        In this chapter, we demonstrate to our knowledge a novel image reconstruction method that 

has the potential to substantially improve the depth-localization in axial-translumenal imaging 

geometry, which arguably has the strongest degradation of sensitivity in depth among DOT 

geometries. This method, in lieu of modifying the penalty term of regularization versus depth or 

directly compensating the sensitivity matrix in depth, converts the conventional sensitivity profile 

that could be significantly depth-dependent to a surrogate sensitivity profile that is relatively 

depth-independent, by taking the differentiation of the sensitivities associated with multiple 

source-detector pairs to the same heterogeneity of interest. 
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6.2 Principles of Geometrical Differential Sensitivity reconstruction method 

The principle of this method is illustrated conceptually in Fig. 6.1, for an axial-

translumenal geometry with 8 sources and 8 detectors evenly interspersed along the array-

medium interface as shown in (a). In this geometry, the sensitivity to an optical heterogeneity 

(e.g, of absorption) versus the depth is represented by the dashed curve shown in (b), with a near-

boundary maximum followed by nearly-exponential decay in depth. When the image 

reconstruction is based upon such spatially-variant sensitivity, a target located at a greater depth 

(hence a smaller sensitivity) is either not to be recovered at all or to be reconstructed incorrectly 

in a near-boundary location. Alternatively for an optical heterogeneity at a fixed depth, the shown 

sensitivity profile resembles the sensitivity of a series of detectors along the circumference, with 

respect to the same source that is azimuthally closest to the heterogeneity of interest. A 

differentiation between the sensitivities of two neighboring and source-sharing source-detector 

pairs to the same heterogeneity carries the same information as the non-differentiated sensitivity 

does, however with the variation over the depth significantly reduced, as is shown by the solid 

curve in (b).  

 

Fig.6.1. Conceptual illustration of the principle. (a) Imaging geometry; (b) 

Magnified area of the dotted box in (a); Depth-dependences of the conventional 

(c) and geometric-differential (d) sensitivity profiles, respectively. 

         Analytically, the conventional objective function to be minimized during DOT image 

reconstruction for a pair of source i and detector j, denoted by {i, j}, can be expressed as  
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where k is the difference between the serial numbers of the detectors, “Nos” is the number of 

source channels, and “Nod” is the number of detector channels. We call this method a geometric-

differential sensitivity (GDS) approach. The image reconstruction is then to optimize a surrogate 

objective function, as expressed by 
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Note that in equ (6.2) a sign change of the resulted term { }kjiJ ,,~ , represented by { } { }kjikji JJ ,,,, ~~ −⇐

, is necessary if 

                        {k>Nod/2} or {k= Nod/2 & i<k & j<i}  

or {k= Nod/2 & i>k & j+k≥i}}.                                                 (6.4)  

The profile of the rearranged surrogate sensitivity J~ , after column-wise summation, is like the 

one shown in Fig. 6.1(d) versus the profile of the conventional sensitivity J in (c). 

The sensitivity profiles in Fig. 6.1(c) and (d) are calculated using NIRFAST [86]. The 

imaging geometry has an array radius of 10mm and a domain radius of 50mm. The finite element 

mesh representing the imaging domain includes 7708 evenly distributed nodes and 15040 

elements with the Robin-type boundary condition. The dynamic range of the introduced GDS 

profile over the depth is approximately 1/10 of that of the conventional sensitivity profile over the 

same depth. The nearly depth-independence of the surrogate sensitivity profile is expected to lead 

to much improved depth localization when compared to the substantial depth-degradation of the 
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conventional sensitivity profile. However, due to the increase in the matrix size the expected 

improvement in depth-localization by GDS approach is to be accompanied by an increased 

demand in computation time.  

 6.3 Simulation and experiment validations 

6.3.1 Validations in an endoscopic circular geometry 

The GDS image reconstruction is first evaluated by both simulation and experimental studies 

in the geometry for shown in Fig. 6.1 and Fig. 6.2(a). The 20-mm diameter applicator [42] has 16 

evenly distributed channels for 8 sources interspersing with 8 detectors. However, due to poor-

coupling of micro-optical elements in one source channel (marked in Fig. 6.2(c)), 7 source 

channels and 8 detector channels are implemented for the study. 

 

Fig.6.2. Imaging geometry. (a) Probe Photography; (b) Side-view of source-

detector layout; (c) Axial view and illustration of { }kji ,,~Φ in equ. (6.3). 

        The optical parameters employed for the simulation were chosen based on experimental 

studies. Specifically, the background had μa=0.0023 mm-1 and μs’=1mm-1 corresponding to 1% 

bulk intralipid solution at 840nm. Optical heterogeneity was introduced by use of one or two 

black-plastic cubes, whose sharp and strong contrast over the background medium was necessary 

to evaluating the edge-spread-function for depth-localization. The cube-heterogeneity was treated 

as having μa= 0.0115 mm-1, or five times of absorption contrast over the back-ground, and μs’= 

1.1mm-1. A small scattering contrast was assigned to mitigate the potential cross-coupling 

between μa and μs’. A 1% white noise was added to all forward data. 

        The results of reconstructing a single cube-target of 12mm edge-length as parameterized 

above are shown in Fig. 6.3. The array-facing-edge of the cube was located 0, 5, and 10mm away 
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from the optical array, or equivalently with the center depths of 6, 11, and 16 mm, respectively. 

The results of the conventional and GDS methods on simulated and experimental data are 

displayed column-wisely, with the actual location of the cube marked with dotted square.  In 

addition, the radial profiles along the green dotted lines crossing the cube location are compared 

for each row in logarithmic scale, as is shown in the “Contour Plots”.  

It is observed in simulation that both conventional and GDS methods are capable of 

recovering targets at depths of 10mm. However, GDS has much better localization of the depth of 

the target. In the experimental study, the recovering of the target at edge-depths of 0 and 5 mm by 

the two methods is comparable to that shown by simulations, whereas the GDS has noticeably 

better depth-localization of the array-facing edge of the cube. At edge-depth of 10mm, neither of 

the methods could identify the target at the correct location, however, the artifact by GDS method 

is negligible comparing to that by the conventional method. 

The contour plots in Fig. 6.3 imply that in both simulation and experiment, the absorption 

values recovered by GDS method for different target-depths are all in an interval between e-6 to e-

5, whereas the absorption values recovered by the conventional method vary in a much greater 

range. The narrow range of absorption contrast demonstrates an additional aspect of 

improvements by the GDS method.  

The better estimation of the target location by the GDS method over the conventional 

sensitivity method is also expected to result in better estimation of target volume when multiple 

targets are to be resolved. Fig. 6.4 demonstrates simulation and experimental studies of resolving 

two black-plastic cubes of 10mm edge-length. The array-facing edges of the cube targets are 

placed 1mm away from the probe (corresponding to a center depth of 6mm), and the angular 

separation between the two targets was approximately 90 degrees. The medium conditions and 

the optical properties assumed for the two cube-targets are the same as those in Fig. 6.3. The 

actual target locations are marked by blue dotted line in Fig. 6.4(a)-(d). Along the azimuthal cross 

section of the imaging geometry as is marked with green dotted circles, the recovered absorption 
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coefficient profiles are displayed in Fig. 6.4(a)-(d), after normalization to the peak of the 

extracted profile as plotted in Fig. 6.4(e). Simulation results indicate that even though both 

conventional and GDS methods are able to resolve the two targets, GDS method separates the 

targets more distinctly. The conventional method based on the experimental data, however, failed 

to clearly discern the targets due to the affinity of the two peaks, yet the GDS method resolves the 

two targets at the correct locations with good contrast over the background medium. 
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Fig.6.3 Simulations and phantom experiments examining target depth recovery 

(Unit:10-3∙mm-1). Columns (a) and (b): simulation results by conventional and 

GDS methods,respectively. Columns (c) and (d): experiement results by 

conventional and GDS methods, respectively.Blue dotted squares indicate target 

positions. Contour plots are absorption profiles along the green dotted lines in the 

reconstruction images. Shaded area in Contour Plots indicates the target 

locations. GDS shows clear improvement in target depth localiazation and 

volume estimation.  
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Fig.6.4 Simluation and phantom studies on resolving two targets. (Unit:10-3∙mm-

1). (a)-(d) reconstruction images; Blue dotted square indicate the target positions; 

(e) Absorption contour plotted along the green dotted lines in (a)-(d), shaded area 

indicating the targets.  

6.3.2 Validations in an planar imaging geometry 

The image reconstruction based on the GDS approach is also evaluated by simulation in a 

planar imaging geometry as is shown in Fig. 6.5. As is shown in Fig.6.5, the optical array has a 

dimension of 50mm by 50mm, with 18 sources and 18 detectors evenly interspersed in a plane 

with minimum source-detector distance of 10mm. Imaging depth of half the extension of the 

imaging geometry, 25mm, is expected in the simulation study. 

 

                                      (a)                                                           (b) 

Fig. 6.5 A planar imaging geometry. 

(a) optode array (b) simulation geometry 
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As is shown in Fig. 6.5(b), the optical array is assigned at the bottom of an 

80×80×80mm3 volume. Simulations examines the depth recovery of single target is shown in Fig. 

6.6. The optical properties of the background are set as: μa=0.0023 mm-1 and μs’=1mm-1. The 

targets are 5 mm radius blobs with μa=0.006 mm-1 and μs’=2mm-1. In the single target cases, the 

targets are embedded at center-depths of 5mm to 25mm at the step size of 5mm. 

 

Fig.6.6 Simulation validation of GDS in the geometry shown in Fig.6.5 

Fig.6.6 demonstrates without sacrificing the recovered target contrast, GDS methods can 

identify the target depths up to 25mm. 

6.4 Summary 

This chapter introduced a geometric-differential sensitivity approach for DOT image 

reconstruction. The method employs a surrogate objective function [131] that rescales the 

solution domain of the inverse problem while maintaining  the solutions of the original objective 

function. The rescaled inverse problem produces minimal spatial sensitivity variation and 

consequently more accurate depth-localization and volume-estimation of the target. The 

advantage of GDS approach over reconstruction based on conventional sensitivity profile was 

demonstrated by simulations and phantom studies of localizing and resolving one or two sharp-

contrast targets. The better suppression of artifacts by the GDS approach is also likely related to 
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the cancellation of common uncertainty factors in measurements, similar to that demonstrated in a 

spectral-derivative algorithm [132]. 

Because of the structural similarity of the sensitivity matrix, this algorithm could also be 

extended to fluorescence-enhanced diffuse optical tomography in geometries suffering significant 

depth-degrading sensitivity. The transformation of the conventional sensitivity matrix to the GDS 

approach, however, is accompanied by an increase in the element number in the objective 

function due to the increase of the number of row vectors in sensitivity matrix from m×n to 

m×n×(n-1)/2. It is found in this study that the total computation time of executing the GDS 

method is approximately 40% more than using the conventional method. 
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CHAPTER VII 
 

 

ENHANCING DIFFUSE OPTICAL TOMOGRAPHY FOR PROSTATE CANCER IMAGING 

WITH ZINC-SPECIFIC FLUORESCENCE BIOMARKER 

 

7.1 Introduction ---Zinc as a cancer biomarker for prostate imaging    

As is introduced in the first chapter of this report, the optical contrast and localization can 

be substantially increased by the administration of fluorescence emitting agent, which can be 

followed by trans-rectal imaging, allowing oncologists or urologists seeing the position and 

extent of the adenocarcinomas of the prostate, and both diagnosis and the planning of surgery 

could be dramatically improved over the present methods.  

 Zinc is actually well established as a metabolic biomarker for prostate cancer, with 

changes of at least an order of magnitude in the marker concentration accompanying 

adenocarcinoma of the prostate. The prostate gland secretes about 10 mM of zinc into prostatic 

fluid, which is the second-highest concentration found in nature. The zinc secretion of the 

epithelial cells is biologically analogous to zinc secretion by neurons [133], Paneth cells [134], 

salivary cells [135] and breast epithelial cells [136], with similar transporters sequestering the 

zinc in the secretory granules [137]. The biological function of the zinc secreted by the prostate 

epithelial cells is, in short, controlling the time-release of the spermatozoa from the coagulum, in 

vivo. It is also known that a 10-fold molar excess of citrate is co-secreted with the zinc, thus 

keeping the zinc in solution as Zn3Citrate2.  
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The fact that zinc sequestering and secretion are suppressed in adenocarcinomas was first 

suggested in 1952 [138] and has been consistently documented in more than a score of studies 

since then. Probably the most thorough study to date of the secretory granule sequestration of zinc 

has shown that the transporter (ZnT-4) is suppressed up to 2-4 mm from the margin of 

adenocarcinoma, in otherwise histologically normal acini [139]. It is important to note that the 

average level of zinc in ejaculate and prostate fluid is reduced by 5- to 10-fold in cancer[140]. 

Zinc functions as a specific bio-marker to the prostate cancer.  

 By implementing trans-rectal NIR imaging of prostate cancer biomarker such as the zinc 

using fluorescence tomography measurement, the detection can be made much more specific. 

There are few of the fluorescent zinc indicator systems excitable in the infrared, except by multi-

photon excitation. NeuroBioTex has demonstrated zinc determination using carbonic anhydrase 

(CA)-based system using infrared two-photon excitation [141], but the millimeter penetration 

depth of two-photon excitation (due to pulse spreading, not absorption) as well as the poor 

transmission of the visible fluorescence will be insufficient for the centimeter-range thickness of 

the prostate. 

 The major challenge of zinc-based prostate fluorescence tomography lies in the fact that 

the condition of the detection is to image a fluorescence - weak target within fluorescence - strong 

environment. This is an inverse-uptake FDOT problem, because the normal or benign prostate 

tissue, being zinc-rich, will have higher fluorophore concentration compared to the zinc-poor 

cancerous tissue if the fluorophore is specific to free-zinc. This research will become the first 

quantitative study of such unique FDOT conditions. Theoretically, the sensitivity distribution of 

an imaging system is not subject to the optical contrast (either positive or negative) of the 

inclusions. But if considering that the measurement fluctuation produced by a fluorescence 

emitting background will definitely succeed that produced by a small blob-like fluorescence 

target, larger PRUL are expected in the imaging scenario of negative uptake fluorescence optical 

tomography. 
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7.2 Simulation studies 

 The simulation study utilized 2-dimensional finite element method for steady state 

photon diffusion and fluorescence emission: 
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                                (7.1)  

where subscripts “x” denotes excitation and “m” denotes emission. The diffusion coefficient 

Dx,m=1/[3(μax,m+ μs’x,m)], where μax,m and μs’x,m are absorption and scattering coefficients for 

excitation and emission band, respectively. The η and μaf are the quantum efficiency and the 

absorption coefficient of the fluorophore respectively, the product of which is defined as the 

fluorescence yield. The forward solver implements the Robin type boundary condition as: 

0)(ˆ2)( 0,0,0, =∇⋅+ rUnADrU mxmxmx


                                                                   (7.2) 

where 0r
  is the boundary nodes, 0n̂ is the outward normal vector of the boundary and A is the 

refractive index mismatch coefficient. The Levernberg-Marquart algorithm is implemented as the 

inverse solver as:   
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where α in the range of [0,1] is a damping factor , J is the sensitivity matrix  and Δv is the 

forward projection error. When only the contrast of florescence yield is considered, the unknown 

values x represents the ημaf term in equ.(7.1). 

7.2.1 Feasibility of recovering only reverse fluorohpore uptake in endoscopic imaging 

geometry 

In this section, only the contrast of fluorescence yield is considered, by setting η=0.1, 

μaf=0.005 for the target and η=0.1, μaf=0.01 for the background. Other parameters are set as: 

μax,m=0.01mm-1, μs’x,m=1mm-1 and A=2.82. 1%  Gaussian noise is added to the simulated 

forward data. 

7.2.1.1 Region-wise reconstruction 
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 The region-wise reconstruction is first simulated to assess the accuracy of recovering a 

“reverse-uptake” fluorescence target with accurate prior knowledge of the target spatial 

information, including shape, size, and depth. Supposing that the accurate profile of the structures 

within the imaging volume can be accurately extracted from the complementary imaging 

modality such as TRUS and MRI, and assuming homogeneity of optical properties and 

fluorescence yield within each segmented region, the so called “hard” a priori reconstruction 

algorithm [11] is modified for FDOT.  

 Simulation approaches are shown in Fig.7.1. Targets with the radius shown in Fig.7.1 (a) 

and (c) are set at a depth from the source-detector array at an increment of 5mm (Fig.7.1(a)). 

Notice that for r>5mm, the round target at 5mm depth is interfered by the inner boundary of the 

imaging volume, therefore the target shape must be modified at that specific depth. The 

comparison of the recovered fluorescence yield within the target region is given in Fig.7.1(c). 

 

Fig.7.1 Region-wise reconstruction 

 40% error tolerance is set as the threshold for the target recovery. It is observed that, (1) 

The detectable depth increases as the target size increases; (2) the imaging depth of 15-20mm is 

attainable for this imaging geometry for most of the target sizes; (3) the recovered fluorescence 

yields of all targets converge to the background ((0.001-0.0005)/0.0005=100%) values at 30mm 

depth, which is the detection limit. 

7.2.1.2 Piece-wise reconstruction 

 The above region-wise reconstruction is only an ideal case. Piecewise reconstruction is 

more practical because of the lack of accurate target information when TRUS is used to visualize 
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the prostate morphology. When no spatial prior information of the target can be implemented, the 

axial trans-rectal imaging will be challenged by the depth-dependent sensitivity inherent to the 

side-firing reflective imaging geometry. To compensate the sensitivity distribution, an adaptive 

mesh is implemented [142]. As is shown in Fig.7.2(a)(c), with the notion that the uniformity of 

the product of relative sensitivity value and the element size within the imaging volume 

contributes to the correction of depth dependent sensitivity [13], the element sizes are adjusted 

according to the depth-sensitivity. Further, since in this axial-imaging geometry, when there is 

only one target, the approximate azimuthal location and dimension may be indicated by the 

change of the signal with respect to the baseline, the approximate target area can be segmented 

into denser elements. Fig.7.2 shows the meshes generated with: (b) uniform element size (c) 

depth-adapted elements, and (d) depth and azimuth adapted elements.  

 

Fig.7.2 Adaptive meshes (a) element-size vs. depth-sensitivity; (b) uniform mesh; 

(c) depth-adapted elements; (d) depth and azimuth-adapted elements 

 A target located close to the array boundary is simulated to assess the efficacy of the 

adaptive mesh elements shown in Fig.7.2. Fig.7.3 (a) shown a 5mm radius target with η=0.1 and 

μaf=0.01 at x=5mm,y=0mm. The results in Fig.7.3 (b)-(d) demonstrate that the depth-and-azimuth 

adapted mesh slightly outperforms the depth-adapted mesh, and the depth-adapted meth 

significantly outperforms the uniform mesh, but all methods are associated with artifacts.   
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Fig.7.3 Piece-wise reconstruction. (a) Target setting (b) uniform mesh; (c) depth-

adapted mesh; (d) depth and azimuth-adapted mesh 

7.2.2 Piecewise reconstruction in prostate imaging geometry 

7.2.2.1 Reconstructing only the fluorescence uptake 

Trans-rectal prostate optical imaging, either absorption based or fluorescence based, is challenged 

by image reconstruction in a multiply -nested tissue domain. 

 Previous studies on diffuse optical tomography have shown that the piecewise 

reconstruction of such nested structure may be prone to artifacts and non-unique solution for the 

optical property values. The hierarchical reconstruction routine based on hard prior method has 

been modified for initial investigation on fluorophor absorption contrast in the imaging volume. 

The imaging geometries are directly adopted from the ones used in previous works [2, 11] and the 

results are shown in Fig.7.4. Only the fluorescence absorption part is shown in the figures 

because for both the negative and positive contrast cases, the optical properties of the tissue with 

respect to the excitation and emission bands are set as homogeneous for the entire imaging 

volume: μax= μam=0.01mm-1, μsx’= μax’=1mm-1. The fluorescence yield for the negative contrast 

case at the cancer is set at ημaf =4×10-5mm-1, and for the positive case, ημaf= 6.4×10-4 mm-1. And 

the fluorescence field of the prostate tissue 1.6×10-4mm-1, for the tissue surrounding prostate, 

ημaf=8×10-5mm-1 and for the rectum wall, ημaf=1×10-4mm-1 At this simulation fluorescence 

uptake ratio of only 4:1 is used, actually, for the positive contrast case, uptake ratio may range 

from 2.5:1 to 1000:1 [15]. For the negative contrast cases in this research, the zinc-specific 

biomarker uptake ratio of background to the target is still unknown, but we could expect the value 
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to be as high as 200:1 according to the zinc concentration ratio between the normal and malignant 

tissue, which could be very challenging. Fig.7.4 gives the results of reconstructing the 

fluorescence-yield using hierarchical spatial prior approach providing that the spatial prior is 

accurate. It can be observed from the comparison diagram that steady-state measurements of the 

fluorescence and hierarchical reconstruction routine, can reliably recover the fluorophore 

concentrations.  

 

(a) Reconstructed fluorescence yield—positive contrast   (b) Bar plot comparison 

 

(c) Reconstructed fluorescence yield—negative contrast    (d) Bar plot comparison 

Fig.7.4 FDOT with hard a priori reconstruction 

 However, for practical experimental examination, the simplest case of imaging one or 

two occlusion within a homogeneous background is adopted. Piecewise steady state 

reconstruction algorithm will be coded in MATLAB based on the inverse problem of frequency 

domain systems. Further, considering the non-uniform sensitivity distribution of FDOT, 

compensation methods including adaptive mesh and sensitivity normalization will also be 

attempted for reconstruction accuracy improvement. The preliminary simulation results are 

shown below. 
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7.2.2.2 Simultaneous reconstruction of optical properties in emission band and fluorophore 

uptake contrast with spatial prior 

Before presenting the details of our improvement to the region-wise reconstruction 

algorithm, we would like to review the basis of FDOT reconstruction. Fluorescence optical 

tomography usually models the propagation of excitation and emission light by  
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Where subscript “x” and “m” represents excitation and emission, respectively. Φ is the photon 

fluence rate. D is the diffusion coefficient and μa is the absorption coefficient. μaf =εfl∙cfl is the 

fluorophore absorption coefficient, where εfl and cfl are the extinction molar coefficient and 

concentration of the fluorophore, respectively. η and τ are the fluorophore quantum efficiency and 

life time, respectively. q0 is the source term. r and ω are the pixel position vector and modulation 

frequency of the source light. 

 Equations (7.4) and (7.5) are usually written together in most literatures, as the 

differences only existed in the subscripts of “x” or “m”. However, more accurate FDOT 

reconstruction should include the following procedures: 

• To implement source light at the excitation band (q0,x) and collect diffused light 

signal at the excitation band (Φx at tissue boundaries) and recover absorption and 

diffusion coefficient distribution (μax and Dx) at the excitation band. 

• To implement source light at the emission band (q0,m) and collect diffused light signal 

at the emission band (Φm at tissue boundaries) and recover absorption and diffusion 

coefficient distribution (μam and Dm) at the excitation band. 
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• To implement source light at the excitation band (q0,x) and collect fluorescence 

emission signal at the emission band (Φm at tissue boundaries) and recover 

fluorescence yield and life time distribution (ημaf and τ) at the excitation band. 

 Note that the emission band signals in the second step are generated by external source 

light at the emission band, whereas those in step three are generated by fluorophore. The first two 

steps can be replace by multi-spectral DOT measurements and reconstruction for more reliable 

determination of μax,m and Dx,m values. However, such arrangement requires external light sources 

at more wavelengths. 

 As region-wise reconstruction in FDOT is over-determined at most cases, the unknown 

parameters in step two (μam, Dm) can be solved simultaneously with those in step three (ημaf and 

τ). Such arrangement in image reconstruction actually reduces the complexity of FDOT system, 

as the external source light at the emission band is no longer necessary. The reconstruction is 

therefore reduced to two steps: 

• Implement source light at the excitation band (q0,x) and collect diffused light signal at 

the excitation band (Φx at tissue boundaries) and recover absorption and diffusion 

coefficient distribution (μax and Dx) at the excitation band. 

• Implement source light at the excitation band (q0,x) and collect fluorescence signal at 

the emission band (Φm at tissue boundaries) and recover absorption/diffusion 

coefficient distribution (μam and Dm) and fluorescence yield/life time distribution (ημaf 

and τ) at the excitation band. 

 We only utilize DC fluorescence measurements for reconstruction, ω=0 and τ=0 in equ. 

(7.4)-(6).The Jacobian structure of the first step is constructed following the conventional method 

and we structured the sensitivity matrix (Jacobian) in the second step following equ. (7.4): 
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 And the sensitivity matrices are substituted into Levernberg-Marquardt method for 

iteratively solving the unknown values. 
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The region-based reconstruction is simulated in Fig.7.5 for the case of the target haing 

positive optical contrast over the background but negative-contrast of fluorescence-yield, and in 

Fig. 7.6 for the case of the target having negative optical contrast over the background and 

negative-contrast of fluorescence-yield. The imaging domain is a 80mm×80mm×80mm cube. 

Substructures are segmented according to the presumed spatial prior. The optical array includes 7 

sources and 7 detectors, arranged in parallel rows at the bottom of the imaging geometry. The (b)-

(f) of Fig. 7.5 and 7.6 shows the optical properties assignment of the two cases of medium-target. 

We assume the optical properties are accurately determined in step one and only the second step 

is simulated. μax=0.006, μ’sx=1. The fluorescence quantum efficiency is set to 0.1 for all regions. 

The reconstruction initial values are set as: μam =0.01, μ’sm =1 and ημaf =0.0001. Table 7.1 and 7.2 

compares the assigned and the reconstructed values of . Note that the scattering coefficients ( 

μ’sx,m =1/(3∙ Dx,m)- μax,m ) are shown instead of showing Dx,m . 

In Table 7.1 and 7.2, although the reconstructed values do not agree exactly with the set 

values, the relative positive or negative contrasts among the regions are accurately identified.  
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Fig.7.5 Simulation geometry and procedures with region-wise reconstruction 

algorithm for positive-optical-contrast and negative-fluorescence-yield. (a) 

Simulation geometry; (b)-(d) μax and μ’sx distribution, reconstruction parameters 

in the step 1; (d)-(f) μam /μ’sm/ημaf distribution, reconstruction parameters in the 

step 2.  

 

Fig.7.6 Simulation geometry and procedures with region-wise reconstruction 

algorithm negative-optical-contrast and negative-fluorescence-yield. (a) 

Simulation geometry; (b)-(d) μax and μ’sx distribution, reconstruction parameters 

in the step 1; (d)-(f) μam /μ’sm/ημaf distribution, reconstruction parameters in the 

step 2.   
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Table 7.1 Comparison between the set values and the reconstruction results given in Fig. 7.5. 

Note: The optical properties in excitation band is assumed as known, only the 

unknown parameters in the second step (Fig.7.5 (d)-(f)) are recovered here. 

 regions μam /  
mm-1 

μ’sm /  
mm-1 

μam /  
mm-1 

μ’sm /  
mm-1 

μaf /  
mm-1 

Set values peripheral tissue 0.006 0.8 0.0072 0.88 0.0018 
prostate 0.02 1.25 0.0240 1.375 0.0200 
rectum 0.008 1 0.0096 1.1 0.0018 
tumor 0.05 2.0 0.06 2.2 0.0018 

Reconstructed 
values 

peripheral tissue - - 0.0070 0.88 0.0018 
prostate - - 0.0240 1.444 0.0194 
rectum - - 0.0095 1.104 0.0018 
tumor - - 0.04 1.465 0.0015 

 

Table 7.2 Comparison between the set values and the reconstruction results given in Fig. 7.6. 

Note: The optical properties in excitation band is assumed as known, only the 

unknown parameters in the second step (Fig.7.6 (d)-(f)) are recovered here. 

 regions μam /  
mm-1 

μ’sm /  
mm-1 

μam /  
mm-1 

μ’sm /  
mm-1 

μaf /  
mm-1 

Set values peripheral tissue 0.006 0.8 0.0072 0.88 0.001 
prostate 0.02 1.25 0.0240 1.375 0.002 
rectum 0.008 1 0.0096 1.1 0.001 
tumor 0.004 1.3 0.0048 1.43 0.001 

Reconstructed 
values 

peripheral tissue - - 0.0072 0.88 0.001 
prostate - - 0.0259 1.23 0.0024 
rectum - - 0.0094 1.11 0.0010 
tumor - - 0.0027 1.22 0.0020 

 

7.3 Design of Experimental validation and preliminary simulation stuides 

 Immediate future work of this project will be the fabrication of the optical array shown in 

Fig.7.7 and 7.9(a) and the experimental validation of the simulation results in the previous 

sections. Instead of using fluorescence materials, the initial investigation of identifying dark 

inclusions within bright background will utilize phosphorescent materials (specifically Strontium 

aluminates in this study) for its bright and slow fading emission once excited.  

 Mixture of intralipid and Strontium aluminates at varied concentrations will be used to 

simulate the fluorophore uptake in the prostate cancer imaging scenario. Heterogeneities will be 
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mimicked by glass tubes or cuvettes filled with Strontium aluminates solutions at lower 

concentrations. Phosphorescent yield contrast between the background and the heterogeneity will 

vary from 2:1 to infinite in exploration of the imaging sensitivity.  

 As is shown in Fig.7.7, in the initial examination, ultrasound probe will be placed parallel 

to the optical array. However, the ultrasound and optical applicator will be combined later, 

probably as the project aim of the third year. With the spatial prior acquired by the ultrasound 

probe, we will be able to compare sensitivity of region-wise reconstruction and piece-wise 

reconstruction. 

 
Fig.7.7 Experiment setup for negative fluorophore uptake FDOT 

The fluorescence emissions collected by the other 7 detection fibers will be subject to 

rejection of the excitation light using holographic filter, and passage of the emission light by 

combined interference and band pass filters, an approach that could reduce the excitation light as 

much as nine orders of magnitude [143] as is initially shown in Fig.7.6(c). As the filtered 

emission light could be conveniently focused by a spectrometer for coupling onto a CCD, the 

filter stack can actually be installed inside the spectrometer. A 16-bit CCD (maximum 48dB 

dynamic range) with intensifier will have to be used to accommodate the detection of weak 

fluorescence light originated in the deep tissue, and the large dynamic range associated with the 

probe dimension. At each fiber switch position, one CCD exposure acquires all corresponding 
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remission signals, so a complete set of FDOT data is acquired within one complete cycle of fiber-

switch or wavelength swept through all source channels.  

 

(a) 

 

(b)                                              (c) 

Fig.7.8 Fluorescence excitation and emission 

(a)Excitation and emission spectrum (b) without filter (c) with filter 

A few preliminary simulations indicate that the minimum source-detector distance 

(20mm) of our previous optical array could limit the depth resolution. Therefore, a modified 

optical array arrangement shown in Fig.7.9(a) will be used in the simulations for future study. 

 As is shown in Fig.7.9(a), the optical array has eleven sources and ten detectors. The 

sources and detectors are interspersedly positioned. The minimum source-detector distance in this 

geometry is thereby 10mm, and the sagittal and lateral extensions of the entire optical array are 

60mm and 20mm, respectively. 

 Simulations include the examinations of the depth and longitudinal sensitivity of the 

imaging geometries. The FEM mesh includes 6466 nodes and 33591 elements. The background 

optical properties are assigned as μax =0.01, μ’sx =1, μam =0.012, μ’sm =1.1 and ημaf =10-4. A 
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7.5mm radius spherical blob is assigned as the heterogeneity. The optical properties of the blob 

are μax =0.02, μ’sx =1.1, μam =0.264,  μ’sm =1.32 and ημaf =10-5 (Fluorophore uptake contrast ratio 

between the background and target is 10:1). In all the following simulations, we assume that the 

absorption and scattering properties of the targets are accurately determined and only the 

fluorescence yield is to be recovered. 

 The first set of simulations compares the target depth localization in image reconstruction 

with conventional and geometric differential approaches. The target is positioned at the middle of 

the sagittal plane. The center depth of the target varies from 5mm to 17mm at a step size of 3mm. 

Fig.7.9(b) shows the reconstruction results with both the conventional method and the GDS 

method. It can be observed that similar to the endoscopic circular imaging geometry, the GDS 

method outperforms the conventional method in this planar optical array imaging geometry.  

 

(a) Optical array geometry           (b) Simulation results with varied target depth 

Fig.7.9 Optical array geometry used in piece-wise simulation study. The numbers 

at the top of each column in (b) indicated the actual center-to-bottom depths of 

the targets  

 The second set of simulations examines the longitudinal target location variation. The 

target is embedded at the center depth of 14mm and moved along the sagittal middle plane from 

15mm to 40mm from the left boundary of the imaging domain at a step size of 5mm. The 

reconstruction results are shown in Fig.7.10. 
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Fig.7.10 Piece-wise simulation results with varied target longitudinal position 

variation in sagittal-middle plane of the imaging geometry. 

Two features can be observed in Fig.7.10: 1) GDS method better recovers the 

fluorescence yield contrast; 2) the target depth localization is better resolved by the GDS method. 

7.4 Summary 

 Simulation studies has preliminary validated the feasibility of imaging reverse uptake of 

fluorophore within the trans-rectal prostate imaging geometry. Geometry differential 

reconstruction methods and adaptive mesh has been implemented to piece-wise reconstruction for 

accurate target depth localization. The simulation studies also show that region-wise 

reconstruction can actually facilitate the simultaneous reconstruction of the emission band optical 

properties and fluorophore uptake, simplifying the measurement procedures. Experiment setup 

along with a new optical array has been designed. Optical filters will be integrated to the 

wavelength swept source based imaging system presented in the previous chapter. Liquid 

phantom containing phosphorence emitting material will be temporarily for the principle 

validations of the imaging system. 
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CHAPTER VIII 
 

 

CONCLUSIONS AND FUTURE WORKS 

 

8.1 Contribution of this work 

Improvement in both computational modeling and instrumentation aspects of DOT have 

been investigated in this study.  

An innovative hierarchical reconstruction algorithm for DOT combining the TRUS 

spatial prior is developed. Simulation and experiments demonstrated that the method is capable of 

accurately recovery the optical properties within an imaging volume with multiple substructures. 

The reconstruction algorithm is subsequently implemented to our TRUS-DOT combined trans-

rectal prostate imaging geometry for the preliminary evaluation of the system performance. The 

algorithm is extended to FDOT and validated by simulation studies. 

The utilization of a hierarchical spatial prior is under the condition that the anatomic 

information of the prostate tumor is explicit from TRUS. The prostate boundary is well-

delineated in TRUS, and the spatial extent of a tumor can be defined if it is shown as hypo-echoic 

on TRUS. This is when the NIR functional contrast can help determine whether a tissue 

suspicious on US is malignant or not [45]. However, since as many as 40% of the tumors may be 

shown as iso-echoic on TRUS, the utility or accuracy of this hierarchical imaging approach is 

hindered when TRUS images do not specify a suspicious region, or when it is difficult to define  
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the spatial extent of a suspicion region in TRUS. Under these circumstances, the third step of 

recovering the tumor lesion in the prostate may proceed by reconstructing the optical properties 

on every element within the prostate instead of treating the prostate as homogenous other than an 

inclusion that is also treated as homogenous in the simulation. Such approach is proven effective 

based on our other investigations, but the accuracy and robustness may be affected by the depth-

dependent sensitivity. More dedicated investigations are needed in the future along with the 

experimental validations of this combined trans-rectal NIR/US approach. Prostate trans-rectal 

optical imaging is a relatively new area where the initial approach should focus on characterizing 

the lesions most suspicious to TRUS. Trans-rectal NIR imaging of the lesions marginally 

suspicious to TRUS or non-suspicious to TRUS is apparently more challenging and should be 

preceded by trans-rectal NIR/US characterization of a lesion suspicious to US. 

A novel arametric recovery uncertainty level (PRUL) models are derived for both single 

and multiple wavelength DOT system. Analytical analysis on the models provide direct evidence 

that DC-based reconstruction is much less-accurate in recovering the absolute optical properties 

of target-of-interest when no additional spatial information is available to confine the 

reconstruction, as having been universally recognized by the DOT community. However, apart 

from these well-expected shortcomings, it seems that DC-based reconstruction may not be 

completely unfavorable. This study generalized the analytical approach initially proposed in [78] 

to quantify the level of image artifacts that is expressed by the standard deviation of a parameter 

over the parameter itself. Parameters representative of tissue measurements are used to evaluate 

the analytic results and conduct the synthetic studies, in both of which the DC reconstruction 

produced lower level of relative variation in the optical parameters recovered, and some 

advantages in the CNR. It may be argued that DC flattens images, leading to a lower standard 

deviation in the background, and because the background standard deviation is the denominator 

of CNR, the CNR of DC could become better. But if there were flattening of the image, then the 

numerator of CNR would also be flattened, and perhaps flattened more strongly owing to the non-
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linearity of DOT thereby under-estimated at a higher level, that collectively might reduce the 

CNR rather than increase the CNR. The slight but notable CNR advantage of DC over FD-based 

reconstruction demonstrated in this study strongly suggest some inherent advantages of DC, but 

on the other hand, it could be just because DC has lower information content, similar to what one 

could expect by reducing the amount of data available or increasing the regularization in FD-

based reconstructions. 

The PRUL model has also been applied to multispectral optical tomography and 

used to evaluate the sets of wavelength for spectrally-constrained optical tomography 

reconstruction.  The analytical predictions are generally supported by simulations. In 

imaging geometries where reliable sensitivity distribution is available, DC-only 

reconstruction outperforms FD reconstruction. The advantage of the extra phase 

information in FD measurement becomes prominent under significantly non-uniform 

spatial sensitivity distribution. It is also found that including DC component in FD 

reconstruction improves the overall reconstruction results in multi-spectral optical 

tomography, which is similar to that demonstrated in single-wavelength NIR tomography 

reconstruction. 

 A novel wavelength-swept light source based DOT for rapid data acquisition is 

constructed. Source channel encoding and sequential source light delivery are achieved by the 

utilization of a NI DAQ card and LabView codes.  

With the 4mW source power and 170ms exposure time, the system can detect targets 

with center depth up to 20mm. Although the previously reported broad-band spectral encoding 

system possesses higher total power level (20mW), the average power coupled to each source 

channel could be on the same level as or even lower than the system constructed in this study. 

The 0.5 frame per second data requisition rate could be dramatically raised by increasing the 

source power and but the source-by-source exposure pattern will become the ultimate upper limit 
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to the frame rate. Further investigations will be conducted to explore the trade-off point between 

the broadband and swept source systems. 

Temporal encoding of the novel system schematics can potentially extend the number of 

sources channel for a system with predetermined imaging sensor dimension. For the 

12.5mm×12.5mm sensor dimension utilized in this study, only 7 source channels with spectrally 

discernable displacement can be covered simultaneously. However, temporal encoding of the 

source light enables independent signal detection (Fig.5.9(a)) even though the source channels 

spectrally overlap (Fig.5.5(b)). Therefore, with rapid, temporally encoded wavelength swept, the 

identical system can acquire light signals from 14 channels (or more by using low grooves per 

mm gratings) in a short time expansion. Such feature is especially beneficial for imaging 

scenarios with numerous source locations but require high signal acquisition frequency, for 

instance brain functional imaging[111], as is previously mentioned. 

Calibration with analytical model is proved to be effective and accurate in the circular 

geometries, although fitting experimental data to the approximately evaluated model could be 

computationally intensive and impracticable with the gradient based algorithms. The more 

exhaustive heuristic random optimization approach [125]  is implemented in two stages to the 

calibration process, which is validated by the experimental results. However, the analytical model 

utilized in this study cannot solve phase shift of light propagation in a cylindrical geometry, and 

the continuous wave measurement system also induces the less accurate scattering part 

calibration. It is expected that with frequency domain measurements and appropriate models, 

system calibration reliability can be improved, which contributes to more accurate estimation of 

the absolute optical property values. 

Prospectively, the system structure can also substantially increase the data acquisition 

rate of fluorescence optical tomography [126-128]. Although simultaneous excitation of the 

fluorophor is achievable in multiple laser diodes and broadband spectral encoding systems, varied 

excitation wavelengths produces the same emission spectrum except the difference in 
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fluorescence yield ratio, which is infeasible to separate by the CCD-spectrometer system at the 

detection end. Therefore, spectral encoding in optical tomography alone does not work in 

fluorescence tomography cases, and the prominent superiority in data acquisition rate of the novel 

temporal-spectral encoding combined system over the mechanical switching indicates the 

potentially implementation of such system structure in the immediate future work of this study. 

Reconstruction algorithm based on geometric differential sensitivity profile is derived 

under the method of surrogate objective function. The method minimizes the spatial sensitivity 

variation within the reflectance imaging geometries and improves target depth localization 

accuracy. The method can be implemented to both multispectral and fluorescence enhanced DOT. 

The advantage of GDS approach over reconstruction based on conventional sensitivity 

profile was demonstrated by simulations and phantom studies of localizing and resolving one or 

two sharp-contrast targets. The better suppression of artifacts by the GDS approach is also likely 

related to the cancellation of common uncertainty factors in measurements, similar to that 

demonstrated in a spectral-derivative algorithm [132]. 

Because of the structural similarity of the sensitivity matrix, this algorithm could also be 

extended to fluorescence-enhanced diffuse optical tomography in geometries suffering significant 

depth-degrading sensitivity. The transformation of the conventional sensitivity matrix to the GDS 

approach, however, is accompanied by an increase in the element number in the objective 

function due to the increase of the number of row vectors in sensitivity matrix from m×n to 

m×n×(n-1)/2. It is found in this study that the total computation time of executing the GDS 

method is approximately 40% more than using the conventional method. 

 A preliminary FDOT experiment system is designed. Simulation results indicated that 

region-wise reconstruction in FDOT may recover the optical properties in the emission band and 

the fluorophore uptake simultaneously, simplifying the measurement procedure of FDOT. Piece-

wise reconstruction also indicate that the negative fluorophore uptake can be recovered within the 

reflectance imaging geometry. 
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8.2 Future works 

 For the computation modeling aspect, the PRUL model will be extended to the analysis 

of spectral differential DOT reconstruction algorithms[132]. Spectral differential reconstruction 

has shown prominent advantage in noise and system error reduction in multispectral DOT 

reconstruction. The implementation of PRUL to image reconstruction of DOT can derive critical 

information such as the effect of integrating phase information in the reconstruction, wavelength 

selection optimization and differential wavelength interval optimization. 

For experimental and instrumentation, the feasibility of imaging reverse fluorophore 

uptake will be investigate by phantom studies and in vivo experiments. Phosphorescent materials 

will be preliminarily used for its bright emission and longer life time. Varied uptake ratios will be 

examined to reveal the sensitivity of FDOT to such imaging scenario. The zinc-specific 

fluorescence emitting material will be ultimately investigated in vivo in validation of our 

proposed idea of early diagnosis of prostate cancer with such metabolic biomarkers.
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APPPENDICES 
 

 

 

A.1 MATLAB code for converting FEM mesh from COMSOL .mphtxt file to NIRFAST 

format 

clc;clear;close all; 
filename='fine.mphtxt'; 
%------------------------------read-in---------------------------------
---% 
data=comsol_node_read(filename); 
domain=comsol_domain_read(filename,27715); 
elements=comsol_element_read(filename,27715); 
%------------------------------set region------------------------------
---% 
%----1_bg---2_prostate---3_blob---add later 
  
region_tmp=ones(length(data),1); 
  
for j=1:length(elements) 
    if (domain(j)==6 || domain(j)==7) 
        for i=1:4 
            region_tmp(elements(j,i)+1)=2;%prostate+blob 
        end 
    end 
end 
  
for j=1:length(elements) 
    if (domain(j)==4 || domain(j)==5) 
        for i=1:4 
            region_tmp(elements(j,i)+1)=1;%bg 
        end 
    end 
end
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for j=1:length(elements) 
    if (domain(j)==1 || domain(j)==2 || domain(j)==3) 
        for i=1:4 
            region_tmp(elements(j,i)+1)=4;%rectum 
        end 
    end 
end 
  
for j=1:length(elements) 
    if (domain(j)==4 || domain(j)==5) 
        for i=1:4 
            region_tmp(elements(j,i)+1)=1;%bg 
        end 
    end 
end 
  
  
%----------------------------------------------------------------------
---% 
x=data(:,1);%_0905_1449 
y=data(:,2);%_0905_1449 
z=data(:,3);%_0905_1449 
  
% Tes = delaunay3(x,y,z); 
  
sd_num=7; 
  
x_max=80; 
y_max=80; 
z_max=80; 
mua_pro=0.06/10;%cm->mm 
mus_pro=12.7/10;%12.7 
% mua_can=0.2 /10; 
% mus_can=16  /10; 
mua_rec=0.1 /10; 
mus_rec=10   /10; 
mua_sur=0.02/10; 
mus_sur=8   /10; 
  
%----------------------------------------------------------------------
---% 
mesh.name='cube_stnd_blob'; 
mesh.dimension=3; 
mesh.type='stnd'; 
%----------------------------------------------------------------------
---% 
elements(:)=elements(:)+1; 
mesh.elements=elements; 
mesh.nodes=data; 
  
%------------------------set boundary----------------------------------
---% 
mesh.bndvtx=zeros(size(mesh.nodes,1),1); 
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for i=1:size(mesh.nodes,1) 
    tmp_curve=sqrt((mesh.nodes(i,2)-
y_max/2)^2+(mesh.nodes(i,3)+40*sqrt(3))^2); 
    if mesh.nodes(i,3)>=z_max-2 
        mesh.bndvtx(i)=1; 
%     elseif mesh.nodes(i,3)<=0.5 
%         mesh.bndvtx(i)=1; 
    elseif mesh.nodes(i,2)<=2 
        mesh.bndvtx(i)=1; 
    elseif mesh.nodes(i,2)>79 
        mesh.bndvtx(i)=1; 
    elseif mesh.nodes(i,1)<=2 
        mesh.bndvtx(i)=1; 
    elseif mesh.nodes(i,1)>=x_max-2 
        mesh.bndvtx(i)=1; 
%     Left the arcade unattended for removing the elements in this 
area, 
%     come back later 
    elseif tmp_curve<=80.001 && tmp_curve>=79.999 
        mesh.bndvtx(i)=1; 
    end 
end 
%------------------------set optical property--------------------------
---% 
a=ones(size(mesh.nodes,1),1); 
mesh.ri=1.33.*a;%reflect index 
  
mesh.c=a; 
mesh.mua=a.*0; 
mesh.mus=a.*0; 
mesh.kappa=a.*0; 
for i=1:length(a) 
    if region_tmp(i)==1 
        mesh.mua(i)=mua_sur; 
        mesh.mus(i)=mus_sur; 
    elseif region_tmp(i)==2 
        mesh.mua(i)=mua_pro; 
        mesh.mus(i)=mus_pro; 
    elseif region_tmp(i)==4 
        mesh.mua(i)=mua_rec; 
        mesh.mus(i)=mus_rec; 
    end 
end 
  
mesh.kappa=1./(3.*(mesh.mua+mesh.mus)); 
%------------------------sources and detectors------------------------- 
sd_num=7; 
  
x_max=80; 
y_max=80; 
z_max=80; 
mesh.source.fixed=1; 
mesh.meas.fixed=1; 
for i=1:sd_num 
    tmp=10.*(1+(i-1)); 
    mesh.source.coord(i,1)=tmp; 
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    mesh.meas.coord(i,1)=tmp; 
    mesh.source.coord(sd_num+i,1)=tmp; 
    mesh.meas.coord(sd_num+i,1)=tmp; 
end 
  
  
for i=1:sd_num 
  
    mesh.source.coord(i,2)=       y_max/2-15+(-1)^mod(i,2)*5; 
    mesh.meas.coord(i,2)=         y_max/2-15-(-1)^mod(i,2)*5; 
  
    mesh.source.coord(sd_num+i,2)=y_max/2+15-(-1)^(mod(i,2))*5; 
    mesh.meas.coord(sd_num+i,2)=  y_max/2+15+(-1)^(mod(i,2))*5; 
  
end 
% clc;clear; 
% load('pre.mat') 
mesh.source.coord(:,3)=0; 
mesh.meas.coord(:,3)=0; 
  
for i=1:2*sd_num 
    if mesh.source.coord(i,2)==60 || mesh.source.coord(i,2)==20 
        mesh.source.coord(i,3)=sqrt(80^2-20^2)-40*sqrt(3)+1e-4; 
    else 
        mesh.source.coord(i,3)=sqrt(80^2-10^2)-40*sqrt(3)+1e-4; 
    end 
     
     
    if mesh.meas.coord(i,2)==60 || mesh.meas.coord(i,2)==20 
        mesh.meas.coord(i,3)=  sqrt(80^2-20^2)-40*sqrt(3)+1e-4; 
    else 
        mesh.meas.coord(i,3)=  sqrt(80^2-10^2)-40*sqrt(3)+1e-4; 
    end 
end 
  
%----------------------------link-------------------------------------- 
for i=1:2*sd_num 
    mesh.link(i,:)=1:2*sd_num; 
end 
%---------------------------------------------------------------------- 
% save_mesh(mesh,'cube_stnd_recon_basis'); 
save_mesh(mesh,'cube_stnd_blob'); 
 
function data=comsol_node_read(filename) 
fid=fopen(filename); 
  
%nodes coord starts 
start='# Mesh point coordinates'; 
finish=''; 
  
data=[]; 
  
sta=0;%status flag 
i=1; 
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while(not(feof(fid))) 
    if sta==0 
        line=fgetl(fid); 
        if isequal(start,line) 
            sta=1; 
        end 
    elseif sta==1 
        line=fgetl(fid); 
        if isequal(finish,line) 
            sta=2; 
        else 
            data(i,:)=str2num(line); 
            i=i+1; 
        end 
    elseif sta==2 
        break; 
    end 
end 
 
function elements=comsol_element_read(filename,num_element) 
fid=fopen(filename); 
str_element=num2str(num_element); 
%nodes coord starts 
start_e1=cat(2,str_element,' # number of elements'); 
start_e2='# Elements'; 
finish=''; 
  
elements=[]; 
  
sta=0; 
i=1; 
while(not(feof(fid))) 
    if sta==0 
        line=fgetl(fid); 
        if isequal(start_e1(1:end),line(1:end)) 
            sta=1; 
        end 
    elseif sta==1 
        line=fgetl(fid); 
        if isequal(start_e2,line) 
            sta=2; 
        end 
    elseif sta==2 
        line=fgetl(fid); 
        if isequal(finish,line) 
            sta=3; 
        else 
            elements(i,:)=str2num(line); 
            i=i+1; 
        end 
    elseif sta==3 
        break; 
    end 
end 
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function domain=comsol_domain_read(filename,num_domain) 
fid=fopen(filename); 
str_domain=num2str(num_domain); 
%nodes coord starts 
start1=cat(2,str_domain,' # number of domains'); 
start2='# Domains'; 
  
finish=''; 
  
domain=[]; 
  
sta=0;%status flag 
i=1; 
  
while(not(feof(fid))) 
    if sta==0 
        line=fgetl(fid); 
        if isequal(start1(1:end),line(1:end)) 
            sta=1; 
        end 
    elseif sta==1 
        line=fgetl(fid); 
        if isequal(start2,line) 
            sta=2; 
        end 
    elseif sta==2 
        line=fgetl(fid); 
        if isequal(finish,line) 
            sta=3; 
        else 
            domain(i,:)=str2num(line); 
            i=i+1; 
        end 
    elseif sta==3 
        break; 
    end 
end 
 

A.2 Derivation of PRUL model for multispectral optical tomography case 

Starting from equ. (4.2- μs’) 

b
s A −= λµ '  

Take logarithm of both sides: 

λµ log)(log'log bAs −+=                                            (A.1) 

For multiple measurements, use matrix form: 
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Multiple both side with 
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Right hand side becomes: 
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Solve for 
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where 
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Therefore, 
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And log(A) and b can be respectively expressed as: 
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To Compare log(A) and b, the common terms need to be extracted: 
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Therefore, comparison between log(A) and (-b) only need to consider the different factors on the 

right hand side of equ.s (A.10) and (A.11) 

A.3 LabView interface and diagram for source-sweeping and CCD exposure 

synchronization 

 

\ 

(a) 
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(b) 

Fig.A.1 Labview interface and block diagram of the system 

(a) Control interface (b) Block diagram 

 

A.4 Linear transformation from conventional to geometric differential sensitivity profile 

function J_geom_derv_dc=jacob_dc_stnd2geom(J_dc,mesh) 
  
d_sta_num=1; 
d_end_num=1; 
s_num=size(mesh.link,1); 
d_num=size(mesh.link,2); 
  
  J_geom_derv_dc=[]; 
   
  for i=1:s_num 
      for j=d_sta_num:d_num-d_end_num% 
          J_geom_derv_tmp  =J_dc( (i-1)*d_num+1  :(i-1)*d_num+d_num-j,: 
)-... 
                            J_dc( (i-1)*d_num+1+j:(i-1)*d_num+d_num  ,: 
); 
          J_d_tmp=[]; 
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          for k=1:size(J_geom_derv_tmp,2) 
              J_d_tmp=[J_d_tmp J_geom_derv_tmp(:,k)]; 
          end 
          J_geom_derv_dc=[J_geom_derv_dc;J_d_tmp]; 
      end 
  end 
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