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Abstract 

Electroencephalography (EEG) is the aggregate of electrical signals emitted from 

the brain. Study of EEG has been widely used as a useful noninvasive method of 

collecting bioelectric signals from humans. Processing and modeling of bioelectric 

signals allows us to understand the fundamental nature of human behavior. The 

relationship between EEG and brain functions can be related to their frequency and 

spatial patterns. These properties are relatively unknown in infants during the first year 

of life. During this time period, infants typically acquire the ability to crawl. This skill is 

important in developing necessary motor skills for future locomotion as well as primary 

cognitive abilities for interacting with their environment. Infants with cerebral palsy (CP) 

experience severe delays in acquisition of locomotive skills, which hinders them 

throughout the rest of their lives. Our interdisciplinary group has designed a Self-

Initiated Prone Progression Crawler (SIPPC) locomotion assistive robot to aid infants in 

developing crawling patterns. In this discussion, results from an ongoing study of EEG 

data collected from typically developing infants using the SIPPC robot are presented. 

Weekly collection of resting EEG data prior to crawling are studied longitudinally to 

understand infants’ progression developmentally and assess neural effects from varying 

degrees of robot assistance.
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Chapter 1: Introduction and Background 

 This thesis focuses on the research of development of electroencephalographic 

(EEG) rhythmic activity in infants prior to crawling. The primary focus of this study is the 

development of infant EEG spatio-spectral patterns related to crawling skills acquisition. 

Crawling serves as an important first step for acquiring motor and cognitive abilities 

throughout a person’s lifetime. Infants with motor deficiencies, particularly those with 

cerebral palsy, experience severe difficulties in developing those skills (Jones et al. 

2007). We expect EEG patterns for those individuals to exhibit longitudinal differences 

from their typically developing peers. Consequently, we propose that EEG spatio-

spectral patterns could serve as useful biomarkers for differentiating typically 

developing infants from those at the risk of cerebral palsy. This chapter provides 

background over the meaning of motor development and its dependency on crawling. 

Next, definitions and information on cerebral palsy are presented for better 

understanding of the disability and its effects. Afterwards, an introduction to the 

fundamental properties of EEG are detailed. Lastly, previously suggested biomarkers for 

motor development are presented and reviewed.   

1.1 Motor Development 

Motor development is defined as the change in movement behavior to fulfill 

different needs over a human life span (Poranen-Clark, 2015; Hadders-Algra, 2000). 

Acquisition of motor abilities relies on the relationship between internal voluntary 

movements and the effects they have on the person and the surroundings. Voluntary 
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movements are reinforced by sensory feedback from external stimuli to meet intrinsic 

and extrinsic needs (Hadders-Algra, 2000). As humans experience external and internal 

responses to their actions, they develop strategies for future interactions. Humans 

require motor development to interact with their environment in a meaningful manner 

throughout each phase of their lives.  Arguably, the most critical period of rapid growth 

during infancy is when an infant is learning to crawl (Anderson et al., 2014). Movement 

skill acquisition is sequential, and thus crawling is vital to the acquisition of subsequent 

skills (Cech and Martin, 2012). As humans acquire new motor abilities such as crawling, 

walking, and fine motor skills, interacting with new environments becomes possible. In 

addition to interaction with their environment, humans require progressive motor 

development for proper social interaction as well. Typical motor development is 

necessary for locomotion as well as a prerequisite for future development of the central 

nervous system (Poranen-Clark, 2015; Cech and Martin, 2012; Serdarevic et al., 2015). 

As a result, motor development serves a significant purpose in cognitive, social and 

other aspects of human development in addition to motor capabilities (Aisen et al., 

1994).  

A primary focus of the effects of motor development is its relation to cognitive 

development, which emphasizes its extensive significance in  a human lifespan. Several 

studies, such as those presented by (Poranen-Clark, 2015) and (Choisdealbha and Reid, 

2014) have concentrated on the long-term effects of motor development on cognitive 

abilities by studying adult cognitive performance and their correlation to early motor 
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execution. Others such as (Charitou et al., 2010), (Serdarevic et al., 2015), and (Murray 

et al., 2006), have focused on motor and cognitive development during infancy. These 

studies agree that motor and cognitive abilities displayed during infancy have significant 

long-term effects. Consequently, infants that display deficiencies in motor development 

typically experience shortcomings in behavioral and cognitive performance 

(Choisdealbha and Reid, 2014). Infants that showed deficiencies in early motor 

development did not perform as well on cognitive assessments compared to their peers 

(Serdarevic et al., 2015). Thus, crawling appears to affect more than an infant’s initial 

movement and walking skills.  As infants begin to display new motor abilities, 

maturation of motor brain neural circuits occurs as well (Poranen-Clark, 2015). 

Functions such as goal-directed movement and cause/effect memory instances are 

developed during infancy (Murray et al., 2006). Longitudinal effects of crawling over a 

lifespan present the importance of motor development.  

1.2 Cerebral Palsy 

Motor development can be delayed due to various neural, spinal, or other 

genetic afflictions. One disorder most commonly associated with motor impairments is 

cerebral palsy. Cerebral palsy (CP) is a diagnosis that encompasses a range of 

development and posture disorders in children caused by problems in the cerebral 

motor cortex of the brain (Colver et al., 2014). CP is a disorder that affects a person’s 

ability to move or function on the level of their healthy peers. Some likely causes of 

cerebral palsy include premature birth, physical brain injury after birth, or infections of 
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the mother during pregnancy (Rosenbaum et al.,2014). Because CP afflictions can result 

from a multitude of symptoms and disabilities, severity of its effects can widely range 

for each person. Afflictions of this disability range from contracture of limbs on one side 

of the body resulting in sensory inattention, to scoliosis resulting in restricted movement 

of all limbs (Colver et al., 2014). Other effects of cerebral palsy include loss of limb 

function, excessive fatigue, and limitation in muscle activity (Bayon et al., 2017). In some 

cases, motor deficiencies could be severe enough to require wheelchair or other 

significant forms of daily motor assistance.  

Cerebral palsy affects those with the disability throughout their life, but its 

impact is first apparent during infancy. Infants that are affected by disabilities such as 

cerebral palsy are hindered in their ability to crawl. This disability inhibits the 

development of motor abilities for infants, which consequently results in permanent 

impairments through adulthood (Bayon, 2017). Infants afflicted by CP display motor as 

well as cognitive deficiencies compared to healthy infants of the same age. The varying 

nature of impairments and severity results in scarce diagnosis of infants at early stages 

of development. Additionally, many symptoms mimic those of epilepsy, which causes 

further difficulties in diagnosis (Colver et al., 2014; Aisen et al., 1994). This causes further 

reservations in diagnosing patients based solely on behavioral limitations.  

Despite lack of early diagnosis, various forms of rehabilitation have been applied 

to combat the effects of cerebral palsy through rehabilitation and assistive technology. 

Rehabilitation for motor weakness due to cerebral palsy can involve task-specific 
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intensive therapy as well as functional neurostimulation (Holt et al., 1994). This process 

involves the use of electrodes to provide electric stimuli to the brain as an attempt to 

alter the damaged regions. Few studies have focused on this type of intervention, and 

the results have not been generally consistent with successful outcomes. Early 

intervention to expose cerebral palsy patients to enriched sensorimotor capabilities 

have been associated to improve cognitive outcomes over time (Bayon et al. 2014). 

Visual deficiencies occur in 35% of cerebral palsy patients, so corrective lenses and other 

strategies are common in cerebral palsy patients (Holt et al., 1994). Other effects of 

cerebral palsy may be intervened through medical means such as muscle relaxants 

(Colver et al., 2014). Due to the wide range of secondary effects and symptoms of 

cerebral palsy, specific rehabilitations are done on an individual patient basis. However, 

since cerebral palsy deals primarily with motor impairments, rehabilitation focused 

specifically on motor development could provide the most significantly positive results. 

Since this study focuses on neural changes related to infant development 

involved with robotic rehabilitation, a review of current practices serves to reinforce 

justification of our methods.  Rehabilitation of motor physical impairments from 

cerebral palsy has also been attempted through surgical and biomechanical 

intervention. The main goal of rehabilitating cerebral palsy is not simply to develop 

motor skills, but rather to improve the quality of life of people suffering from the disease 

by creating opportunities to interact with their environment and engage in daily life 

activities. One example of this is the use of orthopedics to alleviate pain and movement 
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difficulties encountered in the patients’ hips (Colver et al., 2014). More recently, the use 

of assistive robotics and other biomechanical devices focused on locomotion have been 

tested for rehabilitation of cerebral palsy. Bayon et al., 2014 have designed a robotic 

exoskeleton for children with cerebral palsy known as the CPWalker, which combines a 

smart walker with a neuroprothesis for therapeutic walking assistance. Additionally, this 

system is designed to incorporate kinematic and EEG sensors for biofeedback to the 

patients, as well as for progress evaluation (Bayon et al., 2017). However, clinical trials 

with this robot have not been performed.  Meyer-Heim et al., 2009, used the 

commercially available driven gait orthosis Lokomat exoskeleton that engages walking 

patterns through movement of linear drivers at the hip and knee joints. This study 

involved therapeutic sessions with children diagnosed with CP, who showed overall gait 

improvements over several weeks using the robot assistance (Meyer-Heim et al., 2009).  

Although these assistive robotic technologies have not produced significant 

improvements of motor abilities for children diagnosed with CP, we believe that early 

intervention during infancy could be even more impactful. The work involved in this 

thesis incorporates the use of an assistive robot, known as the Self-Initiated Prone 

Progression Crawler (SIPPC) (US Patent No. 8942874 B2, 2015), designed for infants with 

high risk of cerebral palsy diagnosis to aid them with crawling skills acquisition. Due to 

limited treatment for infants with cerebral palsy and the delayed nature of its diagnosis, 

the SIPPC study focuses on early intervention.  
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To assess the effects of the early intervention practices employed by this study, 

a proper quantitative biomarker is needed.  We propose to study EEG rhythmic spatio-

spectral patterns to understand the longitudinal developmental effects of using an 

assistive robot as rehabilitation for cerebral palsy during infancy prior to crawling. High 

density EEG can serve as a useful method of defining biomarkers because of its 

inexpensive and noninvasive nature, as well as the portability of EEG systems 

compared to other modalities such as magnetic resonance imaging (MRI) or magneto 

encephalopathy (MEG). 

1.3 Fundamentals of EEG 

Since the major focus of this thesis is a study of EEG patterns in infants, 

fundamental understanding of the origins and properties of EEG is necessary for in-

depth analysis. The source of EEG signals comes from electrical currents emitted from 

the brain. Neurons form the basic electrical connections within the human body. 

Connections of neurons serve as the pathway of information from the brain to all 

extremities of the human body. It is believed that electroencephalography recorded on 

the scalp originates from vertically oriented cortical pyramidal neurons (Webster and 

Clark, 2010) shown in Figure 1 (Binnie, 1989). The current flow direction of through the 

neurons depends on whether the synapses are in an inhibitory or excitatory state. 

Synaptic inputs cause depolarization of the membrane resulting in current flow 

through the dendrites of the cell (Webster and Clark, 2010). When a stimulus is 

encountered, the neuronal synaptic potentials are brief but produce electric fields as 
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radially oriented dipoles with amplitudes ranging from 5 to 200 uV (Binnie, 1989). The 

amplitudes of such signals are significantly reduced on the scalp surface, which makes 

it more difficult to detect them. EEG electrodes are designed to acquire the signals, but 

require amplification for processing. Despite its high susceptibility to noise, EEG has 

been popularly used for its cost-effective and non-invasive nature. 

 

Figure 1: Diagram of pyramidal neuron current path  

To properly make sense of EEG data, decomposition of signals into their spectral 

properties is necessary. Different cognitive or motor functions in the brain produce 

signals with unique properties. Specifically, the power amplitudes of these signals differ 
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by frequency depending on the function that the brain is focusing on. In particular, the 

spectrum of EEG has been divided into various frequency bands, including the delta 

band, (<4 Hz), theta band (4-7 Hz), alpha band (8-15 Hz), beta band (16-31 Hz), and 

gamma band (>32 Hz) (Bell, 1991; Marshall et al., 2010). The delta band, which in adults 

is characterized by decision making in the parietal locations of the brain, and auditory 

responses are prominent in the frontal cortex (Başar et al., 1999). The theta band is also 

dominant during cognitive functions and sensory stimulation. When a person is 

engaging in deep cognitive interaction, the electrical signals characterized at 3.5-7 Hz 

are more dominant in power (Binnie, 1989). The alpha band, also known as the mu 

rhythm is characterized mostly by memory and motor functions in the motor cortex 

(McFarland and Ashton, 1978). Particularly, activity in the mu rhythm is expected during 

resting state and suppressed during movement or motor imagery. Since we are 

interested in motor development, this study will focus primarily on the motor cortex 

and the EEG mu rhythm relations to movement. 

Classical definitions of EEG rhythms have been well established in adults, but not 

as much in infants. Understanding of band characteristics in adults serves as a useful 

reference point for infant studies as we expect infant EEG rhythms to progressively 

approach adult values. Although a few infant studies have focus on the beta and gamma 

bands (Başar et al., 1999), the majority of infant studies have focused on understanding 

the delta, theta, and alpha bands (Saby and Marshall, 2012; Marshall et al., 2010). 

However, most studies in the past have presented inconsistent data on the definitions 
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of these bands and, in particular, their relationship to the age-related development 

during the first year of life (Marshall et al., 2010; Hagne et al., 1973; Gentili et al., 2010). 

Specifically, these studies suggest different frequency band values and variations in 

timing of their shifts towards expected adult values. This study aims to differentiate and 

improve from previous studies by using high-density EEG at a weekly recording 

resolution to understand the longitudinal development of EEG rhythms in the first year 

life of infants. By defining typical EEG spatio-spectral patterns at weekly and monthly 

ages, we can attempt to establish those patterns as biomarkers for motor development.  

Collection of EEG data can be performed using different orientation of electrode 

locations, as well varying degrees of electrode densities. Density of EEG sensor nets 

refers to the spatial distance between the electrodes on the scalp. Studies have 

proposed that limitations of EEG density with sensor distances greater than 2 

centimeters result in a significant loss of information (Malimivuo and Plonsey, 1998; 

Ryynanen et al., 2006). This loss of data could be significant as it may provide the 

necessary spatial resolution to solve the inverse problem to properly image the cortical 

sources of the EEG activity. Some studies have proposed that densities of approximately 

128 channels could provide the necessary resolution for localization and detection of 

neuropathology (Holmes et al., 2004; Lantz et al., 2003).Our study aims to differentiate 

and improve from previous studies by using high-density EEG (124-channel Electrical 

Geodesics Inc Sensor nets) at a weekly recording resolution to understand the 

longitudinal development of EEG rhythms in the first year life of infants. By defining 
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typical EEG spatio-spectral patterns at weekly and monthly ages, we can attempt to 

establish those patterns as biomarkers for motor development. 

1.4 Neuroplasticity 

Longitudinal changes in EEG rhythmic patterns are believed to be related to the 

adaptations of the brain neural circuits over time. The ability of the brain to adapt its 

neural circuits in response to external and external stimuli over a lifespan is defined as 

neuroplasticity (Olie et al. 2004). This concept explains how various regions of the brain 

change and form new neuronal connections themselves, as well as synchronization with 

other regions. Neuroplasticity can be related to a variety of factors, through natural 

development, acquisition of specific skills, or recovery from damages to brain (Olie et 

al., 2004; Thompson et al., 2000). Each of these factors affect formation of updated 

neural circuits similarly, so distinguishing the cause of specific instances evident 

neuroplasticity can provide valuable information for understanding the human brain. In 

particular, reduced plasticity has been suggested to be correlated with functional 

deficits (Opie et al., 2017). Determining the root causes of neuroplasticity during time 

of significant growth can provide a basis for establishing biomarkers related to 

development. 

Changes in EEG spatio-spectral patterns, which form the focus of this study, 

could be a direct indication of neural circuits altering due to motor development or 

acquisition of motor skills. Similarities in activity between neurons of different regions, 

known as coherence, has been linked to development of the mu rhythm in adults 
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(Cuevas et al., 2014). Event-related synchronization and desynchronization associated 

with the mu rhythm have been proposed to reflect neuronal activity in sensorimotor 

deactivation and activation (Pfurscheller and Lopes de Silva, 1999). The link between 

brain coherence and the mu rhythm suggests that neuroplasticity may be reflected in 

EEG data. The strengthening of synapse transmission between neurons, known as long-

term potentiation, has been studied in motor training for adults (Avanzino et al., 2015). 

Avanzino et al., 2007, suggests that neuroplasticity in the primary motor cortex occurs 

as a result of motor imagery training. These results suggest that cortical patterns can be 

altered through rehabilitative practices in damaged cortical areas. 

Understanding neuroplasticity at critical development periods, such as infancy, 

can provide significant insight on cortical structures longitudinally. Forms of 

neuroplasticity, such as the ability of sensory maps to reorganize, have been proposed 

to be at its maximum during early developmental stages (Cramer et al., 2012). Because 

of the importance of this time period, early brain injury can lead to severe impairments 

of subsequent plasticity (Gonzalez et al., 2016). Cortical deficiencies due to early injury 

can be expected to be reflected in EEG spatio-spectral patterns longitudinally. Infant 

brains that have experienced insults, such as cerebral palsy, should be expected to 

display different spatio-spectral patterns from their typically developing peers. This 

concept forms the basis of our motivation to use EEG as a longitudinal biomarker for 

infant development. 

 



13 

 

1.5 Biomarkers 

Tracking the dynamics of brain response as opposed to using only behavioral 

data allows for a quantitative neuroimaging method of studying development. EEG is 

particularly useful in assessing the functional status of the brain due to its high temporal 

resolution (Gentili et al., 2010). Thus, longitudinal analysis of EEG could be useful for 

establishing biomarkers in typical development as a standard.  

Currently, only a few studies have attempted to identify potential functional 

biomarkers for typical development. Gentili et al., 2010, have theorized that low 

frequencies in the theta and alpha band could be potential indicators for neural 

adaptation of sensorimotor learning. Additionally, it is suggested that decreased phase 

synchronization reflects attenuation of cortical resources that are unnecessary for 

specific sensorimotor functions (Gentili et al., 2010). Thus, reduced amplitude in a 

cerebral region can also be an indication of abnormal EEG activity. Attenuation of the 

delta rhythm in the frontal and occipital lobes has been detected from intracranial 

lesions (Binnie, 1989) Results from dyslexia studies have also shown that right 

hemisphere activity appears to compensate for left hemisphere deficiencies 

(Mahmoodin et al., 2008). Because of inconsistencies in reliability for these potential 

EEG biomarkers, we propose to focus on the longitudinal mu rhythm relation to the 

motor cortex during resting state, which has been generally accepted for adults. The mu 

rhythm, a subset of the alpha band typically associated with motor activity, could serve 

as a biomarker for motor development.  
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Abnormalities in the alpha band has been detected in other parts of the brain in 

addition to the motor cortex. Slowing of alpha rhythms within the posterior region has 

been seen in systemic disorders like hepatic encephalopathy (Binnie, 1989). This 

concept presents the idea that alpha frequencies are can be disrupted due to diseases. 

The relation between alpha band frequencies and the cerebral motor cortex suggests 

there is a potential for those specific frequency-temporal relationships to serve as 

biomarkers for motor development through analysis of the mu rhythm (Sauseng et al., 

2009). Unusual mu rhythm activity in the motor cortex compared to expected patterns 

for typical development could be strong indicator of sensorimotor deficiencies. 

However, application of such characteristics as biomarkers is difficult due to the 

similarities between immature structures and abnormal causes (Bonstrup et al., 2015). 

We expect mu rhythm activity along the motor cortex in typically developing infants 

should exhibit progressions toward established adult patterns, while atypically 

developing brains should display spatio-spectral differences or delays from such 

expected patterns. Establishing consistent biomarkers requires the distinction between 

differences in patterns as a brain matures and those due to some type of affliction. This 

concept is especially important when studying diseases that occur early in development 

and continually affect the progress of brain maturation. It is important for us to establish 

a basis for how EEG from typically developing infant brains should be both spatially and 

spectrally. Using it as the reference, we can then compare individual infants diagnosed 
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with cerebral palsy (or other brain disorders) to understand how their brain differs from 

the healthy expectation. 

1.6 Motivation of This Study 

Cerebral palsy is the most common childhood disability, affecting 17 million 

people in the world (cerebralpalsy.org). From those afflicted by cerebral palsy, 70-80% 

of those cases arise from damage to the motor cortex ( cerebralpalsy.org). Due the 

lifelong nature of this disability, early detection and intervention is crucial for improved 

quality of life for those affected. EEG is a cost-effective and noninvasive for detection of 

abnormalities in infants learning to crawl. The goal of this study is to analyze high density 

EEG collected from infants immediately prior to crawling to reinforce previous findings 

of EEG spectral profiles of healthy infants. 

1.7 Objectives 

 Data presented in this work were collected from infants enrolled in a large study 

on prone locomotion involving an assistive robot known as the Self-Initiated Prone 

Progression Crawler (SIPPC). The primary goal of the SIPPC is to serve as a rehabilitative 

tool to assist infants in crawling skills acquisition, particularly those with motor 

deficiencies. The purpose of collecting EEG data from this study on locomotion and 

assistive robotics is to understand changes in neural rhythmic patterns during a period 

of crucial motor development in infants. Resting state EEG data, as well as data during 

locomotion on the SIPPC, were collected weekly to compare development of infants at 

different conditions. However, only results from the resting condition are presented in 
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this thesis. This study involving human subjects was reviewed and approved by the 

institutional review board at the University of Oklahoma Health Sciences Center (IRB 

number 3755). 

This study aims to use EEG power spectral density acquired from infants 

immediately prior to crawling to understand developmental neural pattern changes. 

The first step is to establish spatial and spectral group averages at equivalent ages of 

healthy infants. The data collection and development of several signal processing 

technique used in this thesis were performed by previous members of our research 

group. The purpose of this analysis is to distinguish infant frequency bands and their 

dynamic properties during development. Next, we will reproduce these findings using a 

different subject set applying an independent analysis procedure. From this more 

extensive dataset we aim to establish potential biomarkers to describe the typically 

developing group. Lastly, we intend to study neural rhythmic differences in infants due 

to varying degree of robotic crawling assistance longitudinally. 

Our study aims to answer the following research questions: Can high density EEG 

recorded on a weekly basis be used to improve our understanding of infant neural 

development? Can our findings be validated for assessment of the sensitivity of our 

methods and propositions for developmental motor brain biomarkers? 

1.7 My Contributions 

Data collection protocols, as well as algorithm and code scripts for signal 

processing were initially developed by members of our research group previously 
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engaged in this study. Particularly, Matlab code scripts for the EEG preprocessing and 

group spectral analysis were established prior to my involvement in this project. 

Additionally, data collection and processing was performed on subjects of the first 

cohort of analysis published in (Xiao et al., 2017). My contributions to this project involve 

serving as primary EEG data collector for the majority of subjects in the second cohort 

as well as the atypically developing infants. Additionally, I improved existing Matlab 

scripts to handle larger datasets and more extensive temporal age spans. The majority 

of the data presented in this thesis, were processed and analyzed by my own effort. I 

believe that my contributions have served to expand on previous efforts to understand 

infant motor development, as well as test the sensitivity of our proposed biomarkers.  
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Chapter 2: Methods  

This chapter will focus on the experimental protocol and subject groups used 

for this study, as well as explanation of the data processing. First, detailed description 

of the SIPPC assistive robotic mechanism involved is included for a comprehensive 

understanding of the goals of this study and how they relate to neuroplasticity of 

infants. Next, information on the human participants and their classifications into 

subgroups are defined. Classification of subjects is performed to compare infants of 

different groups among healthy groups assigned to varying degrees of assistance from 

the SIPPC robot, as well as to compare atypically developing individuals to the healthy 

baseline. Afterwards, the EEG data acquisition procedure and equipment used for data 

collection are specified. Lastly, detailed explanations of the preprocessing and data 

analysis steps, including power spectral density calculation, clustering analysis, and 

peak detection are described. 

2.1 Self-Initiated Prone Progression Crawler 

One method of intervention to help infants afflicted with motor deficiencies is 

through assistive robotics. Since crawling is a vital part of infant development, 

intervention during the time of typical crawling acquisition can have significant impact 

for future locomotive abilities. This study focused on the use of a Self-Initiated Prone 

Progression Crawler (SIPPC) (Ghazi et al., 2016). The purpose of this robot is to reinforce 

specific movements or reactions performed by the infants when presented with 

desirable stimuli.  
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Design of the SIPPC was intended to focus on prone locomotion in any horizontal 

direction, as well as assistance in postural control. The robot is designed with 3 wheels 

in a Y shape around a central support platform for the infant depicted in Figure 2 (Ghazi 

et al., 2016). The intent of this design was to use the minimum number of required 

wheels oriented to allow maximal vision for the infant. The infants are able to lay 

comfortably in a prone position with freedom to move their arms and legs. Multiple 

safety measures are included in design of the SIPPC, which are especially necessary for 

infant use. All actuators and motors can be immediately stopped through the software 

user interface, a physical button located on the robot, or when communication with the 

control server is interrupted (Ghazi et al., 2016). The SIPPC assists the infants through 

incremental movements that reinforce limb movements generated by the infants, which 

are detected by inertial measurement unit (IMU) sensors worn by the infants and a force 

torque sensor attached to the robot. 
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Figure 2: The Self-Initiated Prone Progression Crawler 

 Implementation of the force torque sensor and IMU sensors using different 

settings is the basis for categorization of the infants in the healthy group. The 6 degrees 

of freedom force torque sensor is located above the central support pad and connected 

to the Control Server through a Control Area Network bus (Ghazi et al., 2016). The basic 

method for moving the SIPPC is known as the force control. This basic setting relies on 

forces applied by the infants against the ground, which are detected by torque forces 

multiplied by a specified gain to form the basis of the robot movement velocity. 

Additionally, discrete periodic movements can be added to the force control velocity in 

the power steering setting. Forces that exceed preset thresholds are detected by the 

force torque sensor, which triggers the control server to move the motors over a 

specified time period (Ghazi et al., 2016). When the threshold is exceeded, a period of 
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discrete jerk velocity is triggered that moves the robot in the intended horizontal 

direction. This overall global velocity of the SIPPC robot can be represented by the 

following equation: 

𝑉𝐷 =  𝐾𝐷𝐹𝐷 +  𝑉𝐴(𝑡) 

where 𝐾𝐷𝐹𝐷 is the gain times the torque force, and 𝑉𝐴 is the discrete jerk velocity 

present in the power steering and suit assist modes (Ghazi et al., 2016). 

In addition to the force torque sensor serving as the main form of movement 

detection in the power steering and simple force control settings, a kinematic suit worn 

by the infants allows for an alternative method of moving the SIPPC displayed in Figure 

2. The suit contains sensors on each limb of the suit, as well as on the back. Each UM6 

IMU sensor module contains a 3-axis, accelerometer, gyroscope, and magnetometer 

(Southerland et al., 2012). Information from the suit sensors is analyzed by the software 

algorithm that detects specific gestures, developed by our collaborators from 

Southerland et al. Detection of the predefined gestures serves to move the SIPPC in the 

same manner as the force torque control. Thus, the suit-assisted gesture control can be 

an equivalently useful method of controlling the robot for infants lacking ability to push 

the robot, particularly those with motor deficiencies. 

 Infants within the healthy group were randomly classified into one of the three 

groups: force control, power steering, and suit assist. Infants assigned to a specified 

group were assisted by the SIPPC robot during movement trials by the respective SIPPC 
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assistive mode. Classification of the infants into the groups was performed so that the 

subjects’ parents were unaware of the given subject’s designation. This was primarily 

done to eliminate any bias in assistance to different subjects during the trials. 

Movement training of each infant using toys and other similar stimuli was generally 

consistent across all subjects. Similarly, EEG data from subjects of all groups were 

recorded using the same procedure for each infant, detailed in the experimental 

procedure description. Information on participants in this study and their group status 

within the projects is presented in the following section. 

2.2 Participants 

Twenty-five typically developing infants were recruited for this study with 

consent from their parents. The adjusted age after gestation for these infants ranged 

from 17 to 23 weeks at the beginning of their participation in the study. Subjects in this 

study were separated into two groups known as Phases 1, and 2. Some subjects enrolled 

in this study were not included in this analysis due to their early exiting from 

participation. The first cohort of infants, consisting of the first 10 subjects, are identified 

as Phase 1 (denoted as subjects #1-13), 3 of which were not retained for the study. This 

group consisted of the first testing group of typically developing infants. The remaining 

typically developing infants enrolled for a lengthened training period, known as Phase 2 

subjects (denoted as subjects #14-35), remained in the study for up to 16 weeks or until 

they began to crawl. Separation of Phases 1 and 2 served to compare the results from 

the first test groups to results from a larger cohort involved in the study for a longer 
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duration. The definition of “typical development” was determined by the Test of Infant 

Motor Performance (TIMP) (Campbell et al., 2002). This test examines dichotomous 

observed items on spontaneously emitted movements as well as movement response 

to different stimuli (Campbell et al., 2002). The TIMP aims to serve as a consistent and 

accurate tool for prediction of future motor development, which is necessary for 

prediction of cerebral palsy. Prior to collection of the first week of EEG data, participants 

were screened using the TIMP to determine whether they would be considered for the 

healthy or atypically developing groups. Infants in the atypically developing group 

continued the study for a total of 20 weeks and 16 weeks for those in the typically 

developing group. 

2.3 Experimental Procedure 

Experimental sessions consisted of 5 minutes of baseline EEG recording, as well 

as 1-3 five-minute trials of training the infant on the SIPPC robot. Each infant’s head 

circumference was measured prior to each recording to determine the appropriate net 

size. Collection of the EEG data was performed by 124-channel high-density HydroCel 

Geodesic Sensor Nets manufactured by Electrical Geodesics Inc (EGI). Three different 

net sizes (40-42 cm, 42-43 cm, and 43-44 cm) were used in this study to accurately fit 

the varying head circumferences of the infants. The EEG electrode net to be used was 

soaked for 5 minutes in an electrolyte water-based solution prior to placing it on the 

subject. Once the sensor net was placed on the infant’s head, an impedance test was 

conducted to obtain a minimum scalp to electrode impedance of 75kohm. Additional 
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electrolyte solution was applied to individual sensors that did not meet the impedance 

criteria. The baseline EEG recordings were performed while the infants were sitting 

upright held still by their parents for five minutes. Parents were instructed to avoid 

moving or feeding the infant during this time. Additionally, toys and other entertaining 

stimuli were presented to prevent the subject from moving excessively, while 

maintaining a distance to avoid reaching by the infant. Resting baseline recordings were 

terminated prior to 5 minutes if the parent or physical therapist deemed the infant to 

be too upset to continue. 

After the resting baseline period, movement trials on the SIPPC were conducted. 

The trials on the SIPPC robot consisted of the infants’ parents using toys to entice the 

infant to move while on the robot. Presentation of desirable toys for the infants while 

on the SIPPC served to motivate the infants to develop goal-oriented strategies for 

locomotion. , Infants wore the kinematic suit and laid on the central resting pad of the 

SIPPC as described in the previous section. Additionally, EEG was continually recorded 

throughout the SIPPC movement trials in addition to the resting baseline. An example 

of an infant wearing the kinematic suit and EEG sensor cap while using the SIPPC is 

pictured in Figure 2. To synchronize the SIPPC trials with the continuous EEG recording, 

a digital signal was emitted from the SIPPC to the Net Station software every 10 seconds. 

Although the goal was to perform 3 trials each session, discretion was left to the parents 

or physical therapists to stop the trials if they felt that the infant was becoming too upset 

or tired. 



25 

 

2.4 Data Acquisition 

The EEG signals collected from the sensor net were amplified using a Net Amps 

300 amplifier sampled at 1kHz. The setup of this equipment is pictured in Figure 3.  

Conductivity between the electrodes and the scalp was maximized using a potassium-

chloride, baby shampoo and distilled water electrolyte solution. The threshold for 

acceptable impedance levels for this study was set as 75kohms. Additionally, video 

recordings of the infants were captured as a visual reference for segments of excessive 

noise in the EEG data or issues encountered during recording. Synchronization and 

storage of the data was performed using the Net Station 4.5.1 Software provided by EGI. 

Since recording of the EEG data involved movement trials on the SIPPC, the entire EEG 

data acquisition system was placed on a moving cart to follow the infants while the 

sensor net remained on their head (Fig. 3). 
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Figure 3: Equipment setup for EEG data collection 

2.5 Preprocessing of Raw EEG Data 

Despite the significant efforts to minimize noise during experimental recording, 

further preprocessing of the EEG data is required for adequate analysis. Signal 

processing techniques to improve signal to noise ratio of the recorded EEG data were 

applied after the data acquisition. First, a 0.3Hz-30Hz bandpass filter was initially applied 

using the Net Station software to remove DC and higher frequency noise. The bandwidth 

was selected to include typical delta (<4 Hz), theta (4-7 Hz), and alpha (8-15 Hz) EEG 

frequency bands described from Chapter 1. Next, channels on the exterior of the cap 
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most susceptible to facial and other muscle movements were removed. This process 

resulted in 70 inner channels, which were used for analysis presented in this study. The 

channel location layout of the scalp is illustrated in Figure 4, with red points denoting 

excluded channels on the exterior, while green and black points denoting the inner 70 

remaining channels. The black cross points depict the 30 channels along the motor 

cortex used in the power spectrum density analysis explained in the following sections.   

 

Figure 4: Electrode locations from EGI 124-channel sensor net 

Next, EEGLab Matlab toolbox functions (Delorme et al., 2002) were used to 

remove unwanted segments of time along with interpolation of bad channels from the 

raw data. Automatic detection of segments and channels with kurtosis levels greater 

than 5 were interpolated. The kurtosis level of a signal describes the peakedness of a 
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distribution. Afterwards, an Independent Component Analysis (ICA) was performed to 

detect undesirable motion artifacts. ICA is an algorithm that represents the entire set of 

data from all channels on the sensor net, as linear combinations of statistically 

independent component variables (Jung et al., 2002). The ICA method divides the data 

into 60 components that represent the EEG as spatially filtered multi-channel data. For 

this first step, 60 components were chosen to limit the weight of each component to 

avoid excessive reduction of data rejection. Through visual inspection of the 

independent components, motion artifacts created by movements from the eyes or 

other bioelectric signals are reduced. Further bad segments were selected through 

visual inspection of large amplitude fluctuations relative to the rest of the data. From 

these selections, channels with kurtosis levels greater than 5 were automatically flagged 

as unwanted channels. Additionally, further visual inspection of individual channels with 

visibly large fluctuations across the entire recording were selected as bad channels and 

interpolated. Subsequently, a common average reference (CAR) filter was applied to 

rereference the data, further reducing the noise across electrodes. This process 

determines an average value from the spatially interpolated channels and removes that 

value to further reduce common noise (Mahmoodin et al., 2008). Lastly, a second ICA 

step was applied to the data for final rejection of any remaining motion artifacts. This 

second ICA procedure divided the data into 30 components. Figure 5 displays the EEG 

waveforms before and after result of the preprocessing methods.  
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Figure 5: Preprocessed EEG example 

2.6 Spectral Power Analysis of EEG Data 

Power spectral densities (PSD) for each EEG channel were calculated based on 

Welch’s method of power estimation was used through the pwelch function in Matlab 

R2015a software (R2015a, MathWorks Inc., Natick, MA). Welch’s method works by 

dividing the signal into segments, multiplying the segments by a specified window, and 

calculating power magnitudes from the Fast Fourier transform of the signal 
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(Mahmoodin et al., 2008). Implementation of Welch’s method on all data in this study 

was performed using a three-second Hanning window with overlapping epochs by 50%. 

While the Welch method is beneficial in practicality and noise reduction, its limitation is 

the reduction of frequency resolution due to the segmentation of data.  The output PSD 

for each channel resulted in a frequency resolution of 1/3 Hz, which as deemed 

sufficient for our analysis (Xiao et al., 2017). 

To account for variability across subjects and weekly recordings, relative power 

spectral density between 1 and 30 Hz was calculated by normalization of the absolute 

PSD estimates: 

𝑅𝑓 =  𝑃𝑓/ ∑ 𝑃𝑓 ,    𝑓 = 1,
4

3
,
5

3
, 2, … , 30 𝐻𝑧

30

𝑓=1

 

where 𝑅𝑓 is the relative power at frequency 𝑓, and 𝑃𝑓 is the absolute power density at 

that frequency (Xiao et al., 2017). Relative PSDs corresponding to electrode locations 

were generated to produce longitudinal topographies for each frequency bin. One 

fundamental characteristic of EEG is its frequency power-law decay property, which 

describes how PSD magnitudes decrease as frequency increases. To address this, 

powers at each channel were normalized to obtain Z scores: 

𝑍𝑓 =  
𝑅𝑓 −  µ𝑅𝑓

𝜎𝑅𝑓
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Where 𝑍𝑓 is the normalized Z score for that channel, µ𝑅𝑓
is the mean, and 𝜎𝑅𝑓

 is the 

standard deviation at the frequency bin 𝑓 (Xiao et al., 2017).  

2.7 Spectral Peak Statistics 

Analysis of frequency shifts in power spectral density peaks has been suggested 

as an important aspect of my rhythm evaluation (Marshall et al., 2010). A peak detection 

algorithm selects local maxima within a specified window of nearby data points (Barr et 

al., 1978). Spectral peaks in this study were identified from PSD’s of individuals at each 

age for each frequency bin between 2 and 9 Hz across channels in the central motor 

cortex. A peak was identified from PSD at a given frequency bin compared to 2 bins 

before and 2 bins after it. Thus, the peak detection algorithm implemented a 5-point 

moving window to identify local maxima for the PSD frequency range of each session. 

The aggregate of peaks presented in this study was constructed from a summation of 

the peaks at each frequency bin at every time point. Additionally, monthly group 

average peak distributions were normalized by dividing the averaged peaks at each 

frequency bin by the total number of sessions within that monthly age. Gaussian fitted 

curves were plotted on top of the peak distribution bar plots for quantification of the 

frequency peak shifts. Curve fitting was performed for the assumed theta range of 2 to 

4.33 and the assumed alpha range of 6 to 9 Hz. 

2.8 Clustering Analysis 

To properly classify frequency bands and their dynamic boundary shifts, 

particularly within the mu rhythm, a clustering analysis was performed on the EEG 



32 

 

spatio-spectral patterns. The analysis was performed based on the concept of 

“functional topography” which hypothesized that neighboring frequency bins belonging 

to the same band should exhibit similar topographic representations (Hartigan and 

Wong, 1979; Kuhlman, 1978). We expected these topographies to change as they reflect 

the dynamic nature of rhythmic activities. Therefore, multiple sessions at different levels 

of temporal resolutions were input into the clustering algorithm for simultaneous 

classification in both spectral and temporal domains. Individual spatial patterns at 

different frequency bins and temporal time points were clustered into three classes 

using the K-Means clustering method (Orekhova et al., 2006). The K-means method 

works by assigning the spatio-spectral patterns at each time point and frequency bin to 

one of “K” initial random centroids, with K being the number of desired clusters. After 

the initial assignment, the new centers are recalculated from the current clusters and 

all points are reassigned to the centroid with the shortest Euclidean distance to it. This 

process is repeated until the centroids no longer change and the clusters are finalized.  

Implementation of the K-means algorithm for this data was completed with 3 

clusters to represent the delta, theta and alpha frequency bands. Previous clustering 

attempts for Phase 1 subjects were tested with 9 clusters to represent the three 

frequency bands as well as the three monthly age points covered during the study. 

However, 3 clusters produced the most distinguishable classifications for the group 

averages among frequency ranges, as is apparent in the results shown in Chapter 3. 

Clustering analysis using 3 clusters was performed on the normalized spectral 
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topographies of individual frequency bins between 2-9 Hz. This process repeated at an 

individual participant sessions level, an average across participants at equivalent weekly 

age points, and an average at same monthly ages. Averaging across subjects for group 

level analysis was performed at multiple temporal resolutions based on the subjects 

adjusted age after gestation. Resolution of weekly averages was performed by aligning 

subjects of equal weekly adjusted ages and averaging their PSD data. Additionally, 

infants were grouped and averaged by monthly age in the same manner. This resolution 

was based off the adjusted weekly ages, where every 4 weeks constituted a monthly 

age. These groupings resulted in group average patterns for monthly ages 5, 6 and 7 in 

Phase 1, and ages 5, 6, 7 and 8 for Phases 2 and 3.  

Based on obtained results, the most evident cluster separations were clearly 

present in data of the monthly resolution. Frequency boundaries at this resolution level 

were used to establish the boundaries for the delta, theta, and alpha bands dynamically. 

Frequency range values were redefined based on the changing boundaries at each 

monthly age. The dynamically defined frequency band boundaries were then used to 

generate topographic maps of individual EEG rhythms on a monthly basis. The 

normalized average of these maps across all participants at each frequency band was 

presented for months 5-7 in Phase 1 and months 5-8 for Phases 2 and 3. Normalized 

powers at each channel were plotted as topographic maps for spatial analysis of the 

distribution. The EEGlab “topoplot” function interpolates area between channels to 

produce a smooth topographic map. Normalized spatial topographies of weekly group 
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averages were plotted for each frequency bin between 2 and 9 Hz, which covers the 

range of the most significant rhythmic activity in infant EEG. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 

 

Chapter 3: Results 

 This chapter presents results from healthy as well as atypically developing 

infants enrolled in the Self-Initiated Prone Progression Crawler study. Initially, spatio-

spectral patterns of the healthy groups of infants are presented. Relative PSD, spatial 

topographies, clustering results, and spectral peak distributions from the first 8 

subjects denoted as Phase 1 are first introduced to understand typical EEG rhythmic 

development of healthy infants and to serve as a basis for comparison of subsequent 

results. Next, a larger group of 17 healthy infants, from  Phase 2, is processed using the 

same methods as Phase 1 one, but  analyzed as an independent cohort from the Phase 

1 group. This juxtaposition of healthy groups was completed as an attempt to validate 

the Phase 1 findings using an independent analysis procedure, larger sample size, and 

extended duration of temporal developmental focus.  For the Phase 2 group, 

categorization of subgroups based on the various SIPPC assistive mode designations 

was performed to compare neural developmental effects of differing levels and 

methods of locomotive assistance.  

3.1 EEG Patterns of Typically Developing Infants from 1st Cohort 

 Since current understanding of rhythmic EEG activity of motor development in 

infants is limited, a preliminary study of healthy individuals was performed to form a 

baseline for comparison. Subjects in the Phase 1 group of this study served as the initial 

group for high density EEG analysis to compare with previous findings, as well as the 

basis for validation with Phase 2 results.  Power spectrum densities from the 8 subjects 
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in Phase 1 were averaged together over three temporal resolutions: individual sessions, 

weekly age, and monthly age.  

Weekly averages of relative power as a function of frequency are displayed in 

Figure 6. Each plot represents an average across subjects of the weekly age ranging from 

20 to 31 weeks. Evidence of peaks centered in the proposed theta and alpha bands are 

seen. A general shift of increasing relative powers centered near 4 and 7 Hz is present 

visually, along with a slight shift to higher frequencies of 3.67 to 4 Hz in the theta peak 

and 6.67 to 7.67 Hz in the alpha peak from the first to last week. Despite weekly 

fluctuations of relative power magnitudes between progressions in the theta frequency 

band, the shift tends to be toward higher frequencies and stronger relative power 

overall. 
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Figure 6: Weekly PSD of Phase 1 Group 

Clustering analysis was performed on the spatio-temporal normalized group 

average patterns over 3 temporal resolutions: individual sessions, weekly age, and 

monthly age. The clustering results from those groupings are depicted in Figure 7. The 

cluster separation is clearly seen between frequencies instead of specific time points. 

Similar separations appear to be smeared on the individual session resolution. This 

finding suggests that differentiation across the 10 weeks spanned in this study is more 

distinct in the frequency domain than the time domain. The results illustrated in Figure 

7 show evident distinction between the three clusters, particularly in the weekly and 

monthly age resolutions. Three clusters were chosen to represent the three frequency 
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bands of interest in infants: delta, theta, and alpha. Each of these clusters were used to 

define frequency bands for this group of infants on a monthly resolution as they show 

overall distinct separation in the frequency domain. Thus, each cluster represented by 

differing colors was defined as the delta (yellow), theta (green), and alpha (blue) 

frequency bands. Shifts of frequency band boundaries are seen particularly from month 

5 to 6 between the delta and theta bands, changing from 2.67 Hz to 3 Hz. Boundary 

shifts are also seen between the theta and alpha bands changing incrementally from 

5.33 Hz to 6 Hz from the first to last month. 

 

Figure 7: Clustering results of Phase 1 Group 

Frequency range boundary definitions of each band were defined at each month 

to reflect the changing cluster boundaries, as seen in Figure 7c. Specifically, grouping of 

spectral powers among the three frequency bands was determined based on the 

clustering results at each respective month. The purpose of changing the frequency 

grouping is to account for the dynamic nature of the bands spatially as well as spectrally. 

Frequency band boundaries defined from the clusters at each month were used to 
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calculate and plot monthly spatial topographies of each frequency band shown in figure 

8. Each topographic map illustrates relative normalized spectral power across the entire 

scalp from the inner 70 channels by interpolating area between the discrete electrode 

points. The scalp illustrations are arranged with the frontal region being the top of each 

portrait. The colorbar on the right shows the colorized normalization value range, with 

red reflecting stronger relative power and blue representing values below the average. 

Distinguishable spatial patterns at each frequency band are apparent in the 

monthly topographic maps. The most consistent pattern apparent from the topographic 

maps is the frontal central activity in the delta band. Theta band power appears to be 

focused on the posterior region in a generally bilateral pattern, although monthly 

consistency is not as persistent as the delta patterns. Alpha band powers appear most 

dominant in the central cortices within the left, central, and right regions. Although the 

alpha and theta patterns show some bilateral nature in the later months, they are not 

entirely symmetric. This asymmetry is particularly visible in month 5 alpha band 

distribution, which depicts stronger activity in the right side compared to the left.  
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Figure 8: Monthly spatial topographies of Phase 1 Group 

Shifts of frequency power in both the theta and alpha bands are also noticeable 

in monthly peak distributions. Average monthly peak distribution plots at a frequency 

resolution of 1/3 Hz are displayed in Figure 9. Each blue barplot represents the average 

number of peaks at that frequency after normalization from all sessions for that month. 

Fitted Gaussian curves are plotted on top of the barplots in red and green depicting the 

theta and alpha band respectively. While the theta peak distribution is significantly less 

prominent in month 5, a shift in centralization of peaks is evident from month 6 to 7. 

Changes in the mu rhythm are more obvious as the central peak distribution clearly 

shifts to higher frequencies, moving from 6.67 Hz to 7.3 Hz. This phenomenon suggests 
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not only frequency shifts of the frequency band boundaries, but also peak frequency 

shifts with the bands to higher values as well. 

 

Figure 9: Peak distribution of Phase 1 Group 

3.2 Independent Analysis of EEG Patterns of Typically Developing Infants from 2nd 

Cohort 

 To test reproducibility of the methods and results from Phase 1, the same 

methodologies were used on the entire Phase 2 group. For this reproducibility analysis, 

subgroups within Phase 2 were firstly disregarded. Namely, all 17 subjects from phase 2 

were grouped together for this analysis to compare this group to the group from Phase 

1. Since subjects in Phase 2 continued the study for longer durations than those in Phase 

1, their plots include data up to 8 months of age as well. 
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Spectral plots for the Phase 2 subjects depicted in Figure 10 show weekly 

averages from 20 to 35 weeks of age. Contrast to the Phase 1 group, the Phase 2 plots 

extend to the additional 4 weeks after 31, which are displayed in yellow and orange. 

Peaks centered around 4 Hz in the theta band appear to depict an increasing nature 

across the weekly progression. Similarly, peaks in the alpha band centered between 6 

and 7 Hz also show a gradual increase of amplitude across weeks. While these plots 

suggest shifts of peaks to higher frequencies, they are not as evident as in the peak 

detection distribution plots. However, the centralized frequency values and dynamic 

properties of these spectral plots are consistent with the Phase 1 findings. 

 

Figure 10: Weekly PSD of Phase 2 group 
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 Clustering analysis results for Phase 2 are presented in Figure 11 in the same 

three temporal resolutions as before. Separation of clusters appears to be more visible 

in weekly and monthly resolutions, while smearing is more common in the individual 

sessions. Boundaries between the frequency bands show dynamic properties, most 

evidently in the monthly resolution. The boundary between delta (yellow) and theta 

(green) displays shifts from 3-3.33 Hz from 5 to 6 months, 3.33-3.67 Hz from 6 to 7 

months, and 3.67-4.33 Hz from 7 to 8 months. Shifts between the theta and alpha band 

boundary are seen between months 5 and 6 from 5.67-6 Hz, as well as between months 

7 and 8 from 6-6.33 Hz. Compared to Phase 1, results from this group shows continual 

shifts in the delta-theta boundary, while the previous group did not show shifts between 

months 6 and 7. Conversely, the Phase 1 clusters showed shifts in the theta-alpha 

boundary at each month, while the Phase 2 results do not display a shift between month 

6 and 7. However, this shift is seen between month 7 and 8. Additionally, cluster 

similarities between the proposed theta frequencies and the higher frequencies from 8-

9 Hz are evident from the green area at those values.  Overall, the dynamic properties 

of the frequency bands for this group are consistent with the findings in the Phase 1 

group. 
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Figure 11: Clustering results of Phase 2 Group 

 Results from the clustering analysis were again used to define frequency band 

boundaries. Monthly normalized spatial topographies for the Phase 2 group are 

illustrated in Figure 12. The delta band patterns are focused in the central frontal area 

of the scalp in each month, but additional activity in the central motor cortex becomes 

evident in months 7 and 8. This delta activity within the central motor cortex was not 

apparent in the Phase 1 group. Theta band activity appears overall consistent in the 

posterior regions, as well as bilaterally on the left and right exterior sides of the scalp. 

Activity in the central motor cortex is evident in the alpha region with some bilateral 

properties, but less than the theta. Contrast to the Phase 1 results, alpha band activity 

is also seen in the posterior region, particularly in months 6 and 8.  
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Figure 12: Monthly spatial topographies of Phase 2 Group 

 Peak distributions for Phase 2 are displayed in Figure 13, which show shifts to 

higher frequencies, as well as overall increase in average number of peaks within each 

month. Theta band peaks show shifts gradual shifts in fitted curve centers from month 

6 to month 8, while peaks in month 5 are not quite as protruded. In addition to shifting 

centralization of peak frequency, noticeable increases in average peak numbers are 

evident from month to month, with exceedingly larger number of peaks in the final 

month. Alpha peaks also show continual shifting patterns to higher frequency from 

month 5 to 8. These peak distribution shifts are also consistent with the Phase 1 findings. 

Specifically, mu rhythm peaks display a shift from 6.67 Hz to 7.33 Hz between the first 

and last months in both groups. Although the Phase 1 distributions show a more rapid 
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shift of those peak frequencies (month 5 to month 7) compared to Phase 2 (month 5 to 

month 8), the end result is the same.  

 

Figure 13: Peak distribution of Phase 2 Group 

3.3 EEG Patterns from Different SIPPC Assistive Modes 

 Because infants in Phase 2 not receive the same assistance from the SIPPC robot 

throughout the study, subgroups within the Phase 2 cohort can be defined. As described 

in Chapter 2, infants were placed in one of three assistive mode groups: force control 

mode, power steering mode, or suit assist mode. To study potential differences in neural 

development from varying locomotive assistance modes, EEG data from Phase 2 was 

separated and averaged within the 3 respective groups. Averaged data from the three 
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groups were examined using the same methods that were used for the entire Phase 2 

group analysis. To properly study the differences of each component across the groups, 

each dimension of comparison in this section is presented together as opposed to group 

by group. Each plot is structured in the same fashion as the Phase 1 and 2 results. 

Weekly spectral plots of each subgroup are depicted in Figure 14 (a-c). Overall, 

the spectral profiles of each subgroup are similar to the total group average of Phase 

2. Peaks are evident in the theta band centered around 4 Hz and the alpha band 

centered around 7 Hz. The most noticeable differences between the subgroups is the 

inconsistent growth of peaks in both the theta and alpha bands within the force 

control groups, compared to the other two groups. Although both frequency bands 

exhibit noticeable peaks in the force control group (Fig. 14a), their amplitudes are not 

as prominent as the other two groups and dynamic changes of the mu rhythm over 

weeks are not as structured as the other two groups. However, these frequency peaks 

at all groups show an overall slight shift toward higher frequencies, especially in the 

alpha band. 
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Figure 14a: Force control group weekly power spectral density plots 

 

Figure 14b: Power steering group weekly power spectral density plots 
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Figure 14c: Suit assist group weekly power spectral density plots 

 

 Figure 15 (a-c) displays monthly spatial topographies of the force control, power 

steering, and suit assist gesture control groups respectively. The three group spatial 

plots each show overall similarities to the Phase 2 total group average. Namely, each 

group consistently exhibits the same frontal central delta band activity. Although some 

similarities are apparent across the three subgroups, several differences are evident.  

The most noticeable distinction in the delta band is the lack of decreased central motor 

cortex activity in the suit assist group (Fig 15c). The central motor cortex activity seen in 

the previous results is also visible in all three groups. This pattern is especially strong in 

months 7 and 8 of the power steering group (Fig 15b).  The theta band in each group 
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displays overall bilateral activity, mainly focused along the temporal and occipital 

regions with exceptions in a few months. Bilateral activity along the motor cortex is also 

evident in the alpha band, similarly to the entire group average. Occipital activity is also 

present in the alpha band for both the power steering and suit assist groups. This pattern 

is evident in the group average as well (fig 12), due to the activity present in  these two 

groups. 

 

Figure 15a: Force control group monthly spatial topographies 
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Figure 15b: Power steering group monthly spatial topographies 

 

Figure 15c: Suit-assisted group monthly spatial topographies 
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Power spectrum peak distribution plots are displayed in Figure 16. Generally, 

central peak distribution values for frequency peaks tend to shift to higher 

frequencies. This shift in the theta band is seen most particularly from months 6 to 8, 

with month 5 being a bit inconsistent compared with the others. The alpha band 

shows more consistent shifts compared to the theta band. Of the three groups, the 

force control group shows the least obvious shift in the alpha band (fig 16a). In 

addition to shifting to higher frequencies, the increase in relative number of peaks is 

apparent from month to month. This pattern is most evident in the power steering and 

suit assist groups (fig 16 a-b).  

 

Figure 16a: Force control group monthly spectral peak distributions 
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Figure 16b: Power steering group monthly spectral peak distributions 

 

Figure 16c: Suit-assisted group monthly spectral peak distributions 
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Chapter 4: Discussion 

This chapter presents a discussion on the EEG spatio-spectral patterns of infants 

enrolled in the Self-Initiated Prone Progression Crawler. Firstly, analysis of results from 

the first cohort is introduced. Secondly, feasibility of reproducing results using an 

independent analysis for the second cohort is addressed. Next, a comparison of infant 

EEG from different SIPPC assistive modes and their various spatio-spectral patterns are 

presented. Lastly, contrasts between the healthy baseline group and the atypically 

developing individuals are analyzed. Our study aims to answer the following research 

questions: Can high density EEG recorded on a weekly basis be used to improve our 

understanding of infant neural development? Can our findings be validated for 

assessment of the sensitivity of our methods and propositions for developmental motor 

brain biomarkers? 

4.1 EEG Spatio-Spectral Patterns 

 Several studies have focused on the alpha band development relation to infant 

motor development (Webster and Clark, 2010; Sauseng et al., 2009; Kuhlman, 1978; 

Stroganova et al., 1999). However, difficulties due to limitations in spatial and 

temporal resolutions in formulating consistent definitions of infant neural circuit 

development associated with motor development, has served as the motivation for 

this study to improve on previous findings. Additionally, inconsistencies about the 

origin of the mu rhythm between the theta and alpha bands have led to further 

questions on its development (Marshall et al., 2010; Berchicci et al., 2011). This study 
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aims to use the benefits of the high temporal resolution of the designed experimental 

protocol to improve on previous findings. 

The first cohort of 10 infants displays developmental patterns consistent with 

literature. Particularly, mu rhythm activity displays clear developmental progression 

toward adulthood in spectral and spatial domains. In the Phase 1 cohort, peak 

frequency bumps are evident within the alpha band as early as 20 weeks of age. This 

bump shape phenomenon continues to progress to higher relative power values in 

later weeks. Additionally, the peak shifts within the band to higher frequencies evident 

in the PSD plots, as well as the peak detection distributions, implies the shift of mu 

rhythm towards higher expected frequencies. Concurrently, the high-resolution spatial 

patterns in the alpha band centralized bilaterally along the motor cortex support the 

reported relation between the mu rhythm and motor cortex (Sauseng et al., 2009). The 

findings from these results suggest that the mu rhythm shift toward higher frequencies 

is progressively approaching expected values established in adults. Consistencies of 

this first cohort with previous findings provide confidence for expanding the same 

analysis to a larger group of subjects with the intent to validate these findings. 

4.2 Validation of Typically Developing Infant Results  

Similarities in the results from Phase 1 and 2 suggest that EEG spatio-spectral 

patterns of healthy infants are consistent. Use of an independent analysis for the Phase 

2 group separate from Phase 1 allowed us to test for any bias potentially added during 

data collection, preprocessing, or spectral analysis. Although some differences from the 
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first group appear in the Phase 2 spatial topographies, particularly in the theta and alpha 

bands, the overall patterns are generally the same. These findings are further reinforced 

by the weekly PSD and peak detection plots. Results from this analysis support 

confidence in our methods and overall results for the typically developing infants.  

Furthermore, the validation of these results suggests that our proposed biomarkers for 

motor development are sensitive to independent analysis procedures and subject 

groups. 

4.3 EEG Differences from Varying Methods of Robot Assistance 

 Although some similarities are present between the three SIPPC assistive mode 

groups (force control, power steering, and suit assist), there are some noticeable 

differences in their spatial patterns. The force control group differs from the other two 

in the theta band topographies where activity is present along the central motor cortex 

until the final month. This could suggest that infants in this group display minimally 

distinguishable patterns between their proposed theta and alpha bands, as the band 

frequency boundary may not be as clearly defined during this time period. This concept 

of similarities between the theta and alpha bands in the force control groups also 

supported by the occipital activity in the final month apparent in the alpha band. This 

concept is also supported by the occipital activity in the final month apparent in the 

alpha band. Activity for this group shows strong visual activity in addition to central 

motor activity only in that specific month and band. Contrast to this, the other two 

groups generally display posterior activity in the theta band throughout each month. 



57 

 

However, the suit-assist group also shows some visual activity in months 6-8, whereas 

the power steering group does not. This could imply that infants in the power steering 

group do not invoke the visual cortex as much as the other two groups during 

recordings, potentially due to limited awareness of depth perception restricted by the 

amount of mobility available to them. However, current results do not provide enough 

information to formulate conclusive results from these patterns, which should be 

expanded upon in future studies.  

 Differences between groups from the weekly PSD and peak distributions are not 

as obvious, but some are noticeable. The weekly PSD plots of the force control group 

show more inconsistencies week to week compared to the other two groups. In 

particular, peaks within the alpha band are not as obvious in this group, which could 

suggest decreased mu rhythm activity for this group compared to the others. The 

apparent delays of mu rhythm peak shifts appear to reflect the limited robotic assistance 

provided to the force control group compared to the other two groups. support the 

functionality of the SIPPC robot as a positive influence. The relation between relatively 

limited mu rhythm activity in the force control group compared to the other groups is 

supported by the proposed association between motor experience and mu rhythm 

activity (van Elk et al., 2008). This pattern is supported by the peak detection 

distributions as well. Although each group shows a progressive central peak shift to 

higher frequencies in the alpha band, the force control group shows drastically less 

relative peaks each month than the other groups. Limitations presented by the force 
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control group suggest that analysis of moving data using a larger sample size could 

provide insight on the effectiveness of the SIPPC robot. 

 Despite the noticeable differences between the three assistive modes, general 

similarities suggest that our proposed biomarkers are further validated by distinction of 

subgroups. Spatio-spectral patterns display similar progressions to the Phase 1 and 

Phase 2 group averages. The difference in these spatial patterns is apparent in the visual 

cortex activity evident in the force control and suit assist groups. However, activity in 

the alpha band consistently appears across the motor cortex in the spatial topographies 

of each group, which is consistent with the entire typically developing averages. 

Additionally, each subgroup displays similar trends in PSD plots and their peak 

distributions as they progress toward higher peak frequencies in the alpha band. This 

suggests that the use of the mu rhythm development can suggest accurate 

developmental patterns, despite varying degrees of assistance.  

4.4 Limitations and Future Work 

Results presented in this study contain limitations that could be improved on in 

future works. Although this research contributes with a high temporal resolution 

across monthly ages of 5-8 months, equally high temporal resolution data is not 

available for infants outside of this age range. Additionally, the number of subjects 

presented in each group is relatively small. Similar analyses should be performed using 

larger numbers of subjects in all groups. To properly assess developmental effects of 

the SIPPC assistive robot, a true control group of EEG from similarly aged infants 



59 

 

unexposed to the assistive technology could be analyzed. Lastly, movement EEG data 

from the SIPPC trials have currently not displayed obviously conclusive mu rhythm 

results, therefore only resting results are presented in this study. Future works should 

focus on improving upon current practices to compare the resting data to the 

movement data for a more comprehensive study on infant locomotion. 

4.5 Conclusion  

This thesis has presented research on EEG rhythmic activity from infants prior to 

crawling. This study, part if the larger study on the assistive locomotive robot known as 

the Self-Initiated Prone Progression Crawler, has focused primarily on spatio-spectral 

patterns involved with motor development. Early intervention during the period of 

crawling skill acquisition is paramount for improving the quality of life for those afflicted 

with cerebral palsy. Understanding of neural correlates of motor development can serve 

as a feedback for rehabilitation techniques as well as a quantitative biomarker for typical 

development. Spatio-spectral patterns of two independent cohorts of typically 

developing infants were analyzed to establish and reinforce expected characteristics of 

infants. Power spectral density analysis of frequency bands, peak frequency, and 

topographic maps displayed consistent results in both groups, especially within the mu 

rhythm. Assessment of differences between distinct SIPPC assistive modes was 

performed to explore potential differences in EEG rhythmic patterns due to variations 

in robotic assistance.  
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