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CHAPTER 1
PRELIMINARY CONCEPTS

This paper will be devoted to the development of the concept of
an analytic characteristic functional and some characterization

problems in probhability,
Analytic Funetions on Banach Spaces

In order to develop the concept of an analytic characteristic
functional it will be necessary to outline the development of analytic
functions on Banach spaces which appears in Hille [11], Bochnak and
Siciak [2] and [3], Bochnak [1] and Ligocka and Siciak [15]. In the
following ¥ and Z will be Banach spaces over the scalar fieid F

(F is either the real or complex numbers).

Definition 1.1 A function P: ¥—Z is called a polynomial of degree

m if forall a,he ¥ andall e ¢ F

m
P(a+ ah) = P
v=0

L@ ha’,

where the Pv are functions which are independent of a, The degree

is exactly m if Pm;f 0.

Unless otherwise specified, all polynomials in the following

definitiong will be asaumed to map % into Z.



Definition 1,2 A polynomial P is said to be homogeneous of degree

n if
Plax) = o P(x) ae¢F, xe %,
[e6]
Definition 1.3 The series X Prl of homogeneous polynomials is
T ‘ n=0 @
said to converge in the set E C ¥ provided X Pn(x) converges

n=0
for all x ¢ E.
The preceeding definitions congcerning polynomials on a Banach
space make possible an approach to generalized analyticity which is
both similar to and consistent with analyticity of functions of complex

variables,

Def’i_nitiqn 1,4 The fungtion f: ¥ > Z 1is said to be G-analytic in the

open set E (C ¥ provided that for each x ¢ E there exists a series

0
of homogeneous polynomials, X Pn such that
n=0

@
fx+th) = X P (h)

n=0 ©°

for all h in a neighborhood of 0. (Here neighborhood of 0 is

relative ta the norm topology on %.)

. . , h
Definition 1, 5 The function f defined on X is said to possess a pt

G-~differential at a point x € X, written f e qi , if
z o

(1) For eagh h e ¥ the function g defined on F by

gla) = f(xo+ agh) has a pth derivative at 0; and



(2) The mapping 6; f: ¥—> Z defined by

< - f(x0+ ah)
"o da a=0
is a homogeneous polynomial of degree n

(l'l-'—'- lzzy-aqxlp)'

For each xo,h € X 6;: f(h) 1is called the nth G-differential of f at
the point xo with imc:rec:nent h It should be noted that if the domain
of f is the set of real numbers, then 5}? f(h) = f(n)(xo)hn. if

fe q}f’ forall xe U (C %, the notation Of € qp(U) is usea and if
fe qp(U) for all positive integers p, the notatjon f e Qw (U) °is

used,

For a proof of the following theorem see Hille [11].

Theoreh; 1,1 The function f: ¥~ Z is @ -analytic in an open set
EC %2 ifandonlyif fe quE) and for every x e E there is a
neighborhood N of 0e¢ ¥ such that

: X

o
f(x+h) = = wgl—,w 81 f(h), VheN_.

n=0 ™

For the case % = R, the series on the right is the usual Taylor

series expangion of f(x+h) about the point x.

Definition 1,6 A function f: ¥— Z is said to be analytic in E (C %
w
if for each x ¢ E there exists a series, Z Pn’ of continuous
n=0
homogeneous polynomials such that



=
f(x+h) = Z P_(h)

n=0 "

for all h in some neighborhood of 0.

Definition 1,7 A function f: ¥— Z is said to be locally bounded in

the open set D (C ¥ if for eagch a ¢ D there is a sphere Sa
containing a and a finite number Ma such that [ f(x)] < M when

X €S .
a

Theorem 1.2 A fun¢tion which is G -analytic on a set D is analytic

on D provided it is locally bounded on D,

Theorem 1.3 An analytic function which vanishes in a sphere vanishes

identically in its domain of analyticity.

Theorems 1.2 and 1.3 both appear in Hille [11],

In the remainder of this paper the scalar field F is assumed to
be the real numbers, Henge % is a real Banach space. Bochnak and
Sigiak [2] showed that for such a space % there exists a complex

Banach space % with the following properties,

(1) ¥ = %x ¥ with addition component wise and multi-

pligation by complex scalars defined by
{a+ib)(x,y) = (ax-by, bx+ay).

(2) ¥ can be treated a‘_s‘a subspace of ¥ by associating

X € Z With (X, O)‘



(3) ¥ may be treated as the direct topological product
of ¥ and i%¥ and every element (x,y)e ¥ can

be written as x + iy,
(4) For any seminorm [norm] q on %

q(x) = inf{thj{q(x ' x = 2 t.x,, x;€ B, e c}

.) _
J JJ
for X e f, is a seminorm [norm)] on % . In addition

q has the property that

max {q(x), q(y)} < qx+iy) < qfx)+ qly) .
(5) If P is a homogeneous polynomial on ¥, then there
exists a unique polynomial P on % such that
P = -13| £. P is continuous if and only if P is con-

tinuous.
@
(6) If a series of homogeneous polynomials X P defined
' n=0
on ¥ converges in an open set H, then there exists an
[ue]
open set H (C ¥ sughthat H(C H and = f)n is
n=0
convergent in H,

Random Variables-and' Characteristic :-Functionals

Let (Q, &, ) be a probability space and let ¥ be a real
Banach spage with dual space x* , Let X be a weakly § measurable
function mapping @ into ¥, Then X 1is called a random variable
(r.v.). An important analytical tocl in the study of random variables

is the charaqteristiq functional,

Definit'}o‘nﬂl.S The characteristic functional (c,f.) of the r.v, X is

given by



The special case which occurs when ¥ is the set of real numbers has
been investigated extensively. For this case, the theory of analytic

c.f.'s has been based upon the following definition.

Dgfinitioq 1,9 L.et f be the e¢.f, of a real valued r.v. The c.f. f

is said to be an analytic ¢.f, If there exists a function g of the
complex variable z which is regular in the circle [z]| < p (p > 0)

and a ¢constant 6 >0 such that g(t) = f(t) for -6 <t< 6.

That Definition 1,6 and Definition 1,9 are equivalent can be seen
by considering the following well known theorem concerning c.f.'s of

real r.v.'s.

Theoxjem 1,.4 If f is an analytic ¢.f. of a real valued r.v., then the

function g, of the complex variable z, defined by

g(z) =_/;2 et 7X@ dw) = E (12X

is analytic in a horizontal strip containing the real axis and g

caincides with f on the real axis,

A similar result holds for c¢,f.'s of r.v.'s taking values in an
arbitrary Banach spage, This result along with other generalizations
will be proved later in this chapter. In order to discuss c.f.'s of

r,v.'s taking values in the real Banach space ¥, it is necessary to

make the following observations.



Since the ¢,f. f of an ¥ -valued r.v. X is bounded, it is

b3

sk bt
analytic provided it is G -analytic [Theorem 1.2]. For x ¢ ¥ <, x (X)

is a real valued r,v. whose g.f. is given by

£
1 . e
£t = Eett® X o ofex™)y,  teR.

5K

X

Definigiop 1f 10 The nth moment functional of the r,v. X is defined

m(x) = Elx (X)]%, x ¢%, n=01,...,

provided the expectation exists. Clearly, if mn(x ) exists, it is
equal to the mth moment of the r,v. x (X).

The analytigity of f in a neighborhood of 0 e I* determines

% % S

the analyticity of the c.f,'s of the r.v.'s x (X), x € ¥

Twhekorem‘ 1’. 5 If £ is G -analytic in a neighborhood of O ¢ Z% , then

for any xa" € EE* the real r,v, x*(X) has an analytic c,f,

Propf Since f is G ~analytic in a neighborhood of 0, there exists
*

r>0 sughthat [y || < r implies

e
*

@ n % 1
fly ) = f 6, fly ) —7

n=0
oc] n o,
= = Elr dn f(ayﬁ)
n=0 ' do a=0
w0 n © .n *
= = ?},— d—f () =2 Lm (y).
n=0 ' da y a=0 n=0 "




Therefore the series

converges in |t| <1, and when ”y* | <r, v (X) has an analytic c.f.

' Sk sk
Now let x ¢ ¥ ., Thereexists k>0 such that |[kx"|| < r so
3 ¥ e
(kx }X) has an analytie ¢.f. But (kx )}(X) = kx (X) having analytic

e

¢.f, implies x (X) has an analytic ¢,f. Hence the theorem is proved,

The @G-analyticity of f in a neighborhood of 0 ¢ I* can also
be used to prove results analogous to well known theorems concerning
c,f,'s of real r.v,'s, Examples of such results appear in Theorem
1,6 and the succeeding gorollary, The following lemmas will be

needed for the proof of Theorem 1,6.

Lemma 1,1 If {Xn} is a sequence of complex r.v.,'s, such that

[s0]

P EIX |<co, then
n

n=0

Proof See Halmos [9],

Lemma 1.2 If f is G-analyticin |y || < r, then

for Hx*” < —g-r .



k 5k %
Proof Suppose f is §-analytic in ”y¢” <r. Let x €% such

r

that [lx"|| < . Then [2x"| < r and

s ® on * ®@” *
fx ) = Z T mn(Zx ) = = S~ mn(x ) < e,
n=0 ' ' n=0 !

Hence the series 2 zrl converges for lzl <2, and x*(X)
n=0

has a ¢.f. which is analyti¢ in ’Im(z)l < 2. Therefore

since J‘L'II}{>P()sY,)!n is the nth absolute moment of X*(X),

%

Lemma 1,3 Let v e x* and define

. * . ] . o R e %
Pn(x‘;y‘) = E[e"y (X)[x‘(X)]n] 4, x €X ,n=0,1,...

3
b3

£ 5
Then Pn(x iy ) is a homogeneous polynomial of degree n in x

provided the expegtation exists,

Proof Let a,he £ and @ ¢ R, Thenfor n=0,1,,.,

H

%* B L 1
P (atah;y) = <r E{e!T K+ an)x)]?)

.n . ok
=t Efe’ T + anx)l®)
.n n ., X% ‘ -
- E 3 eV (X) (‘,;) oFhe0] K lax)]PE =



10
n . 2 '
= T of "ET (E) Ef{eY B nx))klax)]? ™

n ~
= Z a Pk(a.,h)

and the Prl are independent of @, Therefore Pn is a polynomial of

degree n. To show that Pn is homogeneous gonsider

n *
% % i i o
P_(ax'1y) = -~ Efe' B ax"(x)]"
n L E 5
= A QP E LY B F )™
= a" P (x* ,

Hence Pn is a homogeneous polynomial of degree n.

Theorem 1_.‘6‘ If f is G-analytic in a neighborhood of 0, then it is

G -analytic on all of x’" .

3 S e
Proof Suppose that f is G -analytic in {x ¢ X x| <e}. Let

y,x e % suchthat [x"| < 5 . Then

] b .k n .

. , PO 3 @ H b
f(Yh+ x)=EeY X)+ix (X) . gty (X) 5 # [ (x)]"
n=0
@ e ey R
-5z ¢V L x)e
n=0 !
® * .n 5
=z eV B L fegn (Lemmas 1,1 and 1.2)
n=0 B
® TR
= Z P (x;y)
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where by Lemma, 1.3, the P 's are known to be homogeneous poly-

nomials of degree n. Therefore f is ( -analytic on all of i since

e

y was arbitrary,

Corovllavry 1.1 If f1 and f2 are two c¢.f,'s which agree on a sphere

. "
and are @ -analytic in a neighborhood of 0 ¢ ¥ , then f1 = fZ ,

Proof Both ¢.f.'s are G -analytic on all of £>'< by the previous
*

theorem, Hence bath are analytic on ¥ , It is easily seen that

f1 - f2 is analytic an £>'< ,and vanishes in a sphere, Therefore

f1 = f?. by Theorem 1,3,

The preceeding result shows that an analytic c¢.f. is uniquely

determiﬁed by its values in a neighborhood of zero.

——
A

The next theorem is similar to Theorem 1,4. Let % ° denote

e

b xR
the complexifigation of ¥ , The elements of ¥ may be written in

e . b

the form =x. +ix
1 2

B >r<

¥ , the properties (5) and (6) of the complexification % (see pg, 5)

e

show that there exists a function defined on ¥ which is analytic in

h * £
wnere X X
€ 10 %2

€ I*, If f is an analytic c,f. on

: >
an open set gontaining xn and agrees with f on ¥ . The following
theorem shows that the integral defining f converges ina 'strip"

%

gontaining I,

Theorem 1.7 If { is an analytic ¢,f., there exists a &6§>0 such

that the function

ek i, +ix, )(X)
f(:s:1 + ’1xz) = Ee

is defined on the set U = {x, +ix, ¢ ¥ :|x, | < 8}.
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Proof Since f is analytic on %", there exists &> 0 such that

@ i o¢ b
flx )= X le,”" m (x), for ka]l <26,
n=0 )

(x)]" (Lemmas 1,1 and 1.2)

because

converges, Therefore f is defined in U ={xf+ix£=ex%:”x;” < 6}.

Kotlarski [13] and Miller [18] gave theorems which showed that

the distributions of the independent r,v.'s X1 ) XZ s X3 can be

determined by the distribution of (X1 + X3 , X2 + X3

assumptions are satisfied, The result in [13] was given for r,v.'s

) provided certain
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attaining values in stochastig locally convex linear topological spaces.
The following theorem obtains the result for r.v.'s taking their values
in a reflexive Banach space with the assumption that the c.f.'s of the

X. are never zero replaced by a weaker assumption.

k
‘I‘heox:eqm },8 Let ¥ be a reflexive Banach space and X_k (k=1,2,3)
be independent ¥ walued r,v,'s whose ¢,f.'s fk are analytic, Let
Yk = Xk+ X3 (k=1,2), The distribution of (Yl’ YZ) determines the

distributions of the Xk up to a ghange in location.

Proof Let the joint ¢,f, of (Yl’ YZ) be denoted by

A e . s ‘ e
f(x),x,) = Eexplix (Y))+1x,(Y,)],

It can be seen that

b M B B

&
£y, %,) = fy(x) fo(xy ) falxy +x5) .

o

If X{( (k = 1; 3, 3) are other ‘lndependent ¥ Valued r,v, 's with

analytic ¢,f,'s f!, then the joint ¢.f, of

(Y}, ¥y) = (X}+ X5, Xh+XY),

denoted by f', satisfles

fi(x,

1%

S g . sk
2) = f10x) £5(5) falx) +x5)

Suppose that
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This yields the equation

B3 E b E B sk s Sk
H 1 1 - : .
Since fk and f1'< (k = 1,2,3) are all continuousg and take on the _
value one at the point 0 € x’", there exists & > 0 such that for

xe E = {x*e x*; ”x*“ < 6}

fk(x"“) £0 and fi(x')#0.

For values of x* ¢ E let

: e b s
x) = fx)gx"), k=123, (1.2)

0

B %k sl
r ¥ Xy +x2 ¢ E

\k

Therefore when xi

% i ] sk

g (%)) g, (%, ) gy (%) tx,) = 1. (1.3)

The functionals g, #@re ¢ontinuous, do not vanish in E and satisfy

gk(O) = 1 and gk;(mx*) = gk(x_ ),

%
It can then be seen that for x ¢ E

He % 1

gilx) = gylx) = ———p, (1.4)

b ke i e
or for X0 Xy 5 X +x2 e E

B3 M b
g3(x1 + xz) = gglx; ) g3(x2) . (1.5)
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Let

% %k A A
h(x ) = hl(x )+1h2(x ) = log[g3(x')], x ¢ E,

where log 1is the gontinuous branch of the logarithm which satisfies

the conditions

h(0) = hl(O) + ihz(O) =1
% % '
and hl(x ), hz(x ) are real, Therefore by (1.5)

sk sk . %K
) = Ry (x)) 4 hy(x,)

%
hk(x1 + Xy

ES e

g Ed B .
far Xy 0 Xy, X + X, € E, Also the hk are gontinuous functionals

satisfying

o % sle
hlwﬁ) = hy(x) and hy(-x) = -hy(x).

*
Therefore hl(x ) = 0, h2 is a real valued functional and there exists
‘ sk Sk Sk
a real linear functional q(x ) such that q(x ) = hz(x ) for
=" || < —g . Since ¥ ig veflexive there exists x_e¢ ¥ such that

Sl

B 5 &
qx ) = x (xo) for all x ¢ ¥ . Then by (1.4)

o,

.k %
ste sk 1 X (XO) £ -1X (XO)

gl(x) = gz(x) - e and g3(x) z e

for all x= with [x'| < —2 . Hence by (1.2)

fx) = e f), k=1,2,

and
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ok ix (xo) s
falx') = e fa(x )
sy 6
when ||x | < 5 . Because
ok
e mlx (XO) sk
fi{(x ) and e fk(x ) (k = 1,2)

are both analytic ¢,f,'s which agree on a neighborhoad of zero,

o

Corollary 1,1 implies they agree on all of £ . Similarly,

i ’k —
f30x ) = e

#
on all of ¥ , Hence the theorem is proved.



CHAPTER II
D. VAN DANTZIG'S PROBLEM

Certaln classes of analytic c¢.f.'s of real r.v.'s have been
studied little more than analytic c.f.'s of r.v,'s -taking their values
in arbitrary Banach spages, Problems concerning one such class were
posed by D. van Dantzig and investigated by Lukacs [17] and
Ostrovskii [20].

An analytic c¢,f. g is said to belong to the class D provided

f(t) = - t ¢ R, alsodefinesa c.f. As late as 1960 only three

glit) *
nontrivial pairs of the ¢lass D were known. These were the pairs

cos t 1 sint £ and e—tZ/Z e-tZ/Z
8ty Cosht | t ’ sinht ’ ’

The set D is much larger than one might have judged in 1960. Some

c.f,'s belonging to D for which the corresponding density functions

are readily available, are found in the following example.

Example 2,1 Let p > - é—— and for n=1,2,... let \ n be the
sequence of positive zero points of Jp(t) , the Bessel function of order
p. Then
@ (;2 J (t)
£() = T |1-—> = 2Prpp+1) —B— (2. 1)
R n=1 X ¢P
p, n

17



18

isa c,f, belongingto D. If p > - %,, fp has a corresponding

density given by

1
2. P 7
b (x) = LX) , x| <1
p 1 1
=0 ,o Ixl 21

For each p > -l . g (t) = v—-——l———— , t e R, defines a ¢c.f, Two of the
- 2 P f,p(lt)

original three examples are ingluded. These are

_ - 1
f—l/Z(t) = cost g-l/Z(t) " cosht
and
' sint _ t
f12) = —¢ 172 7 —imme

Liukacs pointed out that c.f.'s belonging to D are both real
valued and even functions, He also obtained results indicating that if

X1 and XZ; are independent r.v,'s whose c.f.'s belong to D,

then the ¢.f, of the r.v. Y = X1 + X is also an element of D, It

2
is interesting to note that the converse of this statement is not true.

For example, consider the independent r.v.'s Xy and X5 where

X1 has density

hl(x)

and X2 has density
hZ(X) = __FZ_'___ exp(*x-e-zx)g x e R.
I
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Then X. and X, have c,f.'s given by

1 2
F<1;1t>
fl(t) = ——— te R
[
and
r(l’zﬁ*t>
£,(t) = - - teR,

Neither f1 nor f2 can belong to D since they are not even functions.

However, the r.v, Y = X1+X2 has c.f. given by

which ig an element of the ¢lags D,
In order to simplify notation, let H denote the set of pairs

[f,g] of elements of D satisfying

f(t) g(it) = 1, (2.3)
Let c. (n=20,1,.,,.) be a sequence of complex numbers such that
® %a on
n=0

is convergent for some t # 0. Let (X,Y) be a real random vector
having analytic c,f. ¢, and define a complex r.v. by Z = X+1iY,

Then the following theorem can be formulated.



Theorem 2.1 E Z" = c_ if and only if

C

n n
n.

@ (t, it) =

M8

n=0

for values of t for which both sides exist,

Proof For values of t for which the expectation exists

Eet? - EXTIY) Ly
and
@ n @ n
Ee®? =k 2 L= 5 EZ i)
n=0 ! n=0 ’

20

(2.4)

(2.5)

and the theorem is proved by the uniqueness of the coefficients of a

convergent power series. It should be noted that the last step in (2.5)

is valid because of the analytigity of ¢ and the use of the Lebesgue

dominated convergence theorem.

If additionally, X and Y are independent with c.f.'s f and g

respectively, the following corollaries result.

Carollary 2.1 EZ" = ¢, ifand only if

’ s ¢]
£(t) g(it) = = —% (it)"
n=0 !
where both sides exist.
Corollary 2,2 EZn: 0 (n=1,2,...) if and only if

f(t) glit) = 1.
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Note that Corollary 2,2 could have bheen stated in the following way.
The pair (£, g] is an element of H, if and only if EZ™ = 0 for

nzl7

Example 2.2 Let (X,Y) be a random vector with joint density

h(x,y) which depends only on x2+ y2 . It is known that such a random

vector has a ¢, f,

flu,v) = f JO r‘/u2+v2 d G{r) ,

0

where G is the distribution function of a nonnegative r.v. Hence
[e0]
f(u,iu):f JO r uz-uz dG(r) =1

and it follows from Theorem 2.1 that if f is analytic, then

E(X+iY)" =0 for n=1,2,... ,

The previous results are easily generalized to higher dimensions

in the following way, ILet c(nl,.,,,nk), (nj= 0,1,...;1 <j<k)

be an infinite multiple sequence of complex numbers such that

@ C(nl,...,nk) ooy P .
b ] s (1t1) (Ltk)
nj:O IR 3
I<j<k
converges for gome (bl,...,tk) #(0,...,0). Let
(Xl’ cee ’Xk’ Yl’ cars Yk) be a real random vector having analytic c.f.

N

¢ . Define the complex random vector Z = (ZI’ c s Zk) by
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Zj = X‘j + "LYJ, (1 <j £ k). Then the generalization of Theorem 2.1
is the following,

™ Pr
Theorem 2.2 E Z » Z = ¢{n,,.,.,n, ) if and only if
e - 1 k 1 k
© c(nl, ,,nk) n, g
<P(t11v!t!tk! 1t1:’°wrltk) = Z— n‘[ n y ' (Ltl) (Ltk)
nJ,—O 1 k
1<j<k

for values of (tl, v t:k) for which both sides exist.

Proof Let X = (Xl”"’xk) and Y = (YI”"’Yk)' Then for values

of t = (tl"‘"’tk) for which the expectation exists
itz LeX'+itY') _ . ,
E e = e —cp(tl,,..,tk,Ltl,...,Ltk)
and
. k it.Z.
; H
Eeltz = E II e J
j=1
k @ ZV,V v
= EI| Z —-‘;L— (it,)
j=1\ v=0 ) J
n n
® Z 1 t Zkk n1 nk
= .E z o] A (Lt].) (Ltk)
njz 1 k’
1<j<k
n n
@ gz li.oz k n n
1 k . 1 . k
= 2 n. ! i 'n 1 (Ltl) " (ltk)
anO 1 k!
14j<k

and the theorem is proved by the uniqueness of the coefficients of a

convergent power series,
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If, additionally, X and Y are independent vectors with c.f,'s

f and g respectively, then the following corollaries result.

n n

‘ 1 k . .
Coroll;ry2.3 EZ1 vv-Zk :q(nl,...,nk) if and only if
. . el .enn) o0y Pk
f(tl,..,,tk) g(Ltl,..,,ltk) = = o o (Ltl) ('l.tk)
nj: 1 k
1<j<k

for values of (t ‘s tk) for which both sides exist.

| R

nl nk
Corollary 2,4 EZ_ "--- 72 = 0 where n,=0,1,,.. and
> i i N o -
jflnj 0, if and only if f(tl,....tk)g(Ltl,,.,,Ltk) 1.

An extension of the preceeding results to include c,f,'s of
r.v.'s taking values in an arbitrary real Banach space ¥ is the next
logical step. Extending the concept of the class D presents no

problem. A ¢.f, g ofan % valued r.v. is said to be an element

of the class D provided f(x*) = _'"'LT , x € % alsodefines a
glix)

c.f. ofan % valued r.v, The following examples show that the class

sy
A%

D has nontrivial members.

Example 2.3 Let X, € ¥ and suppose the r.v. X assumes the

values X and X each with probability one half. Then X has

b B ks

c.f. g(x )=cos[x (Xo)]” x<e I>'<. Also g« D since

#*
i
»
m

b

g(ix*) éoéah[xa;<(xo)]
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Example 2,4 Let X bean ¥ valued r.v. and EHX”2<co.

fe sts ot Al
i~ =R S

b b3 i 3
Define v: ¥ x % = R by ¥(x ,y )= E[x (X)y

* % 3
(x ,y )e % * x ¥ . The r.v., X is said to be distributed normally

with mean 0 and covariance operator V¥ if

1 * %
% ->=¥(x ,x )
* ’
g(x)=EeLx (X)= e 2
Notice that
1‘ b X
1 1 p YELx) ok
N T ¥ ¥ - ¢ , o x € X,
glix ) 5 ¥l ,x )
e

Therefore g is an element of D if X is distributed normally with

mean 0 and ¢ovariance operator VY,

The following results are analogous to Corollaries 2.1 and 2.2.
Let X and Y be independent ¥ valued r.v.'s having analytic c.f.'s

f and g. Let Sn be a sequence of linear functionals on ¥ such
@ cpyx™)

that 2 — 7 converges for Hx>‘< [ <8, §>0, Let Z=X+iY.
n=0 !
Theorem 2,3 E [x,;“(Z)]n = cn(xm) for each x>‘4 € }f* if and only if
) N ° ¢ (x )i
fix )glix ) = Z =
n=0 ’

7 sle
O

for each X e ¥

Proof Corollary 2,1 implies that

1. e

Elx (X)+ix (D)% = ¢ (x),



25

B b

for each x ¢ % if and only if

¢}
f >.’<(t) g >.’<(it) = X ?1! (it)n-

where f , and g , arethe c¢.f,'s of the real r.v,'s X*(X) and
sk X X
x (Y) respectively, Since the series on the right converges for t=1

and

g Sk

f (1) = f(x) and g (i) = glix )

if follows that
£ n %k e
Elx (2)] = Cn(x ), Vx €%
if and only-if

Lo J,

bd

f(x')glix ) = =

4 B

Corollary 2.5 E[X%(Z)]n = 0 for each X € % , n > 1 if and only

J, A
sk

i f(x ) glix) =1,

Hence Corollary 2.5 characterizes the set of corresponding
>l’

pairs of elements of D in the same way that Corollary 2.2 charac-

terizes the set H.



CHAPTER III

CHARACTERIZATIONS USING CONDITIONAL

EXPECTATIONS

Shanbhag [23] characterized the exponential and geometric
distributions in terms of conditional expectations, This result was
generalized by Hamdan [10] to include a characterization of the
uniform and Weibull distributions. A more general result was given
by Kotlarski in [14], which contained theorems allowing the character-
ization of several distributions including the Cauchy distribution. In
this chapter the concept of conditional expectation is used to character-
ize probability measures on arbitrary measurable spaces.

Let (2, §) be a measurable space and P, PO two probability
measures on (£, §) such that P is absolutely continuous with respect

to PQ, that is

PO(A) =0 = PA) =0, AcJ. (3.1)

Let ZSO be any subcollection of F satisfying

(i) Aegd = AS¢ 80, where AS = Q-A,

O
('ii)Aego=>0<P(A)<1 and O<PO(A)<1,
(ii1) There exists a sequence Ane 80 such that

P(A) > 1 -,
0o"'n’ = 51



Let h: -~ R, be {§ measurable, PO integrable and denote
m_ = E, [h]:fth.
P 0
o] Q

Thgoxferr} 3.1 If P= PO , then

Ep[h{A] = Epo[h[A], VA e 50

Proof Obvious.

Theorem 3.2 For each A e 80 such that

‘EP (h|A] # m

condition (3, 2) implies P(A) = P _(A).

Proof Since for any A e 80

EP[h]A] =

then (3.2) can be written as

fth
A
=

[ [rer
A
—B&) w o TAeS,

Let {An} be the sequence in (iil), Then
o4} @
Z P (AY) < Z
n= =

and by the Borel-Cantelli lemma Po(lim An) = 1. Hence there

27

(3,2)



exists a set N ¢ § such that lim An = -N and PO(N) =
Likewise, P(N) = 0 because of (3.1). Since
f h dP f n dP
An An i
BA) - TPA) ' VB
n o' n

then

fhdp:fhdp.
Q Q ©

Now suppose that A ¢ 80 such that (3.3) is satisfied. Then

A U A =@ and as a result of (3.5)

fth+f hdpthdp +f hdP_ .

Using (3.4) and (3.6) yields

(¢] (¢]

or

P(A) 1 -P(A) _
[W-q&hdpo+[m,]fchdpo_ 0.

Therefore

or

P(A) 1-P(A) ‘ _
B (A) .&hdpo* W,&chdpo_ ,&hdpo+fchdpo

28

(3, 6)
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[P(A) - PO(A)‘J [;{; hdP_- m_ PO(A% =0,

Hence

[P(A) - PO(AJ [EP (h]A] - rno] =0

and because of (3.3) P(A) = PO(A) . This concludes the proof.

Remark: It should be noted that if Bo is a collection with the property
that the values which a probability measure assigns to those elements
of {30 satisfying (3, 3) uniquely determine the probability measure on
all of §, then P = Po . The following examples display the selection

of such an 80.

Example 3.1 Let € =(0,w) and 8 be the usual o-field of Borel

subsets, Let Po be the probability measure associated with the

exponential distribution whose density function is given by

f(x) = 0 , x<0

where a is a positive constant. Suppose P is a probability measure
defined on § such that P << Po. Define h: Q- R by h(x)=x.
Foreach x > 0 let A = {x:x>x_}, Define § _to be the

(0] X o] O

o
collection of all such sets and their complements, Since for X >0

EP [h}Ax ] = xo+a
o o

and



30

c *5 ©
Ep [h,Ax ]: & - -x [a
o o

for each A ¢ {So EP [hIA] # EP [h]. Hence using Theorem 3,1,

0 o
Theorem 3,2 and the fact that the values a probability measure assigns
to elements of 80 uniquely determine the measure on g, P = Po

if and only if for all x> 0

Ep[h|Ax ] 5
0

T
W
+
©

and

1
o
{

c ' x e
E, |:h]Ax ] = a - —~ 7T

(o]

Example 3.2 Let © = (0,1] x (0, 1] and $ be the usual o-field of

Borel subsets, ILet h: Q -+ R be defined by h(x,y) = x+y . Let

Po be the probability measure associated with the uniform distribution
on £ and let P be a probability measure on §§ such that P << P.
For each (xo,yo) « Q, (xo, yo) # (1,1), define the set

Axo’ v = {(x,y): 0<x < x5, 0<y < Yo}’ Let ZSO be the collection

of all such sets and their complements, Since for (xo, yo) e Q

X tvy
E, ljhlA’ J o Yo
o *0' Yo

and
2

1 2
1-=(x + X
c 2(oyo Yoo)
E hiA - ,
P X,y l-xy
o) o'’o o’o

]
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for Ael_ E [h|A] # E_ [h]. Hence by Theorem 3,1,

P P

o o
Theorem 3.2 and the fact that the values a probability measure assigns

to elements of 30 uniquely determine the measure on all of § it

follows that

P = Po if and only if for all (xo, yo) e Q

I: I ] xo+ =
E_|hlA =

P XY, 2
and

2

1 2
£ {:h[AC ] i .1-2'(XOYO. tyoX,)
P xo,yo l—xoyo

Similar results which do not require the integrability of the
function h can be obtained by changing the requirements imposed on
the set 30 . Suppose that (2, §) is a measurable space on which
two probability measures P and PQ are defined. Let h: Q2 - R
be § measurable. Let 80 he any subcollection of § which satisfies

the condition

Aed = PAY>0, P (A)>0, ,fth < o, lf hdP | < o.
O (o] O
A A
Let AQE 50 be a fixed set such that
P(A)<1 and P _(A)<]
and denote
P{A )
K 2 (3.7)

PO(A(')) '



Theorem 3.3 If P = PO, then

Ep[hjal] = Epo[hlA], VAeG .

Proof Obvious.

Theorem 3.4 For each A« 80 such that A M Ao = ¢ and

E, [h]A] # Eg
o] (o]

the condition

Ep[h[B] = E [h|B] for B =A, A, AU A (3

o

implies P(A) = KPO(A), where K is given by (3.7).

Proof Let A So such that A M Ao = ¢ and (3.8) is satisfied.

Condition (3.9) can be written

fhdp fhdpo

B _ ’B . |
BE) - T P.m 0 PTA A A A,

Then
fth+[ h dP fhdp +[ hdP
A A A A °©
O = , (o)
BlA) T P(A]) P_(A) ¥ P, (&)

or

[hle] ' (3.

32
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P(A )
P(A) o)
AT [AthOJF_MPo(Ao) & hdpP_ fAhde+fA h dP_
o _ o)
P(A) + P(A ) ' T TP (A FP_(A)
Therefore
P(A)E, A+ P(A )EL (n]Al P_(A)Ep [h|A]+P (A )EL [h[Ao]
0 0 _ o v o
P(A) + P(AO) P (&) + P (A))
or
P(A )
. P(A) o
Ep [h]al-E, [hfa] P (A) 7 P _(A) 0
O o) O (o] (o]

From condition (3, 8) it follows that

P(A)  _ P_(Ao)
P (&) T P_(A)

or using (3. ‘7) yields
P(A) = K PO(A)

which concludes the proof.

The previous theorems can be used for characterizations
provided it can be shown that K =1 and 80 has the property that
the values of a probability measure on elements of 30 uniquely
determine the measure on all of . The following lemmas can be

useful in applying Theorem 3,4 to characterize a probability measure.
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Lemma 3.1 If the sequence {An} is a sequence of sets such that
h&réoAn = Q- Ao’ An M AQ = ¢ and P(An) = KPO(An) for each n,

then K =1.

Proof Since A (YA =@ for n>1 and P(A) = KP (A ) for
— n o = n o'n

all n, it followsthat P(A LA )= KP (A UA ). Define
n o o 'n o
B =A UA , n=1,2,.., . Then lim B = . Hence
n n (o] ! n->w n

P(B )= K Po(Bn) and taking the limit of both sidesas n — o yields

n
K=1,

LLemma 3.2 If AESO such that AﬁAoz ¢ and

Ep [h|a] = Ep [h]|A_], then E [W|AUA 1= E; [B]A ]

[¢] [¢] [¢] (o]

Proof Suppose Aed , AMA_=¢ and E; [h|a] = E5 [h]A_].

P
O 0]
Then
& hdP_ s, h dP
PO(A) PO(AO)
which implies
fhdp +f h dP f h dP
A 0] A (0] A 0]
0] - (0]
(&) 7 P_(A_) P_(A)

Therefore

which concludes the proof.
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The following example shows how Theorem 3.3 and Theorem

3,4 can be used to characterize probability measures.

Example 3.3 Suppose £ = (l,o) and {§ is the usual o-field of Borel

sets. Let P0 be the probability measure associated with the density

function
flx) = 0 , x <1
1
= T3 x > 1
X

Define the collection 80 by
{goz {(a,b]: l <a<b<mw}.

Let P be a probability measure on {§ such that for all A e ZSO,

P(A) > 0, Define h: -~ R by h(x)=x, Note that for

l1<a<b<wo and A = (a,b]
logg-
EPo[hlA] LT
: a b
PA )
Let 6>1, Ao = (1,8] and K = -—1—5-—(39-—7 . Define the collection
oo

Bg = {(6,b]: 6§ < b < @} .

Then for A = (6,b] € 80

E_ [h|A] # E

P [nlal.

P
o 0o
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That (3.10) holds can be seen by observing that if this is not the case

Lemma 3.2 implies

EP [h[AUAO] = Ep

o (0]

[h]A ]

or

logh . _logb (3, 11)
l—g lg

However, (3,11) cannot hold since the function

g(x) = __1_93__,

X
L

X

is strictly increasing on (l,®) as is shown by

gl(x) = x'.l'l%gx for 1 <x < o,

(x-1)°

Note that if for all (a,bl e §_

Eglh|(a,bl] = Epo[h|<a,b]],

then

h|Aa] = E_ [h]|A] . VAed

and

E lhfaUA ]l = E, hlaUA), VAT, .
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Then by Theorem 3.4
P(A) = KP (A), Aei}a

if for lf_a<b<co

b
log =
E;lh@,bl] = ——3 . (3. 12)

L
b

® =

Applying Lemma 3,1 yields K =1 and (3,12) implies
P(s,b] = P (5,b], b >38.
Since & 1is arbitrary (3.12) implies
P(a,b] = Po(a,b], for 1<a<b<a,
Therefore P = PO if and only if (3,12) holds.

The conclusion of Theorem 3.4 remains valid if the requirement
A M AO = @ is replaced by some additional assumptions, The

following corollaries display the results,

Corollary 3.1 For each A ¢ J such that

o

() A, Ca

(ii) A - Ao €y and

[0}

(iii) Ep [hla A1l # Ep [n]a]

(¢] (o]

the condition



E[h[B] = E; [h|B], B=A, A, A-A_,

P o o
o
implies P(A) = K P(A).
Proof Theorem 3,4 implies that P(A - AO) = K PO(A & Ao) .

1

P(A) P(A)+ PA -A)

il

KP (A)+KP(A-A)
o o o o

1

K PO(A) '

Corollary 3,2 For each A ¢ 80 such that

() A C A
(i) A -Ae§_ and

(iii) Ep [h|a_-A] # E

p [h|A]

go)
o o

the condition
EP[hIB] = E_ [h|B], B=A, A, A -A,

P o’ o
o

implies P(A) = K PO(A).

Proof Theorem 3,4 implies that

P(A) ) P(Ao -~ A)
P (A) & P (A -A)
o o' o
Hence
HP(A‘) P(A) + P(AO - A) P(AO)

P_(A)+ PO(AO -A) P (A)

38

Hence



or

PA) = K P_(A).

Corollary 3.3 For each A e 30 such that

i) AMA, A-A, A -Acf_
(ii) EPO[hIA M Ao] # Epo[h]A_o-A] and
(iii) Ep [h|A -AO] # Eg [hlAQ]
o Q
the condition

E,|Bl = E; b|B], B=A, A-A, ANA

implies

Proof By Corollary 3.2

P(AMA ) = KP (

AMA ),
Q
By Theorem 3.4
PA-A )= KP (A-A).
o} o o

Therefore

P(A)

P(AMA )+ PA -A)

I

KP (AMA)+KP (A-A)
Q [e] 0

K P_(A) .

1

39



CHAPTER IV
SUMMARY AND CONCLUSIONS

This paper is devoted to a development of the concept of an
analytic characteristic functional and some characterization problems
in probability, The concept of analytic functionals defined on abstract
spaces has as its foundation the work done by Frechet [6] in developing
the generalized or abstract polynomial, The work of Bochnak [1],
Bochnak and Siciak [2], Ligoca and Siciak [15] and Hille [11] provide
the basis for considering the effects of the property of analyticity on
characteristic fungtionals of abstract valued random variables.

In Chapter I it is shown that well known properties of analytic
characteristic functions of real valued random variables are possessed
by analytic characteristic functionals of abstract random variables. If
X is a random variable taking values in the real Banach space ¥ and
having analytic characteristic functional f, then the following results
are given. The values of f in a neighborhood of the origin uniquely
determine f. The function f is analytic in an open subset of the
complexification of x* which contains all of x* and f has the

integral representation

o i 4 12X ()
f e ! 2 w(dw)

40
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; H < & for some &> 0., Also included is a

characterization problem showing that the distribution of the independ-

in the "strip" [x

ent ¥ valued random variables Xl’ XZ’ X3 having analytic
characteristic functionals are determined up to a shift by the distribu-
tion of (X1+ X3 s X2+ X3).

In Chapter II the problem of D. vanDantzig concerning the set
D = {f: f is an analytic ¢,f, and T(_Il-t")_ isa c,f.} 1is considered,
Many examples of elements of D are generated and the following
characterization of D is given, The pair of gharacteristic functions
[£, g] is a corresponding pair of elements of D if and only if for
ind;pendent random variables X and Y having characteristic
functions f and g, E(X + '1Y)n =0 for n=1,2,... . This result
is also generalized to include abstract valued random variables,

In Chapter III four theorems are given to allow characterization
of probability measures defined on abstract measurable spaces by
using the conditional expectations of a real valued function defined on
the sample space, Examples given illustrate the use of these theorems
to characterize the exponential distribution and the two dimensional
uniform distribution, Theorems 3,3 and 3.4 are used to characterize
distributions of random variables which do not possess expected values,

The wealth of information about analytic characteristic
functionals of real random variables provides many unanswered
questions related to Chapter I. It should be possible to extend many
of the theorems in Lukacs [16] and Ramachandran [22] to character-

isti¢ functionals of abstract valued random variables. A possibility of

sharpening the results of Chapter III depends upon constructing proofs
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of Theorem 3,2 and Theorem 3.4 with less restrictions placed on the

set 80 .
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